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a b s t r a c t

Fast decoding algorithms are described for a number of established coded aperture systems. The fast
decoding algorithms for all these systems offer significant reductions in the number of calculations
required when reconstructing images formed by a coded aperture system and hence require less
computation time to produce the images. The algorithms may therefore be of use in applications that
require fast image reconstruction, such as near real-time nuclear medicine and location of hazardous
radioactive spillage. Experimental tests confirm the efficacy of the fast decoding techniques.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Coded aperture imaging has become the major technique for
forming images in the high energy domain [1–4]. This imaging
method has been proposed and used in a number of applications,
most notably high energy astronomy [4] and nuclear medicine [5],
although its use has also been suggested for tracking radiation
contamination [6] and flaw detection in mechanical structures [7].

In the coded aperture imaging technique, an aperture consisting
of opaque and transparent elements is placed between a photon
emitting source and a position sensitive detector. During observation,
photons not absorbed by the opaque aperture elements pass through
to the detector. The result is a shadowgram on the detector which
needs to be subsequently decoded to produce a reconstructed image
of the source distribution. Many patterns have been proposed for the
aperture. The Fresnel zone plate [1] and the random pinhole aperture
[2] have largely been superseded by patterns having perfect imaging
capability, where cross-correlating the aperture with the decoding
function gives a perfect delta function, although a random pattern
has been used on the recent SWIFT mission [8]. Early examples of
perfect apertures are the uniformly redundant arrays (URAs) [3] and
the modified uniformly redundant arrays (MURAs) [9]. Discoveries of
other perfect apertures were motivated by the desire to tackle certain
problems, such as having antisymmetric apertures [10,11], self-
supporting apertures [12,13] and apertures with low throughput
[14,15]. Although perfect apertures are often seen as desirable, it
should be noted that in a practical context other effects such as
imperfections in the detector, variations in detector efficiencies and
various mechanical constraints, such as artifacts in the shadowgram
caused by the grid structure used to support the aperture elements,
can dominate noise created by using imperfect apertures [16].
Therefore the choice of aperture is not always critical.

While the perfect apertures give good images with the image
quality independent of the source distribution, cross-correlating
the shadowgram with the decoding function is time consuming,
particularly for systems with large numbers of aperture elements
and detector pixels. Typically, if there are N elements in the unit
pattern of an aperture and M pixels on a detector, decoding
requires N2M2 multiplications, with the time required to perform
this decoding being approximately proportional to the same
quantity. For example the IBIS telescope on board the INTEGRAL
project has N¼M ¼ 53 [17,18] and the SAX-WFC device has
N¼MC256 [19]. Therefore the decoding time will increase very
rapidly with system size. In applications where economy of time is
important it therefore becomes desirable to find faster methods of
reconstructing the images. Examples include near real-time ima-
ging in nuclear medicine where fast diagnosis is required (similar
studies in real time medical ultrasound imaging have been done
by Heimdal et al. [20] and Choe [21]). Also speed may be required
in the rapid location of radioactive sources, for example during a
spillage of potentially dangerous material in order that the hazard
may be dealt with urgently [6].

In addition to the aforementioned cases, there are a number of
non-coded aperture applications and systems that use similar
correlation techniques, and which may therefore also benefit from
faster decoding. These would include applications requiring very
large arrays, possible examples being channel estimation for
antenna systems [22], time frequency coding [23], radar applica-
tions [24], communications [25], cryptography [26] and built-in
tests for very large scale integration (VLSI) circuits [27,28].

In the case of coded aperture imaging, Roques [29] has
described a fast decoding algorithm for the URAs, making use of
the special properties of these systems and their decoding func-
tions. When used, Roques' method gives a substantial time saving
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in the decoding of images produced using a URA. However, the
main drawback is that URAs are limited in terms of the parameters
available to the user, in particular those related to the above-
mentioned desirable characteristics. Firstly URAs are not fully
antisymmetric. Although mechanical attempts have been made
to utilise the partial antisymmetry of URAs [30], implementing
such methods in a space application may be hazardous. Secondly,
all URAs have a throughput of approximately 50% and hence offer
very little flexibility in terms of this particular parameter. Finally,
because the URAs have such a high throughput, they do not offer
much rigidity of support, unlike the self-supporting apertures. In
this paper we describe fast decoding algorithms for some of the
aperture patterns which possess the characteristics described. We
investigate the following. Firstly we study the square MURA
configurations [9], of which a subset is antisymmetric on 901
rotation [11]. Secondly we analyse those configurations described
by the author that are created from products of individual one-
dimensional coded aperture systems [14]. For ease of discussion,
we refer to these as product apertures. The product apertures have
low throughput and are all fully self-supporting, special cases of
which are the pseudo noise product (PNP) arrays [12] and the M–P
and M–M arrays [13].

2. Standard image reconstruction

In many cases, a coded aperture system based on a rectangular
geometry is defined by a unit pattern of size v�w elements
[3,9,14]. Exposure to the source typically generates a detector
shadowgram, Pði; jÞ, where 0r irv�1 and 0r jrw�1. The unit
pattern of the decoding function is represented by Gði; jÞ with
0r irv�1 and 0r jrw�1. Often the full decoding function is
represented by a 2v�1 by 2w�1 repetition of G [3,29], although in
this paper we use here the modulo v and w form of the function
G for ease of notation. The reconstructed image is given by

Iðk; lÞ ¼ ∑
v�1

i ¼ 0
∑

w�1

j ¼ 0
Pði; jÞGðiþk; jþ lÞ ð1Þ

where iþk is taken modulo v, jþ l is taken modulo w, 0rkrv�1
and 0r lrw�1. In the standard reconstruction method this
double summation is completed in its entirety using a computing
device. Because of the two summations over v and w terms,
reconstruction of the function I therefore requires v2w2 multi-
plications, which becomes very large for large systems.

In any fast reconstruction technique, we attempt to circumvent
the necessity of calculating every term in either or both the
summations in Eq. (1). This can be achieved by taking advantage
of the special way the decoding function is created. In his paper
Roques used the special properties of the URAs to describe a fast
decoding algorithm for these systems. In the next two sections we
describe fast decoding algorithms for the square MURAs and the
product apertures, of which the PNP, M–P and M–M apertures are
special cases.

3. Square MURA apertures

The MURA apertures were introduced by Gottesman and
Fenimore [9]. In their paper they describe two different MURA
types, in which they mosaic onto either a linear, hexagonal or
a square configuration. We here demonstrate that images created
using the square configuration MURAs can be decoded using a fast
algorithm. The basic idea is very similar to that of the fast decoding
algorithm of URAs [29]. Let p be an odd prime and define Cp as

follows:

CpðiÞ ¼
�1
p

� �
i
p

� �
ð2Þ

where ði=pÞ is the Legendre symbol for p and 0r irp�1. We now
recall that for a square MURA of side p elements where p is an odd
prime, the unit pattern of the decoding function G is given by the
following:

Gði; jÞ ¼
�1 if i¼ 0; ja0
1 if j¼ 0
CpðiÞCpðjÞ otherwise

8><
>: ð3Þ

where 0r i; jrp�1. Substituting the various values of Gði; jÞ from
Eq. (3) into Eq. (1) and rearranging gives

Iðk; lÞ ¼ ∑
p�1

i ¼ 0
ia � k

CpðiþkÞ ∑
p�1

j ¼ 0
ja � l

Pði; jÞCpðjþ lÞ

� ∑
p�1

j ¼ 0
ja � l

Pð�k; jÞþ ∑
p�1

i ¼ 0
Pði; � lÞ: ð4Þ

The resulting expression for I is virtually identical to that for the
URAs as given by Roques [29], the only difference being the nature of
the signs in the second and third terms of the right hand side of Eq.
(4). The methods used by Roques are therefore directly applicable to
the MURAs and so any time saving gained when using the MURAs is
equivalent to that quantified by Roques [29].

It is interesting to note that Gottesman and Fenimore predicted the
possible existence of a fast decoding algorithm for the square MURAs,
due to the inherent symmetry of these systems [9, p. 4352]. A point
that makes this development particularly important is the fact that a
subset of the square MURAs has been shown to be antisymmetric on
901 rotation [11]. Antisymmetric apertures are useful in the removal of
systematic spatial variation in the detector background [10,31]. There-
fore with a slight modification, the method described above can be
used and so there exists a type of antisymmetric aperture for which
fast decoding can be employed.

4. Product apertures

The product apertures are synthesised using the products of
single coded aperture systems, called primitive systems [14]. The
PNP [12], M–P and M–M [13] apertures are all subsets of the
product apertures. Although some primitive systems can have
orders that are non-prime (for example a PN sequence can be of
order 63), because of the methods used, we are concerned here
with primitive systems that have prime orders. Let G be the
decoding function of a product system, composed of n primitive
systems of orders p1; p2;…; pn, where the px are all prime. We do
not need to define the dimensionality of the coded aperture
system being used, since the theory described below applies to
all cases, including systems with more than two dimensions. Note,
however, that while the px do not necessarily have to be distinct, if
there are m dimensions to a product system, there are at most m
values of px that can be equal, and only then if there is no more
than one primitive system of order px used in any one dimension.

We define the set of n functions Cx by the following two
equations:

Cxð0Þ ¼ 1 for all x ð5Þ

CxðiÞ ¼
�1
px

� �
i
px

� �
if ia0 ð6Þ

where x¼ 1;2;…;n. The decoding function of a product aperture is
given by
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Gði1; i2;…; inÞ ¼ ∏
n

x ¼ 1
CxðixÞ ð7Þ

where ix ¼ 0;1;…; px�1 [14]. Note that setting n¼2 in Eq. (7) gives
either a PNP, M–P or M–M aperture, depending on the choice of
the primes px. Following an observation of a source field, let P be
the resulting detector shadowgram. The reconstructed image I is
given by

Iðk1; k2;…; knÞ ¼ ∑
p1 �1

i1 ¼ 0
∑

p2 �1

i2 ¼ 0
… ∑

pn �1

in ¼ 0
Pði1; i2;…; inÞ

�Gði1þk1; i2þk2;…inþknÞ ð8Þ
where 0rkxrpx�1 and the ixþkx are taken modulo px. Compar-
ing Eq. (8) to Eq. (1) we can see that here, if standard decoding is
to be used, the number of required multiplications Ns is given by

Ns ¼ ∏
n

x ¼ 1
p2x : ð9Þ

This quantity becomes very large for large values of px.

4.1. Main optimisation algorithm

We now describe the main optimisation algorithm. It is so
called because it gives by far the largest time saving of the two
optimisations and so its full description is necessary. Also its
understanding is important when also employing the secondary
optimisation, which is described in Section 4.2.

The main optimisation algorithm arises as a result of the special
way in which the decoding function G is calculated in Eq. (7).
Substituting for G from Eq. (7) into Eq. (8) and rearranging gives

Iðk1; k2;…; knÞ ¼ ∑
p1 �1

i1 ¼ 0
C1ði1þk1Þ ∑

p2 �1

i2 ¼ 0
C2ði2þk2Þ…

� ∑
pn �1

in ¼ 0
Pði1; i2;…; inÞCnðinþknÞ: ð10Þ

The partitioning of G into the individual Cx enables fewer
multiplications to be performed and hence shortens the required
computing time. The continuation is an extension of the strategy
employed by Roques for the URAs. Consider the last summation in
Eq. (10). We denote this by

Qnði1; i2;…; in�1; knÞ ¼ ∑
pn �1

in ¼ 0
Pði1; i2;…; inÞCnðinþknÞ: ð11Þ

For each ix, xan, to calculate function Qn requires pn multi-
plications, making a total of pn∏n

x ¼ 1px multiplications to evaluate
the whole of Qn. Once Qn has been calculated we can now employ
it in Eq. (10) to give

Iðk1; k2;…; knÞ ¼ ∑
p1 �1

i1 ¼ 0
C1ði1þk1Þ ∑

p2 �1

i2 ¼ 0
C2ði2þk2Þ…

� ∑
pn� 1 �1

in� 1 ¼ 0
Qnði1; i2;…; in�1; knÞ

�Cn�1ðin�1þkn�1Þ: ð12Þ
We can continue in the same fashion as above by taking the last

summation in Eq. (12) and setting it to

Qn�1ði1; i2;…; in�2; kn�1; knÞ

¼ ∑
pn� 1 �1

in� 1 ¼ 0
Qnði1; i2;…; in�1; knÞCn�1ðin�1þkn�1Þ ð13Þ

which requires pn�1∏n
x ¼ 1px multiplications to evaluate Qn�1. It is

evident that we can continue this induction, with a general
expression Qy being given by

Qyði1; i2;…; iy�1; ky; kyþ1;…; knÞ

¼ ∑
py �1

iy ¼ 0
Qyþ1ði1; i2;…; iy; kyþ1;…; knÞCyðiyþkyÞ ð14Þ

with Qy requiring py∏n
x ¼ 1px multiplications. Note from Eqs. (14)

and (11) that Qnþ1 ¼ P. The final stage of the induction will give

Q1ðk1; k2;…; knÞ ¼ Iðk1; k2;…; knÞ ¼ ∑
p1 �1

i1 ¼ 0
Q2ði1; k2; k3;…; knÞC1ði1þk1Þ

ð15Þ
which yields the final reconstructed image I. The entire process
requires a total of ð∑n

x ¼ 1pxÞð∏n
x ¼ 1pxÞ multiplications, which gives

a reduction in the number of required multiplications of
ð∏n

x ¼ 1pxÞ=ð∑n
x ¼ 1pxÞ compared to that of the standard deconvolu-

tion method – a significant saving. As an example, if n¼3 and
p1 ¼ 5, p2 ¼ 7 and p3 ¼ 11, the number of required multiplications
is reduced by a factor of 16.7.

4.2. Secondary optimisation

The special properties of the Legendre symbol can be used to
achieve a further optimisation of the decoding algorithm of the
product apertures, in an idea that is similar to that used by Roques
in the case of the URAs [29]. We refer to this as secondary
optimisation. We here utilise the fact that consecutive members
of the Ci(x) in Eq. (6) are sometimes equal. This point can be used
to achieve a further time saving as follows. During the induction
method of the main optimisation algorithm in Section 4.1, con-
sider a point in the induction given by Eq. (14). Using this equation
we can write

Qyði1; i2;…; iy�1; ky; kyþ1;…; knÞ
¼Qyði1; i2;…; iy�1; ky�1; kyþ1;…; knÞ

þ ∑
py �1

iy ¼ 0
Qyþ1ði1; i2;…; iy; kyþ1;…; knÞ

�½CyðiyþkyÞ�Cyðiyþky�1Þ� ð16Þ
and so, starting in sequence with Qyði1; i2;…; iy�1;0; kyþ1;…; knÞ,
once Qyði1; i2;…; iy�1; ky�1; kyþ1;…; knÞ has been calculated then
Qyði1; i2;…; iy�1; ky; kyþ1;…; knÞ can also be calculated. However,
upon studying (16) it is clear that if the quantity CyðiyþkyÞ
�Cyðiyþky�1Þ is zero, then it becomes unnecessary to perform
a summation to calculate Qyði1; i2;…; iy�1; ky; kyþ1; …; knÞ, thus
reducing the overall number of multiplications required. This
point was also used by Roques for the URAs [29]. For all primes
py, the number hy of times the quantity CyðiyþkyÞ�Cyðiyþky�1Þ is
nonzero under the criteria of Eqs. (5) and (6) is given by

hy ¼
py�ð�1=pyÞ

2
ð17Þ

where ð�1=pyÞ is the Legendre symbol of �1 with respect to the
prime py. Therefore, for large p the number of multiplications
required to perform each summation is reduced by approximately
a half.

When combining the main and secondary optimisation meth-
ods the time saving is significant, particularly for systems with
large n. If both optimisation methods are used the required total
number of multiplications Nf is given by

Nf ¼ nþ ∑
n

i ¼ 1

ðpi�1Þhi

pi

" #
∏
n

x ¼ 1
px: ð18Þ

This compares to the number of multiplications for the standard
decoding given in Eq. (9).

Examples of the reduction in the number of required multi-
plications for some configurations are given in Table 1, where the
ratio Nf =Ns is given for a configuration of n primitive systems, each of
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order p. The table shows that in all cases there is a significant
reduction in the number of multiplications required. For small
systems, with px≲11 and/or n≲3, reductions of approximately one
to two orders of magnitude are available. For medium to large
systems the reductions are of several orders of magnitude.

5. PNP, M–P and M–M apertures

We demonstrate the methods of the previous sections by
considering the specific cases of the PNP [12], M–P and M–M
[13] apertures. These will occur when n¼2 with the orders of the
two primitive systems being p1 and p2. Using these parameters
with Eq. (10) gives

Iðk1; k2Þ ¼ ∑
p1 �1

i1 ¼ 0
C1ði1þk1Þ ∑

p2 �1

i2 ¼ 0
Pði1; i2ÞC2ði2þk2Þ: ð19Þ

Note that the number of multiplications to calculate I for all k1 and
k2 has been reduced from p21p

2
2 to p1p2ðp1þp2Þ, meaning that we

have achieved the saving of the main optimisation algorithm of
Section 4.1. At this point we use Eq. (11) to give

Q2ði1; k2Þ ¼ ∑
p2 �1

i2 ¼ 0
Pði1; i2ÞC2ði2þk2Þ ð20Þ

which is the representation of the last summation in Eq. (19).
When calculating Q2 in Eq. (20) we utilise the secondary optimisa-
tion by first calculating Q2ði1;0Þ and then only calculating sub-
sequent Q2ði1; k2Þ if C2ði2þk2Þ�C2ði2þk2�1Þa0. By Eq. (17) this
will be h2 ¼ ½p2�ð�1=p2Þ�=2 times, with a saving of approximately
a half over that of using the first optimisation only.

Once Q2ði1; k2Þ has been calculated as a function of i1 we
combine Eqs. (19) and (20) to give

Iðk1; k2Þ ¼Q1ðk1; k2Þ ¼ ∑
p1 �1

i1 ¼ 0
C1ði1þk1ÞQ2ði1; k2Þ ð21Þ

which is the representation of Eq. (15) for n¼2. Again, we use the
secondary optimisation, calculating Q1ð0; k2Þ and then only calcu-
lating subsequent Q1ðk1; k2Þ if C1ði1þk1Þ�C1ði1þk1�1Þa0, which
only occurs h1 ¼ ½p1�ð�1=p1Þ�=2 times. Completing the summa-
tions for Eq. (21) gives the final reconstructed image.

Combining the induction method of Section 4.1 with the second-
ary optimisation method of Section 4.2 we calculate from Eqs. (17)
and (18) that the total number of multiplications required is

Nf2 ¼ 2p1p2þ
p1ðp2�1Þ½p2�ð�1=p2Þ�

2

þp2ðp1�1Þ½p1�ð�1=p1Þ�
2

ð22Þ

which using Eq. (9) compares with the number required for the
standard decoding of

Ns2 ¼ p21p
2
2: ð23Þ

Comparing the ratio Nf2=Ns2 for various values of p1 ¼ p2 in Eqs. (22)
and (23) yields the values in the second column of Table 1.

6. Time factors

The previous sections discuss the considerable reduction in the
number of multiplications required when employing both the main
and secondary optimisation methods over that of the standard
method. However, the simple counting of the numbers of multi-
plications and comparing Nf to Ns only partly explains the observed
computational speed up. This is because some multiplications require
slightly different procedures to others. For this reason, it is convenient
to divide Eq. (18) into two separate quantities as follows. At the
commencement of the secondary optimisation algorithm, calculating
the starting point Qyði1; i2;…; iy�1;0; kyþ1;…; knÞ, which for ease of
notation we shall hereafter refer to as Qy

0, using Eq. (14) requires
∏n

x ¼ 1px multiplications for a given y and hence the following
number of multiplications for all 1ryrn:

N0 ¼ n ∏
n

x ¼ 1
px: ð24Þ

Now, calculating the rest of Qyði1; i2;…; iy�1; ky; kyþ1;…; knÞ, here-
after referred to as Qy

k, for all ky and all y using Eq. (16) for those cases
when CyðiyþkyÞ�Cyðiyþky�1Þa0 requires the following number
of multiplications:

Nk ¼ ∑
n

i ¼ 1

ðpi�1Þhi
pi

" #
∏
n

x ¼ 1
px ð25Þ

where N0þNk ¼Nf .
We first study the calculation of Qy

0. Here, Eq. (14) with ky¼0
shows that a number of multiplications are required to be
performed, as indeed are similarly required to calculate I using
the standard method of Eq. (8). Study of Eq. (14) shows that each
of the N0 multiplications to calculate the Qy

0 requires, among other
things, the interrogation of the one-dimensional vector Cy, which
has an argument of iyþky ¼ iy, since ky¼0. This interrogation takes
a small amount of time before the actual multiplication. However,
in the case of the calculation of I in Eq. (8), it is the n-dimensional
array G that is required to be interrogated, which takes longer than
the interrogation of a one-dimensional vector such as Cy. In
addition each multiplication in Eq. (8) suffers further from the
requirement to calculate not one, but n arguments i1þk1; i2þk2;
…; inþkn, prior to each multiplication. Now, while the calculations
of the ixþ jx can be optimised by nesting them outside some of the
summation loops, both of the above mentioned processes never-
theless result in a larger overall time cost, and hence a reduction in
the observed number of multiplications per second in the calcula-
tion of I in Eq. (8) as compared to the calculation of Qy

0 in Eq. (14).
Regarding the calculations of the remaining Qy

k, study of Eq. (16)
shows that it is still necessary to interrogate Cy, and indeed this is
required twice to obtain CyðiyþkyÞ�Cyðiyþky�1Þ ¼Dy, which also
requires calculation of the two arguments iyþky and iyþky�1.
However, the calculation of Dy is required only once before being

stored and used to calculate the remainder of ∑py �1
iy ¼ 0Qyþ1ði1; i2;…;

iy; kyþ1;…; knÞ � Dy in Eq. (16). Using Eq. (17), there are ∑n
y ¼ 1hy

nonzero values of Dy for all 1ryrn, and each nonzero Dy serves
in the performance of ð∏n

x ¼ 1pxÞ=py multiplications during the
entire calculation of Q1 ¼ I. In all the total number of multi-
plications required is Nk whereas the total number of interroga-
tions of the Cy vectors, with arguments, is only

Ni ¼ 2 ∑
n

y ¼ 1
pyðpy�1Þ: ð26Þ

Therefore the required number of interrogations of the vectors Cy,
including the calculations of their arguments, is reduced by the
factor Ni=Nk compared to that of calculating the Qy

0 and so the
number of multiplications per second to calculate the Qy

k is higher

Table 1
Ratio Nf =Ns for n primitive systems, each of order p.

p n

2 3 4 5

5 0.21 0.062 0.017 4.2�10�3

11 0.11 0.015 1.7�10�3 2.0�10�4

23 0.047 3.1�10�3 1.8�10�4 9.7�10�6

53 0.019 5.3�10�4 1.3�10�5 3.2�10�7

101 9.9�10�3 1.5�10�4 1.9�10�6 2.4�10�8

K. Byard / Nuclear Instruments and Methods in Physics Research A 754 (2014) 36–41 39
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than that of the Qy
0 which is in turn higher than that of the

standard method of Eq. (8). As an example, if n¼3 and p1 ¼ 5,
p2 ¼ 7 and p3 ¼ 11, the ratio Ni=Nm is 0.085. Ni=Nm decreases with
higher values of py. Table 2 shows the ratios of multiplications and
interrogations using n¼3 and p1 ¼ p2 ¼ p3 ¼ p, where Ns and Nf are
calculated using Eqs. (9) and (18) respectively. In this table both
the ratios Nf =Ns and Ni=Nk decrease with p which will lead to
a significant speed up in the computation with increasing p.

Once all the multiplications to calculate Qy for all y have been
completed, it only remains to then add Qyði1; i2;…; iy�1; ky�1; kyþ1;

…; knÞþ∑py �1
iy ¼ 0Qyþ1ði1; i2;…; iy; kyþ1;…; knÞ � ½CyðiyþkyÞ�Cyðiyþ

ky�1Þ� for 1ryrn as per Eq. (16). This final addition entails an
amount of extra time Ta outside of the multiplication processes,
but this is very small in comparison to the rest of the computation
of I, as demonstrated in the next section.

7. Experimental tests

Experimental tests were conducted to investigate the time
savings achievable by the fast decoding algorithm in a practical
context. We study the case n¼3, with p1 ¼ p2 ¼ p3 ¼ p, measuring
the time taken to complete the decoding for both the standard and
fast algorithms, assuming both the main and secondary optimisa-
tions are used. The tests were done using Mathematica 8 on
Windows 7 Enterprise, with a 3.2 GHz processor, a RAM of 8 GB
and a 64 bit operating system. The results of the tests for primes
5rpr43 are given in Table 3, where Ts and Tf were the measured
computational times required to complete the standard and fast
decoding respectively. Also shown in the table are the observed
numbers of multiplications per second using the standard method
of Eq. (8), and when calculating Qy

0 using Eq. (14) and Qy
k using

Eq. (16). The extra time required for the addition part of Eq. (16),
Ta, is also given.

The results indicate that the fast decoding algorithm does
afford a significant time saving when employed practically over
the standard decoding, due mainly to the reduced number of
multiplications required when using the fast method. In addition,
however, the observed numbers of multiplications per second is
also shown to increase as we move from the standard method to
fast decoding, with the calculations for Qy

k being even more rapid
than those for Qy

0, as explained in the discussion in Section 6. Using
the fast method does require the extra time Ta to perform a small
matrix addition as per Eq. (16), but Table 3 shows that this
was observed to be very small in all cases. Therefore, in practice,
the time savings are more optimistic than the ratio of Nf =Ns

would indicate, as shown by the final column in Table 3. For the
case of these particular parameters, the total further saving

amounts to approximately 25% over and above that calculated
from Eqs. (9) and (18) alone for the parameters studied. The results
for small p contain some anomalies which we might expect when
dealing with very short time measurements. For example, the
dashes in Table 3 are due to the presence of reported times of
zero for some cases, which will evidently not be the case in reality.
The results tend to ‘settle down’ for larger values of p, converging
on the 25% extra time saving as described above. As an example
of a real telescope, the time taken for one decoding of an
image obtained by the IBIS instrument on the INTEGRAL satellite
[17,18] using the same computer system took 21.2 s using the
standard decoding technique, but only 0.4 s using the proposed
method.

It is clear that the use of Fast Fourier Transforms to decode the
images can also yield fast results. In the examples given, FFTs were
also applied and in each case the same results were reproduced
using less than 1 s of computing time. However the method
described provides a transparent alternative which is simpler,
preserves the linear cross-correlation approach and, in the context
of real coded aperture systems of current size, offers decoding
times that are both many orders of magnitude faster than standard
decoding and which are also competitive with the FFTs – the
longest decoding of Table 3 took less than 11 s.

8. Conclusions

Following Roques' work with URAs [29], this paper presents
fast decoding algorithms for a number of other coded aperture
systems, namely the square configuration MURAs, which includes
the antisymmetric MURAs, the product apertures and the PNP,
M–P and M–M apertures. The technique, which utilises the special
methods by which the various configurations are constructed,
reduces significantly the number of calculations required when
they are employed in coded aperture systems. Results indicate that
for small configurations with the px≲11 and/or n≲3, savings of
approximately one to two orders of magnitude are available, and
for medium to large systems the available savings are of several
orders of magnitude.

Experimental tests not only confirm the efficacy of the fast
decoding technique but also verify the further practical improve-
ment above that indicated by a simple counting of the number of
calculations given in Table 1, as discussed in Section 6. These extra
improvements arise for two reasons. Firstly, the part of the fast
decoding technique that calculates Qy

0 scores over the standard

Table 2
Ratio calculations for n¼3 and p1 ¼ p2 ¼ p3 ¼ p.

p Nf =Ns Ni=Nk

5 0.062 0.2
7 0.039 0.071
11 0.015 0.030
13 8.9�10�3 0.026
17 5.2�10�3 0.015
19 4.6�10�3 0.011
23 3.1�10�3 0.007
29 1.8�10�3 0.005
31 1.7�10�3 0.004
37 1.1�10�3 0.003
41 8.9�10�4 0.002
43 8.5�10�4 0.002

Table 3
Results of experimental tests for n¼3 and p1 ¼ p2 ¼ p3 ¼ p. The times indicated are
in seconds.

p Ts Tf Tf =Ts Multiplications per second
(�103)

Ta Tf =Ts

Nf =Ns

Standard Qy
0 Qy

k

5 0.05 0 0 340 – – 0 0
7 0.33 0 0 360 – – 0 0
11 4.65 0.08 0.02 381 125 473 0 1.15
13 13 0.09 7.4�10�3 382 412 468 0 0.83
17 63 0.23 3.7�10�3 383 – 547 0.031 0.71
19 123 0.45 3.7�10�3 382 447 543 0.048 0.80
23 390 0.95 2.4�10�3 379 380 546 0.061 0.79
29 1552 2.11 1.4�10�3 383 472 542 0.126 0.76
31 2360 2.95 1.2�10�3 376 478 531 0.157 0.75
37 6763 5.54 8.2�10�4 379 463 538 0.265 0.75
41 12 443 8.26 6.6�10�4 382 457 541 0.359 0.74
43 16 558 10.47 6.3�10�4 382 478 537 0.421 0.75
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method by virtue of the use of one-dimensional vectors for the
decoding, instead of the n dimensions of the standard method. For
Qy
0, it is only necessary to calculate one argument, which is then

used to interrogate only a one-dimensional vector, whereas with
the standard method, it is necessary prior to each multiplication to
calculate n arguments, which in addition requires the more
lengthy interrogation of an n-dimensional array. Although some
of these problems could be alleviated by more optimal program-
ming, there is still a significant decrease in the required number of
multiplications per second when calculating Qy

0 using the fast
method. Secondly, when calculating Qy

k, the need to calculate
arguments and interrogate the vector CyðiyþkyÞ compared to Qy

0

is reduced by a factor of Ni=Nk, which results in an even higher
number of multiplications per second, as shown in Table 3. When
performing the experimental tests for the particular aperture
parameters studied, the overall time saving settles down to
approximately 25% for system sizes that exceed the anomalous
smaller values of p. In all cases the validity of the fast decoding
method is confirmed and for system sizes of the order of those real
coded aperture instruments currently in use [18,19], the results are
competitive with those of Fast-Fourier Transforms, and hence offer
a viable alternative that is simple and transparent.

The techniques described clearly increase the number of coded
aperture systems that can benefit from fast decoding. However, of
no less import is the point that the methods also widen the range
of possible system parameters that can now benefit from fast
decoding, such as the aperture symmetry, shape and throughput.
Therefore fast decoding is rendered available for some systems
that possess special properties not enjoyed by the URAs. Because
the technique is now available to the square MURAs [9], a subset of
which has been shown to be antisymmetric on 901 rotation [11],
fast decoding is now available if an antisymmetric aperture is
desired. Also, because the technique applies to the self-supporting
PNP, M–P or M–M apertures, it is possible to use fast decoding
while enjoying the benefits of these self-supporting apertures,
such as rigidity of structure [12] or active collimation [32]. Note
also that these latter systems possess a much greater range of
eccentricity of rectangular pattern than that available to the
almost square URAs. Finally, the product apertures typically have
low throughput values [14]. For applications working in a low-
background environment, such as nuclear medicine imaging, it
may not be necessary to have an aperture with a large throughput
[33], and often a low throughput aperture may be selected due to
its simplicity of design, for which fast decoding now becomes
available.

The fast decoding techniques may be of use in any coded
aperture application requiring fast image reconstruction. Exam-
ples include near real-time nuclear medicine imaging and the
detection and the rapid location of hazardous material, such as
radioactive spillage. Also, it should always be borne in mind that
there are a number of non-coded aperture applications where the
fast cross-correlation of binary arrays is desirable. These poten-
tially include the use of antenna systems, radar applications, time
frequency coding, communications, cryptography and built-in
tests for VLSI circuits.
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