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Abstract 

Physicians have been using stethoscopes for over 200 years to listen to the sound 
produced by the heart, but the diagnostic accuracy of this practice has been called into 
question by studies that have found the clinical skills of doctors at all levels to be lacking. 
The development of electronic stethoscopes and advancements in the processing power 
of digital computers and the subsequent development of signal processing and machine 
learning methods has opened the door to the field of Computer Assisted Cardiac 
Auscultation (CACA). This field of study is concerned with increasing the diagnostic value 
of the heart sounds using computers and the myriad signal processing methods that 
these devices enable. This thesis represents an exploration of CACA from the viewpoint 
of probabilistic and psychoacoustic modelling.  

Probability theory provides the framework with which we model the heart sounds, 
firstly, using an unsupervised machine learning method called Independent Component 
Analysis (ICA) and secondly, by expanding current work on the use of duration-
dependent Hidden Markov Models (HMM). We also investigate heart sounds as 
perceptual phenomena using psychoacoustic models to arrive at descriptions of 
features of heart murmurs that correspond to those that an expert auscultator would 
listen for when auscultating. This enables the findings of the algorithm to be 
communicated in a form that is familiar and acceptable. 

We present four case studies on the use of ICA in which the model can identify 
physiologically and diagnostically interesting features in heart cycles given an 
appropriately chosen number of sources. A probabilistic systolic murmur labelling model 
is developed as an expansion of previous work done in heart sound segmentation. The 
proposed algorithm achieves an F1-score of 93.6% compared to 90.6% achieved by the 
current state-of-the-art and can identify systolic murmurs with an area under the 
receiver-operator curve (AUC) of 0.90 as tested on a dataset of 56 heart sound 
recordings.  

In the final part of the thesis, psychoacoustic models are developed for systolic 
murmurs. The perceptual qualities of 'loudness', 'pitch', and 'shape' are derived using 
psychoacoustic principles and compared to annotations made by expert auscultators. 
An online survey was developed and tested for the purpose of collecting expert 
annotations. The completion rate of the survey was 16%, perhaps in part due to the 
complex and time consuming nature of the task compounded by the online format of 
the survey. The collected responses show a percent agreement of 0.73 for 'loudness', 
0.65 for 'pitch', and 0.35 for 'shape'. The proposed model showed strongest agreement 
with 'loudness' and some agreement with 'pitch', but there was little agreement on the 
'shape' feature.  

This thesis shows that the application of ICA, the explicit modelling of a systolic murmur 
state in heart sound segmentation, and models of psychoacoustic features increase the 
diagnostic value of heart sounds.   
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Glossary and Abbreviations 

Medical Terms 

auscultation The practice of listening to body sounds to assess the 
condition of internal organs. 

cardiac Related to the heart. 
cardiovascular Related to the heart and circulatory (blood) vessels. 
fundamental heart sound The heart sounds associated a normal functioning heart, 

sometimes referred to as 'lub-dub'. 
systole The period in which the ventricles of the heart are 

contracting, forcing blood out of the heart into the rest of 
the body and the lungs. 

diastole The period in which the ventricles of the heart are 
relaxing, allowing blood from lungs and the rest of the 
body to flow into the heart.  

Heart Sound Abbreviations 

S1 The first fundamental heart sound, associated with the 
start of systole/end of diastole. 

S2 The second fundamental heart sound, associated with the 
end of systole/start of diastole. 

S3 The third heart sound/ventricular gallop. 
S4 The fourth heart sound/atrial gallop. 
M1 The part of the first heart sound associated with the 

closing of the Mitral valve. 
T1 The part of the first heart sound associated with the 

closing of the Tricuspid valve. 
A2 The part of the second heart sound associated with the 

closing of the Aortic valve. 
P2 The part of the second heart sound associated with the 

close of the Pulmonary valve. 
PCG Phonocardiography, a specialist term for the recording of 

heart sounds and the resulting waveform 
Signal Processing Terms and Abbreviations 

Time-frequency analysis A decomposition of a signal into its time-varying 
frequency components 

DSP Digital signal processing. The manipulation of digital 
signals using computer algorithms. 

SNR Signal-to-noise ratio 
STFT Short Time Fourier Transform 
WT Wavelet transform 
DWT Discrete wavelet transform 
CWT Continuous wavelet transform 
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Preface 

This work represents a continuation of my interest in human physiology and healthcare, 

specifically the application of science and engineering to address and solve challenges 

in this area. While mainly a biomedical engineering thesis, exploring mathematical 

modelling and digital signal processing techniques in medical applications, the 

surrounding anatomical and physiological knowledge and the potential clinical 

applications of the technology have formed the core of the exploration throughout. This 

is representative of my own undergraduate background, completing first a bachelors in 

physiology and then a bachelors with honours in electronic engineering with a focus on 

biomedical devices. It also represents the expertise and interests of my supervisory 

team, the amazing combination of an engineer with years of experience in the medical 

devices industry and in developmental research of medical technologies and an 

experienced cardiologist with years of clinical practice and experience in the 

development of state-of-the-art cardiac imaging technologies. This thesis is an attempt 

to create a multidisciplinary piece of work that is submitted as an engineering thesis but 

is firmly grounded in medicine and physiology. To that end I have attempted to use 

mathematical notation and jargon specific to certain disciplines sparingly, however it is 

a work in engineering and requires in many instances an exactness that written language 

alone cannot provide. 
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Chapter 1 Introduction 

We start this thesis by first introducing the problem domain in the form of the rationale 

and significance of this work. This introduction aims to show that cardiac auscultation 

and the use of computers to increase the value of cardiac auscultation is a valid and 

interesting field of research. 

1.1 Rationale and significance 

The process of listening to the sounds produced by the heart, called cardiac auscultation, 

is a powerful yet inexpensive diagnostic technique. Heart sounds reveal a great deal 

about the functioning of the heart valves as they open and shut during each heartbeat, 

as well as providing valuable clues about the presence of structural abnormalities such 

as shunts or holes in the heart. Using a relatively inexpensive biomedical instrument (the 

stethoscope) a skilled physician can accurately predict the functioning of the heart 

valves, as well as many other structural and functional pathologies. 

However, auscultation takes practice, experience, and dedication to master and current 

teaching strategies are proving inadequate. Recent research, performed on the cardiac 

auscultation skill level of medical professionals, has revealed these to be lacking. A study 

performed on the accuracy of clinical assessment of heart murmurs by general 

practitioners (GPs) in 1999 [1] concluded that their performance was “suboptimal” and 

that “educational strategies are needed to improve accuracy and reduce unnecessary 

referrals and misdiagnosis”. Another study, done in 2013 [2], on the same subject found 

that 22% of innocent murmurs were interpreted as abnormal across 106 primary 

healthcare physicians from a variety of experience levels. The lack of auscultation skills 

of general practitioners can lead to many healthy patients being referred to specialists 

and undergoing expensive imaging tests.  

The shortfall in this important diagnostic skill has been attributed to a lack of emphasis 

on cardiac auscultation by medical schools [3] as well as a decrease in time spent on 

physical examination and an increase in time spent on electronic medical records and 

other paperwork [4], [5]. The traditional method of bed-side teaching is proving 

inadequate for the crowded classes of modern medical schools and hospital wards. 

There is also a trend in modern medicine to move away from the subtler, skill based 
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diagnostic techniques to the more technologically advanced imaging technologies, such 

as echocardiography, cardiac magnetic resonance imaging (CMRI) and cardiac 

computed tomography ( CT) [6].  

There is a debate over the future of cardiac auscultation, exemplified by the 1996 

Circulation article by Tavel "Cardiac auscultation. A glorious past--but does it have a 

future?" [7]. This debate has recently entered the attention of the news media [8], [9] 

with two opposing sides emerging.  

On the one side cardiac auscultation has been declared an obsolete practice, destined 

to be replaced by hand-held echocardiography (HHE). Kaul [10] argues that "physician 

inertia" is the main obstacle preventing the switch to the "accurate and reliable" HHE, 

citing a 2014 study by Mehta et al. [11] which concluded that HHE used by cardiologists 

provided more accurate diagnosis of cardiac conditions than physical examination 

alone. A similar argument is made by Frishman [12] who points out that the HHE is being 

introduced into medical school training programs with success [13]. Fuster [14] however 

argues that the two technologies do not overlap as much as the proponents of HHE 

suggest and advocates the unique value of skilful auscultation, using cases in which 

cardiac auscultation was able to identify factors that were not visible on echocardiogram 

as motivating examples. This view is echoed by Thompson [15] who mentions that 

cardiologists, the practitioners who most readily have access to both echocardiography, 

still make use of their stethoscopes daily and argues that they would be the first to 

"discard their stethoscopes" if there were "no correlation between heart sound and 

echo findings". Edelman and Weber [16] espouse the connection, in their words the 

"tenuous tether", that auscultation creates between the physician and the patient. They 

go on to encourage the use of technologies that expand the use of auscultation, for 

example providing playback of heart sounds through a speaker to allow all attending 

physicians and the patient to hear what previously only the auscultator himself could 

hear.  

Instead of viewing auscultation and HHE as two opposing technologies, they can be  

regarded as complementary tools in the physical examination. As Tavel pointed out in 

his 2006 follow-up article "Cardiac auscultation. A glorious past--and it does have a 
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future!" [17], the emergence of electronic stethoscopes and the ability to apply signal 

processing and machine learning methods to these recordings has the potential to 

revolutionise the practice of cardiac auscultation. An important aspect to consider is 

how effectively these methods can be taught. Both echocardiography and auscultation 

require skill to perform and interpret and replacing one poorly taught skill with another 

is unlikely to lead to better outcomes. A pilot study by Legget et al. [18] investigated the 

combination of HHE and electronic stethoscopes as training aids for cardiac diagnosis. 

Motivated by the ability of HHE to effectively visualise heart murmurs at the bedside 

and electronic stethoscopes to allow recording and repeated listening of heart sounds, 

the results of the study suggest that these technologies have application not only in 

diagnostics but also in effective medical training. Barrett et al [19] and Finley et al.[20] 

take a similar viewpoint, shifting the focus of the debate to the techniques used to train 

medical students in the diagnostic practices.  

Imaging technologies provide invaluable diagnostic information and the importance of 

further developing the science and engineering related to these cannot be stressed 

enough. However, the high cost and scarcity of these technologies limit their usefulness, 

especially in rural or underdeveloped locations. Recently, handheld echocardiography 

devices have been developed and some physicians see these as the future of cardiac 

diagnosis [21]. However, correctly performing and interpreting a cardiac ultrasound, as 

there is a significant likelihood of false positive and false negative findings in 

undertrained individuals. Operating and interpreting echocardiography requires 

extensive training, comparable to that of effectively auscultating [22]. Professional 

sonographers require at least 3 years of training and study as well as years of actual 

clinical experience to be able to effectively use these devices for diagnosis [23].  In New 

Zealand, if a physician suspects a detected murmur of being pathological, they will refer 

a patient to a sonographer for an echocardiogram as well as a consultation with a 

cardiologist. If the patient is an eligible permanent resident or citizen, these visits will 

be publicly funded, although the waiting lists can be months long, and many patients 

opt to receive the echocardiogram privately. Thus, a lack of accurate auscultation has a 

disproportionate effect on lower socio-economic groups who cannot afford to pay for 

more expensive tests and are at a greater risk of conditions like rheumatic fever which 

increases the likelihood of developing certain heart valve disorders [24]. 
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Biomedical and software engineering can assist in the development of a solution to this 

problem. Digital signal processing (DSP) techniques can be implemented to assist both 

the training of auscultation skills as well as the heart sound analysis procedure, assisting 

the diagnostic process by clarifying information in the heart sound or through machine 

learning methods classifying the pathology (if any) present [25]. In the last two decades, 

a great deal of work has been done in the field of computer assisted auscultation, with 

a significant focus on the development of a machine learner that is able to accurately 

distinguish between different normal and abnormal heart sounds. These studies, 

discussed in the literature review, have largely followed the procedure of segmentation, 

feature extraction, and classification. So far, no studies have produced generalised, 

clinically validated results. The major difficulties appear to be badly described, small 

testing and training sets, no standardised set of features to extract, as well as disparity 

between studies on what pathologies to try to classify. Another issue with the current 

framework is acceptability; generally, the presented scheme attempts to identify 

pathological murmurs in the heart sound, although the information presented to the 

classification system (heart sound recording) does not contain much of the information 

that a physician would use to reach the same conclusion. This issue is fundamental in 

the design of any medical devices that aim to provide decision support. The limitations 

of the signal under analysis and the position of that signal within a greater context must 

be kept in mind in order to provide useful information. Due to this disparity between 

the diagnostic method of the attempted algorithms and the actual diagnostic method 

used in practice, physicians and the public might less readily accept the classification 

result especially with the current poor state of clinical validation.  

The rationale for this work can be summarised as: 

• Cardiac auscultation provides a relatively low-cost cardiovascular screening 

method. 

• However, it is a clinical skill that takes effort and practice to master. Several 

studies have found the cardiac auscultation skills of physicians to be suboptimal. 

• Computer assisted auscultation is a possible solution. Using electronic recording 

devices (electronic/digital stethoscopes) and computer algorithms to analyse 

heart sounds and serve as diagnosis support systems.  
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1.2 Outline of this thesis 

In this research we have attempted to bridge this gap between computer assisted 

analysis and human expert analysis of heart sounds. A representation of the thesis 

chapters is shown in Figure 1.1.  

 

Figure 1.1: An outline and navigation centre for the chapters that comprise this thesis. This 
figure also acts as an interactive navigation tool in the digital format of this document; try 
clicking the icons on the leaves and next to the chapter headings to navigate to the start of 
each chapter and back here. 

In this chapter, Chapter 1, we have introduced auscultation and computer assisted 

cardiac auscultation as an active and beneficial area of research for biomedical 

applications. In Chapter 2 we explore the background of this field by first looking at the 

anatomy and physiology of the heart and then putting this knowledge to use in 

contextualising the clinical practice of cardiac auscultation. Chapter 3 introduces digital 

signal processing concepts and reviews developments in the application of signal 

processing techniques to heart sound recordings. We conclude Chapter 3 by introducing 

the perceived gap in the literature and the research questions this work answers to 

address this gap. Chapter 4 introduces the use of probabilistic models as a framework 

to perform heart sound analysis. To illustrate and test this methodology, a probabilistic 

independent component analysis (ICA) model is applied to examples of heart sounds. 

The probabilistic framework is further explored in Chapter 5 where we describe and 

expand upon previous work done in heart sound segmentation. Chapter 6 introduces 

the concept of “psychoacoustic” models where heart sounds are analysed considering 

the perceptual qualities of the human auditory system to form descriptions that match 
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the sensations they would elicit. Finally, in Chapter 7 the thesis is concluded, and future 

directions discussed. 
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Chapter 2 Auscultation of the Heart 

We start our exploration at the origin of the signal we intend to study. The field of 

medical science is an ever-evolving domain of knowledge, with a previously 

unrecognised organ system being discovered as recently as 2018 [26]. The evolution of 

this field is in no small part due to the improvement in the instruments available to 

researchers and medical practitioners. In this chapter we first explore the organ system, 

that is the heart and great arteries or more succinctly, the central cardiovascular system, 

in which the signal we are studying, originates. After this we look at how the sounds 

produced in the cardiovascular system have been used by medical practitioners, a 

practice termed cardiac auscultation. 

2.1 Functional Cardiac Anatomy 

To design an algorithm that can analyse the sounds produced by the heart it is important 

to have a clear and accurate understanding of the functional anatomy of the heart 

structures as well as the physiological processes that produce those sounds. To this end 

the first part of this literature review will focus on current state of knowledge about the 

anatomy of the heart and associated cardiac structures. 

2.1.1 The Heart 

The human heart is a large muscular structure that lies obliquely in the chest very slightly 

to the left of the sternum. The heart consists of two sets of chambers, the right and left 

atria and ventricles (Figure 2.1). Each set of chambers acts like a two-stage pump with 

the right atrium and ventricle pumping deoxygenated blood from the systemic 

circulation to the pulmonary circulation and the left atrium and ventricle pumping 

oxygenated blood from the pulmonary circulation to the systemic circulation. The right 

atrium receives blood via the superior and inferior vena cava as well as the coronary 

sinus and opens into the right ventricle through an atrioventricular valve which has three 

cusps - the tricuspid valve. The right ventricle opens into the pulmonary artery through 

the semilunar pulmonary valve. The left atrium receives the four pulmonary veins from 

the lungs and opens through to the left ventricle via the bicuspid, or more commonly: 

mitral valve.  The left ventricle is the most muscular of the four chambers providing the 

necessary contractive force to maintain systemic blood pressure. The aortic valve is a 
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connective tissue structure formed out of three semilunar cusps that guards the opening 

between the left ventricle and the aorta, preventing blood from flowing back into the 

heart.  

 

Figure 2.1: The Heart, with the heart valves and major arteries and veins labelled. The arrows 
indicate the direction of blood flow [27]. 

2.1.2 The Heart Valves 

The heart valves, illustrated in a transverse cross-section of the heart in Figure 2.2, are 

connective tissue structures that regulate the movement of blood through the heart 

chambers. The atrioventricular valves prevent blood from flowing back into the atria 

during ventricular contraction (systole), while the semilunar valves prevent blood from 

flowing back into the ventricles during ventricular relaxation (diastole). The right 

atrioventricular (AV), or tricuspid, valve consists of 3 connective tissue flaps at the 

opening between the right atrium and ventricle. The pulmonary (right semilunar) valve 

guards the opening of the right ventricle to the pulmonary artery that connects to the 

lungs. The mitral (left AV) valve is formed by 2 cusps between the right atrium and right 
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ventricle. The aortic (left semilunar) valve connects the left ventricle and the aorta which 

allows blood to flow into the systemic circulation. Both AV valves are attached to 

papillary muscles of their respective ventricles by chordae tendineae, strings of 

connective tissue. 

 

Figure 2.2: A transverse cross-section of the heart showing the heart valves [28] 

If the heart valves do not function correctly the resulting condition is called heart valve 

disease [29]. Heart valve disease, also known as valvular heart disease/valvopathy, can 

present in two distinct ways, (1) valvular stenosis, and (2) valvular insufficiency. In 

valvular stenosis the heart valve tissue stiffens, causing the valve opening to narrow, 

thus impeding the flow of blood through the valve. In cases of severe valve stenosis, the 

amount of blood able to move through the narrowed valve may become insufficient for 

normal functioning. Valvular insufficiency is also called valve regurgitation or 

incompetence; such a valve may also be referred to simply as a “leaky valve”. In this 

condition the heart valve is not able to close completely and allows blood to leak back 

into either the atria or the ventricle after ejection. These two conditions are illustrated 

in Figure 2.3. Heart valve disease can be either congenital (present at birth) or acquired. 

Congenital heart valve disease affects about 0.1% of new-borns, with stenosis of either 

the pulmonary or aortic valve being most common [30]. Heart valve disease is classified 
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as acquired if the valve was structurally normal at birth. Several conditions can cause 

the heart valves to become diseased, including congenital and inherited conditions such 

as Marfans and Ehlers-Danlos syndrome, rheumatic fever, endocarditis, syphilis, and 

connective tissue disorders such as systemic lupus erythematosis. 

 

Figure 2.3: An illustration of heart valve stenosis and regurgitation, showing normal heart 
valves compared to those with imparied closure or opening [31]. 

2.2 The Cardiac Cycle 

The heart rhythmically contracts and relaxes multiple times a minute in order to move 

oxygen and nutrients to the systemic circulation and toxins and carbon dioxide to the 

lungs for excretion; this process is referred to as the cardiac cycle. A complete cardiac 

cycle can be defined as the cardiac events initiated by atrial depolarization (observed as 

the P wave in an electrocardiogram, Figure 2.4) and continuing until the start of the next 

atrial depolarization (although, being cyclic, the selection of start/end is arbitrary). The 

cardiac cycle is divided into systole and diastole. Systole refers to events that are 

associated with ventricular contraction and ejection of blood, whereas diastole refers to 

the period of relaxation and filling. The two fundamental heart sounds, commonly 

referred to as S1 and S2 correspond to the start and end of systole. The first heart sound 

(S1) corresponds to the peak of the QRS complex of the electrocardiogram, while the 

second heart sound (S2) occurs after the peak of the T wave. 
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Figure 2.4: A nomimal electrocardiogram and heart sound waveform and the associated phase 
of the cardiac cycle [32]. 

2.3 Heart sounds 

2.3.1 Fundamental Heart sounds 

When listening to a healthy heart, two distinct sounds (shown in Figure 2.5) are normally 

audible: S1 also sometimes referred to as “Lub”, and S2 (also called “Dub”). 

 

Figure 2.5: The fundamental heart sounds (S1 and S2) at the apex area with the patient lying 
on their back. Recording from the University of Michigan's database of simulated heart sounds 
[33]. 

The first heart sound, S1, corresponds to the closing of the atrioventricular valves. While 

controversial, the most widely accepted theory for the origin of the sounds is vibrations 

of the atrioventricular valve structures, the connective tissue ring, valve cusps, and 

chordae tendineae caused by the abrupt deceleration of blood in the atria and ventricles 

S1 S2

SystoleDiastole Diastole

M1 T1 A2 P2
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after the valves snap shut. The first heart sound is composed of the mitral closing sound 

(M1) and the tricuspid closing sound (T1).  

The second heart sound, S2, occurs directly after the closure of the semilunar valves and 

has two audible components, namely the aortic closure (A2) and the pulmonic closure 

sound (P2). The second heart sound is the result of the sudden deceleration of blood 

causing vibrations in the semilunar valve cusps, as well as the walls and blood columns 

of the aorta and pulmonary artery as well as their respective ventricles. 

2.3.2 Other Heart sounds 

2.3.2.1 The third heart sound (S3) 

The third heart sound is a brief, low frequency beat that occurs in early diastole shortly 

after S2, at the time of maximal ventricular filling (Figure 2.6) [34]. Up until age around 

the age of 40 the third heart sound may be physiological, especially in young children, 

athletes, and pregnant woman, and should be judged by the presence or absence of 

significant heart disease. In older adults (>40 years) a third heart sound is usually 

pathological and an indication of ventricular dysfunction. The third heart sound is 

challenging to auscultate, since it is usually of very low intensity, it does not radiate 

widely over the chest wall, and usually the frequency content is near the lowest level 

the human ear can detect.  

 

Figure 2.6: The third heart sound (S3) at the apex area with the patient lying on their left side. 
Recording from the University of Michigan's database of simulated heart sounds [1]. 

2.3.2.2 The fourth heart sound (S4) 

The fourth heart sound occurs late in ventricular diastole, shortly before the start of the 

first heart sound (Figure 2.7). It is a low frequency sound that coincides with atrial 

contraction at the end of diastole [35]. The fourth heart sound is the result of vibrations 

S1 S2

SystoleDiastole

S3
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generated within the ventricle after atrial contraction. Usually its presence indicates 

that there is a reduction in left or right ventricular wall compliance, and as such an 

increased resistance to filling. It is accompanied by a disproportionate rise in ventricular 

end-diastolic pressure, and often also by a short palpable outward movement of the 

chest wall right before systole. 

 

Figure 2.7: The fourth heart sound (S4) at the apex area with the patient lying on their left side. 
Recording from the University of Michigan's database of simulated heart sounds [1]. 

 

2.3.3 Murmurs 

A murmur is a series of sounds of variable duration and frequency, audible with a 

stethoscope at the chest wall, that originates from the heart or great blood vessels 

(aorta, pulmonary artery) [36]. Murmurs are firstly differentiated based on their location 

in the cardiac cycle. Systolic murmurs occur in systole between the first (S1) and second 

(S2) heart sounds, while diastolic murmurs occur in diastole between the second (S2) 

and first (S1) heart sounds. Murmurs are indications of turbulent blood flow. According 

to the authors of "Clinical Methods" [37] a widely accepted theory of the generation of 

murmur sounds incorporates the concept of vortex shedding. This theory explains the 

sustained vibrations required to produce audible heart murmurs by the creation of 

“vortices” (or eddies) due to turbulence, the shedding of these vortices creating areas 

of relative stillness or “wakes”, and the subsequent movement of the blood to fill in the 

wakes. The response of blood moving in to fill the wakes left by vortex shedding can 

explain the generation of sustained sound vibrations that are audible at the chest wall. 

Murmurs can occur for a variety of reasons and can be functional (non-pathological) or 

pathological, some common examples are shown in Figure 2.8. 

S1 S2

Systole Diastole

S4



16 
 

 

Figure 2.8: Representation of common murmurs and their associated causes [38] 

2.4 Cardiac Auscultation 

As early as 350 BC Hippocrates described the diagnostic value of listening to the sounds 

caused by the inner workings of the body [39]. The diagnostic value of auscultation 

remained relatively unchanged until 1628 when William Harvey published “On the 

Motion of the Heart and Blood” in which he provides the first description of the  sounds 

produced by the heart, identifying the sound that can be heard within the chest as a 

pulse made when the heart transfers blood from the veins to the arteries, which he 

described as sounding like two clacks of a water bellows to raise water [40]. These 

discoveries established the fact that the condition and mechanical action of the inner 

workings of a person can be deduced by listening to the sounds produced. 

Today we know that heart sounds are related to vibrations of the cardiac structures and 

the dynamics of blood flow through the heart. Medical professionals can use 

stethoscopes at different locations of the chest surface to listen to and identify normal 

and abnormal heart sounds. Normal heart sounds in the audible range include S1, 

associated with the closing of the atrioventricular valves, and S2, which results from the 

sudden closure of the semilunar valves at the end of systole [41].  Abnormal heart 
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sounds, called extra heart sounds or heart murmurs, are additional heart sounds that 

may be indicative of serious heart defects and valve lesions [42]. This process of listening 

to the sounds produced by the beating of the heart, known as cardiac auscultation, 

provides a low-cost method of screening for serious heart diseases.  

2.4.1 Cardiac Auscultation in Context 

Cardiac auscultation commonly forms part of the physical examination, one aspect of 

the wider process of medical diagnosis as illustrated in Figure 2.9. Dr. Lester King 

described medical diagnosis as “a process by which a given individual is assigned to a 

given class, or the disorder from which he suffers is subsumed under a certain concept” 

[43]. According to Ledley and Lusted [44] the three logical concepts inherent in medical 

diagnosis are: (1) medical knowledge, (2) the signs and symptoms presented by the 

patient (which we could specify more broadly as any relevant data collected about the 

patient, e.g. patient history, test results), and (3) the final medical diagnosis itself.  Thus, 

medical diagnosis is the process by which an observer (e.g. a physician) assigns a person 

(more specifically the health of that person) into a category based on the relationship 

between the knowledge and experience of the observer and the data (e.g. signs and 

symptoms, laboratory test) collected from the person. The aim of medical diagnosis is 

to find a diagnosis that allows a health care provider to determine a suitable and 

effective therapy.   

Physical examination is one method commonly employed by physicians in collecting 

data about the health of a patient. As implied in the name, it consists of the physician 

physically examining the patient using their senses. Auscultation is then a part of the 

physical examination in which the physician uses their sense of hearing to listen to the 

sounds produced by the movements of the patient’s organs. The heart and 

cardiovascular system are in constant motion and so present one of the most prevalent 

sources of sounds in the body. Cardiac auscultation is the inspection of the 

cardiovascular system by way of the sounds produced by that system.  
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Figure 2.9: The position of cardiac auscultation within the greater goal of forming a medical 
diagnosis. 

2.4.2 Cardiac Auscultation Procedure 

Cardiac auscultation is an essential and critical part of a physical examination. The 

investigating physician will perform cardiac auscultation to identify the normal heart 

sounds of S1 and S2 and to determine if any additional sounds are present [45]. To 

achieve this, a clinician will typically listen in a logical, sequential manner using both the 

high frequency and low frequency (bell and diaphragm) parts of the stethoscope at 

multiple “auscultation sites” on the chest wall. The locations of the most important 

auscultation sites are shown in Figure 2.10. The carotid pulse may be used to assist in 

identifying the timing of the different stages. Cardiac auscultation, as part of a physical 

examination and patient history, can be used to diagnose a variety of cardiac 

pathologies, especially those related to the heart valves as well as septal defects and 

shunts. 
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Figure 2.10: Cardiac auscultation sites for the various heart valves [46] 

As a diagnostic tool, cardiac auscultation involves more than simply using a stethoscope 

to listen to the sounds produced by the heart. It is a step in a process of investigation 

that involves using previous knowledge about the patient’s history and other symptoms, 

knowledge about the underlying functional anatomy and physiological processes, as 

well as a well-trained ear and well-developed sound perception abilities. All this 

knowledge and these skills are used to locate and identify sometimes very subtle sounds 

and alterations of sounds present in the heart sound signal transmitted from the heart 

through various levels of muscle, bone, skin, and stethoscope to the investigator’s ears. 

Auscultating at different locations on the chest wall, with the patient in a variety of 

different positions (supine, standing, lying on their side, etc.), accentuates different 

sounds and provides more information. Heart murmurs can be heard differently at 

different locations of the chest and changing the patient’s position may enhance the 

quality/intensity of the sound. Murmurs tend to radiate in the direction of the blood 

flow and the clinician may auscultate at alternative and remote locations in order to 

further identify heart murmurs [45], [47]. The relationship of murmurs to the respiratory 

cycle can provide further clues as to an affected valve. The intensity of murmurs 

produced by valves on the right side of the heart tend to increase during inspiration [48]. 

Systolic murmurs in particular may change in relation to the loading of the heart [6] and 

thus the information contained in the heart sound can be altered by actions of the 

patient, for example, changing their handgrip, or performing the Valsalva manoeuvre 

(forceful expiration against a closed glottis [49]). Cardiac auscultation, as a method of 

investigation, includes both listening with a stethoscope and using different techniques 
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to increase the audibility of the heart sound to a point where any underlying conditions 

becomes obvious. 

Effective cardiac auscultation requires both knowledge and expertise in physical 

examination and the mastery of the technical skill of auscultation. Training the technical 

skill of auscultation involves acquiring the ability to recognise certain sounds using 

different features of those sounds, similar to how a student of music must learn to 

discern different notes and pitches. Research has shown that the mastery of 

auscultation requires hundreds of hours of repeated practice on recognising the 

different sounds [50]. The physician must also be trained in the necessary clinical skills 

to effectively auscultate. A successful physical examination requires the physician to 

recognise the available clues and direct the examination in the appropriate direction. 

They must know where to look and how to direct the patient, i.e. to perform a specific 

manuever or assume a specific position that may accentuate or diminish certain aspects 

of the heart sounds under specific disease conditions. Thus, the physical examination 

does not represent a static data collection process but rather a dynamic procedure in 

which information is steadily revealed. 

2.4.3 The Stethoscope 

Up until the 19th century the only way for physicians to auscultate was through 

immediate auscultation, by directly applying their ears to the patient’s body. This 

method had some severe technical limitations as well as being socially awkward and 

uncomfortable for both the doctor and the patient. In 1816 a French physician called 

René Laennec (1781 to 1826), inspired by the transmission of sound through a solid 

medium, decided to use a rolled-up paper applied to the region of the heart and the 

other end to his ear to listen to the heart sounds of a young woman presenting with 

symptoms of a diseased heart. Laennec discovered that the heart sounds could be heard 

much more clearly, and with much less discomfort for both him and the patient, by using 

“mediate auscultation” where an instrument is interposed between the ear of the 

examiner and the patient. Inspired by his success, he developed this idea further and 

named his invention the stethoscope. 
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Figure 2.11: A wood and brass stethoscope used by Laennec around 1820 [51] 

The stethoscopes that Laennec used consisted of a long wooden tube and was 

monaural, which means that it had a single ear piece and thus the physician could only 

listen through one ear when using it (Figure 2.11). The binaural stethoscope was 

invented in 1851 by Arthur Leard. Modern stethoscopes, whether acoustic (mechanical) 

or electronic, are binaural, allowing users to auscultate using both ears at the same time. 

The traditional stethoscope consists of three main components: the chest piece, the 

tubing, and the earpieces as shown in Figure 2.12. 

 

Figure 2.12: An acoustic stethoscope [52]. 

During auscultation, the chest piece is placed onto the patient’s chest and acts as a 

medium for the different pressure waves produced by the body. The most common type 

of acoustic stethoscope in use today has a chest piece that consists of two distinct parts: 

the diaphragm and the bell. The diaphragm is a flat disk that is used to auscultate higher 

frequency sounds. The bell resembles a hollow cup and transmits lower frequency 

sounds than the diaphragm. Recently single piece chest pieces have been developed 

with “dual frequency” or “tuneable” diaphragms. These can switch between high and 

low frequency modes based on the amount of pressure that is being applied by the user. 
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Regardless of type, the aim of any chest piece is to transfer the vibrations produced by 

the body to the next part of the stethoscope, the tubing. The tubing is the air-filled 

hollow tubing that allows the sound waves to be transmitted from the chest piece to 

the earpieces. The earpieces play the important role of connecting the tubing, and chest 

piece, to the user’s ear. In this way, the earpieces complete the closed system that 

allows sounds from the body of the patient to be transmitted directly to the physician’s 

ears. The earpieces should fit comfortably, whilst also fitting tight enough to create the 

closed system. 

Since its invention the stethoscope has become the most iconic and identifiable 

biomedical instrument. Routine physical examinations almost always include 

auscultation, due to the non-invasive nature of the procedure as well as the low cost 

and wide availability of the instrument. Recently the Glia project has developed an open 

source 3D printable stethoscope that can be printed for as little as $5 USD, potentially 

further increasing the availability of the stethoscope [53]. Herein lies the stethoscope’s 

greatest strength: it can provide knowledge of the inner workings of a person without 

expensive equipment or invasive and damaging procedures.  The stethoscope allows 

doctors to use their sense of hearing to “look” inside the body of a patient and assess if 

there are problems. Although this method of investigation is limited to conditions that 

produce a sound wave or an alteration of a physiological sound, it provides a quick and 

relatively simple and inexpensive way to do so.  

2.4.4 Recent Developments 

The advent of microelectronics and integrated circuits has led to the development of 

electronic stethoscopes [25]. As early as 1966 a patent was issued for a stethoscope that 

included an electronic circuit that could augment the frequency response of the device 

[54]. Since then electronic stethoscopes have become more common and the 

applications of electronics and signal processing in these devices have become more 

varied.  These devices potentially have many advantages over traditional mechanical 

stethoscopes including the ability to amplify sounds, record and store/transmit heart 

sound recordings, and more precise control over the frequency response than acoustic 

stethoscopes.   
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A 1998 study conducted by Grenier et al. [55] compared three electronic stethoscopes 

available on the market at that time (Graham Field Labtron, Bosch EST40, and Starkey 

ST30) to acoustic stethoscopes based on user's (nurses and physicians) assessment. 

They found that most users preferred the acoustic stethoscopes and suggested that 

while the electronic stethoscopes allow amplification, they also introduced limitations 

especially prevalent at high amplification levels. They identified the following limitations 

(1) the introduction of electronic noise, (2) high sensitivity to impacts, movements, and 

ambient noises, (3) usage of electronic filtering terms that are not well understood by 

clinical users, and (4) discomfort resulting from poor ergonomic design. It should be 

noted that none of the electronic stethoscopes assessed in the 1998 study are still on 

the market in 2019.  

 More recent studies have focused on comparing the clinical and training effects of 

electronic and acoustic stethoscopes. Høyte et al. [56] found no significant difference 

between the performance of medical students training using  an electronic stethoscope 

compared to those training with a traditional acoustic stethoscope after four months of 

training. However, a 2018 study by Legget et al. [18] suggested that the use of an 

electronic stethoscope during ward round teaching positively impacts the cardiac 

auscultation ability of students.  A clinical study conducted in 2019 by Kalinauskienė et 

al. [57] found that the use of electronic stethoscopes increased the screening sensitivity 

of both cardiologists and resident physicians in assessing heart valve lesions in obese 

patients, although there was no difference in specificity between the two types of 

stethoscopes. 

The increase in quality and availability, along with a decrease in the cost, of electronic 

stethoscopes has the potential to revolutionize cardiac auscultation and its usefulness 

as a diagnostic technique. Possible applications include tele-health monitoring and 

consultations, heart sound database creation (with cloud computing and machine 

learning applications), decision support systems, and computer assisted heart sound 

classification systems. 
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Chapter 3 Digital Signal Processing of Heart Sounds 

Potentially the most beneficial aspect of making digitised recordings of heart sounds is 

the ability to apply digital signal processing (DSP) techniques to these recordings. Since 

the development of digital computers, the processing power of these devices have been 

applied to signal processing tasks in which digitised observations of time-varying signals 

(e.g. the voltage across a capacitive sensor sampled at set intervals) have been 

manipulated computationally to reveal interesting and useful information in the signal. 

A ubiquitous example of DSP is the use of digital filters to filter out "noise" (signal 

components that are unwanted in a specific application) by attenuation (or weakening) 

and/or amplification (or strengthening) of different parts of a signal. The potential 

applications, and methodologies, of DSP are vast and it is necessary to discuss the 

specific methods investigated for heart sound analysis in this research. 

We start by exploring how the motion of the heart produces oscillations that we can 

detect as sound at the body surface and how these oscillations are converted into 

representations that can be modified by computers (sequences of numbers). We then 

discuss some ways in which these "sequences of numbers" can be analysed and 

modified to provide insights about the nature of system responsible for generating 

them. The rest of this chapter gives brief overviews of different signal processing 

techniques that are relevant to the processing of digital heart sound recordings. First 

some fundamental definitions and concepts from digital signal processing are 

introduced, followed by a review of heart sound analysis in the literature.  

3.1 Audio signals and Heart Sound Recordings 

Sound waves are produced when matter is disturbed from a state of equilibrium. In an 

elastic medium these waves travel away from the disturbance as areas of compression 

and rarefaction in the surrounding matter. The sound waves can be observed as 

variations in the pressure of the medium they are travelling through. An audio signal, 

specifically a signal that would be perceived as sound by a human observer, can be 

described as a time-varying function of sound pressure level with frequencies in the 

range of around 20 to 20 000 Hz. 
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Microphones are transducers that are sensitive to the pressure waves that would be 

perceived as sound, converting the changes in sound pressure level into changes in 

electrical characteristics, i.e. current/voltage [58]. Condenser (or capacitor) 

microphones measure changes in pressure by detecting the changes in voltage that 

occur as pressure waves move the plates of a capacitor. Piezoelectric microphones use 

the property of certain materials called piezoelectricity that produce an electrical signal 

in response to mechanical strain (such as that caused by pressure waves).  

Whatever the specific mechanism used to measure the sound waves the output is an 

analogue electrical signal. In order to represent and analyse the signals on computers 

we must convert the analogue signal into digital signal by means of an electronic system 

called an analogue-to-digital converter (ADC). The ADC samples and quantises the 

continuous voltage level into samples that are discrete in both level and time. The digital 

signal is then simply a sequence of numbers, each representing the level of the sound 

at a point in time.  

The sampling rate can be expressed as the “number of times we sample the signal in 

one second” using the International System of Units (SI) unit hertz (Hz). One hertz is 

defined as one cycle per second. The discretization process necessarily introduces a 

degree of error into the signal, and it is important to sample the signal at a high enough 

rate (sampling rate) and quantize it at a high enough resolution (number of quantization 

levels) to not distort important aspects of the signal. Sampling theory states that 

frequencies above half the sampling rate are unrecoverable in the discretized signal [59]. 

The critical sampling frequency, or Nyquist rate, is the frequency at which a specific 

signal must be sampled so that all of its parts can be recovered and no error is 

introduced due to the aliasing (misinterpretation) of components higher than this rate 

[60]. The sampling process is illustrated in Figure 3.2 with 1 second of a heart sound 

recording sampled at 500 Hz.  

As can be seen in the representation shown in Figure 3.1, adapted from “Textbook of 

medical physiology” by Guyton and Hall [41], the heart sounds have relatively low 

frequencies and low sound pressure levels. The heart sounds only have a significant 

overlap with the human auditory range between about 40 Hz and 500 Hz. Outside of 

this range the frequencies and/or the sound pressure level becomes too low for the 
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average person to perceive. Even inside this range the heart sounds are close to the 

threshold of audibility and would be perceived as soft sounds, not easily heard in the 

presence of significant other noises. 

 

 

Figure 3.1: A representation of the human auditory range and approximate range of heart 
sounds. Adapted from Guyton and Hall [41] 

The stethoscope allows a listener to more easily hear the heart by mechanically 

amplifying the sounds. Electronic stethoscopes address the problem using 

preamplification circuits that amplify slight changes produced by sound waves to make 

use of the complete input range of the ADC and thus minimise quantization error. Thus, 

the digitised signal that can be stored and transmitted is not in physical units, i.e. the 

absolute change in sound pressure level (e.g. Pascals), but rather in a quantised and 

amplified representation of the voltage changes as detected by a microphone. To relate 

the recorded signal to physical units would be a tedious task, requiring the exact 

specifications of all the stages of processing applied to the recording, in which each stage 

of processing would have to be reversed. The signal amplitude, intensity, and 

normalisation of these quantities will be discussed further in the following sections.  
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Figure 3.2: A digital audio recording of a heart sound sampled at 500 Hz and normalised to 
zero mean and unit maximum. The theoretical analogue signal is represented by the black line 
and the actual sample points are shown in grey. This heart cycle was taken from a recording 
from a healthy individual as part of the study described in Chapter 4. 

Recordings of heart sounds are audio recordings of the sounds produced as blood is 

pumped through the heart. These sounds can be recorded in a multitude of ways, and 

the term phonocardiogram (PCG) is often used for recordings of cardiac sounds made 

with high-fidelity equipment in controlled conditions [61]. The recordings that we will 

be dealing with in this research have been made using physician-grade electronic 

stethoscopes by cardiologists, doctors, or medical students from real patients and made 

in realistic (clinical) situations. Therefore, in this research, the term PCG has been 

reserved to those recordings (if any) made using specialised, high-fidelity equipment for 

the explicit purpose of heart sound analysis.  

3.2 Digital Signal Processing Concepts 

At this point it will be useful to introduce some of the core concepts used in digital signal 

processing (DSP). This introduction is by no means comprehensive and does not cover 

the mathematical proofs and derivations; the interested reader is referred to the 

substantial amount of introductory literature on DSP, for example "Introduction to 

Digital Signal Processing and Filter Design" by B. A. Shenoi [62]. The discussion presented 

in this section provides the background theory for the DSP techniques applied in the rest 

of this work.  
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3.2.1 Block-based Processing 

A digital heart sound recording, for instance the single heart cycle shown in Figure 3.2, 

can also be described as a time-series. This means that each of the data points is indexed 

by time and the order of the samples is a critical part of the information contained in 

the recording. When analysing time-series data we are often interested not only in what 

is happening sample-by-sample or in the entire signal all at once, but also in how the 

signal is behaving in local regions. For instance, in heart sound analysis we are very 

interested in how the frequency information of the signal is changing over time, as 

diagnostically important information can be derived from this. The concept of frequency 

does not make sense for individual samples and, as discussed in the following section, 

we lose all time information when we determine the frequency content of the entire 

recording. Block-based processing is one possible solution to this dilemma. Block-based 

processing is introduced here as a general DSP concept because it plays a fundamental 

roll in the methods described further on in this thesis. 

In block-based processing signals are processed in consecutive blocks as opposed to 

sample by sample or the signal all at once. The signal is divided into blocks of frame 

length ! and a specific number of samples between the start of blocks, referred to as 

the hop size ". To improve the time resolution the hop size " is generally chosen so that 

there is a certain amount of overlap between consecutive blocks. Hop sizes can also be 

expressed as an overlap ratio (#), an indication of how much overlap exists between 

consecutive blocks.  

# =
! − "
!

(3.1) 

The frame length ! and hop length	" need to be chosen appropriately depending on 

the application of the algorithm in question. Longer analysis blocks and smaller hop 

lengths will reduce processing time and give fewer output samples, but important 

details of the signal might be lost. Shorter analysis blocks and a greater amount of 

overlap between blocks requires longer processing times and give a higher number of 

output samples but provide a greater resolution of the signal being analysed. Some 

general heuristics are to choose the frame length to be at least the length of the smallest 

audio events of interest and to choose a hop size that is greater than or equal to half the 
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frame length [58]. That is, the overlap ratio should be at least 50%. Figure 3.3 

demonstrates block-based processing on a short audio sample. In this figure only the 

8th, 9th, and 10th, processing blocks are shown explicitly with their centre circles (time 

indices) shown with filled in circles. The root mean square of each of the blocks is shown 

at the bottom of the figure with the block indices and the newly calculated time indices, 

note that the root mean square is only used as an example and could be substituted for 

any number of metrics. 

 

Figure 3.3: Block-based analysis of a trumpet note (shown at the top of the figure). A  focused 
view of the marked 50 ms segment is used to illustrate block-based calculation of the RMS. 
The middle points of each of the analysis blocks are used as the time-indices for the RMS 
vector. 

There are many technical and computational advantages of using block based 

processing [58], but from an audio processing standpoint this method is especially 

important in the computation of time varying features that do not have a natural time 

dependence [63]. Good examples of these are statistical features, for instance the 
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standard deviation, that will always equal zero if calculated sample by sample or a single 

number completely devoid of time varying information if calculated for the entire signal. 

Given appropriate frame and hop sizes, the way in which these features change over 

time can be accurately estimated and represented.  

3.2.2 The Fourier Transform 

When looking at a time varying signal, for example the trumpet recording shown in 

Figure 3.3, interesting (diagnostically important or significant in some other way) 

information is often not obvious in what can be called the time-domain, the 

representation the signal amplitude against time (or equivalently, samples). The heart 

sounds are one example of such a time varying signal and the time-frequency 

representations discussed in this section play a fundamental roll in the way that we will 

be visualising and analysing heart sounds in all the following chapters. 

The Discrete Fourier Transform (DFT) is a fundamental technique used to determine the 

frequency contents of a digital signal; derivations, in-depth definitions, and discussion 

on the properties of this transform can be found in most textbooks on digital signal 

processing, for example the textbook by Shenoi [62]. The DFT moves a signal from the 

time-domain, in which the way it changes over time is represented, to the frequency-

domain, in which the frequency components are represented. This allows us to view the 

frequency content (or frequency spectrum) of the transformed signal. An example of the 

Fourier transform is shown in Figure 3.4 (b), in which the magnitude of the positive 

frequency components of signal generated artificially for the sake of this example 

(Figure 3.4 (a) ). The frequency domain representation has no temporal information; 

there is no information as to when the frequencies occurred. Much of the useful and 

interesting information in a recording of heart sounds is to be found in the way that the 

frequency content varies over time; a so-called time-frequency representation is 

required. 

3.2.3 Short Time Fourier Transform 

The Short Time Fourier Transform (STFT) addresses this problem by using block-based 

processing, as described earlier, and computing the DFT for each of the (overlapping) 

blocks. The frame length of the analysing blocks has to be carefully chosen and the 
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uncertainty principle should be kept in mind; that is, time resolution is lost with 

increasing frequency resolution and vice versa, or more simply the closer we look at 

time intervals (shorter frame length) the less information we have to compute the 

frequencies. Higher overlap ratios lead to better time resolution at the cost of 

computational demand. The analysing blocks can also be shaped using different 

windowing functions, essentially weighting samples at the edges lower than those in the 

middle of the window, to decrease the effect of the sudden discontinuities at the edges 

of the analysing windows.  

The STFT is illustrated in Figure 3.4 (c) and (d). Using the STFT we can obtain time varying 

information about the frequency of the signal under analysis. Figure 3.4 (c) and (d) show 

the effect of different window (or processing block) sizes and were chosen to have quite 

a large degree of difference (25 ms vs 200 ms). Note the large amount of spread in 

frequency at the lower frequencies of (c). This occurs because there are not enough 

samples in each window to accurately determine the frequency. There is however very 

fine time resolution and the discontinuities at the transitions between sine wave and 

chirps are clearly visible. In (d) the frequencies, especially 10 and 100 Hz, are more 

clearly revealed, although this comes at the cost of lower time resolution with the 

transitions and discontinuities becoming less clear. 

Given appropriate windowing and overlap parameters the Short Time Fourier Transform 

provides an excellent representation of how frequency information within a signal 

changes over time. However, as shown in Figure 3.4, the block length needed to 

accurately discern low frequencies greatly reduces the time resolution of our analysis. 

This limitation, a result of fixed block sizes and the inherent time-frequency trade-off, 

makes the STFT less attractive for heart sound analysis, since the heart sounds are 

composed of low frequency components and rapidly changing high frequency ones. 
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Figure 3.4: A waveform composed of one second intervals of 10, 100, and 1000 Hz sine waves 
connected by 1 second increasing chirp signals is shown in (a). The single sided frequency 
spectrum for the signal is shown in (b). STFTs of the signal are shown in (c) and (d) with 
window lengths of 25 ms and 200 ms respectively. In both cases an overlap ratio of 50%, 1024 
frequency bins, and rectangular windows were used. 

3.2.4 Wavelet Transform 

Wavelet analysis addresses the limitations of the STFT by allowing the analysis window 

to “stretch” and “shrink” at different levels of frequency analysis as visualised in Figure 

3.5.   Wavelet analysis can be conceptualised as a generalisation of the STFT in two ways: 

• The "window" can be any time-bounded function (wavelet) 

• Analysis occurs at multiple translations and scales 
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Figure 3.5: A comparison of how Wavelet analysis and STFT analysis windows are distributed in 
time and frequency [64]. 

Wavelets are short waveforms that must adhere to certain mathematical constraints in 

order to offer useful analysis. There are many different types of wavelets and they 

respond to different types and shapes of signals. A general guide is that wavelets that 

look like interesting parts of the signal being analysed (scale and translation invariant) 

will accentuate those regions of the signal. The wavelet is convolved with the signal 

being analysed at different scales and translations; at different time points and at 

different "extensions/dilations" of the wavelet. This corresponds to "sliding" 

(translating) the analysis window (the wavelet) across the signal and at each point 

calculating the convolution of the signal with the wavelet at different "stretches" 

(scales). In time-series analysis scale is analogous to frequency so we can think of the 

wavelet sliding across the signal and the convolution of the signal with the wavelet at 

different scales resulting in a time-frequency representation of the signal. In the 

continuous wavelet transform (CWT) the scale and translation parameters vary 

continuously, while in discrete wavelet analysis the convolutions are calculated at 

discrete values of the scale parameter. Due to the discrete nature of digital computing 

a true "continuous" wavelet transform is not possible, rather it is useful to think of the 

CWT as a discrete wavelet transform (DWT) with an extensive number of coefficients 
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calculated.  Conversely, DWT can be considered a sparse version of the CWT where only 

the coefficients necessary for perfect (in a technical sense) signal reconstruction are 

calculated. For a comprehensive introduction to wavelet analysis theory and examples 

of applications the interested reader is referred to “The illustrated wavelet transform 

handbook” by Paul Addison [65].  

Formally, the continuous wavelet transform is defined as  

,-(., 0) =
1
√.

2 3(4)5∗ 7
4 − 0
. 894

:

;:

(3.2) 

where . is the scaling parameter with .	 > 	0, 0 is the translation parameter an can 

assume any real number. 3(4) is the signal under analysis, and  5∗ ?@;A
B
C is the complex 

conjugate of the “mother” wavelet 5(4) scaled (stretched/shrunk) by . and translated 

(shifted) by 0. For the CWT, when computed analytically, the scale (.) and translation 

(0) parameters are continuous (hence continuous wavelet transform). When computed 

numerically, though, we must specify a finite number of scales to analyse the signal at, 

this value depends on a parameter that is commonly referred to as the number of voices 

per octave and can be interpreted as the resolution of the resulting transform. Figure 

3.6 illustrates the results of the CWT on the example signal first shown in Figure 3.4 

using 2 different numbers of voices per octave. 
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Figure 3.6: CWT of test signal shown Figure 3.4 (a). The top graph (a) was analysed using 4 
voices per octave and the bottom graph (b) using 48 voices per octave. Both CWTs were 
performed using the Morse analytic wavelet between 0 and 2500 Hz. Frequency (y-axis) is 
plotted in logarithmic scale.  

3.2.5 Signal Envelope 

The envelope of a signal can be defined as the time domain boundary in which a signal 

is contained. The signal envelope could also be described as a simplified view of how the 

signal energy is changing over time. This type representation is especially useful in heart 

sound analysis to locate the fundamental heart sounds (S1, S2) and to determine how 

heart murmurs change over time. Block-based processing, discussed in 3.2.1, provide 

one method of estimating approximating the change of a signal over time, however 

these methods introduce a significant time distortion. Transformations that maintain an 

explicit dependency on time, e.g. the magnitude of the analytic signal, homomorphic 

envelope, or the absolute value of the signal are discussed in this section. 
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Real signals have frequency spectra that are evenly symmetric around zero, meaning 

that half of the signal energy is contained in negative frequencies (indicating ambiguity 

in the direction of rotation of the component sinusoids). For practical purposes it is 

preferable not to work with these negative frequencies and because of the even 

symmetry they do not contain unique information. The analytic signal is then a complex 

representation of the original signal which has a positive frequency spectrum. We can 

compute the analytic signal by first computing the Hilbert transform  

					"(4) = 3(4) ∗ (D4);E =
1
D2

3(F)
4 − F 9F

:

;:
(3.3) 

where "(4) is the Hilbert transform of the signal 3(4) and ∗ is the convolution operator. 

The analytic signal is then computed as 3(4) + H"(4), H = √−1.  The homomorphic 

envelope (HE) [66]–[68] is used to derive the signal envelope from the analytic signal by 

a process of demodulation. Homomorphic filtering is performed by low pass filtering the 

natural logarithm of the analytic signal and then computing the exponent. The analytic 

signal is used to avoid the discontinuity that occurs at the logarithm of zero. The entire 

process can be represented abstractly as 

"I(4) = 	 JKLMN(OPQR(@)) (3.4) 

where the low-pass filter has been represented as TUVW and "I(4) is the homomorphic 

envelope of the input signal 3(4).  The sequential process is represented graphically in 

Figure 3.7 using an example recording of a heart cycle taken from a participant 

presenting with a systolic murmur from the dataset described in Chapter 4. 

 

Figure 3.7: Illustration of signal progression through the stages of HE calculation. 

3.2.6 Pre-processing Steps 

Pre-processing refers to signal processing steps that are performed at the onset of an 

algorithm. In general, the pre-processing steps are performed for several reasons, 

including: 
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• Improving Signal-to-Noise Ratio (SNR) by filtering out noise artefacts and 

isolating regions (usually in frequency, but possibly in other spaces) that are 

more likely to contain more of the signal and less of the noise. 

• Normalisation of input data to account for different sources of data and to 

improve the generalisation of the algorithm. 

• To improve computational performance by, for instance, down sampling the 

signal to decrease the number of samples the algorithm must process.  

There exist many more applications of pre-processing that are more application specific, 

for instance in heart sound recording analysis the process of heart sound segmentation 

is usually performed as a first step and could easily be under the term pre-processing.  

3.2.6.1 Filtering 

Digital filtering is the act of attenuating (diminishing or reducing) signal components that 

are likely to be unrelated to the signal we are attempting to investigate. A wide range of 

different techniques can be classed under this label. Frequency filters attenuate certain 

frequency bands and can be classified as low pass, high pass, bandpass, or bandstop, 

based on the frequencies that they attenuate. 

A common pre-processing step in heart sound processing is to bandpass filter the audio 

recording to limit the amount of out-of-band noise corrupting the signal. The frequency 

range of heart murmurs is less well defined and may range from around 100 Hz to over 

1000 Hz. Thus, the selection of an appropriate low pass cut-off frequency for the band 

pass filter can be problematic. In this work the data is only high pass filtered using a 2nd 

order Butterworth filter with a cut-off at 20 Hz to remove very low frequency noise. An 

example of an audio recording heavily corrupted by low frequency (and almost 

completely inaudible) noise and the output from the high-pass filtering is shown in 

Figure 3.8. 
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Figure 3.8: A motivating example for the application of high pass filtering as a pre-processing 
step for heart sound analysis. The audio recording, taken from the Physionet heartsound 
database [69], contains a large amount of low frequency noise that completely obscures the 
heart sounds in the recording. Filtering was performed using a 2nd order Butterworth filter 
with a frequency cut-off of 20 Hz. Phase distortions were corrected by applying the filter 
forwards and backwards, effectively resulting in a 4th order zero-phase filter.  

3.2.6.2 Artefact removal 

Another form of filtering, termed artefact removal, attempts to remove specific 

unwanted occurrences or events in the signal that are application specific. In the case of 

heart sounds, a common source of loud clicks and spikes in the audio recording is slight, 

abrupt movements of the stethoscope diaphragm, especially against hair on the 

patient’s body. If the artefact has a higher intensity than the sound produced by the 

heart it can easily cause the feature extraction step to fail, especially if the signal is 

normalised to the peak intensity. A spike removal algorithm, proposed by Schmidt et al. 

[68] and by Springer et al. [70], uses the median of windowed portions and sets any 

spikes that have peaks that greatly exceed (greater than 3 times) the median of the 

largest peaks across the windows to zero with spike widths determined by zero 

crossings.  

3.2.6.3 Normalisation 

Many factors can influence the amplitude of the recorded sounds, the type of 

stethoscope used, the location on the chest wall where the recording was made, and 

physical characteristics of the patient’s chest to name a few. It is advantageous to design 



39 
 

a processing system that can adapt to different input conditions. Normalisation allows 

us to scale an input signal to a pre-defined maximum amplitude. In this work the 

arithmetic mean (or DC offset) is removed in conjunction with the normalisation 

process; this has some mathematical consequences, such as the standard deviation and 

root mean square being equivalent.  

A commonly used and simple method of normalisation is to divide all the samples of the 

signal by the absolute maximum of the signal, thus assigning a value of 1 to the largest 

sample and scaling all other samples to ratios of this value. 

3X(4) = 	
3Y(4)

max	(|3Y|)
(3.5) 

where 3X  is the normalised signal, and 3Y  represents the input signal. This method is 

employed to ensure the signal occupies the full range of possible values used for audio 

playback. For instance, playback using the MATLAB function "sound" clips (reduces to 1) 

any samples that fall outside 1 and -1. Without normalisation any samples that fall 

outside this range would simply saturate the playback system and any relevant 

information in the recording (for example the melody of a song or spoken words) would 

be lost. However, scaling the signal in this way is sensitive to large amplitude noise 

artefacts such as clicks and scratches in which case the signal gets scaled to the 

amplitude of the noise instead of the signal. It should also be noted that all samples in 

the signal are scaled and this includes any background noise present in the signal.  

3.2.6.4 Standardisation 

A related procedure to normalisation, from statistics, is called standardisation and 

involves subtracting the arithmetic mean (_) and dividing by the standard deviation (the 

square root of the variance) of a dataset. 

3` = 	
3Y 	− 	_

a 1
! − 1∑ |_	 − 3Y|cd

YeE

(3.6)
 

The standardised values, 3`, are referred to as z-scores in statistical nomenclature and 

represent the amount of standard deviations a sample is from the mean of the 

distribution.  
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3.3 Digital Heart Sound Analysis 

Using digital computers to analyse recordings of heart sounds was attempted as early 

as 1962 by Gerbarg et al [71], although the comparatively primitive digital computers of 

the day meant that practical usage was limited. Recently, advances in digital signal 

processing techniques and the enormous increase in the processing power and 

availability of computers have led to a substantial increase in the amount of work being 

done in the field of computer assisted auscultation. A typical flow diagram for computer 

assisted auscultation is detailed in Figure 3.9.  

Figure 3.9: Flow chart detailing the typical approach to computer assisted auscultation [25] 

As shown in Figure 3.10 this literature review has focussed on the typical signal 

processing steps of computer assisted cardiac auscultation literature. We start off by 

summarising some interesting findings of two literature survey articles published 

recently. 

 

Figure 3.10: An outline of this digital heart sound analysis literature review. 

3.3.1 Survey Articles 

A 2009 survey reviewed 39 papers published between 1995 and 2009 on PCG audio 

processing techniques [72]. This study, which focused on “heart sound analysis and 

feature extraction” and “automatic pathology classification”, identified three major 
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problems that affected most of the reviewed papers. These problems were the absence 

of a set of well-accepted features for extraction, badly described datasets, and the 

absence of clinical validation.  

A 2015 review of the electronic stethoscope investigated recent advances in the field 

[25]. This survey focused on three main aspects, namely digital signal processing 

techniques, state-of-the-art electronic stethoscope products, and smartphone 

applications that interface with electronic stethoscopes. The survey of digital signal 

processing techniques included an in-depth summary and evaluation of articles 

pertaining to “heart sound denoising” and “heart sound classification”.  The survey 

summarised the findings of nine studies in which Aortic Stenosis (AS), Aortic 

Regurgitation (AR), Mitral Regurgitation (MR), and Mitral Stenosis (MS) were classified 

using mainly support vector machine (SVM) and neural network (NN) classification 

techniques. The results of this meta-analysis are shown in Table 1 and although 

encouraging for the use of machine learning methods and digital signal processing 

techniques in heart sound analysis these cannot be considered as representative of the 

clinical performance of these classifiers as discussed below. 

Table 1: Mean classification results for most commonly considered diagnoses [25] 

Disease Sensitivity (%) Specificity (%) 

Aortic Stenosis 89.8 98.0 
Aortic Regurgitation 88.4 98.3 
Mitral Regurgitation 91.0 97.5 
Mitral Stenosis 92.2 99.3 

3.3.2 Noise Filtering 

The quality of heart sound recordings relies on many variables, the pressure applied to 

the stethoscope, ambient noises, movement of the stethoscope during recording, other 

physiological sounds such as digestive sounds and lungs sounds, etc. This means that 

heart sound denoising is a very important pre-processing step in the analysis of heart 

sounds. Falk and Wai-Yip Chan and Ramos et al. [73], [74] investigated modulation 

filtering as a method for separating noise and heart and lung sounds. Kumar et al. [75] 

suggested using the periodic nature of the heart sounds and physiological inspired 

criteria to construct a heart sound template signal which is then used in the second 

phase for non-cardiac sound detection. The first stage of this method is computationally 
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demanding. These methods have both been tested by injecting simulated noise that is 

similar to noise artefacts that would be encountered in a clinical setting into the 

recordings. The construction of a prototype heart sound signal is also investigated by 

Syed et al. [76] and Syed and Guttag [77] using clustering methods. This technique 

suppresses transient noises and provides increases robustness against time-warping in 

the signals being analysed.  

3.3.3 Heart Sound Segmentation 

Segmentation is the process of identifying the different phases of the cardiac cycle by 

identifying the fundamental heart sounds (S1 and S2) in a heart sound recording. 

Determining the locations of the fundamental heart sounds is very often the first step 

during cardiac auscultation because of the context provided by correct knowledge of 

the timing of sounds in the heart cycle. Segmentation methods can broadly be divided 

into methods that use an external signal to segment heart cycles (dependent 

segmentation) and methods that attempt to use only the heart sound signal and digital 

signal processing techniques (independent segmentation). Because of the complex and 

non-linear nature of heart sounds and the presence of many different sources of noise, 

successful segmentation of heart sound signals is not an easy task. The timing of any 

heart murmurs present in the heart sound provides very important information on any 

possible pathologies and the segmentation step is the most important step towards 

identifying the timing. Based on the review of the literature the gold standard for 

segmentation accuracy can be either the opinion of multiple experts presented with a 

heart sound recording, or simultaneously recorded high quality ECG recordings.   

Dependant segmentation refers to methods of segmentation that involve an extra 

sensor to determine the timing of S1 and S2. In all the papers reviewed that utilised a 

dependant segmentation scheme the extra sensor used was an electrocardiogram 

(ECG). El-Segaier et al. [78] used the T-waves and R-waves from a simultaneously 

recorded ECG were used as references for the detection of systole and diastole. A 100% 

correct identification of S1 is reported, and 97% correct identification of S2. Ahlstrom et 

al. [79] aimed to increase the performance of an ECG-gated localization method using 

ensemble averaging (EA) to emphasize occurrences of S1 in PCG signals.  
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Methods that do not require an external signal to segment individual heart cycles have 

also been extensively investigated. A 1997 study by Liang et al. [80] reported 93% 

correctness in automatic identification of S1 and S2 when analysing 515 cardiac cycles 

from infants and children aged up to 14 years using a normalized Shannon energy based 

approach. Their results, although based on a small dataset from a paediatric population, 

are encouraging.  A different approach used by Barabasa et al. [81] attempts to detect 

S1/S2 by adapting an algorithm originally developed for detecting the beat of music. The 

authors tested this method on 18 recordings consisting of 368 heart cycles and reported 

a 100% sensitivity and 97.3% specificity in identifying the first and second heart sounds. 

A summary of the two main categories of segmentation methods, including some 

possible advantages and disadvantages in terms of this project, is shown in Table 2. 

Table 2: Comparison of dependant and independent segmentation methods 

 Dependant Segmentation Independent Segmentation 
Overview S1 and S2 locations 

determined using data 
from provided by an 
external sensor. 

S1 and S2 locations are 
determined using only the 
data contained within the 
heart sound recording. 

Specific Methods ECG R-wave, Carotid 
pulse wave 

Shannon Energy, Shannon 
Entropy, 
Simplicity/Complexity 
methods, Beat Tracking, 
Wavelet Envelope, Machine 
Learning Classifiers 

Advantage Provides very accurate 
and reliable 
segmentation. 

Allows for simpler hardware 
design, heart sounds 
recordings can be 
segmented retroactively. 

Disadvantage Requires another signal to 
be simultaneously 
recorded and 
synchronised. More 
complex hardware design. 

More complex software 
designs require longer 
processing times, while also 
not being as reliable as 
dependant systems 

Presented as the current state-of-the-art segmentation algorithm, the 2016 Physionet 

heart sound classification challenge [82] released work done by Springer et al. [70], 

based on earlier work by Schmidt et al. [83]. This algorithm uses logistic regression and 

a hidden semi-Markov model (introduced extensively in Chapter 5) to determine the 

locations of the fundamental heart sounds and the phases of the cardiac cycle in a heart 
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sound recording. Simultaneously recorded ECG data are used to annotate the training 

set for the Markov model. Logistic regression, a statistical approach for modelling the 

relationship between a binary dependant variable and multiple independent, or 

explanatory, variables [84], is then used to train the model using features extracted from 

the homomorphic envelogram, the Hilbert envelope, and the Wavelet envelope. The 

Markov model is a probability model that assumes the system is always in one of several 

finite states, with all relevant events modelled as transitions from one state to another 

[85]. The Markov model used by Springer et al. [70] is referred to as a “semi” or 

“duration-dependant” Markov model, because it also takes into the account the amount 

of time that has been spent in the current state when determining the current state. As 

can be seen in Figure 3.11 S1, systole, S2, and diastole are the possible states that the 

Markov model can occupy. Transitions occur when the instantaneous probability of the 

system being in the next state exceeds that of it being in the current state. 

 

Figure 3.11: A Hidden semi-Markov model (HSMM), also called duration-dependent HMM [68], 
[70], [86]. The graphs illustrate that the semi-Markov model has a higher tolerance to noise 
artifacts than the standard Markov-model as evidenced by the fewer crossings between 
probability time-series, particularly at around time 220 ms.  

3.3.4 Feature Extraction 

Feature extraction is an important step in the correct classification of heart sounds. This 

step normally proceeds after signal denoising and individual heart cycle segmentation 

has been achieved, although some studies present methods that do not require 
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segmentation before feature extraction [87], [88]. In the articles that have been 

reviewed the most popular method of feature extraction is wavelet decomposition [88]–

[92]. A comparative study of different feature extraction methods was conducted by 

Ahlstrom et al. [91]. A total of 207 different features were extracted. These features 

were reduced to a set of 14 features using an optimization algorithm and the 

classification performance, in differentiating between systolic murmurs, of the different 

feature sets were compared. Correct feature selection plays an extremely important 

role in classifier performance and as such this step is integral to the success of any heart 

sound classification. Current feature extraction methods do not generally approach the 

problem from a physiological perspective, but rather treat it as a computational 

problem, basing feature selection on classification results. This might be the best 

solution if a computer is meant to make the final diagnosis but may not be the best 

approach if the goal is to provide objective, relevant information to a physician. 

3.3.5 Classification 

Different types of classifiers have been used in the classification of heart sounds. 

Yuenyong et al. [88] made use of a neural network bagging predictor to classify heart 

sounds as normal or abnormal. They report an accuracy of 92% when assessing their 

algorithm using 10-fold cross-validation on a dataset of heart sounds from 57 individuals 

(12 normal and 45 abnormal). A support vector machine was used to classify heart 

sounds as normal, mitral stenosis, or pulmonary stenosis by Güraksın and Uguz [89]. The 

algorithm, which used discrete wavelet transform and Shannon entropy derived 

features, achieved a classification accuracy of 96.6% on a balanced dataset of 60 heart 

sounds. Grow-and-Learn (GAL) and Multilayer Perceptron-Backpropagation (MLP-BP) 

were used by Gupta et al. [90] to identify heart cycles as normal, systolic murmur, or 

diastolic murmur. The authors found the performance of the two networks to be similar, 

achieving 97% and 96.5% accuracy respectively when tested on a dataset of 201 

recordings from 41 volunteer. The authors do not clarify whether recordings from the 

same participants appeared in both the training and testing sets. 

3.3.6 Summary of Heart Sound DSP review 

Overall the main goal so far in the analysis of heart sounds has been to produce a 

machine learning algorithm that is able to classify different pathological conditions 
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based on the heartsound recording. The literature reviewed regarding automatic heart 

sound auscultation algorithms report promising results for the automatic identification 

of pathological heart murmurs through phonocardiogram analysis. All the reviewed 

algorithms were tested in laboratory conditions, although on recordings made in clinical 

settings. Presently it is unclear if these methods would perform adequately in real world 

clinical situations. 

The features most commonly used in the classification of pathological heart sounds in 

the reviewed papers are those derived from wavelet analysis, although other time-

frequency methods (STFT, S-transform) have also shown success. Envelope methods, 

such as Shannon energy and Shannon entropy, have also proven to be successful 

features. There is no clear consensus on which features should be used and, even within 

a class of features e.g. wavelet, the exact features used vary wildly. Neural networks and 

support vector machine classifiers have been used with success in discriminating both 

between normal and abnormal recordings and between different classes of pathologies.  

A major limitation in all the reviewed articles is the lack of clinical validation. None of 

the datasets used are representative of all possible heart sounds and the natural 

variability in the signal combined with the variability introduced by different recording 

techniques makes such a dataset infeasible. None of the articles encountered in this 

review have demonstrated wide generalisability and thus it is not precisely clear how 

they could be integrated into clinical support systems. This is not meant as a criticism of 

current research but rather an observation of the complex multi-layered nature of 

cardiac auscultation and medical diagnosis in general.   

The diagnostic process of cardiac auscultation involves more than just the act of listening 

to the sounds produced by the heart. The investigating physician should, before even 

starting the process of auscultation, have made certain observations and have a 

hypothesis about what they are expecting to find in the heart sound. Any system that 

tries to emulate the procedure of auscultation needs to consider that the amount of 

information contained in the heart sounds, and certainly in a heart sound recording 

taken at only one site, may not be sufficient to identify the underlying cause of any 

abnormalities in that sound. The systems of automatic cardiac auscultation reviewed in 

the literature attempt to classify heart sound recordings into categories of pathologies 
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based simply on the information contained within the recordings. Based on the clinical 

approach to cardiac auscultation and physical examination this assumption is not 

correct; physicians tend to use a process of auscultation rather than listening just once 

at one auscultation location, while also taking other signs and symptoms into account. 

The research presented in this review does however point towards a significant amount 

of information being present in the heart sound recording and the value and utility of 

analysis of the heart sounds as part of the diagnostic process.  

A novel approach to the overall analysis of heart sound recordings is proposed. Instead 

of attempting to directly ascertain a disease condition based solely on the heart sound 

recording, the proposed algorithm will attempt to show the acoustic features present in 

the heart sound. The approach that will be followed in this project is focussing the goal 

of computer assisted cardiac auscultation onto clarification of clinically relevant signs 

present in the heart sounds. Instead of acting as a decision-making system, the proposed 

system will attempt to clarify information contained within a recording of a heart sound 

using digital processing techniques and to communicate these findings in a way familiar 

to the user. Essentially the algorithm will attempt to perform, in an objective way, the 

subjective psychoacoustic part of the heart sound analysis and present the results to the 

clinician in a form that adds value to their overall diagnostic process.  While clinical skills 

and intuition are not easily converted into a computer algorithm, the same is not true 

for pattern recognition. 

3.4 Research Questions 

Based on the review of the literature and the identified research gap, this research will 

address the following questions: 

1. What are the features that expert cardiologists try to ascertain during cardiac 

auscultation and how can these be converted to mathematical models? 

2. Can digital signal processing and machine learning techniques be used to extract 

these features from digital recordings of heart sounds? 



48 
 

Chapter 4 Probabilistic Modelling for the Decomposition  

of Heart Sounds 

In addition to the digital signal processing techniques discussed in the previous chapter 

we now introduce Bayesian probabilistic modelling as a framework for constructing 

computational models of the heart. Probability theory is a branch of mathematics that 

relates to the study of quantities that are not (or cannot) be represented as 

deterministic functions because of inherent randomness and/or uncertainty. Using 

probability theory these quantities (which we refer to as random variables) can be 

represented as probability distributions, a representation of the relative chance that the 

random variable has of assuming a given value. For example, the outcome of dice rolls 

or the weather in Auckland, New Zealand tomorrow theoretically involves too many 

variables and unknowns to construct useful deterministic models (in which the same 

input always produces the same output), rather we can represent the outcome of these 

two examples by establishing the chance that a given event will occur (e.g. that we roll 

a single six in five rolls of a dice, or that it rains during the afternoon).  

4.1 Probabilistic modelling 

Probabilities are clearly defined mathematical quantities that must adhere to the axioms 

(fundamental rules) of probability. In formulating the probability axioms we use 

notation from set theory and probability theory. We start by defining a set g  that 

contains all possible outcomes of the situation we are studying. g  is comprised of 

subsets which we call events, denoted as IE. . . IX; events can be individual outcomes or 

combinations of outcomes (e.g. rolling a six in a single dice roll or rolling five sixes in ten 

dice rolls). Furthermore, we stipulate that each event I in set g is assigned a probability 

(i.e. a relative chance of occurring) denoted as h(I). To clearly define the axioms we 

make use of the following notation commonly used in set theory:  

• ⊂ refers to a subset, as in A is a subset of (⊂) B 

• ∪ refers to the union of two sets, as in any elements in A or (∪) B 

• ∩ refers to the intersection of two sets, as in the elements in both A and (∩) B 

Now, using the set g, and the set theory notation we can state the axioms of probability 

as: 
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1. Probabilities are positive real numbers greater than zero 

h(l) ≥ 0	nop	.qq	l ⊂ 	g (4.1) 

2. The probability of the entire set of possible outcomes is 1 

h(g) = 	1 (4.2) 

3. If events are mutually exclusive, that is they have no intersection, then the 

probability of the union of the events is equal to the sum of the individual 

probabilities 

																																									rn	l	 ∩ 	s	 = 	0,	

																4ℎJu	h(l ∪ s) = 	h(l) + 	h(s) (4.3) 

In simpler terms we could say that (1) probabilities must non-negative real numbers, (2) 

the probability of the entire set of possible outcomes must be 100%, i.e. considering all 

the possible outcomes something must occur, and (3) if events do not share any 

information their probabilities are additive. We represent the probability of an event 

h(I) using a probability distribution which is a function that maps all possible values the 

event could take to the corresponding probability of the event taking that value. Figure 

4.1 shows example probability distributions for the rolling of one, two, three, and four 

six-sided dice. The x-axis represents the possible values that the total of the dice could 

take, and the y-axis represents the probability density of each of the possible values. 
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Figure 4.1: Examples of discrete probability distributions for the outcome of one and more dice 
rolls. 

Bayesian probabilistic modelling extends this probabilistic thinking to include any 

uncertainty we have about a given phenomenon we are observing. For instance, we 

might want to know the airspeed (speed relative to the surrounding air) of an unladen 

swallow. The question itself is rather vague, for instance we have not specified whether 

we are referring to a European or an African swallow, and our lack of expert knowledge 

regarding swallows makes it impossible to give an “exact” answer (if such an answer 

even exists). We can, however, easily create a distribution of possible values using our 

understanding of the world. It does not make sense for swallows’ airspeed less than zero 

(they don’t fly backwards) and it seems unlikely that swallows travel near the speed of 

sound (based on the lack of sonic booms during migration). The more knowledge we 

have about swallows the better this estimate could be, knowing that swallows migrate 

about 10 000 km in around six weeks we could estimate the expected speed as a 

function of hours that the swallows are able to fly per day. Finally, if we had the right 

instrumentation we could perform experiments to directly measure the airspeed of a 

given sample of swallows and infer the population airspeed, but even in this case our 

instruments and research methodologies would have certain levels of error and there 

would be natural variation in swallow airspeed, thus we would still need to answer this 

question using a distribution of possible values. 
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Probabilistic modelling consists of quantifying our knowledge and uncertainty about a 

given process/system/phenomenon by constructing a probabilistic model (represented 

as a probability distribution) using both our prior knowledge about the underlying 

system and data collected from the system. This model can be referred to as a 

generative model as it represents (to a greater or lesser degree) the system that is 

responsible for generating the data. We can then use this model to draw inferences 

about the system we are investigating.  This process is illustrated in Figure 4.2 for 

generalised statistical inference.  

 

Figure 4.2: A model of statistical inference. In Bayesian modelling the model includes both 
observations and previous knowledge. Inclusion of this "previous knowledge", referred to as 
the prior, has been contentious due to the difficulties of arriving at philosophically acceptable 
and mathematically tractable "prior" models.  

 

Figure 4.3: A representation of how Bayesian inference can be used to "update knowledge" 
using a simplified proportionality representation of Bayes' theorem.   

Bayes' theorem, the namesake for this approach, is the rule by which we derive our 

updated model given the data. An illustration of a simplified representation of Bayes' 

! "#$%& $'(' ∝ ! $'(' "#$%& !("#$%&)

,#-(%./#. ∝ &/0%&/ℎ##$	×	,./#.
Our knowledge after 
conducting the 
experiment.

The data from the 
experiment and our 
knowledge of the 
design of the 
experiment.

Our knowledge 
before conducting 
an experiment.
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theorem as a proportionality is shown in Figure 4.3, although the formula is usually 

represented as:  

h(l|s) = 	
h(s|l)h(l)

h(s)
(4.4) 

where l  and s  represent two dependent phenomena (that is to say s  provides 

information regarding l  and vice-verse). This formula, a logical consequence of the 

axioms of probability theory, has powerful epistemological implications if probabilities 

are allowed to represent "levels of certainty" about an event. It formulates 

mathematically how to change "current knowledge" in the light of new observations. 

Although quite acceptable in fields such as genetics and medicine where widely 

accepted "prior models" exists, the use of Bayes' theorem in this way is more 

contentious where the prior is influenced by subjective opinion to a greater degree. 

While classical statistics involve the development of techniques with as few assumptions 

as possible [93], the Bayesian paradigm is focussed on making assumptions as explicit 

as possible and analysing the data in light of these assumptions, possibly even 

comparing the outcome of multiple different sets of assumptions.  

The Bayesian framework provides us with a methodology of creating and sequentially 

updating models of real-world phenomena in which there exists uncertainty and 

randomness. Probabilistic models are attractive in the design of complex diagnostic 

support systems as they allow us to estimate how much our (or the model's) level of 

certainty changes given new information. Probability theory provides the mathematical 

framework on which these models can be constructed and manipulated. In this work we 

explore the creation and application of Bayesian models through the development of an 

independent component analysis (ICA) model and the subsequent application of this 

model to different examples of heart cycles. For a more in depth and comprehensive 

introduction into probability theory, probabilistic modelling, and applications to artificial 

intelligence the reader is referred to "Pattern Matching and Machine Learning" by 

Christopher Bishop [94]. 
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4.2 A probabilistic view of the diagnostic process 

As an example of how an event or process can be imagined or modelled using a 

probabilistic framework, we can use the example of a medical professional examining a 

patient.  

First, we define a "sample space" H that is representative of any particular person's 

possible health states. Conceptually, we could determine the "health" of a person by 

sampling (randomly choosing an outcome) from this space. More accurately, H 

represents our (or a doctor's) mental model about a particular person's health status 

and the relative area that a particular state (for instance "Healthy" and "Not Healthy") 

occupies in the space is representative of the probability that the model assigns to that 

state and thus we will refer to H as a model. 

At the first meeting between a medical examiner and a patient the model H represents 

one of relative ignorance. In this framework we could say that the basic assumption of 

modern medical education is that the medical professional's training and experience has 

already "primed" their model (the sample space of possible "health" outcomes) beyond 

that of a layman. Thus, before first meeting (encountering data concerning the patient) 

the model represents the current knowledge of the examiner, which may include 

education and experience, as well as awareness of environmental conditions (e.g. "flu 

season", diseases specific to certain regions, etc).  

As the examination progresses the examiner learns more information about the specific 

patient, this may include symptoms that the patient complains about, signs that the 

professional has been trained to look for, the outcomes of medical tests, the outcomes 

of treatment options, and nuances the examiner has acquired through experience of 

medical practice. If the information is relevant (or, more formally, if the patient's health 

status and the new information are dependent on each other) the model (the 

probability space describing the patient's possible health outcomes) changes. The new 

sample space represents the health status of the patient given that (conditioned on) 

some dependent condition being true, false, or some particular value. The 

mathematically sound way of updating the sample space given new information is what 

Rev. Thomas Bayes and Pierre-Simon Laplace (independently) discovered. 
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Using an updated model the medical examiner continues the diagnostic process. The 

model both guides the investigation and is updated by the findings of the investigation. 

This process continues until the model reaches a state where prescribing a particular 

treatment is justified, or stated from a probabilistic viewpoint, until the model is such 

that a condition with a known treatment has a probability high enough to justify the 

costs (financial, and risk of side effects) of that treatment. If the process progresses 

without a clear outcome, the use of more expensive and more invasive tests becomes 

justified. 

As a more concrete example: a child goes to a school nurse complaining about a sore 

throat. The school nurse (being a trained professional) does not immediately begin to 

inspect the child's elbow, since their "model" of the child's health has already been 

updated with a symptom of "sore throat". Neither does the nurse immediately refer the 

child for a chest x-ray, even though a sore throat is a possible symptom of viral 

pneumonia and misdiagnosis could be deadly. Rather the least invasive and expensive 

test is performed first. The child's throat is examined visually ("say aaah") and their 

tonsils are observed to be inflamed. While the combination of the symptom of a sore 

throat and the sign of inflamed tonsils is not "conclusive evidence" of anything, the 

nurse's model has been modified sufficiently that the probability of "tonsillitis" is high 

enough to justify the prescription of rest, lots of warm fluids, throat lozenges, and 

perhaps further observation if symptoms do not improve within a week. There is, of 

course, the possibility that the child does have a malignant cyst in their elbow or severe 

lung infection, but the probability of these (or perhaps here we can risk saying the 

nurse's "level of belief") given the model (the new observations in light of previous 

knowledge and experience) is not sufficient to justify conducting the invasive and costly 

tests needed to confirm such diagnoses. 

The models created by two individuals, and in particular the prior elements of the 

model, are very unlikely to be the same. Given two opposing individual models how do 

we know which model is "correct"? The short answer is that we don't, or perhaps it 

would be more accurate to say that we don't know which model is "more representative 

of the underlying reality", since both models, the result of finite information, are 

approximations and inherently incorrect. It is not a trivial task to formalise "mental 

models" into mathematical representations that are tractable while remaining 
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representative of the system being analysed. Although, in as far as we can make the 

models explicit, we can compare and criticise the conclusions drawn from opposing 

assumptions. In fact, the comparison and combinations of models provides a rich source 

of information and ideally a given situation should be assessed using a "many-models" 

approach [95] in which a phenomenon is examined in the light of different assumptions 

and different combinations of assumptions. 

4.3 Bayesian heart sound modelling 

From the perspective of probabilistic modelling we can view the task of signal processing 

as one of constructing a generative model representative of the 'source' of the signal we 

are analysing. We can then make inferences about this source based on the model. 

Applied to heart sounds the source becomes the heart and heart valves and the 

dynamics of the blood flow through the heart. The aim becomes to draw inferences 

about the state of a patient's heart given the generative model conditioned on examples 

of their heart sounds. 

Similar to an actual heart, the "model of the heart" developed in this work consists of 

many different pieces and sub-models drawn from a variety of fields of study. This 

includes the signal processing techniques discussed in the previous chapter, as well as 

the machine learning and statistical tools discussed in this and the following chapters. 

In this chapter we introduce a probabilistic implementation of a statistical technique 

commonly called independent component analysis (ICA). This provides a foray into the 

practical application of probabilistic modelling to the signal processing problem at hand. 

4.4 Independent Component Analysis 

Independent component analysis (ICA) is an attempt to solve the blind sources 

separation problem [96], [97], illustrated in literature as the cocktail party problem: 

"Can a machine learner, given recordings of audio made of conversations at a cocktail 

party, identify the different speakers?". For this research we can contextualise the 

cocktail party problem as a "cardiac auscultation recording" problem: "Can a machine 

learner, given a recording of sounds made of a patient's heart sounds, identify sounds 

originating from different structures in the heart?". 
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ICA uses higher order statistical moments to find statistically independent components 

in a given dataset. Two events are statistically independent when observing one does 

not provide information about the probability of the other occurring. In a signal 

processing context, ICA attempts to find the v groups of samples in the signal, where 

samples from the same group have the least in common with samples from other 

groups, and equivalently the most in common with samples from the same group, where 

"in common" can be understood as "the value of one providing information about the 

value of the other". Comon [98] proposed mutual information as a natural measure of 

statistical independence, two events that have zero mutual information are completely 

statistically independent, and also showed that negentropy can be calculated as a 

substitute for the computationally expensive mutual information. The FastICA algorithm 

[99] approaches ICA by minimization of an approximation to the negentropy. Another 

approach, one implementation of which is the JADE algorithm [100], attempts to 

maximise the kurtosis of the groups of samples in order to maximise the statistical 

independence. Information-maximization or INFOMAX, an information transference 

optimization technique developed in the field of artificial neural networks, has also been 

used to perform ICA [101]. The INFOMAX approach can be also be thought of as 

maximum likelihood learning of a probabilistic latent variable model [102]. An 

alternative method is to infer the latent variables using the principles of Bayesian 

inference. The theory behind this approach is described in detail by Bishop [94], and 

specifically applied to the ICA problem by Lawrence and Bishop [103], Højen-Sørensen 

et al. [104], Winther and Petersen [105], and Choudrey [96]. The approach involves 

defining a generative probabilistic model and fitting the model to the data using 

Bayesian inference.  

A fundamental issue in independent component analysis is the selection, or discovery, 

of the number of sources present in, or the latent dimensionality of, the dataset. The 

ICA algorithm will attempt to maximise the statistical independence between a specified 

number of sources, even if that leads to a clear departure from what we would recognise 

as a 'source'. Specifying too few sources can cause the algorithm to combine sources 

that are unrelated, while specifying too many could lead to signals from a single source 

being separated into many components.  
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One problem is perhaps the somewhat vague definition of what a 'source' is in the 

broader sense. In purely theoretical ICA the sources can be clearly defined as the 

statistically independent origins of the signals in the observed mixture. In a slightly less 

theoretical model, we acknowledge the limitations of our sensors and add a term that 

represents additive noise. From this purely mathematical view we can measure the 

suitability of our model by measuring how well it is able to represent our data. The 

variational negative free energy was used as a measure of model suitability by Choudrey 

[96], while the log likelihood and Bayesian information criterion (BIC) are used by Højen-

Sørensen et al. [104] and, Winther and Petersen [105]. These measures are both 

estimates of how well the model can represent the data and will generally increase 

monotonically with the number of sources until the model is able to generate the 

dataset optimally after which a plateau is reached. This approach was used by Choudrey 

[96] to accurately discover the number of sources that were used to generate an 

example dataset. While more complex models are able to fit the dataset more closely 

this comes at the cost of overfitting, leading to a loss of generalization [94]. The number 

of sources can here be thought of as the degrees of freedom of the model; more degrees 

of freedom will naturally lead to the model being able to generate the dataset more 

precisely. Modelling an increasing number of sources also leads to the model becoming 

more obscure and less interpretable.  

In more practical applications the model assumptions are unlikely to be met exactly. The 

distinction between noise and source may be less clear and there are likely to exist some 

dependence (correlations and interactions) between sources. In short, the definition of 

a source, and the distinction between different sources, becomes less clear in more 

realistic situations. As an illustration consider the cocktail party problem. In a simplified 

view we are trying to distinguish the different individual speakers, but it is unlikely that 

these speakers are just standing around conversing with themselves. It is much more 

likely that the speakers are engaged in conversations with one or more other individuals. 

These conversations will have their own characteristics, for instance one conversation 

might be loud and argumentative, with speakers yelling over one another, while another 

might be slow and awkward with long pauses in between utterances. Now if we were to 

perform ICA on audio recordings recorded at w locations at the party, are we more 

likely to separate our dataset into individual speakers or into individual conversations? 
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Or put another way, which is more statistically independent: individual speakers or 

conversations? 

4.5 Probabilistic ICA 

In this section a probabilistic (or Bayesian) approach to modelling the independent 

components of heart cycles is investigated. The proposed model, based on work done 

by Choudrey [96], Højen-Sørensen et al. [104] , and Winther and Petersen [105] is 

described in this section, followed by the methodology used to apply this model to time-

frequency decompositions of heart cycles.  This is followed by the results of the model 

on a small dataset of heart sounds containing various murmurs.  

4.5.1 Methodology  

The aim of ICA is to uncover the statistically independent sources that have combined 

to form the observed data. Thus, the underlying assumptions if ICA is that the observed 

data was generated by a finite set of statistically independent sources and that the 

observations are a linear, weighted mix of these sources. These assumptions are 

expressed and enforced by a probabilistic model. Additionally, we assume that the 

sounds produced by the mechanical action of valves and blood flow through the heart 

are the dominant sounds present in the recording. That is, we assume the 'heart sounds' 

are the most prominent sounds that have been recorded.  This allows us to group the 

noises in the recording not associated with the heart into the additive noise term and 

thus assume that the discovered independent components are all heart sounds. 

4.5.2 The Model 

Let ℳ be a generative model. All distributions described in this section are implicitly 

conditioned on the model ℳ  and acknowledge all the implicit assumptions in the 

construction of ℳ; this conditioning is however omitted in further equations to simplify 

the notation. 

The ICA model is represented as w -dimensional 'signals', z , modelled as a linear 

combination of v-dimensional independent 'sources', {, with added Gaussian noise 

z = |{	 + 	}	 (4.5) 
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where | is an w	 × 	v  matrix of mixing coefficients and } is w-dimensional additive 

noise. The observations are a w	 × 	�  matrix 	z = {3Å@},É	 = 	1, . . . , w, 4	 = 	1, . . . , � 

with 3Å@  representing the sample at time 4  for signal É. The sources are an v	 × 	� 

matrix { = {ÑU@}, q = 1, . . . . , v, 4 = 	1, . . . , � with  ÑU@  representing the sample at time 4 

for the q th source. Data points are assumed to be independent and identically 

distributed (IID) i.e. that is there no inherent order to the data points. This is an obvious 

limitation of the model in terms of time-series analysis. 

The sources { = {{Ö, . . . , {Ü} are mutually independent i.e. the probability distribution 

of { for data point 4 can be expressed as the product of the probability distributions of 

each of the sources 

á({à|â) = äá(ÑU@|
ã

UeE

åU)	 (4.6) 

where â = {åE, . . . , åã}  and åU  represents the parameters defining the q th source 

distribution, e.g. mean and variance.  

The distribution of the noise is modelled as Gaussian, with zero mean and diagonal 

precision matrix ç   

á(}|ç) 	= 	é(}|è, ç;E) (4.7) 

The likelihood of the observation vector z@ at time 4 given the generative model is given 

by  

á(z@|{@, |, ç) 	= 	 79J4(
1
2D ç)8

E
c
J3á ë−

1
2 (z@ − |{@)íç(z@ − |{@)ì (4.8) 

The aim of the ICA algorithm is then to uncover the latent sources { that produced the 

observations z. This can be expressed using Bayes' theorem as 

á({|z, |, ç) = 	
á(z|{, |, ç)á({)

á(z||, ç)
(4.9) 

where á(z|{, |, ç) is the probability of observing z given the model ℳ , á({) is the 

distribution of the sources { described in the model ℳ prior to observing z, á(z|ñ, ç) 
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is the evidence for the model ℳ, and á({|z, ñ, ç) is the distribution of the sources given 

the observations and the model ℳ.  

4.5.3 Source Model 

The latent sources that ICA attempts to discover are contained in the ICA model as the 

sufficient statistics (i.e. the statistics that can be used to completely describe the 

distribution) of the source probability distributions. Selection of appropriate source 

models is important to allow the generative model to effectively describe the 

components present in the data. It is also necessary to choose mathematically viable 

source models to ensure that the computations needed to fit the models remain 

tractable.  

4.5.3.1 Mixture of Gaussians 

Mixtures of Gaussians (MoG), also called Gaussian mixture models (GMM), are 

probabilistic models in which each sample is assumed to have been generated by a 

superposition of K Gaussian densities [94] 

á(z) = 	óDòé(z|ôò, öò)
õ

òeE

(4.10) 

in which each Gaussian component é(z|ôò, öò) of the mixture has its own mean úò 

and covariance öò. The parameters Dò are called the mixing proportions and represent 

the probability of sampling from the ùth component.  

For the purposes of ICA, we can consider a factorized MoG with v  sources and ûU  

components per source. We introduce the variable üUò	 for ù = {1, . . . , ûU}  and q =

{1, . . . , v}, is a 1-of-ûU  indicator variable with üUò ∈ {0,1} and ∑ üUò = 1ò . The probability 

of üUò  assuming a value of 1 for a component of source q  is equal to the mixing 

proportion of that component. 

á(üUò = 1) = 	DUò (4.11) 

 That is, the latent variable üUò@  is equal to 1 for the component ù of the qth source that 

is chosen to generate {@ at time 4  with probability DUò. Note that the mixing proportions 
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must be valid probabilities, that is  0	 ≤ 	DUò 	≤ 1 and ∑ DUò = 1ò . The probability of  {@ 

given the model parameters â is then 

á({@|â) = ä ó 	á(üUò@ 	= 	1	|	¢£)á(
õL

ò	e	E

ã

UeE

ÑU@|üUò, _Uò, §Uò) 

=	ä ó DUòé(ÑU@|
õL

ò	e	E

ã

UeE

_Uò, (§Uò);E)	 (4.12) 

where ÑU@ is the 4th sample of source q, and _Uò, §Uò, and DUò are respectively the mean, 

precision, and mixing proportion of the ùth component of the qth source. 

The parameters of the model are denoted by â = {âE, . . . âU, , . . . , âã} , where âU =

{¢U, ôU, •U}  are the parameters of the q th source with ¢U = {DUE, . . . , DUõL} , ôU =

{_UE, . . . , _UõL}, and •U = {§UE, . . . , §UõL}. The joint probability of the source vector {@ and 

the collection of all possible states of the indicator variable ¶ = {üE, . . . , üõ}, û =	 ∏ ûU
ã
U  

at time 4, or stated otherwise, the probability of state ¶@ generating source vector {@, 

can be expressed as a L-dimensional MoG with a total of û components [96]. 

á({@, ¶@|â) = äá(üU@ = 1|DU)á(ÑU@|üU@, _UòL, §UòL)
Ü

UeE

 

= 	á(¶@|¢)á({@|¶@, â)							 (4.13) 

The likelihood of the data, assuming independent and identically distributed data, ®	 =

	{zE, . . . , z@, . . . , zí}  given the MoG model parameters (including the latent indicator 

variable ©) can now be expressed as 

á(®|™) = äó2á(z@|
õ

òeE

í

@eE

{@, |, ´)á({@|¶@, â)á(¶@|¢)¨{ (4.14) 

where	™ = {|, ´, â, ¶}  is the collection of parameters for the model ℳ. 

4.5.3.2 Laplace 

The Laplace, or double exponential, distribution has a heavier tail compared to that of 

the Gaussian distribution, this quality makes it suited to model the distribution of 
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interesting real world signals, such as speech [104]. Since the Laplace distribution is able 

to accurately model heavy tailed signals using a single Laplacian as opposed to at least 

3 Gaussians for a MoG it has computational benefits above that of the MoG [106].  The 

Laplace distribution decays exponentially from the mean in both directions, assuming 

zero mean the probability density can be expressed as 

á(3) = 	
1
20 J3á(−

|3|
0 ) (4.15) 

In the context of ICA we model each source using a single Laplace distribution. Since the 

sources are independent, we can write 

á({@|â) = äá(
ã

UeE

{@|0U)																													 

=	ä
1
20U

J3á(−
|{@|
0U

)
ã

UeE

(4.16) 

where the parameter 0, a scale parameter referred to as the diversity, determines the 

spread of the distribution.  

4.5.3.3 Model Learning 

Learning for the generative model described in the previous section is equivalent to 

calculating the optimal posterior probability density over the model parameters. How 

exactly to find the "optimal" posterior is an area of active research; an overview of 

different methodologies is provided by Choudrey [96]. One popular approach is mean 

field theory borrowed from statistical physics, specifically the variational Bayesian 

approach as described by Choudrey [96] as well as Højen-Sørensen et al. [104]. This 

approach is formulated for the MoG source model. 

The variational methodology replaces the true, but unknown and intractable, posterior 

distribution with a tractable approximation. The aim of the learning process is then to 

minimize the difference between the true and the variational distributions. It can be 

shown, using Jensen's inequality, that the Kullback-Leiber (KL) divergence is minimized 

when the negative free energy is maximized [94]. Briefly, 
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quá(®) = ℒ(®) + 	ûv[á∗(Ø)||á(®,Ø)] (4.17)	 

where á∗(Ø) is some approximation of the posterior á(Ø|®), and Ø = {ñ, ç, {, ¶, â} 

is the collection of all parameters and hidden variables. The first term in (4.17) is known 

as the "negative variational free energy"  

ℒ(®) = 2á∗(Ø) qu
á(®,Ø)
á∗(Ø) 9Ø.													 

= I±∗(Ø)[quá(®,Ø)] +ℋ[Ø] (4.18)

where I±∗(Ø)[	∙	]  is the expectation in terms of á∗(Ø)  and ℋ[Ø]  is the entropy of 

á∗(Ø). The second term is the KL divergence, a measure of pseudo-distance between 

two distributions. The KL divergence is strictly non-negative and so the negative free 

energy forms a strict lower bound on quá(®).  That is, 

quá(®) ≥ 	ℒ(®)	 (4.19) 

with quá(®) = 	ℒ(®) if and only if the variational distribution á∗(Ø)  is exactly equal to 

the true posterior á(Ø|®). This means that instead of having to deal with the unknown 

true posterior we can instead maximise the negative free energy, which only relies on 

variational distribution	á∗(Ø)  and this ends up being equivalent to minimising the KL 

divergence. In summary, to train our model we can use the variational free energy 

(4.18) as an objective function to be maximised.  

The variational distribution á∗(Ø)  must be selected such that it is computationally 

tractable, while also being flexible enough to form a good approximation of the true 

posterior distribution. The following factorisation is assumed 

á∗(Ø) = á∗(|)á∗(´)á∗({|¶)á∗(¶)á∗(¢)á∗(ô)á∗(•) (4.20) 

Assuming that á∗(Ø) factorises over Ø allows us to maximise each of the parameters 

individually. The source distribution is however conditioned on the indicator variable ¶ 

which implies a mixture model posterior source density for source q. 
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á(ÑU@) = óá∗(
õ

òeE

üUò@ 	= 	1)á∗({U|¶U)													

= ó¥U@òé(
õ

òeE

ÑU@|ΜUò
@ , (ΒUò

@ );E) (4.21)

 

where ¥U@ò  is the posterior probability of the mixing proportions and represents the 

responsibility that component ù takes for explaining  ÑU@. ΜUò
@ and ΒUò

@ are respectively the 

mean and precision of component ù of source q. 

The second part we need is the joint probability of the observations and the model 

parameters, expressed graphically in Figure 4.4. 

á(®,Ø) = äá(z@|{@, |, ç)
í

@

á({@|¶, ô, •)á(¶|¢)á(¢)á(ô)á(•)á(ñ)á(ç) (4.22) 

We can now substitute (4.20) and (4.22) into the equation for the variational negative 

free energy (4.18) to find the maximisation objective function for the model ℳ. 

ℒ = ä[I	±∗(ñ)±∗(´)±∗({∑|¶)±∗(¶)
í

@

[quá(z@|{@, |, ç)]

+	I±∗({∑|¶)±∗(¶)±∗(¢)±∗(ô)±∗(•)[quá({@, ¶|¢, ô, •)] + 	ℋ[á∗({@, ¶)]]
+	I±∗(¢)[quá(¢)] 	+ 	ℋ[á∗(¢)]
+	I±∗(ô)[quá(ô)] + 	ℋ[á∗(ô)]
+	I±∗(•)[quá(•)] + 	ℋ[á∗(•)]
+	I±∗(|)[quá(|)] + 	ℋ[á∗(|)]
+	I±∗(ç)[quá(ç)] 	+ 	ℋ[á∗(ç)] (4.23)

 

The terms can now be further specified by finding functional forms for the expressions 

and substituting these into (4.23). This requires prior distributions to be specified over 

the model parameters. The chosen priors are shown as part of Figure 4.4 below. The 

resulting equations can be solved in an 'Expectation Maximisation (EM)'-like fashion 

[94]. In the variational equivalent of the expectation (E) step the model parameters are 

kept fixed and the responsibilities are estimated. In the subsequent maximisation (M) 

step these responsibilities are kept fixed and the variational distribution over the model 

parameters is re-computed. These steps are cycled until convergence. For a more in-

depth formulation of the variational EM algorithms and its extensions, as well as the 
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complete derivation of the model update equations see Choudrey [96] and Winther and  

Petersen [105].  

 

Figure 4.4: Graphical model for the generative model ℳ. Prior distributions of model 
parameters are shown as solid dots, model parameters as circles, and observed 
(unconditioned) variables as shaded circles. Plate notation is used to illustrate where the 
model parameters are defined for w-dimensions,	v-sources, and û-components. An in-depth 
introduction into probabilistic graphical models is given by Bishop [94]. 

4.6 Methods 

4.6.1 Data 

To determine the utility of ICA in heart sound analysis, recordings of heart sounds were 

collected from volunteers. Examples of abnormal heart sound recordings were collected 

at the cardiac unit of Auckland City Hospital by an attending cardiologist, while a final 

year medical student collected heart sound recordings from non-cardiac patients as part 

of a heart sound data collection study. All heart sounds were recorded under ethics 
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approval obtained from the University of Auckland and Auckland District Health Board 

ethics committees, approval number UAHPEC 013321. Recordings were made with a 

3MTMLittmann® Electronic Stethoscope Model 3200 [107] with a sampling rate of 4kHz. 

Diagnosis, where applicable, are based on the findings of the investigating cardiologist.  

Heart sounds were collected from a total of 26 participants. Twenty of the recordings 

were collected from cardiac patients and the remaining six were collected from 

volunteers (who were not cardiac patients). To demonstrate ICA a subset of 4 heart 

sounds was chosen from the collected recordings. The subset was chosen by the 

researcher based on their judgement of the signal quality (i.e. signals that were too 

corrupted by noise were excluded) and the presence of interesting cardiac sounds (i.e. 

a representative set containing different examples of murmurs). 

4.6.2 Pre-processing 

All recordings were first pre-processed using an ‘artefact removal’ or ‘de-spiking’ 

algorithm to remove obvious artefacts. The methodology followed closely resembles 

that proposed by Schmidt et al. [108] but was modified when the previous algorithm 

was not able to remove prominent movement artefacts in the data. In this work we 

assume a normal distribution for the peak amplitudes in the signal and identify peaks 

that exceed the mean peak intensity plus 3 times the standard deviation of the peaks, 

corresponding to a less than 0.3% chance of coming from the same normal distribution. 

The peaks considered are the local maxima of the absolute value of the normalised 

signal that fall above the 99th percentile of all sample intensities. Spike widths were 

determined by their prominence, a measure of the height of a peak relative to the 

surrounding samples, and the start and end points of the spikes determined using the 

width. Identified spikes were replaced using linear interpolation between the start and 

end points. After artefact removal the recordings were standardised to zero mean and 

unit variance. 

4.6.3 Continuous Wavelet Transform 

A time-frequency decomposition of the audio recording was performed to form an input 

signal to the ICA algorithm from the one dimensional audio recordings. The audio data 

was analysed at w  scales using the Continuous Wavelet Transform (CWT) with a 
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generalised Morse analytic wavelet [109], [110] with parameters ¥ = 3, § = 60. The 

Morse analytic wavelet with ¥ = 3	provides a very nearly distinct frequency to scale 

mapping [110]. An example of the CWT of a heart cycle containing a late systolic murmur 

due to mitral valve prolapse is shown in Figure 4.5. This example recording was sampled 

at 4 kHz. The CWT was limited to between 50 Hz and 1.5kHz with 8 voices per octave. 

Voices per octave is a measure of how many scales (pseudo inverse frequency bands) 

are analysed within the frequency range being analysed (which can also be referred to 

as the 'number of octaves'). A higher number of voices per octave results in more 

frequency bands being analysed, effectively increasing the frequency resolution of the 

decomposition.  

 

Figure 4.5: CWT decomposition of heart cycle shown in (.).	 The magnitude of the CWT 
coefficients is shown in the time-frequency domain in (0). In (∏) the real parts of the 
decomposition, which forms the input signals for the ICA algorithm, are plotted as 40	(w	 =
	40) 1 dimensional signals. 
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4.6.4 Independent component analysis of heart sounds 

The following procedure was used to test the ability of the proposed model in separating 

components in heart sound recordings. 

• Heart sounds are decomposed into w sets of 1 dimensional input signals using 

CWT.  

• Heart sound CWTs are segmented into individual heart cycles in the order S1, 

systole, S2, diastole using both manual segmentation and the Hidden Semi-

Markov Model based segmentation developed by Springer et al. [111] 

• An individual heart cycle is extracted from the heart sound CWT to form an 

w × � input matrix. 

• The w × �  input matrix is used as a data set to train the model ℳ  with the 

number of latent sources determined heuristically (discussed below). 

• The v × � source matrix of the trained model represents the learnt statistically 

independent sources. 

In selecting the number of sources, it is important to keep in mind what system the data 

was generated by. It is also important to know what the ICA is being used for. In the case 

of using ICA as a tool to discover more about the system under investigation, the aim is 

to try and describe the system in the simplest but sufficiently comprehensive way 

possible. When trying to model a system as complex as the heart the model assumptions 

are necessarily not met, especially considering the variety of sources of noise. Trying to 

make the model complex enough to capture every detail of the real system it is trying 

to emulate is an unnecessary task. Such a task would require much more data than a 

simple recording of the sound produced as the heart beats. What should the model then 

try to capture? From a diagnostic standpoint a useful model would be able to separate 

diagnostically valuable sections or ‘events’ present in the heart sound. Adapting the 

blind source separation problem and more specifically ICA to the problem of heart 

sound analysis, we can restate the question as “are the diagnostically valuable aspects 

of a heart sound recording statistically independent and thus can ICA be applied to 

discover or clarify these aspects?”. The number of sources used to model each of the 

heart cycles was determined heuristically keeping this question in mind. 
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4.6.5 Heart sound source model 

In heart sound recordings, two distinct regions can be discriminated in terms of the 

distribution of their amplitudes. The heart cycle periods between the fundamental heart 

sounds consist of low amplitudes centred around the (zero) mean. Heart murmurs and 

other pathological sounds also occur in these regions. The second region is that of the 

fundamental heart sounds themselves. These regions contain higher amplitudes at 

lower frequencies and consequently have distributions with heavier tails compared to 

the Gaussian distribution. 

4.7 Results 

Four heart sound recordings, one without any abnormal heart sounds and three with 

cardiac murmurs, were selected to demonstrate the proposed model’s performance. 

Shown in Figure 4.6, recordings (a) and (b) are from two healthy volunteers and 

recordings (c) and (d) are from cardiac patients at the Auckland City Hospital. The 

amplitudes of all time-series plots have been normalised. The labels on the x-axis of the 

graphs have been excluded to increase visibility. 

 

Figure 4.6: The heart sound recordings used to assess the proposed ICA model. (a)  healthy 
heart sound, (b) early systolic murmur, (c) mid-to-late systolic murmur (d) early systolic 
murmur combined with early diastolic murmur. 
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Table 3: Summary of information available for heart sounds recordings used for ICA 
demonstration 

Heart Cycle ID Diagnosis Recorded by Auscultation site 
(a) N/A Medical Student Pulmonic Area 

(b) N/A Medical Student Aortic Area 

(c) Mitral Regurgitation Cardiologist Apex 

(d) Pulmonary Regurgitation Cardiologist Pulmonic Area 
 

4.7.1 Pre-processing 

The proposed artefact removal algorithm is illustrated in Figure 4.7 on a normal heart 

sound recording with a significant noise spike just before the 6 second time mark. The 

algorithm proposed by Schmidt et al. [108] does not recognise and remove this spike 

which proves problematic when normalising the signal as all the heart sound signal 

amplitudes are reduced relative to the spike amplitude. 
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Figure 4.7: The methodology followed in this work to remove spikes from heart sound 
recordings.  
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4.7.2 Heart Cycle CWT 

The CWT was performed using the Morse analytic wavelet with 8 voices per octave 

between 20 Hz and 1.5 kHz. This decomposition resulted in 50 input vectors for each of 

the heart cycles (w = 50). Only the real parts of the resulting coefficients were used, 

and these were normalised to maximum one by dividing all values by the maximum 

absolute value of the coefficients. Selected heart cycles and their CWT are shown in 

Figure 4.8. To avoid edge effects the CWT was performed on the entire heart sound 

recording and the segmented heart cycle was extracted from the middle of this longer 

CWT.  

 

Figure 4.8: Individual segmented heart cycles of the corresponding heart sound recordings (a), 
(b), (c), and (d).  

4.7.3 Heart Cycle ICA 

The independent component analysis results are shown for heart cycle (a) in Figure 4.9, 

heart cycle (b) in Figure 4.11, heart cycle (c) in Figure 4.13, and heart cycle (d) in Figure 

4.15. The first waveforms in each figure labelled (a), (b), (c), and (d) show the original 

heart cycle (left-hand plot) and its corresponding frequency domain plot (right-hand 

plot). The latent sources, or independent components, of the fitted model are shown 
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underneath. Note that these are numbered only for reference purposes and the 

independent components (IC) have no inherent order. All the ICs were standardised by 

subtracting their mean and dividing by their standard deviation. The frequency plots 

(right-hand side) show the magnitude of the frequency components between 20 Hz and 

1 kHz plotted on a logarithmic scale. This required only 2 sources in the case of the 

healthy heart cycle (a) with a high signal-to-noise ratio, but at least 8 sources in the case 

of the dual murmurs heart cycle (d). In all cases, models with a larger number of sources, 

and thus increasing complexity, were able to represent the dataset more closely (as 

measured by log-likelihood), this is discussed in 4.7.4.  

The frequency domain plots reveal the ICA of the CWT time-frequency decompositions 

has mainly separated out groups of components related by frequency. A possible 

conceptualisation of the action of the proposed ICA model is as generating (L) bandpass 

filters with bandwidths and centre frequencies determined by the model parameters 

learned from the dataset. In the rest of this section we assess the utility of the ICA by 

analysing the results of the ICA in light of the known underlying physiological condition. 

The application of ICA in this discussion is analogous to a researcher making use of a 

microscope. The ICA provides a tool with which to study the audio recordings, but it is 

up to the operator to control what level of 'magnification' to go to, and to interpret what 

he/she finds. 

4.7.3.1 Heart Cycle (a) 

 

Figure 4.9: ICA of a heart cycle (a). An example of a heart cycle that does not contain any 
abnormal sounds.  
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In the figure above we can see that the proposed probabilistic ICA model has divided 

heart cycle (a) into two distinct components. The first component (a1) contains mainly 

frequencies below 50 Hz while the second component (a2) has prominent energies 

between 50 and 100 Hz. The acoustic events in the first component have slightly longer 

durations than those in the second component. The components that correspond to the 

first heart sound (0 to 0.1 s) in (a1) have a duration of around 110 ms and around 100 

ms in (a2). For the second heart sound (around 0.3 to 0.4 seconds) the components last 

100 ms in (a1) and 60 ms in (a2).  

 

Figure 4.10: CWT of the independent components of heart cycle (a). Frequency is plotted on 
the y-axis on a logarithmic scale. Decomposition performed with 48 voices per octave between 
25 and 1500 Hz. 

The time domain and frequency domain representations of heart cycle (a) and the 

independent components (a1) and (a2) are shown in Figure 4.9. A time-frequency 

decomposition (using the CWT) is shown in Figure 4.10. This example does not contain 

any pathological sounds (i.e. it is ‘normal’). The CWT clearly shows that the second heart 

sound has higher frequency components than the first heart sound; these higher 

frequency components have mainly been captured in (a2). This agrees with discussion in 

the literature regarding the pitch of the second heart sound compared to the first [112]. 

The sounds in the heart cycle are initiated by the closing of the four heart valves. We 
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can assess Figure 4.9 and Figure 4.10 with the assumption that the independent 

components correspond to the sounds produced by the different heart valves, or in 

other words that the sounds associated with different valves are maximally statistically 

independent. Sounds from the higher pressure left atrium (LA) and ventricle (LV) are 

higher pitched than those from the relatively low-pressure right atrium (RA) and 

ventricle (RV). Based on this we can infer that (a2) corresponds to the closing of the 

mitral (M1) and aortic (A2) valves and that component (a1) corresponds to the closing of 

the tricuspid (T1) and the pulmonary (P2) valves. Given the CWT decompositions as input, 

the ICA model was able to separate the lower frequency right-sided valve sounds from 

the higher frequency right sided sounds. 

Clinically, the relative intensities and degree of splitting between the different 

fundamental heart sound components are very significant [112], [113] and thus an 

algorithm able to identify these would prove a valuable analysis tool.  

4.7.3.2 Heart Cycle (b) 

 

Figure 4.11: ICA of heart cycle (b). A heart cycle containing an early systolic murmur with no 
confirmed diagnosis. 

Heart cycle (b), shown above in Figure 4.11, was modelled using 4 sources. This heart 

cycle contains a medium pitch murmur in early systole which can clearly be seen in (b4) 
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and (b3). The exact cause of the murmur in this recording is undiagnosed and it has not 

been associated with any valve pathologies. It can also be seen that the heart sound 

recording contains significant noise in the same frequency bands as the fundamental 

heart sounds. This noise can be observed in the original heart cycle (b) as well as the 

first three independent components. Component (b1) contains mostly noise and the 

lower frequencies of the first and second heart sound; the second heart sound (which 

in this recording consists mostly of higher frequency components) is contained in (b3) 

and (b4). The first heart sound is absent from the component (b4) which has almost 

completely isolated the early systolic murmur from the rest of the heart sounds.  

Figure 4.12 shows the CWT of heart cycle (b) along with the CWT of the independent 

components discovered by the probabilistic model. This figure presents the time-

frequency information of the signals in Figure 4.11. Since this figure attempts to show 

more details of the separated heart cycle, the decomposition was performed using 48 

voices per octave between 25 and 1500 Hz, resulting in a higher resolution (284 

frequency bands) time-frequency representation. This method was followed for all the 

CWT figures of the independent components. 

 

Figure 4.12: CWT of the independent components of heart cycle (b). 
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The murmur, even this relatively simple one, greatly complicates the interpretation of 

the independent components and at this point it is necessary to stress that the following 

interpretation would in practice have to be integrated with more information about the 

patient in order to arrive at a more conclusive finding. The relatively simple approach 

used for heart cycle (a), comparing the frequency spectra of the two components and 

inferring that they originated from opposite sides of the heart, is much more ambiguous 

in the presence of noise and the murmur. We must then go to the time-frequency 

representations presented in Figure 4.12 to see if they can help us make sense of this 

heart cycle and the independent components discovered by our model.  

The lower-frequency T1 sound has been captured in (b1) and (b2) meaning the ICA has 

separated components produced by the tricuspid valve into 2 separate components. 

The reason for this might be the presence of a large amount of low frequency noise in 

the same frequency band as the T1 sound, thus the model associates two parts of this 

sound more with parts of the noise signal. The remaining components, (b3) and (b4), are 

clearly associated with the murmur. In Figure 4.12 we can see that the mitral sound (M1) 

and the pulmonic sound (P2) have been grouped together with a low frequency 

component of the murmur in (b3), while the aortic sound (A2) has been grouped together 

with the high frequency components of the heart murmur in (b4). This could suggest that 

these sounds are associated with each other, i.e. the murmur is produced at the same 

valve with which it has been grouped, but to test such a hypothesis would require a 

greater level of information perhaps acquired by simultaneous echocardiogram 

recording.  

The medium frequency early systolic murmur has been captured in component (b4). 

Based on the medium pitch, early systolic timing (component (b4)), and shape 

(crescendo-decrescendo) and the location of auscultation (aortic) of the murmur, it 

could be associated with mild aortic stenosis, mild aortic sclerosis, a murmur arising 

from the left ventricular outflow track, or an innocent flow murmur [36], [114], [115]. 

Since no pathological cause has been identified after expert investigation, it is likely that 

this is a systolic flow murmur (innocent murmur).  



78 
 

This heart cycle provides an example of the ability of ICA to isolate diagnostically 

interesting areas of a heart sound, as well as  how ICA could serve as an aid to heart 

sound analysis in practice. 

4.7.3.3 Heart Cycle (c) 

 

Figure 4.13: ICA of heart cycle (c). A heart cycle with a loud, mid to late systolic crescendo 
murmur that has been confirmed to be the result of mitral regurgitation due to mitral valve 
prolapse. 

The murmur present in heart cycle (c), shown in Figure 4.13, is the result of mitral 

regurgitation due to mitral valve prolapse. It occurs during mid to late systole with 

increasing intensity (crescendo). The murmur contains frequencies from around 150 to 

1200 Hz, overlapping with the higher frequencies of the fundamental heart sounds. The 

second heart sound is completely masked by the murmur when listening to the 

recording. The probabilistic ICA has largely managed to separate these different aspects 

present in the heart cycle. The heart sounds have been captured in (c1) and (c2), although 

it appears that (c2) contains some of the lowest frequencies of the murmur as well. (c3) 

and (c4) contain mainly the medium pitches of the murmur with some overlap from the 

upper frequencies of the fundamental heart sounds. The high pitch, and the most 

audible, part of the murmur is captured in (c5) and, to a lesser degree, in (c4). 
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Figure 4.14: CWT of the heart cycle (c) and the independent components shown in Figure 4.13. 

Looking at the time-frequency CWTs of the independent components shown in Figure 

4.14 it is clear that very little of the murmur has been grouped into component (c1) and 

(c2). Rather all parts of the murmur are spread around the remaining components (c3), 

(c4), and (c5). The timing and shape of the murmur (crescendo from early/mid-late 

systole), clearly seen in components (c4) and (c5), agree with the description of mitral 

regurgitation [36].  

It is of particular value to be able to listen to the isolated murmurs captured in 

components (c4) and (c5). The proposed model provides an investigator the opportunity 

to listen, with adjustable volume and speed, to different aspects of the heart sound and 

to assess and analyse these in isolation.  
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4.7.3.4 Heart Cycle (d) 

 

Figure 4.15: ICA of heart cycle (d). A heart sound with both an early systolic and an early 
diastolic murmur. 

The final heart cycle examined presents the most challenge in terms of model 

complexity and the most diagnostically interesting aspects. The heart sound recording 

was segmented into what, at first, appeared to be S1-Systole-S2-Diastole. The S1 sound 

appeared to be significantly split in both the time plot of the heart cycle and when 

listening to the recording. After viewing the CWT and ICA results (Figure 4.8 and Figure 

4.15) it becomes obvious that the very low frequency event right at the start of the heart 

cycle (around 0 – 100ms) does not fit into this pattern. This is especially visible in the 

frequency spectrum of components (d2) and (d6) in which most of this event has been 

captured. While it is possible that this event represents the lower frequency T1 sound, 

this would then also mean that there is clinically implausible delay in the closing of the 

mitral valve (M1), since this sound normally occurs first. Inspecting the frequency spectra 

of components (d2) and (d6) it is clear that this event is lower in frequency even than the 

tricuspid component (as observed in heart cycle (a) for example). It seems more likely 
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that this event is a fourth heart sound (S4) [35] and this heart cycle has been segmented 

into S4-S1-Systole-S2-Diastole. Since the first heart sound indicates the start of 

ventricular systole the fourth heart sound technically occurs in diastole and thus a more 

appropriate segmentation of the heart sound would be S1-Systole-S2-Diastole-S4, as 

shown in Figure 4.16.  

 

Figure 4.16: A re-segmentation of heart cycle (d) after analysis of CWT and ICA results showed 
the clear presence of an S4 sound. (ii) Time-frequency representation of the re-segmented 
heart cycle shown in (i). Decomposition performed using 48 voices per octave from 0 to 1500 
Hz, specifically to show S4 sound more clearly. 

After manually re-segmenting, the ICA model was fit to the new data. The CWT for these 

components, labelled (d9) to (d18) are shown in Figure 4.17. These components are very 

similar to the ones shown in Figure 4.15, but are easier to interpret since they are in the 

expected order of systole and then diastole. The S4 sound has been captured in 

component (d9) and to a lesser degree in (d10). There is a split in the second heart sound, 

especially visible when comparing (d13) and (d14), as well as in the difference between 

the high frequency spike of the second heart sound and the start of the heart murmur 

visible in (d15) and (d16). The medium and higher frequencies of the heart murmurs have 

been captured in (d15) and (d16). 
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Figure 4.17: CWT of the re-segmented heart cycle (d) and the independent components shown 
in Figure 4.16. Although the components remain similar to those from Figure 4.15 the re-
segmented heart cycle provides a visual representation that is easier to interpret, since the 
different heart sounds are in a more expected order (S1-Systole-S2-Diastole-S4) 

In the case of heart cycle (d) the combination of CWT and ICA was able to assist in the 

heart sound pre-processing stage of segmentation. The S4 sound present in this 

recording was made clear in the time-frequency decomposition as well as in the 

resulting independent components. The physiological interpretation of the ICA results 

for this heart cycle will be developed using the CWT of the components as shown in 

Figure 4.17.  

The component (d11) consists mostly of the S4 sound that was discovered during the 

initial CWT and ICA analysis. Components (d15) and (d16) have captured medium and high 

frequency content of the heart murmurs respectively. These two components 
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demonstrate a clear split in the second heart sound, especially visible between the initial 

high frequency spike in the second heart sound and the start of the diastolic murmur in 

(d16). Because of the timing and the high frequency content we can infer that this sound 

(between 0.25 and 0.3 seconds) is the A2 component of the second heart sound. The 

murmur clearly starts with the sound just following this, the lower frequency P2 sound. 

This, along with the decrescendo shape, high frequency, and timing of the murmur, 

suggests that this is a case of pulmonary valve regurgitation [116].  

The brief, softer murmur at the start of systole occurs at the same time as the first heart 

sound and is indistinguishable from S1 when listening to the heart sound recording. 

Looking at components (d10) to (d16) the first heart sound in this heart cycle is quite 

complex, there are several sound events happening at the time of the first heart sound. 

The S4 sound occurs right before the onset of S1 and although very low frequency the 

components are quite high amplitude. The residual or continuing components of S4 are 

especially apparent in components (d10), (d12), and (d15). Looking at components (d11) 

and (d14) we can see two distinct peaks in the first heart sound, these likely correspond 

to the M1 and T1 components of S1, suggesting that the ICA model has not split the 

sounds in this heart cycle based on their origin alone. It seems likely that due to the 

presence of other more complicated (or diverse) sounds these sounds exhibit more 

statistical dependence between each other than between the other sounds and thus get 

grouped together. This does complicate the interpretation of the high frequency 

murmur that coincides with the first heart sound. Taking into account the presence of 

the prominent diastolic murmur, what appears to be a systolic murmur is most likely a 

pulmonary ejection sound [117] caused by a structurally abnormal pulmonary valve and 

increased pressure across the valve.  

There is also the possibility that the murmurs are generated as the result of turbulent 

flow across the aortic valve. The delay in the start of the regurgitant murmur could be 

the result of a delay of blood backflow into the ventricle as the valve remains closed at 

the start of diastole. After a moment the aortic valve loses integrity and allows blood to 

flow backwards from the aorta into the ventricle. This heart cycle would then be an 

example of aortic valve regurgitation. The location of recording (pulmonic area) 

suggests that this is more likely to be pulmonary regurgitation although this single heart 
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sound recording is not enough to base a diagnosis on, and further investigation and 

more information would be needed to confirm either of these conditions. 

This heart cycle provided an excellent challenge for the proposed methodology. It was 

necessary to make use of all the information provided by CWT and the ICA of the CWT 

in order to arrive at a reasonable explanation for the sounds present in this heart cycle. 

The model was able to clarify the presence of a segmentation error by clearly 

distinguishing a fourth heart sound before the first heart sound. The obvious diastolic 

murmur and subtle and almost undetectable (when listening) ejection sound present in 

the recording were captured by the model and could be analysed in detail.  

4.7.4 Number of Sources 

The most influential hyperparameter governing the results of the ICA are the number of 

hidden sources to be modelled. Figure 4.18 shows the marginal log-likelihood of the 

data of heart cycle (a) given the model parameters for an increasing number of hidden 

sources. To ensure the model remained tractable this experiment was performed on the 

simplest of the heart sounds and a reduced resolution CWT with 4 voices per octave was 

used; this resulted in 25 input vectors (w = 25). Model learning was performed from 1 

hidden source to a maximum of 25 hidden sources (w = v). With an increasing number 

of sources, the log-likelihood (and thus the likelihood itself) increases, and levels out at 

around 17 sources. A plot of the independent components of heart cycle (a) with v =

17 is shown in Figure 4.19.  
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Figure 4.18: Final (converged) value of marginal log-likelihood of heart cycle (a) input data with 
different numbers of latent sources. 

 

Figure 4.19: Independent components of heart cycle (a) with v = 17 hidden sources.  

Figure 4.19 represents a set of independent sources { that, given the estimated mixing 

matrix ñ  and the sensor noise } , can optimally reconstruct the heart cycle (a). 

‘Optimally’ used here in the sense of how likely is (what is the probability of) the original 

heart cycle (a), given the set of independent sources, {.  
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4.8 Discussion 

The figures of the discovered sources and their associated frequency spectra show 

clearly that the proposed methodology can find and group interesting, and seemingly 

associated, aspects of heart cycles. Importantly, these separated components can be 

interpreted sensibly considering knowledge about the physiology and functional 

anatomy of the heart and the disease states that present with heart murmurs. In the 

discussion each of the heart cycles and their discovered independent components will 

be assessed in this manner. 

4.8.1 ICA Sources 

A major issue with applying ICA is the selection of an appropriate number of sources. 

The number of sources should provide a sufficient representation of all features present 

in the heart sound without overfitting the dataset, i.e. fitting so many components that 

small variations resulting from noise are captured, making the model and the results too 

obscure to interpret. 

As shown in Figure 4.18, in terms of the likelihood of the data, heart cycle (a) produced 

by a model with v = 17 is a better fit than with v = 2. Comparing Figure 4.19 to Figure 

4.9 it is obvious that this higher likelihood does not translate into a more informative, 

or meaningful, representation of the heart cycle. Figure 4.18 and Figure 4.19 clearly 

demonstrates the overfitting discussed previously. The large degree of freedom 

provided by such a large number of sources allow the model to almost exactly fit all the 

aspects of the original signal, analogous to a 9th degree polynomial being able to exactly 

fit a dataset with 10 data points [94]. The model becomes representational only of the 

specific example. More specifically to the analysis of heart sounds, searching for 17 

sources separates the heart cycle into components that are not recognisable as anything 

a person would hear when listening to the recording.   

The issue remains as to how we can decide on a suitable number of sources. There is no 

simple number we can look at to say whether a certain set of sources are more suitable 

than another. In any case, 'more suitable' would vary according to the exact nature of 

the problem being addressed. In terms of heart sound analysis, the methodology 

followed in this work has been to increase the number of independent sources until all 
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components that are obvious in the original heart cycle, that is, all the components that 

are audible when listening to the recording and all components that are visible in the 

CWT of the heart cycle, are represented in at least one of the independent components. 

In this way the minimum number of components able to sufficiently represent the heart 

cycle are chosen. This methodology remains subjective i.e. it relies on the expertise of 

the investigator; it should be noted that the final test of any blind source separation (in 

which we don’t know the actual generating sources) is whether or not an ‘expert’ would 

come to the same conclusion.   

4.8.2 Model assumptions 

The model makes certain assumptions about the nature of the data being analysed. 

These assumptions need to be scrutinised to assess their reasonableness and possible 

side effects. 

4.8.2.1 Heart sound recordings 

The ICA model presented in this chapter contains very little information specific to the 

system we are analysing. One key assumption that underlies the results presented in 

this chapter is that the heart sounds are the 'dominant' or 'most prevalent' signal in the 

recording being analysed. This assumption influences one of the key limitations of the 

model, the user input required to select an appropriate number of sources. Using the 

heart cycles presented in this chapter as examples, heart cycle (b) has a lower signal-to-

noise ratio than heart cycle (c). In other words, heart cycle (c) conforms more to the 

assumption that the sound produced by the heart are the most prevalent signals in the 

recording. Looking at the independent components of the two cycles (Figure 4.11 and 

Figure 4.13) we see that there exists less overlap between the ICs of heart cycle (c) than 

those of heart cycle (b). Because there is less noise obscuring the heart sounds in heart 

cycle (c) the model does not identify associated sounds in the recording as being from 

different source distributions because of the presence of noise with similar 

characteristics. In high SNR recordings the model is more readily able to disregard noise 

and separate out interesting parts of the heart sounds. 

4.8.2.2 IID Data 

The model assumes all samples are independent and identically distributed (IID) and 

thus all information about the relation of samples across time is disregarded. In other 
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words, the model assumes the data is generated instantaneously, or completely 

independently at each time point. This limitation is mainly due to the overwhelming 

complexity involved in incorporating correlations across time into the model. The 

probabilistic ICA model described in this section is already quite complex and extending 

the model to include information about correlations across time requires a significantly 

more complex model. Even so, modelling the temporal information contained in the 

heart sound could uncover information that the current ICA model is unable to.  

4.9 Future Work 

A major issue that remains to be addressed is the selection of an appropriate number of 

sources to model. At this stage the recommendation is that this hyperparameter remain 

tuneable as it provides a measure of control over what could be viewed as the resolution 

of the resulting view of the heart cycle. It is thus beneficial to analyse heart cycles at 

multiple levels (number of sources) to reveal both coarse (explicit or obvious) and finer 

details present in the heart cycle. The minimum number of sources required to model 

all aspects of the heart sound could also serve as an interesting feature for measuring 

the relative complexity, and perhaps likelihood of pathology, of a heart cycle.  

The methodology proposed in this chapter is an example of blind source separation. It 

is a form of machine learning/pattern recognition and it should be emphasized that 

there is no sense of “knowing” in the algorithm, only recognition and separation of the 

data statistics. The current methodology provides more information about the heart 

sound, but this information still must be interpreted by an expert and put into the 

greater diagnostic context to determine its clinical significance. Thus, the model would 

have to be incorporated into a greater framework to be able to automatically describe 

or classify a heart sound.  

Future work could focus on developing more informative priors based on expert 

knowledge. The Bayesian (probabilistic) model allows us to incorporate our expectations 

and current knowledge about the system we are investigating (modelling). This is 

however not a trivial undertaking as it requires translating qualitative and subjective 

knowledge into probability distributions of often abstract aspects of the model.  
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The current ICA model also disregards any correlations across time. It has been 

demonstrated that heart sounds contain non-linear correlations [63] and determining 

the timing of the heart sounds and any extra sounds/murmurs is a very important step 

in cardiac auscultation [113]. The model can be extended to incorporate temporal 

information in several ways.  Temporal information and non-linear correlations can be 

summarised by extracting the bispectrum from higher order moments calculated from 

lagged autocorrelations of the signal. Initial research by Ahlström et al. [63] has shown 

differences in bispectra of different disease states although features extracted from the 

bispectra failed to differentiate between these. Alternatively, the model could be 

extended to include latent (hidden) states which the system moves between. Hidden 

Markov models (HMM) have been applied to the problem of heart sound segmentation 

[68], [111] in which the expected duration that the system (heart) stays in each state 

was included as an explicit parameter. Choudrey [96] approached the problem of 

temporal information by incorporating HMMs into the ICA model both by replacing the 

Mixture of Gaussian source models of the ICA with Hidden Markov source models and 

by replacing the HMM observation models with ICA models, these methods were both 

developed under the title Dynamic ICA.  

4.10 Conclusion 

In this section the use of independent component analysis has been explored as a tool 

to find interesting structures in time-frequency transforms of heart sounds. ICA 

attempts to maximise the statistical independence between subsets of the data set. The 

hypothesis that was tested in this section can then be summarised as "the interesting, 

or diagnostically useful, parts of a heart sound recording are statistically independent 

from each other and can be separated by independent component analysis." This was 

tested on a small but diagnostically interesting set of heart sounds containing a variety 

of examples of heart murmurs as well as other common cardiac sounds. The usefulness 

of the proposed ICA model fitted to CWT derived time-frequency representations of the 

heart cycles was explored by interpreting the results considering knowledge about the 

physiology and pathology of the heart. In each case the discovered model sources 

(independent components) could be interpreted sensibly under assumptions of 

physiological relevance. In conclusion it has been demonstrated that probabilistic 
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independent component analysis is able to separate heart cycles into parts that reveal 

diagnostically interesting features in the heart sound.  

The independent components model provides a framework for introducing probabilistic 

modelling as a methodology for building a computational model of the heart sounds. 

We have shown that this model is able to separate heart cycles into interesting 

components. Because of relatively small amount of assumptions we had to impose, ICA 

provided an interesting starting point for exploring heart sounds, however this also 

limits the utility and the interpretability of the results. The interpretation of these results 

required context and knowledge that are not easily included. The most obvious, and 

critical, information about the signal that is not included in the model are the time 

dependencies. In Chapter 5 we explore modelling the temporal characteristics of heart 

sound recordings, moving another step closer towards a cardiac auscultation algorithm.  
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Chapter 5 Probabilistic Labelling and Segmentation of  

Heart Sounds 

Choosing any arbitrary starting time in the heart cycle, the heart sounds have an obvious 

order in which they occur. Modelling these temporal correlations adds a wealth of 

information to the analysis. Determination of the temporal information present in a 

heart sound signal is important enough that it is usually treated as an independent step 

of the processing. This step, commonly referred to as heart sound segmentation, 

involves accurately determining the locations of the first (S1) and second (S2) 

fundamental heart sounds. Once these sounds have been determined the heart cycle 

periods of ventricular systole and ventricular diastole can be distinguished from each 

other. Heart murmurs are fundamentally grouped into diastolic and systolic murmurs 

and much of the information about which valve is affected and what condition is the 

likely cause of the murmur is contained in the timing of the murmur in the heart cycle 

[36], [116].  

The temporal information extracted by heart sound segmentation can be used on a finer 

level. There is important diagnostic information contained in the relative timing of the 

components of each of the fundamental heart sound, i.e. the mitral (M1) and tricuspid 

(T1) components of S1 and the aortic (A2) and pulmonary (P2) of S2. Within each of the 

FHS the component sounds can present with varying degrees of splits that contain clues 

about the functioning of the heart. For example, the second heart sound is normally split 

during inspiration but does not present with any splitting during expiration. Fixed 

splitting of S2, that is splitting during both inspiration and expiration, can be indicative 

of structural defects (i.e. atrial septal defect) or severe right heart failure [112].  

Simultaneously recorded signals potentially have higher signal to noise ratio (SNR) have 

well understood and studied correlations with the mechanical events of the heart. 

Staying with the example of ECG, the start of ventricular systole necessarily follows the 

depolarisation of the ventricles which is indicated by the QRS-complex in an ECG. It is 

straightforward then to derive the locations of the first heart sound in a heart sound 

recording with simultaneously recorded ECG, especially considering the wealth of 

algorithms for R peak detection [118]. The main shortcoming of dependent 

segmentation is the increased complexity associated with simultaneously recording a 
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second physiological signal. Dependent segmentation is not applicable to the large open 

source databases available online and are much more complicated to attain than heart 

sound recordings that can simply be recorded and stored by cardiologists using 

electronic stethoscopes during their day-to-day practice. This is not to say that 

dependent segmentation is without use. When available, simultaneous ECG recordings, 

along with manual expert annotations, can serve as a valuable gold standard for training 

and testing independent segmentation algorithms. 

Independent segmentation, that is, heart sound segmentation using only information 

from the heart sound signal itself, is an active area of research. The usual methodology 

is comprised of an envelope extraction step followed by a peak picking step in which the 

most likely locations of the fundamental heart sounds are identified, these are then 

labelled as S1 and S2 using the duration characteristics of systole and diastole. The focus 

of most researchers has been the use of different envelope extraction techniques in 

order to highlight the occurrences of S1 and S2 while diminishing noise that could 

obscure the peak picking process. Techniques of heart sound recording envelope 

extraction that have been investigated and reported in the literature include energy 

measures such as Shannon envelopes [80], [119], spectral features[78], [120], wavelet 

features [121], complexity measures [122], and recurrence statistics [91]. An extension 

to this framework, proposed by Gamero and Watrous [123], Gill et al. [66], and Ricke et 

al. [124], is to replace the peak picking step by a probabilistic model, specifically a Hidden 

Markov Model (HMM). This work was further developed, first by Schmidt et al. [68] to 

include explicitly modelled state durations (duration dependent HMM), and then by 

Springer et al. [70] who tested the algorithm on a larger dataset and further investigated 

the model parameters and envelope extraction methods. The work presented in this 

chapter is a natural extension of this previous work in which the model has been 

extended to label other interesting features of the heart sound. Specifically, the HMM 

model is extended in this work to identify systolic murmurs. The continuous wavelet 

transform is also used to derive spectral features that are investigated using random 

forest and logistic regression classifiers to discriminate between samples from each of 

the states. 
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5.1 Hidden Markov Model Parameters 

Markov models are probabilistic models that explicitly model the dependency between 

successive samples. A first order Markov process assumes that the state a system is in 

at time point t depends only on the state the system was in at time point 4 − 1. Markov 

processes can be extended to include more previous state information (i.e. 4 − 2, 4 −

3, . . . , 4 − 4) producing higher order Markov processes at the cost of exponential growth 

of the number of parameters. Hidden Markov models increase the usefulness of Markov 

models by modelling the state dependencies as latent variables that produce (emit) an 

observable signal and thus the state at time 4 depends both on the state at time 4 − 1 

and the observation at time 4. Following Rabiner [125] we denote the state occupied at 

time 4 by π@. 

5.1.1 Model Parameters 

Hidden Markov models can be described by the number of states in the model and three 

probability measures. In an HMM with ! distinct states, the probability of transitioning 

between states is denoted by the ! × !, ñ matrix, with .Y∫  representing the probability 

of moving from state H  to state ª . The state emission probabilities, denoted by º , 

represent the probability of an observation being produced by each of the ! states. 

Finally, the probability of the system starting in each of the ! states is denoted by the 

1 × !,¢ vector. More formally these parameters can be defined as 

ñ	 = 	 {.Y∫}, where 

.Y∫ = á(π@ΩE = ª|π@ = H)									1 ≤ H, ª ≤ !	 (5.1) 

º	 = 	 {0Y(z@)}, where z@ is the observation vector at time 4 and  

0Y(z@) = 	á(z@|πà = H)									1 ≤ H ≤ !	 (5.2) 

¢ = {DY}, where 

DY = á(πE = H)									1 ≤ H ≤ ! (5.3) 

The complete set of model parameters can then be represented as  

æ = (ñ,º, ¢) (5.4) 
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A complete introduction on the use of hidden Markov models and examples of 

applications in speech processing is presented in a 1989 paper by Rabiner [125]. 

Following the example of Schmidt et al. [86], and Springer et al. [70], a first order hidden 

Markov model (HMM) is used to model the system that produces the cardiac sounds 

(i.e. the blood flow through, and mechanical action of, the heart). At all times it is 

assumed that the system is in one of four discrete states, the first heart sound (S1), the 

period of ventricular contraction (systole), the second heart sound (S2), or the period of 

ventricular relaxation (diastole) and moving through these states one after the other. In 

a hidden Markov model the probability of staying in the same state for � consecutive 

steps is an exponentially decaying function of � [94], [125]. This constraint is clearly not 

suitable for modelling the heart cycle states. Schmidt et al. [86] proposed a duration 

dependant HMM (see Rabiner [125]  and Yu [126] for details) as a more suitable model 

for heart sound segmentation. In this model the state transitions are limited to a single 

following state, thus the state transition probabilities simplify to 

ñ = ø
0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

¿ (5.5) 

This model can be represented using a unidirectional, nonergodic, finite state machine 

as shown in Figure 5.1.  
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Figure 5.1: A state diagram illustrating the possibles heart cycle states that the heart can 
occupy in the HMM as proposed by Schmidt et al.  

This extension of the HMM explicitly models the duration distribution for each of the 

states and the model parameters can be expressed as 

æ = (ñ,º, ¢,¡) (5.6) 

with the duration distribution parameters denoted by ¡ . This duration dependant 

model is represented in more detail in Figure 5.2. The figure illustrates the underlying 

assumptions of the model: As the system moves from state to state, with transitions 

governed by ñ, and occupancy duration governed by ¡, it produces an observable 

signal, the distribution of which is governed by º. The emission is explicitly illustrated 

for the S1 state. For practical reasons the emitted signal is assumed to be envelope 

transforms of the actual audio recording, in this way noise can be mitigated and a higher 

degree of discrimination between states achieved. 
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Figure 5.2: Model elements for a duration dependant heart sound segmentation hidden 
Markov model. The probability of the system starting in any of the given states is given by ¢ 
and the duration of each state is explicitly modelled (e.g. 9¬E). The system can only transition 
to the next state in the sequence and thus all the ñ (e.g. .Ec ) probabilities are equal to 1. 
While occupying each of the states, the system emits observations according to the 
probabilities in º, e.g. 0¬E. In this work the emission probabilities are the probabilities of a 
state given the observations, derived using a classification system (e.g. random forest/SVM), 
for each sample.  

5.1.2 The Viterbi Algorithm 

For the model to be useful the "best" or "most appropriate" sequence of states needs 

to be identified. "Most appropriate" in the case of heart sound segmentation can be 

abstractly defined as "the sequence of states that most likely correspond to the actual 

states that the heart occupied when the observations were generated". To the model 

this would correspond to the state sequence that maximises the emission probabilities 

under the constraints of the transition and duration probabilities. To derive this 

sequence of states from the model parameters in a computationally tractable way we 

use a dynamic programming procedure termed the Viterbi algorithm [127]. The Viterbi 

algorithm finds the most probable state sequence by recursively calculating the product 
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of the emission, transition, and duration probabilities and keeping track of the state 

sequence that maximises this probability  [94], [125].  

The specifics of the Viterbi algorithm for a duration dependent HMM are shown in Figure 

5.3. The most probable sequence that ends in state ª at time 4 is defined as √@(ª) and is 

computed recursively for all time points and states. To compute √@(ª) it is necessary to 

keep track of the indices that maximise. These are represented by Δ@(ª) and ψ@(ª) for 

time point 4 and state ª. These quantities are calculated recursively for all time points 

and analysis window sizes. Finally, in the state path backtracking step, the state path is 

constructed from Δ@(ª) and ψ@(ª). The trellis diagram in Figure 5.3 illustrates the Viterbi 

decoding for a single heart cycle. All possible state paths (based on the transition matrix) 

are shown in dashed grey lines while the most probable state path is shown with a solid 

line and includes notations. The notation around the nodes show the products that are 

used to calculate the probabilities for each state and the notation inside the node 

represents the variable size analysis window for which the probabilities are calculated 

at each time step to find the most probable combination of duration and emission 

probability. 
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Figure 5.3: The Viterbi Algorithm for the duration dependent Hidden Markov Model used for 
heart sound segmentation along with a trellis diagram illustrating the algorithm for a complete 
heart cycle (shown in the background). The algorithm consists of 4 parts and allows the 
sequence that maximises the emission and duration probabilities to be computed in an 
optimal way. The states are indexed by H, ª	∆	[g1, g«Ñ4oqJ, g2, »H.Ñ4oqJ], the sequence is of 
length �, and the analysis window has maximum length of !, the maximum duration of any 
single state set equal to the duration of a complete heart cycle. The algorithm and its 
extensions are discussed more fully in the main text and in literature [68], [70], [126]. 
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5.2 Methods 

5.2.1 Dataset 

The dataset for this work was assembled from the Physionet database [128] which in 

turn consists of several independent heart sound databases. Examples of systolic 

murmurs were selected based on the reported classification (normal/abnormal) as well 

as the presence of a murmur when listening to the recording and when viewing a time-

frequency representation of the heart sound. The "true" locations of the fundamental 

heart sounds were annotated in 3 ways: manually based on audio and visually from 

envelopes and spectrogram representations, automatically using the heart sound 

segmentation proposed by Springer et al. and finally using ECG annotations when 

available. These three sources of annotations were synthesised manually where 

discrepancies occurred. Each of the selected recordings was from a different subject. 

Due to the rather intensive data preparation, in terms of manual segmentation and 

murmur identification, the number of training samples were chosen such that the 

addition of further samples did not significantly alter the distribution of samples. While 

this suggests that the training sample is, at least, representative of heart sounds (from 

a range of different recordings methods and locations) the additions of further, high 

quality data would, as always, improve the model.  

5.2.1.1 Training 

The training set consisted of 118 recordings from 118 different subjects with 50 

recordings containing systolic murmurs and 68 with no abnormal heart sounds present. 

The training set was chosen from the Physionet Heart Sound Database on the basis that 

each recording be from a different participant. The training set was used to train the 

emission probability model and as such the most relevant description of the dataset is 

that of the amount of time (or equivalently number of samples) that each heart sound 

state (S1, systole, S2, diastole, systolic murmur) represents in the dataset. The number 

of samples from each state was balanced before training of the emission probability 

model commenced by under-sampling all classes to the 12884 samples of the systolic 

murmur class. All recordings had a sampling rate of 4 kHz and feature vectors were 

downsampled to 50 Hz to ensure the model stayed computationally feasible. Thus, in 
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total the model was trained on 1288 seconds of heart sound data with an average of 11 

seconds of data from each subject or 258 seconds of data per state. 

5.2.1.2 Testing 

A separate dataset of recordings was used to test the results of the model. Recordings 

from 23 subjects presenting with systolic murmurs and 33 subjects without 

abnormalities in their heart sounds were used, again selected from the Physionet 

database. The 23 systolic murmurs represent a slightly more challenging (in terms of 

segmentation) subset of the Physionet database due to the presence of, in some cases 

very prominent, murmurs that obscure the locations of the fundamental heart sounds. 

Since these recordings were used to test the overall performance of the segmentation 

algorithm, the most relevant description is of the individual recordings. The total length 

of the dataset was 1076.9 s and the mean recording length was 19.2 ± 10.2 s. Recordings 

with murmurs totalled 346.3 s and averaged 15.1 ± 0.5 s with a total of 380 instances of 

S1 and 376 of S2. Recordings without abnormalities totalled 730.6 s and averaged 22.1 

± 12.5 s with a total of 862 instances of S1 and 859 instances of S2. This imbalance in 

the testing dataset is more representative (although to a much lesser degree) of the 

imbalance in the population; most people do not have heart murmurs. Metrics reported 

for all but the emission modelling were tested exclusively on the testing dataset.  

5.2.2 Extensions to the Model 

The HMM heart sound segmentation, as implemented by Springer et al. and Schmidt et 

al., can be conceptualised as a two-step classification process. In the first step the 

samples of the heart sound signal are first probabilistically scored into different classes 

by a classifier corresponding to the derivation of the emission probabilities. These 

probabilities are then combined with the state duration and state transition sequence 

information to form a more accurate picture of the heart sound.  
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Figure 5.4: The proposed extension of the HSMM to include a systolic murmur state that exists 
in parallel to the normal systolic state. 

Taking this conceptual viewpoint leads us to a natural extension of the model in which 

alternative, pathological states are also possible. For this research we have extended 

the model to recognise a systolic murmur state. This state exists in parallel with the state 

of systole as shown in Figure 5.4. The classifier in the first step is extended to score the 

probability of a sample being from a systolic murmur, or more correctly a systolic state 

that contains a systolic murmur, as defined in the training set, along with the other four 

states. This extension requires a more complicated classification scheme than logistic 

regression used in previous work [70], as well as features which accentuate the 

characteristics of systolic murmurs. 

5.2.3 Qualities of systolic murmurs 

The extension of the model to include a "systolic murmur" state calls for a discussion on 

the likely differences between a normal systole and one that contains a murmur. 

Murmurs are produced in the presence of disturbance of laminar blood flow. The 

classification "systolic murmur" refers to the murmurs that occur between the first heart 

sound (S1) and the second heart sound (S2). To improve the tractability of the model 
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the HMM is only allowed to transition to either the systole state or the systolic murmur 

state. 

5.2.4 Emission Modelling 

5.2.4.1 Feature Selection 

The temporal information, the order and relative 'distance' between samples, is critical 

to this model. Feature selection for the emission probability modelling is approached as 

envelope extraction followed by downsampling. The most important criteria for 

selecting features is their ability to distinguish or discriminate between the different 

states. The first hurdle for the emission modelling is that the states of systole and 

diastole have very similar amplitude distributions, while S1 and S2 also exhibit 

similarities although to a lesser degree. The distributions of the homomorphic envelope 

samples for each of the states are shown in Figure 5.5. Systolic states that contain 

systolic murmurs exhibit a distribution more like the fundamental heart sounds than the 

periods of silence. This agrees with the intuition that there is more auditory energy in a 

systolic state with a murmur than without. 

 

Figure 5.5: Distributions of training samples for each of the states of the model. Data taken 
from the training set described in section 5.2.1.1. 
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Many different features have been used for both heart sound classification (into disease 

categories or normal/abnormal) as well as heart sound segmentation (see introduction 

to this chapter). Since the model proposed in this work will perform both heart sound 

segmentation as well as detection of abnormal systolic states, features from both areas 

of research are of interest. To differentiate systolic murmurs in the presence of normal 

heart sounds and intermittent noise with overlapping frequency bandwidths presents 

several challenges. Firstly, as mentioned before, the amplitude distribution of murmurs 

is not wildly different from those of the fundamental heart sounds. Secondly, there is a 

wide variety of different murmurs that can occur during systole and it is difficult to find 

features that are suitable for all of these.  

Time-frequency features, derived mainly by use of the wavelet transform [129]–[132] 

or the short-time Fourier transform [133]–[135], have been used in the literature to 

identify heart murmurs and more generally to classify heart diseases. In this work a 

selection of energy envelope, spectral, and statistical features were investigated. 

Several features are calculated using spectral information obtained by the continuous 

wavelet transform (CWT). Examples of the different feature envelopes calculated are 

shown in Figure 5.6 for the heart sound shown at the top of this figure. Shown in Table 

4, a total of 21 features were extracted including 4 energy envelopes, 4 CWT derived 

features, 6 DWT multiresolution analysis features, 2 short time Fourier transform 

features, and 5 statistical features.  



104 
 

Table 4: The features used for emission probability modelling 

Feature Class Feature Names Notes 

Energy Envelope Homomorphic Envelope Normalised time dependent energy 
envelopes  Hilbert Envelope 

 Shannon energy 
 Shannon entropy 
CWT S1 Continuous wavelet transform using the 

Morse wavelet  S2 
 Higher Frequency 
 Spectral Flux 
DWT – MRA w1 Multiresolution analysis (MRA) 

constructed using the discrete wavelet 
transform with 'db6' as Mother wavelet. 

 w2 
 w3 
 w4 
 w5 
 s 
STFT LF Power spectral density estimate 

calculated using Hamming window  HF 
Block Based Statistics … All statistics were calculated in blocks of 

20 ms to maintain feature sampling rate 
(50 Hz) 

 …c 
 Min 
 Max 
 IQR 

5.2.4.1.1 Feature Pre-processing 

All audio recordings were high pass filtered with a 2nd order Butterworth IIR filter with 

a cutoff of 20 Hz. The filtering was performed forward and backwards to correct for any 

phase distortion. Artefacts were removed from the recordings using the artefact 

removal algorithm described in Chapter 4. The feature vectors were low pass filtered 

with a zero-phase anti-aliasing filter before being downsampled to 50 Hz (resulting in 50 

sample values per feature per second) to increase the computational performance of 

the algorithm. Finally, feature envelopes were normalised to zero mean and unit 

variance by subtracting their mean and dividing by their standard deviation, formally 

3XV ÅBUY`ÀÃ =
3ÕÀB@Œ À − _ÕÀB@Œ À

…ÕÀB@Œ À
(5.7) 
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5.2.4.1.2 Signal Envelopes 

The homomorphic and Hilbert envelopes were calculated using the methodology 

discussed by Schmidt et al. [68] and in Chapter 3 of this thesis. The Shannon energy and 

Shannon entropy were calculated as 

gœXÀ –—(4) = −3X(4)c qo“(3X(4))c (5.8)
gœX@ V±—(4) 	= −|3X(4)|qo“|3X(4)| (5.9)	 

where 3X(4) is the original audio recording signal normalised to [-1,1] and log(.) is the 

natural logarithm of ..  

5.2.4.1.3 CWT features 

The CWT features were calculated with 4 voices per octave using the analytic Morse 

wavelet. The different CWT features correspond to 3 different frequency bands: CWT - 

S1 from 40 to 80 Hz, CWT - S2 from 90 to 130 Hz, and CWT - Higher Frequency from 150 

to 500 Hz. Each feature envelope represents the standard deviation of the frequency 

bands at each time point, that is 

3÷W@(4) = 	◊ ó (ÿ(ù, 4) − _@)c
òŸ⁄¤Ÿ

òeòLMN

	(5.10) 

where ÿ(ù, 4) is the ù@‹ frequency bin of the 4@‹ sample of the CWT coefficients, ùUVW 

and ù‹Y–‹ represent the frequency band edges, and _@ is the mean of the frequency bins 

at time 4. The CWT - Spectral Flux (3¬K) is a measure of the change in the frequency 

content over time [58] calculated from the CWT magnitude spectrum. Formally,  

3¬K(4) = 	◊ó(|ÿ(ù, 4)| − |ÿ(ù, 4 − 1)|)
õ

òe›

(5.11) 

where û is the total number of frequency bins that the signal is decomposed into. The 

normalisation constants have been excluded for brevity in both equation (20) and (21) 

since all feature vectors are normalised to zero mean and unit variance and thus do not 

contribute any information. 



106 
 

5.2.4.1.4 DWT Features 

The DWT features were calculated using the 'db6' Daubechies mother wavelet and 

decomposition was performed to 5 levels. A maximum overlap discrete wavelet 

transform (MODWT) was performed and the results used to compute a multiresolution 

analysis (MRA) representation of the audio signal. The 'db6' wavelet was chosen 

because an orthogonal wavelet is required for MODWT and it has previously been used 

with success for heart sound analysis [129], in part perhaps due to the similarities in 

appearance between the wavelet and heart sounds. Importantly, especially for heart 

sound segmentation, the MRA acts as a zero-phase filter and the results are time-aligned 

with the original waveform. The interested reader is referred to Percival and Walden 

[136] for an in-depth introduction to the DWT and MRA with MODWT. The absolute 

values of all five of the resulting projections of the signal onto wavelet subspaces (MRA 

w1 - w5) and the scaling space (MRA - s) were included as features.  

5.2.4.1.5 STFT Features 

The power spectral density (PSD) features were computed using an STFT with a 

Hamming window function of length of 20 ms and 50% overlap between windows. This 

windowing function, used to decrease edge effects, can be expressed as, 

fi(u) = 	0.54	 − 	0.46 cos ?2D
u
!C , 0 ≤ u ≤ ! (5.12) 

where ! = v − 1 and v is the window length in samples. The PSD of input signal 3 is 

then be estimated as the square magnitude of the ù@‹ frequency bin of the 4@‹ block, 

formally, 

hg»(ù, 4) = · ó fi(4)3(4)J;∫ò‚„Y;Y‰(@)Â

YÊ(@)

YeY‰(@)

·

c

(5.13) 

where the normalisation constant has been excluded for the sake of brevity and 

frequencies are assumed to be in radians per sample for the same reason. Each PSD 

feature represents the mean of the PSD between 40 - 80 Hz, for PSD - LF, and between 

150 - 500 Hz, for PSD - HF. The PSD feature for time 4 and frequency range ùUVW to ù‹Y–‹ 

calculated can be expressed as, 
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3Á¬Ë(4) =
1
ù@

ó hg»(ù, 4)
òŸ⁄¤Ÿ

òeòLMN

(5.14) 

with ù@ the total number of frequency bins in the range ùUVW to ù‹Y–‹.  

5.2.4.1.6 Block Based Statistics 

Statistical features were calculated using a window length of 20 ms with no overlap 

between windows resulting in 50 sample values for each second, effectively 

downsampling to 50 Hz. For each of the frames the standard deviation (…), variance 

(…c), minimum, maximum, and inter-quartile range (IQR) was calculated. The standard 

deviation for the 4@‹ frame ranging from H`(4) to HÀ(4) can be expressed formally as, 

3È(4) =
1

! − 1 ó „3(u) −	_-(4)Â
c

YÊ(@)

XeY‰(@)

(5.15) 

where _-(4)  is the mean of the input signal 3  for the 4@‹  frame. Each of the other 

statistical features were calculated in a similar fashion with the standard deviation 

replaced by the relevant measure. 
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Figure 5.6: Feature vectors for the 21 features that were extracted to perform emission 
modelling. The original heart sound recording in shown at the top and all y-axis are in arbitrary 
normalised units. The actual input feature vector will have dimensions � × 21, where � is the 
downsampled length of the audio recording. 

5.2.4.2 Emission Probability Models 

In theory, any classification scheme that can provide a probabilistic score for each of the 

possible classes could be used in the model. The bulk of research in heart sound 

classification has focused on discriminating between pathological and normal heart 

sounds, the largest single sources of which are perhaps the 2016 Physionet Computing 

in Cardiology Challenge [137], [138] as well as the 2012 "Classifying Heart sounds 
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Challenge" [139]. The research generated by these challenges is of interest in this work 

since the methodologies developed by these researchers were scored on their ability to 

discriminate between healthy and unhealthy heart sound recordings. Thus, the features 

and classifiers that were best able to discriminate unhealthy heart sounds, provide an 

excellent starting point for the selection of an appropriate classifier for this work. 

The classification method that achieved the most success in the 2016 Physionet 

challenge combined Convolutional Neural Networks (CNNs) and an ensemble of 

AdaBoost classifiers [140]. This method achieved the highest accuracy (86.02%) in the 

competition, with a high percentage of false positives (specificity = 77.8%, sensitivity = 

94.24%). The methodology in second place used an ensemble of support vector 

machines (SVMs) [141], which achieved an accuracy of 85.9% with a much smaller 

amount of spread between specificity (84.9%) and sensitivity (86.91%). This indicates 

that although the SVM method was less successful in correctly identifying all the actual 

cases it had less false positive cases. Which method provides the “best” result depends 

on the specific use case. If the algorithm were to be used as a screening tool it is perhaps 

preferable to have a high amount of false positives compared to false negatives. Other 

classification methods that proved successful in this challenge included neural networks 

[142], k-Nearest Neighbour [143], and random forests [144]. 

In this work a random forest (RF) with 100 decision trees and random feature 

subsampling (feature bagging) is used to estimate the emission probabilities for the 

HMM. The RF methodology is considered since it has achieved success in heart sound 

analysis in previous work. For example, Nabhan Homsi et al. [144] report a sensitivity of 

88.5% and specificity of 80.5% in classifying between unseen examples of abnormal and 

normal heart sounds. Decision trees, the building blocks of random forests have also 

shown promise in heart sound analysis; Pavlopoulus et al. [145] was able to correctly 

distinguish 45 out of 50 cases of mitral regurgitation and aortic stenosis using decision 

tree classifiers. Finally, the intuitively motivated random forest/decision tree classifier 

provides an interesting parallel to the more mathematically rigorous logistic regression 

classifier. The use of a random forest is compared with a logistic regression model similar 

to that used by Springer et al. [70] examined in the next section.  
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5.2.4.3 Logistic Regression 

The output of a regression analysis using a logistic function (logistic regression) provides 

a natural probability score and as such is well suited for the emission probability 

modelling of the HMM. A one-versus-all approach was applied in which a binary 

classifier was trained with samples from one class as the positive class and samples from 

all the other 4 classes as the negative class. This resulted in a total of 5 binary logistic 

regression models. For this binary logistic regression problem, the posterior probability 

of the positive class, ÍE, given the feature vector Î can be written as 

á(ÍE|Ï) = …(Ì	 ∙ 	Î) (5.16) 

where Ì is the vector of model parameters and, 

…(Ì	 ∙ 	Î) 	=
1

1 + J(WÓ	Ω∑ W⁄Ô⁄)
⁄ÒÚ

(5.17) 

the logistic sigmoid function for an w  dimensional feature space. From probability 

theory it follows that the probability for the negative class (or in this case that the 

sample was produced by a different state) is then simply á(Íc|Ï) = 1 − á(ÍE|Ï). The 

binary learners are organised using an error-correcting output code (ECOC) model [146] 

and the results are determined by aggregating the results from each of the binary 

classifiers. This approach, similar to the approach used by Springer et al. [70], was 

implemented to provide a baseline comparison while allowing for more predictor 

variables (a higher dimensional feature space) than the methodology employed by 

Springer et al. 

5.2.4.4 Random Forest Classifier 

To introduce the concept of a random forest (RF) classifier it is first necessary to provide 

a definition for the machine learning concept of a decision tree (DT), the primary building 

block of random forests. A decision tree (more specifically a binary decision tree) can be 

thought of as a sequence of binary decision points (e.g. yes/no questions, greater 

than/less than thresholds) that a piece of information (a sample) is presented to and 

that result in a final classification (or category). In the terminology of decision trees, a 

sample is passed from the root (at the start of the tree) through the decision nodes (the 

binary outcome questions) until it reaches a leaf node (the final category) that 
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corresponds to the finding of the DT. Decision trees provide a natural and intuitive way 

to codify a decision-making process. As they correspond to a series of binary decisions 

on the input variables, decision trees are easily interpretable by human observers. 

Unfortunately, decision trees also tend to overfit the data they are trained on and may 

provide suboptimal decision boundaries since the boundaries they create are always 

aligned to the feature axis [94]. 

Random forests attempt to improve the performance (and decrease the overfitting) of 

the decision tree algorithm by using an ensemble of decision trees fitted to different 

random subsets of the input variables (feature bagging) [147]. The final classification 

result is determined by the mode of the results from the decision trees and the 

probability of a class as the ratio of decision trees that "voted" for the class in question. 

This rather natural interpretation of the results as probabilities makes the random forest 

algorithm well suited for the modelling of emission probabilities. 

5.2.4.5 Emission probability performance metrics 

The performance of the emission probability model was assessed using 10-fold cross 

validation. Samples from the training dataset were randomly partitioned into 10 training 

and validation sets and trained and tested in turn on each of these sets. The reported 

metrics for these models is then the performance of the model on the unseen samples. 

It is very likely that the training and validation set may contain samples from the same 

subject; this limitation was considered acceptable as the emission models are meant to 

determine the probability of a given sample coming from each of the heart sound states 

(S1, Sys, S2, Dias, SysMur) and not from a particular subject or disease state. 

Since the classifiers are used for modelling the emission probabilities, the overall 

classification accuracy is not the primary measure of concern; it is more important for 

the classifier to give a high probability score to the correct class. For example, if the 

classifier correctly classifies a majority of 'S1' samples but assigns a very low probability 

for the 'S1' samples that it misclassifies, the overall performance of the algorithm will 

be lower than a classifier with similar accuracy but a greater amount of "certainty" in its 

scoring. This is referred to as the classification margin, the amount of difference 

between the classification score of the true class and the maximum classification score 

in the false classes. In this work the classification margin is calculated as 
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É = «n(3) (5.18) 

where 3  is an observation, « = Û 1	Hn	3	HÑ	∏oppJ∏4q«	∏q.ÑÑHnHJ9
−1	Hn	3	HÑ	Hu∏oppJ∏4q«	∏q.ÑÑHnHJ9 , and n(3)  is the 

score (probability in this work) assigned to the correct class. The classification margin 

ranges from -1 (observations that are assigned to an incorrect class with probability 1) 

to 1 (observations that are assigned to a correct class with probability 1), with a 

classification margin of 0 indicating that the classifier assigned equal probability to the 

correct class and an incorrect class.  

5.2.5 Transition Probabilities 

The extension of the HSMM to include a systolic murmur state requires a modification 

to the transition probabilities to allow entry into the new state. In this duration 

dependent version of the HMM the transition probabilities play the role of providing a 

structure of which transitions are possible and which are not.  Since the systolic murmur 

state is essentially an alternative systole or stated otherwise it occurs in parallel to the 

normal systolic state, the same transition rules apply as to the "Systole" state. Formally, 

for state order gÙ 	= 	 {g1, g«Ñ4oqJ, g2, »H.Ñ4oqJ, g«ÑwFp} the transition matrix ñ is set 

to 

ñ =

⎣
⎢
⎢
⎢
⎡
0 0.5 0 0 0.5
0 0 1 0 0
0 0 0 1 0
1 0 0 0 0
0 0 1 0 0 ⎦

⎥
⎥
⎥
⎤

(5.19) 

5.2.6 Duration Probabilities 

In the duration dependent version of the HMM the state durations are made explicit 

parameters of the model. As shown in Figure 5.7 the durations are modelled using 

normal distributions. These probability distributions govern how much time is spent in 

each state. More specifically the duration probabilities limit the possible duration of 

states and make certain state durations more likely than others. 
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Figure 5.7: Example duration distributions for a heart rate of 65 bpm and an estimated systolic 
time interval of 235 ms.  

5.2.6.1 Fundamental Heart sound Duration Models 

The possible duration of the fundamental heart sounds is not always obvious. Both the 

heart sounds are composed of multiple sounds that may be noticeably split under both 

normal and pathological situations. A split represents a noticeable pause between 

components of the heart sounds and in split cases the heart sounds would have longer 

duration than ones without splits. The splitting of the second heart sound occurs with 

inspiration in healthy subjects due to changes in pulmonary pressure, while fixed 

splitting (occurring during both inspiration and expiration) is possible in certain disease 

states, for instance atrial septal defect [112]. The first heart sound is split under normal 

conditions and may present with even wider splits in certain disease conditions, or may 

present without any noticeable split under other conditions [113].  

Exact modelling of the fundamental heart sound durations is problematic as well as not 

being essential to the operation of the model. The durations of the fundamental heart 

sounds are approximated using a normal distribution based on mean and standard 

deviations of heart sound durations reported in literature [68], [70]. In this work the 

durations from the dataset are used to update the means reported in literature. The 

means and standard deviations used in previous work (shown in Table 5) were used as 

the prior distribution and updated using state duration data from the dataset described 

in this chapter using Bayes theorem. Formally, 
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á(Ñ4.4J	9Fp.4HouÑ|9.4.) =
á(9.4.|Ñ4.4J	9Fp.4HouÑ)á(Ñ4.4J	9Fp.4HouÑ)

á(9.4.) (5.20) 

The posterior distribution á(Ñ4.4J	9Fp.4HouÑ|9.4.) , which is the state durations 

model after the new observations, was estimated using variational inference [94] to 

infer the new means and standard deviations of a normal distribution. The resulting 

posteriors, and thus the fundamental heart sound duration distributions used in the 

model, are shown in Figure 5.8, along with the prior distributions and histograms of the 

durations measured from the dataset. 

Table 5: Fundamental heart sound duration distribution update 

 Prior (s) Likelihood (s) Posterior (s) 
S1 duration ô = è. Ö˚˚	

¸ = è. è˚˚  
ô = è. Ö˝˛	
¸ = è. èÖÖ 

ô = è. Ö˝˛	
¸ = è. èÖ˚ 

S2 duration ô = è. èˇ˛	
¸ = è. è˚˚ 

ô = è. ÖÖ˝	
¸ = è. èÖè 

ô = è. ÖÖ˝	
¸ = è. èÖÖ 

 

Figure 5.8: The posterior, prior, and likelihood distributions of the first and second heart sound 
durations as modelled in this work. 

5.2.6.2 Systolic and Diastolic Duration Models 

Systole and diastole represent the periods in the heart cycle when the ventricles of the 

heart are, respectively, contracting and relaxing. Thus, these are also the periods in 

which blood flows through the heart valves, either out of or into the ventricles. As can 

clearly be seen in Figure 5.9 the distribution of systole duration is much more peaked 

and lower than that of diastole. The mean durations are also plotted against heartrate 

showing a clear negative correlation between diastolic duration and heartrate  
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(correlation coefficient = -0.79)  and a weaker negative correlation between systolic 

duration and heartrate (correlation coefficient = -0.55).  

 

Figure 5.9: Histograms of the mean systolic and diastolic state durations from 118 heart sound 
recordings (see text for further details on data), along with scatter plots of the state durations 
and the estimated heart rate of the recordings. 

In this work the diastolic state duration is modelled using a normal distribution with a 

mean estimated as a power function of heart rate and a standard deviation modelled 

using a log-logistic distribution. The two components of the diastolic duration model are 

shown in Figure 5.10. The parameters of the power function and log-logistic distribution 

were estimated from the durations measured in the dataset using maximum likelihood 

and are likely to overfit the data available in the dataset. However, the impact of the 

error introduced by this overfitting is expected to be minimal if the dataset is in fact a 

representative sample of the "true" distribution of diastolic durations, which seems 

likely (see section 5.2.1 for further discussion). 
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Figure 5.10: Illustrations of the models used to determine (a) the mean, and (b) the standard 
deviation of the diastolic duration.  

For modelling of the systolic duration the method employed by Schmidt et al. [68], which 

estimates heartrate and systolic time interval by finding peaks in specific time windows 

of the autocorrelation of the audio recording, was adapted. While effective, this method 

relies on the heart sounds being the most prominent features of the recording (S1 for 

heartrate, and S2 for systolic time interval), which is not always the case in recordings 

with loud murmurs. When S2 is very soft or not present in the heart sound the algorithm 

is not able to accurately estimate the duration of the systolic state. The algorithm also 

struggles when a recording contains ectopic beats (beats that occur out of rhythm) 

which may occur in otherwise normal hearts.  

In this work the heart rate estimation is performed with narrowband signal filtered to 

between 25 and 125 Hz to limit the amount of non-FHS sounds in the autocorrelation of 

the signal, a peak finding algorithm ("findpeaks" from the MATLAB Signal Processing 

Toolbox) is used to find the most likely peak that represents S1 in the autocorrelation of 

the signal. The heart rate estimation is also limited to between 40 and 140 bpm to 

increase the robustness of the algorithm. The systolic time interval To limit the impact 

of the previously mentioned challenges to systolic time estimation, the window of time 

in which the peak that indicates the systolic interval duration is expected to occur was 
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windowed using a normal distribution with a mean of 209 ms and a standard deviation 

of 70 ms. 

3¬!(4) = 	é(3(4)|_ = 0.209, …c = 0.0049) (5.21) 

where 3(4) is the autocorrelation of the audio recording and the parameters of the 

normal distribution é are given in seconds. This modification raises the probability of 

the peak occurring near the expected mean while still allowing prominent peaks further 

away from the expected mean to impact the estimation of the systolic time interval. The 

mean and standard deviation of	é were estimated from the training data. Similar to the 

diastole duration model the standard deviation of the systolic duration was modelled 

using a log-logistic distribution with parameters estimated from the dataset. The 

window is shown in Figure 5.11 (a) along with the log-log distribution used to model the 

standard deviation of the systolic time interval. 

 

Figure 5.11: Probability density functions for the systolic duration model. The PDF shown in (a) 
is used as a windowing function to modify the signal autocorrelation when looking for a peak 
that represents the systolic time interval. The standard deviation of the systolic duration is 
modelled by the log-logistic PDF shown in (b) with maximum likelihood parameters estimated 
from the dataset. 



118 
 

5.2.7 Initial probabilities 

Based on the estimates of the duration probabilities the initial probability vector ¢, is 

set to 

¢	 = 	 ë
_¬E

"ÍÃŒ 
_`—`

2"ÍÃŒ 
_¬c

"ÍÃŒ 
_ÃYB`
"ÍÃŒ 

_`—`
2"ÍÃŒ 

ì (5.22) 

Where _ represents the mean of the duration distribution for a given state and "ÍÃŒ  

is the expected duration of the average heart cycle in the recording at hand. The 

probability of the model starting in either the systolic or systolic murmur state is 

considered together and set to be equally likely given the expected duration of systole. 

5.2.8 Overall performance of the model 

To determine the overall performance of the model as a heart sound labeller in a way 

comparable with previous work the model was tested in different ways. Firstly, the 

ability of the model to accurately identify the fundamental heart sounds to within a 

tolerance was tested; this can be called the segmentation ability of the model. Secondly, 

the model was tested for its ability to correctly identify systolic murmur states; this is 

referred to as the classification ability of the model. Lastly, the model is assessed in its 

ability to provide informative and accurate "labels" to different parts of the heart sound 

recording. Based on the results of the emission modelling cross validation cross 

validation a random forest classifier was used for the rest of the testing. 

5.2.8.1 Heart sound Segmentation 

To determine the heart sound segmentation ability of the model we first determine its 

ability to accurately find S1 and S2 individually; this is done by comparing the model's 

results to the "true" label sequence as derived from ECG and manual annotations. The 

following procedure is explained for the first heart sound (S1), but the same steps were 

followed for the second heart sound (S2).  

The segmentation ability of the proposed model was tested by specifying a √ ms window 

around the midpoint of each of the "true" labelled S1. We denote this window as "Y  

where H indicates the Hth sequence labelled as S1 in the "true" label sequence.  

"Y = 	 #ÏY ± 		
√
2% 	 (5.23) 
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where ÏY  is the midpoint of the Hth sequence labelled as S1 rounded up to the nearest 

sample. For each of the given S1 sequences in a recording (each of the series of samples 

marked as S1) we postulate three possible outcomes for the model: either the model 

has correctly identified the S1 region (True Positive), the model has identified a S1 but 

not within the bounds of the true label (False Positive), or the model has not identified 

a S1 region at all (False Negative). Note that we do not define the notion of "True 

Negative" for this task. We use the notation &Y  to indicate the outcome for the Hth S1 in 

the model label sequence. Next, we denote each of the individual sequences of samples 

that the model has labelled as S1 with 'Y  where H indicates the Hth S1 in the model label 

sequence and we use æY  to indicate the midpoint of the Hth S1 sequence. The heart 

sound states identified by the model are then marked as true positive (TP) if æY  falls 

within the window "Y. If æY  is not within in the bounds of "Y  then it is marked as a false 

positive (FP). Using the defined notation, we can write, 

&Y = 	 (		�h	Th	
Hn	æY	∆	"Y
o4ℎJpfiHÑJ	

(5.24) 

Since false negatives are S1 sequences not detected by the model we make the 

assumption that if the true label sequence contains more S1 sequences than the model's 

sequence the difference is the number of false negatives.  

T!@V@BU 	= 	 (	! − w
0

	Hn	!	 > 	w	
o4ℎJpfiHÑJ

(5.25) 

where we use T!@V@BU	to indicate the total number of false negatives in a recording. 

Multiple values of the tolerance parameter √ are reported to show the segmentation 

ability of the model at difference tolerances. An example of how the difference values 

of √ look relative to an actual heart sound is shown in Figure 5.12. 
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Figure 5.12: Illustration of the different segmentation tolerances. A fundamental heart sound 
was determined to be correctly identified if the middel of the region marked as S1/S2 fell 
inside the region indicated by the markers for each of the values of √. 

The segmentation problem is similar to an information retrieval problem (e.g. document 

retrieval) in which it is important to retrieve all relevant events (recall) but also 

important that the retrieved events are actually relevant (precision). Using confusion 

matrix metrics, the recall is calculated as 

)J∏.qq	(gJuÑH4H*H4«) 	= 	
�h

�h	 + 	T!
(5.26) 

and the precision is calculated as 

hpJ∏HÑHou	(hoÑH4H*J	hpJ9H∏4H*J	+.qFJ) = 	
�h

�h	 + 	Th
(5.27) 

In simpler terms, the question "does the model identify all the heart sounds in the 

recording?" is addressed by the reported recall and the question "are all the sounds the 

model has identified in the recording actually correctly identified fundamental heart 

sounds?" is answered by the precision metric. These two metrics are combined in the 

TE  score, calculated by taking the harmonic mean of the recall and precision, which 

provides a sense of the overall performance of the model and provides a metric that is 

comparable to previous work. Since the precision and recall both represent ratios, the 

harmonic mean provides an intuitive average of these two values. Accuracy does not 
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provide a suitable measure for unbalanced datasets [148], and is not reported in this 

work. 

5.2.8.2 Systolic Murmur Classification 

The classification ability of the model was tested as a binary classification problem. Each 

of the "Systolic Murmur" and "Systole" states identified by the model were compared 

to the annotated state at that time and scored as a true positive (TP), false positive (FP), 

true negative (TN), or false negative (FN).  To determine the ability of the model to 

distinguish between normal systolic states and those with murmurs, the model was 

tested at different settings of prior class probability, or equivalently, the 

misclassification cost for the "Systole" and "Systolic Murmur" states. Thus, the levels of 

sensitivity and specificity of the murmur can be tuned to an acceptable level of false 

positives/false negatives. The informedness (Youden's J for the binary case [149]) of a 

classifier can be calculated as 

r	 = 	�h)	 + 	�!)	 − 1 (5.28) 

where TPR and TNR respectively are the true positive rate and true negative rates of the 

classifier. The informedness of a classifier quantifies how much knowledge a classifier 

demonstrates about the underlying true state when specifying a sample as either 

positive or negative. An informedness of +1 indicates that the classifier correctly 

identifies each positive state as a positive and negative state as a negative while an 

informedness of 0 indicates that the classifier does not perform better than randomly 

assigning samples to classes. An informedness of -1 indicates a completely "perverse" 

classifier that classifies all positives as negatives and vice versa, of course in this case by 

inverting the output we are left with perfect classification. The MCC is a measure of 

classification quality that is suitable for classification tasks on unbalanced datasets [150]. 

As a confusion matrix metric, it is defined as, 

wÍÍ =
�h × �! − Th × T!

,(�h + Th)(�h + T!)(�! + Th)(�! + T!)
(5.29) 
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5.3 Results 

5.3.1 Emission modelling 

The distributions of the classification margins for the random forest and ECOC logistic 

regression classifiers are shown in Figure 5.13 and the means and 95% confidence 

intervals over 10 folds are reported in Table 6. The mean classification error (also 

referred to as loss) over the 10-fold cross validation is a measure of the proportion of 

samples that are misclassified. The classification edge represents the mean of the 

classification margins; higher values indicate that the model assigns higher probabilities 

to the correct class. 

 

Figure 5.13: Classification margin distributions from the classification results of the 10-fold 
cross validation for the random forest and ECOC logistic regression classifiers. The boxplots in 
(a) show the median (red line in centre) and 25th/75th percentiles (boxes). Figures (b) and (c) 
show the probability and cumulative distribution of the random forest and logisitic regression 
respectively. 

Table 6: Average performance of the classifiers used for emission probability modelling 

Method Mean Classification 
Error (% Loss) 

Mean Classification 
Margin (Edge) 

Random Forest 39.64± 0.350 0.1357± 0.002 
ECOC Logistic 
Regression 

46.87± 0.297 0.031± 0.001 

5.3.2 Heart sound Segmentation 

To account for the random elements in the proposed model Table 7, 8, and 9 show the 

mean and 95% confidence intervals for 10 iterations of the model. Table 7 shows the 
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segmentation results on the entire testing dataset described in section 5.2.1.2 given 

different tolerance values. 

Table 7: Performance metrics for heart sound segmentation for different tolerances 

Tolerance(-) Recall (%) Precision (%) F1-score (%)  

.è	/{ 99.2 ± 0.1 80.9 ± 0.5 89.1 ± 0.3 
Öèè	/{ 99.3 ± 0.1 90.2 ± 0.3 93.9 ± 0.3 
˚èè	/{ 99.2 ± 0.1 97.1 ± 0.3 98.2 ± 0.2 

We compare the results of the proposed labelling algorithm on the testing dataset with 

the results of the publicly available Springer heart sound segmentation algorithm [70] 

for a tolerance level (√) of 100 ms. This comparison is shown in Table 8. The Springer 

algorithm does not contain any random elements and so no variance between iterations 

is expected. 

Table 8: Comparison of heart sound segmentation results on the complete testing set 

Algorithm Recall (%) Precision (%) F1-score (%) 

Springer HSS (LR-HSMM) 97.3 87.2 90.6 
Probabilistic Heart Sound Labelling 99.3 ± 0.4 90.2 ± 0.3 93.9 ± 0.3 

The addition of the systolic murmur state is expected to improve segmentation 

performance in recordings that contain systolic murmurs. In Table 9  we report the 

results of the two algorithms for only the recordings in the testing dataset that 

contained systolic murmurs (a subset of the testing dataset containing 23 recordings). 

Table 9: Segmentation results for heart sounds containing systolic murmurs 

Algorithm Recall (%) Precision (%) F1-score (%)  

Springer HSS (LR-HSMM) 93.4  68.7 77.1 
Probabilistic Heart Sound Labelling 98.8 ± 0.9 86.2 ± 0.7 91.4 ± 0.8 

5.3.3 Systolic Murmur Classification 

The resulting ROC curve is shown in Figure 5.14, along with two operating points and 

their corresponding confusion matrices. The first operating point, indicated by the red 

circle (a), is the point at which the informedness of the classifier is maximised. The 

second operating point, indicated by the green asterisk (b), is the point at which the 

Matthew's correlation coefficient (MCC) is maximal (in this case point (b) also 

corresponds to the maximum value of the accuracy and the F1-score). 
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Figure 5.14: Receiver-Operator Characteristic (ROC) curve for systolic murmur classification. 
The marked operating points correspond to (a) maximum Informedness, the point at which the 
tradeoff between sensitivity and specificity is lowest, and (b) maximum MCC, a confusion 
matrix metric used to give a balanced indication of overall classification quality (see text for 
more details). 

5.3.4 Probabilistic Heart Sound Labelling  

In the previous sections the performance of the different aspects of the model were 

assessed individually and while this provides interesting and important information 

about these functionalities of the model, in reality, the model does not perform these 

functions in isolation and in fact the proposed model is not a classifier attempting to find 

the "correct category" for a sample. The systolic murmur state acts as another possible 

state the duration dependent HMM has access to when discerning the most probable 

sequence of heart states that produced the observable sequence.  
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The model not only provides us with systolic murmur label but also (more fundamentally 

in fact) provides a score for how probable the murmur is given the model parameters. 

Since this score is computed in a sample by sample manner through the emission model, 

we have opted to report the expected value (mean) of the individual samples of each 

murmur state across the duration of that state to represent the probability that the 

model has assigned to that murmur. The performance metrics in the previous sections 

provide interesting quantitative measures of the proposed mode. To give an idea of the 

labelling function of the model this section presents specific examples (the heart sounds 

from which the heart cycles used in Chapter 4 were taken) and allows the reader to get 

a qualitative sense of the performance of the proposed model.  

Figure 5.15 shows the output of the proposed heart sound labelling algorithm on a 

normal, healthy heart sound recorded at the pulmonic area. The red line represents the 

state labels (as indicated on the right-hand axis). The numbers in black above the systolic 

state labels shows the average probability assigned to the 'SysMur' state by the random 

forest emission model. In this example the model has successfully segmented the heart 

sounds and correctly identifies each of the systolic states as not containing any 

murmurs. The second systolic state has been assigned a probability of 0.37 of containing 

a murmur, the highest of any of the states. This is likely due to a higher amount of noise 

in this systolic period; this also seems to be the case for the systolic period that occurs 

at around 5 seconds with an average murmur probability of 0.34. 
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Figure 5.15: Heart sound (a). A normal, healthy heart sound recorded at the pulmonic area. 
This heart sound has been successfully labelled and relatively low representative probabilities 
assigned to the presence of systolic murmurs. 

The next example, shown in Figure 5.16, presents more of a challenge to the algorithm 

and, consequently, interesting results. This example contains significant noise artefacts 

and an undiagnosed, asymptomatic, systolic murmur recorded at the aortic area. The 

algorithm incorrectly labelled the first heart cycle and the first region labelled SysMur is 

in fact a first heart sound. Besides this error the rest of the recording is segmented 

correctly. Two anomalies occurred with the labelling of the systolic murmur state: the 

first, at 4 seconds, had an average murmur probability of 0.64 but was not assigned to 

the SysMur state by the Viterbi algorithm, the second, just before 6 seconds had a lower 

average of 0.43 but was assigned to the SysMur state.  These anomalies most likely arise 

because the product, and not the mean, of the emission probabilities are used by the 

model to determine the state probabilities. This suggests that perhaps the geometric 

mean of the murmur state probabilities would give a more intuitive summary of the 

probability assigned to a given murmur by the model.  
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Figure 5.16: The state labels of heart sound (b) shows some interesting anomalies. Although 
the probability score of the murmur at around 4 seconds (0.64) is relatively high the decoding 
of the state sequence has labelled it as a normal systolic state, while murmur at around 6 s 
with a lower score of 0.43 has correctly been labelled as a systolic mumur state.  

The third example heart sound recording is shown in Figure 5.17. This recording was 

made at the apex and contains a prominent mitral regurgitation murmur due to mitral 

valve prolapse. This recording contains very low level of noise relative to the heart 

sounds and was labelled without any significant issues. All the systolic states were 

labelled as SysMur with high mean emission probabilities (>0.8) for all six of the systolic 

murmurs. 

 

Figure 5.17: Heart sound (c) with a prominent systolic murmur and a very high SNR that has 
been correctly labelled by the proposed model. The algorithm is quite certain of the systolic 
murmur in this recording, as shown by the high probability score for the murmur states. 
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The final example, heart sound (d) from the dataset used in Chapter 4, is shown in Figure 

5.18. This recording presents another challenging and interesting case for the proposed 

algorithm. The recording, made at the pulmonic area, presents with a fourth heart 

sound (S4), a prominent early diastolic murmur, a slight murmur at the start of systole, 

and slightly ectopic (out of rhythm) heart cycles. The heart sound segmentation of this 

recording has largely been successful despite the erratic heart rhythm in the first 3 

seconds of the recording, although the third and the final S2 sound labels are slightly 

delayed. The means of the emission probabilities are relatively low, an interesting result 

given the soft and short nature of the murmur. The segmentation error of the third S2 

may have included some of the diastolic murmur into the analysis of the systolic state, 

explaining the high probability given to the third systolic murmur. The relatively low 

score given to the second systolic murmur is more puzzling; one possibility is that slightly 

more of systole was included at the end of S1 and thus less of the short, early systolic 

murmur was included in the analysis of the murmur probability.   

 

Figure 5.18: Heart sound (d) presents another interesting case. As discussed during the ICA of 
this example, while this heart sound has a prominent diastolic murmur, the systolic murmur is 
subtle and occurs directly after the first heart sound. The model has correctly labelled the 
majority of the systolic states as containing a murmur, albeit with relatively low probability 
scores. 

5.4 Discussion 

In its current guise the model described and constructed in this chapter can be 

conceptualised as a two-stage classifier. In the first stage the samples are treated as 
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independently and identically distributed (I.I.D.) data and scored by the emission 

probability model. In the second stage the temporal characteristics of the signal, 

modelled by the duration, transition, and initial probabilities of the HSMM are used in 

conjunction with the emission probabilities to find the most likely sequence of states 

(that the heart occupied) that led to the observations (the audio recording). 

The derivation of the emission probabilities was tested using two contrasting 

methodologies: the non-parametric random forest with more intuitive than 

mathematical underpinnings and a parametric logistic regression model. In this case, the 

random forest (RF) classifier outperformed the ECOC logistic regression (LR) classifier 

with a lower cross-validated classification error and, more importantly, a higher 

classification edge (mean classification margin). The classification margin (illustrated in 

Figure 5.13) indicates that the random forest, on average, gives a 0.1357 higher 

probability score for the correct class, while LR averages 0.031. The mean classification 

loss over ten folds for RF was 39.64% and for LR was 46.87% both lower than what would 

be expected from a random guess (80% for a 5 class classifier), but, as can be seen when 

viewing the cumulative distribution of the classification margin, most of the correct 

classifications that LR achieved are located close to zero margin, meaning that the 

probability assigned to the correct class was only slightly higher than that assigned to 

the second highest scored class. Looking at the cumulative distribution for RF we can 

see that the probability scores are much more spread out between 0 and 1, further 

illustrating the result suggested by the classification edge. Since, as stated before, the 

emission probability modelling is not actually a classification problem but an uncertainty 

modelling one, a fully Bayesian treatment of the emission probabilities, that is modelling 

the emission probabilities using a completely probabilistic generative model, could 

potentially provide more realistic estimates of the emission probabilities than the 

statistical classification tools used in this work. The construction and training of such a 

model is non-trivial and outside the scope of this work but could provide interesting 

future research.  

The application of other classification techniques also holds promise for emission 

probability modelling. Convolutional neural networks (CNN), a neural network 

architecture that has been proven to be effective in image recognition tasks [151], have 

recently also been applied to the task of emission probability modelling [152]. A similar 
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methodology employing CNNs has been shown to be effective in distinguishing between 

isolated time-frequency representations of the fundamental heart sounds [153]. It is 

feasible that a classification scheme that is powerful enough, or in other words, able to 

correctly identify the "true" origin of sound events could perform both the tasks of the 

emission probability model and the HSMM and research has been done in this direction 

[88], [141]. The proposed model, and its conceptualisation as a two-stage classifier, has 

the advantage of transparency; an important advantage in the case of a diagnostic aid. 

The performance of the second stage of the model was measured by its segmentation 

and classification ability. The model was able to accurately segment heart sound 

recordings, even in the presence of prominent murmurs obscuring the fundamental 

heart sounds. These findings agree with previous finding on the effectiveness of 

duration dependent HMM for heart sound segmentation [154]. As shown in Table 9, the 

model outperforms the Springer segmentation algorithm [70] on a challenging subset of 

testing data, the 23 systolic murmur recordings, at a tolerance level of 100 ms while 

maintaining a high level of performance overall.  

The model was able to identify most systolic murmurs in the testing dataset. Regardless 

of operating point, most of the false negatives (as shown in the confusion matrices of 

Figure 5.14) were from two heart sound recordings that presented with murmurs that 

were short in duration and low in amplitude. One example is shown in Figure 5.18 in 

which the model has segmented the heart cycles without error but has not detected the 

heart murmur. The duration of the murmur is the most likely suspect for these false 

negatives as it seems probable that even if the murmur samples were identified as such, 

the number of "normal systole" samples may have overwhelmed the probabilities 

during the Viterbi state sequence decoding. Murmurs such as these might be addressed 

with an extension to the state transition model which makes a serial connection 

between the Systolic Murmur and Systole possible, although such an addition would 

increase the complexity of the algorithm.  

In adjusting the classification cost/prior probability of the systolic and systolic murmur 

state it is also important to consider the specificity. In assessing the classification ability 

of the model, it is important to note that the proposed model does not attempt to make 

any diagnostic claims about the underlying pathology or cause of the systolic murmur. 
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It simply tries to determine if a state sequence containing what it "understands" to be 

systolic murmurs is more likely than one that does not, based on the content of the 

heart sound recording. Diagnosis is left to the operator who can use the results from the 

algorithm as a supplement to their overall investigation. 

5.5 Conclusion 

In this chapter a model was proposed that extends the process of heart sound 

segmentation to include the identification of systolic murmurs. The temporal 

correlations modelled by a duration dependent hidden Markov model were combined 

with a feature extraction and classification methodology to automatically label 

interesting regions in heart sound recordings. The results of the model further 

demonstrate that there is significant potential in the use of these techniques in 

automated cardiac auscultation. 

The addition of further cardiac states, a "diastolic murmur" and a "noise" state would 

greatly increase its value. Whether or not the added complexity of adding more and 

more states to the HMM would lead to the effectiveness of the model decreasing 

remains to be seen. Evaluation of the model also becomes more involved as the 

complexity increases and as the workings of the model becomes more and more opaque 

the main advantage of transparency is lost. The expansion of the model is left up to 

future work and for now systolic murmurs remain its only pathological target.  

The next step in this work is to make use of the labels derived from the model developed 

in this chapter to further develop a system able to evaluate and describe systolic heart 

murmurs in a way that is intelligible and acceptable to the user. This description relies 

on psychoacoustic analysis of systolic heart murmurs, and this is explored and modelled 

in the next chapter.   
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Chapter 6 Psychoacoustic Descriptions of Heart Sounds 

This chapter starts with an introduction to some fundamentals of human sound 

perception, after which specific signal processing techniques for extracting perceptual 

features are discussed. 

6.1 Fundamentals of psychoacoustics 

Psychoacoustics is the study of sound and human perception of sound; of the physical 

properties of sound and the perceptual response to these properties [155]. It is a branch 

of psychology that attempts to answer questions regarding how our auditory system 

senses, analyses, and interprets acoustic waves. The field of psychoacoustics goes well 

beyond the scope of this thesis and only the small part applicable to the analysis of heart 

sounds is discussed here. For a more in depth and expansive introduction and 

explanation of psychoacoustics the reader is referred to “Psychoacoustics: Facts and 

Models” by Zwicker and Fastl [156]. 

6.1.1.1 Why psychoacoustics? 

Psychoacoustic modelling was first introduced as a possible approach to the analysis of 

heart sounds by a 2011 conference paper by Patil el al. [157]. The authors suggested the 

use of psychoacoustic models as a framework for deriving the "quality" of a given heart 

sound using descriptors such as 'loudness', 'sharpness', 'tonality', 'strength', and 

'roughness'. This work aims to extend this idea to the specific analysis and description 

of heart murmurs. Firstly, we aim to firmly motivate the use of psychoacoustics in heart 

sound analysis. 

For a diagnostic instrument to be useful it needs to be accurate in its data collection (i.e. 

its ability to detect, sample, and discriminate the relevant signal correctly) and it also 

needs to be able to report these findings in a way that is interpretable by physicians or 

technicians. This second aspect can be called the usability of the instrument. One way 

of understanding usability,, specifically in terms of diagnostic aids, is as a measure of 

how well the instrument translates diagnostically important information into a form that 

the user can understand and integrate. A good example of the importance of usability 

is functional Magnetic Resonance Imaging (fMRI), a powerful imaging technology that 

has been used, among others, in the field of neuroimaging. Problematically though, fMRI 
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results contain too much information for a human being to interpret and have to be 

analysed using specialised statistical software packages [158]. Recently though, the 

results reached by the software packages have also been called into question [159], 

[160]. This highlights the importance of the analysis instrument being able to explain the 

way in which it draws conclusions and not to be seen as a "black box" that delivers the 

correct answer without question. The importance of psychoacoustics in this work is then 

to translate the findings of computer assisted cardiac auscultation into concepts and 

terms known to anyone familiar with, but perhaps not an expert in, traditional cardiac 

auscultation. In this way, the proposed models agree more with the perception of the 

heart sounds producing results that are understandable and reasonable to a user, 

therefore increasing the acceptability of the algorithms as a decision support tool. 

6.1.1.2 Perception of sound: The human auditory system 

The external human auditory system, the outer, middle, and inner ear, is shown in Figure 

6.1. What is commonly referred to as the ear, the auricle, forms the outer ear together 

with the ear canal. The middle ear is composed of the tympanic membrane (eardrum), 

and the three ossicles, the malleus, incus, and stapes. Finally, the inner ear consists of 

the spirally coiled cochlea and the auditory nerve that innervate sensitive "hair-like" 

cells in the cochlea. 
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Figure 6.1: Graphical depiction of the outer, middle, and inner ear. The frequency annotations 
correspond to the approximate regions of the cochlea that are sensitive to these frequencies 
[161]. 

The auricle of the outer ear collects sound energy and transmits it to the ear canal and 

ear drum. The ear canal acts as a transmission line for the collected/received sound 

energy allowing the sensitive middle and inner ear to be protected in the hard temporal 

bone while also being placed nearer to the auditory processing centres of the brain. The 

ear canal also acts as a frequency filter, exhibiting a pronounced sensitivity at 

frequencies around 4 kHz. 

The tympanic membrane, ossicles, and oval window of the middle ear act as a 

mechanical impedance matching system. The motion of air particles colliding with the 

tympanic membrane, with large displacement and small force is transferred into large 

force, small displacement motion of the fluid in the inner ear. The malleus (hammer) is 

securely attached to the tympanic membrane and transfers any motion to the footplate 

of the stapes (stirrup) through the incus (anvil). The ratios of the lengths of the ossicles 

along with the ratio of the area of the tympanic membrane to the area of the oval 

window results in an almost perfect match of the impedances of the air outside the ear 

and the body fluid inside the ear at around 1kHz in human beings.  
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Conversion of acoustic waves into electrical action potentials occurs in the cochlea of 

the inner ear (Figure 6.2 and Figure 6.3). When the stapes is displaced by acoustic waves 

interacting with the tympanic membrane it in turn causes the attached oval window the 

move. The oval and round windows form the two ends of the perilymph-filled scala 

vestibuli and scala tympani which are connected at the apex of the cochlea 

(helicotrema). Movement of the oval window causes displacement in the perilymph 

which in turn moves the basilar membrane and endolymph in the cochlear duct (scala 

media). The base of the basilar membrane is stiff and narrow compared to the apex 

(shown as relative length of membrane fibres in Figure 6.3). This lengthwise variation in 

structure causes sound waves of different frequencies to have peak displacement at 

different points on the basilar membrane. The amount that the basilar membrane is 

displaced is related to the intensity of the stimulus sound. As shown in Figure 6.3 using 

a visualisation of an expanded cochlea, high frequencies cause maximum displacement 

near the oval window while progressively lower frequencies peak nearer to the apex. In 

effect then the basilar membrane can be thought of as a series of bandpass filters, with 

progressively lower pass bands as we move closer to the apex. Transduction of the 

mechanical displacement of the basilar membrane into neural signals is performed by 

the hair cells of the Organ of Corti. These cells reside in the endolymph filled cochlear 

duct that connect into the auditory (Cochlear) nerve that travels to the central nervous 

system where higher order processing occurs.  

This very brief introduction to the auditory system, although providing some important 

insights into the psychoacoustic findings and models presented in the rest of this 

chapter, has barely scratched the surface and the interested reader is referred to open 

source text books by OpenStax [162] and the Open University [163] (sources and images 

provided under a Creative Commons license [164]). 
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Figure 6.2: A cross section of the fluid filled cavities of the cochlea [165].  

 

 

Figure 6.3: A illustration of the variation in the frequency response of the basilar membrane 
(unrolled in this diagram) along its length. The relative length of the fibres, shown at the 
bottom of the diagram, is representative of the "stiffness" of the fibres. [166] 

6.1.1.3 Masking and critical bands 

An important concept in psychoacoustics is that of masking. One sound is said to "mask" 

another if the other sound is not perceptible as a result of the masking sound. The 

masked threshold is the sound pressure level of a test tone necessary to be just audible 

when a masking effect is present. Along with simultaneous masking there are two 
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interesting time-related effects of masking, namely, pre-masking and post-masking. Pre-

masking occurs before a masking sound, i.e. a sound that is masking another sound, is 

switched on (up to 20 ms) and can be understood to be the result of the comparatively 

rapid build-up time of a loud masking sensation compared to that of a softer test tone. 

In other words, the human auditory system reacts more rapidly to a loud sound than a 

soft one. The effect of post-masking decays for up to 200 ms after the masker has been 

removed and depends on the duration of the masker [156].  

A related and central concept is that of critical bands which is related to the frequency 

mapping of the basilar membrane of the cochlea discussed in the previous section. The 

human auditory system is not sensitive to frequencies on a linear or logarithmic scale 

but rather on a scale related to the physical structure of the basilar membrane; this scale 

is what the critical bands attempts to approximate.  Critical bands are a quantization of 

the frequencies and associated bandwidths that the human auditory system is sensitive 

to and help to explain masking phenomena. The Bark [156] and ERB (also referred to as 

Cam) [167], [168] scales are examples of approximations of the "auditory filters" that 

the critical bands represent. These "filters" demonstrate saturation effects, thus sounds 

that occupy the same critical band (i.e. are "close enough" to each other in frequency) 

"compete" for the same hair cells and will not produce the same sensation of loudness 

compared to sounds (tones) that are far apart in frequency. 

6.2 The psychoacoustics of heart sounds 

To arrive at an understanding of how heart sounds and heart murmurs are described 

and understood we turn to the wealth of literature available on cardiac auscultation.  

6.2.1 Methods 

Common psychoacoustic features used when describing heart sounds and murmurs in 

literature were identified. The findings from this review were used in the creation of a 

heart murmur description framework; representing a set of features that can be used to 

present what we will call a psychoacoustic description of a heart sound which could be 

conceptualised as the output of performing cardiac auscultation.  

Sources that focus on cardiac auscultation and on the fundamentals of practicing cardiac 

auscultation were reviewed and features that are commonly used to describe heart 
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murmurs identified. An important limitation to note is that we only have access to the 

audio as recorded by an electronic stethoscope. This means that important features 

such as "point of maximal intensity" and "location of radiation" that cannot be inferred 

from the waveform alone are not included in this framework. Another important set of 

features that unfortunately must be excluded are those related to the performance of 

various physiological maneuvers that change the characteristics of murmurs. An 

example is the Valsalva maneuver, in which the patient is asked to forcefully exhale 

against a closed airway which modifies the effect of inspiration on systolic murmurs [36]. 

One of the possible benefits of taking a descriptive rather than a classification approach 

to heart murmurs is that a physician could use the algorithms to find descriptions of a 

murmur under a variety of conditions, thus providing information from which to draw 

diagnostic conclusions under different conditions.  

6.2.2 Subjective experience 

It is important to acknowledge that we are faced with the problem of subjective 

experience as well as the presence of unconscious processing performed by the human 

brain. Cardiac auscultation has been described as a "technical" skill as opposed to an 

"intellectual" one [169]. It seems likely that even an experienced auscultator would be 

unable to put into exact terms the features that he or she has identified when 

auscultating and even the act of dividing the sounds experienced during auscultation 

into some set of discrete features would potentially have an effect analogous to 

quantization noise that could diminish the diagnostic value of these data. An auscultator 

might not actually be using exactly the features they are consciously aware of to arrive 

at a diagnostic conclusion. Such questions, perhaps more within the bounds of 

psychological studies, are left to medical researchers and practitioners and in this work 

we continue under the assumption that there is significant diagnostic value in a 

description of psychoacoustic features present in a heart sound; thus that these 

features, when "correctly" attained, are representative of the underlying reality of the 

heart and diagnostically important. 

6.2.3 Psychoacoustic training of auscultation 

A remarkable feature of the auditory system is that we can augment our perception of 

sounds through training. In fact the effect of training exercises on the physiological 
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representation of sound, as measured by electroencephalogram (EEG), has been 

observed in both human and animal studies [170]. Research also suggests that different 

aspects of auditory perception can be trained. A listeners' perception of subtle 

differences in pitch [171] and of subtle differences in the temporal characteristics [172] 

of a sound can be altered through training. Likewise for cardiac auscultation a study by 

Barrett el al. [173] showed that student's ability to recognise cardiac murmurs improved 

after training. Based on this, it can be conjectured that repeated training of the auditory 

system allows a listener to recognise more subtle differences within and between 

sounds. This plasticity of the perception of sound is important to consider as we delve 

into a discussion of psychoacoustics. Studies in psychoacoustics normally focus on what 

could be called a "statistically normal" individual, that is, they attempt to find the 

average ranges of auditory attributes by the collection of many samples. The auditory 

systems that we are trying to model in this work is, however, not statistically normal. An 

expert auscultator is someone who has adapted their auditory system to specialise in 

the analysis of heart sounds. Thus, the heuristics and thresholds described in 

psychoacoustic literature, while useful as guidelines and limits, will be less 

representative of the auditory system of expert auscultators.   

6.2.4 Psychoacoustic features of heart sounds 

In reviewing literature on the practice of cardiac auscultation three groups of features 

relevant to psychoacoustic descriptions of cardiac murmurs appeared most prominent. 

The first, and most prominent, group of features are those related to the intensity of the 

murmur. The second group is related to the temporal characteristics of the murmur, or 

in other words how the murmur changes (or does not change) over time as well as the 

temporal region of the heart cycle it occupies. The last group of features used to 

describe heart murmurs are those related to the frequency or pitch of the murmur. We 

have classed descriptions of the "quality" and "timbre" or musical nature of the murmur 

in this third category although they are perhaps the results of a more complicated 

relationship between the three groups. Figure 6.4 shows a word cloud constructed from 

the sources reviewed for this section. Key words associated with the identified groups 

have been colourised. This word cloud was created using NVivio 12 [174]. A cut-off of 4 

letters was chosen and the 100 most common words occurring in all sources cited in 
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section 6.2 ([36], [169]-[175]) are shown with relative size indicating frequency of 

occurrence.  

 

Figure 6.4: A word cloud representation of the most frequently occuring words (longer than 4 
letters) in the reviewed sources. Words most related to the three identified feature groups 
have been colorised. Created using NVivio 12 [174]. 

6.2.5 Intensity measures: loudness 

The most obvious question when assessing a heart sound for murmurs is whether a 

murmur is present. The answer to this question is roughly equivalent to the "loudness" 

of the heart murmur, although this measure also includes information of just how 

present the murmur is. The Levine scale, a popular systolic murmur grading scale 

proposed by Samuel Levine in 1933 [176], designates six levels of murmur loudness 

(shown in column 2 of Table 10 [177]). An alternative to the Levine scale was proposed 

and evaluated by Keren et al. [178] in 2005. In this formulation the murmur loudness is 
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graded in reference to the fundamental heart sounds in the recording. Instead of six 

distinct levels a murmur is rated as either softer, the same, or louder than the 

fundamental heart sounds. The scale proposed by Keren et al. [178] is especially relevant 

to this work because it provides an internal reference with which to compare the 

murmur loudness. The original Levine scale does not elaborate on concepts such as loud 

and faint and trusts an auscultator to develop a sense of these levels by experience. This 

is infeasible for a computer assisted auscultation system unless the method of recording 

is strictly controlled so that the intensity of sound recordings is in an absolute, or 

physical, scale. In other words, we cannot compare two different recordings and say one 

is louder than the other unless we are sure that they have been recorded by the same 

device in the same manner. The methodology proposed by Keren et al. provides a more 

feasible approach. Since the fundamental heart sounds in each heart sound recording 

are necessarily recorded in the exact same manner as any heart murmurs in the 

recording the levels of these are directly comparable.  

Table 10: Systolic murmur loudness rating systems 

Rating Levine Description [177] In reference to FHS [178] 
I Faint. Heard only after careful auscultation Clearly softer than the 

heart sounds 

II Faint murmur heard immediately Approximately the same 
level as the heart sounds 

III Moderately loud murmur Clearly louder than the 
heart sounds 

IV Loud murmur - 

V Very loud murmur. Heard even when only the edge of 
stethoscope is in contact with skin 

- 

VI Loudest possible murmur. Can be heard with 
stethoscope next to by not touching the skin. 

- 

6.2.6 Temporal Features: Shape, timing, and duration 

The shape, timing, and duration are all descriptions of the temporal characteristics of a 

given heart murmur. Shape (also referred to as configuration [179]) describes the way 

in which the loudness of a murmur changes over time and is readily divided into 4 

categories. The perceived loudness of a murmur can either be increasing, decreasing, 

increasing then decreasing, or not changing over time. These 4 categories are commonly 

referred to by their musical nomenclature as crescendo, decrescendo, crescendo-
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decrescendo, and plateau respectively. The timing of a murmur is used here to refer to 

any information regarding the heart cycle state in which it occurs as well as the more 

exact positioning of the murmur within that heart cycle state. For systolic murmurs the 

possible timings can be specified as early, mid, or late systolic. The terms "ejection" and 

"regurgitant" have also been used [36], [180], relating whether or not a murmur is the 

result of blood flowing out of the heart (ejection) or back in (regurgitation), although 

these descriptions encompass multiple aspects of the timing all at once and their 

specification is left to future work.  

The timing information can also refer to the peak of the murmur, the point in systole at 

which it is loudest, and a murmur could, for instance, be described as "early peaking". 

The duration describes the amount of a given heart cycle that the heart murmur 

occupies. A murmur might be "pansystolic" meaning the murmur lasts the entire 

duration of the systolic state. Murmurs may also be described as "brief" or the 

description may even overlap directly with the timing characteristic as described above; 

for instance a "mid-systolic" murmur implies both that the murmur occurs in the middle 

of systole and that the duration of the murmur is limited to a short period in the middle 

of systole.  In this work we have limited the determination of these characteristics to 

the description of the shape of the murmur. 

6.2.7 Pitch 

The pitch of a murmur is related to the velocity of blood flow. In general the higher the 

velocity of the blood flow the higher the pitch of the murmur [36], [179].  Murmurs are 

commonly designated as low, medium, or high pitch. The association of pitch with blood 

flow velocity can provide some clues on the origin of a murmur. High pitch murmurs are 

generally associated with areas at which blood flows from areas of high pressure to 

areas of lower pressure. For instance the high pitched diastolic murmur of aortic 

regurgitation (aortic insufficiency) is the result of blood leaking back into the relaxing 

ventricle out of the relatively high pressure aorta [175]. The perception of pitch in heart 

murmurs has not been extensively studied, and usually pitch related descriptions are 

associated with certain disease conditions. For instance, the murmur of rheumatic mitral 

valve regurgitation is described as  "high pitched" by Alpert [36]. A primary assumption 

we will make in this work regarding pitch perception and description is that auscultators 
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tend to describe the pitch in relation to the fundamental heart sounds, and thus that 

the descriptions of "low", "medium", and "high" are relative to the frequencies of the 

FHS. The description of "low" could then be further explained as "approximately the 

same frequency as the heart sounds", "medium" can be expanded to "slightly higher 

frequency than the heart sounds", and "high" as "clearly higher frequency than the FHS".  

It is of course also possible that expert auscultators, similarly to expert musicians, have 

acquired the ability to recognise pitches in some absolute sense or relative to an 

"internal library" of murmur pitches, but even so the common descriptions used to 

describe pitch still seem to be in relation to some constant reference, the most obvious 

being the fundamental heart sounds which have a relatively constant frequency spread.  

6.2.8 Systolic murmur description framework 

These three groups of features, which we will label loudness, shape, and pitch, form the 

basis of the systolic murmur description framework which details the features that the 

algorithms developed in this chapter will attempt to discover. In the following section 

models for these groups of features are developed based on psychoacoustic principles 

in combination with digital audio signal processing techniques. 

6.3 Modelling approaches 

6.3.1 Dataset 

Data from subsets of the Physionet/Computing in Cardiology Challenge 2016 [138] 

dataset, presented in detail by Liu et al. [128], were used in this work. The probabilistic 

labelling murmur subsets, described in Chapter 5, were again used in this chapter. 

6.3.2 Loudness 

Although sometimes used interchangeably in common speech there exists a clear 

difference between the intensity and loudness of an audio signal. The intensity of a 

sound is a physical quantity, measured in watts per meter squared, and defined as the 

product of the sound pressure and the velocity of the medium the sound wave is 

travelling in. As discussed previously, microphones generally measure the time varying 

sound pressure and not the actual sound intensity. The sound pressure level (SPL) is the 

sound pressure converted to a decibel (dB) scale which is more commonly used in order 

to account for the wide range of audible air pressures. Similar to microphones, the 
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human auditory system also senses changes in sound pressure rather than directly 

measuring sound intensity; thus in this work we will not consider intensity (formally 

defined) any further, instead it will be used in its common usage to denote the 

amplitude/volume of a sound. 

Loudness is a perceptual entity that can be defined as the perception of the intensity of 

a signal and can only be measured by responses of observers [58]. The intensity of a 

sound is the primary correlate of the loudness of the sound [155], but loudness 

constitutes a complex relationship between the sound waves and the auditory system 

of the listener and along with sound intensity is also a function of the frequency, 

duration, and bandwidth of the sound. Many attempts to quantify loudness have been 

made in the last century, see for instance the work of Zwicker and Fastl [156], a review 

and summary of the state of the art of loudness measurement and modelling can be 

found in the work by Florentine et al. [155].  

Loudness and sound pressure level are not linearly related. Two perceptual units are 

helpful in the measurement and understanding of loudness, these are the reference unit 

phon and the loudness unit sone. One phon is defined as the loudness of a 1 kHz tone at 

1 dB SPL. More generally a tone of 3 phon has a sound pressure level of 3 dB at 1 kHz. 

One sone is defined as the loudness of a 40 dB SPL tone at 1 kHz. The sone scale is a 

linear loudness scale, for example a tone of 2 sone is twice as loud as that of 1 sone (i.e. 

it is twice as loud as a 1 kHz, 40 dB SPL tone). Zero sone and phon represent the 

threshold of hearing, lower than which sounds are not audible to the statistically 

average person.  

The second most important correlate of loudness is frequency. The relationship 

between the loudness and frequency of pure tones has been well studied [155], [156]. 

The ISO 226:2003 equal loudness contours [181] are shown in Figure 6.5 for a frequency 

range of 20 Hz to 2 kHz. This small frequency interval was chosen since it covers the 

complete bandwidth of cardiac sounds, as well as the fact that all heart sound collected 

specifically for this research have been sampled at 4 kHz. Each of the contours 

represents the sound pressure level that produces an equally loud sound at different 

frequencies to a "statistically average" person. The phon and sone values are also shown 
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on either side of 1 kHz frequency.  It should be clear from these curves that our auditory 

systems are increasingly less sensitive to frequencies below around 1kHz. 

 

Figure 6.5: ISO 226:2003 equal loudness contours [181]. The sound pressure level (SPL) is 
plotted against frequency (on a logarithmic scale). Each contour shows the SPL required at the 
corresponding frequency for the loudness to be considered "equal", i.e. a 20 Hz tone at 100 dB 
SPL will be equally loud (approximately) as a 1000 Hz tone at 40 dB. 

Equal loudness contours are integral in the design of loudness weighting filters. Two 

examples of commonly used weighting filters are shown in Figure 6.6. The A-weighting 

contour [182] simulates the perceived loudness at low level tones, around 40 phon (1 

sone). The ITU-R 468 recommendation is designed to reflect the perceived loudness of 

not just pure tones but all kinds of noises [183]. The most significant differences 

between these two contours occurs in the frequency range of 1 kHz to 9 kHz however, 

and thus the difference between these two standards is minimal regarding this work. 

We have however opted to use the ITU-R 468 weighting because of the broader 

bandwidth of the heart sounds compared to pure tones. In this chapter the ITU-R 468 

weightings are applied to heart sound recordings before the estimation of any of the 

psychoacoustic features. 

At this point it is necessary to point of that the use of weighting curves (specifically A-

weighting curves) are not seen as a sufficient method of measuring loudness by Zwicker 

and Fastl [156]. Their criticism, however, mainly relates to the use of A-weighting curves 

for estimating the loudness of high-level noises with varying durations and bandwidths 

Threshold 
of hearing
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at high frequencies where the frequency bandwidths of our auditory system becomes 

wider. Heart sounds are soft (low-level) sounds at relatively low frequencies with limited 

bandwidths and short durations, thus the weighting curves should prove appropriate for 

estimating their relative loudness. The applied methodology of magnitude estimation 

after perceptual weighting has shown to have similar results to the more complex 

psychoacoustical loudness models [58]. Although beyond the scope of this thesis, 

further development of methodologies that more strictly conform to psychoacoustic 

findings and models could potentially provide interesting results in heart sound analysis 

research. 

 

Figure 6.6: Common perceptual weighting filters for the frequency range of 20 to 2000 Hz. 

The sound intensity can be calculated as the root mean square (RMS) of the signal 

amplitude, as described by Lerch [58]. It is not possible, or necessary, to determine the 

intensity and loudness in physical units, rather these are calculated using the relative 

changes in sound pressure level as recorded by electrical changes by the stethoscope 

microphone. Block based processing is employed to determine the intensity envelope 

(the variation of the RMS/intensity over time). The RMS for a block of T samples can be 

calculated as 

*01¬(4) = 	◊
1
�ó3(4)c

@eE

@eí

(6.1) 
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To estimate the sound intensity level of the audio signal the intensity can be converted 

to a decibel scale by taking the logarithm of the ratio of the RMS to a reference level, 

which in this work has been taken as *› = 1, corresponding to the full-scale value. This 

is computed using 

*Ã2(4) = 	20qo“E› 3
*01¬(4)
*›

4 (6.2) 

To calculate an estimate of the loudness of the signal the RMS is calculated for a 

loudness-filter weighted version of the signal. 

*UVŒÃXÀ``(4) = 	◊
1
�ó3U(4)c

@eE

@eí

(6.3) 

where 3U  is the audio recording with loudness weightings applied. The loudness 

envelope provides a representation of how the audio signal would sound to a listener. 

This is illustrated in Figure 6.7 using an example signal composed of 1 second intervals 

of 10, 100, and 1000 Hz with 1 second increasing chirps between them, sampled at 4 

kHz. For this example, the intensity and loudness envelopes were calculated using blocks 

of 100 ms with a hop size of 50 ms. The unweighted magnitude of the signal is practically 

constant throughout its 5 second duration, corresponding to the equal amplitude of the 

different sine wave and chirp wave components of the example signal. However, the 

loudness varies significantly with the frequency of the different components. 

Frequencies below 20 Hz (the 10Hz component at the start of the signal) are essentially 

inaudible but produce palpable effects at high enough levels, thus the loudness 

representation given by ITU-R 468 filtering gives a closer approximation of the sensation 

associated with listening to this example signal. 
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Figure 6.7: Loudness levels for the tone and chirp signal described in Chapter 4, as calculated 
using two different perceptual weighting curves. 

6.3.2.1 Methods of calculation 

To estimate the loudness of a given murmur the following approach was followed: the 

heart sound was first segmented using the algorithm described in the previous chapter 

including a probability that the systolic states contain a murmur. Based on the 

segmentation results the first heart sound (Ñ4.4J	 = 	g1) and the systolic (Ñ4.4J	 =

	g«ÑwFpÉFp)	states were isolated in an ITU-R 468 weighted version of the heart sound 

recording. An envelope representative of the loudness level was determined for each of 

these states and magnitude features across the duration of all the examples of the state 

in the recording were calculated from this envelope. To emulate the Keren et al. grading 

system the loudness of  g«ÑwFpÉFp state was compared to that of g1. The arithmetic 

means across all samples assigned to these two states in a given recording were 

calculated. The level difference of g1 relative to g«ÑwFpÉFp was determined and used 

to classify a murmur as loudness r, rr, op	rrr. Figure 6.8 shows the loudness envelopes 

and mean loudness levels for an example heart sound.  
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Figure 6.8: An example of the loudness levels of the systolic and first heart sound states across 
the duration of a heart sound recording. The dashed lines represent the mean loudness level 
of all of the samples in the recording that have been assigned to that state. 

In this example the first heart sound has components with approximately the same 

amplitude as the murmur components but significantly lower frequencies. Figure 6.9 

illustrates the same calculation as Figure 6.8 without applying the loudness weighting to 

the waveform. The higher frequencies of the murmur lead to it being perceived to be 

much louder than the first heart sound; this observation is lost in the second analysis. 

 

Figure 6.9: The same waveform as Figure 6.8 without the loudness weightings applied.  
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6.3.2.2 Results 

The results of the proposed method for examples from the "systolic murmur" subset are 

shown in Figure 6.10 along with the decision boundaries proposed in this work. The 

upper boundary (between II and III) represents murmurs with a mean loudness level 1 

dB higher than the first heart sound, while the lower boundary represents murmurs that 

are 10 dB lower in level than the first heart sound in the same recording. These 

boundaries were determined heuristically, based on the intuition that a murmur just 

noticeably louder than the fundamental heart sounds would be more readily marked as 

such, while a murmur would have to be significantly softer than the heart sounds for an 

observer to class it as I. These boundaries attempt to capture the I, II, and III loudness 

ratings of both the Levine and Keren et al. scales. 

 

Figure 6.10: The "loudness" decision space populated by the samples from the probabilistic 
labelling murmur subset. The decision boundaries used in this work are also illustrated. As 
clearly shown in this figure the decision boundaries represent linear relationships between the 
S1 and Systolic Murmur loudness levels. 

6.3.3 Shape 

Before continuing with the model derivation for the "shape" feature, a distinction 

should be made between what can be called objective (or physical) duration and 

subjective duration, or perhaps we would be better served by referring to a perceptual 

concept that we can call psychoacoustic duration to specify that we are referring to an 

"experienced period of time in auditory perception". In any case, data have shown that 

human perception of the duration of auditory events does not directly correspond to 
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their objective duration in time in two cases [156], both relevant to this work. The first 

case is in sounds that have short durations, less than around 100 ms, below this duration 

sounds tend to be perceived as lasting longer than their "objective" duration. The 

second discrepancy is that which occurs in the psychoacoustic duration of pauses, or 

brief periods of silence, in between sounds. Using a comparative methodology in which 

participants were asked to adjust the duration of either a pause or a burst to have the 

same length, researchers found that the psychoacoustic duration of pauses were around 

2 times less than that of bursts for a 200 Hz tone. That is, to have the same 

psychoacoustic (experienced) duration, a pause would have to last twice as long as a 

tone of 200 Hz. This effect increases with higher frequencies and can be up to 4 fold for 

tones around 3 kHz [156]. These two aspects of psychoacoustic duration can then be 

summarised as: the experienced duration of short sounds is more than their physical 

duration and the experienced duration of short pauses in between sounds is less than 

their physical duration. 

Psychoacoustic duration is important to consider in heart sound analysis since the heart 

sounds fit well the description of sounds where psychoacoustic (subjective) duration 

deviates from objective (physical) duration. The heart sounds have short (objective) 

durations (see previous chapter) and can easily be described as bursts of sound and 

pauses, relating to the second case. For the estimation of the timing characteristics of 

heart murmurs this can be interpreted as the slight "stretching" of the edges of the 

loudness envelopes of sounds due to pre- and post-masking or equivalently the slight 

delay of perception as the stimulus decays in the case of pauses.  

Zwicker and Fastl [156] model the psychoacoustic duration of bursts by measuring the 

period in which the sound burst excitation level (a measure of loudness level) exceeds 

the local minima by 10 dB. Likewise, the (psychoacoustic) duration of pauses can also be 

estimated by finding the period in which the excitation level is within 10 dB of the local 

minima. This heuristic also appears to be appropriate for loudness envelopes calculated 

using the ITU-R 468 weighting and homomorphic envelope (HE) discussed in section 

6.3.2. Figure 6.11 shows a reproduction of an example signal used in the previously 

mentioned psychoacoustic research. In the methodology described by Zwicker and Fastl 

[156], participants are asked to adjust the duration of the pause in between the two 

bursts of white noise (at around 1 sec) to match that of the burst of white noise that 
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occurs at around 200 ms. Interestingly the loudness envelope calculated using the HE 

exhibits aspects that appear very similar to pre- and post- masking as observed in 

psychoacoustic studies. This is likely a result of the low pass filtering of the envelope 

extraction methodology emulating the build-up and decay characteristics of the 

auditory system, but regardless of the exact cause, this suggests that the HE, combined 

with ITU-R 468 weighting, as an effective method of estimating the loudness of an audio 

signal. 

 

Figure 6.11: The loudness envelope as calculated using HE of an example signal (shown here 
with an offset mean for visual purposes) that includes a 30 ms burst of white noise followed by 
two 400 ms bursts of white noise separated by a (perceptually similar in duration to the 30 ms 
burst) pause of 60 ms. The black lines represent and circles represent 10 dB above the local 
minima which heuristically represent the subjective duration.  

A significant limitation of block-based root-mean-square calculation discussed in section 

6.3.2 is the distortion due to the averaging over time and the necessary approximation 

of new time indices. An alternative methodology is to calculate a loudness measure that 

naturally possesses time dependency. The homomorphic envelope (HE) of the ITU-R 468 

weighted example signal is shown in Figure 6.12. In this case the loudness of the signal 

is represented by the HE, thus, 

*UVŒÃXÀ``(4) = 	"IU(4) (6.4) 
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where "IU  is the homomorphic envelope of the perceptually weighted input signal. 

Because the HE is calculated from the analytic signal the power of the resulting envelope 

is doubled, resulting in the approximately 3 dB difference seen in Figure 6.12. While this 

means that the absolute values of the RMS and HE envelopes are not directly 

comparable, the effect is a uniform level shift and does not influence the methods 

discussed further in this work.    

The HE envelope has several advantages over the block-based approach. Since the HE is 

calculated for each of the samples of the original signal the time indices remain 

unaltered. This means that the HE is simpler to index than a block-based envelope since 

it does not require separate indices to be calculated for the original signal and its 

envelope. The RMS approach has the advantage of being a more tried and tested 

method of loudness calculation and so the results are arguably a more trustworthy 

representation of the "actual" loudness of an audio signal. The difference between the 

two methodologies seems to be small, based on the results of the example signal, and 

the advantages conveyed by the natural time dependencies of the homomorphic 

envelope make it a more attractive methodology for estimating the change of loudness 

over time.   

 

Figure 6.12: Loudness levels as estimated using the homomorphic envelope and RMS of the 
ITU-R 468 weighted example signal from Figure 6.7. 
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6.3.3.1 Methods of calculation 

Determining the shape of a murmur present in the systolic state proved challenging 

since it represents a complex, time varying relationship. For this reason, a statistical 

classification framework was adopted. Features related to the variation of the loudness 

over time were extracted from each of the g«ÑwFpÉFp regions labelled by the HSMM. 

A loudness envelope was estimated by calculating the homomorphic envelope of the 

ITU-R 468 weighted audio signal. Each of the regions labelled as g«ÑwFpÉFp  were 

extracted and divided into 3 parts (each E5  the length of the region). The following 

feature extraction was then performed on each of the regions. In the following 

equations H represents the index of the part in question,	g represents the shape curve, 

gY  the Hth part of the shape curve, !Y  the number of samples in part H , and !í  the 

number of samples in all three parts. 

• Firstly, the area under the curve (approximated as the sum of the sample values 

and named loÍ  to clearly distinguish it from the commonly used AUC 

classification metric) for each of the parts was calculated as a ratio of the total 

area under the curve for that region.  

loÍY = 	
∑ gY(u)
d⁄
XeE

∑ g(u)d6
XeE

(6.5) 

• The second class of features represent an approximation of the slope in each of 

the regions and was calculated as the difference between the value of the first 

and last samples in each of the parts divided by the length of that part.  

gqoáJY = 	
gY(!Y) − gY(1)

!Y
(6.6) 

• Lastly, the value of the midpoints of each of the parts rounded down to the 

nearest sample ⌊∗⌋ were determined. 

wH9hoHu4ÑY = gY 79
!Y

2 :8 (6.7) 

The mean of each of these features across all the regions in a given heart sound 

recording was used to form a representative feature vector for the heart murmur. To 
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perform classification each of the three classes of features were parameterised by first 

standardising them across the 3 parts by subtracting the mean and dividing by the 

standard deviation. This had the effect of mapping all the points in each of the classes 

onto a circle in the 3-dimensional (represented by the 3 parts that features were 

extracted from in each systolic region) space. These points were then mapped onto a 

linear space by arbitrarily choosing a starting vector [1, -1, 0] on the circle and 

determining the angle of each of the data points to this vector. This effectively allowed 

each of the three classes of features to be represented as a single parameter reducing 

the required feature space from 9 to 3 without any loss of information. These "shape 

parameters" were then used as the input to an error correcting output code (ECOC) 

multiclass support vector machine (SVM) classifier.  

6.3.3.2 Results 

Evaluation of the proposed methodology was performed using data in the systolic 

murmur training subset described previously. The shape of all the murmurs in the 

dataset were labelled by the researcher according to their loudness envelope and their 

perceived shape when listened to. These annotations were then used as the "ground 

truth" in training a Radial Basis Function (RBF) SVM classifier. To compensate for the 

unbalanced dataset the prior to the RBF-SVM classifier was set to uniform before 

training. The examples in the systolic murmur testing subset were then also annotated 

by the researcher, and the results of trained model on these samples were compared to 

their annotations to gauge the ability of the model to estimate the perceptual shape of 

murmurs (using the researcher’s perception as a target). The results shown here are 

thus an estimate of the ability of an RBF-SVM classifier trained on a dataset of a given 

perceiver's annotations to reproduce those annotations on an unseen dataset. 
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Figure 6.13: The parameterised decision space used to determine the "shape" feature. Each 
parameter represents the angle between a reference vector and the sample vector mapped 
onto a circle in the space constructed from the "early", "mid", and "late" time periods.  

The shape parameter space for the training data is shown in Figure 6.13 above. 

Discernible clusters exist for all the "shapes" except "plateau" which shows samples 

spread over almost the entire decision space. Despite this, the trained model was able 

to correctly classify the majority of the 23 examples in the testing dataset as can be seen 

in the confusion matrix shown in Figure 6.14. Unsurprisingly the incorrectly classified 
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samples were all three either incorrectly classified as "plateau" or examples of "plateau" 

that were misclassified. 

 

Figure 6.14: Results of the proposed "shape" support vector machine on the examples from 
the probabilistic labelling murmur test subset.  

6.3.4 Pitch 

Human perception of pitch is primarily perception of the frequency of an audio signal. 

That is, higher frequency signals are perceived as being higher pitched [58]. Although 

sound pressure level does influence the perception of pitch slightly (less than 3% shift 

[156]) this effect is neglected in this work as the heart sounds are relatively low sound 

pressure level signals. Pitch perception of combination of tones is dominated by what is 

referred to in signal processing literature as the fundamental frequency. If a signal is a 

combination of sinusoidal components with frequencies, n›, 2n›, 3n›,…	 then pitch 

perception is dominated by n›, even in cases where n› has low power. The relationship 

between the perceived pitch and the fundamental frequency of a tone is positively 
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correlated but non-linear, although these nonlinearities only become very prominent 

above 1 kHz they are present at lower frequencies. As an example a tone with frequency 

220 Hz will be perceived as approximately half the pitch as that of 440 Hz, but a tone 

with a frequency of 1.3 kHz will have approximately half the pitch as a tone of 8 kHz 

[156]. The relationship has been modelled in a variety of ways by different researchers  

[58].  

Examples of the Bark and ERB scales (introduced in section 6.1.1.3) are shown in Figure 

6.15 for the frequency range from 20 to 1000 Hz, the range of most interest in heart 

sound analysis. A logarithmic (base 10) relationship is also shown for comparison. Figure 

6.16 shows an example of the magnitude spectrum of a heart sound plotted against the 

scales shown in Figure 6.15. It should be clear from these figures that the ERB and Bark 

Scales provide greater resolution at the frequencies of interest to this work. The rest of 

this section will make use of  the Equivalent Rectangular Bandwidth scale (ERBS) since it 

is a more recent adaptation of Zwicker's Bark scale with a more detailed model of 

frequencies below 500 Hz [168].  The frequency of a signal can be approximated to an 

ERBS representation using, 

I)sg(n) = 	21.4qo“E›(0.00437n	 + 	1) (6.8) 

where the frequency n is in hertz. In practice frequencies were converted to ERBS using 

the VoiceBox MATLAB package [184] which employs a slightly more complicated 

approximation. As an illustration using the previously mentioned example of 440 Hz and 

8 kHz the relationship in ERBS between 440 Hz and 220 Hz is 0.61 while the relationship 

between 8 kHz and 4 kHz is 0.84, while the ratio of 1.3 kHz and 8 kHz is 0.55; 



159 
 

 

Figure 6.15: The Bark and ERB perceptual pitch scales for the frequency range of 0-1000 Hz. A 
logarithmic relationship is shown for reference. 

 

Figure 6.16: Illustration of the magnitude spectrum of a heart cycle as viewed against a linear 
frequency, logarithmic frequency, ERB, and Bark scale.  

In audio content analysis/music information retrieval it is useful to determine the 

predominant pitch at different times in the music; in this way the musical notation can 

be determined automatically. The techniques used for pitch detection rely on the signal 

consisting of musical tones consisting of fundamental frequencies and harmonics. Heart 

murmurs are more noise-like, they have broader spectra than pure tones, and as such 

their perceived pitch also differs from that of pure tones. According to Zwicker and Fastl 
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[156] bandpass noise produces pitch sensations that correspond to the frequencies of 

the spectral edges. If the bandwidth is narrow enough (roughly less than 200 Hz at less 

than 1kHz centre frequency) then a single pitch corresponding to the centre frequency 

of the pass band is perceived. As motivation the frequency spectra for a single trumpet 

note and a heart murmur resulting from mitral regurgitation are shown in Figure 6.17, 

both have been weighted to represent human perception (using ITU-R 468 

specifications). The trumpet note presents with very clear spectral peaks that occur at 

spaced intervals (harmonics), while the heart murmur has a much more erratic pattern 

with energy at a much wider range of frequencies (more noise-like). 

 

Figure 6.17: Comparison of the magnitude spectra of a trumpet and a murmur containing 
heart cycle. 

6.3.4.1 Methods of calculation 

As discussed in the previous section, the frequency spectra of heart sounds, and 

especially heart murmurs, are broader and more resemble noise than harmonic tones, 

such as those elicited by many musical instruments. The traditional techniques used in 

ACA for "pitch-tracking" are thus less applicable to heart murmur analysis. In this work 

the mean magnitude of the continuous wavelet transform coefficients over the duration 

of the systolic region has been used to produce a representation of the frequency 

spectrum of the signal. A comparison of the frequency spectra as calculated using the 
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CWT and the FT are shown for an example heart sound that contains a distinct mitral 

regurgitation heart murmur in Figure 6.18. 

 

Figure 6.18:  Comparison of normalised frequency spectra calculated from the magnitude of  
Fourier transform and the 95th percentile of the continuous wavelet transform coefficients. 

To discretize the pitch of the noise-like murmurs, magnitude spectrum representations 

of the regions labelled as murmurs were calculated using the CWT. The average of the 

CWT spectra across all the systolic murmurs was calculated and used as a representative 

magnitude spectrum for the murmur under analysis. The peak magnitude in 3 frequency 

bands was then used to discretise the pitch of the murmur as low, medium, or high. The 

bands were specified in ERB's based on the frequency ranges of the fundamental heart 

sounds (which range from just below 1 to around 4 ERB). A summary of the chosen 

ranges is shown in Table 11 and illustrated in Figure 6.19 for examples of low, medium, 

and high frequency murmurs. 
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Table 11: ERB and equivalent frequency ranges for Pitch features extraction 

Description Rating ERB range Equivalent Frequency 
range (Hz) 

Approximately 
equal in pitch to 
FHS 

Low 1 - 4 30 - 138 

Slightly higher 
pitched than FHS 

Medium 4 - 7.5 138 - 311 

Significantly higher 
pitched than FHS 

High 7.5 - 15.5 311 - 1024 

 

 

Figure 6.19:  The three pitch regions, low, medium, and high, shown with examples of CWT 
spectra that present with peaks in each of these regions.  

6.3.4.2 Results 

To provide a classification of the pitch as low, medium, or high, the peak magnitudes of 

the CWT spectrogram from each of the regions were compared. The pitch of the murmur 

was then designated according to the region in which the largest peak occurred. Figure 

6.20 shows the resulting classifications in a standardised peak space for the 50 examples 

of the systolic murmur subset. Standardising the normalised peak amplitudes across the 

low, medium, and high regions and choosing an arbitrary starting vector, a one 

dimensional pitch parameter was calculated. This pitch parameter is plotted against the 

heart sound recording indices in Figure 6.21 below. 
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Figure 6.20: The normalised peaks are mapped onto a circle in the three dimensional (low, 
medium, high) decision space. 

 

Figure 6.21: By parameterising the peak space we can represent the three dimensional 
samples using a single dimensional (the angle) without losing any information. 

6.4 Expert descriptions: Cardiac Auscultation Research Survey (CARS)  

A primary hindrance to the proposed methodology is the lack of relevant data. That is, 

data that are adequately annotated with expert descriptions of murmurs. Since heart 

sound recordings can be described across numerous dimensions, for example, diagnosis, 

subject attributes (age, sex, weight, etc.), recording sites, or degree of disease to name 

but a few, this is not surprising. Collecting detailed descriptions of murmurs also poses 

serious challenges. Firstly, the inherently subjective nature of such descriptions poses 

the issue of consensus or disagreement. In other words, when inevitably, there is 

disagreement between two graders, how do we define the "ground truth". Secondly, 
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collecting quality ratings from experienced auscultators poses a serious logistical 

challenge. Since expert auscultators (defined in this work simply as cardiologists) are 

relatively rare and the task of rating multiple heart sounds can be difficult and time-

consuming, recruitment of suitable and sufficiently motivated graders proves 

challenging. Thirdly, listening to a recording of a heart sound is not the same as cardiac 

auscultation. Cardiac auscultation is an aspect of physical examination and consists of 

processes of investigation and deduction in which the stethoscope is used in different 

ways and at different locations and conscious attention is directed at multiple aspects 

of the patient, the sound produced by the heart, and the different sensations 

experienced by the auscultator. Asking for an expert auscultator to simply listen to a 

heart sound recording ("in vitro") and provide a description of any abnormalities of the 

sound is akin to providing a baker with a picture of bread and asking about the flavour, 

while some description can be given the amount of information is severely limited 

compared to "in vivo" auscultation. This limits the possible ways in which such data can 

effectively and efficiently collected. Despite these challenges in this work we have 

attempted to design a framework for the efficient collection of such data and conducted 

a study to test the effectiveness of this methodology and collect some preliminary 

results.  

6.4.1 Cardiac Auscultation Research Survey (CARS) design 

An online survey was created using the Qualtrics platform [185]. This survey, named the 

Cardiac Auscultation Research Survey (or CARS), consisted of 20 heart sounds recordings 

that contained systolic murmurs that participants could listen to as many times as they 

wished. Participants were asked to classify the loudness, shape, and pitch of the murmur 

in the recording, as well as the overall quality of the recording. Participants were asked 

to grade loudness on the ordinal scale proposed by Keren et al. [178] using the 

fundamental heart sounds as internal reference. The shape/configuration was graded 

on a nominal scale with four possibilities and participants were asked to select the most 

relevant option. Finally, the pitch of the murmur was graded on a 3 point ordinal scale 

(low, medium, high). An example question for a single heart sound recording is shown 

in Figure 6.22. 
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Figure 6.22: An example of the heart sound questions as they were presented to participants. 
Participants were able to listen to the recordings as many times as they wished and were 
asked to select the most relevant descriptions out of the choices provided. 

The 20 heart sound recordings used in the survey were taken from the MIT heart sound 

database (MITHSDB) subset of the publicly available Physionet Heart sound Database 

[138]. The majority (15) of the examples were cases of mitral valve prolapse. The 

remaining 5 cases consisted of 3 with unspecified diagnoses, 1 benign murmur, and 1 

case of aortic disease. All recordings were made either at the apex (mitral site) or the 

second left intercostal space (pulmonary site). The mean duration of the recordings was 

33 ± 1.2 seconds. 
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Table 12: Summary of information available for survey dataset 

Survey ID Physionet ID Diagnosis Site of recording Duration of recording 
1 a0002 Mitral valve prolapse Pulmonary site    20.8 s 

2 a0014 Mitral valve prolapse Apex   35.7 s 

3 a0020 Mitral valve prolapse Pulmonary site    35.7 s 

4 a0022 Mitral valve prolapse Apex  36.2 s 

5 a0023 Mitral valve prolapse Apex  30.6 s 

6 a0024 Mitral valve prolapse Apex  20.7 s 

7 a0031 Mitral valve prolapse Apex 35.6 s 

8 a0033 Mitral valve prolapse Apex 35.7 s 

9 a0036 Mitral valve prolapse Apex  35.9 s 

10 a0042 Unspecified pathology Apex  36.2 s 

11 a0045 Mitral valve prolapse Apex  35.9 s 

12 a0057 Unspecified pathology Pulmonary site      35.9 s 

13 a0059 Mitral valve prolapse Pulmonary site      35.7 s 

14 a0065 Unspecified pathology Pulmonary site    35.7 s 

15 a0066 Mitral valve prolapse Pulmonary site       35.6 s 

16 a0073 Mitral valve prolapse Apex  35.7 s 

17 a0078 Mitral valve prolapse Apex 35.7 s 

18 a0084 Benign Apex  30.8 s 

19 a0089 Aortic disease Pulmonary site       21.0 s 

20 a0101 Mitral valve prolapse Pulmonary site      35.8 s 

Perhaps the most confounding element in the collection of heart murmur descriptions 

using an online survey is the lack of control over the hardware used to play the sounds. 

Participants were advised to use in-ear headphones, as these had shown more success 

in reproducing the low frequency elements of the heart sound recordings. Even so it is 

not possible to control the sound card or sound drivers that the participant would be 

using and so to compare the results of different participants a calibration question was 

added where the participant's perception of low frequency tones was assessed. If a 

participant gave too low responses to these calibration questions, they were advised 

that their hardware was likely not suitable for completion of the survey.  



167 
 

 

Figure 6.23: The low-frequency calibration block  was designed to assess whether or not the 
participants' audio playback was suitable for the survey. Participants who reported not being 
able to hear the example tones were advised that their results might be invalidated. 

6.4.2 CARS delivery 

Ethics approval for the distribution of the CARS was obtained from the Auckland 

University of Technology Ethics Committee (AUTEC), ethics approval number 17/186. 

Participants were required to have specialised in cardiology, being either a qualified 

cardiologist or cardiology fellow. A total of 25 participants were identified and contacted 

via email. Seven of the contacted participants responded to the survey request and 4 

completed the survey in full. Out of the participants that started the survey and did not 

finish, 2 were unable to hear the low frequency test tones and stopped the survey and 

1 participant stopped after only completing half of the survey for unspecified reasons. 

This translates to a 16% completion rate, only slightly lower than the expected range for 

a survey distributed via email (around 20-30% [186]–[188]). Unfortunately, one 

participant who completed the survey reported not being able to hear the low frequency 

tones presented during calibration at the start of the survey and thus their results could 

not be included. In total then from the 7 participants who responded to the survey 

request, data was collected from 43% (3 out of 7) and there was a dropout rate of 57% 
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(4 out of 7). This small sample size is unlikely to be representative or provide statistically 

significant reliability measures. This study does however provide an interesting 

preliminary view of the variability between expert auscultators using an online survey 

data collection methodology as well as some preliminary data to which to compare the 

proposed algorithm. 

6.4.3 CARS results 

A total of 4 expert responses were collected for each of the 20 heart sound recordings 

in the survey. Due to the low rating that Participant 4 gave in response to this calibration 

block their results have been excluded from the rest of the analysis.  Thus, a total of 60 

responses were collected for three features from three participants. The results for the 

low frequency calibration test at the start of the survey are shown in Table 13. The 

distributions of the responses for each of the heart sounds are shown in Figure 6.24, 

Figure 6.25, and Figure 6.26 for the loudness, shape, and pitch respectively. These 

figures show stacked bar graphs for each of the heart sounds used in the survey. Each 

rating is represented by a different shade and pattern and the area of the bar occupied 

represents the proportion of experts that gave that rating.  

Table 13: Participants' responses to the low frequency calibration block at the start of 
the survey 

 30 Hz 40 Hz 60 Hz 100 Hz Total 

Participant 1 Very Clearly 
(3) 

Very Clearly 
(3) 

Very Clearly 
(3) 

Very Clearly 
(3) 

12 

Participant 2 Somewhat 
Clearly (2) 

Somewhat 
Clearly (2) 

Very Clearly 
(3) 

Very Clearly 
(3) 

10 

Participant 3 Less Clearly 
(1) 

Somewhat 
Clearly (2) 

Very Clearly 
(3) 

Very Clearly 
(3) 

9 

Participant 4 

Not at all (0) Not at all (0) Not at all (0) Not at all (0) 
0 
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Figure 6.24: Participant results for loudness feature. Uniform color/pattern in a single bar 
represents high agreement among experts for that heart sound. 

 

Figure 6.25: Participant results for Shape feature. Uniform pattern in a single bar represents 
high agreement among experts for that heart sound. 
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Figure 6.26: Participant results for pitch feature. Uniform color/pattern in a single bar 
represents high agreement among experts for that heart sound. 

As there appears to be little scientific consensus on the statistical measures used to 

evaluate inter-Participant reliability [189], [190] we have opted, for these preliminary 

results, to report the most basic interrater-reliability metric of observed percent 

agreement (also called Accuracy) with the caveat that this measure does not adjust for 

"chance" agreement and will overestimate the level of agreement in cases of relatively 

low inter-Participant agreement [191]. For multiple categories, multiple Participants, 

and a score weighting scheme this metric can be calculated as, 

<› =
1
!óó

pYò(∑ fiòUpYU − 1)õ
UeE
pY(pY − 1)

õ

òeE

d

YeE

(6.9) 

with, 

  ! - the total number of items (heart sound recordings) that were rated 

  û - the total number of categories (e.g. 3 for loudness) 

  pBA -  the number of Participants that assigned item . to category 0 

  fiBA - the weight associated with two Participants assigning an item to categories 

. and 0 

  pY  -  the number of Participants that assigned item H to any category 
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Along with the observed agreement we also report the specific agreement coefficient 

for each of the possible categories of each of the features, this can be thought of as the 

conditional probability of a randomly selected Participant assigning a particular category 

given that another randomly selected Participant has assigned the item to that category. 

The specific agreement is calculated as, 

…ò =
∑ pYò(pYò − 1)d
YeE
∑ pYò(pY − 1)d
YeE

(6.10) 

with similar notation to Equation (8). 

The "mReliability" [192] software package for MATLAB was used to estimate the 

observed percent agreement and specific agreement coefficient. An "identity" 

weighting was used for the nominal shape responses; that is, agreement was only scored 

if Participants gave the same rating. For the ordinal data (loudness and pitch) a "linear" 

weighting was used, meaning that partial agreement (e.g. low and medium) were scored 

half the amount that total agreement (e.g. low and low) was. Again, it should be 

emphasised that the reported metrics are making no assumption about chance 

agreements, or in other words no correction is made for the reliability of random 

guessing. The report metrics are therefore, quite naively, ignoring the subjectivity and 

challenge of the task. As such, these metrics are only suitable to be compared among 

each other and should be interpreted with care.  

Table 14: Inter-Participant agreement metrics for overall and category specific 
agreement 

Feature Percent 
Agreement 

Specific Agreement 

 a0 I/Low/C II/Medium/D III/High/C-D Plateau 

Loudness 0.73 0.75 0.79 0.64 - 

Shape 0.35 0.40 0 0.38 0.29 

Pitch 0.67 0.55 0.65 0.72 - 

6.4.4 CARS discussion 

Overall there was little consensus among the Participants. For the ordinal pitch and 

loudness scales certain heart sounds (e.g. HS 3, 4, and 8 for loudness, and HS 2, 15, and 

18 for pitch) are puzzling, since as Participants disagreed at the two extremes of the 
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scales. Although, considering the scales have only 3 levels this is perhaps not so 

unexpected. Participants were in complete agreement on both the pitch and loudness 

levels of HS 6 although a single Participant considered the shape to be "plateau" while 

the other Participants reported that it was "crescendo-decrescendo". This disparity in 

describing the shape as "plateau" can be seen in most of the survey heart sounds, 

suggesting that the difficulties encountered in finding a clear cluster when modelling the 

"plateau" category of shape is perhaps inherent to the category. The description of 

"plateau" may represent a sort of "catch-all" category for changes that are too subtle to 

distinguish and as such contains characteristics of all the other shape categories.  

The percent agreement and specific agreement metrics reported in Table 14 show what 

can be intuited from the stacked bar graphs: there was much less agreement among 

experts in regards to the shape than the other 2 categories. No two Participants agreed 

on the shape category of "decrescendo", although this description was only given twice 

in all 60 shape responses recorded and most likely represents a statistical artefact due 

to underrepresentation of the category. Disregarding the specific agreement of the 

"decrescendo" category, we can also note that the "plateau" category has a lower 

specific agreement than the other remaining categories. As stated before, these metrics 

should be interpreted with care and the small sample size of this preliminary study 

should not be regarded as being statistically significant (or representative of the total 

population).  

6.5 Computer Assisted Cardiac Auscultation: Automated descriptions of 

systolic murmurs  

The stage has now been set to compare the results of the proposed model to results 

obtained from expert auscultators. For this purpose, we have selected the heart sound 

which showed the most consensus among CARS Participants: heart sound number 6, a 

prominent example of mitral valve prolapse (MVP) from the MITHSDB. Figure 6.27 

shows a five second section of this heart sound recording (perceptually weighted) along 

with a time-frequency representation and a summary of the psychoacoustic models. 

Information about the recording along with the results of both the proposed model and 

the expert auscultators are summarised in Table 15.  
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Figure 6.27: Psychoacoustically motivated model of Heart sound 6 from the CARS. Five seconds of the audio recording and the state labels (with murmur 
probability scores) along with a CWT representation of the same 5 seconds. A third heart sound (S3), consistent with the diagnosis of MVP, is highlighted in the 
CWT for the sake of interest. The bottom panels show aspects of the models for "loudness", "shape", and "pitch", respectively, for HS6. 
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Table 15: Summary of information available regarding HS6, including model and CARS 
psychoacoustic descriptions.   

Physionet ID a0024 

CARS ID HS6 
Reported Diagnosis Mitral Valve Prolapse 
Location of recording Apex 
Patient Position Left Lateral Decubitus 
Estimated Heart Rate 72 bpm 
Length of recording 20.7 s 
  
Feature Class Proposed Model results Expert Annotations 

Loudness III 3x III 
Shape Crescendo-Decrescendo 2x Crescendo-Decrescendo, 1x Plateau 
Pitch Medium 3x High 

The results of the proposed model are promising when compared to the expert ratings. 

The model results agree with the loudness rating of "III" and with the two Participants 

who assigned "Crescendo-decrescendo" to the shape category. There is however 

disagreement in the classification of the pitch of the murmurs. The model, which assigns 

pitch based on the peak spectral energy in specified regions (low, medium, or high), has 

classified the pitch as "medium" based on the prominent spectral peak occurring at 

approximately 5 ERB, while the expert auscultators perceived the pitch as "high" 

presumably based on the relatively large amount of energy present at approximately 12 

ERB. Keeping in mind that the waveforms shown have already been weighted towards 

higher frequencies (according to ITU-R 468 specifications), this suggests that energy at 

higher frequencies is given preference by observers (listeners), even when 

comparatively lower than that at lower frequencies. It may also be seen as simply a 

"difference of opinion" and arguably the murmur is both medium and high pitch, having 

energy at a broad range of frequencies above 4 ERB (as is clearly visible in Figure 6.27).  

The model adds another dimension to the CARS results making the stacked bar graphs 

inappropriate for visualising a comparison between the survey and model results. 

Instead we have opted to use pie charts divided first into halves to represent the CARS 

and model results, and then further divided into 3 parts each to represent the three 

features classes. These charts can be interpreted as uniformity in pie sections 

representing agreement amongst experts and symmetry between circle halves 

agreement between experts and the proposed model. For perfect agreement between 
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experts we would see uniform colours in the three LH segments; and complete 

agreement with the model by perfect symmetry between the LH and RH segments. Each 

of the heart sounds in the CARS survey is represented by a pie chart in Figure 6.28.  

 

Figure 6.28: A comparison of the results obtained from expert auscultators in the CARS and the 

descriptions obtained by the proposed model. A uniform coloured slice in the left semi-circle 

indicates complete agreement between experts, this can then be compared to the findings of 

the model shown in the right semicircle.  

The left hand semicircles of Figure 6.28 reiterates the lack of agreement between the 

three experts as discussed in section 6.4.4. The loudness feature appears to show the 

most agreement between experts and the model, although looking for instance at HS 

13 and HS 18 we can see that disagreement has occurred in both directions. The shape 
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feature proved the most difficult for the experts to agree on and the model added 

another voice of dissent. The model determined the shape of six out of the 20 heart 

sounds to be "decrescendo", while the "decrescendo" description was only assigned two 

times out of the possible 60 by experts and not for the same heart sounds as the model 

or the other experts. The pitch feature again showed a fair amount of agreement 

between the model and experts and tended to score the pitch as lower than what the 

expert had in cases of disagreement. As discussed in the following section the amount 

of data used means that the results as shown in Figure 6.28 are more illustrative than 

conclusive and so we must take care in drawing generalised conclusions.  

6.5.1 Limitations 

The number of expert opinions we were able to collect by means of the CARS is 

insufficient to make meaningful inferences. This limitation relates to both the number 

of experts who completed the survey and the number of heart sound examples in the 

survey. Furthermore, the methodology used to collect expert opinions is not validated 

against in-person cardiac auscultation, i.e. we do not know how listening to recordings 

of heart sounds online compares to actual bedside auscultation. The models described 

in section 6.3 provide a psychoacoustic framework for deriving the murmur features, 

but the utility of this framework is dependent on the quality of the data used to tune its 

parameters. Thus, a larger and more representative dataset would enable us to create 

a large enough training and testing set to conclusively test and develop the proposed 

methodologies. 

6.6 Conclusion 

In this chapter we have explored the application of psychoacoustic principles to heart 

sound analysis. It is expected that by analysing heart sounds from the perspective of the 

human auditory system the results of the analysis will be more familiar and acceptable 

to an investigating physician and thus more likely to be useful in their final diagnosis. 

We have developed signal processing methods that approximate three classes of 

prevalent features that have been used when describing systolic murmurs in literature, 

namely "loudness", "shape", and "pitch". These methods have been developed using a 

variety of available signal processing tools and keeping in mind the wealth of research 

on human perception of sound and the models used to approximate this. We have 
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stopped short of the development of more involved psychoacoustic models as this 

would lead us down the path of researching psychoacoustics itself rather than applying 

the knowledge of this field to the problem of heart sound analysis. The results suggest 

that we can model the psychoacoustic features of systolic heart murmurs, and more 

data would be required to establish the degree of agreement between experts on these 

features. 

We have also attempted to develop a methodology for the efficient collection of 

psychoacoustic descriptions of heart murmurs and collect preliminary data for a limited 

dataset of systolic murmurs. This collection presented with several technical and logistic 

issues, the lack of control in playback quality and the relatively small number of expert 

auscultators that are available to participate combined with the time-consuming nature 

and difficulty of the task. The results that were collected suggest that there is some 

agreement regarding the loudness and, to a lesser degree, the pitch of murmurs, but 

very little consensus as to the shape of systolic murmurs. Finally, the results of the 

proposed model were compared with that of the CARS showing both agreement and 

disagreement between the ratings given by "expert auscultators" to the model 

proposed in this work. 

The results found in this chapter suggest that the development of a "digital expert 

auscultation system" that describes murmurs in the same way as human auscultators, 

is a viable and potentially useful enterprise. This system does not attempt to diagnose 

heart conditions but rather clarifies and accentuates the information in the heart sound. 

By weighting the frequency information in a way representative of the human auditory 

system before estimating features the output becomes more representative of what a 

person listening to the sound would experience. In this way the output of the 

computational models can be translated to familiar terms and concepts that 

practitioners can more easily integrate into their diagnoses.  
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Chapter 7 Conclusions 

7.1 Summary 

This thesis is divided into 7 chapters, including the introduction, Chapter 1, in which the 

problem area was introduced and this concluding chapter in which the study is 

summarised, and future directions discussed. Chapters 2 introduced the theoretical 

background of the problem domain. Chapter 3 introduced the signal processing 

framework used in this work and the aim of the study. Chapters 4 to 6 represent the 

core contributions of this work in which we applied various signal processing and 

probabilistic modelling techniques to heart sound data. In this final chapter, Chapter 7, 

we aim to summarise and conclude this body of work; linking it back to the problem 

domain to establish if and how the findings of this study have altered our understanding 

of computer assisted cardiac auscultation. 

The overall aim of this work has been the investigation and development of technologies 

that can add more value to the process of cardiac auscultation, specifically software 

algorithms that can aid in the analysis of heart sounds. We have investigated heart 

sound analysis from three main perspectives: digital audio signal processing, 

probabilistic modelling, and psychoacoustic modelling. We have attempted to avoid pre-

emptively coming to conclusions about the diagnostic value of a given sound, instead 

trying to explain the sounds that are present in the recording. Using these perspectives, 

we have attempted to find methods that emulate the cardiac auscultation process and 

provide output similar to what you would expect from an expert auscultator. An expert 

auscultator that you can carry around in your pocket.  

Chapter 4 introduced the paradigm of Bayesian probabilistic modelling. This provided 

the framework for analysis of time-frequency decompositions of heart sounds. Adapting 

models developed in the field of machine learning, a probabilistic ICA model employing 

variational inference for posterior parameter estimation was constructed and applied 

to time-frequency (CWT) decompositions of normal and several abnormal heart cycles. 

ICA demonstrated a remarkable ability to separate the CWT coefficients into groups that 

could be interpreted coherently considering the underlying physiology of the heart and 

the associated disease conditions present in the recordings.  
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• This research has provided evidence that probabilistic ICA can be used to 

decompose heart sounds into components that can be explained by underlying 

physiology. Notwithstanding this, other explanations of these components may 

also be possible. 

ICA models the data as independent and identically distributed samples ignoring 

important correlations across time in the time-series data. This limitation was addressed 

in Chapter 5, in a Markovian manner, using Semi (or duration dependent) Hidden 

Markov Machines (HSMM). Previous work on heart sound segmentation was adapted 

and extended to include the identification of systolic murmurs along with the heart cycle 

states. The added complexity of discerning between normal and abnormal systolic 

states was dealt with by the development of a more sophisticated emission-probability 

model. Duration distribution models reported in the literature were updated with data 

from the heart sound recordings in the Physionet dataset. The proposed labelling model 

was trained and tested on subsets of the Physionet heart sound database and assessed 

in its ability to segment heart sounds successfully as well as to differentiate normal 

systolic regions from those containing murmurs. The model demonstrated a higher level 

of performance on the murmur testing subset of the Physionet data than previous 

algorithms and also achieved systolic murmur recognition at levels at or above that 

reported for the Physionet 2016 heart sound classification challenge, albeit these results 

are not directly comparable since the algorithm was not attempting to classify examples 

as normal/abnormal. Finally, the probabilistic output of the model of the model was 

demonstrated in the form of a "probability score" for each of the regions marked as 

Sys/SysMur; an important feature that increases the transparency of the algorithm and 

the usefulness of the results.  

• Hidden semi-Markov Models have been extended to recognise systolic murmurs. 

This addition has been shown to improve segmentation performance, 

particularly in the presence of systolic murmurs. 

In Chapter 6, we combined the statistical and signal processing modelling techniques 

developed in the previous chapters with the field of psychoacoustic modelling and 

auscultation knowledge and techniques. A literature review was performed in which 

classes of features to which auscultators pay attention were identified. These classes of 
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features were analysed in light of psychoacoustic models of the human auditory system 

in order to create models that are representative not only of the signal contents but of 

the perceptual stimulus elicited by these, thereby enabling the proposed algorithm to 

describe a heart sound in a fashion similar to an expert auscultator. Models for the 

"loudness", "shape", and "pitch" of systolic murmurs were developed using 

psychoacoustic, statistical, and audio processing techniques. The chapter also discussed 

the development of a "Cardiac Auscultation Research Survey" (CARS) in which a 

methodology of collecting expert annotations for heart murmurs was created. The 

results of a preliminary survey were presented and discussed. In the final part of this 

chapter the results of the proposed model were compared to that found in the CARS. 

Although the survey results and the comparison between the survey results and the 

model results showed considerable variation in responses amongst experts and 

between the algorithm and experts in some cases, certain examples had high levels of 

agreement. The main contributions of Chapter 6 include: 

• The most important features used by expert auscultators to describe murmurs 

have been identified from the literature. Psychoacoustic models of segmented 

systolic murmurs were developed for extraction of these features and 

successfully demonstrated agreement with subjective observers, although these 

preliminary results require further validation with larger and more extensively 

annotated datasets. 

7.2 Final Conclusions 

As discussed in chapter 3, the main shortcomings identified in the literature relate to 

the lack of wide generalisability and adequate clinical validation. This lack of validation 

is complicated by the highly variable nature of both heart sounds and methods of 

auscultation and disagreement in literature about which exact categories computer 

assisted cardiac auscultation algorithms should attempt to place examples of heart 

sounds in. This work has taken the viewpoint that a single heart sound recording does 

not contain the information required to place a patient in a specific disease category, or 

even in a category of "diseased". Instead we have attempted to address the issues 

identified in the literature by reducing the need for extensive representative datasets 

that would be needed for a statistical model able to perform medical diagnosis without 
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input from a physician. The algorithms and systems developed in this work take the role 

of biomedical signal clarification or enhancement, increasing the value of the heart 

sounds by revealing diagnostically relevant information in the heart sound.  

As summarised in the research questions, presented in section 3.4, this work was 

focused on modelling the cardiac auscultation process using digital signal processing and 

machine learning methodologies. To this end we have explored probabilistic modelling 

in combination with the field of psychoacoustics to arrive at computer generated 

descriptions of heart sounds that (in theory) align with what a human observer would 

report.  

The first question: "What are the attributes that expert cardiologists try to ascertain 

during cardiac auscultation and how can these attributes be converted to mathematical 

models?" was directly addressed in Chapter 6. A literature review showed that 

'loudness', 'shape', and 'pitch' were the most important descriptive features that 

physicians try to ascertain when listening to heart sounds. Computational models for 

these features were constructed for systolic murmurs based on approximations of the 

human auditory system. Agreement with subjective annotations show that these 

models can successfully capture the perceptual qualities of heart murmurs. 

The second question " Can digital signal processing and machine learning techniques be 

used to extract these features from digital recordings of heart sounds?" was addressed 

in Chapter 4, 5, and 6. Probabilistic modelling in the guise of independent component 

analysis and Hidden semi-Markov Model based heart sound segmentation were 

proposed to this end in Chapter 4 and Chapter 5. The output of the probabilistic heart 

sound labelling algorithm proposed in Chapter 5, was fundamental in the development 

of the psychoacoustic models of systolic heart murmurs presented in Chapter 6. Signal 

processing and machine learning methods were successfully used to ascertain the 

perceptual features of 'loudness', 'pitch', and 'shape'. 

The application of probabilistic ICA, explicit modelling of a systolic murmur state in heart 

sound segmentation, and models of psychoacoustic features shown in this work, 

building on the wealth of work already done and being done in the field of computer 

assisted cardiac auscultation, represent steps in the direction of the development of 
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tools and methodologies able to assist in both the practice and training of cardiac 

auscultation and in so doing improving the lives of those with limited access to advanced 

imaging technologies as well as the burden on those tasked to treat and diagnose 

cardiac conditions. 

7.3 Future Work 

In the 1960's science fiction series Star Trek the medical crew of the Starship Enterprise 

make use of a small handheld device called a "medical tricorder" to instantly diagnose 

ailments and diseases. The device uses a non-descript "scanner" to record "life-signs" 

about the health condition of the patient and can report on internal organ function, 

physiological processes, and detect infectious organisms. Although the series in which 

the medical tricorder first appeared is set in the 24th century, it is one of the fictional 

technologies portrayed in the series that is seeming evermore feasible in the 21st 

century. Science fiction writers however have the luxury of using "scanners" to record 

"life-signs". These abstractions do not have much value for scientists, engineers, and 

doctors trying to design, build, and use devices that improve the health outcomes and 

lives of their patients and customers. We must approach the multi-layered and 

incredibly intricate structure that is the human organism and determine where the 

signal in the noise lies.  

The heart sounds are but one of the multitudes of bio-signals that the body produces. It 

is fundamental in the sense that it can be detected using our senses, but only with the 

invention of the stethoscope and the amplification provided by this device did it become 

truly useful as an aid to diagnosis. We are perhaps again at such a point in time, where 

technology has advanced enough to reveal further value in a bio-signal and its position 

within medicine. The vague abstractions of "scanner" and "life-signs" could then be an 

insightful aspect of the medical tricorder. We can imagine that instead of recording a 

single signal the device works by integrating many different sources of information 

obtained from arrays of passive sensors sensitive to different bio-signals, along with 

probing technologies that transmit and receive different types of signals into the 

patient's body; one such signal that seems quite obvious to monitor is the mechanical 

motion of the internal organs and thus even here in this fictional futuristic technology 

we find room for cardiac auscultation. It is important for future work to continue the 
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exploration of this bio-signal, the sound waves produced as matter is displaced, and its 

utility in cardiac assessment and diagnosis. 

This work has approached computer assisted cardiac auscultation as a problem in 

computation but also as one in communication. It is important for the medical devices 

that we engineer to not only be accurate in their assessment (of course this is critical) 

but also be able to communicate that information in meaningful and useful ways. It is 

hoped that this approach has been sufficiently justified in this thesis; if not the exact 

methodologies then at least the attempt towards translating the outputs of 

computational models into information that is meaningful to the physician and to the 

patient being treated. From this researcher's point of view this is an integral step in 

developing diagnostic aids that are integrated and accepted into our cultures and able 

to provide real value to doctors and patients. 

Less generally, potential future work related to this research should include: 

• The extension of the ICA of heart sounds model using state-of-the-art research 

in this field. Interesting areas include the use of nonlinear ICA [193] which take 

the temporal structure of the independent components into account. The heart 

sounds have prominent time correlations and modelling of these would allow 

the ICA model to more effectively separate events in the heart sound based on 

when they occur. This could potentially result in an unsupervised heart sound 

segmentation algorithm. 

• The extension of the proposed segmentation algorithm to include more heart 

states, such as diastolic murmurs or events such as opening snaps and mid-

systolic clicks. The addition of more transition states to the current model, or the 

implementation of ensembles of segmentation models each finding specific 

events in a recording, would enable a more comprehensive model of the 

cardiovascular dynamics in the heart and surrounding great vessels.  

• The extension of this work beyond cardiac auscultation. Although this work has 

focused exclusively on the development of methods for CACA, in principle these 

methods could be adapted for applications in pulmonary and gastric auscultation 

as well as auscultation of the great blood vessels. 
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• More representative psychoacoustical models, based on psychoacoustic data 

obtained directly from expert auscultators rather than the general statistical 

models used in this work. If the distribution of this psychoacoustic data is 

significantly different from those collected from the general population this 

would not only prove interesting in designing automated auscultation algorithms, 

but also in establishing which areas of the auditory system, e.g. pitch perception, 

should be trained in order to effectively auscultate. Using data collected from a 

specialist population would allow us to develop psychoacoustic models of heart 

murmurs that correspond to the auditory system of a trained auscultator, 

potentially increasing the diagnostic utility of these models. 

• The challenge of creating  large databases of both systolic and diastolic murmurs 

annotated by expert auscultators along with gold standard diagnoses (which 

should constitute consensus findings based on a variety of information including 

but not necessarily limited to echocardiography) would provide the most direct 

value to the models proposed in Chapter 6. Ideally the models should be trained 

on data that has shown positive outcomes for the patients involved. Instead of 

aiming to correlate the findings of one diagnostic test with another, future 

studies should focus on finding correlations between the diagnostic claims of a 

test and the outcomes of the patients involved. 

• Development of teaching solutions that implement the technologies and data 

discussed in this work. These could include interactive applications that draw on 

advanced signal processing techniques and computational models to introduce 

important auscultation concepts and skills piecewise. The visualisations of heart 

sound data provided by the discussed techniques (e.g. time-frequency 

decompositions provided by CWT and isolation of interesting areas by ICA, 

discrimination of specific heart sound states provided by heart sound 

segmentation,  and visual displays of loudness and frequency information) could 

provide learners with attractive and valuable visual information to enhance their 

learning. 

• Clinical evaluation of the algorithms proposed in this work. Although all the 

models were tested on data obtained from clinical settings, the integration of 

the algorithms into forms suitable for embedded solutions and subsequent 
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widespread clinical evaluation at the point-of-care would provide a true test of 

their utility.  

The suggestions given above are a small sample of all the possible ways in which the 

work presented in this thesis, and the wider area of computer assisted cardiac 

auscultation, can and should develop.  
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Afterword 

Technology has, and will continue to have, a tremendous impact on the way medicine 

is practiced. A 2016 research report by PricewaterhouseCoopers [194] found that 54% 

of 12 000 consumers surveyed across Europe, the Middle-East, and Africa were willing 

to engage with artificial intelligence (AI) and robotics for their healthcare needs. This 

figure is much higher in developing countries (94% in Nigeria and 85% in Turkey) with 

69% of respondents in Nigeria saying they would be willing to undergo major surgery 

performed by a robot. The trend is clear, and most of us would perhaps be surprised to 

realise how ubiquitous the use of digital tools has already become in our daily lives. The 

unprecedented connectivity and access to information and processing power that the 

development of the internet has created is leading to the rapid emergence of new 

technologies. The responsibility of biomedical engineers is to embrace these emerging 

technologies and develop them in ways that lead to better outcomes for the patients 

and doctors using them. My hope is that this work has added value to the field and in 

turn leads to tools that add value to the lives of the people who use them. 

It is safe to say that there remains much work to do and that for all the questions this 

thesis has answered it has spawned many more. But although the future may at times 

seem misty and opaque it is always ripe with possibilities. 

 

 

No valid plans for the future can be made by those who have no 
capacity for living now. – Alan Watts 
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