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Abstract: This paper presents a comprehensive understanding of current digital twin (DT) imple-
mentations in the construction industry, along with providing an overview of technologies enabling
the operation of DTs in the industry. To this end, 145 publications were identified using a systematic
literature review. The results revealed eight key areas of DT implementation including (i) virtual
design, (ii) project planning and management, (iii) asset management and maintenance, (iv) safety
management, (v) energy efficiency and sustainability, (vi) quality control and management, (vii) sup-
ply chain management and logistics, and (viii) structural health monitoring. The findings demonstrate
that DT technology has the capacity to revolutionise the construction industry across these areas,
enabling optimised designs, improved collaboration, real-time monitoring, predictive maintenance,
enhanced safety practices, energy performance optimisation, quality inspections, efficient supply
chain management, and proactive maintenance. This study also identified several challenges that
hinder the widespread implementation of DT in construction, including (i) data integration and
interoperability, (ii) data accuracy and completeness, (iii) scalability and complexity, (iv) privacy and
security, and (v) standards and governance. To address these challenges, this paper recommends
prioritising standardised data formats, protocols, and APIs for seamless collaboration, exploring
semantic data modelling and ontologies for data integration, implementing validation processes and
robust data governance for accuracy and completeness, harnessing high-performance computing
and advanced modelling techniques for scalability and complexity, establishing comprehensive data
protection and access controls for privacy and security, and developing widely accepted standards
and governance frameworks with industry-wide collaboration. By addressing these challenges, the
construction industry can unlock the full potential of DT technology, thus enhancing safety, reliability,
and efficiency in construction projects.

Keywords: digital twin; digital technology; construction industry; intelligent construction; construction
4.0; collaborative platforms

1. Introduction

The construction industry has emerged as a major contributor to the global gross
domestic product (GDP), accounting for nearly 10% of the total output and generating
employment opportunities in various countries [1,2]. As per data recorded in 2017, the
output of the construction industry was estimated to be approximately USD 10 trillion
worldwide [1,3]. In Australia, the building and construction sector accounted for 8.1% of
the national GDP and 9% of the employment rate in 2017, while in the UK and China, it
influenced 6.5% and 5.7% of their respective national GDPs [1]. However, the industry has
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been plagued by the persistent issue of low productivity, which has prompted scholars
to emphasise the need for performance improvement in the industry [4–7]. One effective
strategy for addressing this challenge is the adoption of digital technologies, which have
shown promise in enhancing productivity. An exemplar of such technologies is building
information modelling (BIM), which has made a substantial impact on the improvement
of practices across the construction industry [8–11]. Nevertheless, the construction in-
dustry still faces daunting challenges in embracing new technologies due to resistance to
change [12–14]. This inability to keep pace with technological advancements is a significant
hurdle to the modernisation of the construction industry, particularly when evaluated
against the automotive and manufacturing industries [2–4].

In the current era, the rapid development of new information technologies has brought
about an unprecedented industrial transformation. One technology that has garnered
significant attention in recent years, owing to its potential to transform the construction
industry, is the digital twin (DT). Fundamentally, DT implementation revolves around the
generation of a digital representation of a physical entity, leveraging data to simulate the
actions and functions of the physical entity within its real environment, as illustrated in
Figure 1. This enables the augmentation of the physical entity’s capabilities with interactive
feedback, data fusion analysis, and iterative decision optimisation [3,4,15]. The term “digital
twin” was initially introduced by the National Aeronautics and Space Administration
(NASA) to describe the construction of two identical spacecraft that replicated the exact
conditions experienced by the vehicle during a mission [16]. However, it was not until 2003
that Michael Grieves at the University of Michigan introduced the concept of a “digital
equivalent to a physical product”, which is widely recognised as the first use of the term
DT [17]. In 2006, Hribernik et al. [18] introduced the idea of the “product avatar” as a means
to establish an information management framework that facilitates a bidirectional flow
of information centred around the product. Ever since, the concept of DT has undergone
significant improvements and is now widely used across various industries, including
manufacturing as a means for enhancing the efficiency of their manufacturing processes.
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Figure 1. A conceptual model of digital twin technology.

A DT, integrated with a range of devices such as Internet of Things (IoT) devices,
data loggers, 3D scanners, thermal imaging cameras, and environmental sensors, has the
capability to collect firsthand experiential data pertaining to physical assets [2,15]. The
application of a DT enables the prediction of possible failures, feedback to the system, and
reaction in accordance with the stimulant information [15]. A DT can also facilitate the
continuous monitoring of all processes involved in a given service, enabling the collection
of information pertaining to physical assets throughout their life cycles [3,8,15,19]. The
immense potential of DTs has sparked interest in their application within the construction
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industry. An exemplary case of such implementation can be observed in the Ezhou Huahu
International Airport project, situated in the eastern region of Ezhou, Hubei Province,
China [20]. In this project, Bentley’s BIM and iTwin technology were utilised to develop
a DT for the airport, enabling seamless integration of extensive engineering and data
components. The implementation of the DT was highly effective, resulting in a remarkable
reduction of 200 days in the project’s delivery time and substantial cost savings of CNY
300 million.

The growing interest in DT applications has also sparked a surge of attention in
academia, leading to a plethora of research developed to investigate the potential of this
technology across multiple domains in the construction industry. This has subsequently led
the current body of literature to become fairly fragmented when it comes to understanding
the present-day implementations of DTs in the construction industry. In response, review
studies have been developed with the purpose of solidifying the existing knowledge in this
area [1–4,8,15,18,21–24]. For instance, Opoku et al. [23] and Opoku et al. [24] investigated
barriers and drivers for adopting DT in the construction industry using a systematic litera-
ture review approach, respectively. In recent studies, Xie et al. [15] and Almatared et al. [19]
analysed the literature connected to DT applications in the construction industry using a
scientometric approach. In another review study, Zhang et al. [3] attempted to put forward
a unified definition for DTs as it applies to the construction industry. Hou et al. [22] also
provided a comprehensive literature review of DT applications in construction workforce
safety. In another study, Bortolini et al. [21] reviewed the opportunities for improving
energy efficiency in buildings by developing a DT. Salem and Dragomir [25] also carried
out a review study on the applications of DTs for construction project management.

Despite the significant contributions made by prior studies, the current state of knowl-
edge regarding DT implementations in the construction industry still remains fragmented.
The majority of the reviewed studies have focused on specific aspects of DT application
while overlooking potential areas where DTs can be deployed to improve industry practices.
This underscores the need for comprehensive research that consolidates the literature and
promotes the adoption of DT within the industry. To address this gap, the present paper
aims to achieve the following objectives using a systematic review of the literature: (i) to
provide a comprehensive understanding of current DT implementations in the construction
industry, (ii) to provide a state-of-the-art overview of technologies enabling the utilisation
of DTs in the industry, and (iii) to identify and discuss major challenges associated with
DT applications in the industry and provide recommendations for future development in
the field.

The outcomes of this study can be useful to multiple target groups. Firstly, practitioners
in the construction industry can benefit from the insights provided by this research, as
the findings identify potential areas where DTs can be applied to improve productivity
in the industry. This paper also offers a comprehensive overview of the challenges and
opportunities associated with DT implementations in the industry and its fundamental
technologies; hence, the outcomes can be used as a point of reference by scholars and
researchers for future development in the field.

2. Research Methodology

This paper used a systematic literature review approach to identify publications
pertaining to the implementations of DTs in the construction industry. A comprehensive
search was conducted across multiple databases, including Web of Science, ProQuest,
and Scopus, using a comprehensive set of keywords to capture relevant studies (Table 1).
Utilising multiple databases enhanced the robustness and comprehensiveness of the search
process, as it allowed for compensating the limitations of one source with the strengths of
others. These keywords were searched with respect to their applications in the construction
industry. The search scope was limited to scholarly “articles”, “review articles”, and “book
chapters”, chosen due to their comprehensive and reputable nature as recognised sources
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of validated knowledge [9,26]. As a result, the initial search yielded 350 publications that
met the established search criteria.

Table 1. A list of keywords used to identify materials related to DT implementation in construction.

Keywords Deployed during the Initial Search

Digital Twin; Digital Technology; Construction Industry; Intelligent Construction; Construction 4.0;
Collaborative Platforms; Smart Construction; Industry 4.0; Digitalisation; Digital Transformation; Virtual
Construction; Cognitive Technology; Virtual Twin; Digital Replica; Cyber–Physical System; Cyber Twin;

Digital Shadow; Digital Clone; Intelligent Twin; Digital Doppelganger.

After collecting the dataset, the first step involved removing duplicate records to
ensure data integrity. Duplicate removal was carried out by comparing and eliminating
redundant instances of data within the dataset. This led to the elimination of nearly
30 duplicate articles. Afterwards, a preliminary qualitative search was conducted to
evaluate the relevance of the selected materials. This assessment was based on an analysis
of the “titles”, “abstracts”, and “conclusions” of the identified sources. To ensure that only
resources directly related to the concept of DTs in the construction industry were considered,
several exclusion criteria were applied. Firstly, studies published in non-English languages
and non-peer-reviewed journals were excluded. Additionally, filtering functions in the
selected databases were used to eliminate resources from unrelated fields, such as medical
or agricultural sciences. As a result, 125 publications were excluded. Furthermore, only
studies directly related to the application of DTs in the construction industry were retained,
resulting in a final set of 145 relevant materials for an in-depth examination. Figure 2 shows
the methodology steps and research direction.
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3. Results and Analysis

The results of analyses carried out on the 145 selected materials are reported in
three sub-sections. First, the areas of DT implementation in the construction industry are
discussed. This is followed by highlighting the key technologies required to enable the
operation of DTs in the construction industry. The third part of the Result and Analysis
section discusses the major challenges attributed to DT applications in the industry, along
with offering recommendations for future development in the field.

3.1. Current Implementations of Digital Twins in the Construction Industry

The results of analyses addressing the first objective of this study, which aimed to
provide a comprehensive understanding of current DT implementations in the construction
industry, are presented in this section and demonstrated in Figure 3.
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3.1.1. Virtual Design in Construction

DT technology is transforming the way that virtual design is performed in the con-
struction industry. The implementation of this technology allows designers to optimise
their designs for better performance and increased viability by developing high-fidelity
models of physical assets and systems [2,15,27]. In the context of simulation modelling,
the term “fidelity” pertains to the level of intricacy and authenticity depicted in the model,
which can vary from simple prototypes to highly immersive models [28]. Models with
varying levels of fidelity may be suitable for different phases of the design process or for
addressing different types of design inquiries [2,4,15,27]. Typically, the levels of fidelity are
classified into three categories including low, medium, and high tiers, which denote the
level of detail and accuracy present in the model [28].

DT is one of the technologies that enable users to develop models with high fidelity. This
technology allows the creation of digital replicas of physical assets, which can be used to analyse
and optimise performance, simulate scenarios, and predict outcomes [1,15,19]. The high-fidelity
models generated using DT technology can thence provide an unprecedented level of ac-
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curacy and detail, which can help designers and engineers to make informed decisions
throughout the design and development process. With the aid of DT technology, designers
can create virtual prototypes that are almost identical to their physical counterparts, allow-
ing for more precise testing and analysis. In this regard, attempts have been undertaken
to develop DT prototypes that can facilitate architectural building design [28,29]. For in-
stance, Kalantari et al. [28] developed a digital twin prototype called “Ph2D” that combines
physical and digital technology for architectural designs. The tool uses interconnectable
tiles that can be customised with 3D printing or digital design, allowing changes made
to a physical floorplan model to be reflected and analysed in a digital platform. Testing
the tool with 182 users showed that it was easy to use and increased the value of physical
prototyping in design. Non-designers also showed interest in using the tool, suggesting it
could be effective in design education and team communication.

Presently, the use of DT technology has begun to gain momentum in the construction
industry owing to its potential for optimising the design process. Studies attempted to
test the applicability of DT in civil infrastructure systems [30–32] and to optimise build-
ings’ design [33–37]. For instance, Lu and Brilakis [32] developed a slicing-based object
fitting method that generated a geometric DT of existing bridges and achieved an average
modelling distance of 7.05 cm and a modelling time of 37.8 s, which was a significant
improvement over manual methods. Other studies used DT technology for optimising
building design performance. For instance, Liu et al. [35] proposed a system for managing
green building operation costs based on digital twin technology, which led to improved
efficiency and quality in the management process. Studies also applied DT technology
for improving occupant comfort in buildings [36,38]. An example is the study carried out
by Hosamo et al. [38], who aimed to evaluate the comfort levels of occupants in two non-
residential buildings in Norway using a Bayesian network model. The proposed model was
developed based on integrating BIM, real-time sensor data, and occupant feedback while
using a DT approach to detect and predict issues that could impact comfort. The results
showed that the proposed method could increase the lifetime of HVAC by 10% or more,
leading to significant cost savings and more sustainable and energy-efficient buildings.

Indeed, DT is a promising technology capable of transforming the way virtual design is
performed in the construction industry. The technology enables users to create high-fidelity
digital replicas of physical assets, which can be used to simulate scenarios, analyse and
optimise performance, and predict outcomes with an unprecedented level of accuracy and
detail. DT has already been tested in various construction domains, including infrastructure
systems and building design, where it has shown potential for improving design efficiency,
reducing costs, and enhancing performance. The studies discussed highlight the advantages
of using DT technology in the construction industry, demonstrating its effectiveness in
optimising building design performance, managing green building operation costs, and
improving occupant comfort in buildings. Thus, the application of DTs in infrastructure
projects is becoming increasingly important, as it can lead to more sustainable and energy-
efficient buildings and infrastructure systems, ultimately contributing to the development
of smart cities and a more sustainable future.

3.1.2. Project Planning and Management

Another application of DTs relates to using this technology for improving the pro-
cess of planning and management in the construction industry. DT technology is rapidly
transforming the construction industry by providing a virtual replica of physical assets,
processes, and systems, and it can play a crucial role in optimising the processes of construc-
tion planning and management [39,40]. Using a simulation of various design scenarios,
construction managers can evaluate the impacts on project timelines and costs and identify
potential issues and challenges prior to initiating the actual construction process [39–41].
This subsequently may minimise the possibility of delays in the project. The efficacy of DT
technology was demonstrated by Jiang et al. [42], who studied a smart modular system
based on the integration of DT technology and robotics, aiming to help with assembling
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modular components on-site. In another study, Jiang et al. [39] proposed a framework that
utilises high-fidelity DT to provide real-time information on resource status and construc-
tion progress, with the goal of facilitating planning, scheduling, and execution processes in
construction projects.

In addition, DT technology can also enhance collaboration and communication amongst
stakeholders involved in construction projects [40,43]. By providing a shared virtual envi-
ronment, DTs enable architects, engineers, contractors, and clients to visualise the project,
discuss design alternatives, and make informed decisions [40,43–45]. For instance, Pan
and Zhang [46] developed a DT framework that integrates BIM, IoT, and data mining
techniques for smart construction project management. The framework captures real-time
data and discovers hidden knowledge to simulate task execution and worker cooperation
in a virtual model. By predicting possible bottlenecks and optimising work and staffing
under changeable conditions, the framework facilitates more efficient project management.
Furthermore, the study demonstrated that the framework has great potential for facilitat-
ing data communication and exploration, leading to a better understanding, prediction,
and optimisation of physical construction operations. In another study, Jiang et al. [40]
proposed a blockchain-enabled DT collaboration platform aimed at facilitating modular
construction fit-out operations. The outcomes showed that DT technology can provide
a virtual environment for real-time monitoring, decision-making, and communication
between various stakeholders involved in the project. The integration of blockchain and DT
technology helps in ensuring data integrity, security, and trustworthiness, thereby enabling
more effective collaboration among stakeholders.

In summary, the use of DT technology for the purpose of construction management
and planning has the potential to revolutionise the industry, providing significant benefits
such as improved productivity, enhanced collaboration, and better project outcomes.

3.1.3. Asset Management and Maintenance

DT technology is increasingly being recognised as an important tool for asset manage-
ment and maintenance in the construction industry. The use of DTs can facilitate real-time
monitoring of physical assets, enabling predictive maintenance and reducing the likelihood
of unexpected failures [47–49]. DT technology has shown grave potential in improving the
accuracy of maintenance planning, allowing for more efficient use of resources and reducing
operational costs [49–51]. This can be particularly effective in enhancing maintenance pro-
cedures for civil infrastructures since a majority of maintenance in this sector is still carried
out manually. For instance, it is estimated that the inspections of more than 720,000 bridges
throughout Europe are still being performed using only visual assessments [50].

In the context of civil infrastructures, such as bridges, dams, and buildings, sensors
can be deployed to continuously monitor the health and condition of these structures.
By collecting data on factors like vibrations, temperature, and structural movements,
these sensors provide real-time insights and enable proactive measures to be taken when
necessary [49,52]. By analysing the data collected with these sensors, anomalies that indicate
potential structural issues can be identified [49–51]. This allows engineers and maintenance
teams to take proactive measures, such as conducting inspections, performing repairs, or
implementing reinforcement, prior to the issues worsening or leading to failures. Constant
monitoring and timely intervention based on sensor data can help ensure the safety and
longevity of civil infrastructures. By addressing potential problems early on, catastrophic
failures can be prevented while reducing repair costs and extending the lifespan of these
vital structures [48–53]. Therefore, various studies have pointed out the immense potential
of emerging DT technology in the construction industry, especially in civil infrastructure
projects [49,53,54]. For instance, Mohammadi et al. [53] proposed a methodology for an
advanced asset management system that used BIM data to enhance a bridge management
system. This system involved a precise terrestrial laser scan-derived BIM, which was a
digital replica of the bridge composed of geometrical and non-geometrical information
related to its elements.
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In the context of building maintenance, DTs are virtual models that replicate the phys-
ical characteristics of a building. These models can be created using 3D modelling software
and can be populated with data collected with sensors that monitor the performance and
condition of the building in real-time [52,55]. The data collected with DTs can be then
analysed using analytics techniques such as artificial intelligence to identify patterns and
anomalies that indicate potential maintenance issues. For instance, Arsiwala et al. [37]
presented a solution that facilitates the automated monitoring and control of carbon diox-
ide emissions linked to current assets by integrating IoT, BIM, and artificial intelligence.
Another example is the research carried out by Xie et al. [52], which developed a DT model
enabling continuous monitoring and anomaly detection for building facilities. The results
showed that the proposed framework allowed for ongoing monitoring of assets, utilising
the data management capabilities provided by the DT.

3.1.4. Safety Management

DT technology is being increasingly used in the construction industry, with safety and
risk management being one of the key areas where its implementation can bring significant
benefits [56,57]. The implementation of this technology enables the creation of a virtual
replica of a physical structure, facilitating the identification of potential safety hazards and
risks at construction sites using constant monitoring prior to their materialisation [56–60].
This can subsequently result in improvements in safety practices, leading to the preven-
tion and minimisation of incidents on construction sites. Studies have shown promising
outcomes when DT technology is applied toward such an end. For instance, some studies
developed frameworks based on DT technology for improving hoisting safety risk manage-
ment in construction sites [60–63]. An example is the research carried out by Jiang et al. [61],
which developed a DT framework aiming to model various hoisting behaviours with a
high degree of realism and evaluate their dynamic impact on tower cranes.

Similarly, Liu et al. [62] presented a DT-based framework enabling the optimisation
of safety risks in hoisting operations at construction sites. The proposed framework was
formed based on the integration of IoT, BIM, and a security risk analysis method that
used the Apriori algorithm and a complex network. The framework enabled the real-time
perception and interaction of various sources of information during hoisting, which can be
used to mine association rules and coupling relationships among hoisting safety risk factors
and visualise time-varying data. The framework was tested during the construction of a
large, prefabricated building and showed effectiveness in improving the efficiency of safety
management during construction. In another study, Kamari and Ham [56] introduced a
new framework that utilises DT technology and computer vision for disaster preparedness
on construction sites. The framework uses deep learning to detect and analyse the potential
impact of wind-borne debris on construction sites. The results of the implementation
demonstrated the effectiveness of the proposed framework in recognising and assessing
potential threats, enabling effective and timely measures for hurricane preparedness.

Another research stream focuses on the utilisation of DT technology to monitor the
movements and activities of workers on construction sites, aiming to provide real-time
observations of possible safety hazards and to enable prompt interventions when safety
hazards are detected [59,64]. In a recent study, Wu et al. [59] developed a real-time vi-
sual warning system based on the amalgamation of DT, deep learning, and mixed reality
technologies. The proposed system provides construction workers with real-time insights
into their safety status to avoid accidents. The study also conducted system tests under
three quasi-on-site scenarios and demonstrated the system’s feasibility in synchronising
construction undertakings over a large area and visually demonstrating hazard evidence.
The system’s testing scenarios during development served as compelling evidence, show-
casing its effectiveness in enhancing workers’ accuracy in assessing risks, reinforcing their
adherence to safety protocols, and presenting construction safety managers with a fresh
outlook on analysing the safety status of construction projects.
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In summary, DT technology is an effective tool for improving safety and risk manage-
ment in construction. Its virtual replicas allow real-time monitoring and identification of
potential safety hazards, leading to better safety practices and incident prevention. The
incorporation of DT with cutting-edge technologies such as deep learning and mixed reality
demonstrates its remarkable effectiveness in enhancing the capabilities of this technology,
presenting construction safety managers with innovative perspectives to comprehensively
assess safety conditions.

3.1.5. Energy Efficiency and Sustainability

The adoption of DTs within the construction sector offers a robust means to enhance
energy efficiency and promote sustainability. A DT enables real-time tracking and analysis
of energy consumption patterns with the creation of virtual replicas of buildings [65–68]
and infrastructure projects [69,70], allowing for the proactive identification of inefficiencies
and optimisation prospects [65,67,71,72]. For instance, Seo et al. [66] and Tan et al. [67]
developed DT models to optimise energy consumption associated with lighting in univer-
sity classrooms and a corridor, respectively. In another study, Clausen et al. [65] devised a
framework for DTs in buildings, outlining the process of its design and implementation.
The framework represents controlled environments as digital entities, with DTs serving as
parametrised models integrated into a generic control algorithm. The algorithm utilises
various data, including weather forecasts, occupancy information, and the environment’s
current state in order to enable the creation of a model predictive control (MPC). To ensure
seamless applicability, the framework incorporates a uniform data access layer, allowing
easy transitions between simulation and real-life scenarios and promoting adaptability in
different control environments. The findings indicate the capacity of DT technology for
supporting the creation of MPCs that can be used for the improvement of energy efficiency
and occupant comfort.

By utilising advanced simulation and predictive analytics, DTs can also assist with
simulating various scenarios, evaluating design choices, and optimising the energy per-
formance of buildings. This implementation is manifested in research carried out by
Tang et al. [68], which applied a DT for evaluating the viability of vertical greenery systems
as a green alternative for renovating traditional commercial and residential buildings in
Guangzhou, China. The use of DT technology significantly supported the design process
for renovating the selected buildings. Tagliabue et al. [73] introduced a framework that
facilitates a dynamic sustainability assessment by integrating DT technology and IoT. This
approach allows for real-time evaluation and control of various sustainability criteria,
placing a particular emphasis on user-centric perspectives. The framework was tested
using the eLUX lab cognitive building, a pilot facility located at the University of Brescia.
This educational building used sensorised assets to continuously monitor indoor comfort,
air quality, and energy behaviour. The findings demonstrated that the framework could
serve as a crucial component of a methodology that leverages the DT approach to enhance
decision-making processes throughout the entire life cycle of the building, particularly in
relation to sustainability considerations.

DT technology offers valuable assistance in the design and advancement of net-zero
energy buildings (NZEBs). Through the creation of a digital duplicate of the structures, DT
assists architects and engineers with simulating and improving energy efficiency during
the design phase. These virtual models possess the ability to accurately forecast energy
consumption and pinpoint areas where enhancements can be made, facilitating a process
of iterative design and informed decision-making [74–76]. DTs are capable of simulating
the operations of diverse building systems, such as HVAC, lighting, and the integration of
renewable energy sources, with the objective of evaluating their effectiveness in achieving
net-zero energy objectives [74–76]. Moreover, DTs have the capacity to examine real-time
data gathered using sensors embedded in the physical buildings, enabling continuous
monitoring of energy usage, identification of inefficiencies, and refinement of energy
management strategies [74–76]. This technological advancement empowers designers to
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experiment with various energy-saving approaches, optimise building performance, and
effectively and efficiently attain net-zero energy targets. For instance, Agostinelli [74]
used DT-based models to assess the efficiency of integrated systems for harnessing solar
energy, with the aim of surpassing the self-generated energy threshold and meeting the
requirements for near-zero energy buildings.

In summary, DT technology has a profound impact on enhancing energy efficiency
and fostering sustainability in the construction industry. The widespread adoption of this
technology empowers stakeholders to make informed, data-driven decisions, optimise
building performance, and actively contribute to a greener and more sustainable future.

3.1.6. Quality Control and Management

The implementation of DT technology within the construction industry offers sig-
nificant potential for enhancing quality control and management processes. By utilis-
ing DT applications, such as those used in the production of precast and prefabricated
concrete [77–80] and steel modules [81], as well as in 3D concrete printing [82], construction
companies can revolutionise their approach to assuring quality. DTs enable real-time moni-
toring and analysis of construction processes, providing a comprehensive understanding
of the project at each stage. This technology allows for virtual simulations and testing,
enabling the identification and resolution of potential issues prior to physical implemen-
tation [77,78,80]. Early detection and resolution of quality concerns using DTs minimise
the occurrence of defects, rework, and costly delays, ultimately resulting in higher-quality
construction outcomes [77,78,83]. For instance, Kosse et al. [77] devised a framework based
on DT technology that enables the industrialised production of precast concrete elements
in a series production setting, leveraging the asset administration shell technique within
the context of Industry 4.0. The findings demonstrated that the developed framework has
the potential to make a significant contribution to improving decision-making processes,
ultimately enhancing the quality of precast concrete module manufacturing.

In the context of manufacturing precast and prefabricated modules, DT technology al-
lows for accurate virtual representations of these components. This facilitates quality inspec-
tions and ensures that the manufactured modules adhere to design specifications [77,78,83].
By integrating sensors and data collection mechanisms into these modules, DTs can contin-
uously monitor performance, structural integrity, and maintenance requirements, ensuring
ongoing quality control throughout their lifecycle [78,79,83]. In a recent study, Tran et al. [78]
developed an innovative framework aimed at assessing the geometric quality of prefab-
ricated façades during the construction process. The framework utilises a 3D model that
represents the intended design, along with a 3D semantic model that accurately captures
the as-built condition. Built upon a DT approach, the framework facilitates an automatic
and quantitative comparison between the 3D as-built digital replica, reconstructed from
lidar point cloud data, and the 3D as-designed model. Experimental tests conducted on
both a synthetic façade system and an actual prefabricated façade from a construction
project demonstrated the framework’s ability to identify inconsistencies, evaluate geo-
metric errors with precision, and localise them efficiently and promptly. The proposed
framework was shown to be effective in enabling an efficient visual assessment of quality
specifically tailored for prefabricated construction. Furthermore, DT applications in 3D
concrete printing empower construction professionals to optimise the quality of printed
structures [82]. Real-time feedback and analysis enable adjustments during the printing
process to maintain accuracy, structural soundness, and overall quality [82]. This level of
control and precision significantly reduces the risk of errors and deficiencies in the final
printed structure.

By harnessing DT technology for quality control and management, the construction
industry can achieve substantial improvements in construction quality, reliability, and
efficiency. Using virtual simulations, continuous monitoring, and real-time analysis, these
technologies provide a transformative approach to ensuring the highest standards of quality
in construction projects.
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3.1.7. Supply Chain Management and Logistics

DT technology possesses tremendous potential for enhancing supply chain manage-
ment and logistics in the construction industry. By encompassing diverse elements such
as excavators, logistics, construction vehicles, site personnel, or tower cranes, a DT fa-
cilitates continuous monitoring of project conditions and progress in real-time [44,84,85].
Furthermore, the application of this technology allows for the prediction of risks associated
with the supply chain, such as schedule deviations, by performing numerous simulations
involving “what-if” scenarios [85–87]. This capability provides valuable insights to project
participants. By harnessing real-time sensor data, such as GPS information, DTs facilitate
effective coordination by providing optimised delivery routes, precise delivery times, and
optimal module order times [85–87].

In particular, these advancements hold the promise of greatly enhancing project
performance within the realm of modular construction. In a study, Lee and Lee [86]
proposed a novel framework utilising DT technology to enable real-time monitoring and
simulation of logistics processes in the context of modular construction. The framework
introduced a DT that created a virtual representation of physical assets with BIM and
simulated diverse logistics scenarios using a GIS-enabled routing application. In a case
project, the framework was rigorously tested, and the findings highlighted the DT’s ability
to accurately predict various logistics risks and calculate a precise estimated time of arrival
(ETA). The accurate ETA predictions resulted in a significant reduction of 157.5 h in idle
time loss. By enabling the prediction of potential logistics risks and providing accurate ETA
calculations with reliable simulation, the developed DT facilitated precise risk assessment
and effective coordination within the supply chain among project participants, thereby
enabling “just-in-time” module delivery. Notably, the study’s results emphasised that the
implementation of “just-in-time” delivery in modular construction could effectively reduce
scheduling conflicts and costs, consequently promoting the widespread use of modular
construction practices across the industry.

3.1.8. Structural Health Monitoring (SHM)

Constantly monitoring the health and safety of civil infrastructures is crucial due
to their significant impact on public safety. Thus, the use of SHM technology becomes
essential in the architecture, engineering, and construction (AEC) industry. SHM involves
various activities such as capturing real-time data, analysing structural performance, util-
ising predictive modelling, generating actionable insights, and implementing proactive
maintenance strategies [88–90]. Conventional monitoring techniques depend on visual
examination and manual measurements, which require significant labour and are suscepti-
ble to inaccuracies [89,90]. Moreover, their effectiveness is also highly dependent on the
expertise and discipline of personnel [89,90]. Given the presence of numerous aging build-
ings and infrastructure projects, the AEC industry requires an automated framework to
enable proactive and accurate evaluation of structural integrity and continuous monitoring
of their soundness.

Initially, SHM studies focused primarily on water conservation projects such as bridges
and dams [91]. However, as the construction of larger and more complex buildings in-
creased, SHM technology gradually expanded to include other civil infrastructures [90,91].
Despite significant advancements in SHM, accurately evaluating and predicting a struc-
ture’s condition using SHM data remains challenging due to the diverse structural forms
and complex internal components such as beams, plates, and columns [91]. Additionally,
substantial variations exist in the states of these factors [90,91]. Therefore, the implementa-
tion of DT technology can provide valuable support for SHM efforts [89–91]. DTs create
virtual replicas of physical structures and integrate real-time sensor data, enabling compre-
hensive and precise monitoring of a building’s health and safety [88–91]. Using simulations
and data analysis, DTs facilitate the early detection of structural abnormalities or damage,
enabling proactive maintenance and timely interventions [89–91]. The integration of SHM
with DT technology enhances monitoring systems, enabling more accurate evaluation
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of a building’s condition, prediction of potential risks, and optimisation of maintenance
strategies [88–92]. Much research has been conducted endeavouring to implement DT
technology for enhancing SHM practices in the AEC industry [88,89,91–96].

For instance, Xu et al. [91] proposed a DT-health monitoring information model.
The model was capable of integrating a BIM and a real-scene 3D model that enabled
simultaneous sensor localisation and data monitoring. The fusion process involved dividing
the BIM into sub-BIMs based on building component types and geometric transformations,
registering 3D spatial positions using a rigid-body transformation method, and mapping
semantic information. Afterwards, the sensor-collected monitoring data were stored within
a database management system and seamlessly integrated with the fused model. To
assess the viability and usability of the fusion method, a case study was conducted on
the Nanjing Museum Old Hall, constructing a DT model of the building. The findings
demonstrated the feasibility and effectiveness of the developed DT model for performing
SHM in buildings. In another study, Chiachío et al. [88] introduced a comprehensive DT
framework designed specifically for structural engineering. This framework encompassed
key attributes essential for a functional DT including simulation, learning, and management
capabilities. Notably, the focus was placed on highlighting the autonomous interactions
between the physical and digital components, as well as incorporating workflow modelling,
which is often overlooked in the existing literature on civil and structural engineering. To
validate the effectiveness of the framework, a proof of concept was presented, involving
the monitoring of a laboratory-scale test structure using IoT-based sensors and actuators.
The experimental results affirmed the real-time responsiveness and self-adaptive nature of
the virtual counterpart, demonstrating its ability to provide automated decision-making
support for ensuring structural integrity.

In summary, the use of DT technology in SHM holds significant potential for the con-
struction industry. It addresses the challenges associated with evaluating and predicting a
structure’s condition by providing a comprehensive and dynamic virtual representation.
With the utilisation of DTs, the construction industry can enhance safety, optimise mainte-
nance efforts, and ensure the long-term structural integrity of buildings and infrastructure.

3.2. Enabling Technologies for Digital Twin Implementation in Construction

To enable the functioning of DTs, it is essential to use a range of techniques. Previ-
ous studies suggested models composed of multiple layers, each incorporating various
technologies to support the functionality of DTs [27,97–100]. For example, Hu et al. [98]
proposed a six-dimensional model designed for the health-condition monitoring of com-
plex equipment in different engineering domains, namely tunnelling, underground space
engineering, and marine and wind engineering. In another study, Fuller et al. [97] intro-
duced a generic model consisting of four technology layers to facilitate the realisation
of DTs. This study integrates insights from retrospective research and presents a five-
layered model encompassing key technologies that enable the operation of DTs in the
construction industry.

1. Technologies enabling perception and control of the physical environment. The initial stage
of developing DTs involves replicating the physical environment. This entails con-
structing a virtual environment that accurately represents the entities in the physical
world, including their constituents, internal interaction logic, and external relation-
ships [27,97,100]. The complexity of this process can vary depending on the desired
level of detail for the DTs. Therefore, establishing and improving DTs is a time-
intensive process. On one hand, the virtual models corresponding to physical entities
are not flawless, requiring a certain degree of adaptability to improve over time in
response to changes in the physical environment and its constituent elements [27,101].
This adaptability necessitates a comprehensive perception of the physical world. On
the other hand, the digitalisation of physical entities often uncovers implicit associ-
ations that can support the evolution and control of the physical world [27]. One
of the important steps in reflecting the physical world involves measuring various
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parameters (e.g., size, shape, etc.) [27,97,99]. Measurement technologies such as
laser measurement, image recognition measurement, conversion measurement, and
micro/nano-level precision measurement can be used for this purpose [27]. IoT can
also play a crucial role in enhancing the data collection capabilities of DTs by connect-
ing physical objects and devices to the Internet. It enables real-time data collection
from various sources within the physical environment, serving as data sensors that
capture and transmit information about asset or system state, behaviour, and perfor-
mance [102,103]. This continuous data monitoring and integration with DTs enhances
the accuracy and fidelity of the virtual representation. IoT facilitates the bidirectional
flow of data between the physical world and DTs, enabling updates and calibrations
based on real-time insights [102,104]. This integration empowers DTs to provide
accurate and up-to-date insights, supporting asset management, optimisation, and
decision-making across multiple domains in the construction industry.

2. Technologies enabling data management. A high-fidelity DT model necessitates secure
storage for complex information, including geometry, physical characteristics, and
condition data [27,98,99]. Technologies such as bar codes, quick response codes,
and radio frequency identification (RFID) can be utilised for the safe storage of data
generated using DT systems [98]. Big data storage frameworks like MySQL, HBase,
and NoSQL databases are used to effectively manage and utilise large volumes of data.
In MySQL, data are organised in tables, with rows representing records and columns
containing specific data values [98]. HBase relies on the Hadoop Distributed File
System (HDFS) for storage and harnesses Hadoop MapReduce for high-performance
computing, whereas NoSQL databases excel in handling extensive data volumes,
offering exceptional read-write performance [98].

Another aspect of data management relates to data processing, a procedure through
which valuable and meaningful insights from extensive and complex datasets are gener-
ated [98]. Big data analytics encompass analytic visualisations, data mining algorithms,
and predictive analytics [98,105]. Visualisations use graphical methods to facilitate clear
and effective communication, while data mining algorithms enable the discovery of hidden
information within large datasets [98]. Predictive analytics also utilise historical data to
discover real-time awareness and forecast future events using advanced systems [98]. To
manage diverse data sources, data fusion is essential for collecting, transmitting, synthesis-
ing, filtering, correlating, and extracting useful information [98,105]. Data fusion methods
are categorised into three levels: signal-level fusion, feature-level fusion, and decision-level
fusion [98], with several techniques that can be used for effective implementation of data
fusion such as Kalman filtering, image regression, principal component transform, K-T
transform, and wavelet transform [98]. Additionally, artificial intelligence and machine
learning technologies play a vital role in the data processing and analytics of DTs in the
construction industry. They are instrumental in handling and analysing the vast amount
of data generated with DTs. AI and ML algorithms provide powerful tools for extracting
valuable insights and patterns from the data. These technologies enable advanced data
processing capabilities, facilitating the identification of correlations, trends, and anomalies
within a dataset [106,107]. By leveraging AI and ML, DTs can perform predictive modelling,
optimisation, and real-time monitoring, providing construction professionals with action-
able information for informed decision-making and improved performance [74,106,107].
The integration of AI and ML algorithms allows for efficient data fusion and integration
from multiple sources, creating a comprehensive view of construction projects.

In this layer, the edge computing technique can also be used for the purpose of data
processing. Edge computing in the context of DTs refers to the decentralised processing
and analysis of data at the network edge, closer to the data source or device generating
it [108,109]. Rather than sending all the data to a centralised cloud or server, edge com-
puting enables local data processing, storage, and analytics. This approach brings benefits
such as reduced latency, improved real-time responsiveness, enhanced data privacy and
security, optimised bandwidth usage, improved reliability, and localised decision-making
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capabilities [109,110]. By processing data locally, delays caused by transmitting data to a
remote server are minimised, ensuring timely decision-making for time-sensitive applica-
tions. Additionally, edge computing reduces the risk of security breaches and unauthorised
access during data transmission. It also optimises network resources and reduces costs
by filtering and aggregating data locally before transmission. The distribution of comput-
ing tasks across multiple edge devices enhances system reliability and resiliency. Finally,
edge computing allows for localised decision-making and autonomy, enabling the DT to
perform analytics and make critical decisions without relying solely on cloud connectivity,
which is beneficial in scenarios with limited or disrupted cloud connectivity in addition to
edge computing.

3. Technologies enabling virtual modelling. Previous research indicated that a rigorous
robust model should incorporate key components such as geometry, physical at-
tributes, behavioural characteristics, and rule-based associations [27,98,101]. The
geometry aspect involves visualising shape and position utilising well-established
computer-aided design (CAD) software [27,98]. Physical information encompasses
crucial details like tolerances and material properties that contribute to an accurate
representation of the virtual model [27,98,101]. Behavioural models play a significant
role in capturing how the virtual model interacts and responds to external stimuli
and environmental changes [27]. Rule models are essential for defining associations
and constraints that enable performance analysis and optimisation [27,98,101]. Ex-
tracting rule information relies on a variety of techniques, including data mining and
semantic data analytics, which facilitate the identification and extraction of relevant
rules. To ensure the fidelity and reliability of a virtual model, verification, validation,
and accreditation technology should be used, which helps evaluate and validate the
accuracy of the virtual model against real-world scenarios and data [27,98,101].

4. Technologies enabling services. DT technology combines multiple disciplines to achieve
advanced monitoring, simulation, diagnosis, and prognosis [27,97,98]. Monitoring
involves technologies such as computer graphics, image processing, virtual reality
synchronisation, and 3D rendering [27,98]. Simulation encompasses various areas
such as structural, mechanical, electronic, control, and process simulation. Diagnosis
and prognosis rely on data analysis methods such as statistical theory, machine learn-
ing, neural networks, and fault tree analysis. Hardware, software, and knowledge
can be encapsulated into services, which go through stages like service generation,
management, and on-demand utilisation [27,97,98,100]. Resource and knowledge
services, along with application services, are managed with an industrial IoT platform
that provides functions like service publishing, searching, communication, and eval-
uation. Sharing and using models and data is crucial, and services can play a vital
role in encapsulating and managing DT components, enabling convenient sharing
and reuse. The use of a service platform allows for uniform management of DTs, and
service-oriented architecture stands out as a key enabling technology for DT services.
In addition, this study recommends integrating blockchain technology into this layer
to provide secure and transparent transactions, data sharing, and traceability within
the DT environment. Through its decentralised and immutable nature, blockchain
ensures the integrity and authenticity of data by securely recording and verifying
transactions and data exchanges among stakeholders [111,112]. The use of this tech-
nology also enables secure data sharing and collaboration, eliminates the need for
intermediaries, and facilitates data tracking and provenance [111,112]. Leveraging
blockchain technology allows DTs to enhance data integrity, foster trust, and enable
efficient and secure collaboration in construction.

5. Technologies enabling connectivity and data transmission. To achieve real-time control
and accurate mapping between the virtual and physical states in DTs, establishing a
reliable connection is of utmost importance. Various connection protocols exist for
data exchange, both between the physical space and the DT, as well as among different
software within cyberspace. Data transmission methods include wired options such
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as twisted pair, coaxial cable, and optical fibre, and wireless technologies such as
Zig-Bee, Bluetooth, Wi-Fi, ultra-wide band (UWB), and near-field communication
(NFC) [98,113]. Long-distance wireless transmission can utilise technologies such as
GPRS/CDMA, digital ratio, spread spectrum microwave communication, wireless
bridge, and satellite communication [97,99,101,105]. In this regard, a wide array of
application program interfaces (APIs) is commonly being utilised to facilitate data
exchange between different software applications, ensuring seamless data transmis-
sion at the software level [98]. The emerging 5G and 6G technologies show promise
in meeting the requirements for high data rates, reliability, coverage, and low latency
in DT applications [114,115].

The connection technological aspect of DTs is vital for enabling real-time interaction
between their various components. However, the lack of uniformity in interfaces, protocols,
and standards presents a daunting challenge [27,97–100,116]. Hence, it becomes necessary
to investigate interconnection theories, standards, and devices that can support heteroge-
neous multi-source elements [27,97,116]. To handle the growing data traffic, Qi et al. [27]
recommended that multi-dimensional multiplexing and coherent technologies should be
further developed, leading to possible enhancement in bandwidth and reduction in latency.
Additionally, the development of ultra-large-capacity routers and innovative network ar-
chitectures is crucial for managing large volumes of data and achieving efficient network
control. Considering the rising bandwidth and energy consumption, new strategies and
approaches are needed to promote green communication [117].

From the discussion above, this study found that a five-layered model demonstrates
key technologies that are framed under three areas to enhance awareness, response, and
prediction. Figure 4 shows the three areas including collect, compute, and visualise and
how they encompass the five-layered model and enable these technologies for the construc-
tion industry.
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3.3. Current Challenges and Future Directions

Despite the immense potential of DT technology, its broad adoption in the construction
industry faces various obstacles. These impediments must be addressed to unlock the full
benefits of DTs and drive the industry towards enhanced efficiency and productivity. This
section aims to shed light on the primary challenges that hinder the effective implementa-
tion and utilisation of DT technology in construction, along with recommending solutions
to overcome the highlighted challenges. A summary of these challenges is discussed and
illustrated in Figure 5.
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• Data integration and interoperability: The seamless consolidation and merging of a
virtual model and IoT sensor data outline the fundamental basis for the functional-
ity of a DT. As evident from various research studies, the data generated with DTs
encompasses a wide range of types, collected using diverse sensors, evolving into
heterogeneous datasets that encompass image data, video data, positioning data, en-
vironmental data, mechanical data, and more [27,118,119]. These datasets need to be
effectively incorporated within BIM models. However, acquiring these data involves
sourcing from distinct and diverse arrangements such as building management sys-
tems, each operating on different software platforms and having separate syntax and
representations [27,118,119]. Consequently, the complexity of DT models increases,
giving rise to incorporation and interoperability challenges at both the syntax and
semantic stages.

To address this challenge, it is imperative to prioritise the development of standard-
ised data formats, protocols, and application programming interfaces (APIs) that facilitate
seamless collaboration and data exchange among diverse software systems and stake-
holders. By establishing universally recognised file formats and data interchange rules,
effective communication and cooperation can be achieved across different platforms. This
collaborative approach enables smooth information sharing throughout the project life-
cycle, thereby maximising the benefits and effectiveness of DT implementation in the
construction industry.
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Studies also suggested that semantic models and ontologies offer viable approaches to
address the challenges related to data integration and interoperability in DT models [120,121].
Semantic modelling involves utilising semantic web-based techniques to align data streams,
active sensing data, and proprietary relational datasets and combine them with user prefer-
ences to establish a dynamic structure of elements [27]. Contrarily, ontologies provide a
formal and explicit representation of concepts within a specific domain that can be shared
among stakeholders [122]. Therefore, it is essential to explore semantic data modelling
for sensor data, BIM model data, and data from other systems to facilitate the standard-
isation of DT data by promoting data integration and interoperability. In this regard,
Tuhaise et al. [118] recommended the use of semantic web-based technologies as an effec-
tive solution to overcome the limitations of IFC standard models. These technologies offer
flexible methods for integrating data across diverse domains and scales, thereby enabling
interoperability among different data sources and systems.

• Data accuracy and completeness: The accuracy of data utilised in a DT is of utmost
importance, as it forms the foundation for accurate analysis, simulations, and decision-
making processes [4,123,124]. Challenges related to data quality, such as missing
or incorrect information, can undermine the effectiveness and trustworthiness of a
DT model, leading to flawed analysis and decision-making processes. Inaccurate
and incomplete data can stem from various factors, including human errors during
data acquisition or entry, difficulties in integrating data from diverse sources with
inconsistencies in formats and structures, limitations or malfunctions of sensors used
for real-time data capture, and gaps in information that may be unavailable or inade-
quately recorded [1,15,123]. Therefore, measures should be taken to ensure that data
integrated into a DT is precise, up-to-date, and complete.

To achieve data accuracy, thorough validation processes should be implemented to
identify and rectify any errors or inconsistencies. Data quality control mechanisms, such
as data cleansing and verification, can be used to enhance the accuracy and reliability
of information captured within a DT. Additionally, establishing robust data governance
practices and protocols can help ensure that data are continuously monitored, updated, and
maintained throughout the lifecycle of a DT. Data completeness is equally crucial to avoid
gaps or missing information that could compromise the integrity of a DT. It is essential to
capture and integrate all relevant data from various sources, including BIM models, sensor
data, historical records, and operational data. This comprehensive approach allows for
a holistic representation of the physical asset or system being modelled, enabling more
accurate simulations and analysis.

• Scalability and complexity: The successful realisation of DT technology in the con-
struction industry encounters challenges associated with scalability and effectively
managing the growing complexity of models. Scalability refers to a DT’s capacity
to accommodate large-scale construction projects and intricate infrastructure while
maintaining optimal performance [103,125]. As projects increase in size and complex-
ity, accurately capturing and representing all relevant aspects within a DT becomes
progressively more arduous.

Addressing scalability challenges necessitates the development of robust systems and
infrastructure capable of efficiently handling the expanding volume of data generated
with DTs. This entails harnessing high-performance computing capabilities such as cloud
computing, fog computing and edge computing technologies [126,127], using efficient
mechanisms for data storage and processing, and utilising scalable network architectures.
These measures facilitate seamless integration and analysis of substantial data quantities,
enabling DTs to meet the demands of expanding projects. Moreover, effectively managing
model complexity is a critical factor. Complex construction projects involve numerous
interdependent elements, including structural components, systems, and processes, all
of which must be accurately reflected in a DT. This calls for the utilisation of advanced
modelling techniques and methodologies capable of capturing the intricate relationships
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and interactions among various project components. Managing model complexity entails
not only handling extensive data but also organising, visualising, and interpreting it
effectively to support informed decision-making.

• Privacy and security: The widespread use of DT technology in the construction indus-
try faces a significant challenge related to privacy and security [97,128]. DTs generate
and handle extensive volumes of sensitive project and asset data, necessitating the
utmost care in ensuring data privacy, protecting against cyber threats, and complying
with data governance regulations [27,97]. Hence, robust security measures should be
implemented in order to safeguard DT data and prevent unauthorised access [129].

To address the challenge of privacy and security, it is crucial to establish comprehensive
data protection protocols and encryption mechanisms. This involves using state-of-the-art
cybersecurity technologies and practices to mitigate potential risks [129]. Additionally, im-
plementing access controls, authentication procedures, and user permissions helps restrict
data access to authorised individuals or entities, enhancing the overall security posture of
the DT ecosystem. Moreover, data governance plays a critical role in ensuring compliance
with relevant regulations and standards. This entails establishing clear policies and proce-
dures for data collection, storage, sharing, and retention. By adhering to established data
governance frameworks, organisations can demonstrate accountability and transparency
in handling sensitive data, building trust among stakeholders.

Collaboration between industry stakeholders, technology providers, and cybersecurity
experts is also essential in developing comprehensive privacy and security frameworks for
DTs. Regular audits and vulnerability assessments can identify potential weaknesses and
allow for prompt remediation. Additionally, fostering a culture of cybersecurity awareness
and training among employees helps establish a strong defence against cyber threats. By
prioritising privacy and security in the functioning of this technology, the building and
construction industry can instil confidence in stakeholders, protect sensitive data, and
ensure the responsible and ethical use of DT capabilities.

• Standards and governance: The lack of widely accepted standards for the development
and implementation of DT technology poses a significant challenge to its widespread
use in the construction industry [27,124,130]. This absence of standardised practices
and frameworks hampers interoperability and consistency across various projects
and stakeholders. To address this challenge, it is imperative to establish industry-
wide standards and governance frameworks that promote harmonisation and enable
seamless data exchange.

Developing robust standards for DT implementation necessitates collaboration among
industry experts, researchers, and technology providers. These standards should encom-
pass different aspects of DT development, including data formats, models, communication
protocols, and interoperability guidelines. By defining and using these standards, the con-
struction industry can ensure consistency and compatibility among different DT solutions,
facilitating effective data integration and exchange.

In addition to standards, the establishment of governance frameworks is crucial to pro-
vide guidelines and best practices for the utilisation of DT technology. These frameworks
can address concerns related to data ownership, access, sharing, and usage rights. They
can also outline guidelines for data security, privacy, and ethical considerations, promoting
the responsible and transparent use of DTs. Implementing industry-wide standards and
governance frameworks will foster collaboration and cooperation among stakeholders in-
volved in DT projects, facilitating the exchange of information, knowledge, and experiences,
ultimately leading to improved project outcomes and enhanced efficiency. Furthermore,
standardised practices and governance frameworks contribute to the long-term sustain-
ability of DT initiatives, ensuring their continued relevance and adaptability in a rapidly
evolving industry.

To achieve widespread adoption of DT technology in the construction industry, active
participation from stakeholders is essential in the development and implementation of stan-
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dards and governance frameworks. Collaborative efforts, industry-wide initiatives, and
engagement with regulatory bodies can drive the establishment of these frameworks, pro-
moting interoperability, consistency, and long-term success in the adoption and utilisation
of DTs.

Adding to these, the challenges associated with the costs of DT applications can also be
highlighted as a hindrance to the widespread adoption of this technology in the construction
industry. The implementation of DTs may face challenges related to initial investment costs,
data collection and integration, scalability, maintenance, and updates [131], as well as the
need for trained personnel, which must be addressed to ensure that the benefits of this
technology outweigh the associated costs.

The prioritisation for addressing the identified challenges depends on the nature of
the construction industry in different countries, taking into account the varying levels of
technological advancement. Each country’s unique context, including its digital maturity,
regulatory frameworks, and industry practices, will influence the prioritisation strategy.
Factors such as the availability of digital infrastructure, workforce capabilities, and techno-
logical adoption rates should be considered when prioritising the challenges hindering the
implementation of DT technology in the construction industry.

To effectively prioritise the challenges, this paper recommends using a systematic
approach. Firstly, it is imperative to evaluate the impact of each challenge on the successful
implementation of DT technology in a specific country or region. This includes considering
the extent of hindrance caused, potential benefits gained from addressing the challenge, and
the urgency of resolution within the given context. By carefully assessing these factors, the
challenges can be ranked based on their significance and priority. Secondly, it is important
to assess the feasibility of addressing each challenge within the specific country or region.
This includes evaluating the available resources, expertise, and technology required to
overcome the challenges. Furthermore, any prioritisation for addressing challenges should
account for stakeholder perspectives and industry needs within the respected context. It is
also important to engage key stakeholders, including construction industry professionals,
researchers, and technology providers, to gather their insights on the challenges that have
the most significant impact on the industry within that particular context. Their inputs can
help prioritise challenges based on their relevance and potential industry-wide benefits
within the specific country or region. Moreover, it is crucial to analyse the interdependencies
among the identified challenges and their relevance to the country’s construction industry.
Some challenges may have a direct impact on others, and addressing them in a specific
order can lead to synergistic effects. By understanding these interdependencies within
the local context, a prioritisation strategy can be developed to ensure that challenges are
addressed in a logical and effective manner.

By considering the impact, feasibility, stakeholder perspectives, interdependencies,
and unique characteristics of the construction industry in different countries, a compre-
hensive framework for prioritising the challenges hindering DT implementation can be
established. This approach will help allocate resources and efforts effectively, taking into
account the country-specific factors and ensuring that the most critical challenges are
addressed first, leading to successful DT implementation within the construction industry.

4. Conclusions

The existing state of knowledge regarding DT implementations in the construction
and building industry remains fragmented, with a limited focus on specific aspects and
limited exploration of its potential. To address this gap, this paper approached the literature
aiming to realise three objectives: (i) provide a comprehensive understanding of current
DT implementations, (ii) offer a state-of-the-art overview of facilitating expertise, and
(iii) identify challenges and provide recommendations for future development. To this end,
the current paper used a systematic literature review technique to analyse 145 materials
retrieved from multiple sources. The findings identified eight areas in which DT technology
has been implemented in the construction industry. These include (i) virtual design,



Sustainability 2023, 15, 10908 20 of 26

(ii) project planning and management, (iii) asset management and maintenance, (iv) safety
management, (v) energy efficiency and sustainability, (vi) quality control and management,
(vii) supply chain management and logistics, and (viii) structural health monitoring.

The findings of this study indicate that DT technology has the capacity to revolu-
tionise the construction industry across the identified areas of implementation. In virtual
design, DT technology allows for the creation of high-fidelity models that optimise de-
signs, simulate scenarios, and predict outcomes with increased accuracy and detail. This
technology has been applied to improve architectural designs and enhance occupant com-
fort in buildings. DT technology also improves project planning and management by
enabling the simulation of design scenarios, evaluating impacts on timelines and costs,
and facilitating collaboration among stakeholders. Additionally, DT technology enhances
asset management and maintenance by providing real-time monitoring of physical assets,
enabling predictive maintenance, and reducing operational costs. It has been particularly
effective in monitoring civil infrastructure, such as bridges and dams, and analysing data
from sensors to identify potential issues. Furthermore, DT technology contributes to safety
management by allowing the identification of safety hazards and risks at construction sites
using constant monitoring, leading to improved safety practices and incident prevention.
It can also monitor worker activities and provide real-time observations of safety hazards.
DT technology supports energy efficiency and sustainability by tracking and analysing
energy consumption patterns, optimising energy performance, and simulating scenarios
for design choices. The results of this review pointed out that DT technology can be used to
evaluate the viability of green alternatives and enable dynamic sustainability assessment.

DT technology also offers significant potential for improving current practices in
quality control and management in the construction industry. DTs enable real-time moni-
toring and virtual simulations, allowing for the early detection and resolution of potential
issues, which can subsequently result in higher-quality construction outcomes. DTs also
facilitate accurate virtual representations of components, enabling quality inspections and
continuous monitoring of performance and maintenance requirements. The implemen-
tation of DTs for purposes of supply chain management and logistics also holds great
potential by providing real-time monitoring of project conditions and progress, enabling
the prediction of risks, and optimising coordination using data integration and simulations.
Notably, the application of DTs in modular construction improves project performance
by accurately predicting logistics risks and facilitating “just-in-time” module delivery. In
SHM, DTs create virtual replicas of structures, integrate real-time sensor data, and enable
comprehensive monitoring, early detection of abnormalities, and proactive maintenance.
The application of DTs improves monitoring systems, enabling precise evaluation of a
building’s conditions, prediction of risks, and optimisation of maintenance strategies. With
the use of DT technology, the construction industry can achieve substantial improvements
in construction quality, supply chain management, and SHM, ultimately enhancing safety,
reliability, and efficiency in construction projects.

This study also underlined a number of challenges hindering the widespread use of
digital twin technology in the building and construction industry. These take into account
(i) data integration and interoperability, (ii) data accuracy and completeness, (iii) scalability
and complexity, (iv) privacy and security, and (v) standards and governance.

Addressing the identified challenges can help with the further development of the
field. To this end, the current study recommends the prioritisation of standardised data
formats, protocols, and APIs as a crucial measure to facilitate seamless collaboration and
data exchange among different software systems and stakeholders. Additionally, future
research should focus on the exploration of semantic data modelling and ontologies in
order to facilitate data integration and interoperability, with a potential lead-up to the
enhancement of DT data standardisation. The current study also suggests that further
attempts should be undertaken to ensure data accuracy and completeness in DTs, even
though this requires the implementation of thorough validation processes, data quality
control mechanisms, and robust data governance practices. Scalability and complexity
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were other important challenges associated with using DTs in construction. Addressing this
challenge involves harnessing high-performance computing capabilities, utilising efficient
data storage and processing mechanisms, and using advanced modelling techniques. This
study also suggests that privacy and security concerns can be tackled by necessitating the
establishment of comprehensive data protection protocols, encryption mechanisms, access
controls, authentication procedures, and user permissions. Finally, the development of
widely accepted standards and governance frameworks with industry-wide collaboration
will promote interoperability, consistency, and long-term success in the adoption and
utilisation of DTs in the construction industry.
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