Hindawi

Journal of Computer Networks and Communications
Volume 2022, Article ID 5988567, 16 pages
https://doi.org/10.1155/2022/5988567

Research Article

@ Hindawi

Towards the Development of a Cloud Computing Intrusion
Detection Framework Using an Ensemble Hybrid Feature

Selection Approach

Noah Oghenefego Ogwara (", Krassie Petrova ("), and Mee Loong Yang
School of Engineering, Computer and Mathematical Sciences, Auckland University of Technology, 55 Wellesley Street East,

Auckland 1010, New Zealand

Correspondence should be addressed to Krassie Petrova; krassie.petrova@aut.ac.nz

Received 18 October 2021; Revised 22 January 2022; Accepted 26 January 2022; Published 27 February 2022
Academic Editor: Liansheng Tan

Copyright © 2022 Noah Oghenefego Ogwara et al. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Attacks on cloud computing (CC) services and infrastructure have raised concerns about the efficacy of data protection
mechanisms in this environment. The framework developed in this study (CCAID: cloud computing, attack, and intrusion
detection) aims to improve the performance of intrusion detection systems (IDS) operating in CC environments. It deploys a
proposed new hybrid ensemble feature selection (FS) method. The ensemble includes FS algorithms of three different types (filter,
wrapper, and embedded algorithms). The selected features used to train the ML (machine learning) model of the intrusion
detection component comprised a binary detection engine for the identification of malicious/attack packets and a multi-
classification detection engine for the identification of the type of attack. Both detection engines deploy ensemble classifiers.
Experiments were carried out using the NSL KDD dataset. The binary model achieved a classification accuracy of 99.55% with a
very low false alarm rate of 0.45%. The classification accuracy of the multiclassification model was also high (98.92%). These results
compare very favourably with the results reported in the literature and indicate the feasibility of the framework implementation.

1. Introduction

Cloud computing (CC) technology provides users with new
and potentially easier ways to access, store, and maintain
their data [1]. Efficient resource allocation is key for the CC
infrastructure to enable the provision of scalable, affordable,
and efficient computing resources on demand with a QoS
guarantee [2]. For example, Li et al. [3] proposed a nonlinear
optimization model for cloud resource allocation that aims
to ensure the operation of an IoT system by maximizing the
cost-performance ratio for devices used to access resources
in the CC environment. However, cyberattacks on cloud
resources and services can have a negative impact on the
performance of the CC infrastructure and thus jeopardise
meeting the QoS requirements. Furthermore, users of CC
services are particularly concerned about security threats
that may jeopardise their data availability and/or cause data

loss [4]. As cyberattacks are becoming increasingly so-
phisticated, it is important to develop means of preventing
or thwarting such attacks and to ensure the security of the
data stored and processed in CC environments [5, 6].

A significant number of the attacks on cloud data
confidentiality, integrity, and availability are network based
[7, 8]. For example, cloud services may be interrupted and
data loss may occur as the result of malicious outsider at-
tacks on the cloud network such as denial of service (DoS)
and distributed denial of service (DDoS) [9, 10] attacks.
These attacks aim to interrupt the traffic between the cloud
and the external networks from which cloud users access
cloud services. Attacks such as U2R (user-to-root), R2L
(remote to local), and network probes can provide the at-
tacker with unauthorised access to data and system resources
[8, 11]. Malicious insiders (e.g., a malicious tenant residing
in a virtual machine) may also launch similar attacks and

mailto:krassie.petrova@aut.ac.nz
https://orcid.org/0000-0001-6910-2732
https://orcid.org/0000-0003-2241-109X
https://orcid.org/0000-0001-9028-493X
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/5988567

threaten the traffic between virtual machines [12]. Other
network attacks such as DNS poisoning and flooding can
also affect the cloud network [8]. Successful cloud network
attacks may have a significant negative impact on cloud
service availability and/or data confidentiality, leading to
financial and reputational loss [12, 13]. Therefore, cloud
defence systems need to be able to detect attacks and to alert
the respective response components.

A number of approaches towards the protection of data
residing in CC storage have been reported in the literature,
including both access control techniques and intrusion
detection and intrusion prevention systems (IDS/IPS). An
IDS examines network traffic packets to ascertain harmful
activities and raise an alarm when such an activity is detected
[5, 11]. Furthermore, multiple IDS can be deployed in the
IaaS (infrastructure as a service) layer of the cloud com-
puting infrastructure (e.g., at the back end of each processing
cloud server or at each virtual switch) [9, 10, 13].

A comprehensive classification and performance review
of IDS suitable for deployment in cloud environments is
provided in [11]. The authors classify cloud IDS as host
based, network based, distributed, and virtual machine in-
trospection (VMI) based. They also noted that network IDS
are commonly deployed on virtual switches and these IDS
for cloud environments need to be able to handle the high
volume of traffic efficiently. All IDS types are signature or
anomaly based, or a hybrid of both. A signature-based IDS
can effectively detect an attack if it is able to match the attack
signature to a known signature pattern in its signature
knowledge database. This type of IDS detects attack packets
with very high accuracy and has a low false positive rate (i.e.,
a low number of benign, or normal network traffic packets
“detected” wrongly as malicious). However, a signature-
based IDS may exhibit a high false negative rate (i.e., a high
number of malicious network traffic packets “detected”
wrongly as benign), if an attack signature deviates from the
stored patterns. In addition, signature-based IDS will fail to
recognize unknown attacks (e.g., zero-day attacks), as its
signature would not be available in the IDS knowledge base
and also may not be able to cope with the high volume of
cloud network traffic.

An anomaly-based IDS may be well suited to the rec-
ognition of unknown attacks as they attempt to differentiate
between anomalous and normal network activity. Anomaly-
based intrusion detection methods implement various su-
pervised and unsupervised machine learning (ML) tech-
niques to analyse traffic data and develop a “normal’ network
traffic profile [14]. This type of IDS can detect both known
and unknown attacks with a low false negative rate. How-
ever, raw network traffic data are normally characterised by a
large number of features, some of which may be redundant.
Therefore, datasets used to train ML-based intrusion de-
tection models may comprise a large number of attributes
(dimensions), leading to a high false positive rate and a high
computational overhead [8, 12]. The implementation of an
efficient feature selection (FS) method can reduce the
computational overhead by selecting a subset of features that
are most likely to lead to both high classification accuracy
and low false alarm rate, thus enhancing the performance of

Journal of Computer Networks and Communications

the system by reducing its computational complexity [15].
Furthermore, integrating feature selection and classifier
techniques can improve IDS performance [16]; therefore, an
appropriate FS method deployed at a preprocessing step can
contribute to the building of an efficient intrusion detection
model by identifying the network traffic features that are
most critical to the IDS.

A number of ML-based models for network intrusion
detection intrusion detection have been proposed in the
literature with some already being used commercially [17].
Support vector machine (SVM) is one of the most com-
monly used ML classifiers in IDS developed for CC envi-
ronments; other often used algorithms include Random
Forest (RF), Decision Tree (DT), and K-Nearest Neighbours
(KNN) [18]. The performance of the intrusion detection
models based on supervised learning classifiers can be im-
proved further by using a feature reduction technique. For
example, the multiclass SVM intrusion detection model
described in [16] improved the classification accuracy while
minimising the time required for training and the testing of
the model. Here, the authors applied the Chi-squared metric
as a feature selection approach and demonstrated the im-
proved performance characteristics of the model on the
NSL-KDD dataset.

While cloud intrusion detection models based on a
single ML algorithm are characterised by relatively low
computational complexity and thus may be fast, deploying
ML models that combine the strengths of several ML al-
gorithms may lead to better results in terms of intrusion
detection accuracy and low false alarm rate despite the
potentially higher execution times. For example, in their
analysis of the results reported in the literature on the ap-
plication of computational intelligence methods for cloud-
based IDS, Shamshirband et al. [8] suggested that IDS
models applying a hybrid method which is a combination of
different ML algorithms performed consistently better
compared to IDS models using a single algorithm. The
individual classifiers in a hybrid model may run in sequence
or in parallel [19]. For example, the use of ensembles of
running in parallel ML classifiers for anomaly detection [20]
and feature selection [21] has been proposed; here, the
ensemble integrates the outputs of the individual classifiers
to approximate the target function. Conversely, in the two-
stage anomaly prediction model described in [22], the
output of one classifier serves to provide input to another.
Recently, Krishnaveni et al. [23] applied an ensemble of ML
classifiers to both select features and analyse network traffic
behaviour, achieving good performance results in terms of
classification accuracy and low false alarm rate.

To enhance IDS performance in terms of intrusion
detection accuracy, a class of ML methods known as “deep
learning” (DL) has been considered in more recent research
[24]. DL methods apply artificial intelligence approaches
such as deep neural networks (DNN) and deep ANN where a
nonlinear computational structure comprising multiple
processing layers facilitates data abstraction and learning
[25, 26]. For example, Wang et al. [12] applied a single DL
method (tracked contractive autoencoder) to extract the
most important network traffic features automatically. An

Journal of Computer Networks and Communications

SVM algorithm then used the extracted features to perform
network behaviour analysis to identify malicious traffic.
According to their results, this hybrid deep/shallow learning
model achieved better detection performance compared to
SVM and two other state-of-the-art DL methods; the models
were tested on both the KDD Cup 99 and the NSL-KDD
datasets. Applying an ensemble approach, Elmasry et al. [27]
proposed an integrated framework for a DL-based cloud IDS
that included monitoring cloud traffic and capturing and
preprocessing data to be used as input to the analysis,
prediction, and response modules of the framework. The
ensemble comprised three DL methods (DNN, Long Short-
Term Memory Recurrent Neural Network-LSTM, and Deep
Belief Network-DBN); it was trained and tested on the NSL
KDD set.

Results from comparative studies have indicated that
DL-based IDS may perform better than classic ML-based
ones. For example, the XGBoost ensemble (comprising
LSTM, multilayer perceptron (MLP), and back propagation
network (BNP)) that was proposed in [24] showed better
classification accuracies compared to eight other models
advanced in recent research; the research used the bench-
mark UNSW-NB15 dataset. However, the XGBoost model
training time was relatively high. Similarly, the ANN-based
intrusion detection model described in [28] that used the
MLP classifier performed better than five other ML-based
models (RF, KNN, SVM, AdaBoost, and Naive Bayes); the
experimental work was done on the realistic cyber dataset
CSE-CIC-IDS2018. A benchmarking review of DL methods
used in extant research and a performance comparison of
IDS deploying DL and ML approaches (as single methods)
can be found in [26]. The experiments conducted over two
datasets (CSE-CIC-IDS2018 and Bot-IoT) indicated that the
DL-based IDS outperformed the ML-based ones in terms of
overall detection rates, with SVM and RM giving best results
among the ML-based IDS. However, the false alarm rates of
the tested DL-based IDS were relatively high.

Despite the significant work already done in the area of
cloud IDS, the development and evaluation of ML-based IDS
are still a very active area searching for novel, high-accuracy,
and high-speed IDS frameworks for identifying attacks [29].
Elmasry et al. [27] also pointed out that, notwithstanding the
important results reported in the last ten years or so, “finding
a cloud-based intrusion detection system with effective in-
trusion detection mechanism” was still a desirable goal.
Furthermore, Raj and Pani [19] noted that one of the still
open challenges in cloud IDS was the effective minimization
of the set of network traffic features used by the cloud IDS.

In this paper, we present a hybrid ensemble feature
selection method (HEFSM) and report test results which
show improved anomaly detection performance. The
method is partly a proposed cloud computing attack and
intrusion detection (CCAID) framework which includes an
ML-based detection component. The study contributions
can be summarised as follows: first, the study proposes and
tests an efficient hybrid ensemble method for selecting a
minimal set network traffic feature that combines the
strengths of the individual classifiers it comprises. Second,
the study evaluates the performance of a two-stage model for

detecting malicious network behaviour that ¢ works on the
reduced set of features; the performance evaluation results
demonstrated that it was highly effective and outperformed a
number of proposed models. Finally, the study presents a
comprehensive review of FS approaches for cloud IDS that
were proposed and tested in prior empirical work and
compares the results using a set of representative evaluation
metrics; this addresses a literature gap highlighted in [18].

The rest of the paper is organized as follows: relevant
work related to FS is reviewed in the section below. The
section following introduces the proposed framework and
describes in detail the FS approach adopted in this study. The
last two sections present and discuss the experimental results
of our method and concludes the paper.

2. Feature Selection Methods for Intrusion
Detection Systems

Feature selection (FS) determines what data will be extracted
from the network traffic flow for examination by the IDS
model [27]. The aim is to improve the overall performance of
the IDS by creating an optimal (smaller) set of features that
provide an accurate representation of the activity in the
original packet flow. Supervised, unsupervised, and semi-
supervised FS methods can be used to reduce data redun-
dancy and boost performance [30, 31]. FS methods can be
classified as filter, wrapper, and embedded methods [32].
Filter and wrapper methods in particular are widely used in
intrusion detection ML models that are trained on network
traffic data [33, 34]. Combining different FS methods may
enhance the performance of the classifiers used in ML
models by identifying and selecting features that may be
weak as single predicting entities, but strong as a set of
relevant features that are highly associated with the target
output class [1].

2.1. Filter Feature Selection Methods. Filter FS methods
operate independently of the classification algorithm of the
ML intrusion detection model. Features are selected at the
preprocessing stage based on the structural properties of the
data [34]. Typically, features are assessed and ranked using
measures such as dependency and distance. Filter FS are
particularly efficient when applied to relatively large datasets
[35, 36]. For example, Ambusaidi et al. [37] proposed a filter
FS selection model using mutual information as a rela-
tionship measure and trained the ML intrusion detection
model with an SVM classifier. The model was tested on
several datasets (KDD CUP99, NSL KDD, and Kyoto 2006+)
using classification accuracy (i.e., the total number of cor-
rectly “detected” network traffic packets compared to the
overall number of packets), detection rate (i.e., the number
of network traffic packets correctly “detected” as malicious
compared to the number of all packets “detected” as
malicious, also known as true positive rate), and false
positive rate as validation metrics.

Osanayie et al. [1] applied a multifilter FS method to
combat DDoS attacks in CC environments. The significant
features that enhance the detection accuracy of DDoS attacks

were selected by using information gain, gain-ratio, chi-
squared, and relief as filter metrics. The ML intrusion de-
tection model used DT classifiers. It was evaluated using the
NSL KDD dataset with the following validation metrics:
classification accuracy, detection rate, false positive rate (as a
measure of the false alarm rate), and the time to build the
model. More recently, an ensemble of filter FS methods was
proposed by Krishnaveni et al. [23]. Using the same metrics
as in [1], the authors evaluated the ML model across several
datasets (NSL KDD, the Kyoto 2006 + dataset, and a dataset
of real-time network traffic collected by the authors).

An innovative filtering approach based on visual sim-
ulation was proposed by Luo and Xia [38]. The experimental
data were mapped onto a four-star graph; the computed
distances between the coordinates of the data and the star
vertexes were used to generate a reduced set of features
representing the data. The authors conducted experiments
on the KDD CUP99 dataset, using an SVM clustering al-
gorithm; the model was validated for classification accuracy.

The filter FS methods reviewed above apply supervised
learning approaches [34]. Selecting features through unsu-
pervised learning was proposed by Idhammad et al. [39]; the
filter algorithm selected features by applying the Pearson
correlation coefficient (PCC). An ANN was used to build an
ML model for the detection of DoS attacks. Its performance
was evaluated on the NSL KDD and UNSW-NB15 datasets
using classification accuracy, true positive (detection) rate,
true negative rate (i.e., the number of normal traffic packets
correctly “detected” as normal compared to the overall
number of normal network traffic packets), and false alarm
rate (the arithmetic average of false negative rate and false
positive rate) as evaluation metrics.

2.2. Wrapper and Embedded Feature Selection Methods.
Wrapper (and embedded) FS methods examine and evaluate
the features of the data in the training dataset with a con-
sideration of the targeted classification output. They work
independently of the intrusion detection ML model (nor-
mally, at a preprocessing stage). Conversely, in embedded
methods, features are selected as part of the training process
of the ML detection model. The method used to select
features is specific to the ML classifier deployed by the model
[34]. Typically, wrapper and embedded methods are more
time consuming compared to filter FS methods due to the
heavier computational requirements of the classifier used to
ascertain the relevance of the feature set [15].

A typical example of a wrapper FS approach is presented in
[40]. A modification of the cuttlefish optimization algorithm
(CFA) was used to select the optimal set of features. The in-
trusion detection ML model was deployed with a decision tree
classifier and was validated on the KDD CUP99 dataset using
classification accuracy and false positive rate as validation
metrics. Moreover, using KDD CUP99, Sun et al. [41] pro-
posed a wrapper method that deployed the nature-inspired
lightning attachment procedure optimization (LAPO) algo-
rithm to select a subset of relevant best performing features.
The intrusion detection ML used an SVM algorithm; the model
performance was evaluated using classification accuracy.

Journal of Computer Networks and Communications

Pham et al. [42] presented a wrapper FS approach that
used Naive Bayes and a gain ratio technique to select sig-
nificant features. The method was tested on two ensemble
models (ensemble bagging and ensemble boosting) with
tree-based algorithms as the base classifier. The evaluation of
the model was done on the NSL KDD dataset based on
classification accuracy and false alarm (false positive) rate.
An ensemble approach to building the ML detection in-
trusion model was also used by Besharati et al. [43]. Their
proposed host-based IDS for a CC environment imple-
mented logistic regression to remove features that were not
relevant to the detection of attacks. The ML intrusion de-
tection model was based on ensemble bagging, including
DT, linear discriminant analysis, and ANN. It was validated
using classification accuracy, precision (the ratio of the
number of malicious network traffic packets “detected”
correctly as malicious, to the total number of network
packets “detected” as malicious), and F-score (the harmonic
mean of precision and recall).

Belouch et al. [44] and Vijayanand et al. [45] attempted
to refine the FS process by selecting different sets of features
depending on the type of traffic [44] or on the type of attack
[45]. In [44], the FS method used information gain to
identify the features that were not related to the targeted
output by applying an evolutionary search process. The ML
intrusion detection model deployed a two-stage classifica-
tion process using the reduced error pruning tree (REPTree)
algorithm. The model was tested and validated on the NSL
KDD and UNSW-NBI15 datasets using classification accu-
racy as a performance metric. In [45], a genetic algorithm
was used for FS and multiple SVM classifiers were imple-
mented in the intrusion detection ML. The performance
evaluation criteria used were detection accuracy, false
positive rate, and false negative rate (for each attack type).
The model was tested on the ADFA-LD and CICIDS2017
datasets. Aljawarneh et al. [46] also proposed an improve-
ment of the FS process by using information gain and
multiple classifiers including Naive Bayes, J48, AdaBoost,
and RT. Features were selected based on the best classifi-
cation outcome. The ML intrusion detection model was
trained on the NSL KDD dataset and validated for classi-
fication accuracy.

2.3. Hybrid Feature Selection Methods. Some researchers
have attempted to combine the strengths of different feature
selection algorithms. For example, CfsSubsetEvalk and
WrapperSubsetEval FS algorithms are combined in [5] to
identify features that are most strongly related to the targeted
classification output. The selected features were used in an
ML-based IDS, running several classifiers (RF, J48, KNN,
and Naive Bayes) on the NSL KDD dataset. The validation
metrics included classification accuracy, detection rate, true
positive rate, false positive rate, false negative rate, Matthews
correlation coefficient, and performance time.

Moustafa and Slay [47] also applied a filter and a
wrapper; the calculated central points of attribute values and
association rule mining were used to reduce the high di-
mensionality of the two datasets (UNSW-NB15 and NSL

Journal of Computer Networks and Communications

KDD). Expectation-maximisation (EM) clustering, logistic
regression, and Naive Bayes were the classifiers deployed in
the network IDS, with evaluation metrics using classification
accuracy and false alarm rate (the arithmetic average of false
positive rate and false negative rate). Similarly, Mogal et al.
[48] used the central points of attribute values and applied
the Apriori algorithm to remove features that were not
relevant based on the false alarm rate. The ML model used
Naive Bayes and logistic regression as classifiers; the IDS
detection engine was validated using classification accuracy
and processing time as metrics using the KDD CUP99 and
UNSW-NBI15 datasets.

Researchers have continued to experiment with in-
volving a larger number of classifiers in the FS selection
process, the ML training process, or in both processes as a
means of improving the performance of the ML intrusion
detection model. More recently, a multiobjective feature
selection algorithm that used mutual information and a
probabilistic model to search for relevant features was
presented in [15]. The attack detection ML model used Naive
Bayes, MLP, NN, SVM, KNN, and DT. It was trained on the
NSL KDD dataset using detection accuracy as a validation
metric. In the cyber IDS proposed by Mohammadi et al. [31],
linear correlation coefficient and CFA were used to extract
features relevant to cyber intrusion. The ML model (DT
based) was trained on the KDD CUP99 dataset; it was
evaluated using classification accuracy, detection rate, false
positive rate, statistical fitness, and processing time. Fur-
thermore, Anwer et al. [50] developed a structured frame-
work of strategies to combine filter and wrapper feature
selection approaches. Their ML intrusion and anomaly
detection model was trained with the J48 and Naive Bayes
classifiers using the UNSW-NB15 dataset; it was validated
using classification accuracy.

A hybrid FS method which used three evolutionary
search techniques (particle swarm optimization, ant colony
optimization, and genetic algorithm) was proposed by Tama
et al. [22]. The ensemble ML model was trained on the NSL
KDD and the UNSW-NB15 dataset using ensemble bagging
with rotation forest. The validation metrics included clas-
sification accuracy, false positive rate, sensitivity (true
positive rate), precision, and a statistical significance test.

A slightly different approach towards combining FS
methods was proposed by Bhattachary and Selvakumar’s
[51]: a multimeasure, multiweight feature identification
method that combined filter, wrapper, and unsupervised
learning to rank features relevant to probe and DoS attacks.
The ML intrusion detection model used several classifiers
(Bayesian network, J48, Simple K Means, and Vote) for
predicting the output. The model was evaluated using three
different datasets: NSL KDD, SSENet, and ISCX. The FS
validation metrics were prediction accuracy, the average
number of false positives, the average number of false
negatives, and the average training time.

Overall, the summary above shows that in the reviewed
studies, FS was used as a means of enhancing ML-based IDS
performance. The proposed FS technique was normally
applied to well-known benchmark datasets such as NSL
KDD, KDD CUP99, and UNSW-NBI15. Furthermore, in

most cases, a single FS method was used (normally, a filter or
a wrapper); similarly, most of the intrusion detection and
attack recognition ML models used a single classifier (often,
SVM and/or DT). However, the results from deploying a
hybrid FS approach indicated that better outcomes may be
achieved by combining the strength of the different types of
FS methods. The results also show that classification accu-
racy and other ML performance metrics may benefit from
applying an ensemble of classifiers [52].

While all proposed ML models were evaluated using the
classification accuracy metric, the false positive rate was used
by some as a measure of the false alarm rate. In intrusion
detection and attack recognition systems where the majority
of the examined network traffic packets are expected to be
benign rather than malicious, measuring the false alarm rate
by the balanced error rate (the arithmetic average of false
positive rate and false negative rate) may be also useful as a
performance evaluation criterion [53]. Finally, even though
ML model efficiency in terms of computational time and
resources used was considered only in some of the proposed
models, more consideration should be given to them as these
are critical to the performance of the IDS as an integral part
of the CC infrastructure.

In the study presented here we aimed to develop a new
ML model for intrusion detection and attack recognition
that performed with a high overall classification accuracy
and low false alarm rate, but without being overly de-
manding computationally; such models would be suitable to
be implemented in IDS operating in high risk CC envi-
ronments. Given the high traffic volume in CC, it is also
essential that the IDS does not impact negatively on the CC
service provision. As a way of meeting these requirements,
this study focuses on the development of an efficient method
for reducing the number of features used in the ML intrusion
detection and attack classification models.

3. Materials and Methods

A conceptual overview of the proposed CCAID framework
is shown in Figure 1; the specific ML algorithms shown in
the figure were selected experimentally as described further
in this section. The framework comprises a preprocessing
stage in which the proposed hybrid ensemble FS method
(HEFSM) is applied to select a subset of relevant features
(“ensemble features”) from the training dataset. In partic-
ular, HEFSM selects a subset of the most significant features
by applying a hybrid FS approach comprising a filter, a
wrapper, and an embedded algorithm, to identify the highly
correlated features that are relevant to the detection of an
attack in a CC environment.

The filter FS method considers the properties of the
dataset to evaluate and rank features, while the wrapper
method works as an ML classifier that adds or removes
features aiming to produce a subset of features that best
predict the target class [34]. The embedded FS method
combines the advantages of the other two methods as fea-
tures are ranked based on statistical measures that consider
the specific classification algorithm used; the features with
the highest ranking values are chosen. Adding an embedded

User End-Point access to the

Journal of Computer Networks and Communications

Cloud Environment

Machine Learning Training Process

Hybrid Ensemble Feature
Selection Method (HEFSM)
—
Data Filter Method
Transformation
((())) Network Ensemble Feature
Communication [Wrapper Method Selection
Channel
Training
Dataset
Embedded
Method v
T —
Model Training with Ensemble
Features
Network packet (Binary and Multi-Class)
Collection DT, RF & KNN ML Classifiers
|
Extract Network Detection Englne l

Packets
Based on the
Ensemble Features

Cloud-Based Detection Engine
with Binary Classification Model
Using Ensemble Voting Classifier

(DT, RF & KNN ML Classifiers)

Cloud-Based Detection Engine
with Multi-class Model
Using Ensemble Bagging
(RF as Base Estimator Classifier)

Cloud-Based IDS

v

v

Normal
Network
Traffic

‘ Intrusion Identify Attack Type

and Report to Admin

FiGure 1: Cloud computing attack and intrusion detection framework (CCAID). The feature selection process using HEFSM and the ML
intrusion detection and attack classification model training are shown in the box labelled “Machine Learning Training Process.” The working
of the intrusion detection engine is shown in the box labelled “Intrusion Detection Process.”

algorithm is particularly important as it identifies the op-
timal subset of features with high accuracy [54].

The schematic representations of the ML model training
and the cloud IDS detection processes can be seen in Fig-
ure 1. First, the data in the training dataset are converted to a
numeric format. The transformed dataset is used as input by
each of the FS methods that constitute the FS ensemble
(HEFSM). The output of the ensemble is a subset of features
(“ensemble features”) that were selected by all three FS
methods. The ensemble features are used to train the ML
models that comprise the detection component of the
CCAID framework.

The CCAID detection component consists of two de-
tection engines—a binary engine and a multiclass engine.
During the intrusion detection process, the cloud-based IDS
analyses the incoming traffic of a specific virtual machine
instance used by a cloud customer as follows. The network
packet feature extractor captures incoming traffic and reduces
the dimensionality of the incoming traffic. Then, it applies the
ensemble feature set to extract data matching the selected
features and creates a dataset that contains the selected fea-
tures’ values. The dataset is passed on to the binary detection
engine. If a malicious behaviour traffic pattern is identified,
the binary detection engine forwards the data to the multiclass
detection engine which determines the type of the attack and

communicates it to an appropriate component of the cloud
environment defence management system.

3.1. Preprocessing Stage. This research used a dataset named
NSL KDD which was obtained from the public repository of
the University of New Brunswick (https://www.unb.ca/cic/
datasets/index.html). The NSL-KDD set was recently used
by Elmasry et al. [27] as the benchmark set for training and
testing of a DL-based cloud IDS. The set was also used as one
of the three benchmark sets in [23] where an ensemble
voting approach was used for selecting features as well as for
detecting attacks.

The network traffic records in the NSL KDD dataset
contain values for each of the features representing the
network packet properties (for a guide to the NSL KDD
dataset features as referred to in this study; see Table 1; a
detailed description of the dataset can be found in [46]).
Most of the feature values are numeric, but three of the
features were represented by nonnumeric values. Therefore,
the original dataset was first modified by replacing the string
values of the three nonnumeric features with numeric
values, as shown in Table 2.

There is still a very limited number of publicly
available datasets with data collected at virtual machine

https://www.unb.ca/cic/datasets/index.html
https://www.unb.ca/cic/datasets/index.html

Journal of Computer Networks and Communications

TaBLE 1: NSL KDD dataset features as referred to in this study.

F/N Feature name Type Description
F1 Duration Numeric The length of the connection process
F2 Protocol_type String The connection protocol type of a packet (TCP, UDP, etc.)
F3 Service String The type of network service at the destination (e.g., Http)
F4 Flag String The normal or error status of the connection
F5 Src_bytes Numeric The number of data bytes sent, i.e., source to destination
F6 Dstbytes Numeric The number of data bytes received, i.e., destination to source
F7 Land Numeric To check if a connection is from the same host or not (1 or 0)
F8 Wrong fragment Numeric The total number of wrong fragments of a connection
F9 Urgent Numeric The total number of the packet that is urgent
F10 Hot Numeric The total number of hot indicators in a packet
F11 Numfailedlogins Numeric The total number of times login attempt failed by a connection
F12 Loggedin Numeric Login status of a connection (1 successful, 0 failed)
F13 Numcompromised = Numeric The total number of compromised conditions
F14 Rootshell Numeric To determine if a root shell is obtained or not (1 yes 0 no)
F15 Suattempted Numeric To check if a super user root command is attempted or not
F16 Numroot Numeric The total number of root accesses
F17 Numfilecreations Numeric The total number of file creation activities attempted
F18 Numshells Numeric The total number of shell prompts recorded
F19 Numaccessfiles Numeric The total number of attempts in access control files
F20 Numoutboundemds Numeric The total number of outbound commands in file transfer task
F21 Ishostlogin Numeric To check the login belong to the host list or not
F22 Isguestlogin Numeric To check if the login is guest or not

. 'The total number of connection to the same host as the current connection in the last two
F23 Count Numeric

seconds

. The total number of connection to the same service as the current connection in the last two

F24 Srvcount Numeric
seconds

F25 Serrorrate Numeric Total (%) of connection that has “SYN” errors in same-host connection
F26 Srvserrorrate Numeric Total (%) of connection that has “SYN” errors in same-service connection
F27 Rerrorrate Numeric Total (%) of connection that has “RE]” errors in same-host connection
F28 Srvrerrorrate Numeric Total (%) of connection that has “RE]J” errors in same-service connection
F29 Samesrvrate Numeric The total (%) of connection to the same service connection
F30 Diffsrvrate Numeric The total (%) of connection to different services
F31 Srvdifthostrate Numeric The total (%) of connection to a different host
F32 Dsthostcount Numeric The total (%) count of connection having the same destination host

F33 Dsthostsrvcount
F34 Dsthostsamesrvrate ~ Numeric
F35 Dsthostdiffsrvrate Numeric
F36 Dsthostsamesrcportrate Numeric

F37 Dsthostsrvdiffhostrate Numeric
F38 Dsthostserrorrate Numeric
F39 Dsthostsrvserrorrate Numeric
F40 Dsthostrerrorrate Numeric

F41 Dsthostsrvrerrorrate

Numeric The total (%) count of connection; having the same destination host and using the same service
The total (%) of connection having the same destination host and using the same service
The total (%) of different services on the current host
The total (%) of connection to the current host having the same port
The total (%) of connection to the same service coming from different hosts
The total (%) of connection to the current host that has a SO error

The total (%) of connection to the current host and specified service that has a SO error

The total (%) of connection to the current host that has an RST error
Numeric The total (%) of connection to the current host and specified service that have an RST error

and hypervisor levels such as the relatively new ISOT-
CID dataset [55]. Despite the heterogeneous nature of
cloud based networks, conventional and cloud-based
networks share numerous common characteristics.
Therefore, datasets used to train and test network-based
IDS such as the benchmark NSL-KDD dataset are used
widely in solutions proposing IDS for cloud environ-
ments [18, 56].

All features selected by the proposed feature se-
lection algorithm are applicable to the network traffic
in cloud environments with five of them also found in
the ISOT-CID dataset. For example, the feature F1
“duration” (representing the length of the connec-
tion process in a conventional network environment)
is the equivalent of the feature “frame_len” that

represents cloud-based hypervisor traffic feature in
ISOT-CID. Similarly, F5 and F6 in the NSL-KDD
dataset are the equivalent of “traffic_in” and “traf-
fic_out” features in the cloud-based dataset while F3
and F23 match “tcp_seq” and “tcp_ack” in the ISOT-
CID dataset.

The complete dataset consisting of 148,517 network
traffic records (packets) are labelled either as normal or as
attack packets. Four categories of well-known attack packets
are represented in the dataset [15]:

(1) Denial of Service Attack (DoS): this is the type of
attack that results in the unavailability of re-
sources or services requested by the users of a
system

8 Journal of Computer Networks and Communications
TABLE 2: Assigning numeric values to nonnumeric features.
Feature Previous value New value
ICMP 1
F2 TCP 2
UDP 3
AOL 1
AUTH 2
M BGP 3
COURIER 4
73950 70
OTH 1
REJ 2
RSTO 3
RSTOSO 4
RSTR 5
F4 SO 6
S1 7
S2 8
S3 9
SF 10
SH 11

(2) User to Root Attack (U2R): this type of attack leads
to the hijacking of the root account as a result of a
compromised user account

(3) Remote to Local Attack (R2L): in this type of attack, a
network packet is sent to a machine to hijack a user
account to gain unauthorised access to the machine

(4) Probe Attack (probe): in this type of attack the host
ports are scanned to discover open ports that can be
used to exploit potential weaknesses of the system

For the purpose of this research, the original dataset was
split into three smaller datasets as follows: 70% of the data
(103,961 records) were used for training the ML models, 20%
of the data (29,704 records) were used for testing, and 10% of
the data (14,852 records) were used for validation. The
distribution of the attack instances across the training,
testing, and validation datasets is shown in Table 3.

For the purpose of training the multiclass detection
engine, the dataset in Table 3 was modified, whereby the
current string values of the packet type labels were replaced
by numeric values (Table 4). Another modification was
created for the purpose of training the binary detection
engine where the packet label was modified to indicate either
a benign (normal, nonattack) packet or an attack (intrusion)
packet (Table 5).

3.2. Feature Selection Stage. The filter, wrapper, and em-
bedded FS methods used in the proposed HEFSM ensemble
were SelectKBest, RF, AdaBoost, respectively. The FS al-
gorithm used by HEFSM is presented in Table 6.

The filter method (SelectKBest) applies the chi-squared
statistical test to compute a score for each feature in the
dataset [23]. The computed score measures the level of
dependency between the feature attribute and the target
class. SelectKBest deploys this univariate method to rank

TaBLE 3: Number of packets in the training, testing, and validation
sets (per packet type).

Packet type Training set Testing set Validation set
Normal traffic 54,148 15,460 7,683
DoS 37,099 10,590 5,403
U2R 8,268 2,384 1,130
R2L 2,734 759 386
Probe 1,712 511 250

each of the dataset features: a high score shows a high-
dependency relationship that may be useful as part of the
prediction model.

The RF algorithm that is used as the second FS method of
the ensemble applies a forward selection approach; the al-
gorithm starts with a null feature subset and keeps adding
one feature at a time until an optimal feature subset is
produced. The selected “most important” features perform
best in terms of classification accuracy [5].

The ensemble algorithm AdaBoost used as an embedded
FS method selects the features that give the best prediction
during the training of the learning algorithm. The boosting
procedure combines the output of weaker classifiers into a
weighted sum at the end of each iteration to reach a final
output [46].

Each of the three FS methods included in HEFSM rank,
and select the best features using their respective feature
importance metrics. Subsequently, HEFSM selects the fea-
tures that are common across the three independently
produced optimal feature sets.

We conducted the experiments by applying HEFSM to
the training dataset to identify the features that were part of
the output of each of the three FS methods in HEFSM
ensemble. We first applied SelectKBest with a threshold of
0.0 and selected the top 50% of the ranked features of the
study dataset (i.e., 20 features). Next, we ran Random Forest

Journal of Computer Networks and Communications 9

TaBLE 4: Network traffic packet labelling for the multiclassification detection engine.

Packet label Previous value New
value

Normal

traffic Normal 1

DoS Back, land, Neptune, pod, smurf, teardrop 2

U2R Bufferoverf low, Loadmodule, Rootkit, Perl, Ps 3

Guess Password, Ftp write, Imap, Phf, Multihop, Warezmaster, Warez client, Spy, Xlock, Xsnoop, Snmpguess,
R2L . 4
Snmpgetattack, Httptunnel, Sendmail, Named
Probe Satan, IPsweep, Nmap, Portsweep, Mscan, Saint 5
TaBLE 5: Network traffic packet labelling for the binary detection engine.

Packet type Previous value New value

Normal traffic Normal 0

Intrusion (malicious) traffic DoS, U2R, R2L, probe 1

TaBLE 6: The HEFSM algorithm.

Step Description
Step 1 Let F represent the array of feature set in the dataset, where 7 is the number of features in the dataset such that n=41. F,=F;, F,,
Fs,......., Fy and let E represent an empty array of the selected features from the ensemble FS process.
Step 2 Let T represent the target class of the dataset such that T is either 0 or 1, where 0 is a normal traffic and 1 is intrusion.
Step 3 Using the filter FS method with chi-square approach, compute a score for each feature in F,, and store the results in an array X.
Step 4 Using the wrapper FS method with Random Forest ML inbuilt FS algorithm, compute the feature importance score for each
feature in F,, and store the results in Array Y.
Step 5 Using the embedded FS method with AdaBoost ML inbuilt FS algorithm, train the model and select the best performing features
with the highest classification accuracy and assign scores to each feature in Fn and store results in an array Z.
Step 6 Remove features in Arrays X, Y, and Z where score is equal to zero.
Step 7 Set j=1 and repeat step 8, step 9, and step 10 while j<41.
Step 8 IF Fj is in Array X and F; is in Array Y and F; is in Array Z, then go to step 9 or otherwise go to step 10.
Step 9 Store F; in the final array of the ensemble features E.
Step 10 Increment j by 1.
Step 11 Output the final feature set in Array E as the ensemble features.

with a preset target number of 20 features; the algorithm
identified a subset comprising the 20 most important fea-
tures in the dataset. Finally, AdaBoost ranked the dataset
features based on their significance in relation to the targeted
output and produced an optimal set of 18 features. The
features selected by each of the methods used are shown in
Table 7. As seen, the HEFSM outcome comprises 11 features
common to the three independently used FS methods
(Table 7, bottom row).

4. Results and Discussion

To evaluate the impact of the proposed FS approach on the
performance of the ML models for intrusion detection and
attack classification, we implemented the binary and mul-
ticlass detection engines as a console-based application using
a Jupyter Notebook with Python as the language of
implementation. We used the scikit-learn and Anaconda ML
libraries for the building of the ML models on an Intel(R)
Core(TM) i17-8700 CPU @3.20 GHz machine (16 GB RAM,
500 GB HD). The binary detection engine is a binary clas-
sifier that applies an ensemble voting approach. The

ensemble comprises three ML algorithms (Decision Tree,
Random Forest, and K-Nearest Neighbours). The multiclass
detection engine applies an ensemble bagging classifier with
Random Forest as the base estimator. The ensemble methods
for the detection engines were selected experimentally based
on their performance.

The scope of the experiments that were conducted in-
cluded training, testing, and validating each of the two
detecting engines in the CCAID framework using the
datasets described in the previous section. We obtained
results using both the full set of the dataset and the ensemble
set of features that were selected by applying HEFSM. For
comparison purposes, similar experiments were conducted
by deploying the ten well-known ML classifiers shown in
Table 8.

All classifiers except C5 were used in prior work
reviewed in this study; in particular, C1, C2, C8, C9, and
C10 are commonly used in IDS operating in a range of
networked environments including CC [15, 18, 28, 57, 58].
Classifiers C4, C6, and C7 were considered by Maza and
Touahria [15] for benchmarking the performance of their
proposed multiobjective FS method; C4 was used in

10 Journal of Computer Networks and Communications
TaBLE 7: Feature selection output.
FS method Selected features

SelectKBest (20)
Random Forest (20)
AdaBoost (18)
HEFSM (11)

F1, F3, F4, F5, F6, F10, F12, F13, F16, F23, F24, F25, F26, F29, F32, F33, F34, F36, F38, F39
F1, F3, F4, F5, Fe, F7, F9, F10, F17, F20, F23, F28, F29, F30, F32, F34, F35, F38, F39, F40
F1, F2, F3, F4, F5, Fo, F8, F11, F23, F26, F29, F32, F33, F34, F35, F38, F39, F40
F1, F3, F4, F5, Fo, F23, F29, F32, F34, F38, F39

TaBLE 8: ML classifiers used for comparison.

Classifier ID Classifier name

C1 Decision Tree

C2 Random Forest

C3 AdaBoost

C4 Naive Bayes

C5 Stochastic dual coordinate ascent
Cé6 Multilayer perceptron

Cc7 K-Nearest Neighbours

C8 Linear discriminant analysis
C9 Logistic regression

C10 Support vector machine

[47, 48, 50], C6 was used in [24], and C7 was also used in
[28]. Classifier C3 was used in [28] and is a preferred
classifier for distributed processing environments similar
to CC [59]. The algorithm C5 was added as it is one of the
primary methods for achieving high accuracy in multi-
category classification [60].

4.1. Performance Metrics. We evaluated the performance of
the ML models using a confusion matrix using the test
dataset and applied a ten-fold cross-validation using the
validation datasets. The performance metric definitions are
provided as follows.

(1) True positive (TP): the total number of network
packets that were classified correctly as attack
packets

(2) True negative (TN): the total number of network
packets traffic classified correctly as benign (non-
attack) packets

(3) False positive (FP): the total number of network
packets that were misclassified as attack packets

(4) False negative (FN): the total number of network
packets that were misclassified as benign packets

Classification accuracy, true positive rate (recall or
detection rate), and false alarm rate are the most widely
used criteria for evaluating the performance of ML-based
IDS [8, 18]; false alarm is measured either as false positive
rate [26] or as the average of false positive rate and false
negative rate [47]. Other measures include precision and
the harmonic mean of precision and recall (F-score) [23].
In this study, the following performance criteria were
used:

(1) Classification accuracy (CA): the percentage of all
correctly classified attack and benign packets out of
all network packets in the dataset.

~ TP + TN y
" TP+ TN + TP + FN

CA 100. (1)

(2) Error rate (ER): the percentage of all misclassified
network packets out of all network packets in the
dataset.

FP + FN

= x 100. 2
TP + TN + FP + FN @

ER

(3) Precision rate (PR): the percentage of all correctly
classified attack packets out of all network packets in
the dataset classified as attack packets (either cor-
rectly or wrongly).

PR % 100. (3)

“ TP + FP

(4) Recall (RC): the percentage of all correctly classified
attack packets out of all attack network packets in the
dataset.

TP

- %100, 4
TP + EN @

RC

(5) False positive rate (FPR): the percentage of all benign
packets misclassified as attack packets out of all
benign network packets in the dataset.

FPR % 100. (5)

“FP+ TN

(6) False negative rate (FNR): the percentage of all attack
packets misclassified as benign packets out of all
attack network packets in the dataset.

FNR x 100. (6)

_EN
~ FN+TP
(7) False alarm rate (FAR): the arithmetic mean of FPR

and FNR.

FPR + FNR

FAR = (7)

4.2. Performance Evaluation. We ran experiments with each
of the ten classifiers in Table 8 to determine the best per-
forming ones and consider them for inclusion in the de-
tection engines; each classifier was applied twice—first using
all features in the dataset and then using only the features
selected by the HEFSM ensemble. Based on the outcomes (as
shown in Table 9, top ten rows), we included the top three
performing classifiers (namely, C1, C2, and C7) in the

Journal of Computer Networks and Communications

TaBLE 9: Intrusion packet identification: performance metrics.

11

. TP FP TN FN CA ER PR RC FPR FNR FAR (FPR +FNR)/2
Classifier/feature set
In number of packets In percentage

C1-All 14,165 77 15,383 79 99.47 0.53 99.46 99.45 0.5 0.55 0.53
Cl-Ens 14,152 100 15,360 92 99.35 0.65 99.3 99.35 0.65 0.65 0.65
C2-All 14,170 53 15,407 74 99.57 0.43 99.63 99.48 0.34 0.52 0.43
C2-Ens 14,163 60 15,400 81 99.53 0.47 99.58 99.43 0.39 0.57 0.48
C3-All 13,739 337 15,123 505 97.17 2.83 97.61 96.45 2.18 3.55 2.86
C3-Ens 13,521 520 14,940 723 95.82 418 96.3 94.92 3.36 5.08 4.22
C4-All 274 208 15,252 13,970 52.27 47.73 56.85 1.92 1.35 98.08 49.71
C4-Ens 274 206 15,254 13,970 52.28 47.72 57.08 1.92 1.33 98.08 49.7
C5-All 8,145 14,796 664 6,099 29.66 70.34 355 57.18 95.71 42.82 69.26
C5-Ens 8,915 14,693 767 5,329 3259 6741 3776 62.59 95.04 3741 66.23
Co6-All 1 47 15,413 14,243 51.89 48.11 2.08 0.01 0.3 99.99 50.15
C6-Ens 14,244 15,460 0 0 4795 52.05 47.95 100 100 0 50
C7-All 14,114 144 15,316 130 99.08 0.92 98.99 99.09 0.93 0.91 0.92
C7-Ens 14,067 137 15,323 177 98.94 1.06 99.04 98.76 0.89 1.24 1.06
C8-Al 12,903 737 14,723 1,341 93 7 94.6 90.59 4.77 9.41 7.09
C8-Ens 10,991 279 15,181 3,253 88.11 11.89 9752 77.16 1.8 22.84 12.32
C9-All 11,868 2,511 12,949 2,376 83.55 16.45 8254 8332 1624 16.68 16.46
C9-Ens 97,51 3,000 12,460 4,493 74.77 2523 76.47 68.46 194 31.54 25.47
C10-All 12,400 3,407 12,053 1,844 82.32 17.68 78.45 87.05 22.04 12.95 17.49
C10-Ens 9,507 1,943 13,517 4,737 77.51 2249 83.03 66.74 12.57 33.26 2291
C11-All 14,126 39 15,421 118 99.47 0.53 99.72 99.17 0.25 0.83 0.54
Cl11-Ens 14,178 68 15,392 66 99.55 0.45 99.52 99.54 0.44 0.46 0.45

All: all features; Ens: features selected by the HEFSM ensemble. C11 is the proposed binary detection engine.

ensemble voting classifier of the binary classification engine
(shown as C11 in the bottom row of Table 9).

As seen in Table 9, the results obtained when running the
proposed binary engine with the HEFSM ensemble selected
features were consistent with and even better than the results
obtained when running the same model with the full set of
features, except for the false positive rate. Overall, the binary
detection engine performed well compared to the best
performing classifiers (C1 and C2). The classification ac-
curacy of 99.55% is the second best across all experiments
(the best classification accuracy of 99.57% was achieved by
C2 running on the full set of features). The false alarm rate of
0.45% was the lowest one achieved across all experiments.
Furthermore, the high precision and recall rates of 99.52%
and 99.54%, respectively, and the low error rate of 0.45%
indicated that the binary detection engine was stable in
terms of performance and had the ability to detect accurately
intrusion (attack) packets.

The top performing classifier in Table 9 (C2) was chosen
for building the ML model of the multiclass detection en-
gine. The experimental data indicated that when applied to
classifier C2, ensemble bagging performed better than en-
semble voting; therefore, the multiclass detection engine
adopted an ensemble bagging approach. The experimental
results are shown in Table 10. As seen, the proposed mul-
ticlass detection engine (classifier C12) achieved an average
attack packet classification accuracy of 98.92% (average
calculated across the four attack categories).

It can be seen in Table 9 that the results from running the
classifiers with the full feature set and with the ensemble
features set are relatively close. This confirms the feasibility

of building an intrusion detection model that uses a minimal
set of features. Furthermore, the proposed classification
models give slightly better results when used with the full set
of features compared to using the ensemble selected features
only. However, the execution time of the model when run on
the features selected by the HEFSM ensemble is much lower
compared to the execution time of the same model when run
with the full set of features (Table 11). This is an important
characteristic of the proposed model: when dealing with
network security controls, speed is one of the major factors
that need to be considered. The application of an efficient
model that is able to analyse the heavy CC network traffic in
real time and detect abnormalities in network packets with
high detection accuracy and a low false alarm rate will
improve significantly the performance of an IDS operating
in a CC environment.

The results of the tenfold crossvalidation of the proposed
classification models show that judging by the difference
between the maximum and minimum CA values of the
binary classification model, its stability is higher when the
model is run with the HEFSM ensemble selected features
compared to running it with the full set of features (Ta-
ble 12). This result is very encouraging; as CC environments
are characterised by extremely high traffic volumes, it is
important to deploy a highly reliable system that can ac-
curately differentiate between normal and malicious net-
work traffic packets.

4.3. Comparison with Related Works. We compared the
performance evaluation results (binary detection engine)

12 Journal of Computer Networks and Communications

TaBLE 10: Attack packet classification: classification accuracy.

. Cl1 C2 C3 C4 C5 Cé6 Cc7 C8 C9 C10 Cl12
Feature set/classifier
In percentage
All 99.07 99.22 94.05 9.64 16.91 84.79 98.06 89.16 79.69 79.62 99.27
Ens 98.8 98.96 77.75 9.46 20.6 50.78 97.4 83.35 75.99 84.79 98.92

All: all features; Ens: features selected by the HEFSM ensemble. C12 is the proposed multiclass detection engine.

TaBLE 11: Training and testing times: binary and multiclass detection engines.

Binary engine training Binary engine testing Multiclass engine training Multiclass testing time

FS method time (in sec) time (in sec) time (in sec) (in sec)

All features 22.00 8.5 15.00 0.49

HEFSM 15.00 3.1 5.80 0.17

TaBLE 12: Tenfold crossvalidation results: classification accuracy.
Feat Binary detection engine Multiclass detection engine
eatures
Maximum CA (%) Minimum CA (%) Maximum CA (%) Minimum CA (%)

All features 99.46 98.65 99.06 97.91
HEFSM selected features 99.01 98.58 98.92 97.64

obtained in this study with the results reported in studies
where the proposed intrusion detection model included an
FS process (as reviewed earlier); seven of these studies used a
hybrid ensemble approach. It can be seen in Table 13 that the
performance of the binary detection engine using HEFSM
(99.55%) compares well with the best performing models in
terms of classification accuracy: it outperformed all but four
of the reviewed models, including five of the hybrid en-
semble models (the highest accuracy of 99.91% was reported
in [37] where a filter FS algorithm was used).

The FAR metric value of 0.45% (calculated as the average
of FNR and FPR) indicated that the binary engine performed
with a very low balanced error rate and was better compared
to the three other studies which used the same metric. The
FPR metric value of.0.45% was the third best among the
seven studies that reported it, with the lowest in [37]
(0.28%). An extensive comparison regarding the other
evaluation metrics used cannot be done due to the lack of
reported data. However, the performance of the binary
detection engine using HEFSM is comparable to the best
performing models, where results are reported.

We also compared our work to some recent results
obtained using FS methods over the NSL KDD and KDD’99
datasets that were not part of the initial literature review.
Similar to our approach, Krishnaveni et al. [23] applied a
hybrid approach to both selecting features and detecting
malicious network traffic. The experiment on the NSL KDD
set extracted similar number of features (ten), but the re-
ported classification accuracy was lower (96.06%). The en-
semble applied majority voting with four classifiers (DT,
SVM, Naive Bayes, and Logistic Regression) but did not

include RF which was found to be the best performing
classifies in our experiments (Table 9) and also in [61].

In another recent work that used the benchmarking
dataset NSL KDD, the authors applied a nature inspired
metaheuristic algorithm (Firefly) to select optimal features
and tested the model with NN, AdaBoost, and RF [62].
However, even the best accuracy achieved was very low
(below 80%). Much better results were achieved in [63]
where the authors applied a DL approach (Restricted
Bolzmann Machines) to build the detection model; the
Random Harmony algorithm was used for feature selection
(using the KDD’99 dataset). The accuracy achievement was
very high (99.92%), with a very low FPR (0.03%). However,
the model detected only one type of attack (DDoS).

It is also worth noting that ML-based cloud IDS operating
at the hypervisor layer may be used in conjunction with a
non-ML IDS that can ensure normal network activities during
prolonged DDoS attacks. For example, Tan et al. [64] pro-
posed a framework that applies time delay control theory to
monitor network activities and distinguish normal network
traffic from DDoS attacks; the framework involves extracting
network traffic data attributes relevant to the monitoring
process. While the framework is somewhat similar to the one
proposed in this study, Tan et al.’s framework has the ad-
ditional functionality of being able to automatically reduce the
effect of the DDoS attacks. The choking technique that is used
to stabilize the network under attack may potentially lead to
increased computational overhead in the case of false alarms.
However, the ability to maintain system stability against
DDoS attacks is extremely important in cloud environments
where service availability is a QoS requirement.

13

Journal of Computer Networks and Communications

"Js210§ uome)or oy ‘uondsorad

Tohemynuu (g SISA[eUR JURUIWLIOSIP JBSUI['y (] [N 2An0UN(Uod 1) Gunsooq 1o Gurddeq ‘SIoyIsse[d J[qUIasUD D DI} UOISIP 8F[:gh[SYIOMIOU [BINSU [eDOYIIE NNV ‘wyiLiode Surures] sueow Y
A ‘soheq 2ATN (N ‘syIomiau uersakeq N ‘uorssaidar onsi3of YT Surraysnd uorjesrurxew-uone3dadxa (A ‘wirrode a1 Jurunid 10119 paonpar I JTY QUrydewr 103024 yroddns N AS ©21T, uoISA(1.

— — — 88 — — 8's8 4D 4o PLAAH [cz] 'Te 3o ure,
— — — — — — 1166 LA ‘NN ‘WAS ‘dTN ‘AN PHAAH [ST] eLyeno], pue ezejy
- - 59’1 €C'S6 - - €0°S6 Ld PHQLH [6%] Te 10 TpeWILIRYOIN
— — — — — — 15°L6 (NNV VAT LQ) Od Tadderp (€7] 'Te 32 nereysag
— - 6LT — — - STH8 (svl) Od Toddexp [2¥] 'Te 10 wreyq
— — — — — — 89'16 IWAS Tadderpy (17] Te 32 ung
— — — — — — 88 AN ‘8¥/ pPHQAH [05] Te 32 Tomuy
— — — — — - 18'66 LY ‘87(‘AN Toddexp [97] Te 10 yputemelY
€11 81 184 — — - 5686 INAS Tadderp [S¥] 'Te 10 pueuede(ip
200 — — — — — 766 NNV SR [6€] Te 3° perrureyp]
— — — — — — 78'66 AT AN PHGAH [8¥] "Te 30 TeSol
SLI — — — — — '8 aN 94T Wd PLgAH [£¥] Ae[s pue ejersnoy
— — — — — — 5868 PILJTY Tadderp [¥¥] Te 32 yonopg
— — 820 9.'86 — — 16'66 NAS SEBIE [L€] Te 32 Tpresnquiy
— — wo 966 — - L9'66 La T [1] e 10 ahreuesQ
— — — — — — 9%'96 W ‘8% ‘Nd PUGAH [16] TewnyeA-[9S pue eAreyoejjeyq
— — L16€ 16 — - 66'16 1a Todderp [0F] Te 32 esag
— — — — — — 976 IWAS L (8¢€] erx pue on
S0 90 P0 566 7566 S0 5566 (NN ‘9 “1.a) WSdaH pLgAH INSAHH Sutsn auiua uondajep Areurq pasodoig
7/(4dd +dNd) (2d4)
Vi AN qdd x| ad ks VD (s) wpLiod[e TN poyowr g 221n0g

[I0M Paje[ar M QOwtﬁQEOU ‘¢l 414V],

14

5. Conclusion

In this paper, we proposed an ML-based intrusion detection
and attack identification framework for CC environments
(CCAID) that comprises two main processes: an FS process
and a two-stage attack detection and classification process.
The FS process utilises a new hybrid ensemble method for
selecting network traffic features (HEFSM).

The proposed FS method was tested on the NS KDD
dataset. The binary detection engine and the multiclass
detection engines were trained independently on the same
dataset using the set of features selected by HEFSM. The
experimental results showed improved performance and
stability. We achieved an overall classification accuracy of
99.55% and 98.92% for the binary and multiclass detection
engine, respectively. The FAR of 0.45% (calculated as the
average of FNR and FPR) indicated that the binary engine
performed with a very low balanced error rate. As shown,
the results compared very favourably with earlier related
works. The classification accuracy of both detection en-
gines is also better than the classification accuracy
achieved in [23] for the NSL KDD dataset, where the
authors applied an ensemble FS approach. From a more
general perspective, in terms of classification accuracy, of
the twelve algorithms in [52], our binary classification and
multiclass engines outperformed ten and seven of them,
respectively.

The set of features on which the ML mode was trained
includes the features F1, F3, F5, F6, and F23 (see Table 1 for
feature descriptions). As mentioned earlier, these features
pertain to the traffic amongst virtual machines; therefore, the
proposed IDS will be able to detect attacks that occur at the
hypervisor communication layer and may be launched by an
external attacker or by a malicious insider. Even though the
model was built using a conventional-based dataset, it can be
adapted to detect intrusion in both the cloud network and
the hypervisor-based network of the cloud computing en-
vironment. The eleven selected features are relevant to the
detection of attacks in both conventional and cloud envi-
ronments and, therefore, the proposed model is suitable for
implementation in a distributed environment.

These outcomes indicate that the proposed approach to
feature selection and attack recognition and classification
has the potential to improve significantly the performance of
an IDS operating in a CC environment as it will be able to
analyse heavy CC network traffic in real time and detect
attack packets with high detection accuracy and a low false
alarm rate. Directions for further research include validating
the model with other network intrusion datasets, including
recently-made-available datasets featuring attack packets for
threats such as ransomware [34] and implementing it to
manage intrusion detection in an experimental CC
environment.

Data Availability

This research used a dataset named NSL KDD which was
obtained from the public repository of the University of New
Brunswick (https://www.unb.ca/cic/datasets/index.html).

Journal of Computer Networks and Communications

Conflicts of Interest

The authors declare that there are no conflicts of interest
regarding the publication of this paper.

References

[1] O. Osanaiye, H. Cai, K.-K. R. Choo, A. Dehghantanha, Z. Xu,
and M. Dlodlo, “Ensemble-based multi-filter feature selection
method for DDoS detection in cloud computing,” EURASIP

Journal on Wireless Communications and Networking,

vol. 2016, no. 1, p. 130, 2016.

F. Nzanywayingoma and Y. Yang, “Efficient resource man-

agement techniques in cloud computing environment: a re-

view and discussion,” International Journal of Computers and

Applications, vol. 41, no. 3, pp. 165-182, 2019.

[3] X. Li, L. Tan, and F. Li, “Optimal cloud resource allocation
with cost performance tradeoft based on Internet of things,”
IEEE Internet of Things Journal, vol. 6, no. 4, pp. 6876-6886,
2019.

[4] A. K. Tyagi, M. M. Nair, S. Niladhuri, and A. Abraham,
“Security, privacy research issues in various computing
platforms: a survey and the road ahead,” Journal of Infor-
mation Assurance & Security, vol. 15, no. 1, 2020.

[5] U. Cavusoglu, “A new hybrid approach for intrusion detec-
tion using machine learning methods,” Applied Intelligence,
vol. 49, no. 7, pp. 2735-2761, 2019.

[6] 1. Mukhopadhyay, “Cyber threats landscape overview under
the new normal,” ICT Analysis and Applications, pp. 729-736,
2022.

[7] U. A. Butt, M. Mehmood, S. B. H. Shah et al., “A review of
machine learning algorithms for cloud computing security,”
Electronics, vol. 9, no. 9, p. 1379, 2020.

[8] S. Shamshirband, M. Fathi, A. T. Chronopoulos, A. Montieri,

F. Palumbo, and A. Pescapé, “Computational intelligence

intrusion detection techniques in mobile cloud computing

environments: review, taxonomy, and open research issues,”

Journal of Information Security and Applications, vol. 55,

Article ID 102582, 2020.

D. Chaudhary, K. Bhushan, and B. B. Gupta, “Survey on

DDoS attacks and defense mechanisms in cloud and fog

computing,” International Journal of E-Services and Mobile

Applications, vol. 10, no. 3, pp. 61-83, 2018.

[10] M. Haddadi and R. Beghdad, “DoS-DDoS: taxonomies of
attacks, countermeasures, and well-known defense mecha-
nisms in cloud environment,” EDPACS, vol. 57, no. 5,
pp. 1-26, 2018.

[11] A. Riaz, H. F. Ahmad, A. Kiani, J. Qadir, R. Rasool, and
U. Younis, “Intrusion detection systems in cloud computing: a
contemporary review of techniques and solutions,” Journal of
Information Science and Engineering, vol. 33, pp. 611-634,
2017.

[12] W. Wang, X. Du, D. Shan, R. Qin, and N. Wang, “Cloud
intrusion detection method based on stacked contractive
auto-encoder and support vector machine,” IEEE Transac-
tions on Cloud Computing, vol. 1, 2020.

[13] K. Srinivasan, A. Mubarakali, A. S. Algahtani, and A. Dinesh
Kumar, “A survey on the impact of DDoS attacks in cloud
computing: prevention, detection and mitigation techniques,”
Intelligent Communication Technologies and Virtual Mobile
Networks, Springer, Berlin, Germany, pp. 252-270, 2019.

[14] P. Mishra, E. S. Pilli, V. Varadharajan, and U. Tupakula,
“Intrusion detection techniques in cloud environment: a

[2

[9

https://www.unb.ca/cic/datasets/index.html

Journal of Computer Networks and Communications

(15]

(16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

(25]

(26]

(27]

(28]

[29]

survey,” Journal of Network and Computer Applications,
vol. 77, pp. 18-47, 2017.

S. Maza and M. Touahria, “Feature selection for intrusion
detection using new multi-objective estimation of distribution
algorithms,” Applied Intelligence, vol. 49, no. 12,
pp. 4237-4237, 2019.

I. Sumaiya Thaseen and C. Aswani Kumar, “Intrusion de-
tection model using fusion of chi-square feature selection and
multi class SVM,” Journal of King Saud University-Computer
and Information Sciences, vol. 29, no. 4, pp. 462-472, 2017.
S. Gamage and J. Samarabandu, “Deep learning methods in
network intrusion detection: a survey and an objective
comparison,” Journal of Network and Computer Applications,
vol. 169, Article ID 102767, 2020.

A. B. Nassif, M. A. Talib, Q. Nasir, H. Albadani, and
F. M. Dakalbab, “Machine learning for cloud security: a
systematic review,” IEEE Access, vol. 9, pp. 20717-20735,
2021.

M. G. Raj and S. K. Pani, “A meta-analytic review of intelligent
intrusion detection techniques in cloud computing envi-
ronment,” International Journal of Advanced Computer Sci-
ence and Applications, vol. 12, no. 10, pp. 206-217, 2021.

I. S. Thaseen, C. A. Kumar, and A. Ahmad, “Integrated in-
trusion detection model using chi-square feature selection
and ensemble of classifiers,” Arabian Journal for Science and
Engineering, vol. 44, no. 4, pp. 3357-3368, 2019.

A. Binbusayyis and T. Vaiyapuri, “Identifying and bench-
marking key features for cyber intrusion detection: an en-
semble approach,” IEEE Access, vol. 7, pp. 106495-106513,
2019.

B. A. Tama, M. Comuzzi, and K.-H. Rhee, “Tse-ids: a two-stage
classifier ensemble for intelligent anomaly-based intrusion
detection system,” IEEE Access, vol. 7, pp. 94497-94507, 2019.
S. Krishnaveni, P. Vigneshwar, S. Kishore, B. Jothi, and
S. Sivamohan, “Anomaly-based intrusion detection system
using support vector machine,” Advances in Intelligent Sys-
tems and Computing, Springer, Berlin, Germany, pp. 723-731,
2020.

I. S. Thaseen, A. K. Cherukuri, B. Poorva et al.,, “Anomaly
detection using XGBoost ensemble of deep neural network
models,” Cybernetics and Information Technologies, vol. 21,
no. 3, pp. 175-188, 2021.

A. Thakkar and R. Lohiya, “A review on machine learning and
deep learning perspectives of IDS for IoT: recent updates,
security issues, and challenges,” Archives of Computational
Methods in Engineering, vol. 28, no. 4, pp. 3211-3243, 2021.
M. A. Ferrag, L. Maglaras, S. Moschoyiannis, and H. Janicke,
“Deep learning for cyber security intrusion detection: ap-
proaches, datasets, and comparative study,” Journal of In-
formation Security and Applications, vol. 50, Article ID
102419, 2020.

W. Elmasry, A. Akbulut, and A. H. Zaim, “A design of an
integrated cloud-based intrusion detection system with third
party cloud service,” Open Computer Science, vol. 11, no. 1,
pp. 365-379, 2021.

V. Kanimozhi and T. P. Jacob, “Artificial Intelligence
outflanks all other machine learning classifiers in Network
Intrusion Detection System on the realistic cyber dataset
CSE-CIC-IDS2018 using cloud computing,” ICT Express,
vol. 7, no. 3, pp. 366-370, 2021.

Z. Liu, B. Xu, B. Cheng, X. Hu, and M. Darbandi, “Intrusion
detection systems in the cloud computing: a comprehensive
and deep literature review,” Concurrency and Computation:
Practice and Experience, vol. 34, no. 4, 2022.

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(39]

(40]

(41]

(42]

(43]

(44]

15

J. Cai, J. Luo, S. Wang, and S. Yang, “Feature selection in
machine learning: a new perspective,” Neurocomputing,
vol. 300, pp. 70-79, 2018.

V. R. Balasaraswathi, M. Sugumaran, and Y. Hamid, “Feature
selection techniques for intrusion detection using non-bio-
inspired and bio-inspired optimization algorithms,” Journal
of Communications and Information Networks, vol. 2, no. 4,
pp. 107-119, 2017.

R. C. T. de Souza, C. A. de Macedo, L. S. Coelho, J. Pierezan,
and V. C. Mariani, “Binary coyote optimization algorithm for
feature selection,” Pattern Recognition, vol. 107, Article ID
107470, 2020.

Y. Chen, Y. Li, X.-Q. Cheng, and L. Guo, “Survey and tax-
onomy of feature selection algorithms in intrusion detection
system,” in Proceedings of the International Conference on
Information Security and Cryptology, pp. 153-167, Busan,
Korea, November 2006.

M. Di Mauro, G. Galatro, G. Fortino, and A. Liotta, “Su-
pervised feature selection techniques in network intrusion
detection: a critical review,” Engineering Applications of Ar-
tificial Intelligence, vol. 101, Article ID 104216, 2021.

P. Bermejo, L. de la Ossa, J. A. Gdmez, and J. M. Puerta, “Fast
wrapper feature subset selection in high-dimensional datasets
by means of filter re-ranking,” Knowledge-Based Systems,
vol. 25, no. 1, pp. 35-44, 2012.

W. Wang, Y. He, J. Liu, and S. Gombault, “Constructing
important features from massive network traffic for light-
weight intrusion detection,” IET Information Security, vol. 9,
no. 6, pp. 374-379, 2015.

M. A. Ambusaidi, X. He, P. Nanda, and Z. Tan, “Building an
intrusion detection system using a filter-based feature se-
lection algorithm,” IEEE Transactions on Computers, vol. 65,
no. 10, pp. 2986-2998, 2016.

B. Luo and J. Xia, “A novel intrusion detection system based
on feature generation with visualization strategy,” Expert
Systems with Applications, vol. 41, no. 9, pp. 4139-4147, 2014.
M. Idhammad, K. Afdel, and M. Belouch, “Dos detection
method based on artificial neural networks,” International
Journal of Advanced Computer Science and Applications,
vol. 8, no. 4, pp. 465-471, 2017.

A.S. Eesa, Z. Orman, and A. M. A. Brifcani, “A novel feature-
selection approach based on the cuttlefish optimization al-
gorithm for intrusion detection systems,” Expert Systems with
Applications, vol. 42, no. 5, pp. 2670-2679, 2015.

S. Sun, Z. Ye, L. Yan, J. Su, and R. Wang, ““Wrapper feature
selection based on lightning attachment procedure optimi-
zation and support vector machine for intrusion detection,” in
Proceedings of the 2018 IEEE 4th International Symposium on
Wireless Systems within the International Conferences on
Intelligent Data Acquisition and Advanced Computing Systems
(IDAACS-SWS), IEEE, Piscataway, NJ, USA, September 2018.
N. T. Pham, E. Foo, S. Suriadi, H. Jeffrey, and H. F. M. Lahza,
“Improving performance of intrusion detection system using
ensemble methods and feature selection,” in Proceedings of the
Australasian Computer Science Week Multiconference, p. 2,
Brisband, Queensland, Australia, January 2018.

E. Besharati, M. Naderan, and E. Namjoo, “Lr-hids: logistic
regression host-based intrusion detection system for cloud
environments,” Journal of Ambient Intelligence and Hu-
manized Computing, pp. 1-24, 2018.

M. Belouch, S. El Hadaj, and M. Idhammad, “A two-stage
classifier approach using Reptree algorithm for network in-
trusion detection,” International Journal of Advanced Com-
puter Science and Applications, vol. 8, no. 6, pp. 389-394, 2017.

[45] R. Vijayanand, D. Devaraj, and B. Kannapiran, “Intrusion

detection system for wireless mesh network using multiple
support vector machine classifiers with genetic-algorithm-
based feature selection,” Computers ¢ Security, vol. 77,
pp. 304-314, 2018.

S. Aljawarneh, M. Aldwairi, and M. B. Yassein, “Anomaly-

Journal of Computer Networks and Communications

2021, https://link.springer.com/journal/40747/online-first?
page=3.

S.Pal, T.Xu, T. Yang, S. Rajasekaran, and J. Bi, “Hybrid-DCA:
a double asynchronous approach for stochastic dual coor-
dinate ascent,” Journal of Parallel and Distributed Computing,
vol. 143, pp. 47-66, 2020.

based intrusion detection system through feature selection [61] S. Frarhat arhat, M. Abdelkader, A. Meddeb-Makhlouf, and
F. Zarai, “Comparative study of classification algorithms for
cloud IDS using NSL-KDD dataset in WEKA,” in Proceedings
of the 2020 International Wireless Communications and
Mobile Computing (IWCMC), Limassol, Cyprus, June 2020.

[62] P.Ghosh, D. Sarkar, J. Sharma, and S. Phadikar, “An intrusion
detection system using modified-firefly algorithm in cloud
environment,” International Journal of Digital Crime and
Forensics, vol. 13, no. 2, pp. 77-93, 2021.

[63] M. Mayuranathan, M. Murugan, and V. Dhanakoti, “Best
features based intrusion detection system by RBM model for
detecting DDoS in cloud environment,” Journal of Ambient
Intelligence and Humanized Computing, vol. 12, no. 3,
pp. 3609-3619, 2021.

[64] L. Tan, K. Huang, G. Peng, and G. Chen, “Stability of TCP/
AQM networks under DDoS attacks with design,” IEEE
Transactions on Network Science and Engineering, vol. 7, no. 4,
pp. 3042-3056, 2020.

analysis and building hybrid efficient model,” Journal of
Computational Science, vol. 25, pp. 152-160, 2018.

[47] N. Moustafa and J. Slay, “A hybrid feature selection for
network intrusion detection systems: central points,” 2017,
https://arxiv.org/abs/1707.05505.

[48] D. G. Mogal, S. R. Ghungrad, and B. B. Bhusare, “Nids using
machine learning classifiers on unsw-nb15 and kddcup99
datasets,” International Journal of Advanced Research in
Computer and Communication Engineering, vol. 6, no. 4,
pp. 533-537, 2017.

[49] S. Mohammadi, H. Mirvaziri, M. Ghazizadeh-Ahsaee, and
H. Karimipour, “Cyber intrusion detection by combined
feature selection algorithm,” Journal of information security
and applications, vol. 44, pp. 80-88, 2019.

[50] H. M. Anwer, M. Farouk, and A. Abdel-Hamid, “A frame-

work for efficient network anomaly intrusion detection with

features selection,” in Proceedings of the 2018 9th International

Conference on Information and Communication Systems

(ICICS), pp. 157-162, IEEE, Irbid, Jordan, 2018.

S. Bhattacharya and S. Selvakumar, “Multi-measure multi-

weight ranking approach for the identification of the network

features for the detection of dos and probe attacks,” The

Computer Journal, vol. 59, no. 6, pp. 923-943, 2016.

Y. Zhou, G. Cheng, S. Jiang, and M. Dai, “Building an efficient

intrusion detection system based on feature selection and

ensemble classifier,” Computer networks, vol. 174, Article ID

107247, 2020.

[53] A. A. Cardenas, J. S. Baras, and K. Seamon, “A framework for
the evaluation of intrusion detection systems,” in Proceedings
of the 2006 IEEE Symposium on Security and Privacy (S&+P°06),
p. 15, IEEE, Los Alamitos, CA, USA, May 2016.

[54] H. P. Vinutha and B. Poornima, “An ensemble classifier

approach on different feature selection methods for intrusion

detection,” in Information Systems Design and Intelligent

Applications. Advances in Intelligent Systems and Computing,

V. Bhateja, B. Nguyen, N. Nguyen, S. Satapathy, and D. N. Le,

Eds., Springer, Singapore, 2018.

A. Aldribj, I. Traore, B. Moa, and O. Nwamuo, “Hypervisor-

based cloud intrusion detection through online multivariate

statistical change tracking,” Computers & Security, vol. 88,

Article ID 101646, 2020.

[56] L. F. Kilincer, F. Ertam, and A. Sengur, “Machine learning
methods for cyber security intrusion detection: datasets and
comparative study,” Computer Networks, vol. 188, Article ID
107840, 2021.

[57] T. Saranya, S. Sridevi, C. Deisy, T. D. Chung, and

M. K. A. A. Khan, “Performance analysis of machine learning

algorithms in intrusion detection system: a review,” Procedia

Computer Science, vol. 171, pp. 1251-1260, 2020.

A. Chiche and M. Meshesha, “Towards a scalable and adaptive

learning approach for network intrusion detection,” Journal of

Computer Networks and Communications, vol. 2021, Article

ID 8845540, 2021.

A. Singh, K. Chatterjee, and S. C. Satapathy, “An edge based

hybrid intrusion detection framework for mobile edge com-

puting,” Complex & Intelligent Systems, vol. 2021, pp. 1-28,

[51

[52

(55

(58

[59

https://arxiv.org/abs/1707.05505
https://link.springer.com/journal/40747/online-first?page=3
https://link.springer.com/journal/40747/online-first?page=3

