Statistics for The entropy of a closed system can only increase, and will never decrease

Total visits

views
The entropy of a closed system can only increase, and will never decrease 1131

Total visits per month

views
January 2024 0
February 2024 0
March 2024 0
April 2024 0
May 2024 0
June 2024 0
July 2024 0

File Visits

views
AtkinsM.pdf(legacy) 480
AtkinsM.pdf 8

Top country views

views
New Zealand 503
United States 240
France 49
China 43
Australia 22
United Kingdom 19
Ireland 17
Germany 11
Russia 6
Ukraine 6
Hong Kong SAR China 5
India 5
Vietnam 5
Iran 4
Taiwan 4
Israel 3
Italy 3
Netherlands 3
Romania 3
Sweden 3
Singapore 3
Zimbabwe 3
Canada 2
Spain 2
Hungary 2
South Korea 2
Poland 2
Puerto Rico 2
Zambia 2
Brazil 1
Switzerland 1
Egypt 1
European Union 1
Indonesia 1
Malaysia 1
Philippines 1
Pakistan 1
Seychelles 1
Senegal 1
Tanzania 1

Top city views

views
Auckland 484
Fairfax 42
Ann Arbor 31
Buffalo 26
Chicago 26
Beijing 24
Dublin 15
Sydney 14
Redwood City 12
Louisville 9
Woodbridge 9
Houston 8
Sunnyvale 5
Alameda 4
Central District 4
Hanoi 4
Northbridge 4
Shenzhen 4
Tianjin 4
Wellington 4
Ashburn 3
Christchurch 3
Des Moines 3
Dunedin 3
Harare 3
Munich 3
San Diego 3
Washington 3
Wilmington 3
Amsterdam 2
Andover 2
Bayamon 2
Changi 2
Chipata 2
Doncaster 2
Hastings 2
London 2
Melbourne 2
Messina 2
Saint Petersburg 2
Seoul 2
Taipei 2
Tauranga 2
Tehran 2
Toronto 2
Waterford 2
Åkersberga 2
Ames 1
Armidale 1
Ashford 1
Bangalore 1
Barcelona 1
Barnesville 1
Bellambi 1
Belo Horizonte 1
Berlin 1
Bhiwadi 1
Bonnyrigg 1
Cairo 1
Carmel 1
Changhua 1
Chongqing 1
Dallas 1
Dindigul 1
Donna 1
Edgware 1
Freiburg 1
Georgetown 1
Harbin 1
Henderson 1
High Wycombe 1
Ho Chi Minh City 1
Iasi 1
Invercargill 1
Jakarta 1
Jerusalem 1
Kaohsiung 1
Kiev 1
Kirkland 1
Köln 1
Leipzig 1
Loganville 1
Madison 1
Madrid 1
Mercer 1
Molesworth 1
Mountain View 1
Mumbai 1
New York 1
North Point 1
Overland Park 1
Philadelphia 1
Phoenix 1
Pitesti 1
Providence 1
Rome 1
Romillé 1
Seattle 1
Send 1
Sendai 1