Localisation in water wave and thin plate problems

Sebastian Rupprecht!

Malte A. Peter!

Luke G. Bennetts? Hyuck Chung?

Institute of Mathematics, University of Augsburg, Germany

2School of Mathematics, University of Adelaide, Australia

3School of Computer and Mathematical Sciences, Auckland University of Technology, NZ

E-mail addresses: sebastian.rupprecht@math.uni-augsburg.de, peter@math.uni-augsburg.de,

luke.bennetts@adelaide.edu.au, hchung@aut.ac.nz

Highlights

e Simulations obtained for water waves over rough seabed and waves in rough in vacuo plate.

e Attenuation rates of effective and individual wave fields extracted, compared and found to differ.

1 Introduction

Ocean surface waves attenuate with distance trav-
elled into the sea-ice covered ocean (Meylan et
al., 2014). This is reminiscent of the wave lo-
calisation phenomenon, which occurs in many
branches of wave science. For an incident wave
train propagating into a rough (randomly disor-
dered) medium, wave localisation refers to expo-
nential attenuation (on average) of the wave train
in the rough medium. (Alternative theories have
also been proposed to explain wave attenuation in
the ice-covered ocean, e.g. the viscous ice model
of Keller, 1998.)

Wave propagation in the ice-covered ocean
is conventionally modelled using linear potential-
flow theory for the water and thin-plate theory for
the ice cover. Bennetts & Peter (2012) conducted
a preliminary investigation of wave localisation in
the ice-covered ocean due to ice roughness. They
modelled the roughness as variations in stiffness
and mass of the ice, which are known up to a
characteristic length and a root-mean-square am-
plitude. They extended the multiple-scale method
of Mei & Hancock (2003) and Mei et al. (2005) for
free-surface waves over a rough seabed to derive a
semi-analytic expression for the attenuation rate.

The multiple-scale method is based on the ef-
fective wave field, i.e. the mean wave field with re-
spect to realisations of the random medium. Ben-
netts et al. (2015) showed individual wave fields
attenuate far slower than the effective wave field
for the rough seabed problem, using large ensem-
bles of numerical solutions for randomly generated
realisations of the bed profile.

Here, we extend the study of Bennetts et al.
(2015) to problems involving thin plates, with the
aim of establishing if effective media theory is

valid to study wave propagation in the ice-covered
ocean. We begin by summarising the methods
and results of Bennetts et al. (2015) for a rough
seabed in intermediate depth. Then, we apply the
method to a rough thin plate in vacuo. In both
cases, we compare the mean attenuation rates of
individual wave fields to the attenuation rates of
corresponding effective wave fields.

2 Free-surface/rough-bed problem

Let spatial locations in a long transect of the ocean
be defined by the Cartesian coordinate system
(z,z). Horizontal locations are defined by the co-
ordinate x. Vertical locations are defined by the
coordinate z. The vertical coordinate points up-
wards and has its origin set to coincide with the
equilibrium position of the ocean surface.

Consider a monochromatic wave propagating
in the positive z-direction. The wave amplitude
is assumed to be sufficiently small with respect to
the wavelength, A, that linear theory is applica-
ble. In open water, the wavenumber, k = 27 /), is
related to the angular frequency, w, via the disper-
sion relation ktanh(kh) = K, where K = w?/g,
h denotes the fluid depth and g ~ 9.81ms~2 de-
notes acceleration due to gravity.

Consider a seabed that fluctuates about z =
—h, where h is an intermediate depth, i.e. kh =
O(1). The fluctuations have a known character-
istic length, I, and root-mean-square amplitude,
€, which is also referred to as the roughness am-
plitude. We assume ¢ < 1 for consistency with
the multiple-scale method although this is not
required for a numerical scheme. The function
z = —h(z), where h(z) = h—ep(z) and p = O(1),
is used to denote the location of the bed.

Under the usual assumptions of linear, time-



harmonic wave theory, the velocity field of water
particles in the ocean is defined as the gradient
of Re{(g/iw)p(x, z)e !}, The (complex-valued)
velocity potential, ¢, satisfies Laplace’s equation
in the undisturbed fluid domain, i.e.

Dp+92p=0 (~h<z<0). (1a)

An impermeability condition is applied on the
seabed, i.e.

0.0+ 1 (9:0) =0 on z=—h(x). (1b)

The velocity potential is coupled to the wave el-
evation, denoted z = Re{n(x)e !}, via free-
surface conditions applied at the equilibrium
ocean surface. The free-surface conditions are

p=n and 0,0=Kn on z=0, (1c)

which are combined into the single condition
0.0 = K¢ (z = 0) for the velocity potential.

Consider the problem in which the roughness
extends over a long, finite interval x € (0,L).
The bed is otherwise flat and extends to infin-
ity in both positive and negative horizontal di-
rections. A unit-amplitude incident wave is pre-
scribed at * — —oo. The incident wave is de-
fined by the velocity potential ¢ = e'**w(z), where
w(z) = cosh{k(z+h)}/cosh(kh). We seek the re-
sulting wave elevation in the interval containing
the rough bed.

Let the rough bed profile, h(z) (0 < z < L),
be approximated by a piece-wise constant func-
tion on M sub-intervals — the so-called step ap-
proximation — and let (—o0,0) and (L, co) be the
Oth and (M 4+ 1)th sub-intervals, respectively. We
denote the value of the function in the mth sub-
interval as h,,, and set it to be equal to the value
of the continuous bed profile at the mid-point.

In the mth sub-interval, we have

oz, z) = (ameikmm + bme_ikmx) wm(2),  (2)

where k,, is the wavenumber for depth h,,, and w,
is the corresponding vertical mode. The quanti-
ties a,, and b, are the wave amplitudes. Incident
wave forcing from x — —oo only is set via ag = 1
and byr41 = 0.

Wave fields in adjacent sub-intervals are re-
lated to one another at the interface between
the sub-intervals via continuity conditions, which
are enforced in a weak sense. An iterative al-
gorithm is used to calculate the amplitudes a,,
(m=1,...,M+1)and by, (m=0,...,M). Ben-
netts and Squire (2009) give full details of the al-
gorithm. The wave elevation, 7, is subsequently
recovered via the first component of equation (1c).

Wave elevations are calculated for a large en-
semble of randomly generated realisations of the
bed profile. The bed profiles share the same am-
plitude, €, and characteristic length, [. The rela-
tionship between the ensemble of bed profiles is
expressed via the autocorrelation condition

(p(2)p(z —€)) = q([¢]), 3)

where (-) denotes the ensemble average of the in-
cluded quantity with respect to realisations. We
prescribe the Gaussian autocorrelation function
q(€) = ¢ /¥ noting Mei & Hancock (2003)
showed an exponential autocorrelation function
gives almost identical results. The characteristic
length, [, is hence referred to as the correlation
length from here on.

Two measures of the exponential attenuation
rate are obtained from the ensemble of wave el-
evations. First, an attenuation rate, Qg;fs), is ex-
tracted from the effective wave elevation, (n). The
attenuation rate, in this case, is defined via

_ (rs)
()] e err ®

(0<z<L). (4)
It is calculated using a least-squares minimisation
routine. Second, an attenuation rate, Qi(lrji), is cal-
culated as the ensemble average of attenuation
rates of individual wave elevations. The atten-
uation rate is defined as Ql(iz) = (Q;), where Q; is
the attenuation rate extracted from the individual
wave elevation n = n;, i.e.

i e @ (0 <@ < L). ()
We generate individual realisations of p using
a harmonic random process of the form

N
p(x) = \/EZCOS (fax +gn) (N>1). (6)

The frequencies f, and phases g, (n =1,..., N)
are independently chosen and identically dis-
tributed random variables. The standard devi-
ation of the bed profile, with respect to realisa-
tions, at all spatial locations x is normalised to
unity. We prescribe probability density functions
for frequencies f, and phases g, (n =1,...,N) to
satisfy the Gaussian autocorrelation condition (3).
The phases are selected from a uniform distribu-
tion over the interval [0,27). The frequencies are
selected from a Gaussian distribution with zero
mean and standard deviation equal to v/2/I.

Fig. 1 shows example individual wave eleva-
tions and corresponding effective wave elevations,
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Fig. 2: Attenuation of individual (x) and effective (o) wave elevations, for ke = 1072 (left), 10~! (middle) and
2 x 107! (right). Multiple-scale approximation is shown for comparison (—).
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Fig. 1: Example individual wave elevations (grey)
and corresponding effective wave elevations (black), for
ke = 1072 and kI = 0.9 (left) and 5 (right).

for a non-dimensional roughness amplitude ke =
1072, and correlation lengths kI = 0.9 and 5. The
wavenumber & corresponds to the mean depth h,
and the intermediate water depth kh = 1 is set.

The smaller correlation length is chosen to
produce visible (although weak) attenuation of
the individual wave elevation. The corresponding
effective wave elevation attenuates slightly more
rapidly than the individual wave elevation.

The largest correlation length is chosen to pro-
duce maximal attenuation of the effective wave
elevation. The corresponding individual elevation
does not attenuate (on the scale shown). Atten-
uation of the effective elevation is, therefore, not
related to the individual elevations.

Fig. 2 shows attenuation rates predicted by the
numerical simulations, scaled by (ke)?, as func-
tions of non-dimensional correlation length, for
non-dimensional roughness amplitudes ke = 1072,
107! and 2 x 107!, The multiple-scale approxi-
mation (Bennetts et al., 2015) is also shown for
comparison.

Attenuation rates of the individual wave ele-
vations have qualitative and quantitative proper-
ties markedly different from those of the effective
wave elevations. The qualitative behaviour of the
attenuation rate of individual wave elevations is
intuitive. The attenuation rate is approximately
zero (on the linear scale shown) for the small-
est non-dimensional correlation length considered,
kl = 0.1. In this regime the random bed fluctua-
tions are too rapid to be seen by the waves (ho-

mogenisation limit). The attenuation rate is also
approximately zero for correlation lengths greater
than two. The roughness in this regime is too
mild to modulate the waves. The attenuation rate
is only non-zero for correlation lengths between
these two regimes, where the roughness is long
enough to be seen by the waves and short enough
to modulate the waves.

Attenuation of the effective wave elevation is
therefore not indicative of attenuation of individ-
ual wave elevations for the regime studied. Al-
though the rough seabed forces a random compo-
nent of the individual wave elevations, the indi-
vidual wave elevations do not attenuate. We de-
duce that the dominant source of attenuation of
the effective wave elevation is wave cancellation,
i.e. decoherence.

3 In vacuo plate problem

Next, we consider an infinitely long rough thin
plate in vacuo. The problem is one-dimensional
in the horizontal coordinate x. The spatial part
u(z) of the plate deflection Re{u(x)e™“!} satisfies
the thin plate equation

BOMu —yw?u =0 (—o0 <z < 00),

(7)

where (3 is the constant plate stiffness and ~y(x) is
its varying mass.

With the same step approximation as in the
rough-bed problem, the deflection in the mth sub-
interval can be expressed as

u(z) = asg)ei”mx + aﬁ,lb)e_”m’C

+ bgg)efiﬁm:p + bg)e'{mx,

(8)

where the wavenumber &, is k(x) = (w2’y(:c)/ﬁ)i,
evaluated at the midpoint of the mth sub-interval.
The wave amplitudes aﬁS) and bSP correspond
to right- and left-travelling waves, respectively,
whereas a%) and bg,ll) correspond to the evanescent
waves, which decay to the right and left, respec-

tively.
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Fig. 4: As in Fig. 2 but for in vacuo plate problem.
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Fig. 3: As in Fig. 1 but for in vacuo plate problem.

The wavenumber is written as k(z) R —
ep(x), where R is its mean. The fluctuation p is
as defined in Section 2.

As for the rough-bed problem, the extent of
the plate roughness is restricted to the long finite
interval z € (0,L). Outside of this interval, the
wavenumber is constant. A unit amplitude wave
is incident from z — —oo.

Wave fields in adjacent sub-intervals are cou-
pled via continuity conditions of displacement,
displacement velocity, bending moment and shear
stress. An extended version of the iterative algo-
rithm is used to calculate the step approximation
for a given realisation of the varying wavenum-
ber, i.e. to calculate the amplitudes a,(g), a,%)
(m=1,...,M+1) and b0, b)) (m =o0,..., M).

Again, solutions are calculated for large en-
sembles of different realisations of the varying
wavenumber, which share a common correlation
length and roughness amplitude. Then, attenua-
tion rates ngs) and Qi(;fi), defined in analogy to
the rough bed problem, are extracted.

Figures 3 and 4 show the results for the in
vacuo plate, in analogy to figures 1 and 2 for the
rough bed, respectively. As can be seen, the be-
haviour is very similar and the analogous conclu-
sions are drawn.

4 Summary and discussion

Numerical results were used to show that, for
small-amplitude roughness, individual wave eleva-
tions attenuate at a far slower rate than the effec-
tive wave elevation for ocean waves travelling over
a rough seabed in intermediate depth and also for

waves in a thin plate in vacuo. In particular, in
most cases attenuation rates of individual wave el-
evations are too small for wave localisation to be
realised.

It was found that the effective wave elevation
attenuates due to wave cancellation in the averag-
ing process. The attenuated wave energy is trans-
ferred to the random components of the individual
wave fields. Use of the effective wave elevation,
therefore, results in misleading predictions of at-
tenuation, and, hence, localisation.
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