
Full citation: MacDonell, S.G., Min, K., Connor, A.M. (2005) Autonomous requirements specification
processing using natural language processing, in Proceedings of the ISCA 14th International Conference
on Intelligent and Adaptive Systems and Software Engineering (IASSE). Toronto, Canada, ISCA,
pp.266–270.

AUTONOMOUS REQUIREMENTS SPECIFICATION PROCESSING USING

 NATURAL LANGUAGE PROCESSING

Professor S.G. MacDonell
SERL

Auckland University of Technology
Auckland, New Zealand

stephen.macdonell@aut.ac.nz

Dr Kyongho Min
School of Computer & Info

Sciences
Auckland University of Technology

Auckland, New Zealand
kyongho.min@aut.ac.nz

Dr A.M. Connor
SERL

Auckland University of Technology
Auckland, New Zealand

andrew.connor@aut.ac.nz

Abstract

We describe our ongoing research that centers on the
application of natural language processing (NLP) to
software engineering and systems development activities.
In particular, this paper addresses the use of NLP in the
requirements analysis and systems design processes. We
have developed a prototype toolset that can assist the
systems analyst or software engineer to select and verify
terms relevant to a project. In this paper we describe the
processes employed by the system to extract and classify
objects of interest from requirements documents. These
processes are illustrated using a small example.

1. INTRODUCTION

This paper describes the architecture of an autonomous
requirements specification processing system that utilises a
limited version of a natural language processing (NLP)
system and an interactive user interface system. When
analyzing requirements artefacts e.g. specification
documents, interview transcripts and so on, an analyst
generally uses their own software engineering knowledge,
training and experience in combination with one or more
software design tools. In particular, however, the
verification of requirements specification analysis depends
primarily on the software engineer’s knowledge. As a
result, important information such as relationships between
entities in a requirements specification document could be
possibly missed.

It is rather stating the obvious, but the requirements
analysis and determination activities are among the most
important in information systems development.
Inaccuracies that are introduced or omissions that occur in
these stages of development, if unchecked, generally result
in costly rework in later lifecycle phases. The work
described in this paper is therefore focused on the

verification of requirements specification analysis as
performed by a software engineer or systems analyst with
a view to producing a design model – a use case diagram,
an entity-relationship model or similar. This paper first
describes prior autonomous application research in
requirements analysis in section 2. This is followed by a
description of the proposed system architecture in section
3. Section 4 closes the paper with a brief discussion and
our conclusions to date.

2. BACKGROUND

Many of the problems encountered in software systems
can be traced back to shortcomings in the processes and
practices used to gather, specify and manage the end
product requirements. Typically, these shortcomings are
due to the use of informal information gathering, unstated
or implicit functionality, unfounded or uncommunicated
assumptions, inadequately documented requirements or a
casual requirements change process [1]. It has been
suggested that between 40 and 60% of software defects are
related to errors made during the requirements stage [2].
The cost of correcting defects is often significantly greater
than the cost that would have been incurred to ensure that
the requirements correctly represented the users’ need.

Whilst the generation of a complete and non-ambiguous
set of requirements reduces the risk in any given project,
there is still a risk that the requirement set is not
transformed into an appropriate design. This risk is
inherent as a result of mis-interpretation of the
requirements, particularly due to a lack of shared
understanding [3] or due to poor structuring of the project
by not conducting architectural design in parallel with
requirements capture [4].

The use of formal languages or a structured system design
approach can greatly increase the chance that the software
as constructed will in fact conform to the interpretation of

the requirements. Formal languages help remove some
elements of ambiguity from the process as they use
explicit syntax and semantics that define a set of relations
and object interactions more consistently than the English
language. However, the extraction of entity relationships
from a natural language requirements document is
normally conducted manually by a designer using their
software engineering knowledge in conjunction with a
design tool. This introduces the risk of inconsistency in
approach and also the possibility that some entities,
relationships or attributes will be missed entirely.

A great deal of research has focused on the automation of
aspects of the software engineering process, namely
requirements elicitation, translation and analysis, and
subsequent software generation, demonstration and test,
resulting in a final system artefact. To date there have been
few attempts to automate the translation from a
requirements document written in a natural language to
one expressed in a formal specification language. One of
the major reasons for this is the ambiguity of natural
language requirements.

Nazlia et al [5] propose new heuristics that assist the semi-
automated generation of entity relationship diagrams for
database modelling from a natural language description,
with reasonable success. However, the limitation to
database systems does imply that the natural language
documents being processed have particular structure and
language and their approach may not be extendable to
generic software requirement documents.

Bras and Toussiant [6] specify a framework for the
analysis and mapping of requirements documents, with a
particular focus on satellite ground support systems. Such
systems tend to be large, take a long time to develop, and
have extensive documentation that is all predominantly in
natural language. They facilitate requirements traceability
by building tools to analyze, linguistically map and retain
as a knowledge base the contents of the requirements
documents.

Lee and Bryant [7] developed a system for mapping
natural language requirements documents into an object-
oriented formal specification language that utilises
Contextual Natural Language Processing (CNLP) to
overcome the ambiguity in natural language. The mapping
process requires that the requirements specification is
converted to an XML format which is then parsed, with
the results added to a knowledge base. The content of the
knowledge based is converted into a Two Level Grammar
format which is a formal requirements specification
language [8]. Finally, a VDM++ model is produced that
describes the software design.

Ambriola and Gervasi [9] describe a system for supporting
natural language requirements gathering, elicitation, selection
and validation. Central to the work is the idea that
requirements are supplemented by a glossary describing and
classifying all the domain and system specific terms used in

the requirements. Therefore, the NLP engine has a-priori
knowledge relevant to the content of the requirements
documents.

The approach detailed in this paper has no a-priori
knowledge with regards the content of the documents,
which also require no pre-processing. It is applicable to all
software requirements documents as it is primarily used
interactively and as such provides a high level of
consistency checking to ensure that all requirements are
captured in terms of the relationships between entities.

3. SYSTEM DESIGN

In this section, the architecture of an NL (natural
language)-based SE tool is described. The system focuses
on the automatic extraction of objects of interest from a
requirements specification document that is being
processed by a systems analyst (Figure 1).

Figure 1. Assisted Requirements Analysis Process
(as implemented in this research project)

3.1 System Architecture

The system is composed of three modules with a user
interface implemented by Common lisp IDE (Figure 2).
The first of the three modules – a tokeniser – reads
sentences from a document, the second module parses
each sentence and extracts all unique noun terms (an NLP
tool), and the third module – a term management system –
performs 1) the filtering of unimportant terms, 2) the
classification of the remaining terms into one of three
categories (function, entity, or attribute), and 3) the
insertion of objects of interest into a project knowledge
base.

 Requirements

Specification
Document

NLP Tool
(Syntactic
Parsing)

Term
Management
System (UI)

Figure 2. System Architecture

3.2 A Parsing System

After the sentences in a requirements specification
document are extracted by the tokeniser, each sentence is
parsed by a syntactic parser based on a chart parsing
technique [10] with a context-free grammar (CFG) that is
augmented with constraints. The current prototype system
uses a dictionary with about 32000 entries and 79 rules. A
context free rule is composed of LHS (Left-Hand Side),
RHS (Right-Hand Side) with well-formedness constraints
for the phrasal constituent. For example, there is a rule S
(i.e. LHS)  NP VP (i.e. RHS) with its well-formedness
constraint being (number-agreement NP VP). Thus the
sentence “He see a car in the park” would be filtered out as
ill-formed because of the number disagreement between
“he” and “see”.

At present, the syntactic parsing system does not recognise
compound noun terms, such as “information system” and
“staff members”, by a systematical compound noun
recognition system. The system recognises compound
noun terms by using a list of compound noun terms and a
pattern matching technique.

The syntactic parser can produce ambiguous parse trees of
each sentence. At present, the parser has no
disambiguation module – this will be implemented in a
later version of the system. Currently the first parse tree is
selected as the basis for the extraction of terms for the term

management system, terms that will ultimately appear in
specification and design artefacts such as use case
diagrams or data models. For example, the sentence “A
system requires entry of patient’s information” has the
following parse tree:

(S (NP (DET “A”) (NOUN “system”))

(VP (VERB “requires”)
(NP (NP (NOUN “entry”))

(PP (OF “of”) (NP (POSSADJ “patient’s”)
(NOUN “information”)))))).

From the parse tree, terms based on the syntactic structure
(noun phrase (NP)) would be extracted. In the example
above this would include (NP (DET “A”) (NOUN
“system”)), (NP (NOUN “entry”), and (NP (POSSADJ
“patient’s”) (NOUN “information”)). However, the NP
(“entry of patient’s information”) would not be extracted
because the structure includes embedded NPs (“entry”
“patient’s information”).

Another real, complex sentence extracted from a
requirements specification document, “Dunedin Podiatry
requires an information system that allows entry and
retrieval of patient's details and their medical histories.”
results in two parse trees. From the first parse tree, the
term extraction stage retrieves NOUN terms including
“Dunedin Podiatry”, “information system”, “entry”,
“retrieval”, “(patient’s) details”, and “(their medical)
histories” (Figure 3).

Term
list
pane

Class
list
pane

Requirement specification document

Figure 3. Term Extraction by a Syntactic Parser

Finally, the term extraction process identifies nouns in the
extracted NPs, in this case nouns such as “system”,
“entry”, and “information”, and these terms can then be
classified into one of the categories relevant to the design
artefact being produced (e.g. entity, function, attribute) by
a term management system.

3.3 Term Management System

After extracting NP terms, the nouns are shown in the term
list pane (i.e. left pane) in Figures 3 and 4. The filtering
function (enacted by the ‘Filter Entity’ toggle button,
shown in Figure 4) enables the analyst or software
engineer to remove unimportant terms. The term extraction
process cannot necessarily determine every useful term
automatically. Thus in this stage the user can manually
remove further unimportant terms.

Figure 4. Filtering and categorisation of terms.

The user can then select terms to create classes of objects
of interest (in this example, one of entity, attribute, or
function) and can manage the term’s addition to and
deletion from the defined class (via the class list pane,
shown as the middle pane in Figure 3 and the right-hand
pane in Figure 4). The user can view the currently
classified terms in each of the three classes by using a list
pane of classes (i.e. a combo box under the ‘chart-parser’
button in Figure 4).

By selecting terms and their class, individual objects are
created and stored in a project knowledge base using the
following data structures:

(OBJECT (:TYPE FUNCTION) (:VALUE “entry”));
(OBJECT (:TYPE ENTITY) (:VALUE “patient”)); and
(OBJECT (:TYPE ATTRIBUTE) (:VALUE “age”)).

Further documents relevant to the project can then be
analysed and the knowledge base updated. Class conflicts
can be identified by the system and flagged to the user as

requiring resolution. The knowledge base can then be
used as the basis for the automatic generation of relevant
design artefacts – object models, data models and the like.

4. DISCUSSION AND CONCLUSIONS

At present the prototype parsing system is unable to
perform the following:

1) disambiguation of syntactic parse trees;
2) compound noun analysis and proper noun

processing; and
3) anaphoric resolution and semantic interpretation

of terms.

The next version of the system will be extended to
implement the above mentioned functionality in order to
enhance the process of term extraction and enable term
relationship identification. The semantic interpretation of
each sentence will help in the extraction of useful
relationships between the classes. For example, the parsing
of “patient’s medical histories” will produce in a data
model a one-to-many relationship between “patient” and
“medical histories”.

The fully implemented system will utilise NLP to assist
systems analysts in selecting and verifying objects and
relationships of relevance to any given project, then
enabling these objects and relationships to be depicted in
design artefacts (in either this tool or additional software
engineering tools). Thus the burden of analysis – requiring
that the systems analyst ‘parse’, select and relate the
objects of interest from specification documents – can be
shifted at least in part to a toolset that is able to perform
these tasks intelligently and automatically.

5. REFERENCES

[1] Wiegers, K.E. “Software Requirements”, Microsoft
Press, 1999

[2] Leffingwell, D. “Calculating the Return on Investment
from more Effective Requirements Management”,
American Programmer, Vol. 10, No. 4, pp 13-16, 1997

[3] Larson, S. and Morrison, B. “Managing software
requirements in the context of the scientific enterprise”,
IEEE Aerospace Conference Proceedings, Vol. 4, pp 509-
522, 2000

[4] Kazmana, R., In, H.P. and Chem, H-M. “From
requirements negotiation to software architecture
decisions”, Information and Software Technology,
Volume 47, Issue 8, pp 511-520, 2005

[5] Nazlia, O., Hanna, P. and McKevitt, P. “Heuristics-
based entity-relationship modelling through natural
language processing”, Proceedings of the Fifteenth Irish
Conference on Artificial Intelligence and Cognitive
Science, pp 302-313, 2004

[6] Bras, M. and Toussaint, Y. “Artificial intelligence tools
for software engineering: Processing natural language
requirements”, Proceedings of the Eighth International
Conference on Applications of Artificial Intelligence in
Engineering, pp 275-290, 1993

[7] Lee, B.-S. and Bryant, B.R. “Automated conversion
from requirements documentation to an object-oriented
formal specification language”, Proceedings of the 2002
ACM symposium on Applied, pp 932-936, 2002

[8] B. Bryant and B.-S. Lee, “Two-Level Grammar as an
Object-Oriented Requirements Specification Language”,
Proceedings of the 35th Annual Hawaii International
Conference on System Sciences, Vol. 9,

pp 280-290, 2002

[9] Ambriola, V. and Gervasi, V. “Processing natural
language requirements”, Proceedings 12th IEEE
International Conference on Automated Software
Engineering, pp 36 – 45, 1997

[10] Earley, J.: An Efficient Context-Free Parsing
Algorithm, CACM. 13(2) (1970) 94-102

	1. INTRODUCTION
	2. BACKGROUND
	3. SYSTEM DESIGN
	3.1 System Architecture
	3.2 A Parsing System
	3.3 Term Management System

	4. DISCUSSION AND CONCLUSIONS
	5. REFERENCES

