
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 3, 2022

Can Ready-to-Use RNNs Generate “Good” Text
Training Data?

Jia Hui Feng
Engineering, Computer Mathematical Sciences

Auckland University of Technology
Auckland, New Zealand

Abstract—There is much research on the state-of-the-art
techniques for generating training data through neural networks.
However, many of these techniques are not easily implemented
or available due to factors such as copyright of their research
code. Meanwhile, there are other neural network codes currently
available that are easily accessible for individuals to generate text
data; this paper explores the quality of the text data generated by
these ready-to-use neural networks for classification tasks. This
paper’s experiment showed that using the text data generated
by a default configured RNN to train a classification model can
match closely with baseline accuracy.

Keywords—Neural networks; machine learning; text genera-
tion; classification; natural language processing; data augmenta-
tion; artificial intelligence

I. INTRODUCTION

Training data is crucial for machine learning tasks. In cases
where there is little availability of training data due to limited
time and resources, it becomes difficult for machines to be
able to learn.

In the field of computer vision, there have been successes
and benefits from using different methods to generate new
training data; this is called data augmentation. This is done
by creating new training data based on the original labeled
training data. An example of data augmentation in image
data is manipulating labeled training data of images through
transformations such as rotation and cropping. This generates
new training data images for the machine to learn from.

However, in the field of natural language processing (NLP),
data augmentation has been a challenging problem as there
have been difficulties in establishing universal rules for trans-
formations in textual data while maintaining the quality of the
label [1]. For example, the sentence “this is good” is a state-
ment with positive intent, but with a small transformation such
as swapping the words to make it “is this good,” it becomes
a question with no positive intent; the meaning completely
changes. There are also various studies on identifying effective
ways to transform labeled textual training [1].

Another technique used to generate more training data is
generative augmentation, where more new data is generated
compared to switching or cropping images. There has been
success in using GAN networks to generate more training data
such as images of human faces [2].

Generative models have also been explored in the NLP field
with existing language models [1]. There is ongoing research in
generative models for both computer vision and NLP. However,

for an individual who is building a machine learning system
with classification tasks, these state-of-the-art techniques for
generating text data can be quite difficult to implement.

Thus, this paper’s intended purpose is to help individuals
who want a “ready-to-use” method to generate more textual
training data, by assessing the effectiveness of some of these
available methods. The types of individuals that this is focused
on are, for example, an entry-level data scientist who is hired
in a small team for a machine learning and NLP project, a
freelancer who is working on a personal project or a computer
science student who is building a chatbot as part of their
degree. A common task to implement is labeling data for
training machine learning systems, thus classification is the
task chosen for this experiment, allowing us to evaluate how
“good” the generated training data is based on the accuracy
results of the classification model.

There is currently much state-of-the-art research to help
generate textual training data. However, much of this is not
readily accessible due to copyright protection. Meanwhile, the
state-of-the-art research that does have code available online
is often complicated and difficult for entry level data scientists
or coders to implement.

There are existing deep learning models available, such as
TensorFlow [3] that are readily available for programmers to
use; these are considered “ready-to-use” in this paper. There
have been no studies though on the effectiveness of these
neural network codes online. This research aims to perform
an exploratory experiment on ready-to-use neural networks and
the quality of the generated data.

II. RELATED WORKS

A. Generative Augmentation

Generative models are models that generate textual data;
these models are often used in the research field in text genera-
tion. They have been explored in the use of data augmentation
as they use the newly generated data as additional training
data, this helps to increase the diversity of the text which can
incorporate new information. Some generative models use pre-
trained language models to improve their performance [1].

There are various state-of-the-art techniques, and research
has been done on generative models for data augmentation.
Although this is not the focus of this paper, most research on
generative models in data augmentation shows minor improve-
ments.

www.ijacsa.thesai.org 35 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 3, 2022

Rizos et al. [4] identified that one of the issues of online
hate speech classification is not enough relevant training data
that can be found online, and training on only a small amount
of data will cause overfitting. Thus, they created an RNN that
can generate data for online hate speech labeling to combat
this issue. Their augmented data has improved 30% in hate
speech class recall and 5.7% in macro-F1 score [4]. However,
the authors state that further work can be done as the generative
model was not the best performing augmentation method. In
addition, it is only for short-text, and it is unknown whether
the classification would be as effective for non-short text data.

Another technique, G-DAUG, was proposed by Yang et
al. [5]. G-DAUG generates synthetic data using pretrained
language models and then selects the most informative and
diverse set of examples for augmentation. It has been shown to
be effective on multiple common-sense reasoning QA setting
benchmarks. However, the authors state that more improve-
ments can be made to enhance the quality and diversity of the
generated data [5].

Noise generation techniques are commonly used in gen-
erative methods as they help to solve the issue of class
imbalance [1]; Qiu et al. [6] introduced a variation autoencoder
(VAE) based method as a noise generation technique for
text generation used in their paper. VAEs are autoencoders
which transform input data into a latent representation. In their
paper, however, it still only showed marginal improvements in
classification tasks.

Generative Adversarial Network (GAN) is also another
popular method used for data augmentation in computer vision
[1]. There has been research in using GAN models for data
augmentation in NLP, such as using the seqGAN architecture
[7]. This is just like a GAN model, a generator, and discrim-
inator, but used for textual data and the task of classification.
There were, however, only minor improvements [1].

Many of the text generation techniques that have been
explored in the research field are not readily available for the
public to use. This is due to reasons such as copyright, or
their research involves complex algorithms to be implemented
in deep learning models, which may be time-consuming for
individuals to implement. In addition, a lot of it is not for
general use as their research findings are specific to a particular
chosen field or topic.

Meanwhile, there has not been in-depth research on the
quality of generated words from ready-to-use techniques.

III. EXPERIMENT DESIGN

The experiment was conducted by using benchmark text
classification data, AG News [8], then using a CNN built from
Python as a classification model to obtain the baseline accuracy
rate, then using a ready-to-use RNN [5] to generate synthetic
training data. The same CNN model is then used to train and
test the original dataset in combination with the new generated
training data to evaluate the accuracy of the textual training
data.

Fig. 1. Experiment Design Process.

As shown in the figure above (Fig. 1), there are three
different sized datasets for this experiment. I first got the ac-
curacy of small, medium and large baseline datasets, obtaining
three baseline accuracy results. Then I used RNN to generate
additional training data for each small, medium and large
dataset. I then used the same CNN and tested the accuracy of
the original dataset plus the newly generated synthetic training
data.

A. Dataset

The dataset used was AG News which consists of four
different classes, 1–4, where 1 is world, 2 is sports, 3 is
business and 4 is science/technology [8].

• Dataset split ratio: 80% (training) and 20% (validat-
ing)

• Each label had an equal number of sentences

• Validating sets had a mixed number of labels

They were split into three different sized datasets:

• Size ratio: Sentences Total = Training/Validating
a. Small: 50/40/10

b. Medium: 500/400/100

c. Large: 1000/800/200

An equal number of labels were in the training sentences. For
instance, in the “medium” training dataset of 400, there were
100 (400/4) sentences from each label.

In some real case scenarios, 1,000 sentences of a total
dataset split for training and testing may not be considered
a “large” dataset, it is though considered “large” respective to
this experiment.

The sizes of the dataset were randomly chosen as there is
no “common sized” dataset used in the real world. The figure
below (Fig. 2) shows the original dataset with labels that were
augmented.

www.ijacsa.thesai.org 36 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 3, 2022

Fig. 2. Original Dataset with Label [8].

Each dataset generated 200 lines of new training data.
When the CNN is trained on the new training data, it also
includes the original dataset. For instance, the small dataset
was fed into the RNN model and generated 200 additional
lines. This small dataset along with the 200 new additional
sentences were fed into the classification model to test accu-
racy. This was to mimic a real case scenario where someone
would use their existing training data in combination with the
synthetically generated data. Similar to the choice of the sizes
of dataset, generating 200 additional lines was also randomly
chosen.

B. RNN

The RNN model chosen was textgenrnn created by Max
Woolf [9], it is a Python 3 module that is built on top of
Keras/TensorFlow. This model can be configured by the size,
layers and whether to use a bidirectional option. This was
chosen as it is free, quick to implement and can be easily
customized for an individual level.

For this experiment, the RNN model had not been config-
ured or changed, it simply used the default configuration and
settings. This was so I could see how good just the default
configuration was as some individuals who are in early entry
to this field may not know how to do configurations in an RNN
but still want to generate text training data.

The default model takes an input that converts each char-
acter to a 100-D character embedding vector and feeds into
two LSTM layers [9]. The architecture of this RNN is shown
in Fig. 3.

C. Text Classification Model

The CNN was built from Python’s TensorFlow [3]. The
architecture was as follows: input of up to 50 words, 1D con-
volutional layer of 128 filters of size 5 with ReLU activation
function with a softmax output layer. The metrics used to
evaluate accuracy were chosen through the TensorFlow CNN’s
configurations which returns binary accuracy [3].

In addition, GloVe [10] was used to train the 100-
dimensional word embedding.

IV. RESULTS AND DISCUSSION

The results shown that for the small dataset the accuracy
remains the same as shown in the table, at medium it becomes
worse, but at the large dataset the accuracy catches up almost
meeting the baseline. A visual comparison of the detailed
results can be seen in Fig. 4.

Fig. 3. Textgenrnn Architecture [9].

TABLE I. EXPERIMENT RESULTS

Dataset Baseline accuracy New dataset New dataset accuracy

Small 40% 250/40/10 40%

Medium 70% 700/400/100 60%

Large 73% 1200/800/200 72%

Fig. 4. Accuracy Visualization Comparison.

Fig. 5. Label 2 Generated Example.

The results do not show a clear pattern, but it can be
concluded (at least with this experiment) that this example

www.ijacsa.thesai.org 37 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 3, 2022

of a ready-to-use RNN of default configurations generates
text training data that will likely closely match the baseline
accuracy.

There was more investigation by looking at the generated
text and a sample is given in Fig. 5. This is considered a label
2 which is ”sports”. At least with this example, it still seems
that the generated data is still within the same topic.

In addition, the repository for textgenrnn [9] has made
notes regarding the quality of the generated text data. The
repository states that “results will vary greatly between
datasets” [9] and that the best results are of datasets with at
least 2,000–5,000 documents [9]. For smaller datasets, it is
recommended to train it longer by setting num epochs higher
[5]. In this experiment, num epochs was set at the default value
of 1.

For the field of data augmentation in NLP in general, this
experiment shows that more questions can be considered for
generating text data, such as, “What are the characteristics of
words that affect the CNN?” and “Are specific parameters of
RNNs better for different types of text data?”

V. CONCLUSIONS AND FUTURE WORK

Although the experiment did not show obvious patterns for
different factors in generating text data, it has answered the
question the paper posed: Can ready-to-use RNNs generate
“good” text data? Based on this experiment and this dataset,
if an individual imports and runs this example of ready-to-use
RNN with default settings, the classification results will likely
match close to the baseline accuracy. With some more tweaks
and adjustments, it is likely that the accuracy will improve, but
more research can be conducted on the quality of ready-to-use
RNNs with adjusted configurations.

Thus, in the future there can be more research conducted to
further investigate the quality of the textual data and into not
using default configurations – instead investigating through an
RNN with adjusted parameters.

In addition, since this experiment only included three
different sized datasets, more research can also be done with

more variety to discover more.

REFERENCES

[1] M. Bayer, M.-A. Kaufhold, and C. Reuter, “A Survey on Data Aug-
mentation for Text Classification,” p. 35.

[2] C. Shorten and T. M. Khoshgoftaar, “A survey on Image Data
Augmentation for Deep Learning,” Journal of Big Data, vol. 6,
no. 1, p. 60, Dec. 2019. [Online]. Available: https://journalofbigdata.
springeropen.com/articles/10.1186/s40537-019-0197-0

[3] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow,
A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur,
J. Levenberg, D. Mane, R. Monga, S. Moore, D. Murray, C. Olah,
M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker,
V. Vanhoucke, V. Vasudevan, F. Viegas, O. Vinyals, P. Warden, M. Wat-
tenberg, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: Large-Scale
Machine Learning on Heterogeneous Distributed Systems,” p. 19.

[4] G. Rizos, K. Hemker, and B. Schuller, “Augment to Prevent:
Short-Text Data Augmentation in Deep Learning for Hate-Speech
Classification,” in Proceedings of the 28th ACM International
Conference on Information and Knowledge Management. Beijing
China: ACM, Nov. 2019, pp. 991–1000. [Online]. Available:
https://dl.acm.org/doi/10.1145/3357384.3358040

[5] Y. Yang, C. Malaviya, J. Fernandez, S. Swayamdipta, R. L.
Bras, J.-P. Wang, C. Bhagavatula, Y. Choi, and D. Downey,
“Generative Data Augmentation for Commonsense Reasoning,”
arXiv:2004.11546 [cs], Nov. 2020, arXiv: 2004.11546. [Online].
Available: http://arxiv.org/abs/2004.11546

[6] Y. L. Qiu, H. Zheng, and O. Gevaert, “Genomic data imputation
with variational auto-encoders,” GigaScience, vol. 9, no. 8, p. giaa082,
Aug. 2020. [Online]. Available: https://academic.oup.com/gigascience/
article/doi/10.1093/gigascience/giaa082/5881619

[7] L. Yu, W. Zhang, J. Wang, and Y. Yu, “SeqGAN: Sequence
Generative Adversarial Nets with Policy Gradient,” arXiv:1609.05473
[cs], Aug. 2017, arXiv: 1609.05473. [Online]. Available: http:
//arxiv.org/abs/1609.05473

[8] X. Zhang, J. Zhao, and Y. LeCun, “Character-level Convolutional
Networks for Text Classification,” arXiv:1509.01626 [cs], Apr. 2016,
arXiv: 1509.01626. [Online]. Available: http://arxiv.org/abs/1509.01626

[9] M. Woolf, “textgenrnn,” 2017. [Online]. Available: https://github.com/
minimaxir/textgenrnn

[10] J. Pennington, R. Socher, and C. Manning, “Glove: Global Vectors
for Word Representation,” in Proceedings of the 2014 Conference
on Empirical Methods in Natural Language Processing (EMNLP).
Doha, Qatar: Association for Computational Linguistics, 2014, pp.
1532–1543. [Online]. Available: http://aclweb.org/anthology/D14-1162

www.ijacsa.thesai.org 38 | P a g e


