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Constructing New Backbone Networks via
Space-Frequency Interactive Convolution for

Deepfake Detection
Zhiqing Guo, Zhenhong Jia, Liejun Wang, Dewang Wang, Gaobo Yang, and Nikola Kasabov, Fellow, IEEE

Abstract—The serious concerns over the negative impacts of
Deepfakes have attracted wide attentions in the community of
multimedia forensics. The existing detection works achieve deep-
fake detection by improving the traditional backbone networks to
capture subtle manipulation traces. However, there is no attempt
to construct new backbone networks with different structures for
Deepfake detection by improving the internal feature represen-
tation of convolution. In this work, we propose a novel Space-
Frequency Interactive Convolution (SFIConv) to efficiently model
the manipulation clues left by Deepfake. To obtain high-frequency
features from tampering traces, a Multichannel Constrained
Separable Convolution (MCSConv) is designed as the component
of the proposed SFIConv, which learns space-frequency features
via three stages, namely generation, interaction and fusion. In ad-
dition, SFIConv can replace the vanilla convolution in any back-
bone networks without changing the network structure. Extensive
experimental results show that seamlessly equipping SFIConv
into the backbone network greatly improves the accuracy for
Deepfake detection. In addition, the space-frequency interaction
mechanism does benefit to capturing common artifact features,
thus achieving better results in cross-dataset evaluation. Our code
will be available at https://github.com/EricGzq/SFIConv.

Index Terms—Deepfake detection, space-frequency interactive
convolution, backbone network, manipulation traces.

I. INTRODUCTION

IN recent years, with the continuous developments of artifi-
cial intelligence (AI), especially various generative models,

the AI-powered Deepfake has made considerable progresses
in manipulating face images and videos. While promoting
some legitimate applications such as for entertainment and
film production, Deepfake might also be used for malicious
or illegal purposes 1, such as fabricating fake news to spread
misinformation and mislead public opinions. In the community
of image forensics, there is an urgent need to develop some
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Fig. 1: Four deep learning based detection paradigms in Deep-
fake detection. To show the differences of the four paradigms
more clearly, we use black and orange boxes to represent
the existing and newly designed deep learning components
respectively.

Deepfake detection methods to expose Deepfake-enabled face
forgeries.

Deep learning has dominated various computer vision tasks
such as image classification and semantic segmentation. Many
backbone networks, which include AlexNet [1], VGGnet [2],
ResNet [3], DenseNet [4] and EfficientNet [5], were designed
to learn feature representations from image contents. However,
Deepfake detection seriously depends on capturing subtle
artifacts or texture changes, rather than salient image content
features, such as identity, hair color and eyes. As we know,
manipulation traces serve as the only clues to identify the
authenticity of face images, whereas image content features
have potential negative effects on feature learning for Deepfake
detection.

Actually, existing deep learning based Deepfake detection
works promote the traditional backbone networks to improve
detection performance by suppressing content features and
capturing subtle manipulation trace features. Specifically, ex-
isting works can be divided into three detection paradigms
from the following points of view:
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• Using some pre-processing mechanisms to highlight ma-
nipulation clues from spatial-domain images, which are
then fed into the backbone network for feature learning
[6]–[9].

• Designing some attention mechanisms to force the back-
bone network to learn discriminant features directly from
potential local artifact regions [8], [10], or using self-
attention feature fusion to obtain better feature represen-
tations [11], [12].

• Constructing Deepfake detection networks by using some
basic components such as convolution layer, Capsule,
LSTM, etc. [13]–[16]. The alternative way is to design a
new detection module, which can be embedded into the
existing backbone network to promote feature learning
[17]–[20].

In these three detection paradigms, the pre-processing mech-
anism can highlight potential manipulation clues, which will
promote the feature learning of the backbone network, but
it might also inevitably destroy some useful artifacts/traces
due to the pre-processing operation. The attention mechanism
forces the backbone network to learn feature representation
from local artifact regions, but it is difficult to capture
global information for image forensics. Furthermore, since
the existing backbone networks for Deepfake detection are
usually borrowed from common computer vision tasks, they
do not address the inherent yet fundamental issue that their
components are not specially designed for learning features
from subtle manipulation traces.

In this work, we are motivated to address the above-
mentioned drawbacks from a new perspective, namely con-
structing new backbone networks for Deepfake detection by
designing space-frequency interactive convolution. Fig. 1 com-
pares three existing detection paradigms with the proposed
new detection paradigm in this work. As claimed above, the
pre-processing mechanism is actually a double-edged sword,
which usually converts spatial-domain images into frequency-
domain, or only highlights partial key information for detec-
tion. However, the features learned from both spatial-domain
and frequency-domain are complementary [12]. In this work,
we exploit both the spatial-domain features with complete
forgery clues and the high-frequency features with partial
manipulation traces. These two types of features are embedded
into the convolution layer via an interactive fusion for better
manipulation trace extraction.

As we know, the manipulation traces are usually isolated
dots or linear textures in fake face images, which exhibit in
the form of drastic gray-scale changes. Thus, the manipula-
tion traces can be regarded as high-frequency information.
To capture the high-frequency manipulation trace features, a
Multichannel Constrained Separable Convolution (MCSConv)
is proposed, which can be embedded in the vanilla convolution
layer to adaptively extract frequency domain information from
any number of feature maps 2. The proposed approach neither
discards any spatial-domain features as the first category of
works (preprocessing-based method), nor exploits only on

2Vanilla convolution usually represents the standard convolution used in
backbone networks such as VGGNet and ResNet.

local artifacts like the second category of works (attention-
based method). Instead, the space-frequency features are inter-
actively learned in the convolution layer to obtain better feature
representations and expose potential artifacts in a global scope.
This improves over the vanilla convolution for better Deepfake
detection.

We distill the above insights and design a new convolution
component, namely Space-Frequency Interactive Convolution
(SFIConv). In addition, SFIConv is used to replace the vanilla
convolution in the original backbone network to construct new
backbone networks for Deepfake detection. Specifically, the
novelties and contributions of this work are three-fold:
• A novel MCSConv module is designed to capture high-

frequency tampering traces from Deepfake-powered fake
face images. Similar to the pre-processing mechanism,
MCSConv is embedded in the convolution layer to obtain
cross-channel high-frequency manipulation features for
different number of feature maps.

• A novel convolution component, namely SFIConv, is
designed to improve the defects of vanilla convolution for
Deepfake detection. Without adding extra parameters and
reducing FLOPs, SFIConv can capture well manipulation
traces by improving the internal feature representation
of convolution. Moreover, the proposed SFIConv can be
used to seamlessly replace the vanilla convolution in the
backbone network designed for common visual tasks.

• With the help of MCSConv and SFIConv, we construct a
variety of new backbone networks that are more suitable
for Deepfake detection. Extensive experimental results
show that the backbone network equipped with SFIConv
significantly improves the accuracy for Deepfake detec-
tion tasks.

The rest of this paper is organized as follows. Section II
briefly summaries the related works. Section III presents the
proposed approach. Section IV reports the experimental results
and provides some analysis. Conclusion is made in Section V.

II. RELATED WORKS

A. Deepfake Forgery

The Deepfake-powered face forgeries can be divided into
two categories, namely face identity forgery and face attribute
forgery.

For face identity forgery, the most common way is to swap
facial identity features. Zhu et al. [21] proposed the first mega
pixel level face swapping method, which achieved a high-
fidelity forgery effect. Zhang et al. [22] solved the problem that
the existing methods can’t keep the target face attributes well
in face swapping, and realized efficient and realistic video face
swapping. In addition, another way of face identity forgery
is to directly generate face images with arbitrary identities
by generative models [23]. For example, Karras et al. [24]
designed the StyleGAN model to directly generate face images
that do not exist in the world.

For face attribute forgery, manipulating expression attributes
is usually harmful, simply because it will change the original
expression semantics and convey false emotions such as happy
and angry. Thies et al. [25] animated the facial expression
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from the source video and re-rendered the facial expression
attributes of the target video. Tripathy et al. [26] manipulated
facial expression attributes by action unit representation, while
keeping the original facial identity well. Moreover, another
way of face attribute forgery is to change the style attributes in
face images. For example, Choi et al. [27] proposed a unified
model to manipulate face attributes such as hair color and
gender in multiple domains. Wei et al. [28] proposed a hair
editing interaction method to manipulate hair styles in face
image.

Deepfake inevitably leaves some artifacts or subtle texture
changes, which are the key clues to identify the authenticity
of face images. However, vanilla convolution was originally
designed for capturing image content features (such as cats,
dogs, etc.), rather than subtle tampering traces. Thus, we are
motivated to improve the original mode of vanilla convolution
to better capture the subtle manipulation clues for Deepfake
detection.

B. Deepfake Detection

The existing deep learning based Deepfake detection works
can be divided into three basic detection paradigms. Although
some detection methods may adopt the design ideas of multi-
ple detection paradigms at the same time (e.g. [29] constructs
a detection model by designing pre-processing mechanism and
new modules, so it belongs to both detection paradigm 1 and
3), all methods are designed from the following three basic
detection paradigms to capture manipulation clues.

Detection Paradigm 1: Pre-processing mechanism is a
very common method, which provides potential forgery clues
for backbone network to promote Deepfake detection. For
example, Sun et al. [6] fed the precise geometric features
of face images into the two-stream recurrent neural network
to realize efficient and robust Deepfake detection. Zhu et
al. [8] used the combination of direct light and identity
texture disentangled from face images as facial details to
detect subtle forgery patterns. Yang et al. [30] proposed a
trace generator to promote the backbone network to track the
potential manipulation traces. In our previous works, we also
generated manipulation traces [31] and guided residuals [12]
via pre-processing mechanism, so as to promote the backbone
network to detect Deepfake forgery.

Detection Paradigm 2: Attention mechanism is also a
common method, which promotes the backbone network to
focus on local forgery regions or adaptive fusion features. For
example, Li et al. [10] assumed that there was a blending
step in face swapping, and designed an attention mechanism
called “Face X-ray” to promote the network to pay attention
to the blending boundary of faces. Luo et al. [32] also
proposed a Residual-Guided Spatial Attention Module, which
guided the low-level feature extractor to pay more attention
to forgery traces from a new perspective. For attention based
feature fusion, Chen et al. [11] proposed an RGB-Frequency
Attention Module to obtain more comprehensive local feature
representation. In our previous work, we also designed an
Attention Fusion Mechanism to realize adaptive fusion of
spatial and residual features [12].

Detection Paradigm 3: Stacking common basic compo-
nents of deep learning or designing new modules to embed
in the backbone network is also a popular design scheme of
detection model. For example, Nguyen et al. [13] used capsule
components to construct a Deepfake detection model. Ge et
al. [14] cascaded a CNN-based encoder, a ConvGRU-based
aggregator and a binary classifier to capture semantic changes
in Deepfake videos. In addition, Zhao et al. [17] designed three
key modules and inserted them into the backbone network
to focus on different local parts, enhance subtle artifacts and
aggregate different levels of features. Liu et al. [18] proposed
a Gram Block that can be added to ResNet to extract global
texture features. In the previous work, we also designed two
modules, which can be embedded in the front end and each
bottleneck layer of ResNet to help the backbone network
capture manipulation clues from face images [20].

On the one hand, the previous detection paradigm studied
how to help backbone network capture manipulation traces ef-
ficiently from different directions by designing pre-processing
and attention mechanisms. On the other hand, Deepfake de-
tection methods are constructed by using basic components
of deep learning or new detection modules. Essentially, these
methods are all using auxiliary mechanisms (such as pre-
processing, attention, new modules) to improve the backbone
network designed for common visual tasks, instead of directly
constructing a new backbone network suitable for Deepfake
detection. In this paper, we propose a new detection paradigm.
That is, a SFIConv, which can focus on manipulation traces, is
designed and used to construct backbone networks suitable for
Deepfake detection. By changing the feature learning mode
of vanilla convolution, SFIConv can be more suitable for
capturing manipulation traces in Deepfake images.

III. METHODOLOGY

A. Overview

In the traditional backbone network, vanilla convolution has
only one input and one output, which transforms an input ten-
sor Tin ∈ Rcin×h×w into an output tensor Tout ∈ Rcout×h×w,
where c and h× w represent the channel number and spatial
dimension of the feature tensor, respectively. In our SFIConv,
we propose to seamlessly replace the vanilla convolution in the
backbone network by extracting two types of features, namely
spatial-domain features and high-frequency features. Thus, the
input and output of SFIConv are designed into three different
modes (see Fig. 2 for details) to meet the needs of different
locations in the backbone network.

To explain how SFIConv replaces vanilla convolution, we
divide the existing backbone network into three parts: “Head”,
“Body” and “Tail”, as shown in Fig. 2. Firstly, the “Head”
part refers to the first layer of the backbone network, which
converts an input image (single channel or three channels)
into multi-channel feature maps. Since SFIConv involves the
division of the feature map into two parts in proportion, the
number of input channels of SFIConv should be a divisible
even value such as 32 or 64. In fact, the first convolution
layer of existing backbone networks can usually convert the
input image into feature maps with 32 or 64 channels. Thus,
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Fig. 2: Overview of building a new backbone network using
SFIConv. Note that SFIConv only replaces the convolution
layer in the existing backbone network, and does not change
other operations such as pooling and activation functions.

there is no need to change the first convolution layer when
building a new backbone network. Secondly, the “Tail” part
is a classification layer composed of fully connected (FC)
layers, which does not need to be changed. That is, when
SFIConv is used to replace vanilla convolution, the “Head”
and “Tail” parts are unchanged. We only need to replace the
vanilla convolution of the “Body” part with SFIConv, so as
to construct a new backbone network suitable for Deepfake
detection.

The “Body” part is also divided into three stages. As
shown in Fig. 2, we name the SFIConvs with three input
and output modes as “Stage 1”, “Stage 2” and “Stage 3”,
respectively. The three stages are placed at different positions
of the “Body” for the generation, interaction and fusion of
space-frequency features, respectively. Each stage replaces a
layer of vanilla convolution. Specifically, “Stage 1” divides a
group of input feature maps into two groups of output feature
maps to generate spatial-domain features and high-frequency
features, respectively. “Stage 3” is to fuse two groups of
features into one group of features, which is fed into the
“Tail” part for classification. That is, only the first and last
convolution layers of the “Body” part are replaced by “Stage
1” and “Stage 3”, and their purposes are to separate and
reintegrate features, respectively. All convolution layers in the
middle of the “Body” will be replaced by “Stage 2”. Designing
three stages is to transmit two groups of different features in
the backbone network without changing the original network
topology and calculation cost. Next, we will present the details
of SFIConv, including MCSConv and three “Stages”.

B. Multichannel Constrained Separable Convolution

Constrained convolution layer (ConstrainedConv) is a well-
known tool, which is used to extract tampering traces in
forged images by capturing the changes of local pixel re-
lationships caused by image tampering operations [33]. In
this work, we still use ConstrainedConv kernel to extract
high-frequency information (i.e. manipulation traces) from any
number of input feature maps. However, the original design
of ConstrainedConv is to put it before the backbone network

MCSConv
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Fig. 3: Comparison between ConstrainedConv and MCSConv.

as a pre-processing layer, and it extracts manipulation traces
related features from fixed single-channel gray image. Thus,
the original ConstrainedConv is not applicable to SFIConv.

To embed the ConstrainedConv into SFIConv-Stage1, we
have made some improvements and renamed it as Multichan-
nel Constrained Separable Convolution (MCSConv), as shown
in Fig. 3. In our MCSConv, each kernel Wc performs the
following constraints of constrained convolution kernels:{

Wc(0, 0) = −1,∑
(x,y)6=(0,0)Wc(x, y) = 1,

(1)

where (x, y) represent the spatial index in Wc, and the central
value is set to (0, 0). We make the number of Wc be consistent
with the channel number cin of the input feature map. Then,
cin kernels in the MCSConv are convolved with the corre-
sponding input feature maps, which can obtain cin depthwise
trace maps containing high-frequency information. However,
these feature maps still do not effectively utilize the feature
information of different channels at the same spatial position.
Thus, we continue to use vanilla convolution f(·) to aggregate
the high-frequency information across channels. This process
is similar to the Depthwise Separable Convolution [34], but
it is worth noting that MCSConv does not use the traditional
1×1 convolution when aggregating cross-channel information.
Instead, the kernel size of f(·) in MCSConv is variable (e.g.
1×1, 3×3, 5×5, etc.). This is to keep it consistent with the
original kernel size when replacing vanilla convolution in any
backbone network, so as to avoid changing parameters and
calculation cost of the original convolution. Compared with
vanilla convolution, MCSConv only adds a few extra param-
eters and FLOPs when generating cin depthwise trace maps
3, and other operations are consistent with vanilla convolution
in terms of parameters and calculation cost.

C. Space-Frequency Interactive Convolution

To overcome the defects of vanilla convolution for Deepfake
detection, we change the feature representation in convolution
layer via space-frequency feature interaction. Vanilla convolu-
tion has only one input and one output. For convenience of
description, the input and output of each vanilla convolution
layer that needs to be replaced are denoted as Tin ∈ Rcin×h×w

3Parameters and FLOPs increase linearly with the number of Wc.
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and Tout ∈ Rcout×h×w, respectively. Fig. 4 shows the details
of SFIConv. The three stages are detailed as follows.

SFIConv-Stage1: To achieve interaction between two types
of features, we first need to use SFIConv-Stage1 to decompose
the input feature tensor Tin into two groups of output feature
tensors {Tspa, Tfre} along the channel dimension.

In SFIConv-Stage1, we exploit vanilla convolution function
f(·) and MCSConv to obtain {Tspa, Tfre} from the input
features Tin, respectively. To keep the calculation cost and
parameters as consistent as possible, the convolution kernel
size of f(·) and MCSConv in SFIConv-Stage1 is consistent
with the original convolution to be replaced. In addition, we
set the rational number α ∈ [0, 1] as a hyper-parameter to
control the channels of {Tspa, Tfre}. Among them, Tspa ∈
R(1−α)cout×h×w denotes the feature representation learned
from the spatial-domain image with complete manipulation
traces, and Tfre ∈ Rαcout×h×w represents the high-frequency
features generated by MCSConv. As the outputs of SFIConv-
Stage1, both Tspa and Tfre are fed into SFIConv-Stage2 for
space-frequency feature interaction.

When constructing a new backbone network, we replace
SFIConv-Stage1 with the second layer convolution in the back-
bone network, rather than the first layer. The reasons behind
this include two points. On the one hand, the number of input
channels of SFIConv-Stage1 is preferably even. We hope that
the input features can be evenly decomposed (e.g. α = 0.5)
into two groups of features. The first layer convolution can
usually transform the input image (single channel or three
channels) into a set of feature maps with even channels,
which will facilitate feature decomposition. On the other hand,
extracting spatial-domain features and high-frequency features
from more feature maps will be more conducive to feature
learning and interaction. If only 3-channel features are used
as input, we can only disassemble them into 1-channel and 2-
channel feature maps. Obviously, the first layer convolution
of the original backbone network also plays an important
role: transforming the input image (single channel or three
channels) into multi-channel (32, 64, etc.) feature maps. Thus,
the first layer convolution does not need to be changed in our
scheme.

SFIConv-Stage2: This stage is the core component of
SFIConv for the interaction of space-frequency features. To

compute the feature tensors {Tspa, Tfre} from “Stage 1”,
SFIConv-Stage2 is designed as a convolution structure with
dual-input and dual-output modes.

In SFIConv-Stage2, both Tspa and Tfre should conduct
intra-feature updating and inter-feature interaction. There are
four groups of convolution operations {fS→S , fS→F , fF→F ,
{fF→S} to generate self-updated features {TS→S , TF→F } and
interaction features {TS→F , TF→S}. Table I summarizes the
relevant parameters and their definitions in this work. The
specific operations are defined as follows

updating : TS→S = fS→S(Tspa),

interaction : TS→F = fS→F (Tspa),

updating : TF→F = fF→F (Tfre),

interaction : TF→S = fF→S(Tfre),

(2)

where the input and output channels in each group of convo-
lution operations are expressed in the form {input channels,
output channels} as follows

fS→S = {cin − (α · cin), cout − (α · cout)},
fS→F = {cin − (α · cin), α · cout},
fF→F = {α · cin, α · cout},
fF→S = {α · cin, cout − (α · cout)},

(3)

For the space-frequency feature interaction, we exploit the sum
operation to fuse the self-updated features {TS→S , TF→F }
and the interaction features {TS→F , TF→S}, respectively. At
“Stage 2”, the output feature tensor T ′spa ∈ R(1−α)cout×h×w

and T ′fre ∈ Rαcout×h×w can be expressed as

T ′spa =

update︷ ︸︸ ︷
TS→S +TF→S︸ ︷︷ ︸
interaction

(4)

T ′fre =

update︷ ︸︸ ︷
TF→F +TS→F︸ ︷︷ ︸
interaction

.

(5)

SFIConv-Stage3: After the interactive feature learning at
“Stage 2”, we should further fuse the separated features. The
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TABLE I: Summary of Parameters.

Parameters Definition

fS→S the convolution function of spatial-domain features, whose generates features are used to realize intra-feature update
fS→F the convolution function of spatial-domain features, whose generates features are used to interact with updated high-frequency features
fF→F the convolution function of high-frequency features, whose generates features are used to realize intra-feature update
fF→S the convolution function of high-frequency features, whose generates features are used to interact with updated spatial-domain features
TS→S updated spatial-domain features
TS→F interaction features generated from the spatial-domain features, which are used to interact with the updated high-frequency features
TF→F updated high-frequency features
TF→S interaction features generated from the high-frequency features, which are used to interact with the updated spatial-domain features
f ′S→S convolution function of spatial-domain features in SFIConv-Stage3
f ′F→S convolution function of frequency-domain features in SFIConv-Stage3
DS→F the spatial dimension of feature map TS→F

DF→S the spatial dimension of feature map TF→S

fused features will be restored to a set of vanilla feature
vectors, which can be fed into the FC layer for classifica-
tion. SFIConv-Stage3 is embedded between the last SFIConv-
Stage2 layer and the classification layer to re-aggregate the
space-frequency features.

In SFIConv-Stage3, both the spatial-domain and frequency-
domain features {T ′spa, T ′fre} still perform convolution oper-
ations {f ′S→S , f ′F→S} separately, which transform different
input channels into the same output channel cout. The input
and output channels of convolution operations are defined as
follows {

f ′S→S = {cin − (α · cin), cout},
f ′F→S = {α · cin, cout}.

(6)

Thus, the two types of features are fused as follows

Tfusion = f ′S→S(T
′
spa) + f ′F→S(T

′
fre) (7)

where Tfusion ∈ Rcout×h×w is the final output feature.
SFIConv changes only the feature representation inside the

convolution layer, which captures well tampering traces. We
also observe that the input and output of SFIConv are fully
consistent with those of vanilla convolution. Thus, SFIConv
can seamlessly replace vanilla convolution to construct new
backbone networks for Deepfake detection.

Flexibility of SFIConv: The above is the standard form
of SFIConv. It keeps almost the same parameters and cal-
culation cost as vanilla convolution (the slightly difference is
caused by MCSConv). The design of SFIConv is also flexible,
which considers the tradeoff between computing performance
and cost. Specifically, compressing the spatial dimension of
feature map is an effective way to reduce the computational
complexity in convolution layer. In general, the input and
output dimensions of vanilla convolution layers are equal. For
SFIConv, the input and output dimensions of each stage can
either be kept consistent with the vanilla convolution (standard
form) or different from the vanilla convolution (flexible form).

In the flexible form, low-dimensional feature maps can be
used in the internal calculation of SFIConv, thus reducing the
FLOPs of the whole backbone network. Specifically, the out-
put dimension of “Stage 1”, the input and output dimensions
of “Stage 2”, and the input dimension of “Stage 3” can all
be changed. Only the initial input (input of “Stage 1”) and
the final output (output of “Stage 3”) are consistent with the
vanilla convolution that needs to be replaced.

There are two branches in SFIConv, namely, spatial-domain
branch and frequency-domain branch. Here, we only reduce
the feature dimension of frequency domain branch. Specifical-
ly, we use nearest neighbor interpolation to adjust the spatial
dimension by introducing the rational number β ∈ [0, 1] as the
scaling factor. We first compress the spatial dimension of Tfre
at “Stage 1”. Note that features need to maintain the same
feature dimension when interacting. Thus, when interacting
with spatial-domain features, the dimension of high-frequency
features needs to be enlarged, and when interacting with high-
frequency features, the dimension of spatial-domain features
needs to be reduced. Since the output dimension of “Stage
1” is changed, we should change the spatial dimensions
{DS→F , DF→S} of interaction feature {TS→F , TF→S} in
“Stage 2”, which can be expressed as follows{

DS→F = I(TS→F , β),

DF→S = I(TF→S ,
1
β ),

(8)

where I(T, β) denotes the nearest neighbor interpolation with
the parameter β 4 that is conducted on the feature map T .
At “Stage 3”, we still need to enlarge the dimension of high-
frequency features to keep consistency with the dimension of
spatial-domain features, so as to further integrate two types of
features.

As a result, the computational cost of the backbone network
is significantly reduced by compressing the feature dimension
of the frequency-domain branch. Note that the feature dimen-
sion is only changed in the process of feature interaction,
without changing the topological structure of the original
backbone network.

IV. EXPERIMENTS

A. Experimental Settings

1) Datasets: In this work, we selected four open yet chal-
lenging Deepfake face datasets, namely HFF [31], FF++ [35],
DFDC [36] and CelebDF [37], for experimental evaluation. It
includes one image dataset and three video datasets.

HFF [31]: It is an image dataset containing five types of
fake face images, which are generated by four generative

4β is the scaling factor of nearest neighbor interpolation method, which
is used to scale the spatial dimension of feature map. When β ∈ [0, 1], the
feature dimension is reduced. When β > 1, the feature dimension is enlarged.
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models (including PGGAN [23], StyleGAN [24], Glow [38]
and StarGAN [27]) and a computer graphics-based method
(Face2Face [25]). The HFF dataset also contains three kinds
of real face images with different resolutions. There are totally
155k face images that are divided into training set and testing
set with the ratio of 4:1.

FF++ [35]: As the most popular face forensics dataset, it
contains 1,363 real video sequences and 4,000 fake video se-
quences generated by four forgery methods (such as FaceSwap
[39], DeepFake5, Face2Face [25] and NeuralTextures [40]).
The author uses H.264 compression to provide the datasets
with two compression levels, namely, high quality (HQ) and
low quality (LQ). To avoid the similarity between consecutive
frames, we extract the same number of face frames from each
video at equal intervals. For real video sequences, the face
images are extracted from each video with interval Niter = 2
and frame number Nframes = 50. For fake video sequences,
the Niter = 2 and Nframes = 16 are used to extract the
fake face images. Thus, the number of both real and fake face
images is more than 60k. We randomly select an integer of
120k face images (real: 60k, fake: 60k) from these images for
experimental evaluation. The ratio of training set to testing set
is 5:1.

DFDC [36]: It is a very large-scale face forensics dataset
(more than 100k real and fake video sequences) generated
by two unknown deepfake algorithms. In the experiment, we
randomly select 2,891 real video sequences and 20,210 fake
video sequences. For real video sequences, Niter and Nframes
are set to 2 and 35, respectively. For fake video sequences,
Niter = 10 and Nframes = 5. Thus, we also randomly select
an integer of 120k face images (real: 60k, fake: 60k) from the
extracted frames, which are divided into the training set and
the testing set with the ratio of 5:1.

CelebDF [37]: It is a high-quality face forensics dataset,
which is usually used for cross-dataset evaluation. There
are 890 real and 5,639 fake video sequences. We use the
parameters of Niter = 2 and Nframes = 100 to extract face
images from each real video sequence, and Niter = 2 and
Nframes = 16 to extract fake face images. There are totally
120k face images (real: 60k, fake: 60k) randomly selected
from the extracted face frames for cross-dataset evaluation.

For the video datasets, we capture the face region from
each video frame by using the Face Recognition Library6, and
the face frames without background information are saved for
experiments. Note that all face images and frames are resized
to 256×256 for training and testing.

2) Evaluation Metrics: In this work, SFIConv is designed
to improve the detection accuracy of backbone network. As
we know, Deepfake detection is a binary classification task.
We use the area under the receiver operating characteristic
curve (AUC) and the Balanced Accuracy (BACC) 7 as two
metrics for performance evaluation. In addition, SFIConv
provides some flexibility, which can reduce the computational
complexity by adjusting the hyper-parameter. Thus, the model

5https://github.com/deepfakes/faceswap
6https://github.com/ageitgey/face recognition
7The threshold of BACC is set to 0.5.

TABLE II: Quantitative Results of Ablation Studies on FF++
Datasets.

Networks Hyper-parameters Param.
(M)

FLOPs
(GMac)

FF++ HQ FF++ LQ

α β AUC BACC AUC BACC

Backbone - - 13.95 3.08 87.66 81.33 88.81 81.79

SFIC-ResNet26

0.25

0.25 13.95 2.47 82.48 74.82 83.84 76.27
0.50 13.95 2.60 89.60 83.15 89.96 83.04
0.75 13.95 2.80 90.88 84.14 90.92 84.43
1.00 13.95 3.09 96.38 89.57 96.47 89.96

0.50

0.25 13.95 1.86 77.61 70.42 78.09 70.59
0.50 13.95 2.10 84.55 76.63 87.36 79.81
0.75 13.95 2.51 87.57 80.33 88.11 80.53
1.00 13.95 3.09 95.73 88.41 96.18 89.45

0.75

0.25 13.95 1.24 76.81 69.27 77.45 70.32
0.50 13.95 1.61 85.28 77.61 88.99 81.53
0.75 13.95 2.23 88.23 80.68 89.69 82.55
1.00 13.95 3.09 94.69 89.48 95.37 90.53

TABLE III: Replace Vanilla Convolution in Different Back-
bone Networks with SFIConv.

Networks Hyper-parameters Param.
(M)

FLOPs
(GMac)

FF++ HQ FF++ LQ

α β AUC BACC AUC BACC

MobileNet [34] - - 3.21 761M 71.80 65.24 72.14 65.96
SFIC-MobileNet 0.5 1.0 3.21 768M 78.28 70.39 77.66 70.46

ResNet26 [3] - - 13.95 3.08G 87.66 81.33 88.81 81.79
SFIC-ResNet26 0.5 1.0 13.95 3.09G 95.73 88.41 96.18 89.45
ResNet50 [3] - - 23.51 5.38G 84.05 76.67 85.13 78.13

SFIC-ResNet50 0.5 1.0 23.51 5.38G 92.11 85.31 92.92 86.89
ResNet101 [3] - - 42.51 10.25G 79.80 72.74 81.02 74.07

SFIC-ResNet101 0.5 1.0 42.51 10.25G 85.33 77.82 89.13 82.12

VGGNet13 [41] - - 9.41 14.68G 94.59 89.91 92.44 86.88
SFIC-VGGNet13 0.5 1.0 9.41 14.66G 98.46 93.61 95.90 89.41
VGGNet16 [41] - - 14.73 20.12G 94.08 88.81 92.80 87.19
SFIC-VGGNet16 0.5 1.0 14.73 20.11G 97.36 93.02 94.46 88.67
VGGNet19 [41] - - 20.04 25.57G 94.25 90.00 90.45 85.27
SFIC-VGGNet19 0.5 1.0 20.04 25.55G 97.41 93.31 94.71 89.65

parameters (Param.) and floating point operations (FLOPs) in
different configurations are also provided.

3) Implementation Details: We use Adam optimizer with
parameters (γ1 = 0.9, γ2 = 0.999) to train our model under
the PyTorch framework. The initial learning rate Lr is set to
10−4. After each training epoch, the Lr decays once according
to 0.5× Lr. All detection models are trained for 20 epoches,
and the batch size is set to 64. To ensure that all detection
models have the same weight initialization, we set the random
seed to 7 to fairly compare the performance of detection
models in different configurations. In the training, we also use
data augmentation operations (such as horizontal flip, rotation
and normalization) to increase the diversity of data.

B. Ablation Study

In SFIConv, we design two hyper-parameters α and β
to control the channel ratio and the size of feature maps
respectively, which are used to optimize feature representation
and reduce FLOPs. In this subsection, a series of ablation
experiments are conducted to show the influence of two hyper-
parameters for SFIConv. In the experiments, the backbone
network “ResNet26” and “FF++ dataset” are selected for
experimental evaluation. We use SFIConv to replace the vanil-
la convolution in the backbone network to construct a new
detection network, which is called “SFIC-ResNet26”.

Table II reports the quantitative results of backbone network
and SFIC-ResNet26 with different hyper-parameters. In all
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TABLE IV: Generalization of Detection Methods to Unseen Face Manipulation Methods.

Methods TEST-DF TEST-FF TEST-FS TEST-NT

AUC BACC AUC BACC AUC BACC AUC BACC

Meso-Incep [42] 53.94 47.14 58.83 53.21 47.99 49.36 62.37 61.44
Multi-task [43] 66.40 62.44 65.66 62.64 56.94 54.18 56.46 48.51

XceptionNet [35] 82.57 71.99 68.66 58.22 57.79 50.57 52.75 46.89
F 3-Net [44] 64.50 54.51 63.70 58.04 41.70 41.70 54.70 51.80

AMTENnet [31] 83.87 76.06 66.92 59.56 51.01 48.09 61.73 52.55
M2TR [45] 78.40 65.38 73.30 64.36 47.10 48.04 52.20 49.17

SFIC-ResNet26 (α=0.25,β=1.00) 75.03 67.22 61.80 54.99 52.33 49.63 47.40 44.86
SFIC-ResNet26 (α=0.50,β=1.00) 78.85 72.24 57.27 51.12 60.49 56.19 53.27 45.66

SFIC-VGGNet13 (α=0.25,β=0.75) 86.97 77.09 72.77 65.96 54.32 49.77 63.04 53.85
SFIC-VGGNet13 (α=0.50,β=1.00) 85.09 75.32 78.30 64.49 52.36 49.38 62.08 51.06
SFIC-VGGNet13 (α=0.75,β=0.75) 84.89 71.37 77.02 66.54 53.34 48.94 68.93 52.02

tables, the best results are marked in bold font. It can be
observed that SFIConv can significantly improve the detection
performance of the original backbone network without chang-
ing the model parameters and FLOPs. For hyper-parameter
α, it will only change the number of channels with high-
frequency features in SFIConv, without adding additional
model parameters and FLOPs. And for the hyper-parameter
β, it can adjust the size of the feature map in SFIConv to
reduce FLOPs. As we know, some forgery clues will be lost
in the process of compressing the feature map. Thus, the
detection performance will be limited when β is not equal to 1.
However, with the help of space-frequency feature interaction
mechanism, SFIConv can still obtain better detection results
than the vanilla convolution by only using less FLOPs. For
example, when α = 0.25 and β = 0.75, SFIC-ResNet26
improves AUC score by 3.22% and reduces FLOPs by 10%
GMac compared with backbone network in HQ dataset. When
α = 0.75 and β = 0.50, similar AUC scores (88.81% vs
88.99%) are achieved on LQ dataset, while FLOPs decreased
by 91.30% GMac.

To sum up, SFIConv can not only significantly improve the
accuracy of backbone network in Deepfake detection without
increasing the computational cost, but also have certain flex-
ibility to realize the trade-off between detection performance
and computational cost.

C. Different Backbone Networks with SFIConv

To further evaluate the effectiveness of SFIConv, we select
some popular backbone networks as the baselines to check
whether SFIConv can further boost different backbone net-
works in Deepfake detection.

Table III reports the results of seven baseline networks and
corresponding SFIConv networks. From it, we can observe that
when vanilla convolution is replaced by SFIConv, the accuracy
of all baseline networks has been significantly improved.
The above results confirm that SFIConv is a more suitable
component than vanilla convolution in Deepfake detection.
By decomposing the feature map in convolution layer and
exploiting interactive fusion of space-frequency features, SFI-
Conv overcomes the defects of vanilla convolution in modeling

manipulation traces, so as to better capture manipulation traces
in fake face images.

D. Generalization on Unseen Manipulations

Detecting fake faces generated by unseen manipulations
is a challenging task. In this subsection, six representative
works with source codes, which include Meso-Incep [42],
Multi-task [43], XceptionNet [35], F 3-Net [44], AMTENnet
[31] and M2TR [45], are selected as the baselines. Based
on 100,000 face images in FF++ HQ training set, we divide
the images generated by four face manipulation methods into
source domain and target domain to perform the generalization
experiment of unseen manipulations. Specifically, the target
domain only contains one type of face forgery images for
model testing, and the other three types of face forgery images
are used as the source domain for model training.

Table IV reports the detection results. From it, we can
observe that the proposed approach generalizes well to the
unseen manipulation method. Among the four kinds of ma-
nipulation methods, NT-generated face images usually have
less visual artifacts, while the other three kinds of fake face
images often have some obvious tampering traces. From Table
IV, we can see that our method is better at capturing the
common artifacts between different forgeries, thus achieving
better generalization results on TEST-DF, TEST-FF and TEST-
FS 8.

E. Intra-Dataset Evaluation

In this subsection, the proposed SFIConv is equipped to
the existing backbone networks (such as ResNet26 [3] and
VGGNet13 [41]) to construct new backbone networks (such
as SFIC-ResNet26 and SFIC-VGGNet13) for comparison with
the existing Deepfake detection works. All detection methods
are trained from scratch on four datasets (including DFDC,
HFF, FF++ HQ and FF++ LQ) to compare their performance
fairly.

Table V reports the AUC score, BACC score, model pa-
rameters and FLOPs of the detection methods. From it, we

8TEST-XX indicates that the target domain of the generalization experiment
is XX.
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TABLE V: The Detection Results (%) of Forgery Detection Methods on Multiple Deepfake Face Datasets.

Methods Year Publication Param. FLOPs
(Mac)

DFDC Dataset [36] HFF Dataset [31] FF++ Dataset [35]
HQ LQ

AUC BACC AUC BACC AUC BACC AUC BACC

Meso-Incep [42] 2018 WIFS 28.52K 60.18M 88.83 74.17 99.72 88.35 90.41 69.56 85.18 67.74
Multi-task [43] 2019 BTAS 305K 146M 80.05 80.05 95.29 95.29 81.44 81.43 77.50 77.50

XceptionNet [35] 2019 ICCV 20.81M 6.00G 96.28 89.83 99.91 98.53 94.50 86.72 92.02 83.53
F 3-Net [44] 2020 ECCV 21.17M 8.49G 87.50 79.86 95.70 89.65 88.00 80.02 83.00 75.21

AMTENnet [31] 2021 CVIU 9.88M 575M 92.04 83.96 99.94 98.43 90.88 81.63 87.25 78.40
M2TR [45] 2022 ICMR >20.81M >6.00G 97.20 90.27 97.00 91.14 94.50 86.88 92.10 82.31

SFIC-ResNet26 (α=0.25,β=1.00) - - 13.95M 3.09G 97.44 91.24 99.54 96.15 96.38 89.57 96.47 89.96
SFIC-ResNet26 (α=0.50,β=1.00) - - 13.95M 3.09G 97.21 90.98 99.02 94.32 95.73 88.41 96.18 89.45

SFIC-VGGNet13 (α=0.25,β=0.75) - - 9.41M 13.34G 96.39 89.62 99.99 99.29 96.88 90.07 93.36 85.18
SFIC-VGGNet13 (α=0.50,β=1.00) - - 9.41M 14.66G 96.65 90.15 99.99 99.47 98.46 93.61 95.90 89.41
SFIC-VGGNet13 (α=0.75,β=0.75) - - 9.41M 10.69G 97.11 90.94 99.99 99.25 97.47 91.38 93.57 85.91

can observe that the HFF dataset mainly contains high-quality
face images generated by GANs, so all detection methods can
achieve good detection accuracy. DFDC and FF++ are low-
quality datasets composed of compressed video frames. The
manipulation traces have been laundered by compression op-
eration, which brings some difficulties to Deepfake detection.

For example, lightweight models (such as Meso-Incep and
Multi-task) have limited ability to capture manipulation traces
in low-quality data, and they only achieve low AUC and BACC
scores. In addition, the pre-processing mechanism will further
lead to the loss of partial forgery clues in low-quality data
during the transformation from spatial domain to frequency
domain. Thus, the pre-processing mechanism based detection
methods (such as F 3-Net and AMTENnet) have not obtained
competitive results on DFDC and FF++ datasets. In contrast,
our method considers the complementarity of spatial-domain
and frequency-domain features at the same time, thus avoid-
ing the side effects caused by using only frequency-domain
features. By replacing vanilla convolution with SFIConv, the
backbone networks achieve better detection results on four
datasets (marked in bold) than the baseline methods.

Among the baseline methods, XceptionNet and M2TR are
large models with huge parameters and FLOPs. They effective-
ly improve the detection results in low-quality datasets through
complex model structure and forgery clue mining mechanism.
In contrast, the backbone network equipped with SFIConv
only uses smaller model parameters and FLOPs to achieve
better detection results than the baseline methods. Especially,
the model parameters and FLOPs of SFIC-ResNet26 are only
about half that of M2TR9, but it achieves better performance
on four datasets. Since VGGNet13 itself has high FLOPs,
SFIC-VGGNet13 also has high computational complexity.
However, by adjusting the hyper-parameters, SFIC-VGGNet13
(α=0.75, β=0.75) significantly reduces the FLOPs by 37.14%,
and achieves competitive detection results.

In the detection results of the FF++ dataset, we can also
observe that five backbone networks equipped with SFIConv
have achieved better detection results than the baseline meth-
ods. This further shows the superiority of SFIConv, which can
effectively capture forgery clues even in low-quality datasets.

9Please note that since the model parameters and FLOPs of M2TR method
are difficult to calculate, we estimate the minimum value of M2TR according
to the model structure (XceptionNet + Multiscale Transformer) for reference.

Especially for SFIC-ResNet26, we notice that SFIC-ResNet26
achieves similar results on the FF++ HQ and FF++ LQ
datasets, which are not affected by the compression operation.
We speculate that the network structure of ResNet26 with
shortcut connection can be combined with SFIConv more
efficiently, so that SFIC-ResNet26 can directly capture visual
artifacts. Visual artifacts are not easy to be changed by lossy
compression operation, which makes SFIC-ResNet26 achieve
better detection even on the FF++ LQ datasets.

F. Cross-Dataset Evaluation

For Deepfake detection, cross-dataset evaluation is impor-
tant for examining the generalization capability of different
detection works towards different face forgeries. In this work,
we adopt two cross-dataset evaluation protocols as follows:

1) Evaluation on DFDC and FF++: In Section IV-E, we
have used six open source detection works for intra-dataset
evaluation on four datasets such as DFDC, HFF, FF++ HQ and
FF++ LQ. Since the HFF dataset is generated by GANs, it is
essentially different from the DFDC and FF++ datasets that are
mainly obtained by face swapping. Thus, only DFDC, FF++
HQ and FF++ LQ are used for cross-dataset evaluation. That
is, the detection methods are trained on these three datasets
and tested on the unseen dataset.

Table VI reports the cross-dataset evaluation results on three
datasets. We can observe that the backbone network equipped
with SFIConv generally achieves better generalization than the
baselines. Especially for the FF++ dataset, when trained on
one compression level and tested on the other compression
level, the proposed method is significantly better than the
baselines. That is, SFIConv is insensitive to the interference
caused by compression in the same type of dataset. Especially
for ResNet, SFIC-ResNet achieves more robust detection
under compression interference. However, our method does
not achieve the best results in some test scenarios (such
as DFDC vs FF++ LQ). We speculate that there are few
common features between DFDC and FF++ datasets, and the
strong compression operation further increases the differences
between the two datasets, thus weakening the generalization
ability of SFIConv.

2) Evaluation on CelebDF: In this subsection, we intro-
duce a widely-used benchmark, namely CelebDF, to examine
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TABLE VI: Cross-Dataset Evaluation Results (%) on DFDC and FF++ Datasets.

Methods
Training on DFDC Training on FF++ HQ Training on FF++ LQ

FF++ HQ FF++ LQ DFDC FF++ LQ DFDC FF++ HQ
AUC BACC AUC BACC AUC BACC AUC BACC AUC BACC AUC BACC

Meso-Incep [42] 58.29 55.30 56.99 53.75 62.19 52.37 70.72 57.33 60.37 57.50 75.68 68.21
Multi-task [43] 55.53 55.53 55.69 55.69 50.74 50.74 64.41 64.41 49.79 49.79 56.06 56.06

XceptionNet [35] 55.24 53.22 55.24 53.08 62.38 58.10 79.15 70.29 60.54 56.56 85.02 74.58
F 3-Net [44] 56.30 51.87 56.80 54.57 62.20 55.43 66.80 61.57 61.40 58.04 72.70 66.03

AMTENnet [31] 57.59 55.51 56.89 55.19 64.76 59.32 78.03 70.07 63.27 55.19 82.19 68.75
M2TR [45] 55.70 53.91 54.70 53.49 63.30 56.17 73.70 67.22 57.50 55.42 83.10 74.76

SFIC-ResNet26 (α=0.25,β=1.00) 58.26 54.86 58.68 54.47 63.85 59.83 87.74 75.89 58.54 55.12 89.83 79.68
SFIC-ResNet26 (α=0.50,β=1.00) 57.85 54.56 57.58 53.60 60.62 57.03 87.45 75.43 58.16 55.54 90.71 80.39

SFIC-VGGNet13 (α=0.25,β=0.75) 58.53 53.53 56.34 54.12 65.63 58.13 82.40 74.17 63.54 57.32 89.09 76.48
SFIC-VGGNet13 (α=0.50,β=1.00) 58.58 55.66 57.01 54.52 63.15 57.70 76.99 70.16 62.11 51.72 83.49 63.78
SFIC-VGGNet13 (α=0.75,β=0.75) 62.13 58.39 57.96 55.37 65.20 59.98 80.79 72.97 64.12 54.76 88.16 73.03

TABLE VII: Effectiveness of SFIConv in Cross-Dataset Eval-
uation for ResNets.

Networks Hyper-parameters Training Dataset CelebDF Dataset

α β AUC BACC

ResNet26 - -

FF++ dataset

67.29 61.18
w/ SFIConv 0.25 0.50 68.30 61.38
w/ SFIConv 0.25 0.75 70.27 61.84
w/ SFIConv 0.25 1.00 70.68 63.01
w/ SFIConv 0.50 1.00 67.42 60.86
w/ SFIConv 0.75 1.00 67.73 61.58

ResNet50 - -

FF++ dataset

61.75 57.61
w/ SFIConv 0.25 0.50 64.83 59.91
w/ SFIConv 0.25 0.75 66.17 60.84
w/ SFIConv 0.25 1.00 68.90 61.98
w/ SFIConv 0.50 1.00 63.14 58.40
w/ SFIConv 0.75 1.00 64.59 59.86

ResNet101 - -

FF++ dataset

64.66 57.11
w/ SFIConv 0.25 0.50 66.83 60.37
w/ SFIConv 0.25 0.75 68.96 60.78
w/ SFIConv 0.25 1.00 69.03 59.93
w/ SFIConv 0.50 1.00 64.96 58.72
w/ SFIConv 0.75 1.00 67.22 60.54

whether the proposed SFIConv improves the generalization of
backbone networks. To reduce the evaluation error as much as
possible, we randomly select 120k face images from all video
sequences in CelebDF for experimental evaluation. Consistent
with previous works, the proposed detection method is also
trained on the FF++ HQ dataset and tested on the CelebDF
dataset.

We select ResNet and VGGNet as the baselines to evaluate
the effectiveness of SFIConv in backbone networks with
different depths and structures. Table VII and VIII report
the results of cross-dataset evaluation on different backbone
networks, where the best results are marked by bold fonts.
The proposed SFIConv effectively improves the generalization
performance on six backbone networks with different depths
and structures. Actually, SFIConv benefits from its space-
frequency interaction mechanism, which captures well the
common artifacts in various face forgeries.

We also select 13 detection methods as the baselines for
comparisons. Note that the AUC scores of the baselines are
directly obtained from the results reported in their references.

TABLE VIII: Effectiveness of SFIConv in Cross-Dataset E-
valuation for VGGNets.

Networks Hyper-parameters Training Dataset CelebDF Dataset

α β AUC BACC

VGGNet13 - -

FF++ dataset

61.59 55.30
w/ SFIConv 0.25 0.50 65.30 57.95
w/ SFIConv 0.25 0.75 66.06 61.31
w/ SFIConv 0.25 1.00 64.32 60.65
w/ SFIConv 0.50 1.00 60.29 56.04
w/ SFIConv 0.75 1.00 70.85 64.74

VGGNet16 - -

FF++ dataset

63.59 59.60
w/ SFIConv 0.25 0.50 62.55 57.28
w/ SFIConv 0.25 0.75 67.74 61.33
w/ SFIConv 0.25 1.00 70.95 64.47
w/ SFIConv 0.50 1.00 64.63 58.88
w/ SFIConv 0.75 1.00 68.71 62.55

VGGNet19 - -

FF++ dataset

60.75 56.16
w/ SFIConv 0.25 0.50 66.65 58.53
w/ SFIConv 0.25 0.75 67.15 60.54
w/ SFIConv 0.25 1.00 64.70 60.08
w/ SFIConv 0.50 1.00 61.67 55.16
w/ SFIConv 0.75 1.00 62.08 58.02

Table IX reports the detection results in cross-dataset evalua-
tion. Only replacing the vanilla convolution in ResNet26 and
VGGNet16, namely SFIC-ResNet26 and SFIC-VGGNet16,
achieves the AUC scores of 70.7% and 71.0%, which are close
to the results of most SOTA methods. This also shows that the
backbone network constructed by SFIConv can achieve good
generalization performance. Although there is still a gap with
the best cross-domain detection method, considering that we
have not used additional mechanisms to enhance the cross-
domain detection ability, SFIConv still has great potential to
improve the generalization capability.

G. Preliminary Investigations on Attention Region

To reveal the difference between vanilla convolution and
SFIConv in mining forgery clues, we generate some Average
Forgery Attention Maps (AFAMs) following the visualization
method [52] to observe the differences among various de-
tection networks. Usually, there are some deviations in the
visualization range on a single image. Thus, only visualizing
a single image does not accurately reflect the difference of
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TABLE IX: AUC Score (%) of Cross-Dataset Evaluation Results on CelebDF Dataset.

Methods Year Publication Training Dataset CelebDF Dataset [37]

SMIL [46] 2020 MM FF++ dataset 56.3
F 3-Net [44] 2020 ECCV FF++ dataset 65.2

Two-branch [47] 2020 ECCV FF++ dataset 73.4
Face X-ray [10] 2020 CVPR FF++ dataset 74.2
Luo et al. [32] 2021 CVPR FF++ dataset 79.4
MADD [17] 2021 CVPR FF++ dataset 67.4
LTW [48] 2021 AAAI FF++ dataset 64.1
SPSL [49] 2021 CVPR FF++ dataset 76.9
M2TR [45] 2022 ICMR FF++ dataset 65.7
DCL [50] 2022 AAAI FF++ dataset 81.0

MC-LCR [51] 2022 KBS FF++ dataset 71.6
GocNet [20] 2023 ESWA FF++ dataset 67.4
LDFnet [16] 2023 TCSVT FF++ dataset 65.7

SFIC-ResNet26 (α=0.25, β=1.00) - - FF++ dataset 70.7
SFIC-VGGNet16 (α=0.25, β=1.00) - - FF++ dataset 71.0
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Fig. 5: Visualization of the attention regions. The visualization results of backbone network equipped with SFIConv are marked
with dashed boxes.

the attention range. For AFAMs, they can reflect the average
attention distribution of multiple fake face images, which
avoids the deviation of single image. In our experiment, we
randomly selected 4, 8 and 16 fake face images from different
video sequences of the FF++ dataset. AFAMs are calculated
on three groups of fake face images with different numbers to
measure the scope of mining forgery clues.

Fig. 5 shows the visualization results, in which the first to
third rows represent AFAMs calculated on different numbers
of images. From this, it can be observed that the original
backbone network tends to focus on the local region in the face
image. However, after being equipped with SFIConv, the new
backbone networks further expand the attention range and cap-
ture the global forgery clues in the face image. These results
reveal the intrinsic reason why SFIConv is more suitable for
capturing manipulation traces than vanilla convolution from

the visual perspective.

V. CONCLUSION

In this work, we propose a novel SFIConv to address
the inherent issue that vanilla convolution can not effectively
capture the subtle manipulation traces for Deepfake detection.
SFIConv fuses spatial-domain features and high-frequency
information generated by MCSConv in an interactive man-
ner to construct stronger feature representation containing
manipulation traces. With flexible design, SFIConv not only
reduces the FLOPs, but also greatly improves the accuracy
of backbone network for Deepfake detection. The extensive
experiments show that SFIConv can serve as an efficient com-
ponent to seamlessly replace the vanilla convolution in existing
backbone networks, which significantly promotes Deepfake
detection without changing the model structure.
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