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Multimodal Networks

A multimodal network (MMN) is a networked system that
has multiple modes of transport available.

Examples include logistic networks, biomedical
phenomena, manufacturing processes, telecommunication
networks.

Not much theory specifically developed for handling MMN.
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Previous Approaches

Mathematical programming linear (integer, mixed integer) or
non-linear (mostly second order), represent MMN
by a set of equations, modes are additional
decision variable indices, relaxation or cutting
plane techniques used to make problem tractable.

Weighted graph nodes represent locations, edges represent
transportation links, edge weights represent cost,
often require edge reduction techniques to make
analysis tractable.

Multi-weighted graph assigns multiple weights to each edge
(such as cost and time), utilized for Multicriteria
Shortest Path Problem, not often used for MMN
but similar goals, constraints applied to make
problem tractable.
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Summary of Previous Approaches

Approaches all adapted from unimodal networks.

Most approaches are heavily application-specific.

Modes essentially used for constraints.

Require heuristics or application-specific constraints to
obtain tractable problems.

Remove multimodal traits of network during analysis.
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Weighted Coloured-Edge Graphs

Idea: develop a general tool for any MMN.

Use a graph but keep the modes throughout modelling and
analysis eg for single-source shortest paths problem.

A weighted coloured-edge graph G = 〈V , E , ω, λ〉 consists
of a directed multigraph 〈V , E〉 with vertex set V and edge
set E , a weight function ω : E → R

+, and a colour function
λ : E → M, where M is set of possible colours for edges.

Path weights are k-tuples, sum the path weights in each
mode separately, where k = |M|.

Added complexity: now the path weights are partially
ordered instead of linearly ordered, get Pareto set of
minimal path weights.
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Example: graph for k = 2 and n = 3

u

x

v

rux

gux
ruv

guv

rxv

gxv

Up to six edges to consider.
Six paths from u to v :

(rux +rxv , 0)
(rux , gxv )
(rxv , gux)

(0, gux +gxv )
(ruv , 0)
(0, guv )

Either two, three, or four minimal
path weights depending on edge
weights.
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Example: graph for k = 2 and n = 4

u

x

y

v

Up to 14 edges to consider.
26 paths from u to v :

(rux +rxy +ryv , 0)
(rux +rxv , 0)

(rux +rxy , gyv )
...

(ruv , 0)
(0, guv )

Between two and (after some ef-
fort) eight minimal path weights
depending on edge weights.
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Potential Applications

Useful for applications where objective(s) expressible as
k-ary increasing function(s) of total weights in each mode.
Weights could be anything, eg abstract measure of
distance, can include eg mode changes as another colour.
Transportation networks: use distances as weights,
cost/time/carbon emissions are functions of distance in
each mode, post-optimal analysis possible eg how much
petrol/diesel costs can alter before best path changes?
Computer networks: use protocols as colours, can route
using combinations of message-specific requirements eg
secure, reliable.
Some analogies with multicriteria problems, can apply
multicriteria or brute force to the resulting Pareto set.
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Potential Difficulties

For n = |V | and k = |M| there are up to

n−2
∑

j=0

(

n − 2
j

)

k j+1j!

paths from u to v , so factorial order O
(

kn−1(n − 2)!
)

.

To be practical need efficient algorithm to find Pareto set.

To be practical need the Pareto minimal paths to have
manageable cardinality.

Appears discouraging...
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Surprises

To be practical need efficient algorithm to find Pareto set.
Can use eg a partial-order generalisation of Dijkstra’s
algorithm.
Big Surprise: Order typically low-order polynomial in n, can
use with networks as large as found in any MMN literature.
Big Surprise: No problem dealing with dense networks, so
no need for application-specific reductions.
Algorithm performance depends more on k than on n or the
number of edges.

To be practical need the Pareto minimal paths to have
manageable cardinality.

Cardinality can be moderately bad in theory (this talk).
Big Surprise: Cardinality cannot be very bad (this talk).
Big Surprise: Cardinality is typically subpolynomial in n.
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Chains

Call a weighted coloured-edge graph a chain if vertices
enumerated 1, 2, 3, . . . , n − 1, n and only have edges cxy

for y = x + 1.

1 2 3 . . . n−1 n

r1
g1

b1

r2
g2

b2

rn−1

gn−1

bn−1

A chain has kn−1 paths from u = 1 to v = n.
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Example: chain with k colours and n vertices

1 2 3 . . . n−1 n

1
1
1

2
2
2

2n−2

2n−2

2n−2

Paths from u = 1 to v = n (if k = 3):
(

2n−1 − 1, 0, 0
)

(

2n−1 − 2, 0, 1
)

(

2n−1 − 2, 1, 0
)

...
(

0, 0, 2n−1 − 1
)

Easily show by induction on n that all kn−1 paths are minimal.

Andrew Ensor, Felipe Lillo Tight Upper Bound in Coloured-Edge Graphs



Background
Approach

Chains
General Weighted Coloured-Edge Graphs

Summary

Slightly More Generally

Presume r , g, b, . . . and d1, d2, . . . , dn−1 are positive real
numbers where the sum function Σ on subsets of
D = {d1, d2, . . . , dn−1} is one to one.

1 2 3 . . . n−1 n

r ·d1
g ·d1
b ·d1

r ·d2
g ·d2
b ·d2

r ·dn−1

g ·dn−1
b ·dn−1

Again all kn−1 paths are minimal.
Criterion almost always true if d1, d2, . . . , dn−1 are taken
from a continuous distribution.
Conclusion: Need some independence or randomness
between the edge weights from each x to x+1 in
applications to avoid worst case scenario.
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Generalizing from Chains

1 2 3 . . . n−1 n

r1
g1

b1

r2
g2

b2

rn−1

gn−1

bn−1

In a chain a forward edge exy for y > x + 1 might replace
some minimal paths but doesn’t contribute any additional
minimal path weights to worst case (as assuming each
edge has a single colour).

Can ignore edges ex1 to source and edges eny from
destination (as assuming each edge has a positive weight).

Any backward edge exy for y < x appears to really
complicate situation, get many more paths, so probably
many more minimal paths...
or are there?
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Canonical Weighted Coloured-Edge Graphs

Call weighted coloured-edge graph G=〈V , E , ω, λ〉 canonical if:

G is complete in each colour:
for all vertices x 6= y and colour c
there is exactly one edge cxy from
x to y with λ (cxy ) = c.

x y
cxy

G satisfies the triangle inequality in each colour:
for all distinct vertices x , y , z and
colour c, the triangle formed by
the three edges cxy , cyz , cxz with
λ (cxy )=λ (cyz)=λ (cxz) = c obeys

ω (cxz) ≤ ω (cxy ) + ω (cyz) .

x

y

z

cxy

cxz

cyz
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Canonization of Weighted Coloured-Edge Graphs

Lemma: Canonical Form
Given any weighted coloured-edge graph G=〈V , E , ω, λ〉 there
is a canonical graph G∗ with the same vertices and colours that
has at least as many minimal path weights.
Justification:

Can complete G by adding edges cxy with weight n · w
where w is the maximum weight of any edge in V ,
added edges won’t affect any existing minimal paths.

Can iteratively reduce weights of edges to obey triangle
inequality if ω (cxz) > ω (cxy ) + ω (cyz) by taking
ω (cxz) = min {ω (cxy ) + ω (cyz) | y ∈ V},
process eventually terminates in finite graph.
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Upper bound for Weighted Coloured-Edge Graphs

Theorem: Upper bound on number of minimal path weights
A weighted coloured-edge graph G with n vertices and k
colours can have at most kn−1 minimal path weights.

Notes:
Same bound as for chains - what happened to the
complexity introduced by back edges?
Might have a factorial number of paths, but very few of
them can give minimal paths.
Alterative paths might have the same minimal path weights
(might be important if application wants to use criteria
based not only on path weights).
Proof very dependent on fact that individual edges have
single colour (so won’t work for multi-weighted graphs).
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Proof Outline

Replace G with its canonical form G∗, by the lemma G∗

has at least as many minimal path weights.
For each colour c count the number of minimal path
weights fc(n) from u to v in G∗ that start at u with an edge
cux for which λ (cux ) = c.
Observation: if there is a minimal path starting with cux that
passes through vertex y and if λ (cux ) = λ (cuy ) then
ω (cux ) < ω (cuy ).
Can assume no minimal weight path has two consecutive
edges with same colour (by triangle inequality).
Use induction to show that fc(n) ≤ kn−2 for each of the k
colours c. Clearly fc(2) = 1 for every canonical graph with
only two vertices.
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Inductive step of proof to show fc(n) ≤ kn−2

Inductive step in canonical graph with n + 1 vertices:
Order the intermediate vertices v1, v2, . . . , vn−1 so that
ω (cux ) ≤ ω (cuy ) if x < y . Can assume no minimal weight
path starting with cux passes through vertex y for y < x (by
earlier observation).
Minimal weight path starting with eu1 changes colour for
next edge, by induction there are at most
Σc′ 6=cfc′(n) ≤ (k − 1)kn−2 such minimal path weights.
Minimal weight path starting with eu2 changes colour for
next edge, by induction there are at most
Σc′ 6=cfc′(n − 1) ≤ (k − 1)kn−3 such minimal path weights.
. . .
Total fc(n+1) ≤ (k−1)kn−2 + (k−1)kn−3 + · · · + 1 = kn−1.
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Weighted Coloured-Edge Graphs.

Applications where objective expressible as a k-ary
increasing function of total weights in each mode.

Chains can potentially give kn−1 minimal paths, not so bad
in practice.

Chains are as bad as it gets for weighted coloured-edge
graphs.

Current work on average-case analysis
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