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Abstract 
In this paper we report on a multi-institutional 
investigation into the reading and comprehension skills of 
novice programmers. This work extends previous studies 
(Lister 2004, McCracken 2001) by developing a question 
set within two key pedagogical frameworks: the Bloom 
and SOLO taxonomies. From this framework of analysis 
some interesting emergent patterns relating the cognitive 
level of the questions to student performance have been 
identified. 

Keywords: Bloom’s Taxonomy, SOLO, novice 
programming, multi-institutional . 

1 Introduction 
A 2001 ITiCSE working group assessed the programming 
ability of an international population of students from 
several universities (McCracken et. al. 2001). The 
students were tested on a common set of program-writing 
problems and the majority of students performed more 
poorly than expected. It was not clear why the students 
struggled to write the required programs. One possible 
explanation is that students lacked knowledge of 
fundamental programming constructs. Another possible 
explanation is that students were familiar with the 
constructs but lacked the ability to “problem solve”.  

In 2004, another ITiCSE working group (the “Leeds 
group”) attempted to investigate some of the reasons why 
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students find programming difficult (Lister et. al. 2004).  
The working group attempted to benchmark the program-
reading skills of novice programmers. They found that 
many students could not answer program reading 
problems, “suggesting that such students have a fragile 
grasp of skills that are a pre-requisite for problem-
solving”.   

As interesting as the results are from the Leeds group, the 
project did not have a sufficient theoretical underpinning. 
The choice of the reading problems was not informed by 
a theoretical model. The multiple choice problems were 
taken from past exam papers written by Lister. The only 
criterion for choosing the problems was the percentage of 
students who had answered each question correctly. 
Furthermore, the analysis of the data was not driven by 
any theory or model of how students should solve or 
actually address problems. 

The work described in this paper uses a revised version of 
Bloom’s taxonomy (Anderson et al. 2001) to generate 
and analyse program reading questions and uses the 
SOLO taxonomy (Biggs and Collis 1982) in the analysis 
of some of the data.  

1.1 Project Timeline and Organisation 
The authors are based at five different tertiary education 
institutions. They first met to discuss this project in 
December 2004. At that meeting, a draft instrument was 
developed, using the revised Bloom’s taxonomy. 

For the next 6 months, authors at three of the 
participating institutions collected data from their 
students.  In July 2005, the authors met again to analyse 
and discuss their results. It was at this meeting that the 
SOLO taxonomy was introduced as a tool for analysing 
the data. 



2 Question-writing and Bloom’s Taxonomy 
The Leeds group divided their multiple choice questions 
into two broad types. The first type of question was a 
‘fixed-code’ question. In questions of this type, students 
were given a short piece of code and asked to determine 
the value output, or the value contained by a variable, 
after that code was executed. The second type of multiple 
choice question was a ‘skeleton-code’ question. In this 
type of question, students were given a piece of code with 
one or more lines missing. They were also told the 
intended function of the code, and were asked to select 
from the available options the code that would correctly 
complete the skeleton.  The Leeds group observed that, as 
a general rule, students found ‘fixed-code’ questions 
easier than ‘skeleton-code’ questions, but they did not 
offer an explanation of why that should be the case. 

‘Fixed-code’ questions may be considered to fit into the 
Executing subcategory of the cognitive process category 
Apply.  This is described in the revised Bloom’s 
taxonomy as “applying a procedure to a familiar task”. 

Categorizing ‘skeleton-code’ questions into the revised 
Bloom’s taxonomy is more difficult than fixed-code 
questions, because students appear to manifest a greater 
variety of approaches to solving ‘skeleton-code’ 
questions. A student might solve a ‘skeleton-code’ 
multiple choice question via the cognitive process of 
Apply, in the subcategory of Executing. That is, the 
student might substitute each of the given options into the 
skeleton, execute the code for each of those substitutions, 
and then select the substitution that led to the intended 
behaviour.   On the other hand, a student might solve a 
skeleton-code multiple choice question by reasoning 
about how the parts of the code relate to one another. 
Depending upon exactly how that was done, the student 
could be operating at either the Analyse or Evaluate 
levels. In some rare instances a student may even be 
operating at the Create level.   

The revised Bloom’s taxonomy is a fertile source of ideas 
for question generation.  After examining the categories 
in the revised taxonomy, and relating them to 
programming, we found that more question types than 
just ‘fixed-code’ and ‘skeleton-code’ questions may be 
generated, as is illustrated in the next section of the paper.   

3 Study Instrument Development 
The set of 10 questions surveyed in this paper, consisted 
of 9 multiple choice questions and one short-answer 
question. In order to identify what was being tested in 
terms of programming ability the working group decided 
to develop an instrument that was built upon a 
framework.  Two of the multiple choice questions used in 
this study (1 and 9) were taken directly from the Leeds 
working group instrument (5 and 2 respectively; Lister 
2004). These two questions allowed for some direct 
comparative analysis.  

The remaining 8 questions were designed by the working 
group, using the revised Bloom’s taxonomy, with the 
express purpose of devising a diverse set of questions to 

evaluate the program comprehension skills of novice 
programmers.  

The complete set of 10 questions is available from a web 
site (Bracelet).  To conserve space in this paper, the 10 
questions are summarised as follows: 

Q1: A “fixed-code” question, identical to Question 5 
from the Leeds working group.  The code contains a 
single “while” condition, with a simple terminating 
condition that does not involve conjunctions or 
disjunctions, with five assignment statements within 
the loop.  

Q2: Students were given a piece of code and were 
required to find the matching flow chart.  

Q3: Similar to question 2, but in this case the students 
were supplied with a structure diagram and had to 
select the piece of code that performed the same 
task. 

Q4. Students were given a piece of code, a single “if” 
statement with an “else” component, that set a 
boolean variable to true if an integer variable 
contained a value within a given range; otherwise 
the boolean variable was set to false. The students 
were required to identify a functionally equivalent 
piece of code from the options.  Each option 
consisted of an “if/else” statement. Each “if” 
statement’s boolean condition contained either a 
conjunction or a disjunction. 

Q5: A “fixed-code” question. The code consisted of 
nested “for” loops, with a simple “if” condition 
within the inner loop.  

Q6: The code contained a single “while” condition, which 
stepped an integer variable “i” through a series of 
values.  The code also contained a single array 
initialized to a set of values. The student was 
required to choose from among the four options the 
best English language description of what the code 
did.  

Q7: The complete text of this question is given later in 
the paper.  The students were given some buggy 
code, told the intended function of that code, and 
given an example of the incorrect output of the 
buggy code. The students were then asked to select a 
change to the code that would fix the bug.  

Q8: A “skeleton-code” question, with part of one line 
missing, the boolean condition of an “if” statement. 
The code was intended to check whether the 
characters stored in an array formed a palindrome. 
The code contained a single “while” statement, with 
a boolean condition containing two conjuncts. The 
body of the loop consisted of two assignment 
statements. The missing “if” conditions immediately 
followed the “while” loop.  Students had to choose 
the appropriate boolean condition for the missing ‘if’ 
statement. 

Q9: A “fixed-code” question, identical to question 2 from 
the Leeds working group.  The code contained a 
single “while” condition, with a complicated “if” 



condition within it.  The students were only given 
the code. They were not told the function of the 
code, which was to count the number of identical 
elements in two sorted integer arrays omitting the 
first element in both arrays.  

Q10: The complete text of this question is given later in 
the paper.  This is the only question in the complete 
set of questions which is not a multiple choice 
question. Instead, students were given a short piece 
of code and asked to describe the purpose of the 
code “in plain English”.  

The instrument also contained an 11th question which is 
not discussed in this paper. 

3.1 Bloom Categorisation, Version 1 
Given our aim of investigating how novices comprehend 
code, the goal was to design a set that tested the full range 
of cognitive processes within the Understand cognitive 
domain of the Bloom’s Revised Taxonomy (Anderson 
2001). This proved more difficult than anticipated. While 
the revised taxonomy was a fertile source of ideas for 
generating questions, once a question was written, it was 
sometimes difficult to formally place it within the revised 
taxonomy.  The examples given by the taxonomy’s 
authors are not easy to translate into the programming 
domain.  In many cases the categories within the 
knowledge domain, did not readily fit with concepts and 
tasks required in computer programming. It was difficult 
to match the cognitive tasks undertaken for each question 
with Bloom’s cognitive processes. This resulted in the 
working group initially categorising most of the questions 
within the relatively low cognitive level of Understand. 

3.2 Bloom Categorisation, Version 2 
At the group’s second meeting, it was realised that the 
authors had initially categorised the questions according 
to what we thought the students would do when 
attempting the questions. 

A review of our categorisation was undertaken over three 
sessions by a consensus between six members of the 
working group. This recategorisation assumed that the 
Bloom categories represented a normative model of good 
practice carried out by students. 

The revised Bloom’s categorisation is given in Table 1.   

It appears that in our initial categorisation we 
underestimated the level of cognition required to solve 
some questions. Consequently, not all the 10 questions 
are within the Understand cognitive domain of the 
Bloom’s Revised Taxonomy (Anderson 2001), as had 
been our original intention.  

A small set of interviews with a group of independent 
academics that had attempted the study instrument were 
subjected to a “think out loud” interview, like the 
interviews conducted by the Leeds group (Lister 2004). 
The interview transcripts lead us to conclude that the best 
way to refine the categorisation of questions would be by 
a post-study review of the original categorisations using 
interview descriptions of the steps taken to solve each 

question. This “think out loud” approach was not used 
with the students in the course of this study but will be 
used in the future. 

 

Q Cognitive Process 
Categories 

Cognitive Process 
Subcategories 

1 Apply Executing 

2 Understand Comparing 

3 Understand Comparing 

4 Understand Comparing 

5 Apply Executing 

6 Apply Executing 

7 Analyse Differentiating 

8 Analyse Differentiating 

9 Apply Executing 

10 Understand Comparing 

Table 1: Revised Bloom’s categorisation of the 
question set 

3.3 Study Instrument Localisation Issues 
Although many of the questions in this study were 
originally developed in Java, none of the students who 
actually attempted the 10 questions were taught Java as 
their first programming language.  It was thus necessary 
to localise the problem set for each institution so that 
students would be presented with problems in a language 
with which they were familiar.  It was also decided that 
each institution would apply their own naming 
conventions and layout standards to the code presented to 
the students. 

Therefore the instrument was also produced in Delphi, C# 
and C++ dialects.  In the course of devising the new 
questions, the group noted that each language has its own 
unique idiomatic and syntactical features, which implied 
subtle differences in the representation of even rather 
simple MCQ’s.  Differences in initialization values for 
indexes, and in relational operators, had the effect of 
changing the distracters in several instances. However, 
this localisation did not result in changes to the logic of 
the questions or the answer sets. 

4 Data Collection 
The data collected in the initial phase of this study 
consisted of student answers to nine MCQs and two short 
answer questions. Analysis of the short answer to 
question 11, revealed significant complexities and 
therefore lies outside the scope of this paper. 

One hundred and seventeen students participated in this 
study. These students had either nearly completed or just 
completed the first semester of their first programming 
course. In all cases the MCQs counted towards the 
student’s final grade and were taken under examination 
conditions. 



5 Performance Data Analysis on the MCQs 
The analysis of the performance data for the MCQs was 
undertaken using quartiles so that it would be comparable 
with the previous study by Lister (2004). 

Performance data varied from a normal distribution so the 
use of quartiles is appropriate for MCQ data 
categorisation (Figure 1). 
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Figure 1: Distribution of scores for students who 
attempted all MCQs 

Analysis of the MCQs was undertaken by establishing 
quartile boundaries and placing the data into quartiles. 

5.1 Performance Data Discussion 
Questions 4, 5, 6 and 8 worked well in separating out the 
more able from the less able students. Most of the 
distracters worked effectively. So while the difficulty and 
overall performance varied there was nothing remarkable 
about these MCQs to report so the analysis of these 
questions has not been included in this paper. 

The two most difficult questions proved to be questions 7 
and 8.  The Bloom’s categorisation of these two questions 
(Figure 2) identified that they were at the highest level of 
cognitive processing (analyse) in the MCQ problem set.  
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Figure 2: Performance by Bloom’s category 

5.2 Question 2: The Easiest Question 
Over 90% of students answered question 2 correctly. 
Students were given a piece of code and were required 
find the matching flow chart.  This question was at the 
lowest cognitive skill level assessed by the set of 10 

questions. The full text for question 2 is provided in the 
appendix of this paper. 

MCQs are a common way of testing students in many 
disciplines, and there is considerable body of literature 
devoted to the construction and analysis of such tests 
(Ebel and Frisbie 1986, Linn and Gronlund 1995, 
Haladyna 1999). A common way of analysing the 
effectiveness of a MCQ is based upon the notion that 
MCQs should be answered correctly by most strong 
students, and incorrectly by most weak students. For 
question 2, approximately 100% of students in the first 
quartile (i.e. students who scored 8-9 on all 9 MCQs) 
answered this question correctly, whereas approximately 
80% of students in the bottom quartile (i.e. scored 1-4 on 
all 9 MCQs) answered this question correctly. On the 
basis of these two percentages for the top and bottom 
quartiles, this MCQ is not effective at distinguishing 
between stronger and weaker students. 

A similar but more comprehensive quartile analysis of 
question 2 is given in Figure 3. This type of figure is an 
established way of analysing MCQs (Haladyna 1999). It 
shows the performance of all four student quartiles and 
also summarizes the actual choices made by students in 
each quartile. The horizontal axis represents the four 
student quartiles. The uppermost trend line in that figure 
represents choice C, the correct choice for Question 2. As 
stated earlier, approximately 100% of students in the first 
quartile chose option C. The percentage of students who 
chose option C was also almost 100% for the second and 
third as well, but dropped to 80% for the fourth quartile 
students, where approximately 20% of the students were 
distracted by option D.  

Question 2 (option c correct)
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 Figure 3: Student responses to Q2, by quartiles1

While this question was not effective at distinguishing 
between strong and weak students, it does at least 
establish that most students have some minimal grasp of 
flow control structures in their first programming 
language. 

                                                           
1 The quartiles have been numbered from 1-4 where the 1st 
quartile is actually the top quartile. While this is unusual this 
identification of quartiles has been adopted in order to allow 
comparative analysis between this study and the Lister (2004) 
study.  

 

 apply understand analyze 



5.3 Questions 1&9: The Lister Study Questions 
Questions 1 and 9 were taken directly from an earlier 
paper by Lister (2004). In this study similar trend lines 
(Figure 4, Figure 5) were observed to those recorded by 
Lister (2004). However, in this study the distracter A for 
question 9 proved to be a stronger distracter for students 
in the lower two quartiles. 

Question 9 (option B is correct)
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Figure 4: Student responses to Q9, by quartiles 

Question 1 (option A is correct)
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Figure 5: Student responses to Q1, by quartiles 

5.4 Question 7: The Hardest Question 
The complete text for this question is given in Figure 7. 
The quartile analysis for this question is given in     
Figure 6.  

Question 7 (option A is correct)
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Figure 6: Student responses to Q7, by quartiles 

Distracter B was weak and obvious to even the poorest 
students. Distracter C was only effective on those 
students who were in the bottom quartile. However 
distracter D was extremely strong for all students.  On the 
surface, D appears to be correct because by incrementing 

iIndex after the assignment of a value to iSum at 
termination of the loop the desired value of 7 is achieved 
for iSum. Unless students also track the value of 
iIndex they do not discover that the value of iIndex 
after exiting the while loop is not giving the correct value. 
Perhaps the students assume that it is correct because it is 
correct in the original question stem code.  

Question 7 was intended to make the students operate at a 
higher cognitive level when it was designed. Figure 2 
indicates that it does that and the findings indicate that 
even the best students had difficulty thinking at this level. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Question 7 

The following segment of code was intended to add 
the elements of the array iNumbers, from left to 
right, until the sum of those elements is greater than 
the value stored in the variable iLimit: 
int iNumbers[iMAX] = {..some values here..}; 
int iLimit = 3; 
int iIndex = 0; 
int iSum = 0; 
 
while((iSum <= iLimit) && (iIndex < iMAX)) 
{ 

iIndex = iIndex + 1; 
iSum = iSum + iNumbers[iIndex]; 

} 
 
The code was intended to finish with the variable 
iIndex containing the first position in the array 
where the sum exceeds iLimit, and iSum containing 
the sum of the array elements from iNumbers[0] to 
iNumbers[iIndex] inclusive. 

However the given code is buggy.  For example, if 
iNumbers has the values { 2, 1, 4, 5, 7}, iIndex 
should be 2 and iSum should be 7. 

Instead, after the above segment of code is executed, 
iIndex equals 2 and iSum equals 5. 

The bug in the above code can be fixed by: 

a) Replacing iIndex = 0 with iIndex = -1 

b) Replacing iSum = 0 with iSum = -1 

c) Replacing iSum <= iLimit with iSum < iLimit 
d) Moving iIndex = iIndex + 1 from above 
Sum = iSum + iNumbers[iIndex] to below it 

Figure 7: Question 7 of the problem set 

5.5 Question 3: The Peculiar Question 
Question 2 and question 3 were very similar questions, 
but the students found question 3 more difficult than 
question 2. Both questions required the translation of an 
algorithm or piece of logic from one representation to 
another. In the case of question 2 (Figure 3) the students 
were provided with a piece of code and asked to choose 
the flow diagram that represented the logic of the code.  



Two things made question 3 different. Firstly the logic 
was reversed. Instead of translating from code to a 
diagram the students were translating from a diagram to 
code. Secondly the notation of the diagrammatic 
representation was changed from a flow chart to a 
structure diagram.  One conclusion that may be drawn is 
that students find structure diagrams harder to interpret 
than flowcharts. This reflects some of the working group 
members’ experiences when trying to teach algorithmic 
design to novice programmers using the structure 
diagram notation. 

Quite clearly distracter C was strong for people in the 
upper middle quartile. The error in C was very minor; an 
incorrect relational operator was employed in the loop’s 
termination condition. Both A and B contained a bug that 
we would expect to be harder to identify, the assignment 
in the body of the loop was incorrect. Additionally, A 
contained the same error as in distracter C.  The bottom 
quartiles strongest distracter was B. So although they got 
the termination condition of the while loop correct they 
overlooked the serious logic flaw caused by the 
misassignment in the loop body. 

Because the stronger students may have perceived this 
question as ‘easy’ it can be postulated that the minor error 
in C was overlooked by many of the students in the upper 
middle quartile. This bug was not overlooked by those in 
the lower middle quartile who would, perhaps, have had 
less confidence and checked all the options before 
committing to one answer. In the study instrument 
distracter C was the first option that performed a correct 
assignment or array copy process. Perhaps the upper 
middle quartile students selected this option without 
checking further options to ensure their choice was 
correct. This means that either distracter C needs to be 
restructured or simply changed in terms of position on the 
question sheet.  

Question 3  (option D is correct)
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Figure 8: Student responses to Q3, by quartiles 

6 Question 10: Summarisation of code 
When faced with a code summarisation task, the 
participants provide a range of responses. Question 10, 
Figure 9, requires the participants to describe the code in 
plain English. The responses vary in terms of the 
precision of the description and the amount of code 
covered by the description. Some summarisation options 
may be clearly identified as not correlating with the 
provided code. The remaining summaries varied in terms 

of both detail and accuracy with respect to the provided 
code. A different form of classification was required for 
this question. The SOLO taxonomy (Biggs 1982, Biggs 
1999) provided an approach for performing this analysis. 

Question 10 

In plain English, explain what the following 

segment of code does: 

      bool bValid = true; 

 for (int i = 0; i < iMAX-1; i++) 

 { 

     if (iNumbers[i] > iNumbers[i+1]) 

     { 

        bValid = false; 

    } 

     } 

Figure 9: Question 10 of the problem set 

6.1 SOLO analysis categories 
To analyse the responses to this question, a series of 
categories (Table 2) based on the SOLO taxonomy (Biggs 
and Collis 1982) were developed. As this question 
provided minimal opportunity to provide an ‘extended 
abstract’ response (the highest level in the SOLO 
taxonomy), this was excluded as an outcome option. The 
following categories (Table 2) were applied to the 
responses. 

 

SOLO category Description 

Relational  

[R] 

Provides a summary of what the 
code does in terms of the code’s 
purpose. 

Multistructural 

[M] 

A line by line description is 
provided of all the code. 
Summarisation of  individual 
statements may be included 

Unistructural 

[U] 

Provides a description for one 
portion of the code (i.e. describes 
the if statement) 

Prestructural 

[P] 

Substantially lacks knowledge of 
programming constructs or is 
unrelated to the question 

Blank Question not answered 

Table 2: SOLO Categories 

The student responses above prestructural vary in terms 
of the amount of code considered in the description (the 
width) and the extent to which the elements of the code 
have been related to each other. In the terminology of the 
SOLO taxonomy, these variations are referred to 
respectively as the “width” and “depth” of understanding. 



The unistructural category includes those responses that 
focused on only one element of the code. This type of 
description has a narrow focus with an emphasis on 
individual statement or part of a statement like "number 
at index is less than or equal to the number at index plus 
one". This is a focus on the condition of the “if” 
statement and ignores the iteration through the array. An 
example of a unistructural comment, taken from the data 
collected, is “If the index number is higher than the index 
number plus one then the code will be invalid”. 

For the multistructural category, the description describes 
two or more statements but without showing any 
relationship between them other than the sequence in 
which they appear. This category shows an increasing 
width of analysis. Some variation in depth may be shown 
through some statements being summarised individually. 

Two examples of multistructural comments are:  

• "Compare every element in the array with the 
one next to it. Return false if it bigger than the 
one next to it." 

• "From the first element in the array to the 
second last element. Test to see if they are in 
order from the smallest to the largest If not, 
return a 'false' to bValid otherwise bValid 
remains 'true'" 

The extreme form of multistructuralism is when the 
student describes each line of the code. For example:  

• "bValid is a Boolean.  i value is 1. Perform the 
loop until i equals to the number of array which 
is deducted -1. If the value of i array is greater 
than the one of i+1 array, set bValid to "False"" 

The relational category descriptions summarise all of the 
code. Like the multistructural category, the full width of 
the code is considered. In this category, the descriptions 
draw together all of the code showing an increasing depth 
of understanding of the relationships between individual 
statements to achieve an overall result. These descriptions 
of the code segment become more abstract as they rely 
less on the actual operations specified in the code. A 
relational description like "checks that the array is in 
ascending order" is more abstract than a description like 
“checks that the array elements are ordered from the 
smallest to the greatest”. These descriptions may include 
some clarification of what it means to be in “ascending 
order” such as “two elements being equal are considered 
as ascending”.  Three examples of relational comments 
are:  

• “Test an array of integers if their values are 
listed from smallest to largest return true else 
return false." 

• “This piece of code is used to find out if the 
values in an array are in ascending order " 

• “To recognise all the elements of the array is in 
increasing order. If two elements which are 
neighbours are the same number the program 
still thinks they are in increasing order" 

The three categories, unistructural, multistructural, and 
relational could be further subdivided based on the width 
and depth of abstraction concepts. However, with the 
quantity of data in this study, it was considered that 
further dividing of the categories would provide narrow 
bands that would be difficult to correlate with the 
responses to other questions.  

6.2 Significance of SOLO 
It is the contention of the authors that a vital step toward 
being able to write programs is the capacity to read a 
piece of code and describe it relationally. A student who 
can only reason multistructurally may be able to answer a 
“fixed-code” question correctly, by executing the code, 
but that student could not write an equivalent piece of 
code because that student could not translate between the 
intent of a piece of code and the code itself. 

6.3 Analysis of data 
The SOLO analysis in this paper is based on a subset of 
the data collected, the 69 responses collected at one 
institution. Seven of these were excluded from the SOLO 
analysis as they were either blank (question was not 
attempted, three responses) or included a relational type 
description that was categorised as in error (4 responses). 
All the blank responses were from students in quartile 
four. The relational in error responses were distributed 
over quartiles one, three, and four. 

The distribution of responses within the major categories 
is shown in the following graph (Figure 10). At 54.8%, 
the multistructural responses are the most common. This 
may reflect the depth of understanding of the students 
covered in the study and would be consistent with the 
view that novices are more focussed on the detail than the 
patterns represented by the code segment (Chi et al. 1988, 
Wiedenbeck et al. 1993). 
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Figure 10: Distribution by SOLO Category 

The number of prestructural responses makes it difficult 
to draw any conclusions related directly with this 
category unless they are combined with the blank 
responses. 

When compared with the quartile results from questions 1 
through 9, the following distribution is obtained (Figure 
11). Quartile four favours multistructural responses for 
Question 10, with a lower unistructural response. All the 
prestructural and blank responses are also in this quartile. 
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Figure 11: SOLO category distribution by quartiles 
(Q1 - Q4) 

Multistructural responses for Question 10 dominate 
quartile three, while in quartiles one and two the 
relational and multistructural responses for Question 10 
are even. 

Figure 12 depicts the distribution of students within 
SOLO response by quartile. The relational responses for 
Question 10 are primarily in quartiles one and two with 
no relational responses in quartile four. Multistructural 
responses for Question 10 are fairly evenly distributed but 
with a slightly higher representation in quartiles two and 
three. Unistructural responses for Question 10 are 
primarily in quartile four with none in quartile one. 
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Figure 12: Quartile responses by SOLO category 

6.4 Discussion 
When applying the SOLO taxonomy (Table 2) in 
assessment, it is expected that those who demonstrate a 
relational understanding of the subject have a deeper 
understanding of the subject matter. The distribution of 
relational responses shows that they are primarily in the 
top performing half of the population. 

The distribution of the unistructural responses toward 
quartile four is consistent with the anticipated responses. 
The slightly higher multistructural responses in the centre 
two quartiles, was also anticipated although the more 
even distribution was not. This may be a reflection of the 
relatively novice status of the respondents with respect to 
learning to read and write program code. 

With the relatively small population in this sample, 
coding errors may have had an impact on the 
distributions.  

Having only one question that is analysed based on the 
SOLO categories limits the effectiveness of using these 
SOLO categories to compare with the MCQ scores. 
Having more than one question categorised in this 
manner would have given a better indication of the 
consistency in the students’ abilities to perform in a 
particular SOLO category. 

7 Conclusions 
This multi-institutional study into the reading and 
comprehension skills of novice programmers has reported 
findings based upon data from three New Zealand 
institutions.  This study has extended prior work by Lister 
et al (2004), and used a revised set of multiple choice and 
short answer questions, within two key pedagogical 
frameworks of analysis.  The instrument has tested 
elements of program comprehension categorised using 
the revised Bloom framework (Anderson, Krathwohl et 
al., 2001), and the SOLO taxonomy (Biggs, 1999).  The 
Bloom categorisation has been based upon data from 117 
respondents and the SOLO categorisation is based upon a 
sample of 69 students. While the complete analysis of all 
data across all participating institutions has not yet been 
completed, some initial insights and patterns have been 
observed. 

Firstly, categorising programming MCQ’s by cognitive 
complexity applying Bloom’s taxonomy, has proven 
challenging even to an experienced group of 
programming educators.  This may suggest some 
deficiencies in the Bloom taxonomy when applying it to 
programming problems, or be a manifestation of the 
authors current level of understanding of how to apply the 
taxonomy.  It also indicates that assessing programming 
fairly and consistently is a complex and challenging task, 
for which programming educators lack clear frameworks 
and tools.   

It appears likely that programming educators may be 
systemically underestimating the cognitive difficulty in 
their instruments for assessing programming skills of 
novice programmers.  For non-elite institutions it is likely 
that some proportion of the high failure rate in 
introductory programming may be attributed to this 
difficulty in setting fair and appropriate assessment 
instruments.  In some respects this study echoes the 
findings of Oliver et al., (2004), whose Bloom’s 
classification of programming courses indicated, for 
introductory through to intermediate level programming 
courses, an invariant level of difficulty, which they 
assessed at the application and analysis level.  In contrast 
they found that the demands imposed by networking 
courses tended to reside at the lower recall and 
comprehension levels of the Bloom’s taxonomy and did 
not appear to increase with higher levels of study.  Thus 
the level of difficulty of programming assessments at 
introductory levels, whether or not inherent in the subject 
itself, presents a significant and possibly unfair barrier to 
student success. 



The subjects in this study did however perform in a 
manner consistent with the cognitive difficulty levels, 
indicated by the assigned Bloom category for each MCQ.  
This is an encouraging finding as it suggests an ability for 
educators to apply a “level of difficulty” yardstick with 
some granularity, to the setting of a programming MCQ.   

Analysis of student performance through the SOLO 
taxonomy did suggest a degree of consistency with the 
SOLO model, with weaker students less likely to show 
performance at higher levels of the taxonomy, and 
stronger students tending to show higher level 
capabilities.  However the results also hinted at the 
conclusion that novice programmers were not yet able to 
work at a fully abstract level.  The stages through which 
novice programmers develop to a strongly relational 
performance level, and the time that this development 
process may take, needs further investigation and may 
have been significantly underestimated in many modern 
computing curricula.  Students who cannot read a short 
piece of code and describe it in relational terms are not 
well equipped intellectually to write code of their own. 

The authors believe that this study provides a more 
rigorous framework for evaluating performance of 
novices in programming tasks than the Leeds group 
study. Through extensions of this study we hope to 
provide further data to help educators better assess 
programming comprehension.  It is also hoped that by 
confirming or contradicting the findings emerging from 
this work, we can deepen our own understandings of how 
novices learn how to comprehend and write programs.  
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Appendix 
Question 3

Initialise
index2 to MAX

Initialise
index1 to 0

while index1 is
less than MAX

increment
index1

decrement
index2

Copy number from
index1 in array1 to

element at index2 in
array2

Questions were given to the students with one complete 
question per page. Here some of the indenting and 
formatting has been changed in order to fit the journal 
format.  

Question 2 
Consider the following segment of code: 
 const int iMAX = 3; 

 int iVal = 0; 

 while (iVal < iMAX) 

 { 

  cout << iVal; 

  iVal = iVal + 1; 

 }  

Which of these flowcharts represents the logic of this code? 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Question 3

Study the structure diagram: 

Array1 and Array2 are both arrays containing MAX 
integers.  Which of these code segments correctly 
implements the logic shown in the above diagram? 

 
a) iIndex1 = 0; 

iIndex2 = iMAX; 

while (iIndex1 <= iMAX)  

{ 

  iIndex2--; 

  iArray1[iIndex1] = iArray2[iIndex2]; 

  iIndex1++; 

} 

b) iIndex1 = 0; 

iIndex2 = iMAX; 

while (iIndex1 < iMAX) 

{ 

  iIndex2--; 

  iArray1 [iIndex1] = iArray2 [iIndex2]; 

  iIndex1++; 

} 

c) iIndex1 = 0; 

iIndex2 = iMAX; 

while (iIndex1 <= iMAX)  

{ 

  iIndex2--; 

  iArray2 [iIndex2] = iArray1 [iIndex1]; 

  iIndex1++; 

} 

d) iIndex1 = 0; 

iIndex2 = iMAX; 

while (iIndex1 < iMAX) 

{ 

  iIndex2--; 

  iArray2 [iIndex2] = iArray1 [iIndex1]; 

  iIndex1++; 

} 

iVal = 0

iVal = 
iVal + 1

iVal < 3?

print iVal

No

Yes

 

iVal = 0

iVal = 
iVal + 1

iVal < 3?

print iVal

No

Yes

b) a) 

iVal = 0

iVal = 
iVal + 1

iVal < 3

print iVal

No

Yes

iVal = 0

iVal = 
iVal + 1

iVal < 3

print iVal

No

Yes

d) c) 
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