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Abstract—Aging populations are stretching existing 

healthcare systems to their limits in both developing and 

developed countries. Telemedicine is a promising solution to this 

challenging problem. Under the conventional data compression 

paradigm, long-time recording of electroencephalography 

(EEG) signals still generates excessive amount of data, which 

requires large data storage and long transmission time. While 

promoting mobile telemedicine with compressed sensing (CS) as 

a key system for EEG monitoring, this paper investigates the 

effect of epoch length on CS to compress EEG signals. 

Experimental results show that a longer epoch length leads to 

better signal compression at the expense of larger signal 

reconstruction time. At a sampling frequency of 256 Hz, a 4-s 

epoch length is suitable when using a general desktop computer 

to perform signal reconstruction.  

I. INTRODUCTION 

The Global Health and Aging report by the World Health 
Organization (WHO) highlighted that “the number of people 
aged 65 or older is projected to grow from an estimated 524 
million in 2010 to nearly 1.5 billion in 2050, with most of the 
increase in developing countries”. This implies a pressing 
need to improve the healthcare availability and affordability in 
those underdeveloped countries. Moreover, the aging 
population with increased life expectancy also presents 
significant challenges to existing health care systems in most 
developed nations. These challenges may include: (i) 
increased need for health care resources, (ii) shortage of health 
care professionals, and (iii) questionable sustainability of 
current health care systems. It is not easy to overcome these 
challenges, especially during a downturn of the global 
economy. Fortunately, technological advances in embedded 
electronics and software design have paved the way for the 
deployment of telemedicine [1], which is known as a broad 
description of infrastructure to provide medical and healthcare 
service using information and communication technologies 
(ICT). As a technology-rich alternative to a regular in-person 
physician visit, telemedicine uses a number of sensor nodes to 
collect biomedical signals, such as electrocardiogram (ECG) 
and electroencephalogram (EEG). It will send data through the 
Internet to a computer operated by a doctor in a hospital. As a 
result, a patient can receive a professional diagnosis while 
remaining at home. This paradigm will not only substantially 
improve availability of medical services, but also reduce their 
related costs, producing a better medical solution for patients. 
Noteworthily, recent development of wireless body area 
networks (WBANs) will expedite the design and development 
of mobile telemedicine [1], further reducing the time and 
space barrier between patients and health professionals.  

Although telemedicine provides salient benefits as 
compared conventional health monitoring systems, there are 
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several major obstacles to realize such a system: (i) The 
limited energy supplied by on-board batteries requires 
WBANs to have a low power consumption. (ii) The 
tremendous amount of sensing data requires efficient data 
compression techniques to save storage space and shorten the 
transmission time. (iii) Data compression algorithms at sensor 
nodes should be computationally light to reduce power 
consumption and hardware cost [2]. All these factors prevent 
conventional data compression techniques from being adopted 
in telemedicine without fundamental changes.  

Contrary to conventional data compression techniques, 
compressed sensing (CS) [3] was proposed to compress the 
data during sampling, as if it were possible to directly acquire 
just the important information about the signals. CS 
significantly reduces the sampling rate as compared to the 
Nyquist sampling theorem. Furthermore, it does not require a 
priori knowledge of the signal to be acquired, except that the 
signal is compressible. This makes CS suitable for 
telemedicine. A framework of CS for EEG compression and 
reconstruction was proposed in [4]. It was shown by an 
empirical study that EEG signals are sparse in a Gabor frame. 
However, the results presented in [4] are limited to repeated 
EEG recording trials, such as asking a patient to repeat the 
same task while recording the EEG signals. Abdulghani et al. 
performed a feasibility study of CS in compressing EEG 
signals for a telemedicine system [5]. Later in [6], they studied 
the performance of CS using different sparsifying bases and 
reconstruction algorithms, and concluded that the lossy 
compression of single-channel EEG using CS is applicable 
only for certain applications with a relaxed tolerance on 
reconstruction errors. However, they did not study the effect 
of the length of EEG epochs [7] [8], which are segments of the 
continuous EEG signal.  

Fauvel and Ward presented an energy efficient CS-based 
compression framework using a Gabor dictionary [9]. They 
showed the proposed solution using CS achieved eight times 
more energy efficiency than the typical wavelet based 
compression method [10]. In their study, the epoch length was 
arbitrarily chosen as four seconds with a sampling frequency 
(fs) of 128 Hz, which was downsampled from Physionet [11] 
with an original fs of 256 Hz. However, they did not study the 
effect of the length of EEG epoch. Compression of 
multichannel EEG using the simultaneous cosparsity and 
low-rank optimization was studied in [12]. However, the 
effect of EEG epoch length was not investigated.  

II. RELATED WORK 

EEG is widely used in hospitals and clinics. A specialized 
technician usually performs the EEG test, and then passes the 
recorded EEG to a doctor for further analysis. They can be 
used to predict and diagnose brain diseases and to facilitate the 
setup of a brain-computer interface (BCI) [13]. For the former, 
EEG signals are analyzed to identify whether certain 
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discovered disease-related patterns appear in the recorded data 
(i.e., EEG is used to confirm or rule out potential brain 
disorders such as seizure/epilepsy and head injury); for the 
latter, EEG signal patterns are associated with a certain task 
performed by the subject in order to operate a device, such as a 
wheel chair. Modern hardware and software ease the EEG 
recording, nevertheless, the data size remains extremely large 
for long-time multi-channel EEG signal recording. 

EEG signal is normally recorded using a 10-20 
international system, which can be extended by adding 
electrodes to produce 32, 64, 128 and even 256 channels [14]. 
Each electrode is connected to one input of a differential 
amplifier with a voltage gain of 60~100 dB. Modern EEG 
recording systems have an fs of 256 to 512 Hz. Next, long-term 
(up to several months) recording of EEG is required especially 
in the diagnosis of certain brain disorders, such as epilepsy 
[15]. Consequently, the volume of the recorded EEG data can 
easily exceed 10 gigabytes (GB) per day for a single patient, 
which are not suitable for storage, real-time monitoring or 
telemedicine. It is imperative to reduce the data size while 
preserving their clinical information for diagnosis. As the 
result, EEG compression methods have been widely studied. 

CS is also known as compressive sensing, compressive 
sampling or sparse sampling. It can efficiently acquire a signal 
with less samples as compared to the conventional Nyquist 
sampling, and reconstruct the signal by finding solutions to 
underdetermined linear systems [3]. Consider a discrete time 
signal x  in ℝN, which can be expressed as  

x Ψs           

where Ψ is the N N  basis matrix (also known as sparsifying 

dictionary) and s  is the 1N   weighting coefficients vector, 

respectively. As such, x  and s  are equivalent representations 

of the signal—the former is in the time/space domain and the 
latter in the Ψ domain. If only K of N elements in s are 

non-zero (the remaining N-K coefficients are zero), the signal 
x  is K-sparse. Furthermore, if those N elements in s have a 

few large values and many small values, the signal x is 
compressible.  

Suppose y is a measurement in ℝM of x using a M N  

sensing matrix (also known as the measurement matrix) Φ, 
and then we have  

  y Φx ΦΨs Θs       

where Θ ΦΨ  is the M N  transformation matrix.  

The CS problem comprises of two sub-problems: (i) 
design of a stable sensing matrix such that the salient 
information of x is not damaged during the data acquisition 
processing; and (ii) design of a reconstruction algorithm to 

recover an estimate of x , x̂  from the measurement y  such 

that the difference between x̂  and x  is minimized.  

Proper design of the M N sensing matrix requires 

maximum incoherence between Φ and Ψ, which is defined by 

 
1 , j

, max ,i j
i N

N  
 

 Φ Ψ 

where ϕi is the ith row of Φ, and ψj is the jth column of Ψ and 

  denotes the dot product. The most used matrices are 

random matrices with i.i.d. entries formed by sampling a 
Gaussian distribution (0,1/M) or a symmetric Bernouilli 

distribution  , 1 0.5i jP M    . However, they are not 

suitable for real-time mobile telemedicine applications as they 
are energy intensive and time consuming. The sparse binary 
sensing matrix (SBSM) was proposed in [16], containing d 

non-zero entries of values 1 d  in each column. In addition, 

the minimum value of d can be found experimentally and is 
usually much smaller than M. For the sake of computational 
simplicity and energy conservation, SBSM is used for the 
mobile telemedicine system in this paper.  

When the measurement y is inaccurate and corrupted with 
noise, (2) becomes  

 y Φx e 

where e is an error term with bounded energy, i.e., 
2

e . 

These inaccurate measurements lead to a noise-aware 
reconstruction of x as an optimization problem: 

1 2
ˆ ˆˆ ,  where min  subject to    x Ψs s s y Θs 

Reconstruction of x requires a proper design of sparsifying 
dictionary Ψ. It was shown that EEG signals are sparse in the 
Gabor domain [4], and a Gabor dictionary with optimized 
joint time-frequency resolution is adopted here. The atoms in 
such a dictionary are given by 
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where n0 and f0 are the time and frequency centers of the atom, 

respectively. σ is the spread of the atom, and  0 0, ,n f
K


 is a 

constant such that  0 0, , ,
1

1n n fg   .  

There are several algorithms available to solve the 
underdetermined linear system in (5). At the same level of 
reconstruction accuracy, studies showed that convex 
optimization algorithms require smaller M as compared to a 
greedy algorithm at the expense of slightly longer 
convergence time [9]. We chose to use the basis pursuit 
denoising (BPDN) algorithm implemented in the SPGL1 
Matlab solver [17] in this paper. 

III. EFFECT OF EPOCH LENGTH 

As aforementioned, the signal x considered in the 
discussion of CS in Section II is a 1N   column vector. When 

x is an epoch of EEG signal, N is related to two 
parameters—sampling frequency (fs) and epoch length in 
seconds, which is denoted as Tepoch. Mathematically, 

s epochN f T         

When fs is fixed, as in most EEG recording systems, N is 
proportional to Tepoch. From (1), we can see that N will 
determine the size of the sparsifying dictionary. Intuitively, for 
Gabor dictionary, a larger N means a larger number of atoms. 



  

A larger dictionary size will take the SPGL1 solver more time 
to reconstruct x. On the contrary, a smaller N will allow for a 
smaller Gabor dictionary size and thus a shorter signal 
reconstruction time. Will a short epoch length favor the 
performance of CS in compressing EEG? This question 
motivates us to study the effect of epoch length on CS. 

If we take the compression ratio (CR) as another 
performance metric, which is defined by 

CR N M         

We can see that N also affects CR. For the sake of 
compression, N should not be less than M. Therefore, a smaller 
N will lead to a smaller CR. For mobile telemedicine, a smaller 
CR means more EEG data bits must be transferred over the 
network, and leads to a longer transmission time.  

IV. COMPUTATIONAL METHODS 

In this section, we discuss the method to evaluate the effect 
of epoch length on the performance of CS in EEG 
compression. The adopted mobile telemedicine system is 
illustrated in Fig. 1. At the patient side, with the help of a 
mobile telemedicine unit, the continuous signal from EEG 
electrodes is first sampled at a fixed frequency (fs), and then it 
is divided into non-overlapped segments with equal lengths of 
N data points. This operation is usually referred to as EEG 
epoching. In this paper, N is a variable related to Tepoch 
according to (7). In the literature, different values of N such as 
256 or 512 were used without any further explanation. Next, 
the mean of each EEG channel is removed for the sake of 
better signal compression. Note that the mean of each EEG 
epoch should be transmitted along with the EEG measurement 
y. Signal compression happens when the signal passes through 
the CS stage, where the signal is multiplied with the sensing 
matrix Φ. After compression, the signal is transmitted 
wirelessly to a sever node or directly to the Internet / cloud.  

At the health professional side, the EEG measurement 
received via a wireless receiver or the Internet / cloud is passed 
to the SPGL1 server with the BPDN algorithm. The Gabor 
dictionary Ψ is loaded into the server, and used for the 
reconstruction of EEG epochs. Then, the particular mean 
value is added back to the reconstructed signal, which is 
displayed to a doctor, or further analyzed to produce a report.   
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Fig. 1. Schematic of a mobile telemedicine system for EEG. 

The parameter combination (n0,f0,σ) controls the position 
and shape of a Gabor atom, which is built from translations 
and modulations of a generating function, as proposed by 
Dennis Gabor in 1946 [19]. Thus, it is important to determine 

how to increment each of them so that optimal time-frequency 
resolution is achieved in the resultant Gabor dictionary. The 
chosen discretization of σ is 2j, where 0≤j≤log2N. Then, the 
time step size (∆n0) is proportional to σ and the frequency step 
size (∆f0) is inversely proportional to σ [18]. In particular, the 
following equations are used to generate ∆n0 and ∆f0: 

0 2

0

1 1
 , where ln2 2

n C
a

CC af



 


 
 

    
   




where a is the ratio of neighbor spreads and chosen as 2 in this 
paper following [19]. Furthermore, once the value of N is 
determined, n0 and f0 are confined as 0≤n0≤N and 0≤f0≤0.5.  

We use the EEG data from the CHB-MIT Scalp EEG 
database [20] in PhysioBank [11], which are widely used to 
evaluate the performance of current approaches in the last two 
decades. The database was collected at the Children's Hospital 
Boston from 24 paediatric subjects with intractable seizures. 
Data were collected at fs = 256 Hz, with a resolution 16 bits per 
sample and 23 channels for several days. A desktop computer 
with Intel i7-6700 dual-core CPU @3.4 GHz/3.41 GHz, 32 
GB of RAM, operating system 64-bit Windows 10, Matlab 
version R2015b (Build 8.6.0.267246) with academic license 
was used for the signal reconstruction.  

Besides the compression ratio defined in (8), the following 
performance metrics are also considered: (i) normalized mean 
square error (NMSE), (ii) size of the Gabor dictionary in 
kilobytes (KB) (iii) reconstruction time [6]. First, NMSE is 
used to check the reconstruction quality, which is given by 

2

2

ˆ
NMSE





x

x x

x μ


where x and x̂  are the original signal and the reconstructed 
signal, respectively. μx is the mean of x. NMSE is used to 
eliminate the bias due to differences in means among different 
EEG epochs. The lower the NMSE value, the better the signal 
reconstruction.  

Next, it is assumed that the Gabor dictionary is generated 
and loaded in the computer before it runs the SPGL1 Matlab 
sever. The rationale behind this assumption is that generation 
of a Gabor dictionary usually takes a while, especially when N 
is large. In addition, when a fixed Gabor dictionary is used, it 
is time-efficient to load the dictionary into the random-access 
memory (RAM) of a computer. The size of the Gabor 
dictionary indicates the amount of disk space required to store 
it, as well as the amount of time to load it to the RAM.  

Finally, reconstruction time refers to the amount of CPU 

time for an algorithm to find the reconstructed signal ( x̂ ) from 
a measurement (y) of its original signal (x).  

V. RESULTS AND DISCUSSION 

The value of Tepoch is varied from 1s to 2s, then 4s and 
finally 8s. We do not perform any resampling and fs is fixed at 
256 Hz as originally recorded. At each Tepoch setting, 100 EEG 
epochs are generated with a random starting point and a length 
of N data points from an arbitrary channel in any of the 24 
recordings, and passed to our CS Matlab program with the 



  

SPGL1 solver. There are some dead channels in which the 
signal values are zeros. However, unlike [9], they are not 
removed to enable us to simulate a practical EEG test that 
occasionally has loose electrodes.  

Fig. 2 shows the effect of epoch length on NMSE at 
different CR values. Larger Tepoch results in better signal 
compression with a lower NMSE. Fig. 3 shows the average 
reconstruction time for an EEG epoch when the epoch length 
is increased at different CR values. The longer the epoch 
length, the longer the reconstruction time. It is interesting to 
see that at a fixed epoch length, the larger the CR value, the 
shorter the signal reconstruction time. This is due to the fact 
that when CR is large, the size of y becomes smaller and it 
reduces the computational complexity of (5). Next, Table I 
summarizes the effect of epoch length on the number of atoms 
used in the Gabor dictionary, and on the memory space 
required to store such a dictionary.  

 

Fig. 2 Effect of epoch length on NMSE 

 

Fig. 3. Effect of epoch length on reconstruction time 

TABLE I. EFFECT OF EPOCH LENGTH ON GABOR DICTIONARY SIZE 

Tepoch(s) Gabor Dictionary Size* (kB) Number of Atoms 

1 10,293 2,573 

2 40,842 5,105 

4 162,099 10,131 

8 645,893 20,184 

*atoms stored in the ASCII format for Matlab programming 

This paper investigated the effect of epoch length on the 

performance of compressed sensing in compressing EEG 

signals. When a Gabor dictionary is used, epoch length 

together with the sampling frequency will directly determine 

the size of the Gabor dictionary. Experimental results (with 

sampling frequency of 256 Hz) suggest that a suitable epoch 

length is 4s, which might not be the optimal one, as the rigid 

analytical model is yet to be formulated. It is worthy studying 

how to use an adaptive epoch length when a dynamic Gabor 

dictionary is used for compressed sensing of EEG, which is 

left as our future work on this topic.  
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