
Designer-driven Procedural Game Content Generation 
using Multi-Agent Evolutionary Computation 

Jan Kruse 

A thesis submitted to 

Auckland University of Technology 

in fulfilment of the requirements for the degree 

of 

Doctor of Philosophy 



Attestation of Authorship 

I hereby declare that this submission is my own work and that, to the best of my knowledge and 

belief, it contains no material previously published or written by another person (except where 

explicitly defined in the acknowledgments), nor material which to a substantial extent has been 

submitted for the award of any other degree or diploma of a university or other institution of 

higher learning. 

Auckland, 15th May 2019 

______________________________________________________________ 



Acknowledgements 

First and foremost, thank you, Jeannine. You started it all. But you are also my soulmate and, 

by an almost infinite margin, the most important person in the world for me. 

Second, thank you Andy and Stefan. You are a fantastic supervision team, allowing me to walk 

the thin line between Design and Computer Science, guiding me, pushing me, supporting me. 

I also thank Lynne Jamneck for proof-reading my thesis. I feel you did an outstanding job. 

A special thanks to Greg for supporting me in various ways. You are a great Head of 

Department. 

Thank you everyone else for your help and for making this great journey possible. 

Thank you AUT and in particular the Vice-Chancellery for awarding me the Doctoral Study 

Award, which fully funded the last leg of my journey. 

This research has been approved by the ethics committee (AUTEC) under 17/80. 



Table of Contents 

1 Introduction ....................................................................................................................... 1 

1.1 Problem Statement ..................................................................................................... 1 

1.2 Research Question ...................................................................................................... 2 

1.3 Research Approach ..................................................................................................... 2 

1.4 Contributions ............................................................................................................... 2 

1.5 Structure of this Thesis ................................................................................................ 4 

2 Literature Review ............................................................................................................... 5 

2.1 Game Design ............................................................................................................... 6 

2.1.1 Game Elements .................................................................................................... 7 

2.1.2 Generative Design ................................................................................................ 9 

2.1.3 Design Cycle ....................................................................................................... 10 

2.1.4 Computational Creativity ................................................................................... 12 

2.2 Creating computer game content ............................................................................. 14 

2.2.1 Traditional Approaches ...................................................................................... 14 

2.2.2 Procedural Content Generation......................................................................... 15 

2.2.3 Procedural Content Evaluation .......................................................................... 18 

2.3 Cognitive Modelling .................................................................................................. 19 

2.3.1 Player Experience Goals, Playability Heuristics, and Playability ........................ 19 

2.3.2 Player Experience Goals ..................................................................................... 20 

2.3.3 Playability Heuristics .......................................................................................... 21 

2.3.4 Applications of Cognitive Models ...................................................................... 23 

2.3.5 Cognitive Designer Model .................................................................................. 25 

2.4 Artificial Intelligence.................................................................................................. 26 

2.4.1 Machine Learning .............................................................................................. 26 



2.4.2 Definitions of Artificial Intelligence ................................................................... 27 

2.4.3 Agents ................................................................................................................ 29 

2.4.4 Expert Systems ................................................................................................... 31 

2.4.5 Multi-Agent Systems .......................................................................................... 33 

2.5 Evolutionary Computation ........................................................................................ 34 

2.5.1 Genetic Algorithms ............................................................................................ 36 

2.5.2 Interactive Genetic Algorithms .......................................................................... 42 

2.5.3 Human-Based Genetic Algorithms ..................................................................... 44 

2.6 Summary ................................................................................................................... 44 

3 Methodology and Research Design ................................................................................. 45 

3.1 Research Questions ................................................................................................... 45 

3.2 Methodology ............................................................................................................. 46 

3.3 Research Design ........................................................................................................ 48 

3.3.1 Game Level Design Tool Evaluation ................................................................... 48 

3.3.2 Think-aloud and Observation ............................................................................ 50 

3.3.3 Eye Tracking ....................................................................................................... 51 

3.3.4 Semi-structured interviews................................................................................ 52 

3.3.5 Questionnaires ................................................................................................... 53 

3.4 Design Prototype Evaluation ..................................................................................... 54 

3.4.1 Qualitative data analysis .................................................................................... 55 

3.4.2 Quantitative data analysis ................................................................................. 57 

3.5 Ethical Considerations ............................................................................................... 58 

3.5.1 Participant selection .......................................................................................... 58 

3.6 Summary ................................................................................................................... 59 

4 Design Prototype Implementation .................................................................................. 60 

4.1.1 Resulting Game Levels ....................................................................................... 61 



4.1.2 Genetic Algorithm Implementation ................................................................... 68 

4.1.3 Level design prototype Interface ....................................................................... 69 

4.1.4 Player experience goals ..................................................................................... 72 

4.1.5 Design Expert Agent ........................................................................................... 73 

4.1.6 Diversity Agent ................................................................................................... 81 

4.1.7 User Preference Agent ....................................................................................... 83 

4.1.8 Multi-Agent System ........................................................................................... 84 

4.1.9 Eye tracking and heatmap generation ............................................................... 87 

5 Results and Observations ................................................................................................ 91 

5.1 Evaluation of Game Level Design Prototype ............................................................. 92 

5.1.1 Participating Game Designers ............................................................................ 94 

5.1.2 Observations and think-out-loud results ........................................................... 96 

5.1.3 Interview responses ........................................................................................... 99 

5.1.4 Telemetry data ................................................................................................. 107 

5.1.5 Eye tracking results .......................................................................................... 116 

6 Discussion and Recommendations ................................................................................ 122 

6.1 Contributions ........................................................................................................... 122 

6.2 Findings ................................................................................................................... 123 

6.2.1 Sub-question 1 ................................................................................................. 123 

6.2.2 Sub-question 2 ................................................................................................. 123 

6.2.3 Expert suggestions ........................................................................................... 125 

6.2.4 Expert responses in interviews also require triangulation .............................. 126 

6.2.5 Educating users about autonomous systems .................................................. 126 

6.3 Limitations ............................................................................................................... 127 

6.3.1 Sample size ....................................................................................................... 127 

6.3.2 Rule-based Expert System ............................................................................... 128 



6.3.3 Tracking individual agent performance ........................................................... 129 

6.3.4 Post-design play-testing ................................................................................... 129 

6.4 Future Work ............................................................................................................ 129 

6.4.1 Sample size ....................................................................................................... 130 

6.4.2 Exclusion agent ................................................................................................ 130 

6.4.3 Additional features .......................................................................................... 131 

6.5 Conclusion ............................................................................................................... 131 

7 References ..................................................................................................................... 132 

Appendix ................................................................................................................................ 150 

A. Selection data as table ................................................................................................ 150 

B. Eye tracking heatmaps (agents active) ....................................................................... 151 

C. Eye tracking data (agents not active) ......................................................................... 155 

D. Participant Information Sheet, Questionnaire and Interview Questions ............... 160 

 

  



Table of Figures 

Figure 1 - Game elements (derived from Järvinen, 2009). ........................................................ 7 

Figure 2 - Design cycle as per Fullerton (2008). ....................................................................... 11 

Figure 3 – Game Design cycle, as per Nacke et al. (2009). ...................................................... 21 

Figure 4 - Positioning agents and genetic algorithms within the wider field of artificial 

intelligence. .............................................................................................................................. 27 

Figure 5 - Plot of 𝑓𝑓𝑓𝑓,𝑦𝑦 = 𝑒𝑒 − (𝑓𝑓2 + 𝑦𝑦2) resulting in a single hill. .......................................... 39 

Figure 6 - Plot of 𝑓𝑓𝑓𝑓,𝑦𝑦 = 𝑒𝑒 − (𝑓𝑓2 + 𝑦𝑦2) + 2𝑒𝑒 − (𝑓𝑓 − 1.52 + 𝑦𝑦 − 1.52) resulting in two local 

maxima. .................................................................................................................................... 40 

Figure 7 - Design science research process diagram. .............................................................. 47 

Figure 8 - Heatmap of eye tracking on a Wikipedia webpage. ................................................ 52 

Figure 9 - Candidate level with annotations. ........................................................................... 66 

Figure 10 - Three-dimensional rendering of map shown in Figure 9 ...................................... 67 

Figure 11 - Chromosome contains encoded values for each street element ......................... 68 

Figure 12 - Recombination including crossover and mutation ................................................ 69 

Figure 13 - GUI example for the prototype tool. ..................................................................... 70 

Figure 14 - Naming convention for individual candidate tiles. ................................................ 71 

Figure 16 - Schematic overview of the multi-agent system. ................................................... 85 

Figure 17 - Overview of interactive evolutionary process employed in this study. ................ 86 

Figure 18 - Example of a heatmap with long runtime. ............................................................ 89 

Figure 19 - Example heatmap with a short runtime. ............................................................... 90 

Figure 20 – Data source categorisation. .................................................................................. 93 

Figure 21 - Maximum fitness value, agents active. Each colour represents a different run for 

easier visual reading. ............................................................................................................. 108 

Figure 22 - Maximum fitness value, agents inactive. Each colour represents a different run for 

easier visual reading. ............................................................................................................. 109 

Figure 23 - Maximum pool fitness of all runs combined. The blue line signifies ‘with agents’ 

and red line ‘without agents’. ................................................................................................ 110 

Figure 24 - Pseudo heatmap representing user input. Dark blue-green denotes fewer clicks 

and light blue-green more clicks. ........................................................................................... 113 



Figure 25 - Plot across all runs with agents inactive. ............................................................. 114 

Figure 26 - User selections plot across all runs with agents active. ...................................... 114 

Figure 27 - Heatmap of eye tracking data (active agents). .................................................... 117 

Figure 28 - Eye tracking heatmap without agents. ................................................................ 117 

 

  



Abbreviations 

AI Artificial Intelligence 

CS:GO Counter-Strike: Global Offensive (Game) 

DDA Digital Differential Analysis 

DEA Design Expert Agent 

EC Evolutionary Computation, the field of computer science using biologically 

inspired search and optimization techniques 

GA Genetic Algorithm, probably the most common Evolutionary Computation 

algorithm 

HBGA Human-based Genetic Algorithm, a multi-agent system replacing 

recombination and selection with human and/or computational agents 

IEC Interactive Evolutionary Computation, biologically inspired search and 

optimization techniques with a human user typically replacing a 

mathematical fitness function 

IGA Interactive Genetic Algorithm, Genetic Algorithm with a human user 

typically replacing a mathematical fitness function 

MVP Minimum Viable Product 

NPC Non Player Character 

PCG Procedural Content Generation 

SDK Software Development Kit 



Abstract 

Creating computer game levels that offer good playability and interesting layouts is a 

laborious and costly task. In particular, multiplayer game levels necessitate careful balancing 

of gameplay between teams and clear objectives for players. Expert knowledge that draws on 

a good understanding of player experience and strong level design skills results in maps that 

players enjoy and appreciate. The success of new level designs hinges on this expertise. 

This study introduces a Multi-Agent System based on heuristics developed from expert level 

designers, that is able to augment game designers of all levels of expertise and help them 

create First Person Shooter levels with good playability. An interactive evolutionary algorithm 

is employed to provide designers with several level design options. The human user stays in 

full control of the decisions made during the design process, while the agent system provides 

suggestions that promise good playability and a positive player experience. 

The system has been evaluated using game designers with varying levels of experience, and 

the results show great promise. A Multi-Agent System in addition to the Interactive Genetic 

Algorithm outperforms a purely human-centric solution: Game designers of all skill levels 

draw heavily on the suggestions made by the Multi-Agent System. Recommendations for 

future developments are given. 



Foreword 

Before I dive straight into the topic of this thesis, let me explain my motivation for completing 

this project. 

When I handed in the thesis for my Master of Philosophy (MPhil), which explored novel ways 

for approaching the computational design of virtual environments, I felt that my research was 

unfinished. This was partly because I discovered that many aspects of the research had to be 

relegated to a future research section, due to the nature and scope of the degree. It was also 

because I did not realise at the time that my interest in the possibilities at the boundaries of 

design, visual effects, computer games, and computer science was only part of a much longer 

research trajectory. Now that I am writing this introduction, I feel the same yet again. The 

work that I am about to present herein is only a small puzzle piece, part of a longer quest with 

the aim of making machines help us work smarter in design processes, or in this specific case, 

creating machines that can help us work smarter when designing computer game content. I 

do not buy into the idea that machines will eventually replace us in all employment areas. I 

strongly believe that we are simply going to continue using machines to make our work a bit 

easier. 

In this thesis, I will touch on a small number of ideas carried over from my MPhil. I will, 

however, also consider how we play games, and what it means to design a ‘playable computer 

game’, in a bid to better understand how cognitive models can help designers make game 

content-creation somewhat easier. The focus is on player-centric design with the help of 

computational tools. To this extent, this thesis addresses the relationship between game 

designers and players through the game itself. It also discusses an attempt to address the 

conceptual and concrete development of collaborative design tools that help create and 

evaluate procedural game content. As would be expected of research in a rapidly developing 

field, this body of work has a purposefully narrow scope, and the assumptions made are 

relatively simple abstractions. These abstractions, however, are not only required by the 

scope of this study, but also provide useful confines that may help to generalise some of the 

findings, so that these contributions can be rendered applicable to a wider range of evaluation 

problems in game level design. 



It goes without saying that this thesis is only a partial reflection of what the overall journey 

had to offer. This document describes a consistent research project that makes a novel 

contribution to knowledge, but there is much more to these results than what is presented in 

this single research project. I learned a great deal about knowing nothing, and realised how 

little I knew in relation to subjects I considered myself to be well-informed about. This is both 

a profound and yet very mundane experience that many PhD students likely have. I also 

learned to expand and develop algorithms in a much deeper way than ever before. At the 

start of this journey, I experimented significantly. I tested agents that could drive virtual cars 

in a game engine, and neural networks that learned to fly spacecraft and perform manoeuvres 

without any user interaction or interference. I also made and played many test game levels 

with a number of friends, colleagues, and students in order to understand the difference 

between an awfully designed, virtually unplayable level, and a prototype level that was 

actually enjoyable despite its simplicity. I also now understand why a solid foundation in 

theory is the best grounding for successful practice – although I will never claim to have 

reached a sufficient theoretical level, as I am more aware of my own limitations the more I 

read and learn. However, despite all these minor (or personally, major) achievements, I feel 

that this journey is only the beginning of a longer trajectory. I hope this study serves as a solid 

stepping stone for future research (ad)ventures. 

 

 



1 

1 Introduction 

This thesis investigates the performance of a multi-agent system that augments a human user 

in a game level design task, based on an interactive genetic algorithm. The agents assess 

procedurally generated levels and make suggestions to the user in order to accelerate the 

speed of the process. The work takes an in-depth look at how designers think and feel about 

the interaction with the system. 

1.1 Problem Statement 

Immersive games, movies, and virtual realities necessitate convincing environments. Creating 

high-quality levels (or maps) for computer games requires substantial skill and time, and is 

therefore subject to high costs and typically numerous iterations as part of the design cycle. 

In fact, the cost and complexity of computer game development has been identified as being 

at least as high, if not higher, than any other software development project (Musil, Schweda, 

Winkler & Biffl, 2010). Cost from one generation of games to the next has repeatedly doubled 

(Edwards, 2006), and a recent survey found that top-end mobile titles require $5m to $20m1 

investment, while AAA console and PC releases go up in cost tenfold every decade (Koster, 

2018). Large computer graphics models from areas such as architecture and biology 

necessitate complex detail and a large number of small building blocks, which further 

intensifies the cost issue. In addition to their generation, models and game levels require 

testing as a whole to address any problems (bugs), and to ensure their playability, prior to 

being released to the customer, which adds cost and time. At the centre of these undertakings 

is the game designer, or in larger project, a specific game level designer. The game level 

designer seeks to take all aforementioned factors into account in order to produce levels that 

are not only playable, but enjoyable for players. My research aims to augment the designer 

by automating some of the repetitive tasks during the design phase of FPS levels. The study 

seeks to reduce the time required by putting the designer into a team of software agents, and 

creating a hybrid human computational multi-agent system. Moreover, the study seeks to 

capture the (human) designer’s intent in the automated process; instead of rationalising 

designers out of the system, they become a more significant and integral part of it. Hence, 

1 All in US Dollar 



2 

this study attempts to create procedural generation and evaluation of artefacts, which closes 

the feedback loop of the design cycle. 

1.2 Research Question 

This study is driven by the following research question: 

How can intelligent agent systems be employed to generate, and more importantly, 

evaluate procedural game content? Specifically, can agents based on cognitive models 

evaluate computational designs in computer games? 

The experimental design aims to serve as a research platform for allowing me to respond to 

this question, and ultimately, to make a contribution to existing knowledge by testing 

computational cognitive agents as part of a multi-agent system, which augments a game level 

designer while conducting design tasks. 

1.3 Research Approach 

In this study, a mixed methods research approach is adopted. At the core of this research 

rests a qualitative inquiry using semi-structured interviews to understand the designer’s 

views in relation to the multi-agent system employed in this study. Expert accounts of their 

design process and similar literature have been used to develop heuristics that guide the 

evaluation of computational design within the multi-agent system. In order to triangulate the 

qualitative findings and possibly arrive at a more rigorous and defendable result, quantitative 

data from various sources such as designer mouse and keyboard inputs, as well as gaze-

tracking data is used for the evaluation of this study. 

1.4 Contributions 

This thesis makes a number of contributions to knowledge and as a result provides insight to 

where further research could be valuable. The main contribution of this study is the 

development and evaluation of a multi-agent system with human designers (as human 

agents) in full control of the overall design process. These systems show great promise as a 

tool for augmenting the designer’s abilities, while allowing them to pursue an individual goal, 

as opposed to simply following a generic algorithmic pattern. It may also help designers focus 

on tasks they actually prefer to do, instead of spending significant time on administrative tasks 

and testing. Laborious and costly, repetitive testing and iterations can at least to some extent 

be replaced by computational tools. 



3 
 

The study also collects a wealth of qualitative data in form of interview responses from expert 

game designers, which provides an insight into how experts think and feel about semi-

automated design systems. 

The use of cognitive models based on heuristics derived from expert designers, has recently 

been identified as representing a gap in the literature (Zhu, Zhao, Fang & Moser, 2017). This 

thesis makes an attempt to fill this gap. The workflow for creating these models is 

straightforward but quite effective and can likely be used not only in this specific case, but 

also in other design contexts.  

Another contribution can be found in the overall design system, which adds agent-based 

evaluation to the procedural content generation process. This effectively closes the design 

cycle and opens up new possibilities for computational game creativity. Although there have 

been recent attempts to create evaluators for computational game content, evaluation of 

design elements has been acknowledged as an area of ongoing research (Liapis, Yannakakis 

& Togelius, 2014). Even the advent of highly capable computational content creators such as 

generative adversarial networks (GAN) using deep neural networks (Giacomello, Lanzi & 

Loiacono, 2018) present limitations, given that GANs are not able to determine the quality of 

their created content using computational means. This thesis makes a contribution to this 

field by presenting a novel way for modelling evaluation agents in computational game level 

design systems. 

While not an original contribution in itself, the use of an eye tracking device (and additional 

mouse and keyboard input recordings) highlights and confirms the necessity for triangulating 

qualitative data. Experts provided interview responses, which were reasonably consistent 

across the board. However, quantitative data indicates significant contradictions among 

verbal statements. This is particularly true for experts who have a long-running track record. 

It seems that learned behaviour and confidence based on long-term professional experience 

may cloud the judgement of what an individual relies on during their design processes, and 

this can in turn lead to potentially questionable interview responses. Subsequently, it can also 

potentially lead to questionable design decisions. Recordings of what individuals actually look 

at and do while they are performing a given task can only be reliably obtained through 

triangulation. Potential biases can easily be identified through the use of eye tracking and 

input recordings. 



4 

While most of the building blocks that are being employed in this study can be found in the 

form of existing software libraries, the prototype was largely purpose-built. While it could be 

argued that doing so represents a significant and time-consuming undertaking, it proved to 

be much easier than using existing libraries, due to the necessity for enabling these building 

blocks – including several computational agents, a human user, and a genetic algorithm – to 

interact with each other, and to exchange information in real-time. 

1.5 Structure of this Thesis 

The purpose of this first chapter is to contextualise the research and outline the research 

strategy. It frames the research problem and research question, introduces the applied 

research methodology, and indicates the limitations of this study. 

Chapter 2 provides an overview of relevant work conducted in the areas of game design, 

procedural content generation, and evaluation in computer games. This chapter also 

discusses playability and player experience goals. 

Chapter 3 unpacks the methodology and research design of this study. Questionnaires, semi-

structured interviews and telemetry, as well as eye tracking, are discussed. 

Chapter 4 describes the prototype implementation and its fundamental principles. It also 

presents an overview of the tools used to conduct this research. 

Chapter 5 discusses the results and observations of this study, including interview responses 

and quantitative data derived from eye tracking and user input. 

Chapter 6 provides an overall conclusion to this thesis including findings, limitations, and 

contributions, and indicates possible future research directions. 



5 

2 Literature Review 

This chapter discusses game design and computer science literature relevant to automated 

game content generation. Aspects of how the quality of such game content can be evaluated 

is also discussed. Given that this thesis attempts to understand how designers can be 

empowered through generative design tools, both the (game) design process, as well as the 

tools and underlying algorithms, need to be examined. 

The study seeks to find tools that can augment the designer’s ability by automating some of 

the time-consuming processes in game level design, allowing the designer to focus on the 

core task, namely, creating playable and enjoyable game levels. This chapter provides an 

overview of the existing literature in the areas of procedural content generation and in search 

and optimisation algorithms. This includes the use of genetic algorithms in purely 

computational, interactive (human-based), and finally, hybrid form, the latter using both 

human and computational resources to produce game content. 

The literature review further reviews existing hybrid human and computational systems that 

allow a user not only to interact with an application, but control its outputs by being an active 

part of its algorithmic system: here, the user has a direct impact on the performance of the 

algorithm, and becomes an integral part of the solution, rather than merely using a solution 

produced by a computational process. Existing systems are discussed in section 2.5 of this 

chapter, which leads to one of the primary contributions of this thesis: a novel multi-agent 

system specifically created for design purposes, by changing and expanding the existing 

systems to generate and also evaluate procedural content. The multi-agent system is 

grounded in Kosorukoff’s (2001) human-based genetic algorithm (HBGA). HBGAs are 

fundamentally multi-agent systems (MAS) in which human and computational agents share 

tasks or complement each other while undertaking different tasks. This study can be 

considered a HBGA in human-centric form, focussed on a game content designer. However, 

given that the literature does not consistently use Kosorukoff’s terminology, I will use the 

term ‘multi-agent system’. Additionally, Kosorukoff suggests the user can be part of the 

selection process and the mutation process; however, in this study, the user is exclusively part 

of the selection process, and accordingly, I choose to use the more common terminology.  



6 
 

Generative design in general, and procedural content generation (PCG) and evaluation in 

particular will first be discussed. PCG is the core output of the software prototype used to 

collect data from participants, which highlights its significance within this research project. 

This thesis applies a player-centric lens to game design, which drives the choice of literature 

to some extent. The condensed and focused approach is quite deliberate, predominantly for 

pragmatic reasons; practically, it keeps the focus of this thesis restricted, which allows for a 

more in-depth consideration of this specific area. Following the philosophical viewpoints of 

Tracy Fullterton’s player experience-based game design (Fullerton, 2008), explicit aims have 

been developed and applied to the prototyping of both the design software and the actual 

resulting prototype game. Player experience-based content generation, also known as 

adaptive content generation (Shaker, Togelius, & Nelson, 2016b), refers to the paradigm 

where previous player behaviour or experience shapes content creation. Player experience 

goals specific to this study are outlined in section 4.1.4.  

Further, genetic algorithms are discussed as part of the literature. The genetic algorithm is 

the core of the multi-agent system and links the individual agents together. Furthermore, 

agents are examined and specific definitions of what constitutes an agent are reviewed. 

Finally, a brief consideration of some of the underlying concepts for agent creation and data 

collection, such as ray-casting and eye tracking, is presented. 

2.1 Game Design 

An unavoidable truth should be stated at the start of this section: a comprehensive and all-

encompassing review of game design literature is neither possible within the scope of this 

thesis, nor is it desirable, as the current study can only engage with a very narrow part of the 

broad field of game design. However, this is not necessarily a limitation, but rather a 

disclaimer, as a full and complete game design literature review is not needed to address the 

research conducted as part of this study, or to identify the gap in the literature that this thesis 

seeks to address. This study focuses on procedural game content generation and evaluation. 

Therefore, a large proportion of this review is dedicated to computational topics. However, a 

number of important aspects of game design, and in a broader sense, design literature, must 

naturally be discussed. This section of the literature review takes a brief look at the design 

process and game design process first, followed by a deeper examination of procedural game 

content generation and evaluation. 



7 

2.1.1 Game Elements 

There have been numerous attempts to provide a fundamental theory of (computer) games 

(for example Freyermuth, 2015; Järvinen, 2009; Jenkins, 2004; Juul, 2011), and a discussion 

of this in any great depth would be sufficient for the scope of a thesis itself. Therefore, the 

conversation around definitions of computer games and theories of games will be avoided 

here. However, to understand what procedural content generation means in the context of 

this study, a brief consideration of game elements relevant to this study seems appropriate. 

A detailed overview of the implementation of game elements for this research is provided in 

section 4.1.1.3. 

Computer games can be broken down into game elements, which theorist Aki Järvinen (2009) 

categorises as systemic elements, compound elements, and behavioural elements (see Figure 

1, derived from Järvinen, 2009). 

Figure 1 - Game elements (derived from Järvinen, 2009). 

Components are objects that can be carried, used, manipulated or exchanged by players or 

the game system, for example, non-player characters. These may be weapons or tools, coins, 

or even larger objects such as cars or ships. Generally, these are clearly distinguished from 

inanimate objects such as buildings or vegetation and other parts of the environment. 

Components often have additional attributes such as value or power, or simply points value 

(Järvinen, 2009). This thesis refers to components by employing the more commonly used 

term props. The term prop is derived from ‘theatrical property’, and is widely used in the film 

industry (Okun & Zwerman, 2010), as well as in game design literature (for example B. L. 

Mitchell, 2012; Schell, 2014; Thompson, Berbank-Green & Cusworth, 2007). The game 

prototype used in this study makes use of a small number of props including weapons, and 

simple items that mostly enhance the environment such as flower pots, chairs, tables, and 

fences.  

Systemic 
elements

• components
• environments

Compound 
elements

• game mechanics
• theme
• interface

Behavioural 
elements

• players
• contexts



8 

‘Environment’ is the physical or virtual space that constrains game play and defines some of 

its game mechanics (Järvinen, 2009). Within this research, the environment is the game map 

or game level, which includes streets, buildings, containers, and a terrain. These elements are 

also the main factors that are influenced by the designer in the design prototype software. 

‘Game mechanics’ describes the way in which a player interacts with the game (Schell, 2014). 

In the case of first-person shooter games, this encompasses movement in the environment 

using a mouse and keyboard, as well as shooting a gun or taking damage (losing health points). 

Game mechanics also define the way in which players achieve a goal. In this prototype, this 

represents not only shooting enemies, but also defending or capturing the flag point. The 

game mechanics implemented in the prototype, as well as the theme and interface, will be 

discussed in section 4.1.1. with the latter able to be broken down into design software 

interface and player (in-game) interface. 

The ‘theme’ is the element that defines not only the look and feel of the overall game, but 

also contextualises the meaning of the game itself. This may entail a specific style and 

convention, which can be entirely novel or in other instances, derived from popular culture 

genres such as science-fiction, fantasy, crime, or war (Järvinen, 2009). The theme used in this 

study is simply a contemporary urban environment, where two teams engage in a (simplified) 

daylight match to capture a flag point. The prototype intentionally makes no use of any 

particular style or genre in order to provide the most basic, but also perhaps most 

generalisable theme possible, as this study is concerned with evolutionary design systems in 

general, without any thematic or even domain-specific context. 

‘Interface’ is the medium through which the player interacts with the game system (Järvinen, 

2009). In most computer games, this is either a mouse, keyboard, or game controller, or a 

combination of these. While many alternative and experimental inputs are noted in the 

literature, a deeper discussion of any unconventional interfaces is beyond the scope of this 

study. 

Defining players poses another dilemma. Intuitively, it seems most simple to state what a 

player is, yet many theorists have struggled to find a common definition that suits all 

theoretical contexts. Juul (2011) views the player as a trans-medial consumer, a notion that, 

for example Järvinen (2009) agrees with; others such as Fullerton (2008) and Salen and 

Zimmerman (2004) link the definition of a player more strictly to games, where a person only 



9 

becomes a player if they submit to the rules and constraints of games (Fullerton, 2008). This 

thesis will not attempt to enter this discussion and instead employs the term ‘player’ simply 

as the user of the computer playing the game. Players influence the game system through 

inputs based on their actions and decisions, and I am more interested in player behaviour 

observed in computer games than in general game studies and ludology. I will therefore apply 

a simpler, narrower view, and focus on the elements that drive gameplay, including 

mechanics, assets, and layouts. 

Järvinen (2009) defines context elements as the “time and place where the game takes place” 

in its most basic form. Therefore, context elements are very closely related to thematic 

elements in games, and according to Järvinen, can lead to numerous debates around cultural 

backgrounds. This thesis follows his stance, and assumes a very practical game design 

approach, as the focus of this study is to produce new knowledge in procedural game content 

generation and evaluation, and not a better definition of theories of games. 

2.1.2 Generative Design 

Generative design is the field of study concerned with algorithmic form and shape-finding 

(Bohnacker, 2012). It is also often referred to as ‘procedural design’, highlighting its 

algorithmic origins using computational procedures. I have discussed the core differences 

between manual design supported by computer software and automated design conducted 

by computer software in previous work (Kruse, 2014). Therefore, a repetition of the same 

matter seems unnecessary here. However, a number of important aspects that address the 

enhancement of the designer’s capability had been omitted in this earlier work; therefore, a 

brief look at some aspects will be conducted here. Specifically, literature concerned with 

computer (or video) game design was not part of the previous study, and thus requires 

additional attention. 

Ernest Adams (2013) argues in his often-cited book, Fundamentals of Game Design, that the 

creation of a great video game necessitates solid game design. This emphasises the impact of 

design on the quality of computer games. Accordingly, a short discussion of the overall design 

process embedded in the design cycle will be given in the following section. 

It also seems important to point out that this study considers solutions that explore the fine 

line between fully automated design and manual content generation. The core aim of this 

study is the investigation of software tools that support designers in their endeavour to 



10 
 

explore new design solutions. This research does not seek to replace designers, but to 

empower them. To achieve this, concluding the design cycle through content evaluation is a 

necessity. The following subsections will show that there is a gap in existing knowledge, in 

particular with respect to domain-specific content. 

2.1.3 Design Cycle 

There have been many attempts in the literature to define the design process and its cyclic or 

iterative nature (for example, Adams, 2013; Lawson, 1997). Some of these definitions take a 

very domain-specific approach, whereas others seek to provide generalised denotation. This 

study will not enter into a discussion as to whether the former or latter is a valid approach, as 

doing so will be far beyond the scope of this research. However, to understand the 

interrelation between procedural content generation and evaluation, a definition that is 

found in computer game literature will be given. I am aware that it is both simplified and very 

general, but it serves the purpose of highlighting the basic iterative nature of many design 

approaches, including game content generation. Furthermore, in the literature, the design 

cycle is often depicted as a single iterative cycle with four main elements, namely, ideation, 

implementation, testing, and evaluation (for example, Lawson, 1997). In other cases it is 

simplified as a three stage process that includes concept, elaboration, and tuning stage 

(Adams, 2013). The design cycle employed by this study employs two iterative elements, one 

for major revisions of fundamental design flaws that required re-thinking and new ideation, 

and another, smaller cycle for minor iterations only concerned with mild modifications and 

re-testing (see Figure 2). This approach follows Fullerton (2008). It should be acknowledged 

that the terms ‘design cycle’ and ‘design process’ are dissimilar, and predominantly used in 

different fields (design disciplines and engineering). Alternatively, the ‘design cycle’ may have 

a number of components that describe each of the three or four main stages. Most design 

processes have a much more detailed breakdown and therefore, a higher number of basic 

elements. It is also worth noting that design processes exist in linear and iterative formats, 

reflecting their algorithmic heritage and application, whereas design cycles (as the name 

suggests) are usually of a cyclic, iterative nature. With all possible caution in mind, it can be 

suggested that their interchangeable use is likely a discipline-specific problem. A deeper 

discussion of this hunch has to date, however, not led to a more defined thesis, and may be 

conducted in future work. 



11 

Generate Ideas Test IdeasTest Ideas

Evaluate Results

Formalize IdeasFormalize Ideas

Fundamental problem 
with design, major 

iteration Minor modification 
and re-testing required

Successful design, stop 
iterations

Figure 2 - Design cycle as per Fullerton (2008). 

Game content generation, like many other design tasks, starts with idea generation 

(Fullerton, 2008) or ideation. These ideas are normally driven by the overall design goals, 

which define the intended player experience, including game concepts and game mechanics 

that may serve said player’s experience goals. Fullerton (2008) uses the term ‘brainstorm’, 

whereas Macklin and Sharp (2016) refer to this as ‘concept’. This indicates the open and broad 

approach that can be taken in order to achieve new solutions that address problems with an 

existing design. It is the phase in which to generate ideas and concepts as a starting point for 

the iterative design process that follows. 



12 

The next main step within the design process (Figure 2) is the formalisation of ideas (or 

systems), which is the step of creating a testable prototype that embeds all or at least some 

of the previously conceived ideas for addressing player experience goals (Fullerton, 2008).  

Following the formalisation of ideas or systems, these ideas are tested (Figure 2). As indicated 

above, two prototypes are employed in this study to evaluate the quality of the multi-agent 

system in order to generate a response to the primary research question. Testing ideas (or 

play-testing) is the process of benchmarking an idea or system against the original player 

experience goals (Macklin & Sharp, 2016).  

Resulting findings are evaluated and ranked in order to arrive at the conclusion of whether 

the design was successful. Fundamental flaws and significantly negative results may 

necessitate another iteration, which is initiated through a new ideation step, essentially 

closing the design cycle. Otherwise, if results indicate improvements, and no fundamental 

issues are unveiled – but minor modification and re-testing is needed – only a small iteration 

is induced, as shown in Figure 2. Should the results be positive and the design appears to be 

successful, the design process is terminated and no additional iterations are required.  

Chapter 3 will show that in the current study, there are actually two different prototypes, 

which both follow the same iterative design process, but target vastly different user groups, 

that is, designers and players. At the core of this study is the designer, who engages with the 

design prototype. In this particular case, there are no player experience goals, but rather, 

designer experience goals: ideas that can potentially lead to a more effective or more 

enjoyable design experience. The second prototype follows the notion of player experience 

and resembles a simplified first-person shooter game, with essential elements such as 

weapons, the game level layout itself, damage models, sound, and other aspects. A detailed 

discussion of both prototypes is provided in the following chapter. 

2.1.4 Computational Creativity 

Liapis, Yannakakis and Togelius (2014) argue in their position paper (which coins the term 

‘computational game creativity’), that an extensive exploration of computational creativity 

has led to a significant number of autonomous generative systems covering several disciplines 

in the arts, entertainment, maths, and engineering. They highlight the potential of 

automation in game design, not only to advance game research itself, but also as a path 

leading to innovation in computational creativity. The paper depicts games as the “killer 



13 

application for the study of Computational Creativity” (Liapis et al., 2014). The current thesis 

follows this bold statement, as its veracity is argued in a strong and convincing manner. Unlike 

the majority of many current advancements and achievements in computational creativity, 

which are concerned with only a single particular aspect of creativity, such as music, sound, 

images, visual style, narrative, or interaction, computer games are highly interdisciplinary, 

multifaceted, and diverse. A number of different domains are employed within a single 

output, a feature that allows for study of the topic, while enforcing consistency between its 

contributing creative domains. For example, a game – similar to a movie or a theatre play – 

necessitates consistency between visual language, narrative, and sound in order to allow the 

audience to reach a certain level of immersion (Adams, 2013) , or what is known as suspension 

of disbelief (Brown, 2012). Yet unlike film and theatre, video games add an additional 

important facet: interaction.  

In film, missing interaction highlights the lack of audience agency. Agency is understood as 

the audience being an integral part of the state of the game, that is, being able to manipulate 

and change the direction the game takes. In essence, it means to be the player of a game 

(Brown, 2012).  

The absence of interaction in theatre underlines another important role that an audience 

plays when playing computer games, which is authorship (Brown, 2012). The narrative of the 

game is co-created by the inputs of the player. In particular, in puzzle and adventure games, 

authorship of the player is an integral aspect that shapes the course of the story. 

Liapis et al. (2014) also point to an important distinction of different forms of computational 

game creativity that needs to be mentioned in context of the present research. They identify 

several gaps in the literature, for example, fully automatically generated games. The current 

research does not attempt to pursue this avenue; rather, another gap in knowledge defines 

the foundation for this study, which is the evaluation of generated game content. This study 

also embraces the human designer as part of the process, and views content evaluators as a 

useful tool, not a threat to human design work. 

In conclusion, it can be stated that computer games appear to be extremely suitable for 

computational creativity research, which is one of the reasons that computer games have 

been selected as the field of study for this thesis. Computational game creativity also 



14 
 

identifies the main research concern of this study, namely procedural content evaluation, 

which is the subject of discussion in the following section. 

2.2 Creating computer game content 

Thus far, a short overview of what constitutes a computer game, in general terms, has been 

given. This leads to the creation of computer game content, and what this means in the 

context of the present research. This section will take a brief look at traditional approaches, 

procedural content generation, and evaluation. 

2.2.1 Traditional Approaches 

Game content development is a multi-faceted and highly diverse undertaking that is 

constantly developing, and it is as difficult to define as it is to state precisely what a game is 

(Freyermuth, 2015). Game content includes game levels and maps, rules, assets, props, 

characters, and music (Togelius, Shaker, & Nelson, 2016), and a broad overview of these is far 

beyond the scope of this literature review. Accordingly, in this review, I will focus on game 

levels, and more specifically, on FPS maps and the processes that are required for creating 

this type of game level. 

An important consideration that needs to take place before the game level creation process 

begins is the visual language that is to be created through models, layout, and any other visual 

elements in the game environment (Schell, 2014). The visual language of the game expresses 

environment setting, location, and theme. Examples of setting include urban, forest, and 

space. Location may be New York City, (an undefined) cabin, or the Eiffel Tower in Paris. 

Possible themes are abandoned, steam-punk, post-apocalyptic, or paranormal, among others 

(Galuzin, 2016). In addition to a successful visual design, which includes a consistent visual 

language, there appears to be no need to use narrative or other means to communicate 

setting or theme to the player. This highlights the importance of careful visual language 

design. 

Game level creation generally starts with the selection of essential building blocks such as 

terrain and large objects and landmarks that define the theme and scale of the level (Galuzin, 

2016). These assets can either be manually created using digital content creation software 

such as Autodesk Maya (Murdock, 2017) and Blender (Fisher, 2014), or they may be 

procedurally generated, as is discussed in section 2.2.2. Consideration must be given to 



15 

themes that are created through shape, textures, colour, and the composition of individual 

three-dimensional models, but also the aforementioned collective thematic appearance (or 

visual language, sometimes called ‘the look’ in popular media) of the asset pack, as it defines 

aspects of the game such as period, cultural association, and visual style (Galuzin, 2016). 

Once the basic building blocks have been acquired through manual or computational means, 

they need to be placed in the three-dimensional environment of the game. A number of 

considerations need to be taken into account, including the shapes and silhouettes that 

placement creates (Schatz, 2017). 

An important aspect to note is that each step, from model creation to level layout has a major 

impact on game mechanics and therefore, on playability and enjoyment of the game. 

Additionally, the entire process is extremely time consuming and increasingly costly, as 

mentioned in section 1.1. One possible solution to mitigate the risk of game production is the 

use of computational tools, not only to manually create assets and place them, but also to 

automate a significant proportion of the entire undertaking. This process is called procedural 

content generation (Shaker et al., 2016b; Short & Adams, 2017; Togelius, Kastbjerg, Schedl, & 

Yannakakis, 2011) and the following section discusses some of the literature in this field. 

2.2.2 Procedural Content Generation 

Procedural content generation in computer games can be defined as the automatic creation 

of game content using algorithms (Togelius et al., 2011). Other definitions are more liberal 

and define procedural content generation as game content creation with no user input, or 

limited user input (Shaker et al., 2016b). This research uses the latter definition and 

understands PCG as game content creation with limited user interaction. Therefore, some of 

the content within the design phase of this research was created by computational measures 

only; however, a small proportion of user input is always required. 

To understand this definition of procedural content generation in greater detail, it can be 

broken down into smaller components. In computer games, content can refer to many 

different possible elements that are part of a computer game (Macklin & Sharp, 2016). Some 

of the components identified above may be included in these elements. For example, levels 

(or ‘maps’), sound and music, narratives, and most importantly, items such as buildings, cars, 

vegetation, and props (smaller items like tools or weapons) are all part of the content of the 



16 
 

game. Accordingly, some of it may be procedurally generated, or in other terms, 

computationally created, with little or no user interference. 

The terms procedural generation and generative content indicate the computational, 

algorithmic nature of an artefact. However, Short and Adams (2017) remind us that 

generative content differs from procedurally generated content, as the latter is bound by 

gameplay constraints, whereas generative content (or art) is free from these restrictions. The 

current research focuses specifically on procedural game content and takes gameplay into 

strict consideration. 

Procedural content generation can take a number of different forms including search-based 

(Togelius & Shaker, 2016), agent-based (Shaker, Togelius, & Nelson, 2016a), grammars and L-

systems (Nagle, Wolf, & Riener, 2016; Togelius, Shaker, & Dormans, 2016), and hybrid 

approaches to generate multiple facets of games (Cook & Colton, 2011; Cook, Colton, & Gow, 

2017). There is significant praise for procedural content generation, and a number of game 

designers have applied this technique in successful games. Examples include Rogue (G. Smith, 

Gan, Othenin-Girard, & Whitehead, 2011; Toy, Wichman, Arnold, & Lane, 1980), a game that 

virtually created an entire genre, Dwarf Fortress and Diablo (Hendrikx, Meijer, Van Der 

Velden, & Iosup, 2013). However, there are important considerations that have to be taken 

into account when procedural methods are used to generate game content. First, quality 

assurance may be an issue, due to the incoherent content that testers will be faced with, that 

is, reviewing every possible output of a content generator is nearly impossible, and not 

economical (Short & Adams, 2017). This highlights that procedural content generation cannot 

simply stand on its own, and that content evaluators are also required. As this issue is at the 

heart of this thesis, we will take a deeper look at said evaluators in section 2.2.3. Second, 

while content generators are often assumed to provide efficiency and time-saving, this is not 

guaranteed, given the complexity of some generators, which consume significant software 

development time (Short & Adams, 2017). Furthermore, Short and Adams (2017) argue that 

designers often wish to create a highly authored experience for the player. In my opinion, this 

implies that there is a need to shift current attempts from a developer-centric approach to a 

design-centric method. This presents a gap where procedural content generation can be 

inclusive of a designer, and augment their abilities, rather than replace them. This contrasts 



17 

computational game creativity (Liapis et al., 2014), which aims to build systems that generate 

games by themselves. 

The two most encompassing contemporary pieces of literature that have undergone a 

rigorous peer-review process are likely the books Procedural Content Generation in Games 

(Shaker et al., 2016b) and Procedural Generation in Game Design (Short & Adams, 2017). I am 

aware that there are numerous publications on this topic related to conferences and in 

journals; however, these two books represent extremely useful and complete collections of 

current issues and provide a broad overview of the topic. For example, Short and Adams 

(2017) make a case for well-adjusted procedural content that strikes a balance between 

repetition, which causes boredom on one hand, and chaos as a result of randomness without 

designed structure on the other. They argue that procedural generation may be mistaken for 

being a replacement for content design (Short & Adams, 2017), when instead it should be 

considered a replacement for content creation (Short & Adams, 2017). They continue to state 

that unexpected results do not necessarily contest “pleasantly surprising results of high 

quality” (Short & Adams, 2017). The emphasis to aim for content design rather than simply 

content creation reflects the primary motivation behind the present study. Design as a 

process of creation and evaluation necessitates a measure for quality, thereby enabling 

content assessment (see section 2.1.3). Furthermore, while computational creativity also 

seeks to create and evaluate, this study seeks to take a designer-centric approach, one that is 

much more closely related to how procedural content generation literature, such as the two 

aforementioned books, treat the link between game designer and player (see also section 

2.3.3). This is amplified by the idea that computational creativity seeks to find a multi-faceted 

solution to automated content (Liapis et al., 2014), whereas procedural content often simply 

addresses one aspect of a game (Short & Adams, 2017). The present study focusses on game 

level design and ignores other facets such as, for example, sound and character design. It is 

therefore grounded in procedural content generation, and not in computational creativity. 

Procedural content generation literature often assumes common programming paradigms 

such as functional and object-oriented programming (for example Bohnacker, 2012; 

Greenberg, Xu & Kumar, 2013; Pearson, 2011). The prototype for this study is written in 

object-oriented Java, and borrows only high-level concepts such as messaging between 

agents from the agent-oriented programming paradigm, as introduced by Yoav Shoham 



18 

(1993). Section 2.5.3 discusses the details of this approach and introduces human-based 

genetic algorithms. Section 3.5 illustrates that the core of the design prototype follows a 

traditional object-oriented programming model, whereas the resulting levels use mechanics 

of the Unity 3D game engine, a simple, event-based system (Okita, 2015). Furthermore, 

Shoham (1993) points out that there are significant overlaps in object-oriented and agent-

oriented programming. In order to keep this argument clear, and to focus simply on the 

essential elements of this study, a deeper examination of agent-oriented programming seems 

unnecessary here. This study also follows the assumption that an object-oriented paradigm is 

being employed for the study’s procedural content generator. 

In summary, a number of elements in a computer game may be created using computational 

means, and the current research study employs procedural content generation as part of the 

design process, in particular, its level design. 

2.2.3 Procedural Content Evaluation 

The discussion of the design cycle for computer games (Figure 2) highlighted not only the 

need for content creation, but also its evaluation in order to establish whether additional 

iterations are required, and if so, whether a substantial re-design (major iteration, new 

ideation), or a simple ‘tweak’ (minor iteration and subsequent re-evaluation) is needed. 

Procedural content evaluation is the field of research that is concerned with the quality and 

assessment of procedurally generated content. It seeks to quantify how well a particular game 

element fulfils its purpose (Shaker, Smith, & Yannakakis, 2016). In this context, a game 

element does not have to be an asset, such as a three-dimensional model, an image (sprite), 

or a sound. It can also be a game mechanic, a narrative, or a game level (layout). Creating 

procedural content is fundamentally simple. Even random methods seem to have a certain 

appeal (Connor, Greig & Kruse, 2018), and more sophisticated methods provide complex 

gameplay experiences. However, assessing whether a particular asset, mechanic, or full game 

is of good quality or not, is still subject to investigation. 

Cook et al. (2017) created a computational creative program called ANGELINA which seeks to 

generate games that are then assessed by players for instance through online comments. 

While it considers a designer perspective by applying general design principles, it does not 

model designer feedback into system. It strength seems to be the ability to generate content 

and full games based on simple and sparse themes. 



19 
 

A number of researchers are actively working on solutions that allow for a computational 

evaluation of content. Investigations have been conducted into assessing 2D rogue-like games 

(Liapis, Yannakakis, & Togelius, 2013b), aesthetics for aiding computational creativity 

(Galanter, 2012), and assessing platformers by using Super Mario as a case study 

(Summerville, Mariño, Snodgrass, Ontañón, & Lelis, 2017) to name a few. Other works have 

looked at creating and benchmarking 3D FPS games (Giacomello et al., 2018) or creating a 

framework for generation and evaluation based on player perspectives (Liapis, Yannakakis, & 

Togelius, 2013a). I believe that these attempts are important stepping stones toward 

computational domain expertise that is able to analyse complex game content, such as FPS 

levels. However, there remains significant work to be done in this area. 

A number of researchers argue in favour of generic methods for evaluating content such as 

game levels (Liapis et al., 2013b). However, experts in game level design have highly domain-

specific skills, and a major part of their ability to assess the quality of a level and give a founded 

statement about playability or other metrics about a game level, is based on this domain 

specificity. While it is an interesting goal to create computational solutions that are domain 

independent, I believe that a capable domain-specific solution should be a first logical step as 

part of this study. 

2.3 Cognitive Modelling 

This thesis is concerned with how game level designers think, and the processes they utilise 

to create interesting, playable, and immersive game levels. This thesis considers game level 

design within a player-centric approach, assuming that designers do not make games only for 

themselves, but also for others. The assumption is that game level designers consider what 

players may enjoy, and how they approach all the different areas and elements of a game 

level. Therefore, section 2.3.1 discusses the literature focused on player experience goals, 

playability, and the heuristics that designers use to translate the abstract concept of 

playability into pragmatic, applicable design choices. 

2.3.1 Player Experience Goals, Playability Heuristics, and Playability 

The literature discusses a number of terms that describe very similar ideas. First, there is 

‘player experience’, which can be viewed as the user experience when playing games 

(Sánchez, Simarro, Zea, & Vela, 2009). Player experience is created by subsequent ‘player 

experience goals’ (Fullerton, 2008). Other researchers conclude playability as a combination 



20 

of both gameplay and the GUI (Paavilainen, Korhonen, & Saarenpää, 2012). Zhu et al. (2017) 

highlight that these definitions do not provide a clear distinction between ‘playability’ and 

‘usability’; rather, they attempt at creating an encompassing review of these two categories 

within games, with the aim of ultimately developing heuristics that are able to aid game 

designers in defining clear goals for their game development. The following sections aim to 

provide an overview of these elements without entering into a discussion about providing a 

clear definition. Following a pragmatic approach that allows the researcher to conduct this 

study without the need to provide a bullet-proof definition of playability (or player experience 

goals or playability heuristics), this research emphasises gameplay, including a sophisticated 

GUI, and not the overall user experience. My interest lies in developing gameplay elements 

through level design. However, for the purpose of completeness and in order to ensure that 

the development of game levels, based on player experience goals, is grounded in existing 

literature, brief consideration will be given to player experience goals and playability here.  

2.3.2 Player Experience Goals 

This study uses a player-centric game design approach. This is not only reflected in my own 

thinking in terms of constructing the prototype for the designer, but more importantly, in the 

resulting game levels that the prototype tool was supposed to design. 

Player experience goals are paramount to player-centric design, as they set goals that foster 

the experience the designer wishes the player to have (Fullerton, 2008).  

Defining player experience goals may seem straightforward, but some researchers argue that 

they can easily be confused with goals resulting from game mechanics (Järvinen, 2007). 

Järvinen (2007) argues that game mechanics can be split into three categories, game-defining 

mechanics, which often characterise a specific game (e.g. the now proverbial ‘jump’ and ‘run’ 

mechanic in Super Mario), submechanics, which have supporting functions such as 

manoeuvring to a specific location to be able to perform a primary mechanic, and finally, 

modifier game mechanics, which may only be temporary or locally relevant. Taking these 

distinctions into account, the main global player goals may not always line up with every single 

mechanic, particularly where submechanics or modifier game mechanics are concerned 

(Järvinen, 2007). For example, a point system may drive the main player experience goal, 

whereas going to a specific location within a game level may not directly result in the 

accumulation of points, but subsequently contribute to the player experience goal, if said 



21 

location offers a better position for the player from which to gain points through kills, or to 

obtain a boost that allows the player to perform the primary task faster. This highlights the 

need to analyse submechanics in some cases, instead of relying only on player experience 

goals, given that, for example, in game level design, the location (for a submechanic) may 

offer the player a significant advantage for achieving the overarching goals, which means that 

players will exploit these submechanics. Therefore, in the design phase, consideration also 

needs to be given to these submechanics.  

2.3.3 Playability Heuristics 

Nacke et al. (2009) distinguish between the playability of a game as a measure for evaluating 

the game design itself, and player experience as metrics, which can lead to improved gaming. 

Figure 3 illustrates how they see the relationship between player, game and design. They 

argue that player experience should only be evaluated if a game has good general playability, 

as any underlying game design issues need to be removed in order to provide a sufficient 

platform for an individual game experience assessment. Their suggested methods include 

expert reviews and heuristics (Nacke et al., 2009). The current research aims to employ both 

reviews by expert designers and heuristics that are derived from secondary data, namely 

expert designer accounts of map level design. ‘Expert designers’, at least in this study, are 

considered designers who have extensive domain knowledge and potentially even some FPS 

game play expertise, which helps them to identify fundamental problems within the game 

design that can potentially hinder general playability. These heuristics are discussed in section 

4.1.5.1.  

Figure 3 – Game Design cycle, as per Nacke et al. (2009). 

Design

GamePlayer



22 

Nacke et al. (2009), as well as Zhu et al. (2016), both point to a gap in the literature and suggest 

that research into playability heuristics remains ongoing, and needs further investigation. 

They emphasise that there have only been a few attempts to develop playability heuristics 

(Nacke et al., 2009). There are, however, some examples in the literature, which offer a few 

interesting pointers. 

Desurvire, Caplan and Toth (2004), for example, researched playability heuristics developed 

from the literature that is specific to computer and board game evaluation, and found that, 

firstly, playability heuristics can be useful for improving game design. They tested their results 

in an evolving game design, which highlights the relevance of their study to this thesis. The 

group also found user testing to be a necessity for validating playability heuristics used to 

evolve games, as a designer will not be able to fully predict player behaviour (Desurvire et al., 

2004).  

Others, such as Pinelle, Wong and Stach (2008), derived their heuristics from online game 

reviews. They confirm that experienced designers will be able to predict a number of 

playability issues based on their experience; however, many designers will nonetheless 

benefit from support through formal heuristic inspection and evaluation to identify issues 

early on (Pinelle et al., 2008). This thesis implements (playability) heuristics as part of the 

design cycle, and offers the support identified as important by Pinelle et al. (2008) to 

designers, by making it an inherent feature of the overall level generation process. 

Another similar approach to heuristics development was fairly recently published by Zhu, 

Zhao, Fang and Moser (2017). This group of researchers also considered a number of game 

reviews, but rather than utilising large parts of the review texts and analysing them using 

qualitative coding methods, effectively categorising the problems with the game as identified 

by the online reviewer, Zhu et al. (2017) used a methodology called the ‘lexical approach’, 

which derives personal traits from the use of adjectives. The work in their 2017 paper expands 

on previous research by also considering nouns in order to create a more complete model of 

the personality traits reflected in game reviews. They found that using adjectives alone will 

lead to an insufficient reflection of subjects and context in the resulting playability heuristics; 

however, by adding nouns to their analysis, a number of heuristics that serve as useful design 

guidelines have been developed. The authors make an interesting remark in their final 



23 
 

conclusion, when pointing to the limitations of their own study, where they suggest that 

enhanced playability requires game designers to find a good balance between novelty and 

familiarity. They suggest that future research should gather data from experienced designers 

on how to achieve this balance, in order to deliver a good player experience (Zhu et al., 2017). 

Addressing this gap in the literature, by deriving heuristics from experienced designers, is one 

of the primary contributions of this thesis. 

2.3.4 Applications of Cognitive Models 

Cognitive models form an important part of current research into computational generation 

and evaluation of several different aspects of computer games, for example, player 

experience models for procedural content generation (Yannakakis & Togelius, 2011), adaptive 

games based on player models (Charles et al., 2005), custom game mechanics reflecting 

player personality traits (Nagle et al., 2016), and personalised elements and mechanics with 

a focus on user-centric design (Ferro, Walz & Greuter, 2013). I wish to avoid a wider discussion 

of cognitive science (e.g. Boden, 2006), however, given that my area of interest is reasonably 

narrow. I am keen to test whether it is possible to model specific traits of a decision-making 

process in the form of heuristics, as suggested by Zhu et al. (2017), in order to find a response 

to my research question. Therefore, the following discussion of the literature will only touch 

on a few aspects of cognitive modelling and is in no way meant to represent a full taxonomy 

of the field. 

Finding a definition of ‘cognitive models’ may seem trivial; however, there is no consistent 

definition to be found within the literature. A number of different terms have been proposed, 

depending on the domain in which these models are applied. Examples include player 

experience models (Shaker, Shaker, Abu-Abdallah, Al-Zengi & Sarhan, 2013), player behaviour 

models (Bakkes, Spronck & van Lankveld, 2012), as well as more generic player models 

(Charles et al., 2005; Togelius, Shaker & Yannakakis, 2013; Yannakakis, Spronck, Loiacono & 

André, 2013). There is also research focusing on models that are not strictly confined to 

players or their behaviour or experience. This includes the use of the terms ‘mental model’ 

(Seidel, Berente, Lindberg, Lyytinen & Nickerson, 2018) and ‘cognitive model’ (Bohil & Biocca, 

2007; Fum, Missier & Stocco, 2007) as more generic definitions and applications of human 

models in computer game contexts. Given that the focus of this study is indeed not on players 



24 

but on designers, I will simply refer to ‘designer models’ or ‘cognitive models’, where 

appropriate.  

While player models are not a focus of this thesis, they still deserve a short overview here. 

Additionally, I will briefly provide the reasons why I believe they are important in the wider 

context of this study. First, in the initial phase of this study, a number of different avenues 

were explored, and one focus area was player models. It was later deemed to be more 

important to emphasise research focusing on thought processes and the practice of 

designers, a motivation that has recently been confirmed by a study pointing to a significant 

gap in the area of player experience research (Zhu et al., 2017). Player models, however, are 

still somewhat relevant to this thesis, as designers in the literature, and those with whom 

interviews were conducted as part of this thesis, clearly emphasised a player-centric design 

approach, which in turn is based on several factors, among them what designers believe is 

important to players, and what designers think players will do and prefer in certain situations 

within a game. This was particularly highlighted as an important design aspect for multiplayer 

games (Ølsted, Ma & Risi, 2015), which have limited narratives and often reasonably simple 

gameplay. These games are predominantly driven by players, which gives careful 

consideration of player behaviour even higher priority than in, for example, platformer or 

puzzle games. Finally, player models are deemed to be important to this thesis, as they may 

offer possible ways forward in game level and game asset evaluation, which can potentially 

contribute to advancements in computational game creativity. 

A recent position paper suggests employing active learning to model player behaviour, that 

is, using unsupervised methods, but with limited labels, in order to achieve an efficient and 

potentially more accurate model than supervised methods with a limited, known set of 

labelled instances (Togelius et al., 2013). This may be a promising area of future research, 

especially in the context of large self-learning neural networks, which have come into focus 

in the past few years due to the accessibility of vast computing resources in the form of 

general purpose GPU computing. 

Finally, cognitive modelling in the context of computer games can also be approached from 

the perspective of designers rather than players, and the following section discusses literature 

in this particular area. 



25 

2.3.5 Cognitive Designer Model 

One of the main challenges of this study is the construction of cognitive models for the design 

process. From a general perspective, a cognitive model is a system (computational/artificial 

or natural) that simplifies complex processes and features by forming an abstraction of such 

processes, and reducing non-essential features (Fum et al., 2007). Dawson (2003, p. 6) refers 

to a (cognitive) model as “an artefact that can be mapped onto a phenomenon”, to help us 

gain a better understanding of the (human/behavioural) phenomenon. According to Dawson, 

the model needs to be “useful” (Dawson, 2003, p.6), which implies that a model allows us to 

work easier, or to understand a modelled phenomenon more easily than simply considering 

the phenomenon on its own (without a model). This does not only apply to cognitive models 

in particular (Boden, 1977; Feigenbaum & Feldman, 1963), but to the process of modelling 

human traits in general; for example, in mathematical and statistical models of human 

decision-making or group behaviour (Pentland & Liu, 1999; Sadilek, 2012; Ziebart, Maas, 

Bagnell & Dey, 2009).  

Dawson also highlights the difficulty of defining models due to their diversity, and 

interestingly, compares this problem to the issue of finding a commonly accepted definition 

of ‘games’ (Dawson, 2003). He highlights three common advantages and disadvantages of 

modelling that are relevant to this study. These include the precision of terms, formalisation, 

and communication. The precision of terms requires the careful consideration of definitions, 

considering that, for example, different researchers may use the same definition in different 

ways. This is important, as the modelling process may draw information from a number of 

diverse sources, where different individuals may use the same term in various ways. My 

models will have to ensure consistency, even when data sources are derived from different 

fields and a variety of people. 

Dawson (2003) further argues that “one potential problem with formalisation is that the 

process requires the researcher to make design decisions”. This implies that these decisions 

have an impact on the behaviour of a model. Dawson continues to describe a simple machine 

learner that had been successful in someone else’s experiment, but turned out to converge 

into local minima when applied to his particular classification problems. A possible way to 

mitigate this risk is to test it against a benchmark, so that potential formalisation issues can 

be identified. In my study, I will have to construct a way to obtain baseline data in order to 



26 

pitch the cognitive model against it. I am also conscious that a complex solution is not 

necessarily the best possible solution. This thesis follows the mantra that simplicity should 

not be dismissed simply because it ‘feels’ simple, but should be tested first, before turning to 

more complex solutions. For example, instead of going straight to the computationally 

expensive training of a deep neural network, which also requires significant training data, and 

which may be difficult to obtain, simpler solutions such as expert systems should be 

considered first. 

The class of models that this research is concerned with are computational cognitive models, 

which are models implemented in software, for example, as an agent. While some of the 

definitions for ‘cognitive model’ also applies to statistical and mathematical models, the main 

difference is that cognitive models reproduce the behaviour of the subject that is modelled, 

whereas mathematical models simply describe the behaviour (Fum et al., 2007). This makes 

cognitive models directly applicable as agents in a multi-agent system. The way in which the 

cognitive model is implemented is based on expert systems. The following section gives an 

overview of relevant literature on expert systems, and implementation is described in section 

3.3.3.  

2.4 Artificial Intelligence 

This section of the literature review provides a brief look at the current understanding of 

intelligence, and moreover, artificial intelligence. A brief consideration of agents is presented; 

the current research project is positioned in this wide field of study to set the context for the 

algorithms and paradigms explored in the procedural design software prototype. 

2.4.1 Machine Learning 

Prior to providing a definition of ‘artificial intelligence’ that is suitable for this research, a brief 

look at the difference between adaptive and statistical approaches seems appropriate. This 

will help contextualise this study in the field of artificial intelligence and also draw a clear 

distinction between artificial intelligence and machine learning. 

The previous sections have shown that artificial intelligence is located within the wider field 

of general intelligence. Figure 4 shows that it constitutes a number of different subfields such 

as evolutionary computation, agents, and other areas. This study can be positioned as a hybrid 

between traditional artificial intelligence approaches and optimisation methods. It draws 



27 
 

predominantly from the two highlighted areas in the figure below, agents and genetic 

algorithms (Figure 4). The details of how they interact within the procedural design prototype 

are discussed in section 4. 

 

Figure 4 - Positioning agents and genetic algorithms within the wider field of artificial intelligence. 

2.4.2 Definitions of Artificial Intelligence 

The majority of literature places artificial intelligence as a subfield of general intelligence, and 

indicates it as attempting to simulate intelligent behaviour in the same way humans do. This 

notion of human equivalent behaviour can be traced back to Alan Turing, who proposed his 

famous benchmark test (the ‘Turing Test’), in which a player interrogates a computer and a 

human in a blind test and attempts to establish which responses are human, and which ones 

are made by a machine (Turing, 1950). While the test has been widely criticised in the 

literature, it has also become an integral part of artificial intelligence philosophy (Russell & 

Norvig, 1994; Saygin, Cicekli & Akman, 2000). 

Contrasting the idea of the imitation and simulation of human behaviour, David Fogel (2006) 

argues in his book, Evolutionary Computation: Toward a New Philosophy of Machine 

Intelligence

Biological 
Intelligence

Artificial 
Intelligence

Evolutionary 
Computation

Genetic 
Programming

Evolution 
Strategy

Genetic 
Algorithms

Other 
approaches

Agents Other areas



28 

Intelligence, which details evolutionary computation, that the term ‘artificial intelligence’ may 

itself be unfortunate and misleading. He suggests that any form of intelligence, whether it is 

expressed by living beings, systems, or machines, should be treated equally. That is, any form 

of intelligence should be understood, explained, and applied in the same way. Fogel claims 

that if all processes aimed at generating or applying intelligence follow the same principles, 

these processes become fundamentally similar, and follow the same physics (Fogel, 2006).  

Consequently, Fogel seeks to define intelligence independent of human behaviour. Instead of 

simulating, or in Turing’s words, ‘imitating human behaviour’ (which he refers to as 'the 

imitation game'; see Turing, 1950), Fogel defines intelligence as “the capability of a system to 

adapt its behaviour to meet its goals in a range of environments” (Fogel, 2006). In the 

researcher’s view, this appears to be a very limited definition when compared to what other 

philosophers of artificial intelligence propose. 

Russell and Norvig (1994) advocate a separation between systems that simply imitate human 

thinking processes, and systems that model human behaviour and consequently, act similar 

to humans. The former is predominantly concerned with human thinking and behaviour, and 

is located in the field of cognitive science, an interdisciplinary field of study that draws on 

methods from computer models, experimental psychology, and neuroscience (Russell & 

Norvig, 2003). Its main goal is to gain an understanding of how the human mind works, and 

subsequently, imitate its thinking processes. The second type of system is less concerned with 

the actual thinking processes of human minds, and more focussed on constructing a 

mathematical or computational model of human behaviour. A well-known example of such 

systems is the aforementioned Turing test (Turing, 1950). The main aim is to expel behaviour 

similar to that of humans, rather than attempting to exactly imitate what the human mind 

does. Turing suggests that this is the only way to deceive the interrogating player and 

proposed that human behaviour should also be reflected in the unclear responses and 

mistakes that the machine might make. 

A recent and most prominent example for a machine that models human behaviour is IBM’s 

‘Watson’, a supercomputer that combines several methods to successfully compete in 

Jeopardy2 games, where humans have to respond to statements (answers) in form of a 

2 TV trivia programme 



29 
 

related question (Ferrucci, Levas, Bagchi, Gondek & Mueller, 2013). Watson will not be able 

to capture all necessary existing knowledge in a database, due to computing and storage 

limitations. It will be a virtually impossible task to do so, and response times will be 

unacceptably slow using contemporary hardware. Instead, Watson uses a number of 

approaches to generate and apply its ‘knowledge’. One of Watson’s core modules is based on 

natural language processing (NLP), which allows the machine to understand and contextualise 

the answers in order to find the relevant question (Lally et al., 2012). Furthermore, Watson 

models several human traits to learn (reinforcement learning) while it plays Jeopardy, in order 

to understand existing knowledge that it acquired in previous games, and combines this 

knowledge with new, previously unknown contexts (Prager, Brown & Chu-Carroll, 2012). 

2.4.3 Agents 

Agents are at the core of this study, and their application with the aim of augmenting a human 

designer represents one of the main contributions of this thesis. Therefore, a closer look at 

the core properties of agents relevant to this study will be presented in the following sections. 

First, however, some clarification for what ‘agent’ means in the context of this research is 

required.  

Agents, and more specifically, autonomous agents, have been the subject of many research 

projects, with a number of definitions being proposed. It is paramount to establish the 

difference between ‘software’ in general and ‘agents’ as a particular type of software. In their 

taxonomy of autonomous agents, Franklin and Graesser (1996), examine ten different 

definitions of autonomous agents, and attempt to answer the question of what defines an 

agent, and what is merely a (software) program.  

Probably the most common and broadly used definition in the literature derives from Russell 

and Norvig’s (1994) textbook, Artificial intelligence: a modern approach, which simply states 

that an agent needs to be able to independently examine and act within its environment. 

Other researchers add attributes such as independence and persistence, which ultimately 

contribute to the notion of agents being autonomous and acting without human intervention 

(Smith, Cypher & Spohrer, 1994; Wooldridge & Jennings, 1995). This summarises the 

particular perspective this study takes, as agents are considered as independently acting 

within the space of possible solutions to a game level design. This study does not follow 



30 

narrow definitions such as the requirement of agents to be embodied or situated within a real 

and physical environment (Brustoloni, 1991; Franklin, 1997). 

Three different computational agents are used in this study, which work in conjunction with 

the human designer in a multi-agent system. The first agent provides analysis and statistics of 

game levels to the multi-agent ecosystem. It uses a number of techniques to collect metrics 

about the population and its members. These metrics are relayed to other agents via a simple 

message system. The analysis is independently performed and the resulting information is 

used by other agents in different ways, which led to the decision of implementing it as an 

agent in the current thesis. The second agent is based on a cognitive model of game level 

designers and implemented as an expert system. In some ways, it acts similar to a fitness 

function by ranking levels according to their prospective playability and enjoyability, using the 

aforementioned designer model. Finally, a diversity agent is added to the selection process 

from the breeding pool, by selecting two game levels that have properties contrasting the 

levels with the highest fitness. Literature relevant to these different agent implementations 

is discussed in the following subsections. Design decisions and details of agent 

implementations are discussed in chapter 4. 

2.4.3.1 Raycasting using Digital Differential Analysis 

In the context of the multi-agent system, one of the design decisions was to implement the 

level design prototype outside of a common game engine. The reasoning behind this is 

discussed in chapter 4 of this thesis, but it seems important to nonetheless point out here 

that the decision to implement the majority of this work outside common tools was simply 

driven by a curiosity to understand the inner workings of some frequently used algorithms, 

and to gain a level of abstraction in the hope of an easier generalisation of the findings. Rather 

than binding most of the logic to a particular game development environment with its 

respective tools and constraints, I wanted to keep everything as accessible and flexible as 

possible. This led to a Java implementation of the Digital Differential Analysis (DDA) algorithm, 

which is used to provide a form of ‘sight’ and ‘hearing’ to the level analysis agent in this 

prototype. 

Digital differential analysis was developed in the mid-20th century, at the dawn of computing 

(Sprague, 1952), and has seen a number of derivates and iterations since. It was adapted to 

digital logic from its original analogue conception (Elshoff & Hulina, 1970), and is a common 



31 
 

computer graphics algorithm employed to find intersections between voxels (in three 

dimensions) or cells (in two dimensional applications), and a ray that has been cast from 

defined points within the coordinate system. Ken Museth, who is considered the father of 

VDB3, which is a highly efficient volumetric data structure used in computer graphics, 

(Museth, 2013), and who also received a Technical Academy Award for this work, has 

successfully adapted digital differential analysis to traverse voxel spaces in OpenVDB files 

(Museth, 2014). The algorithm is closely related to Bresenham’s line algorithm (Bresenham, 

1965), which was developed for efficient line approximation in grid structures (rasterisation). 

This thesis uses a simplified variant of digital differential analysis to traverse grid cells from 

one point to another, and to detect any intersections with objects in its path. Digital 

differential analysis offers the efficiency of conducting analyses in complex spatial 

environments such as computer game levels, and using a number of obstacles per level, as 

well as several levels, as part of the population of the genetic algorithm applied in this study.  

2.4.4 Expert Systems 

Expert systems have been a subject of research for nearly five decades, first merely as 

theoretical exercises starting in the 1950s, and later as actual implementations in various 

fields, when computers became available to researchers. Edward Feigenbaum is considered 

one of the fathers of expert systems, who not only contributed significant early work in the 

field in the 1980s and 1990s, but was also acknowledged for his contributions by having been 

awarded the ACM Turing Award in 1994, one of the highest recognitions in computer science 

(a discipline that is not recognised with a Nobel Prize category). Feigenbaum delivers a 

definition of expert systems that is still widely accepted in the literature: 

An expert system is an intelligent computer program that uses knowledge and 

inference procedures to solve problems that are difficult enough to require 

significant human expertise for their solution. The knowledge necessary to 

perform at such a level, plus the inference procedures used, can be thought of as 

a model of the expertise of the best practitioners in the field. (Feigenbaum, 1980, 

p. 2) 

 
3 VDB is a voxel space data structure 



32 

This study follows a slightly more concise and updated variant of the above definition, as 

suggested by Peter Jackson (1998) in his often cited introductory textbook to expert systems. 

Introduction to Expert Systems constitutes an expert system as “a computer program that 

represents and reasons with knowledge of some specialist subject with a view to solving 

problems or giving advice” (Jackson, 1998, p. 2). Breaking this concept down, Jackson argues 

that expert systems have to possess knowledge, as opposed to simply employing an algorithm 

to process information. Instead of simply hosting a number of questions and answers that are 

merely processed by the computer program, similar to a database query, an expert system 

simulates human behaviour by “reasoning over representations of human knowledge” 

(Jackson, 1998, p. 3). This definition links directly to what is discussed in section 2.3.5 of this 

thesis regarding cognitive models, and the requirement that models reproduce the behaviour 

of the modelled subject. Interestingly, Feigenbaum used the same notion of simulating 

behaviour and the actual term ‘model’ in his original definition, as shown above. 

Expert systems also have to be domain-specific (Duda & Shortliffe, 1983). Information has to 

be relevant, organised, and integrated. That is, information is not random and unrelated 

information stored in a data storage, but organised in a way that provides meaningful data 

relevant to a problem. Going even further, Jackson (1998) points out that the expert system 

must have the ability to solve problems directly. Instead of simply reproducing knowledge 

and information, which data storage is able to do, an expert system should be capable of 

applying knowledge and actively performing the task at hand. Therefore, while the system 

will certainly be able to store information, it also actively acts on the data and solves 

problems. According to Jackson, this is generally done using heuristics, which are rules of 

thumb that contain the necessary knowledge for solving a problem in a specific domain. 

Heuristics are simply approximations, and not necessarily optimised or perfect solutions 

(Jackson, 1998). The advantage is that they can act on incomplete and imperfect data, and 

they generally provide a weighted response that reflects the certainty (the likelihood of being 

accurate) of their outputs. 

Another important and highly relevant property of expert systems is their ability to address 

problems of realistic complexity in a manner that matches human abilities and expertise 

(Buchanan, Randall & Feigenbaum, 2006). Many intelligent programs are essentially simply 

optimisation and search algorithms (as discussed in the section on genetic algorithms), and 



33 
 

many of these solutions are based on statistical methods and perform well on abstract 

mathematical or simplified problems. In comparison to any of these statistical search and 

optimisation tools, expert systems perform well on genuine scientific and commercial issues 

(Jackson, 1998). An exception – a popular one to the aforementioned simple AI systems – are 

deep neural networks, which have gained new popularity in recent years. These complex 

‘neural nets’ show great performance on real world problems in many domains, and while a 

detailed discussion of these networks are beyond the scope of this study, their exceptional 

performance nonetheless warrants a brief mention.  

The literature on expert systems also highlights the need to validate a system in terms of 

assessing whether domain knowledge is actually contributing to a software systems 

performance increase (Prieto-Díaz, 1990), an issue that is highly relevant to the current study. 

Finally, we need to distinguish between ‘knowledge-based systems’ and ‘expert systems’, two 

terms that the literature sometimes use synonymously. To illustrate the difference using an 

example, we would call a system that is able to ‘talk’ about the stock market simply because 

it holds knowledge of it and is able to reproduce said knowledge in a conversation, a 

knowledge-based system. An expert system goes beyond this ability, and will be able to apply 

the stock market knowledge, make predictions about its development, and provide forecasts 

for specific stocks. This differentiation is relevant to the research discussed in this thesis, as 

the system employed in the design process is able to apply expert knowledge to game level 

design, and actively perform analyses of selected properties in each level, as well as actively 

make suggestions regarding best practice, and most playable levels. 

2.4.5 Multi-Agent Systems 

Wooldridge (2009) defines multi-agent systems as entities that comprise “multiple interacting 

computing elements, known as agents” (M. J. Wooldridge, 2009, p. xi). The focus of his 

textbook, An Introduction to MultiAgent Systems, is on agents as computational autonomous 

entities, similar to Russell and Norvig (2003). The same holds true for a genetic algorithm 

controlled by a multi-agent system, known as a multi-agent genetic algorithm, or MAGA 

(Zhong, Liu, Xue & Jiao, 2004). There are variants of multi-agent systems; however, these 

consider hybrid teams of human agents and computational agents, for example, in human-

based genetic algorithms (Kosorukoff, 2001), which will be discussed in more depth in section 

2.5.3.  



34 
 

Multi-agent systems, no different to single agents, need to provide a way for agents to 

understand the environment they are in, and they need to be able to make autonomous 

decisions without any user interaction. However, not all agents need to have the same 

sensory system; rather these can be complementary (Wooldridge, 2009). Furthermore, 

agents have to have a way in which to communicate with one another, for example through 

messaging. 

While the literature provides a vast breadth of different approaches and techniques for 

designing multi-agent systems, this study utilises a very simple and small system, comprising 

three autonomous agents and a human designer. Therefore, most of the facilities that have 

been investigated for multi-agent systems are not needed in this discussion. The agents of 

this study follow foundational definitions of agents (Franklin & Graesser, 1996; Russell & 

Norvig, 2003; Wooldridge, 2009) as simple, autonomous, independently acting entities that 

generate outputs (suggestions) based on simple sensing systems, in order to observe their 

environment (the breeding pool and population of the genetic algorithm; see section 2.5.1). 

2.5 Evolutionary Computation 

Evolutionary computation is the field of research within artificial intelligence that 

encompasses approaches based on the concepts of natural evolution. A common assumption 

among researchers is that only computational solutions, generally based on a mathematical 

fitness function, are included in this category. However, as shown in section 2.5.2, this also 

includes evolutionary computation based on user interaction. 

All of these computational approaches borrow from Darwin’s theory of evolution, which is 

based on the idea that individuals (or members) of a population increase their chances of 

survival and reproduction by way of natural selection. The selection process combines 

properties of each individual and passes on a variation of the breeding originals to the new 

generation through inheritance. Darwin’s theory and Mendel’s concept of genetics formed 

what the field of biology refers to as ‘modern evolutionary synthesis’ (Keeton, 1996). 

Pimpale and Bhande (2007) provide a simplified breakdown of biological evolution, which 

highlight some of the main concepts that have been translated into evolutionary 

computation: 



35 
 

• DNA (deoxyribonucleic acid) is a double-helix molecular structure that encodes 

genetic information in each cell of all living organisms. 

• Chromosomes are subsections of the DNA string. 

• Genotypes represent the hereditary information encoded in the DNA. They are the 

encoding of information. 

• Phenotypes are the observable results based on the genotypes. Phenotypes are 

therefore the visible implementation of the encoding. 

• Reproduction (or recombination) is the creation of offspring by two parents, 

combining parts of each parent’s DNA. 

• Crossover is the underlying synthesis of an offspring DNA string, resulting in a newly 

combined chromosome. 

• Mutations only happen occasionally and are small, unexpected changes in the 

resulting offspring DNA. Mutations have a very low probability of occurring, and may 

lead to small variations, in addition to significant changes induced by recombination. 

Recombination can be understood as the intentional part of reproduction, whereas 

mutations are unintended mishaps. 

One of the core ideas highlighted by the theory of biological evolution is the concept of 

‘survival of the fittest’. This means that only the strongest properties encoded in the DNA will 

be sustained over several reproduction cycles. Therefore, only the ‘fittest’ offspring’s 

chromosomes will survive over a large number of generations. Weaker properties will 

eventually be eliminated over many breeding cycles. The ‘survival of the fittest’ concept is 

often used synonymously with the term ‘evolution’ throughout computational literature 

(Pimpale & Bhande, 2007). 

Survival of the fittest (or simply, evolution) also exemplifies what evolutionary computation 

is at its core: systems that seek to find optimal solutions. Most evolutionary algorithms are 

search and optimisation algorithms. While they borrow concepts and ideas from biological 

evolution, they are simply abstractions of biological synthesis, and seek to emulate intelligent 

or emerging behaviour. Significant examples of such abstractions are genetic algorithms 

(Holland, 1975), evolution strategies (Beyer & Schwefel, 2002), and genetic programming 

(Koza, 1992). All of these abstractions borrow from the principles of natural evolution, but 

vary significantly in their application, and the extent to which the principles are applied.  



36 
 

Evolution strategies, for example, are predominantly designed to optimise solutions in 

technical areas (Negnevitsky, 2004). This poses a very different application to genetic 

programming, an idea first introduced by John Koza (1992). Genetic programming attempts 

to generate computer programs by using evolutionary computation. These evolved computer 

programs seek to address the actual problem at hand. What Koza essentially proposed (and 

later implemented) is an algorithm that programs computers to solve problems, rather than 

directly applying evolutionary principles to optimise a solution. Genetic programming, while 

considered somewhat rare and less popular than other evolutionary approaches, have been 

extremely effective and successful in some areas, for example, for addressing engineering 

problems. Reportedly, this approach led to the first two patentable designs generated by a 

machine (Koza et al., 2003). 

There are several other similar (and varying) concepts of evolutionary algorithms and 

approaches in the literature; however, an in-depth discussion of all evolutionary 

computational algorithms is beyond the scope of this thesis. Therefore, only the most relevant 

concepts are highlighted in the following sections of the literature review. 

2.5.1 Genetic Algorithms 

Genetic algorithms (GA) are heuristic search algorithms that can be viewed as the most 

fundamental and earliest algorithms within the area of evolutionary computation. They have 

been well-researched and are accordingly, well-understood, and are likely popular due to 

their relative simplicity (Fogel, 2006). Genetic algorithms are at the core of this research for a 

number of reasons. First, they are incredibly simple to implement, yet deliver potential 

solutions to reasonably complex design problems (Renner & Ekárt, 2003). Second, they have 

been successfully applied to design work that seeks to capture the designer’s goals, while 

finding a solution to fairly complex designs, such a urban structures and layouts, and artistic 

patterns using colour and shapes (Anderson, Buchsbaum, Potter & Bonabeau, 2008; Kelly & 

McCabe, 2007; Kruse, 2014). Additionally, genetic algorithms have been used in various other 

fields of research, for example, engineering (Connor, 1996) and computer animation (Marks, 

2006), thereby indicating the capability of these algorithms. This study seeks to generate 

procedural game levels, effectively trying to find at least one solution that captures the 

designer’s intent within a virtually infinite number of possible variations, given the basic 

terrain and assets being employed in this study.  



37 

2.5.1.1 History of Genetic Algorithms 

The aforementioned Alan Turing was likely the first scientist to propose a link between 

computation and evolutionary principles in his famous article, “Computing Machinery and 

Intelligence” (Turing, 1950). Turing did not go as far as proposing a prototype genetic 

algorithm, but set the foundation for this idea, which was picked up by Fraser and Burnell in 

their book, Computer Models in Genetics (Fraser & Burnell, 1970). Their computational model 

effectively entails a genetic algorithm. However, most of the computational literature credits 

John Holland (1975) as the father of genetic algorithms, which is likely justified, given the 

depth and scope that he provides in his foundational book, Adaption in Natural and Artificial 

Systems (Holland, 1975). Other notable academics and scientists that expanded on Holland’s 

ideas, and critically examined a number of modern derivations of Holland’s original ‘vanilla’ 

genetic algorithm include David Goldberg (1989), Melanie Mitchell (1998), and David Fogel 

(2006). Goldberg provides a fundamental overview and discussion in Genetic Algorithms 

(1989), which appears unmatched not only in terms of its popularity (with more than 70,000 

citations on Google Scholar to date), but also regarding the breadth of Goldberg’s review. 

Goldberg does not only introduce genetic algorithms and a number of derivatives, but also 

observes their application as search and optimisation tools, as well as their use in machine 

learning. 

David Fogel’s critical voice on the topic of machine intelligence is discussed in the first section 

of this chapter. David Goldberg’s and Melanie Mitchell’s fundamental introductions to genetic 

algorithms (D.E. Goldberg, 1989; M. Mitchell, 1998), on the other hand, will serve as 

foundational contexts to highlight the features and traits of a canonical genetic algorithm in 

this section.  

2.5.1.2 Canonical Genetic Algorithm Overview 

First, chromosomes are abstracted into binary digits. These binary strings are passed from 

one population to the next, following a genetics-inspired breeding process. Breeding entails 

crossover and mutation of the binary chromosome strings. The fitness of each offspring 

chromosome is then evaluated, using a fitness function to establish the performance of each 

chromosome toward the overall optimisation (or search within the solution space) goal. 

Chromosomes with poor performance have a high probability of being removed from the 

breeding process, whereas chromosomes with high fitness are likely to be selected for 



38 

reproduction. This selection is driven by a crossover operator, which mixes parts of two 

chromosomes into a new offspring, based on their respective fitness. The final step in the 

process is mutation, where some chromosomes may be randomly mutated, based on a 

mutation probability factor. This mutation factor is generally set very low, to avoid a high 

number of randomly occurring changes in the offspring. The main goal is typically 

optimisation through selection, not random diversity through high mutation. This process is 

repeatedly applied over many generations, often in the thousands or hundreds of thousands, 

but entirely driven by the problem to be solved and the solution space (the number of 

possible solutions). After a number of generations, or when a specific numerical fitness is 

reached, the process is stopped. Due to the large number of iterations and the combination 

of targeted, fitness-based selection and random mutation, seemingly complex behaviours 

emerge, and highly complex problems can be solved; at the very least, results that converge 

towards an optimal solution can be found (Negnevitsky, 2004). 

2.5.1.3 Convergence 

Establishing fitness parameters in genetic algorithms to ensure a fast and efficient 

convergence to the global optimum has been discussed in the literature since their inception 

(D.E. Goldberg, 1989; M. Mitchell, 1998; Mühlenbein, 1992; Rudolph, 1994). To illustrate the 

issue at hand, which is one of the significant reasons for why this research takes a few steps 

beyond the canonical genetic algorithms, we assume the following simple instance following, 

Goldberg’s (1989) example. 



39 

We consider the following function: 

𝑓𝑓(𝑓𝑓, 𝑦𝑦) = 𝑒𝑒−(𝑥𝑥2+𝑦𝑦2) 

which results in a single ‘hill’ when plotted using a three-dimensional plot (see Figure 5). 

Figure 5 - Plot of 𝑓𝑓(𝑓𝑓,𝑦𝑦) = 𝑒𝑒−(𝑓𝑓2+𝑦𝑦2) resulting in a single hill. 

There is only a single maximum in this surface, and a simple hill climbing algorithm will be 

suitable for finding this maximum: A hill-climbing function, effectively simply comparing 

values and favouring the higher over the lower neighbour, will eventually converge toward 

the single hill.  

Now, we consider the following function, resulting in two maxima, when plotted: 

𝑓𝑓(𝑓𝑓,𝑦𝑦) = 𝑒𝑒−(𝑥𝑥2+𝑦𝑦2) + 2𝑒𝑒−((𝑥𝑥−1.5)2+(𝑦𝑦−1.5)2) 

Figure 6 shows a three-dimensional plot of the above function. 



40 
 

 

Figure 6 - Plot of 𝑓𝑓(𝑓𝑓,𝑦𝑦) = 𝑒𝑒−(𝑓𝑓2+𝑦𝑦2) + 2𝑒𝑒−((𝑓𝑓−1.5)2+(𝑦𝑦−1.5)2) resulting in two local maxima. 

It can be imagined that, first, a simple hill-climbing algorithm may fail to find the global 

maximum, which would be considered the optimum in this search, and a genetic algorithm 

may or may not exceed the first (local) maximum in order to arrive at a suitable global 

solution. This depends on the balance between selection and mutation operators, as research 

has demonstrated (Rudolph, 1994). 

Given that the present research is concerned with search spaces that are much more complex 

than the aforementioned relatively simple mathematical functions, the possibility for the 

genetic algorithm to get stuck in a local maximum, and terminating the optimisation (search) 

process prematurely, is significantly higher. This circumstance has been mitigated in this 

research using a number of techniques, including a careful balance of selection and mutation 

operators through empirical means, but moreover, by adding a diversity agent to the multi-

agent system that controls the genetic algorithm. This will be presented in Chapter 4. 

2.5.1.4 Encoding 

In genetic algorithms, encoding describes how the parameters of each candidate are 

translated into data, or simply put, how chromosomes are represented as data types. This is 

an abstract concept, and does not necessarily reflect how computers handle data at a basic 

level (binary representation); nonetheless, it relates to the data types generally employed, 

which may be binary, numeric, or other value types (M. Mitchell, 1998). This is important, as 

one can imagine that genetic operators may need to act differently, depending on the 

underlying data type. For example, if the parameters to be encoded reflect colours, which in 



41 
 

turn are represented through three colour channels, red-green-blue (RGB), with a range of 0 

to 255 for each colour channel, it is clear that these colours can be treated in at least two 

different ways: as binary and numeric (integer or float) values. If the data is treated as binary, 

a change of a higher bit (or a bit of higher significance) will result in a significant change in 

colour value, which in turn poses a significant change to the colour itself. Accordingly, if the 

mutation or crossover operator changes not the float or integer value itself, but the 

underlying bits, an unintended significant change can be triggered. It would, at the very least, 

be difficult to maintain consistency between different mutations, and in turn, the mutation 

rate may be invalid.  

There are many different approaches to encoding in the literature that attempt to avoid some 

of the issues outlined above (M. Mitchell, 1998). Though an in-depth discussion of all known 

encodings, their common use cases, and their relationship with mutation and crossover is 

beyond the scope of this thesis, it seems important to highlight a few common examples, 

namely binary encoding, value encoding and permutation encoding. 

Binary encoding is one of the most common variants, and is likely also the most fundamental 

form of encoding, given that it is used in canonical genetic algorithms (D. E. Goldberg, 1989). 

The entire chromosome is encoded as a binary string.  

2.5.1.5 Fitness Function 

The fitness function is at the core of a computational genetic algorithm (as opposed to 

interactive genetic algorithms; see section 2.5.2). It assesses the performance of candidates 

in a population, based on criteria addressing the issue that the algorithm seeks to optimise or 

solve. When implementing a fitness function, the goal is to find the global maximum (or 

minimum, depending on the start condition of the genetic algorithm), with a large possibility 

of success, and in the shortest possible time (Bentley, 1999). A number of test functions to 

verify the implementation of the genetic algorithm and the fitness function in particular have 

been established. Examples include the aforementioned hill functions (section 2.5.1.3). I will 

not go into great detail about them, as these approaches are addressed in-depth in the 

existing literature (Bentley, 1999; D. E. Goldberg, 1989; M. Mitchell, 1998), and they have 

little relevance to this study, given that an interactive evolutionary system is employed to 

drive the evaluation of individual populations. The following section (2.5.2) highlights the 



42 

differences between a computational approach, employing a mathematical fitness function, 

and using an interactive method, using a human user to assess the population. 

2.5.2 Interactive Genetic Algorithms 

Given that this study is concerned with computational support for design tasks, an 

examination of a special class of genetic algorithms is required. Canonical genetic algorithms 

are simple to implement and extremely effective in basic search and optimisation tasks, as 

shown above. However, one of their predominant features, the fitness function, poses 

challenges in terms of its implementation when issues such as aesthetics, appeal, and 

attractiveness come into play (Takagi, 1998). These features are not easily captured with a 

mathematical function, and instead of trying to describe the problem mathematically in order 

to create a suitable fitness function, interactive genetic algorithms (IGA) employ the help of a 

human user to perform the selection task. This removes the requirement for a fitness function 

and allows for addressing (mathematically) complex issues and applying the benefits of 

genetic algorithms to domains that are not based on a numerical foundation, such as 

engineering and computer science. IGAs are a subclass of algorithms used in the field of 

interactive evolutionary computation (IEC). The notion of employing humans to perform 

some tasks in evolutionary computational systems was originally formed by Richard Dawkins 

in his foundational book, The Blind Watchmaker, in the book’s third chapter (Dawkins, 1986). 

Dawkin’s ‘biomorphs’ are based on Darwinian theories and require human users to evaluate 

fitness (aesthetics and appeal) interactively (Dawkins, 1986). This idea was extended by Karl 

Sims (1992), who assumed that human users were able to perform evaluations, more 

specifically, selections within an evolutionary system, without any knowledge of the 

underlying processes (Sims, 1992). This is similar to our understanding of IGAs, in that the 

genetic operators are fully independent and the selection operator does not need to have any 

access to what the recombination operators are acting on. Takagi (2001) coined the term 

‘interactive genetic algorithm’, and performed a number of investigations into their 

application in various fields, but in particular, within a design context. He found that IGAs are 

not only a vehicle for performing optimisation tasks in design, and that they often outperform 

pure genetic algorithms and manual computer-supported design, but that IGAs also offer a 

high level of flexibility, and that evaluations (the selection process) can be altered while the 

task is performed. If a (static) mathematical function is used, this is simply not possible. This 



43 

feature of IGAs eventually led to their recognition as ‘novelty generators’ (Gu, Xi Tang & 

Frazer, 2006).  

It is worth noting that the human user often makes selections based on an abstract 

representation of DNA, rather than interacting directly with either the genotype or the 

phenotype. For example, instead of making decisions by looking at a bit string that encodes 

pixels (genotype), or even the associated colour values of each pixel (phenotype), the user 

simply selects from a number of images formed by a large number of individual pixels. In this 

way, the underlying bit strings and associated colour values are hidden from the user, but 

selected through the choice of full images for breeding within the genetic algorithm. Based 

on the user selection, the genetic algorithm creates a new population, including the crossover 

and mutation of bit strings (which represent the colour values of pixels). The new generation 

is then presented to the user in the form of a number of rendered images. This highlights an 

important implication that the developer needs to decide about: if low-level crossover is 

performed on bit strings, this may lead to odd, inconsistent, and potentially invalid colour 

values, which in turn leads to images that may have invalid pixels. Bit string length, as well as 

crossover point, both play an important role in the recombination process. It is also possible 

to perform crossover on higher level abstractions and manipulate the phenotype instead of 

the genotype, for example, recombining larger parts of the chromosome to keep legal colour 

values intact, as a means for ensuring that pixels always receive a valid colour property.  

Another important point to discuss is the impacts that interactive genetic algorithms may 

have on users. While it is an extremely elegant way to avoid having a mathematical fitness 

function, which in some creative contexts may be virtually impossible (although modern deep 

neural networks perform astonishingly well as a statistical solution to some creative 

problems), interactive genetic algorithms can lead to user fatigue if a larger number of 

iterations is required to solve certain tasks (Takagi & Iba, 2005). There have been attempts to 

counteract this issue, and I have myself contributed work in this area (Kruse & Connor, 2015). 

Adding an agent to detect user preference by analysing user input shows some promise; 

however, the results have been moderate to date, and more research is needed to improve 

this weakness of the approach. 

IEC has been successfully used in PCG studies and the literature offers a number of relevant 

cases. Examples include interactive systems to generate city models in real-time (Greuter, 



44 
 

Parker, Stewart, & Leach, 2003) instead of using non-real-time generators (Kruse, 2014; Parish 

& Müller, 2001). Other work looked at game map generation to offer personalised choices to 

players (Raffe, Zambetta, Li, & Stanley, 2015).  

2.5.3 Human-Based Genetic Algorithms 

Kosorukoff (2001) takes the idea of IEC further and suggests that not only the selection 

operator, but either the selection or recombination operator can be assigned to a human or 

computational agent (he also introduces the idea of a multi-agent system in the context of 

genetic operators). Kosorukoff takes an organisational standpoint and assumes that both 

these tasks will be ‘outsourced’ from the algorithm to agents. The genetic algorithm is 

essentially the organisational framework, or shell, and the computational and human agents 

are the contractors (Kosorukoff, 2001). Treating genetic algorithms as multi-agent systems 

has several advantages over traditional genetic algorithms. First, it allows for combining 

human intellect and computational performance into a single evolutionary framework. 

Second, it addresses the issue of human limitations in a more flexible and possibly broader 

manner. Human and computational agents are able to complement each other in both 

selection and recombination tasks. Finally, it offers flexibility that is not found in traditional 

genetic algorithms, in that it allows for combining several selection agents and multiple 

recombination agents into a single system. Either of these can be human or computational, 

or even a hybrid.  

2.6 Summary 

The literature review for this study touches on a variety of topics that highlight the 

interdisciplinary nature of this research. While the review of design, and specifically game 

design literature is nowhere near complete nor very broad, a gap in knowledge has been 

identified, and some of the most relevant parts of the literature have been addressed. This 

study seeks to enhance the game designer’s ability and effectiveness, not to replace them. 

This study also explores the boundaries of human and computational design agents as part of 

an overall design process for computer game levels. In doing so, it is hoped that this 

exploration will also make computer game level design a little bit easier, and therefore, more 

accessible to a broad range of game designers. 

  



45 
 

3 Methodology and Research Design 

I apply a pragmatist approach in this study. Pragmatism is a world view that arises from 

actions and consequences. It is also a research paradigm that is problem-centred, and orients 

itself toward real-world practice (Creswell, 2014). I believe this is not only the most 

appropriate paradigm for this particular study – as it aims to construct a novel workflow and 

is located in an applied context – but also reflects what I, as a researcher, am best at. I am as 

much a practitioner as I am an academic. Relating my research back to my practice in a 

problem-oriented manner feels most natural and consistent to me. The study is conducted 

using a mixed-method approach, including semi-structured interviews and questionnaires, in-

game metrics, and observations. This section unpacks the methodology into the components 

employed in this study. 

3.1 Research Questions 

As indicated in section 1.2, this research is guided by the primary research question below: 

How can intelligent agent systems be employed to generate, and more importantly, 

evaluate procedural game content? Specifically, can agents based on cognitive models 

evaluate computational designs in computer games? 

I will unpack this highly condensed question in this section and provide two sub-questions 

that I have used in order to break the overall project down into manageable sections. These 

questions address issues that evolve from engaging with the research question, despite the 

fact that they are not tightly aligned with the specific terms of the main question. 

I wished to capture the views of experienced game designers as they related to the proposed 

content evaluators. This was based on the assumption that it was possible for expert 

designers to create a cognitive model of decision-making processes in the first place. 

Therefore, I asked: 

(Q1) Are cognitive agents as game content evaluators considered a useful addition to 

game level design by experienced game designers? 

Furthermore, I was interested in whether cognitive designer models could be created by 

employing rule-based systems, which guided an additional sub-question: 



46 

(Q2) Can a cognitive model be built as an expert system, and can it employ knowledge 

extracted from secondary sources, such as personal accounts of expert game level 

designers? 

The following sections discuss methods that helped me to obtain meaningful responses to 

these questions. 

3.2 Methodology 

Due to the nature of this study, which is concerned with a range of interdisciplinary issues 

such as game prototype development, participants conducting design tasks, as well as 

statistical data collection and analysis, the methodology borrows a number of different 

approaches from several cross-disciplinary methodologies. It is driven by a pragmatic 

research philosophy using a mixed methods approach. 

The research in this thesis follows an interpretivist paradigm for its epistemological position. 

That is, understanding the world through the interpretation of research data, or as Bryman 

(2012) puts it, through the examination and interpretation of participant responses. 

Furthermore, a constructivist ontology drives the researcher’s view of how sociological 

factors are formed, and how our general understanding of meaning is generated. 

Subsequently, these constructions of meaning are thought to be reflected in participants’ 

responses, which in turn assists in articulating a general understanding of interactions 

between individuals, and to an extent, the interactions between machines and humans, too. 

The overarching methodology can be described as practice-led (Candy, 2006). This study 

seeks to form new workflows, and its core output is a novel method that uses human and 

computational agents to drive procedural content-generation for games. Practice-led 

research derives from practice-based methods, and shares a number of similarities with them 

(Dean & Smith, 2009). The most significant difference is probably the research output itself. 

While practice-based methods generally result in an artefact, practice-led research seeks to 

enhance knowledge and understanding of processes and practice itself. Practice-led research 

advances techniques, methods, and practices, and this study presents a new way of creating 

game content. Its goal is therefore to advance workflow. 



47 
 

 

Figure 7 - Design science research process diagram. 

Advancing and improving workflow is also at the core of design science research (Hevner, 

March, Park & Ram, 2004), which aims to widen knowledge about human behaviour, and 

make predictions about the consequences of such behaviour. It is used to improve human 

and organisational performance through the creation of prototypes and artefacts, and 

presents itself as a five-step iterative process. Vaishnavi (2008) links each of these five steps 

directly to an expected outcome (Figure 7). The first step is to become aware of a problem 

within the chosen field of research, or in a specific discipline. The outcome is a formal or 

informal research proposal. The next step is a suggestion that resembles the initial idea for 

establishing a possible solution. This idea typically draws on previous knowledge or already 

existing elements of known solutions to other problems and is generally combined with an 

additional new element that is likely to improve existing solutions. The resulting provisional 

outcome is generally only an initial design prototype or tentative solution, which is refined in 

the third step of the design science research process (Vaishnavi, 2008). This third step, termed 

‘development’ is the core of design science research and necessitates a high level of skill, 

creativity, and intensive use of software development tools. The aim of this step is to create 

a viable artefact that promises a sound solution to the initial problem. The next phase 

evaluates the artefact and obtains performance measures. Based on these performance 

measures, insights and possibly new ideas trigger a new iterative cycle that restarts at the 

suggestion phase. This cycle continues until sufficient performance measures are reached, or 

no additional potential improvements of the artefact can be identified. The cycle completes 

when the final phase, called ‘conclusion’ is entered, the purpose of which is to summarise 

results, often into two groups: results that are firm and results that are considered loose ends. 

Firm results comprise repeatable outcomes that can be verified; loose ends are anomalies 

that defy explanation and require future research. Vaishnavi (2008) emphasises that design 

Proposal
Awareness 

of a 
problem

Provisional 
DesignSuggestion ArtifactDevelopm

ent
Performance 

MeasuresEvaluation ResultsConclusion



48 
 

science research is generally depicted as a linear process (a notion I follow in Figure 7), and in 

practice is typically cyclic, as few projects terminate after the first evaluation, and most 

require a substantial number of iterations to generate meaningful results. 

The methodology is essentially a two-part approach, the first part being concerned with 

methods that serve an iterative design process, and the second part being a qualitative 

evaluation of the output of this design process. The latter is triangulated by quantitative 

methods to make the qualitative part more robust. The multi-faceted methodology applied 

to this research has allowed me to understand and experiment with different approaches 

through multiple methods, which compliments my future development as a researcher. 

While the methodology is somewhat similar to that employed in my master’s thesis research, 

it is expanded and applied in a way that will hopefully foster a better understanding of real-

world problems, allowing me to design a potential solution, while expanding scholarly 

knowledge in the best spirit of practice-led research. The following sections of this chapter 

deconstruct the individual components (methods) of the methodology used in this study. 

3.3 Research Design 

The research design employed in this study is at its core an evaluation of the game level design 

tool prototype with participating game designers. This section of the thesis outlines the 

experiments, explains the reasoning behind the experimental design decisions, and links them 

back to the existing literature to highlight where they fit in. 

3.3.1 Game Level Design Tool Evaluation 

In this subsection, I will break down the evaluation of the prototype game level design tool. 

The emphasis here is on prototype. I had no intent to create a tool that was finished in terms 

of UX/UI experience for the user. I simply needed a vehicle for evaluating the quality of the 

multi-agent system. 

3.3.1.1 Structure of the evaluation 

The evaluation of the prototype tool was conducted with the goal of gaining a basic 

understanding of the effectiveness of the multi-agent system, and to gather initial feedback 

from professional game designers in order to form a foundation for future developments. The 

evaluation followed a three-step process. 



49 
 

First, a pre-participation interview was conducted in order to gain a detailed understanding 

of who the participant was in terms of their computer game play preferences, their level of 

experience designing games themselves, and their capacity to create FPS game levels in 

particular. I also captured basic demographic data to review whether there was any bias in 

terms of gender and age. The pre-participation questionnaire may seem unusual, as it 

captures data that will generally be part of the participant selection process. I will discuss the 

reasoning behind this in section 3.5.1, but in short, this is linked to the small game design 

community in New Zealand. I required a sufficient number of participants, which hindered me 

from being too selective. In order to counteract the potential lack of variety in my participant 

group, I needed to gain a deeper understanding of what their qualities were as it pertained 

to this study. 

The second part of the evaluation was an assessment conducted with the participant, using 

the game level design tool. The user was asked to use the tool for a number of runs to create 

several generations of candidate solutions, until a candidate that was deemed a playable and 

potential enjoyable level was found. Some of these runs had no other agents in the system 

than the human designer. A number of runs had all computational agents active. By using no 

agents and letting the designer essentially conduct the entire selection process, without any 

suggestions and interference by computational agents, I aimed to create a baseline for 

comparing these runs with the full system being active. This is, of course, based on a number 

of assumptions and the quality of the results, and some limitations of this process are 

discussed in later chapters. The fact that the agents were inactive in some runs was hidden 

from the participant. During all evaluation runs, the eye-tracker and keyboard and mouse 

telemetry capture was active to observe whether there was any distinction in user behaviour 

between different participants. All data capture happened transparent to the user in the 

background. Additionally, the activity of agents was not directly disclosed to the user, neither 

verbally nor through visual cues.  

Strictly speaking, the runs conducted with inactive computational agents were merely simple 

interactive genetic algorithms (Takagi & Iba, 2005), as only one agent – the human – was part 

of the system.  

The third and final part of the game level design evaluation was a semi-structured interview, 

conducted with the participant. Given the very different levels of experience of participants, 



50 
 

the choice to conduct semi-structured interviews rather than questionnaires or structured 

interviews proved to be extremely effective, as I could divert from the script for the interview 

in order to clarify additional questions that arose during our conversations. I was also able to 

capture additional comments that I had not considered at the time of designing the interview 

questions. 

In hindsight, I would have made some changes to the semi-structured interviews in particular, 

for example, reducing the number of questions. A detailed discussion of potential 

improvements of my evaluation of the game level design prototype tool will be presented in 

the results chapter.  

3.3.2 Think-aloud and Observation 

According to Charters (2003), “Think-aloud is a research method in which participants speak 

aloud any words in their mind as they complete a task”, which can be traced back to the 

concept of ‘inner speech’, originally noted in 1962 by Vygotskiĭ (2012). The premise is that 

words and phrases captured through the think-aloud approach serve as close representations 

of inner speech, and are often expressed as incomplete sentences, but as a nonetheless useful 

reflection of a person’s thought processes. Presumably lacking the mental filter that leads to 

active reasoning and the formulation of spoken sentences as part of a conversation, these 

verbal fragments are considered a valuable tool for accurately accessing a participant’s 

thoughts, as opposed to a delayed explanation (Charters, 2003).  

However, think-aloud data is likely to be incomplete, and its results also may vary between 

individuals, depending on personality traits and the ability to manage additional cognitive 

load (Ericsson & Simon, 1993). Ericsson and Simon emphasise two issues in this regard. First, 

a task with low-level complexity can result in insufficient cognitive load, which in turn does 

not produce any meaningful outlets of inner speech. Secondly, cognitive overload as a result 

of choosing a highly complex task can negatively impact a participant’s ability to manage both 

the task and think-aloud function, which may lead to less than ideal results when using this 

method.  

The above factors are generally mitigated through triangulation, for example, by 

retrospective questioning (Charters, 2003). This study makes use of semi-structured 

interviews to alleviate the risks highlighted above. 



51 

This research also follows Charters’ (2003) suggestion of applying a qualitative lens to the 

data, and concurs with Ericsson and Simon (1993) that a balanced cognitive load needs to be 

the foundation for this type of data collection. The prototype that participants use to generate 

game levels provides sufficient complexity to allow for a meaningful release of inner speech, 

but is also simple enough to assume that none of the participants will struggle with the 

additional cognitive load of think-aloud methods.  

3.3.3 Eye Tracking 

Eye tracking is a quantitative method for capturing gaze data from participants. It uses a 

specialised device to capture the position of the pupils using infrared cameras, triangulates 

these positions, and allows a very accurate estimate of where the user looked on-screen 

(Duchowski, 2007). Gaze position is associated with the visual attention of the user (J. H. 

Goldberg & Kotval, 1999), which provides cues to what the participant is actually interested 

in. I added this method to triangulate responses from semi-structured interviews. 

Neuroscientific research suggests a high degree of dependency between eye-head 

coordination and visual processing. Rich and dynamic retinal input is gained through constant 

adjustment of the gaze through head and eye movement (Andersen, Bracewell, Barash, Gnadt 

& Fogassi, 1990; Einhäuser et al., 2007). This study employs a simplified sensory coding model, 

using only the resulting gaze. The eye tracking device principally supports both eye and head 

tracking; however, when the first few data streams where collected from designers, head 

tracking functionality was not yet implemented in the supporting Software Development Kit 

(SDK) by the manufacturer and was only added halfway through my study. In order to retain 

data consistency throughout the study, I decided to continue collecting only gaze data in 

subsequent trials, rather than undermining consistency by adding the head tracking data. This 

can be addressed in future studies. 

To obtain an accurate gaze position, a calibrated tracker is required. I conducted the 

calibration process prior to each trial with participants. Given that the resulting data is simply 

a stream of x and y positions at 60 Hz or 120 Hz, this data requires post-processing. There are 

several ways to visualise the tracking positions, the most common being the use of heatmaps. 

These (often colour-indexed) representations show a stronger colour and density where gaze 

had been focused most of the time, and a weaker colour and lower density for where the user 

looked at less. The heatmaps can be superimposed onto the original screen material to 



52 
 

visualise the gaze pattern of the user in context. Figure 8 shows an example of such an overlay, 

visualised on a Wikipedia webpage. The light purple areas represent an area that the user 

looked at for only a limited time, whereas the bright orange-red areas indicate an area on 

which the user focused a significant amount of time. The latter can be interpreted as areas of 

high interest, or areas that capture the highest attention.  

 

Figure 8 - Heatmap of eye tracking on a Wikipedia webpage. 

3.3.4 Semi-structured interviews 

This research employs semi-structured interviews conducted with game designers to capture 

their experience of using the game level design prototype. Following a pre-participation 

questionnaire, which simply captures demographics data such as level of experience and 

personal preference with regards to computer games in general, the actual experiment was 

conducted using input recording, eye tracking, and think-aloud methods. Then, a semi-

structured interview concluded the participation. This interview was designed to capture any 

thoughts, ideas, and views about the prototype and the design process that could not be 

captured by any other means. The relatively unconstrained nature of semi-structured 

interviews, which essentially use a number of indicative questions, but allows the researcher 

to divert from protocol and explore other interesting paths, was chosen deliberately. First, 



53 
 

after initial tests and following previous experiences with similar situations, it was clear that 

every designer would likely have very individualised experience. As such, a general, rigid, one-

fits-all interview or questionnaire was deemed too restrictive to capture any additional 

insights that may arise. Second, experienced game designers are rare, and I was fortunate 

enough to have had a number of very experienced, seasoned designers available. As such, I 

wanted to capture their views as completely as possible, as doing so would provide an 

opportunity to tap into abundant game design experience first-hand. An even more 

important, but less obvious motivation, inspired the idea of using semi-structured interviews: 

the opportunity to verify some of the heuristics that had been previously derived from expert 

game level designers’ blogs, books, and journal articles. Asking specific questions that 

challenged these heuristics, and asking questions that could verify them, the resources for 

future heuristics development – and therefore for the development of future expert agents – 

could be expanded and rigorously examined. 

The interview questions were intentionally designed to allow the participants room to 

elaborate and talk about their experience. At the same time, I wanted to ensure that they 

were made aware of the presence of some computational agents in some of the tests, to see 

how they responded to them. The full list of questions is listed in Appendix D. 

3.3.5 Questionnaires 

Questionnaires are often assumed as being quantitative methods of data acquisition, 

however, they can also be employed in qualitative research, in particular when no statistically 

valid sample size can be achieved (Bryman, 2016). In this study, questionnaires are treated as 

qualitative data for this reason. Using them allowed me to gain a general idea of the level of 

expertise of my participants, and their preferences for genre and specific games. This could 

also have been achieved through additional interview questions, but I wanted to keep the 

time of the semi-structured interviews as short as possible, given that I had to conduct them 

after my participants had completed a presumably fatiguing exercise of using a variant of an 

interactive genetic algorithm. Asking them to complete a questionnaire alongside the 

required consent forms was deemed to be the best approach. 

The pre-participation questionnaires (see appendix D) included a number of questions with 

scaled responses, and some questions allowing for open-ended answers. Examples include, 

‘To what extent do you enjoy playing video games?’, with a four-level response (‘not at all’ to 



54 
 

‘very much’). It should be noted here that a Likert scale (Brown, 2012), which typically 

employs five-level responses, was intentionally altered to a four-scale response in order to 

remove the ‘undecided’ middle option. A finer granularity seemed unnecessary for gathering 

simple demographic data, but a clear result indicating whether participants had a positive or 

negative bias in their responses to scaled questions was used to make analysis of the data 

easier and clearer. 

3.4 Design Prototype Evaluation 

This phase of the study employs primary data sources obtained through telemetry of my 

software prototypes, as well as questionnaires and interviews. In game design research, this 

data is also known as ‘player experience data’ (L. Nacke et al., 2009), and in a wider sense, it 

represents the data that is based on human-computer interaction through the use of 

keyboard, mouse, and other controllers. Secondary data derives from sources that have been 

created by someone else, and that have already been published. In the case of this study, 

secondary data sources were books and blogs about FPS level design processes, where 

renowned game (level) designers documented their thoughts and reasoning behind the 

structure, layout, theme, and any iterations of popular game levels. The methods for 

collecting information from these secondary data sources are quite different to the collection 

of original data, and therefore, a description of my methodology is provided in this section. 

The origin of the data is not the only foundation for selecting suitable methods for my 

methodology. The data collection method, and how much of a potential bias had been 

induced into the dataset by each participant were also important considerations. Subjective 

and objective measures for obtaining data will also influence the choice of adopted methods 

(L. E. Nacke & Lindley, 2010). Subjective methods include questionnaires and semi-structured 

interviews. Objective measures relate to data collected in the background, such as telemetry 

and eye tracking. All methods are subject to interpretation by the researcher; therefore, each 

dataset may be biased, based on the rigour of the methods employed. Subjective methods 

add an additional layer of potential bias, and measures for reducing the impact of such biases 

must be employed. Triangulation is one such measure (Bryman, 2012). 

Primary data collection can be conducted through various means. For this study, pre-

participation questionnaires were conducted first for the design prototype evaluation in a bid 

to gather basic demographic data, such as previous experience and the preferences of each 



55 
 

participant. This data was considered potentially useful for interpreting certain behaviour 

during the test. For example, a professional game level designer with decades of experience 

in the industry may take a different approach than an inexperienced recent graduate, with 

only a couple of years of experience in the field. Alternatively, someone with a long-running 

passion for adventure games may be inclined to select larger levels that offer more room for 

exploration than a fan of close-quarter, first person combat games. Second, metrics were 

collected within the design prototype while the design process was conducted by participants. 

This includes mouse positions (selections), the structure of each candidate’s solution, the 

ranking provided by the agents, the time each run took, as well as eye tracking data, collected 

with the device described in section 4.1.9. 

In addition to distinguishing between primary and secondary sources, section 3.2 also 

establishes that we need to consider two different types of methods used for analysing the 

data, that is, qualitative and quantitative approaches. Therefore, the following subsections 

are categorised into two groups representing these methods. 

3.4.1 Qualitative data analysis 

Any qualitative data, derived either from interview responses or secondary sources such as 

game designer blogs and books, was coded in NVivo.  

The literature is divided on how coding should be performed, and moreover, whether the 

data as a whole should be coded, or only its more significant parts. Some researchers suggest 

that the rich and nuanced nature of qualitative analysis requires the entire data corpus to be 

coded (Wolcott, 1990). However, given that the data in this research reflects more of a 

technical and process-oriented collection of methods, and less of a social setting in which 

nuanced psychological factors should be examined, the current study adopts a very pragmatic 

and practice-oriented approach (Bryman, 2016; Creswell, 2014). Therefore, data collected via 

semi-structured interviews and through the think-aloud method were coded based on a 

selective, reduced data collection. I believe this approach is justified, considering that 

qualitative coding is an iterative, cyclic process, in which data is linked to an idea or notion, 

and ideas are linked back to other data (Saldaña, 2012). Filtering the part of data that may be 

of value from what may be mere noise (again, given that the semi-structured interviews 

facilitate a rather loose interview style) can be viewed simply as the first iteration of removing 

some of the less valuable data. Anything that is even remotely related to the topic made it 



56 
 

into the first iteration of the coding process and may only have lost some significance in 

subsequent coding cycles, which eventually resulted in a very focussed and reduced set of 

codes. Establishing the number of codes required is another topic that divides the literature. 

Some researchers suggest that 20 to 100 codes are appropriate (Wolcott, 1990), whereas 

others propose the number (of provisional codes) to be roughly five (Creswell, 2014). This 

study employs six codes that encapsulate the most significant traits identified in secondary 

data sources, and three codes for primary data. 

The analysis of qualitative data in this study employed two of the common qualitative analysis 

approaches proposed by Hsieh and Shannon (2005). First, conventional content analysis, 

which applies to studies that start with observations, define their codes during data analysis, 

and which derive their codes from the data itself (Saldaña, 2012). As a result, most of the 

codes in this study are descriptive and only a few have been developed using NVivo coding. 

NVivo coding was used to derive meaningful data from secondary data sources in order to 

produce the heuristics for the cognitive designer model. 

The second analysis method was applied to the primary data collected through observation 

and interviews with designers during the evaluation of the prototype. This method is called 

summative content analysis, an approach that assumes that some keywords can be derived 

prior to data collection and analysis, for example, through the researcher’s interest or existing 

literature (Hsieh & Shannon, 2005). Section 3.4.1.1 describes how these methods were used 

in more detail. 

3.4.1.1 Coding in NVivo 

The coding process was conducted in NVivo using a three stage process, as per Saldana (2012). 

The pre-coding stage is essential for gaining an initial understanding of the data. It serves to 

form an understanding of phrases that are common, and themes that can be identified across 

all responses. Tools that can be used include Word Queries, Text Search, and visualisation 

through word clouds and word trees (Saldaña, 2012). 

The second stage of analysis seeks to assign labels to nodes. A common strategy for creating 

labels is to refer back to the research question (Vaismoradi, Turunen & Bondas, 2013). In the 

case of the current study, I used sub-questions to develop labels linking my data to the 

primary research question, and that provide meaningful responses to said sub-questions. 



57 
 

These are reflected in the subsections of chapter 5.2.3. The labels used are ‘usability’, ‘multi-

agent system’, and ‘feature suggestions’.  

The final stage is the post-coding stage, which drives how findings are presented. There are 

various ways in which to approach post-coding, including visualisations such as project maps, 

concept maps and charts, or by presenting the findings as closely related to the wording used 

by participants (Bryman, 2016; Saldaña, 2012). I chose the latter method, for the simple 

reason that my participants are experts in the field of game design, which resulted in a fairly 

consistent choice of terms. Another reason for adopting this approach was the low volume of 

text this study produced. Identifying clusters or high rates of repetition for specific keywords 

would only occur where large quantities of text were available. This, however, was not 

applicable to the primary data of this research. 

3.4.2 Quantitative data analysis 

This study employs a number of different quantitative methods, as indicated above. Analysing 

the data is achieved through various means. Some data lend itself to be visually analysed, for 

example, through heatmaps (see section 3.3.4) rather than numerical analysis. Visualisation 

can be a powerful tool for making numerical data that is not particularly intuitive more 

accessible. In other cases, graphs based on statistical data can provide new insights, and 

provide easier and potentially more accurate interpretations. Initially, I decided to generate 

click-maps (heatmaps representing the selections) for visualising user input. These are, 

however, difficult to read, given that user input does not create rich or dense datasets the 

way that, for example, eye tracking does. Very few datapoints were available (one for each 

user selection), where a heatmap did not allow for easy interpretation, even when generated 

from all available runs for a user, or even across all runs of all users. Therefore, after the first 

attempt to generate meaningful outputs from my telemetry data, I began incorporating 

RStudio (2015), a development environment (IDE) for the statistical language R, into the 

process. R offers statistical computing and visualisation in a convenient package, and is open-

source and cross-platform, with a high level of flexibility in terms of data ingestion and 

processing (Verzani, 2011). As most of the telemetry data I was streaming from each run of 

the multi-agent system was captured in simple comma-separated value (CSV) files, merging 

and converting data for processing across a large number of files was much easier compared 

to manual data preparation. I decided to employ RStudio to process all data that could not be 



58 

analysed by either qualitative means (for example, NVivo coding), or by visual aids such as 

mapping to screen space (see eye tracking in section 3.3.4). 

3.5 Ethical Considerations 

The involvement of participants requires prior approval by Auckland University of 

Technology’s ethics committee (AUTEC). The ethics application for this study includes two 

pre-participation questionnaires for both game designers and play-testers, indicative 

questions for the semi-structured interviews conducted with the game designers, and a main 

(post) questionnaire for play-testers, as well as observation protocols. Forms can be found in 

Appendix C. 

The main considerations include that this research poses minimal (low) risk to any participant. 

Potential risks have been mitigated; most importantly, participants are able to withdraw from 

this study at any time without needing to specify reasons for doing so. In the even participants 

felt uncomfortable, which is rarely the case where screen applications are involved, they were 

advised to withdraw from the study. Finally, these experiments were conducted in a 

controlled environment under the supervision of a researcher. 

3.5.1 Participant selection 

The creation of computer game levels was conducted with professional game designers. 

Participants were selected through an open call at local game events, social media and 

through contact networks into the local game developer industry and all levels of experience 

were considered. Given the relatively small game design industry in New Zealand, I decided 

not to restrict participants by using a very narrow selection process, but rather, to capture 

data from novice and expert game designers alike. Furthermore, there was no restriction as 

to whether they had FPS level design experience in particular; however, through the 

information sheet, this was indicated as a preference. I also felt that it would be beneficial to 

gather foundational data on how research into this topic can be conducted, and therefore, 

decided to remove most restrictions on my participant selection process. The main criterion 

was that the participant had to be a game designer with game level design experience in a 

professional capacity. I believed that I could treat this project as an initial, exploratory study 

for gaining insight into how qualitative research, using quantitative and qualitative methods 

in the domain of game design, can be conducted. This follows Bryman (2016), who suggests 

that mixed methods can lead to better results, as opposed to employing purely qualitative 



59 
 

approaches. The literature focusing on procedural game content generation and evaluation 

also mostly employ either strictly qualitative or quantitative methods, which highlighted the 

necessity for testing a mixed-methods approach. 

3.6 Summary 

In this chapter, the methodological approach, research design and ethical considerations have 

been outlined. The reasoning behind several research design decisions have been given. The 

next chapter is going to unpack details of the design prototype implementation and in 

particular the structure and function of the Multi-Agent System, which is one of the main 

contributions to knowledge of this thesis. 

  



60 
 

4 Design Prototype Implementation 

The main output of this thesis is the evaluation of a multi-agent system. A prototype software 

tool needed to be implemented for this evaluation, thus enabling human designers and 

computational agents to conduct level design experiments as a team. Prior to this prototype 

implementation, resulting FPS game levels of the prototype software were tested with players 

in order to establish whether these were indeed playable, and despite their simplicity, not a 

distraction from the core aim that any game has: gameplay. 

This section of the thesis discusses both prototypes used in the experiments, while section 

3.3 explains how the experiments were designed and conducted. 

I believe that it is important to provide a brief explanation of the choice of computer game 

used in this study, and in particular, to justify the simplicity of the prototype used, which was 

not born out of necessity or limited by the scope of this study, but a conscious research design 

choice. First, I do not believe that first-person shooter games are ‘bad’ or have a negative 

impact on those who play them, as is often portrayed in popular media and the press. My 

hope is that by consciously making first-person shooter games the centre of this study, I can 

make my own small contribution to counteracting the negative image that many readers may 

have of such games. These games were among the first point-of-view computer games to be 

developed once the performance of hardware and software allowed for creating three-

dimensional worlds in real-time. First-person shooter games are among the most successful 

Esports games, and draw very large crowds into live venues, as well as large numbers of 

viewers who watch live streaming events and gameplay. To substantiate this statement, the 

Global eSports Market Report projected an increase of revenue of more than 40% to USD696 

million in 2017 in this area (Warman, 2017). First-person shooters make up 27% of all games 

watched, representing the second largest viewer group online and on television. Twitch.tv, 

an online streaming service, registered 2.2 billion views for its top 100 games, with Counter-

Strike: Global Offensive ranking second among all games watched (Gaudiosi, 2016).  

It also feels important to not only consider the simplicity of the prototype’s implementations; 

the notion of ‘simplicity’ has also been applied to the design prototype itself, based on a 

design philosophy known as minimum viable product (Moogk, 2012; Münch et al., 2013). This 

design approach is often used to produce a simple prototype of a potential product, which 



61 
 

allows to trial all fundamental functionality in user testing or early access market research. 

Instead of implementing all functions desired in a final product, making it ready to go to 

market, these early prototypes serve as vehicles for confirming or refuting key features, 

without rendering them unusable by default. These prototypes aim to find a balance between 

initial investment and time spent on polishing the artefact or product, and provide the ability 

to rapidly gain insight about their usability (Moogk, 2012). Accordingly, the prototype 

designed for this research is basic and simple, but includes all the key technologies for serving 

as an evaluation platform for the multi-agent system that I intended to implement. The same 

holds true for the resulting game levels. While the assets employed in these levels may be 

basic, and though significant compromises were made in terms of level complexity – for 

example, a flat terrain and only reasonably simple cell-based layout options – all the 

fundamental gameplay mechanics are present, and simple player versus player matches could 

be implemented. 

4.1.1 Resulting Game Levels 

Prior to discussing in detail the core of this study, which is the design, implementation, and 

evaluation of the level design tool in the form of a prototype, I wish to break down the 

resulting levels in order to render some of the design choices made for the level creation tool 

easy to understand. I also want to show how the resulting levels relate back to the simplified 

top-down views that were shown in the prototype design tool to participants. This 

relationship was also verbally explained to the participants during pre-participation briefings 

to ensure the designers would fully understand the choices they made. As I do not want to 

pre-empt any of my findings in this chapter, an explanation of how these pre-participation 

briefs were conducted, is given in context of the results in section 6.2.5. 

4.1.1.1 Genre and Setting 

Following a number of current FPS games such as Counter-Strike: Global Offensive (2012) and 

Insurgency (2014), as well as Insurgency: Sandstorm (2018), I opted for a deserted urban 

environment without any non-player characters (NPCs). It is not fully post-apocalyptic 

(overgrown and destroyed, with a lot of debris), but rather, deserted in a state that suggests 

the occupants of these levels had only recently left. The buildings are intact and the streets 

are only slightly cluttered from the aftermath of whatever caused the population to leave. 

The main reason for these design choices had not been simply to follow the popular game 



62 
 

examples noted above; rather, I felt that removing the complexity of debris, strong overlays 

of foliage in the form of overgrowth, and perhaps piles of burning vehicles or other 

remainders of recent warfare, would assist in focusing my results on simple mechanics such 

as cover, choke-points and lines of sight. It was also suggested in early reviews of my proposal 

that I remove complexity as much as possible in order to receive evaluations without large 

amounts of noise. The final levels reflect an attempt to balance high visual quality that 

ensures an immersive experience for the player, while keeping the number of elements that 

have an impact on game mechanics very small, in order to gain cleaner results, and to be able 

to draw defendable conclusions from my evaluation. 

4.1.1.2 Game Mode 

Only one game mode has been implemented at this stage, i.e. a simplified conquest-type 

game mode with a single flag point. There are a number of reasons for keeping the resulting 

game simple. The obvious reason is practicality within the scope of this study. Additional 

game modes require additional complexity for menu selections and more debugging before 

the actual evaluation of the design prototype could be started. Furthermore, a single focus 

point for players would help remove unnecessary noise in the data in future play-tests. The 

single conquest mode also allows for more structured play, based on my own experience. It 

is worth noting that I use the terminology of the Battlefield (2002) series here. A very similar 

game mode is called ‘bomb defuse’ in CS:GO. 

 

4.1.1.3 Level elements 

The resulting levels consist of a few core layers of elements that follow conventional FPS level 

designs, and which relate directly to game elements as introduced by Järvinen (2009). It is 

worth noting that most of these layers are directly influenced by the designer using the design 

tool. These elements are considered important to gameplay and game mechanics, as their 

design choice has a direct impact on how the mechanics (and the resulting gameplay) work. 

These comprise the following: 

1. Terrain 

2. Streets 

3. Buildings 

4. Flag pole 



63 
 

5. Shipping containers 

In addition to these layers of significant importance, a few additional, purely cosmetic layers 

were added, all of which were assumed to have no impact on gameplay, and only serve to 

enhance the visual impact of the resulting levels.  

6. Plants that offer no cover 

7. Street lights 

8. Foliage on the ground 

9. Small furniture such as bistro chairs in front of some buildings 

The list of elements ranging one-through-five had to be represented in my design tool 

prototypes, as these were the only elements with an impact on fundamental FPS mechanics. 

This was effected to keep the tool as simple and clear as possible, in order for my participants 

to easily understand it, while managing all important elements that have an impact on 

gameplay, so that any game design choices would remain in the hands of the designer while 

using the tool. 

1. The terrain in the final levels was simplified and reduced to a flat playing field. 

Generally, terrain with small and large elevations provides cover by breaking line of 

sight between players. While this would have been an option for the prototype, in 

terms of game engine capability and design approaches found in a number of 

commercial FPS games, elevated terrain seemed to pose an obstacle to what this 

study seeks to understand. In order to present game designers with a quick-to-

understand, simplified view of an entire game map, with tens or hundreds of corners 

and possible angles for line of sight and cover, a top down approach was chosen for 

the design tool. Elevations could in this way be represented in a top-down map by 

traditional map drawing means, such as elevation lines or colour gradients. Initial 

tests, however, showed that these forms of cover and line of sight were incredibly 

difficult to read when a designer had to evaluate a large number of candidates within 

the generation of a genetic algorithm run. Suddenly, a small set of elevation lines 

became hundreds of elevation lines, in addition to building corners and other 

obstacles occupying the game level for visual impact. This would have made for 

extremely noisy results in the human designers’ evaluation, and would have impacted 

their selection of breeding candidates for the genetic algorithm. As a result, the terrain 



64 
 

was made flat. It is assumed that through obstacles such as buildings and containers 

(in this particular case), there remained sufficient opportunity for creating a balance 

between direct line of sight and cover situations for both playing teams. Buildings and 

shipping containers were easy to grasp and evaluate by the human designers, 

according to initial testing.  

2. Streets are an element that can be considered purely cosmetic, as these elements do 

not provide any cover or obstacles to players. Parts of the terrain that are not occupied 

by buildings, containers, or street elements are still fully walkable. However, designers 

responded to streets for a number of reasons. Primarily, they were used as landmarks. 

In the case of this prototype, the street was a single path, essentially defining the 

overall shape of the playable map. Furthermore, players noticed that they could rely 

on the street being the centre part of the map holding the flag element, which they 

either needed to capture or defend (depending on which team they belonged to). 

Thus, even if players decided to ‘exploit’ pathways around large buildings to gain an 

advantage over the opposing team by flanking them, they ultimately knew that they 

needed to return to the street in order to proceed to their objective (defend or 

capture). 

3. Buildings were simplified to a square in the design prototype and in the resulting maps 

for a single reason: they served as semantic elements for obstacles. Additionally, I also 

wanted no walkable buildings (with an interior) included, in order to focus gameplay 

at the street level, not the building level. The street level provided me with much 

easier evaluation, given that, similar to the aforementioned reasons for a simple 

terrain, designers would have to face the challenging task of evaluating hundreds or 

thousands of additional corners in each generation of candidates for the genetic 

algorithm. Removing this highly problematic task (by removing a large number of 

additional parameters for each candidate) allowed me to run a larger number of 

generations, without inducing user fatigue (Takagi & Iba, 2005). 

4. The prototype levels only comprised a single game mode, i.e. a variant of the 

‘conquest mode’, with only one flag to capture. One team has to occupy the vicinity 

of the flag pole to defend it, while the opposing team attempts to get close to it for a 

specified time of 20 seconds in order to capture it. The area, which either blocks the 

capture or initiates the capture, is roughly one street element, or one block wide. 



65 

Players see an indication of whether they are in the radius of the flag pole or not. The 

flag pole is in the middle of the street element, and approximately in the middle 

between both spawn locations, which are located on either end of the street path. 

The length of the path, as well as its shape varies, sometimes putting the flag pole 

close to both spawn areas (if the path is short), and sometimes far away from both (if 

the path is long and relatively straight). The flag can also be next to or even inside a 

container, which provides additional cover. These choices are fully driven by the DNA 

of each candidate for the genetic algorithm, and accordingly, initiated at random for 

the first generation, and potentially mutated for any candidate in subsequent 

generations. 

5. Shipping containers provide small cover in street areas. Stylistically justified by the

post-apocalyptic theme of the levels, where random obstacles clutter the streets of

an urban area, they spawn primarily on street elements. As indicated in subsection

four, they may also occupy the flag pole and the spawn areas of teams. My original

testing with buildings showed that an oversimplification of the levels suggested that

there was not sufficient cover, and the play experience could be less immersive. The

addition of a smaller scale obstacle seems to have rectified this. Shipping containers

are simply placeholders and can easily be replaced with Humvee military vehicles, as

in Insurgency, or thin corrugated iron walls and concrete blocks, as in in CS:GO.

Functionally, they serve the same purpose as in commercial FPS games, namely, to

provide small scale cover to improve gameplay.

Given the cosmetic nature of elements six-to-nine, I will focus on how gameplay-defining 

elements one-through-five are represented in the level design prototype, as well as the final 

game level. 

Figure 9 shows a top-down view inside the level design prototype. It represents a single 

candidate of a population of game levels. The large area that appears empty is simple terrain. 

The algorithm is able to use the grey area to place street elements, buildings, containers, the 

flag, and spawn points. However, based on the random first generation of candidates, which 

may have a relatively short path length, as well as the very close proximity of spawn points to 

one another and the flag pole, the entire play area may only occupy a small part of the entire 

terrain, as shown in this image. The green and red borders indicate the two team spawn 



66 
 

points. The flag pole is visualised by the round red circle in the middle of a street element. 

The algorithm always places the flag inside a street element in order to keep the flag in the 

focus area of the level, and it is surrounded by landmarks such as street markings, buildings, 

and containers. It is common in FPS games to place the flag in an area that does not have only 

open areas surrounding it, in order to avoid direct line of sight. Not providing any cover will 

lead to very poor gameplay, as opposing team members will be able to kill each other at a 

long distance. Evidence of this potential flaw in game level design – which has been avoided 

in this instance by keeping the main elements in close proximity – can be seen in older 

releases of Battlefield, War Planes, and similar, very open large-scale maps. This flawed design 

could potentially lead to both teams ‘camping’, rather than pursuing the intended goal of the 

game, i.e. to capture the flag. 

 

Figure 9 - Candidate level with annotations. 

The dark grey squares in Figure 9 represent building placeholders. While the building assets 

in the final level are not exactly fully square, and do not always perfectly fill a full square, the 

difference between this simplified view and the resulting game level is marginal. It was 

deemed not worth the additional visual clutter that a perfect representation would have 

added to the game level design tool. I wanted to maintain an important goal, i.e. simplicity, 



67 
 

in order to allow the user fast decision-making, and to reduce fatigue as much as possible. If 

fatigue caused by visual clutter had impacted the results sought by this study, it may have 

distorted the findings concerning the software agent counteracting such fatigue. 

Containers, being an element that provides additional, very effective cover due to their 

position in the middle of streets, and because of their odd angles with regard to the buildings 

and relatively linear position of the street elements – are shown as smaller grey rectangles 

(Figure 9). Figure 10 shows a rendering of the map example to illustrate how the map 

translates into an actual game level. 

 

Figure 10 - Three-dimensional rendering of map shown in Figure 9 

While the overall cluster of elements may appear reasonably small, it is important to 

understand that each cell representing a building or a street element is 25m squared. 

Accordingly, running at fast speed from end to end will take roughly one minute, which makes 

this example level in Figure 9 a similar size to typical medium-sized levels in CS:GO or 

Insurgency. This consideration is important, as the game mode is entirely based on infantry 

without vehicles, with a maximum of eight players in the map, which in turn can lead to very 

few encounters in a significantly larger map, based on my initial gameplay tests. Few 

encounters were considered less engaging and less motivating by test players. Therefore, the 

size presented in this average example also represents a size considered ‘engaging’ and ‘fun’ 

by participants. 



68 
 

4.1.2 Genetic Algorithm Implementation 

The Genetic Algorithm used in this study employs value encoding instead of canonical binary 

encoding, to ensure that properties of map elements such as street, building, flag pole, spawn 

point and container on street are kept intact through crossover and mutation. The 

chromosome for each candidate of a population is implemented as an array list with individual 

genes as list elements. The genes are the street elements that form the path including all 

relevant information as shown in Figure 11. The chromosomes are initialised with random 

properties for each gene and a random path length between 3 and 10 elements. 

4.1.2.1 Encoding 

Given that the path length varies from candidate to candidate, the implementation of the 

value string as a list enables varying path length by adding further elements into the list. Each 

element represents a street section, starting with the red spawn point (see Figure 11). 

 

Figure 11 - Chromosome contains encoded values for each street element 

The gene holds information about the direction of the neighbouring street elements, 

neighbouring buildings (if applicable), whether they contain a shipping container as obstacles 

and how the shipping container is positioned and rotated for each street element in the list. 

Further, information whether it is one of the two spawn points or the flag pole is stored. 



69 
 

4.1.2.2 Recombination 

The crossover used in this study is a single point crossover chosen by a probability test against 

each path element of the first parent, which in turn is also randomly picked from the two 

parents submitted for recombination by the user. Owing to the variable path length, another 

random point is probabilistically determined for the second parent. Figure 12 illustrates how 

recombination is performed. Finally, based on the mutation rate, each of the chosen elements 

is altered, for example adjacent buildings added or removed, path direction changed (and 

subsequent elements moved into their new cells) or containers removed, added or simply 

rotated and repositioned. 

In a final step, the path is re-centred on the terrain to avoid the path creeping out of the play 

areas through further recombination, and the flag pole re-centred to the middle of the entire 

path. 

 

Figure 12 - Recombination including crossover and mutation 

4.1.3 Level design prototype Interface 

The level design in this research is concerned with procedural game level generation, which 

supports a human designer to create first-person shooter levels. The aim is to allow human 

designers to create a larger number of levels than would be possible by using a fully manual 



70 

level editor. The motivation behind this goal is to potentially reduce the cost of game asset 

(levels/maps) creation, reduce the time needed to create such assets, and to increase the 

variety of first-person shooter maps that a human designer is able to create within a certain 

timeframe. Cost of game asset creation has been identified as a source that can reduce the 

profitability of a computer game, which in turn cuts into the profit a game company is able to 

make (Koster, 2018). Time-to-release of a game or additional game maps are also factors that 

impact on a computer game company’s ability to remain competitive (a shorter design cycle 

can lead to more frequent content releases). Reducing and simplifying game content creation 

can also help designers to create more iterations, which in turn may improve playability and 

ultimately, the success of a first-person shooter game. 

This study uses a single human user (the designer) and multiple computational agents to 

control the underlying genetic algorithm of the design system. The human designer acts as 

the selection operator by selecting two parents within a population of 16 candidates. These 

candidates are presented as simplified top-down versions of a fully playable game map. An 

example of the user interface is shown in Figure 13.  

Figure 13 - GUI example for the prototype tool. 

The 16 rectangular blocks in top-down view represent the 16 candidates. The highlighted 

green and blue candidates represent the parent solutions currently selected by the user. Both 

of these are also shown as a simplified pseudo-three-dimensional view on the right-hand side, 



71 
 

to provide a better view for judging the position of containers, buildings, and other elements. 

There are also simple debug outputs visible at the bottom, but these have little relevance to 

the user, and are only implemented for observation purposes by the researcher. 

For the purpose of easy referencing of individual candidates, I will use the convention shown 

in Figure 14 in my discussion. 

 

Figure 14 - Naming convention for individual candidate tiles. 

As previously indicated, the two top left solutions (C1 and C2) are the parents from the 

previous generation (elitist strategy implementation), and the two top right solutions (C3 and 

C4) are the highest ranked candidates selected by the computational agents. A detailed 

description of how this selection and ranking is done will be provided in the following sub-

sections on the different agents, and when discussing the multi-agent system in section 4.1.8. 

After selecting these two parents (the selection can be changed at any time until breeding is 

initiated), the user simply has to press <SPACE> in order to start the breeding process. These 

are the only inputs required by the designer, which are also recorded as part of the telemetry 

stream. The user has the option of rotating the two pseudo-three-dimensional views in order 

to gain a better view of any blind spots.  



72 
 

4.1.4 Player experience goals 

As the driving metric behind the player-centric design process, player experience goals 

(Fullerton, 2008) were central to the development of this study, the prototypes used, and the 

qualitative data collection effected by designers and play-testers. Prior to presenting a 

detailed discussion of the prototypes and the experimental design, an overview of player 

experience goals used in this research is needed. 

It is important to understand that these goals are only partially influenced by my own work 

on the prototype. Ultimately, the designer has control over how these goals are defined, and 

consequently, how players will experience the resulting levels. This happens through the 

layout of the level, and all design decisions will have an impact on whether a particular goal 

gains more importance, or is less impactful, on the final result. Regardless, to enable the 

designer to set player experience goals, the prototype needs to have the option to do so. It is 

worth noting that these goals are not pre-set by the programmer of the tool, but rather, by 

the user of the multi-agent system. The programmer defines the set of possible mechanics 

that will help achieve player experience goals, but the multi-agent system defines which of 

these goals end up in the actual game level. This circumstance is important in my view, as it 

highlights that there is no pre-conceived nature embedded within the tools, allowing the 

designer to pursue their own goals; as such, the computational system augments the 

designer, rather than of replacing one of the most significant functions of their work. 

Implementation should offer as many potential goals as possible, enabling the designer and 

the agent system to select the specific goals relevant to them. 

I will demonstrate my own thinking behind potential player experience goals, which can be 

construed as a result of the designer process. However, the designer is not bound by strictly 

following a scripted procedure and is still able to alter the goals quite significantly. As the 

results section will show, some designers made use of this freedom and subsequently derived 

unexpected results. 

Free movement: players are free to roam the entire map without pursuing any match-

attributing action. However, it is assumed that players will aim to work their way towards the 

flag and defend it by killing opponents. 

Teamplay: while the players can pursue solo-play and explore the map on their own, 

and even ignore the necessity of killing opponents in order to ensure a team win, it is assumed 



73 
 

that players will seek to contribute to their team’s efforts by providing cover fire, and actively 

looking to capture or defend the flag. 

Cover: it is assumed that players will try to seek cover from enemy shots. Therefore, 

game elements in the form of obstacles will define an important part of the player’s 

experience.  

Map size: it is further assumed that players will (based on the above player experience 

goal) seek to work together to either capture or defend the flag. Map size plays into this goal, 

as the player needs to be able to see other team members and will try to cover any open 

ground with defending or cover fire. Therefore, a sufficient map size that is not too large or 

too small feeds into the players experience goals. 

Balance: players are assumed to experience a sense of balance between a variety of 

game mechanics, which in turn will inform the overall play experience. For example, players 

will presumably seek to have similar opportunities to defend or attack a flag, no matter which 

side they are on. A bias for one team, through issues such as an imbalance in cover and line 

of sight, proximity to the flag, team size, or the skills of players, will have an impact on this 

player experience goal. Most of these factors are controlled by the designer, and only a few 

are subject to different mechanisms; for example, player skills will have to be balanced 

through other means such as a point-based match system, which is currently not part of the 

prototype design tool. 

In conclusion, it is apparent that covering all possible design goals and implementing them as 

an ‘offer’ to the designer and the multi-agent system will be difficult. Nonetheless, I believe 

that the important mechanics have been considered, and that many different player 

experience goals can be achieved with the current prototype. The results chapter discusses 

whether design experts agreed on this matter, and how they may wish to see this aspect 

improved. 

4.1.5 Design Expert Agent 

The design expert agent (DEA) is the core of the computational agent system. It models a 

(human) game level designer, as suggested by Zhu et al. (2017), and applies high-level, 

abstract concepts to FPS maps in order to evaluate their quality. This agent represents a main 

contribution of this thesis and implements a novel approach to procedural game content 



74 

evaluation. Concurrently, the agent also serves as a low-level utility agent providing core 

functions to the system as a whole. It runs independently in the system, utilises digital 

differential analysis (Museth, 2014) to find intersections with solid obstacles from its current 

position (which is freely adjustable within the boundaries of the entire map), tests metrics 

pertaining to the relationship between both spawns and the flag pole, and assesses the entire 

breeding pool in preparation for candidate selection. Furthermore, it actively selects the two 

candidate solutions with the highest ranking from the breeding pool and feeds them into the 

16 candidates of the next population. 

To provide detailed insight into how this agent works, I will first describe the heuristics that 

have been developed from designers’ accounts of their game level design process. Then, in 

the following subsection, I will provide a few examples of the analysis that the agent performs, 

enabling heuristics to be applied for a ranking of game levels, so that two candidates can be 

suggested to the user for each population of candidates.  

4.1.5.1 Heuristics 

Zhu et al. (2017) used a large database of online game reviews to develop playability 

heuristics. Taking a quantitative approach, they conducted a full lexical analysis of nouns and 

adjectives (Zhu et al., 2017). When I initially set out to obtain data from game designers, I 

realised that direct access to participants as a means for collecting data, and for gaining an 

understanding of their workflow and processes, could be impractical. I therefore considered 

the approach taken by Zhu et al. (2017) a viable option for collecting my data. However, there 

are not nearly as many online sources and print media that explain the actual methods game 

level designers use. Additionally, Zhu et al. effectively repurposed a source that had a 

different goal (an online game review that assesses games from a consumer perspective) and 

used it to interpret the playability of games. They highlight that this approach is naturally an 

interpretation, and prone to some inaccuracies. I felt that using designers’ accounts of their 

processes directly would potentially remove some of these inaccuracies; however, my 

approach still depended on the quality of the designers’ own assessment and accuracy of their 

description of their methods. I am also aware that a qualitative approach requires very careful 

consideration of biases that I may hold myself, in addition to the possible inaccurate reporting 

of sources. To mitigate these implications, I decided to conduct a full qualitative analysis of 

all sources using NVivo, where I could identify topical parallels between different sources 



75 
 

quite easily in order to filter out a number of stray remarks that may or may not have any 

actual impact on the game level design process. This also reduced the number of heuristics to 

a small number, which in turn provided me with an extremely focused approach for my agent 

design. Overall, my methods for developing designer heuristics is closer to the work of Pinelle 

et al. (2008), who took a qualitative approach to find usability heuristics for video games. 

These authors highlight the lack of formal evaluation methods and suggest a simple three-

step workflow. First, the problem identified by the source needs to be captured; then, these 

problems need to be categorised and grouped. Finally, based on the resulting (few) 

categories, actual heuristics can be developed.  

Contrasting the approach taken by Nacke et al. (2009), who employed a combination of 

biometrics (EMG) and psychophysiological measures, plus a number of simple in-game 

metrics, the present study uses heuristics based on expert publications (books, online blogs 

and journal articles authored by game designers), a selection of in-game metrics, and eye 

tracking. 

The heuristics that were developed for the DEA can be summarised as follows:  

H1. Balance of cover and line-of-sight 

FPS level design experts identified a balance between sufficient cover and some areas 

that provide direct line of sight between competing teams as one of the crucial key 

elements that drives gameplay. There must be enough cover so that opponents are 

able to escape shots taken from a long distance. Most players do not have the skill to 

take long shots, and as such, the opportunity to move towards the goal of the level (in 

this case, the flag pole capture area) is increased. Otherwise teams may fall into a 

lockdown with neither moving forward, known as ‘camping’ (Wright, Boria & 

Breidenbach, 2002), which leads to the next heuristic. 

H2. Remove camping hotspots 

Hotspots (also called ‘choke-points’ by some experts) can be enjoyable areas where a 

balance between cover and line of sight is present. Camping hotspots however, are 

sections of a game level where players exploit the hotspot to gain kills, rather than 

play to win the match (Wright et al., 2002). Removing these camping hotspots has 

been identified as a key element for immersive gameplay. Expert designers also 



76 

pointed to better playability on several occasions as a result of these camping areas 

being removed. 

H3. Distance to first cover from spawn points 

The third heuristic is again based on areas of the map that provide cover to players. 

When the match starts, both teams presumably rush towards the capture point, but 

given sufficient map knowledge, the teams also know where first contact with the 

other team is likely to occur. Therefore, in competitive matches, teams generally only 

rush toward those first cover points, and take a more strategic play approach to avoid 

getting killed too quickly. The distance to the first cover point (or in some cases, the 

time it takes a player to run to the first cover point, depending on the run speed 

implemented by the developer) is another key heuristic for good, playable levels. 

H4. Distance between spawn points 

Linked to the above, the overall distance between both spawn areas defines the time 

players need to make first contact. However, given that there is generally more than 

one possible pathway that can be taken towards the capture point, for example, 

navigating left or right around a larger obstacle such as a building (or shipping 

container), the point for first clashes, as highlighted in (3) varies, depending on the 

path taken by the individual player. Experts identify the overall distance between 

spawns as another important metric. 

H5. Distance from spawn points to capture point (flag pole) 

Finally, the distance between each spawn point and the capture point is important, 

assuming that they are not exactly equal in distance, because then the flag pole/ 

capture point would essentially be the first point of contact between teams anyway. 

Measuring the distance between spawn and capture point for each team across 

different possible pathways allows for making a statement about balance between 

spawns. If one team gains a significant advantage because their spawn is next to the 

capture point, the level may not gain significant popularity, as it may be considered 

playable, but not very fair. This is particularly true if the spawn of the attacking team 

is significantly closer to the flag than the defending team, in which case the attackers 

will likely not face too much resistance before reaching the capture point. Expert 

designers consider a near equal distance across multiple pathways as ideal, and this 

was implemented as another heuristic in the designer expert agent. 



77 

The abovementioned heuristics were implemented in the current designer expert agent 

(DEA). Several possible pathways were considered in the final implementation using A* 

pathfinding, and multiple potential choke points were measured using digital differential 

analysis. A few additional heuristics that were extracted from expert accounts have, however, 

not yet been implemented, as they do not fit the minimum-viable product approach of this 

study. For the purpose of completeness, and also to provide an indication of where future 

level design prototypes can be taken, I wish to provide a brief discussion of these heuristics 

in the following paragraphs. 

H6. Shape of main corridors 

FPS levels that have more than one main route between spawn points and the capture 

point often follow either an H-shaped or a double T-shaped layout. This is considered 

successful, and encourages strategic gameplay in some of the most acclaimed FPS 

maps, such as ‘Dust2’ and ‘Sienna’ in CS:GO, but requires careful consideration of 

choke points and sufficient cover (see above) to avoid both teams getting stuck, or 

simply camping for points, rather than a win.  

H7. Elevation 

Game levels with not only a flat terrain, such as my simplified prototypes, but 

elevations and perhaps multi-storey buildings, must take the same heuristics into 

account, but apply them in a three-dimensional fashion. This is highlighted as an 

explicit goal by some experts, for example, ‘Dust2’ has a bridge and recessed corridor 

(the H-shape) that require additional measure to avoid players camping on high 

ground. To illustrate the problem, if a player has a wall as cover, and is above another 

player, only their head and gun will be visible. In contrast, the player who has no high 

ground is more exposed due to the angle of the attacker. The head and upper body, 

or even the full player character may be visible, which makes attacking and hitting the 

player much easier. Therefore, if one team has better access to high ground due to 

the map layout and the time it takes to reach certain strategic points, the other team 

must be given additional obstacles to ensure map balance. 

H8. Orientation through landmarks 

Higher complexity, such as three-dimensional gameplay provided by building 

interiors, elevation, changing terrain and similar factors, also necessitates additional 



78 

orientation for players, for example, through landmarks. This is not only an optional 

feature that makes the level easier to understand, but also provides a foundation for 

effective communication between players. This is very important in competitive FPS 

team-play.  

4.1.5.2 Digital differential analysis implementation 

The designer expert agent needs the ability to independently assess each candidate based on 

the heuristics that have been developed. It relies heavily on digital differential analysis, which 

is an efficient and fast way to traverse grid cells between two points, to find any intersections 

with obstacles. It essentially provides a simple vision for the designer expert agent, enabling 

it to detect open areas that provide direct line of sight between obstacles, and of course, a 

detection mechanism for the obstacles from player positions, which is similar to having eyes, 

or radar-like functionality. In a game engine, this is generally provided in the form of ray 

casting, which involves sending out a ray from a defined position, which subsequently returns 

intersections with colliders in the game environment. It is often computed on the GPU and is 

a highly efficient approach for giving NPCs a simple form of vision. Given that the prototype 

is not running inside a game engine, and owing to the lack of any ray casting provided by Java 

and the libraries I employed, I decided to implement a fast and simple version of ray casting 

myself that feeds into the digital differential analysis. My implementation allows for a two- 

dimensional analysis, with the capacity to be expanded into three dimensions if needed at a 

later stage, for example, for levels that include the interior of buildings, or game environments 

that are located in mountainous areas, or any other type of elevation. 

The agent is able to move freely within the simplified environment of the candidate, and casts 

rays from different positions to observe where a player will see obstacles from. It records the 

first collision, and given that players cannot see through obstacles, this is sufficient, rather 

than recording every intersection with all obstacles along that particular ray. The same 

process is effected from the perspective of the other team. The agent starts inside the spawn 

areas and gradually works towards the flag pole using path planning. This is of course a 

simplified approach, as it ignores positions that are, for example, off the main pathways 

towards the target (the flag pole). In a game, some players may choose to veer off the main 

pathway for strategic positioning. I am planning to expand the agent’s capabilities in future, 



79 
 

including adding different player traits such as defensive play, aggressive offensive play, 

strategic play, and others. This will impact on the agent’s behaviour and add a broader scope 

for exploration of potential positions off the main pathway. As previously noted, some 

simplifications are the result of reviews and discussions with experts. I also feel that adding 

every possible option to an early prototype may convolute the output and make it more 

difficult to arrive at rigorous conclusions. Different player traits can be difficult to interpret 

from data, and are subject to significant noise, particularly when players opt to ‘free-play’. 

Free-play commences when players decide to create their own goals, rather than follow the 

gameplay intended by the game designer. In this case, players virtually create their own mini-

game within the game (Wright et al., 2002). Accordingly, players do not follow the immediate 

goals of the game such as capture the flag. Therefore, this prototype assumes that players 

will indeed follow the main goals, and disregards players engaging in contradictory behaviour. 

Without jumping to conclusions, I believe the DDA has been proven a suitable approach for 

enabling an agent to assess game levels through simple ray casting and collision detection. It 

is an effective algorithm that offers the speed needed in a Java prototype, given that we 

analyse the entire mating pool, with large numbers of candidates, which in turn hold a 

number of objects and require analysis for many different points within the map, e.g. spawn 

points, flag pole, and every container and building that serves as an obstacle. If a design tool 

is implemented as a plugin of a game engine that already offers ray casting and collision 

detection, DDA can be replaced by tools native to the engine, as they will likely be highly 

optimised and potentially much faster. For an academic prototype, however, the DDA is a 

viable and reasonably simple solution. 

4.1.5.3 Fitness assessment 

The previous two subsections of the DEA discussed heuristics and digital differential analysis 

implementations. This section illustrates how the resulting fitness was numerically assessed 

in order to rank the candidates in the mating pool. A quick word about the difference between 

this approach and a canonical fitness function may be appropriate here. The canonical fitness 

function is a mathematical function that assesses a current population and is the core of the 

selection operator. The fitness calculation of the designer expert agent is used to select a 

candidate for the population after recombination and mutation operators have been applied 

to the mating pool. Its fitness does not guarantee that it will be part of the next mating pool 



80 
 

by default, and as such, it does not act as a selection operator. The high fitness here simply 

means that it will be presented to the human designer. The human designer will ultimately 

decide whether this highly fit candidate will make it back into the next mating pool. In this 

way, the human designer stays in full control of the selection process, and the designer expert 

agent merely makes a recommendation. 

The fitness calculation performed by this agent takes the following measurements, initially 

performed by digital differential analysis: 

M1. From green spawn point to flag, number of obstacles. 

M2. From red spawn point to flag, number of obstacles. 

M3. From green spawn point to red spawn point, the number of obstacles (cover) 

  from the current ray casting point. 

M4. Distance from green spawn point to first obstacle (cover).  

M5. Distance from red spawn point to first obstacle. 

M6. Distance from flag to first obstacle, casting towards red spawn point. 

M7. Distance from flag to first obstacle, casting towards green spawn point. 

Plus, the distance between: 

M8. Both spawn points 

M9. Red spawn to flag 

M10. Green spawn to flag 

The calculation of the number of obstacles between flag and both spawn points is based on 

the notion that a large number of obstacles will provide sufficient cover, whereas a low 

number of obstacles create open spaces. The first heuristic (H1) states that a balance of cover 

and open space is important for effecting engaging gameplay. The agent divides the number 

of obstacles between flag and spawn by the distance between flag and spawn. Therefore, if 

the level is larger than average, a larger number of obstacles is required to gain a high score 

for balance between cover and line-of-sight. If, on the other hand, the level is very small, a 

small number of obstacles is sufficient for providing balance that leads to a high fitness score. 

H1 is implemented as: 

𝐻𝐻1 =
� 𝑀𝑀1
𝑀𝑀10� + �𝑀𝑀2

𝑀𝑀9�
2

 



81 
 

Calculation of distances between certain points of interest such as the flag pole and nearby 

obstacles, as well as number of obstacles between spawns and the overall distance, is based 

on the notion that this distance represents open space, without cover to remove camping 

hotspots (H2), and to protect the spawn for each team. A larger distance means a lower score, 

and a smaller distance provides a higher score. 

H2 is there calculated as follows: 

𝐻𝐻2 =
� 1
𝑀𝑀6� + � 1

𝑀𝑀7� + �𝑀𝑀3
𝑀𝑀8�

3
 

The normalised measurements of distance between spawns and first cover (M4 and M5), 

distance between spawns (M8), and finally, distance from spawns to flag (M9 and M10), all 

directly address heuristics H3 to H5. 

Finally, the agent calculates an average between these measurements, which results in a 

score between 0.0 and 1.0 as each of the heuristics calculations has already been normalised. 

This average represents the unweighted fitness score and is calculated as: 

𝑢𝑢𝑢𝑢𝑢𝑢𝑒𝑒𝑢𝑢𝑢𝑢ℎ𝑡𝑡𝑒𝑒𝑡𝑡 𝑓𝑓𝑢𝑢𝑡𝑡𝑢𝑢𝑒𝑒𝑓𝑓𝑓𝑓 𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠𝑒𝑒 =
𝐻𝐻1 + 𝐻𝐻2 + 𝐻𝐻3 + 𝐻𝐻4 + 𝐻𝐻5

5
 

I decided against applying weights to the individual scores, simply because there is no 

indication in my data sources that any of the aforementioned heuristics take precedence over 

another. I believe, however, that there may be merit in conducting a study among level design 

experts to obtain a weighting of heuristics, if the experts agree on a ranking of importance. 

This may bias the fitness score of the agent towards certain factors, for example, cover and 

open space around the flag pole may be more significant for engaging gameplay than cover 

and open space around the spawn points. For now, I do not believe that this bias should be 

introduced based on a hunch, rather than reliable data. An alternative to weighting may be 

multi-objective optimisation, using each of the heuristics to remove solutions that are not 

close to the pareto-optimal boundary. Both of these ideas can be explored in future work. 

4.1.6 Diversity Agent 

This agent has some similarities to the DEA, in that it acts on the DEA’s knowledge, but applies 

it in a different way. It seeks to identify levels that are not represented in the population 

shown to the human agent, but nonetheless have a high degree of fitness, while being very 



82 

different to the solutions proposed by the DEA. For example, if the DEA selects levels that are 

predominantly horizontal, the DA will seek out levels that are vertical, while maintaining a 

high level of fitness. However, fitness is the parameter it compromises on first – the most 

important goal for the DA is to identify levels that are different, levels that provide some 

degree of diversity to the population. The main idea here is to avoid the entire multi-agent 

system from getting stuck in a local maximum, that is, the state where the user can only select 

from very similar levels and therefore, cannot get out of the local maximum themselves. 

To avoid creating an agent that simply selects the weakest candidates from the breeding pool, 

the diversity agent seeks to find a candidate where only one property is significantly different 

from the highest ranked solution according to the designer expert agent. For example, path 

length may be very different, or one team may have much less cover than in the strongest 

candidate. All other parameters are kept at a high ranking. The diversity agent selects the one 

trait that it seeks to vary in its selected candidate, based on a random decision from 

generation to generation. It is not the parameter that is ranked the highest by the designer 

expert agent that drives this decision by default. The reasoning for this is to avoid including 

only the most obvious counterpart of the highest ranked candidates, and instead create 

actual diversity. 

This agent is the reason why both agent-suggestions in C3 and C4 are always somewhat 

different, but highly-ranked candidates. Without the diversity agent, C3 and C4 will often be 

identical, or virtually identical. With this agent, both suggestions look similar but have one 

distinguishing feature. The reasoning for this is to avoid two (virtually) identical candidates 

among 16, as this will result in a significant proportion of each population not offering any 

variety. To a degree, the diversity agent can be considered a high-level mutation operator 

that is based on heuristic diversity. While it does not actually change the DNA of any 

candidate, it ensures that the new population includes high-performing, but diverse 

candidates. 

One reason why it is difficult to claim that the designer expert agent always selects the highest 

fitness, with the diversity agent taking second place, is the fact that both candidates may have 

the same numerical score. While this may seem counterintuitive, it can be easily explained. 

Both candidates may be different in that, for example, the path is horizontal in one case and 

vertical in the other, and the numerical score may be identical, as this does not matter to the 



83 
 

DEA. Thus, within the mating pool, there may be a number of candidates that score the 

highest rank in that particular pool. This will be correct if one only considers the particular 

snapshot of that particular generation. There is no difference if both levels with a horizontal 

and vertical level arrangement are played by players, assuming that all other metrics such as 

cover, line of sight, place of spawn, and so forth are identical. Where it does make a significant 

difference, however, is when the human user combines one candidate with a different parent. 

Here, the arrangement of streets suddenly makes a significant difference, as it may lead to 

very different children when two street paths are combined. Therefore, the diversity agent 

makes a difference to the overall process, while appearing seemingly insignificant when only 

judged by a sometimes identical and often very similar numerical score compared to the 

Design Expert Agent. 

4.1.7 User Preference Agent 

The user preference agent was an aspect developed during my Master of Philosophy and was 

implemented and tested prior to embarking on this degree. I decided not to use it for my 

evaluation and will provide a reason for this. However, I believe that it needs to be included 

here, as it is a logical addition to the multi-agent system in future.  

The user preference agent uses a J48 algorithm, which is an open-source implementation of 

the C4.5 decision tree algorithm. It aims to detect user preference by considering user input 

using the mouse and keyboard, which is used as a training set for the classifier over a number 

of generations. Then, in order to counteract user fatigue, a typical issue with interactive 

genetic algorithms, the classifier deduces user input, based on the training it received. A 

number of generations are used to compare the prediction of the model and the actual input 

for further training of the classifier. Eventually, the computational approach is used over the 

actual user input at a high ratio, for example, 10 computational generations and then one 

human selection. This allows running the interactive genetic algorithm for significantly more 

generations, which in turn helps the system to converge towards a solution. At the same time, 

the user is not affected by fatigue as much as when using a traditional interactive evolutionary 

algorithm, because the user preference agent runs a significant number of generations once 

it has been trained by initial user selections. My study found an increase in performance of 

roughly 15%, representing significant time-saving for the human user. Even a slight reduction 

of production time in a game level design department, will allow for either more levels to be 



84 
 

made for a particular game, or simply effect the better utilisation of resources with the help 

of computational tools. 

There are two reasons why I decided to leave the user preference agent switched off in the 

present study. First and foremost, the agent had been developed as part of a previous project 

and lacks novelty in its current form. Therefore, I believe that it will not add significantly to 

this thesis in terms of novelty and scholarly contribution. Second, the original implementation 

uses a J48 classifier, as noted above, which is prone to noise when used in small datasets. 

Finding a classifier that is better suited to this particular use, where few samples can be used 

for training, and testing measures to counteract shortcomings (Finlay, Connor & Pears, 2011) 

without removing J48 altogether are steps that will be taken in future updates of the multi-

agent system. These measures may include feature selection and pruning the decision tree. 

4.1.8 Multi-Agent System 

The level design in this study is loosely based on Kosorukoff’s (2001) human-based genetic 

algorithm framework, which allows a human user to act as an integral part of the genetic 

algorithm. The intent is to augment the abilities of level designers and allow designers to 

explore different options (diversity), as well as additional options, through a higher number 

of iterations. If the user is simply employed to control a genetic algorithm by selecting the 

candidates for breading, effectively becoming the selection operator of the genetic algorithm, 

and if there were no additional human or computational agents, the resulting system will 

simply be an interactive genetic algorithm (Takagi, 1998). However, the approach proposed 

by Kosorukoff (2001), and adopted by the current study, develops this concept further. The 

human user (or users) can take on different roles within the system, and effectively act as 

different operators of the genetic algorithm. Additionally, one or multiple computational 

agents will take on additional roles and control one or many operators. 

The aforementioned agents are responsible for level analysis, creating diversity among the 

potential candidate solutions in each population of the genetic algorithm, and applying design 

knowledge extracted from human expert statements about their process. These three agents 

work in conjunction with a human level designer to create a playable FPS game. This section 

describes the structure that ties these individual components together. It is founded on 

human-based genetic algorithms, a framework that allows human and computational agents 

to become either selection, crossover, or mutation operators (Kosorukoff, 2001). My multi-



85 
 

agent system uses a variant of this framework, where the human agent is strictly responsible 

for selection, and where multiple computational agents share the tasks of recombination and 

mutation (Figure 16). 

 

Figure 15 - Schematic overview of the multi-agent system. 

Therefore, instead of providing a description of the multi-agent system on one hand, and the 

genetic algorithm on the other, I am presenting the entire system in this section. This is also 

owed to the heavily interlinked nature of the computational agents, the human designer, and 

the operators of the genetic algorithm. 

The system has no mathematical fitness function that selects candidates for the next mating 

pool (as in the case of a canonical genetic algorithm), but uses the output of several agents to 

evaluate fitness of the candidate pool and individual candidates (see Figure 17). It actively 

selects two candidates based on metrics learned from the documented processes of expert 

designers. 



86 
 

 

Figure 16 - Overview of interactive evolutionary process employed in this study. 

It is ultimately the designer who makes the selection, regardless of whether the agents deem 

the user selection the fittest option. While this will potentially lead to the selection of 

candidates that are not the fittest by numerical measures, it provides the designer with some 

flexibility. Rather than being locked in by metrics, the designer is able to change course for 

the final result by intentionally selecting any solution, regardless of its fitness. My particular 

test case is domain-specific and has not yet been generalised to domains other than FPS game 

level designs. However, I believe that a similar system can be adapted beyond FPS levels, 

assuming that sufficient data for extracting heuristics for the designer expert agent is 

available. 



87 

The genetic algorithm of this system employs an elitist strategy, which means that both 

parents, selected by the human agent (the game level designer), are put straight back into 

the next population without any adaptation. The main reasoning for employing an elitist 

strategy is that any subsequent population should not be less fit than the previous one. Given 

that the designer may not have chosen the numerically fittest candidates, but perhaps any of 

the other candidate solutions for breeding the new population, this may not hold true. 

However, it ensures that the human designer views their selection from the previous 

population in the current selection, in case the genetic algorithm did not recombine these 

two candidates into any acceptable new solutions. This measure was taken after initial tests 

showed that participants were sometimes confused by not seeing any solutions that were 

(subjectively) at least ‘as good’ as the previous selection they made. Presenting the user with 

exactly the same two solutions that were selected in the previous run, alongside 14 new 

candidates based on recombination, and including mutation, removed this perceived issue 

with the system.  

In summary, any bred population of 16 candidates consisted of the two parents selected by 

the designer, two candidates selected from the breeding pool by computational agents, which 

ranked the entire breeding pool by fitness, and 12 candidates randomly selected from the 

breeding pool. 

4.1.9 Eye tracking and heatmap generation 

During the evaluation trials for my prototype design tool, each participant worked through a 

series of game level generations. For each run, I collected the raw position data streamed 

from the eye tracking SDK. This stream contained continuous x and y positions in screen-space 

at a rate of 30 Hz. The eye-tracker provides full pre-processing, so that the stream can be 

saved directly to the computer hard disk. This pre-processing includes the triangulation 

necessary to convert gaze data from both eyes into a target position on screen – essentially, 

the point that the participant looked at. Unfortunately, I had no access to a commercial 

research-grade eye tracking system, which provides extremely high accuracy, and had to fall 

back on using a relatively simple device made for playing games, a TOBII 4C. 

I conducted initial tests to establish the eye tracking accuracy and found that I could 

reproduce results within a small ellipse of 30 pixels, with high accuracy and high precision. 

‘Accuracy’ here is defined as the ability to locate an area on the screen using eye tracking. 



88 
 

‘Precision’ is defined as the ability to reproduce these results. I tested this with a simple colour 

bubble on screen and a number of target points for positioning this ellipse at. Given that I was 

interested in a fairly large area (the tiles that include the game level candidates are 320 x 200 

pixels each), the accuracy was sufficient by a large margin. 

For the evaluation series with my participants, I streamed the data into a CSV (comma 

separated values) file. The collection of eye tracking was synchronised to the main module of 

the genetic algorithm via OSC, a simple network protocol. The OSC module was expanded to 

include a simple check as to whether a data pair had actually been received, and that it did 

include a number. If no number was present, a NAN (not a number) was transmitted. I also 

implemented a simple visual cue (a small, dark red rectangle) that was barely noticeable and 

easily ignored by the participant. This simply served my observations in a manner that 

ensured tracking generated valid data, without creating any distraction for the user. 

The heatmaps were generated by an automated process in a Java-based software module. 

The CSV files were read as x and y position pairs. For each position pair, a 50 pixel-wide circle 

was created surrounding the centre of the gaze data. This was written into a framebuffer. 

Once all pairs were processed, the density of all circles at each position of the framebuffer 

was established. Then, the minimum (zero) density to the maximum density read from the 

framebuffer was mapped into a green to red colour ramp to represent a change in density. 

Density represents the intensity at which the user stared at particular areas of the screen. 

While this approach may seem somewhat complicated at first glance, it is based on the need 

to process very different numbers of position pairs, as the length of each trial was defined by 

how long the user took to perform their chosen number of runs, not by a fixed timeframe or 

time limit. This means that however many seconds a participant looked around the screen, I 

would receive 30 position pairs for each second. Using a framebuffer, I was able to generate 

consistent and therefore comparable heatmaps. Otherwise, the length of each trial run would 

have influenced the density of the heatmap, and therefore, potentially distorted visual 

results. Additionally, very short runs, where the designer finalised the decision after only a 

few generations, would barely have been visible at all. At the same time, the runtime of each 

run was still visible by looking at how abundant or sparse bubbles were. Figure 18 shows an 

example of a final heatmap with a long run and high density in some areas. Red represents 

an area of high intensity, and green an area of low intensity. Simply stated, the red ‘heated’ 



89 
 

areas of the image highlight an area the user looked at for a long time, compared to darker 

and green areas. Figure 19 is an example of a heatmap of a very short run, where the designer 

decided to call the result finished after only a few candidate generations. Through the 

aforementioned normalisation, areas of higher intensity are still readable, but the sparse 

distribution of colour blobs clearly indicate significantly fewer measurements, which in turn 

means a much shorter overall runtime. 

 

Figure 17 - Example of a heatmap with long runtime. 

Heatmaps in other projects often show gaze data as rather large blobs, which frequently 

combine into one big coloured bubble. I kept gaze circles fairly small to preserve as much 

detail in my heatmaps as possible, given that I was not interested in a rough tendency of what 

the user looked at, but interested in being able to distinguish between the 16 candidate tiles 

on screen. As a result, individual circles showing gaze position are better observable and 

appear as colour-bubbles. The white grid indicates the area of the 16 candidate tiles. 



90 
 

 

Figure 18 - Example heatmap with a short runtime. 

This section introduced the research prototype and more importantly, underlying heuristics 

in detail. The following chapter offers a discussion of the results of the design prototype 

evaluation.  

  



91 
 

5 Results and Observations 

This chapter discusses the prototype evaluation with professional game designers. While the 

methodology chapter addressed the reasons for collecting the data that has been selected to 

be the focus of this thesis, similar questions need to be asked regarding the analysis and 

discussion of the collected data. What is the perspective and lens that I am applying to my 

analysis? What do I hope to learn from the data? These questions can be linked back to why 

and how I chose to collect data in the first place, which has only been partially answered 

within a broad overview in the previous two chapters. 

My primary objective with this thesis was to develop an understanding of whether the multi-

agent system in the form of a genetic algorithm, using two computational agents plus a 

human agent, is able to perform complex design tasks in such a way that it augments the 

human designer’s abilities, and capture the designer’s intent, without interfering with their 

ideas, and not limiting them to a predetermined choice, for example, through a classical 

fitness function. A fitness function will be limiting in that it only seeks to optimise a small 

number of parameters. I wanted the design to be able to pursue complex tasks, and to have 

a strong influence on the direction the system takes, while concurrently saving time and 

effort. Furthermore, I wanted the system to provide active assistance when design choices 

had to be made, and to provide suggestions to the designer that were not necessarily simple 

optimisations, but which also provided variance and diversity, while also considering best 

practice level design principles. Accordingly, the agents provide a fitness ranking and they are 

also not directly acting in the selection process, so that they are not considered a predefined 

fitness function. To verify whether the system delivered in this regard, I wanted to tap into 

the participant’s game design experience. Accordingly, this is what I attempted to extract in 

the post-participation semi-structured interviews. The focus of this chapter is therefore 

designers’ response to working with the multi-agent system: did they believe it added to their 

experience, or did it perhaps get in their way; did it help them to explore more ideas in the 

same or a shorter period of time; was it not of much use to them, and did they prefer to 

manually design the level layouts instead. 

The issue at hand is that most designers will need a lengthy explanation of what the system 

does and how it works in order to provide direct responses to these questions. The designer 

will need to understand how it works to provide feedback, which will subsequently help to 



92 

improve the system’s tools. Accordingly, my aim was set on gauging designers’ experience, 

rather than engaging in direct (software) design feedback. This allowed me to engage with 

any game designer, as opposed to only those who also understand the underlying mechanics 

of the system, which would be required for direct feedback. 

I also wanted to use the design tests to create a baseline for my multi-agent system as well, 

simply because access to experienced game designers is limited. Consequently, I had to run a 

number of tests with and without the MAS active, while the game designers performed their 

level layout design task. To avoid a potentially loaded question of whether they liked the 

system when it was active, and disliked it when it was not, and to reduce bias arising from 

participant perspectives for or against AI-driven systems altogether, I decided to use the 

aforementioned interview questions, without telling the designers when the system was 

active, and when they were in fact simply controlling the genetic algorithm, without any agent 

support, essentially using a simple interactive genetic algorithm, rather than a multi-agent 

system driving the genetic algorithm. 

Despite my original intent to simply test the hybrid MAS against a baseline, without the game 

designer’s knowledge, the observations and interview responses revealed some interesting 

insights into how game designers think of their own design abilities, particularly when they 

have worked in a professional capacity for a long time. I will discuss this in the following 

sections of this chapter. 

5.1 Evaluation of Game Level Design Prototype 

This section presents the results of the level generation tests with professional game 

designers, and highlights observations recorded during the tests and follow-up interviews. 

Data was collected in a number of ways, specifically, using a pre-test demographic 

questionnaire and the think-out-loud method, in addition to other observational data 

gathered during the tests, software telemetry data (keyboard and mouse inputs, ranking of 

candidate solutions) streamed at the time of the tests, eye tracking data derived from the 

Tobii 4C eye tracking device, and finally, responses to semi-structured interviews, after the 

tests had been completed. Accordingly, a number of quantitative and qualitative sources 

need to be examined and discussed; therefore, the data were segmented into two main 

groups, as shown in Figure 20.  



93 
 

 

Figure 19 – Data source categorisation. 

Bryman (2016) points out that categorisation of research methods and their relevant data 

sources is subjective, and in some situations not entirely predetermined. He highlights that 

even if questionnaires are used, the results may still be considered qualitative data (Bryman, 

2016). In the current study, how the data was collected and how many participants took part 

in the study must be considered. It could be argued that the small number of participants will 

not hold up as a statistically significant sample for drawing wide-ranging conclusions about 

the success of this research for use within the game design community. However, given that 

this is a foundational study that serves as a first step on a longer trajectory, and since this 

study was conducted to determine the next steps towards the augmentation of human design 

processes, and perhaps the automated play-testing of game levels, it nonetheless makes a 

significant contribution, despite its small sample size.  In order to mitigate the potential 

conflict of categories, it also has to be acknowledged that generalisation may not be possible 

based on the results of this study. Instead, the data may only serve to draw conclusions 

related to the direction future development of multi-agent systems will need to take. 

However, to be able to examine the data, and for the simple clarity of this thesis, some of the 

data obtained from game design tests was treated as quantitative, and some as qualitative, 

as shown in Figure 20, which reflects the way it has been collected, rather than treating all 

data from these tests as qualitative, based on sample size. The data will also be presented 

and discussed according to these categorisations, instead of following, for example, a simple 

chronological theme in the order of collection. The reasoning behind this is that clustering the 

data by type seems more intuitive than doing so in order of collection, and may make it easier 

to follow the logic of the approach presented here. 

First, the qualitative data will be discussed, then the quantitative data will be analysed. The 

reason for this order is based on information highlighted in the research design chapter of 

Quantitative data sources

• Questionnaire
• Telemetry – keyboard and mouse
• Telemetry – agent ranking of 

candidate solutions
• Eye tracking

Qualitative data sources

• Think-out-loud
• Observations
• Semi-structured interview



94 
 

this thesis, that is, the need for the triangulation of qualitative data through quantitative 

means.  

This discussion will also consider the semi-structured interviews first, as they seem to provide 

good insight into what the participants experienced from their perspectives, while using the 

multi-agent system. Following on, additional, less-structured elements captured through 

observation and the think-out-loud method will be used to add to the findings of the semi-

structured interviews. Given that these elements are heavily dependent on whether the 

participant was willing and able to verbalise their experience while going through it – a trait 

that seems to significantly depend on having a talkative personality – somewhat more quiet 

participants did not reveal much via their own initiative while using the prototype. However, 

all participants responded well to the semi-structured interview questions, and therefore, 

they are considered a more complete reflection of participants’ experience. 

5.1.1 Participating Game Designers 

The decision to use semi-structured interviews was discussed and justified in the research 

design section of this thesis. I believe the flexibility that this type of data collection offers has 

been hugely beneficial to this project, despite the difficulties that a less-structured approach 

poses when it comes to data analysis. 

In my justification for my participant selection, I point out that access to experienced game 

designers is difficult, not only because it is a position in game studios that is generally sparse 

(as creating a computer game requires only a handful of designers and a much larger number 

of artists and developers). Additionally, most studios bind their employees to non-disclosure 

agreements (NDAs), and these are generally strictly enforced, a situation that is familiar to 

me from my film industry work. Accordingly, speaking about one’s work is typically restricted, 

and meaningful research is either conducted internally, and not to be published, or 

publication is very difficult, both of which hold implications for this study. In summary, it is 

difficult to find a broad selection of game designers to choose from. I have been successful in 

finding a number of different participants who cover a diverse range in terms of gender, 

cultural background, age, gameplay preference, and game design experience. The result is an 

arguably small number of participants (11) for this study, and variance in expertise, due to 

the variance among participants in experience as game designers. However, it has been noted 

that in usability studies, a good rule of thumb for number of participants is 16 ±4 (Alroobaea 



95 
 

& Mayhew, 2014); thus, 11 can be considered acceptable. I am aware that the literature is a 

bit divided over what a good sample size should be. Some argue that only 5 users are able to 

highlight 80% of usability problems in prototypes, but only 20 or more participants find at 

least 95% of all issues (Faulkner, 2003). Others find that 10 ±2 participants are sufficient 

(Hwang & Salvendy, 2010). Schmettow (2012) however argues that there is no ‘magic 

number’ and that a great discrepancy between general and expert users can be 

demonstrated. Using a less rigid interview style that enables diverting from scripted interview 

questions helped to offset the discrepancies between the different participants with varying 

levels of expertise I was able to find for my study. I would also argue that usability testing is 

strictly aiming to identify faults in a system or interface, whereas this study is explorative and 

seeks to understand what people think and how they behave in collaboration with a Multi-

Agent System. 

My participants agreed to submit a pre-participation questionnaire that considers a small 

number of demographic and gameplay, as well as game design related preferences. The intent 

of doing this was to gain an understanding of who would be working with the prototype, and 

how some of their think-out-loud and interview responses may be explained. 

The least experienced designer had roughly two years of game design experience, whereas 

the most experienced game designer had been active in the industry for more than 21 years, 

and had worked on Counter Strike Condition Zero, among other released AAA titles, which 

made their experience highly relevant to this study. 

The pre-participation questionnaire captured three age groups reflecting young adults, 

middle-aged designers, and older participants, who were mostly born before the dawn of 

home computer games (ages 18-29, 30-49, 50+). Except for one participant indicating that he 

belonged to the last group (aged 50+), the remaining participants were evenly distributed 

across the first two groups, with four in the first group (ages 18-29) and six in the second 

group (ages 30-49).  

Considering job requirements indicated by advertisements in the game design industry, it can 

be said that this study was conducted with game designers mostly at senior level (5+ years of 

experience) and a few at junior level (1-3 years). 



96 
 

The gender balance was roughly two thirds in favour of male participants, which possibly 

reflects a gender bias in the game industry. If I had had access to a larger group of potential 

participants, I would have preferred to have a balanced gender distribution, as I believe that 

games are played by both genders, and while female game developers are still under-

represented in the industry, I believe this will eventually change, similar to the environments 

in a number of other industries.  

5.1.2 Observations and think-out-loud results 

After introducing the game designers to the prototype tools, and after highlighting features 

and limitations of the prototype system, I left participants to conduct their level design test 

by having them select the candidates they wanted to be the parent candidates for the next 

generation of the genetic algorithm. I specifically asked them to think-out-loud, if they were 

comfortable doing so. During the evaluation, I simply noted any observations and comments 

that were made by the participant. Some provided a high level of feedback, while others were 

reasonably quiet. 

5.1.2.1 Stated design goals 

Some of my participants stated an explicit design goal, sometimes involving several player 

experience goals:  

1. One participant stated that she “really wants a small level where the teams are 

immediately facing each other” in order to provoke a very fast game, where players 

do not survive very long. This was different to most design goals, but reflects the style 

of some small scale, fast paced FPS levels from Battlefield and Call of Duty. 

2. Another game level designer aimed to create a “street that is long and [winding]” so 

that “there are many corners for cover”. This implies the assumption that most 

corners will have either buildings or street elements that offer shipping containers as 

elements for cover, which will be a second design goal for the same level. 

3. A few designers suggested at the start of their design process that “players should 

have as much cover as possible, so more buildings are needed”. While this is similar 

to the goal stated in (2), it does not imply that the path defined by the street needed 

to be very long or winding. 

4. Some goals were more abstract, such as: “I just want to make something silly, not your 

typical map”. I had to clarify these goals and the designer stated that the level should 



97 
 

have large open fields without much cover, and a long and straight street to make the 

map very linear. While this may go against best practice for FPS level design, the 

participant was not only able to achieve this design goal, but also felt that the final 

result would be “an interesting addition to a map package that contains more 

traditional map designs. It would be very quick games though”.  

5. Another similar goal, achieved using a different approach, was announced as “aiming 

to create a ‘mean’ level, where both spawns are close to each other and both are far 

away from the flag”. This kind of design will “probably introduce a very strategic 

approach. You [the player] can’t just rush in otherwise you die quickly”. Here it can be 

seen that some design goals were based on assumptions that can only be verified by 

play-testing. 

6. Some participants were quite specific about typical elements that create mechanics 

similar to many popular games, and that are in line with what expert designers suggest 

for FPS levels. For example, one participant stated that they “only want a building if it 

provides cover at a choke point. Otherwise no buildings, just containers”.  

5.1.2.2 Comments related to computational agents 

A number of comments were made that relate to the support provided by agents, and in other 

cases, comments on the absence of the computational agents. As I was aware of agents being 

switched to an active or inactive status while the tests were conducted, I categorised these 

comments into two groups, one reflecting the agents helping the designer, and the other 

related to the agents being inactive. The participants were made aware that the agents would 

be active and inactive at times, but they did not know when this was the case. Thus, 

participants were not deceived, but had no knowledge about the state of any particular run. 

When the computational agents were active, comments such as “Oh, it understands me” or 

“It feels like every new generation is much better than the previous” were made. In particular, 

when participants looked at and also pointed to the two agent candidates in C3 and C4, 

comments such as, “There are a couple of good levels here”, “Oh, that is a good one” and “I 

like this one” were made. A more generic “The top row is generally the most interesting” was 

consistent with both elitist parents and two computational agent suggestions in C1 to C4. 

These comments were found to be consistent with the eye tracking data, which is presented 

later.  



98 

Statements in stark contrast to those mentioned above were made in runs were the 

computational agents were inactive. This was, again, reasonably consistent with the eye 

tracking data as per the following remarks: “It is a bit random, there was a better solution in 

the previous generation I think”; “It just does not improve enough from selection to 

selection”; “The tool does the same thing over and over. There is not enough change”; “These 

candidates are all very random”; “I am not getting any closer to what I want”. These 

participant statements reflect the common theme dominant in non-agent runs. Some mild 

frustration was observed in particular when it came to particular design goals, such as “Trying 

[to] give the red team some cover, but that is not happening”. In other words, the designer 

was unable to pursue a specific design goal in this particular case. From previous experience, 

I would not necessarily ascribe this to the impact of the multi-agent system (or in these cases, 

the lack of a multi-agent system); rather, it may simply have been normal frustration and 

fatigue, which is to be expected in a pure interactive genetic algorithm, which can take a large 

number of runs to eventually converge on a set goal (Kruse, 2014). Through indirect 

interaction with the artefact that is being designed (in this case, FPS game levels), some 

designers seem to experience a sense of loss of control, simply because the genetic algorithm 

often takes multiple runs to modify a simple change, which could have been manually altered 

very quickly. However, this is only true for some specific changes. The genetic algorithm is in 

principle very fast when it comes to variations and idea generation. It is simply the perception 

of the user that makes it appear to take longer, due to a lack of direct interaction with the 

artefact. 

It can be said that the response to the multi-agent system, based on observations and think-

out-loud recordings, was overall very positive, and that the inactive system showed a stark 

contrast to the active agents, which confirms these observations. However, there was also a 

single case in which the active multi-agent system did not perform according to the very 

straightforward design goal of “some cover and more bends in the pathway” at all. This was 

stated as an issue by the participant, and I believe that in this isolated case, the algorithm 

converged into a local minimum without any means to escape. Even after a significant number 

of additional generations, very minimal changes (likely based on mutation) occurred. 

Following this event, I experimented with different mutation rates and could not replicate the 

problem. Aside from an increase in mutation, I believed the diversity agent may have been 



99 

useful, but realised that it would need to be re-implemented with some form of memory that 

tracks a number of previous generations, for the purpose of removing repetitive patterns and 

enhancing diversity; for example, by adding or removing streets, buildings, and other cover 

at the same time, rather than randomly focussing on a single parameter (which is the case for 

the current implementation). I decided against effecting any change to the agent before 

finishing the trials, as I wanted to keep my results consistent. This change is therefore subject 

to future research. 

Overall, I observed that participants seemed to favour the top right corner of the screen (were 

the agent suggestions were located) significantly when the agents were active. This 

observation appears to be supported by some think-out-loud comments made by the 

designers, specifically and unequivocally when the agents were active. At the same time, 

participants seemed to randomly select candidates when the agents were not active. I made 

a note of this observation several times in the observation protocols. This is, however, my 

personal interpretation of the selections made by the candidates as I observed them, so may 

be related to my own confirmation bias. Confirmation bias is the notion that one seeks to 

confirm one’s own hypotheses or expectations, even though their veracity may be 

questionable. This can lead to the selective collection and use of data (Nickerson, 1998). In 

order to test the observation of whether agents had a significant impact on user choices, I 

had to unpack the telemetry data, which showed, among other things, the selections that 

were made in each generation of the genetic algorithm, and whether the agents were active 

in each run or not. I also asked my participants whether the top right two candidates were of 

specific interest to them, as I was interested in how the activity of the computational agents 

had been perceived by designers. Before I present the quantitative data concerning the 

telemetry system and eye tracking, I will discuss the results of the semi-structured interviews 

and make an attempt at interpreting the data.  

5.1.3 Interview responses 

This section presents the qualitative data of the evaluation of the game level design 

prototype, in particular, the multi-agent system. The catalogue of indicative interview 

questions can be categorised into three groups: usability of the prototype tool, questions 

related to the multi-agent system, and a more generically, an open request to comment on 

anything that the participant felt was important. The former two are likely obvious choices, 



100 
 

while the latter intended to capture any overlooked issues and generic comments, positive or 

negative. The choices here show that my intent was to gain truly qualitative results that were 

concerned with how the user perceived their experience, and how they felt about it. When I 

finalised my research design, I was aware that this data would be highly subjective and prone 

to misinterpretation; regardless, I nonetheless felt that my quantitative components would 

help me to conduct a rigorous analysis. The opportunity to possibly obtain insight into the 

perception of participants while conducting a design task was not only intriguing, but also 

presented the potential to understand the design process better, and to observe whether a 

participatory study would align with the extracted metrics from accounts of design processes. 

In addition, using multiple quantitative methods to triangulate the results could potentially 

provide me with outcomes that had the same rigour as pure metric data. The following three 

subsections reflect the aforementioned three categories of interview questions. 

5.1.3.1 Usability and User Experience 

Prior to asking participants about their perspectives of the multi-agent system, I wanted to 

observe how they perceived the overall experience, and their thoughts on usability. Any 

major issues related to general usability could have had a significant impact on the results of 

the multi-agent system, assuming that if there were problems with the basic use of the tool, 

it may have distorted the results to the point where they were useless, for example, if a 

random bug crashed the software intermittently, the genetic algorithm would have been 

interrupted. Less impactful problems with usability could also have presented issues for 

further testing. I expected, however, and hoped for significant constructive criticism, which 

would eventually lead to an interface design iteration, improved handling of the software, 

and perhaps some additional functionality suggested by testers. I also wanted to capture 

commentary on problems, as I assumed issues would arise that I had been unable to 

anticipate while implementing the prototype. Users were aware that this was a software 

prototype and not a final product; thus, the comments were numerous and helpful, and 

included a few interesting suggestions. 

It is important to note that the overall user experience includes the multi-agent system; 

therefore, to some extent, the following responses are a reflection of user experience related 

to immediate interactions such as user interface, and mouse and keyboard, but also an 

indirect critique of the underlying algorithms, including the genetic algorithm and the multi-



101 
 

agent system. This is also one of the reasons why I wanted to ask specific questions about the 

agents, rather than only about general user experience. 

The overall experience was described as ‘intuitive, ‘encouraging with a lot of potential, offers 

possibilities’, ‘creative’ and ‘enjoyable’. I also heard attributes such as ‘fun’, ‘surprises’, and 

‘creates [a] diverse range of levels’. The possibility of setting a design goal and actually 

achieving it, or get close to doing so, was generally described as ‘easy’ or ‘possible’; however, 

one participant stated taking a ‘playful approach’ and therefore did not set any initial design 

goals, but rather, employed an ‘intuitive’ and ‘iterative’ approach. Even participants who were 

extremely reserved in their assessment of the multi-agent system and stated that they did 

not believe the tool would be very useful to them, still found the overall experience positive 

and the tool ‘fun to use’. 

I also wanted to observe whether there were any serious obstacles to conducting the 

experiments using the multi-agent system and it was unanimously stated that the tool was 

easy to use. 

Furthermore, participants stated that they could easily create different variations of the same 

map and liked the possibility of discovering new ideas very quickly.  

One participant contributed some criticism by stating that the visual guides were not 

sufficient for judging the level, and that the tool reacted very aggressively towards one or the 

other direction; however, these are factors either indicate the request for additional features 

such as visual guides or were simply factors that arose from the parameterisation of the 

genetic algorithm. The request for visual guides can be considered a usability issue; however, 

this participant responded to the experience question that the tool was intuitive and 

enjoyable, indicating a small contradiction in this regard. Based on these findings, I decided 

that the tool was overall usable, in particular among expert users who are aware that a 

software prototype may have minor flaws, and that the main purpose for their participation 

was the evaluation of an agent-based design system. 

5.1.3.2 Multi-Agent System 

The responses to the multi-agent system were quite mixed. It was interesting to observe that 

designers who claimed 10 or less years of experience4 showed a positive tendency in their 

 
4 Demographics groups 1-5 years and 6-10 years of experience combined. 



102 
 

responses when asked about the agent system, whereas designers with more than 10 years 

of experience made significantly fewer encouraging statements. These outputs need to be 

considered very carefully, given that only a very small number of designers participated in this 

study. Further investigation is needed to create a more robust picture. Long-standing experts 

thought that they did ‘not need any algorithm to support’ them when conducting the trial. 

They felt that they could find ‘good choices’ on their own, and that the previous selections in 

C1 and C2, as well as the suggestions made by the agents in C3 and C4, were not needed, and 

that they ‘selected different levels than those at the top anyway’. Designers with less than 10 

years of experience were more enthusiastic, and thought that ‘the agents made good 

suggestions’, but these designers also realised that this was not true for all runs and could 

clearly identify those in which the agents were inactive. Participants responded that some 

runs took a long time, as ‘no good levels were presented by the system for many 

generation[s]’. Designers seemed to recognise that the system was not always performing as 

they had hoped, and from observation protocols, it is clear that these runs were without agent 

support. For example, one participant stated that the multi-agent system offers a ‘playful 

approach’ and that it is ‘easy to find some interesting suggestions’, even though ‘some did 

not turn out very good’, which was ascribed to a ‘lack of options by the algorithm’. The 

comment (made in a case where the agents were inactive) makes sense in light of five runs 

having been conducted by this individual, of which two did not have the agent system active. 

The observation protocol confirms that the two sessions without agents were perceived as 

slow and difficult. This participant also made a very interesting comment about ‘best design 

practice’, which an algorithm should implement. The comment included a suggestion to look 

at existing maps ‘like Dust2 and analyse classic elements and suggest them to the designer’. 

Given that both ‘Dust’ and ‘Dust2’ are maps created by one of the designers that I used to 

generate my heuristics, this felt like a confirmation for this study having taken the right 

direction; at the same time, however, it also served as an indication that the heuristics may 

need to be developed further, and reassessed in light of this statement. I understand that a 

heuristic for a designer expert agent is likely never directly visible to the user of a multi-agent 

system; nonetheless, perhaps if a three-dimensional map layout with elevations or building 

interiors across multiple floors was used, a stronger emphasis on best practices demonstrated 

in highly successful maps must be considered. 



103 
 

Finally, five participants indicated that the system ‘offers interesting alternatives’ and ‘rather 

unexpected’ alternatives5 in the top left corner, where the diversity agent seemed to have 

offered a solution that was different to the designer expert agent, and both candidates were 

considered compelling. I will discuss the limitations that apply to this finding in section 6.3.3, 

but I consider these responses quite encouraging, as they highlight that the multi-agent 

system appears to add value to the decision-making process of designers. 

5.1.3.3 Feature suggestions 

The advantage of semi-structured interviews is that it provides the option to veer off-script if 

a particular issue arises during the interview. Ideas for feature changes or additions emerged 

on a number of occasions in my first few interviews, and I included a query about new 

functionality in every subsequent discussion. This section reviews common ideas that arose 

from interview responses. 

1. Visual aids 

Participants suggested that it would be helpful to see the grid that is being used to 

place elements such as streets, buildings, or spawn points. A visual guide may provide 

a quick way to evaluate, for example, path length, distance of spawn points to the flag 

pole, and other similar metrics that participants use to assess the quality of a 

candidate, in order to make a decision for or against it. This may indeed be a helpful 

feature, particularly if users feel that it saves time and removes some of the strain put 

on the attention span of each user. Fighting fatigue in interactive genetic algorithms 

is a dominant issue, and if a visual guide in the form of a grid helps to mitigate even a 

small amount of said fatigue, it will be beneficial to the overall process. It may increase 

the number of runs that the user is able to undertake without becoming tired and may 

also increase the speed at which a particular design problem is solved, which increases 

the productivity of the design process. 

A second aid that has been requested multiple times is a debug overlay that shows 

what the agents do, and how they assess the levels. While the experiments were 

designed to keep the activity of agents from the user in order to be able to create a 

baseline, by switching the agents off for some runs (which would be revealed if a 

 
5 In addition to similar comments related to variants of the two agent suggestions. 



104 
 

debug overlay showed the decisions and activity of the agents), the argument that a 

designer needs to understand the agent system they are working with in order to 

maximise its benefits to the design process (Seidel et al., 2018) supports this feature 

suggestion, and will be worth testing in future. 

2. Workflow improvements 

Workflow improvements capture a range of general suggestions that are related to 

the workflow implemented in the prototype, rather than suggestions specific to game 

level design. The latter are captured in the following bullet points. 

a. A feature repeatedly asked for was an undo function. While this would be 

possible, and perhaps desirable in a commercial design tool, and although I 

considered this during my planning phase for the design prototype, I 

consciously decided against it. An undo function in the context of a genetic 

algorithm does not seem like the correct solution at first glance, because the 

genetic algorithm is based on the concept that solutions can be ‘pushed’ into 

different directions by making selections accordingly. However, I do 

understand why designers, who are used to virtually limitless undo steps in 

their familiar tools, would request this as a convenience tool. Moreover, I am 

aware of the time-saving nature such a function would offer, given that 

pushing the algorithm into a different direction may cost a few runs, which 

translates to time spent, and ultimately means increased user fatigue as well. 

Some designers considered the two previous parents (elitist approach) in the 

top left corner of the candidate tiles a compromise, and I believe this to be a 

good way to view this. On the one hand, it keeps the genetic algorithm pure in 

the sense that evolution cannot wind back on the user’s request, but at the 

same time, access to at least the previous selection is still possible. 

The ability to exclude certain candidates from future breeding is another 

workflow improvement that has been requested a number of times.  

b. There are two sides to this argument. On the one hand, additional functions in 

the design prototype, which runs a process similar to interactive genetic 

algorithms, and presumably carries the same issues such as user fatigue, are 

likely to amplify problems. If the user performs additional tasks for each run, 



105 
 

attention span may be exhausted even quicker, which may result in fewer runs. 

On the other hand, having a mechanism that enables users to exclude certain 

candidates, or even more specifically, certain features of candidates, may lead 

to an even faster convergence to a final solution. Accelerating the genetic 

algorithm may therefore be an approach for counteracting fatigue. To 

establish whether this is the case, future work is required. I suggest the 

possible implementation of an exclusion agent in 6.4.2. 

3. Level design 

Specific suggestions that are directly linked to computer game level design emerged 

in a few interviews. Two main themes pertaining to feature suggestions were 

apparent; first, constraints prior to initiating the genetic algorithm, and second, 

constraints that users add while conducting the selections for the algorithm. 

a. A number of designers asked for additional manual control of the actual level 

design process. Two participants suggested the introduction of design 

constraints, which advanced users could define prior to using the actual design 

tool. These constraints can include the length of the path, how much branching 

occurs in a path, how much curvature is in the path, whether a rather square 

and parallel New York-style branching system, or a more organic European 

city-style branch is required, where the spawn points are, and whether the 

number of obstacles is very high from the start, as opposed to the algorithm 

starting without any/very few buildings and containers, among others. To 

some degree, these features resemble a number of extracted design features 

from expert accounts regarding their design process. Thus, first, given that a 

DEA is part of the multi-agent system, and that its features have to be defined 

regardless, manual control is in principle not difficult to add. An agent that 

manages user constraints can be added to the multi-agent system, to help 

shape the breeding pool even faster towards the ideas of the user. However, I 

see a degree of danger in doing so. Given that participants thought of the 

system as a tool that encourages exploration, enhances curiosity, and offers a 

playful approach to level generation, a set of constraints set by the individual 

user (rather than the collective experience of design experts, who ‘contribute’ 

their workflow and decision-making processes to the system) may also give 



106 

rise to a very narrow and preconceived design workflow. It implies that experts 

(or ‘advanced’ users) already know what the end result might look like, a 

notion that contradicts everything that makes design an innovative field. 

Instead of knowing what the outcome will be, design should be an iterative 

process that develops as a result of discovery, happy accidents, and deep 

exploration, alongside the application of expertise and skill. I believe a 

constraint agent would actually be counterproductive to a healthy design 

process. 

b. Two participants suggested implementing a locking mechanism for spawn

points, that is, the ability for users to ensure at any point in any run that both

spawn points remain in their current grid location and evolve only the other

features such as path length, path curvature, and obstacles through the

genetic algorithm. I can see how a designer may be wanting to design a map

where the position and proximity to the flag pole and the opposite spawn

location are predefined by the user, and only the curvature and length of the

street is influenced by the Genetic Algorithm. This seems like an interesting

addition, and follows Kosorukoff (2001), who suggests including the human

agent into operators, as opposed to making available only selection in an

interactive genetic algorithm. One of these potential operators might be

mutation, while the aforementioned locking mechanism essentially freezes

part of the candidates’ DNA; this is similar to mutation, in that it directly

interferes with the chromosome, not only by actively changing it, but by

actively protecting it against change.

c. Another suggestion, not dissimilar to (b), is the manual selection or deselection

of buildings and containers. This represents another interesting potential

change to the system in future, that also requires further investigation. It

would be interesting to establish whether this will lead to unintended

consequences such as additional amplification of user fatigue, or if it can

potentially accelerate the overall process, and thereby serve as a measure for

reducing fatigue. Another aspect of adding functions like building placement

or spawn locking mechanisms is the impact this will have on the final level. It

would be worth testing a range of levels created by an agent system that



107 
 

augments the user, and has very few functions that are directly controlled by 

the user, against a system where the user has deep control of the underlying 

genetic algorithm and its operators, in a bid to establish whether the added 

control leads to any playability improvements, or if these features are possibly 

based on the fear among designers to submit control to an autonomous 

process. 

5.1.4 Telemetry data 

Telemetry data consists of keyboard and mouse inputs, ranking of individual candidates for 

debugging purposes, ranking of the entire breeding pool, and ranking of each population. 

I wanted to capture the keyboard and mouse inputs to keep track of user selections, where I 

needed to verify how many times the user selected a random candidate, and when the 

designer selected either an agent-selected candidate, or simply their own previous selection 

again (the elitist candidates). I needed to capture each generation, which would enable me 

to generate a distribution over time and observe whether there was any tendency to use the 

suggestion made by the agents. In runs where the agents were inactive, I expected a more 

random distribution across all 16 candidates. Runs with inactive agents would also allow me 

to observe whether a user would simply select the top right corner out of habit. 

5.1.4.1 Breeding pool fitness 

This study employs a derivative of an interactive genetic algorithm with the human designer 

acting as the selection operator. The fitness ranking is computed to allow agents to filter the 

breeding pool and is not used as a fitness function as such. Capturing the ranking data of the 

breeding pool allowed me to plot the ranks for all generations to see if there was an increase 

(essentially, an increase in fitness of the breeding pool) over time. Given that this increase is 

a direct result of the decisions made by the designer expert agent, it would provide me with 

an indication of whether the agent had an impact on the overall fitness increase. In order to 

assess the fitness (or rank), I plotted the maximum pool fitness of a number of individual runs. 

I combined runs with agents and runs without agents into two different graphs, as shown in 

Figure 21 and Figure 22. Although it seems like the clusters of lines indicate an overall higher 

performance when the agents were active, the variance between low performing runs and 

high performing runs was quite significant and may have distorted the outcome. Therefore, I 

plotted a mean for all data points of all runs with agents, and the same for all runs without 



108 
 

agents being active, into a single graph, as shown in Figure 23. The light green line represents 

the mean across all runs with active agents, while the red line shows the mean of all runs 

without agents. The agents appear to have a significant impact on how fast the fitness 

increases. With agents, a much higher average pool fitness is evidenced than without agents. 

It is important to note that I had to normalise the length of the runs, as the decision to 

terminate a run was driven by the designer, which led to some short runs with only 12 

generations, and some much longer runs with up to 76 generations. I normalised the data to 

100 data points, using linear interpolation between data points. 

 

Figure 20 - Maximum fitness value, agents active. Each colour represents a different run for easier visual reading. 



109 
 

 

Figure 21 - Maximum fitness value, agents inactive. Each colour represents a different run for easier visual reading. 

While this increased the error in some cases, it did not pose a problem to the overall 

comparison between runs with agents and without agents, assuming that the distribution 

between shorter runs and longer runs would be similar in both cases. While the length of runs 

without agents tended to be longer (by roughly 20%) than the length of runs with active 

agents, the difference was surprisingly small. Prior to starting the experiments, I expected the 

runs without agents to be significantly longer than the ones with agents, based on my 

previous experience with interactive genetic algorithms. However, considering that a large 

number of runs without agents never reached the pool fitness of runs with active agents, and 

given that the termination was initiated not by an objective goal such as fitness of the final 

candidate, or a very specific design goal that designers had to reach, participants seemed to 

simply terminate the session after having conducted a large number of runs, and felt that they 

were ‘not getting anywhere’ in the case of the inactive agents. 



110 
 

 

Figure 22 - Maximum pool fitness of all runs combined. The blue line signifies ‘with agents’ and red line ‘without agents’. 

As such, the provided graphs need to be considered carefully. They are not an absolute 

reflection of the performance of the agent system, given that the designers were able to 

terminate after as many runs as they felt were appropriate for reaching a playable level. This 

implies that some designers may have terminated despite levels not having reached very high 

quality. An absolute measure does not exist in this context. One suggestion for future studies 

aimed at establishing whether two levels with different ranks can still both be considered 

immersive, playable game levels, is to select top performers from both active agent and 

inactive agent interactive runs and find players to test them. Another potential solution may 

be a study that sets very narrow and specific design goals. Both of these ideas are subject to 

interpretation (by either the players or the designers and researchers), but can potentially 

help to understand the underlying phenomenon somewhat better. Despite these differences, 

however, it seems that the agents contribute to a much faster increase in fitness, and also to 

a higher overall ranking within the breeding pool. 

There are a number of other interesting points to be raised here. First, there is a logarithmic-

looking increase in the fitness of breeding pools. The longer the runs, the smaller the increase 

of fitness of pools. This was likely due to the small population size in comparison to the 

breeding pool. The breeding pool comprised 70% candidates that were bred based on the 



111 
 

parents, and 30% bred through random DNA. For roughly 20 generations, the decisions made 

by the designer seemed to have a significant impact on fitness, and the increase happened 

rapidly. Thereafter, the increase slowed down and only marginal improvements in rank/ 

fitness were observed. This can be interpreted as a potential failure of the computational 

agents. If the user is the main contributor to the increase, given that their decision contributes 

70% of the mating pool, the agents may not be as useful as I had hoped. It is important to 

keep in mind, however, how these user decisions were made. The user observed either their 

own selection, and a number of randomly selected and mutated candidates in the case of 

inactive agents, or the user was able to choose from their own selections, two agent-

suggested candidates, and a number of randomly selected and mutated candidates (in the 

case of activated agents). The much quicker increase at the start of the runs with activated 

agents may indicate that the agents did, in fact, play a role. This can, however, only be verified 

by looking at what the user decided to select, and perhaps to some extent, by what caught 

the attention of the user more often. The results for these two important additions are 

presented in sections 5.2.4.2 and 5.2.5. 

Another observation is the maximum fitness rank reached by any of the runs. Neither the 

agent-driven nor the purely user-driven runs reached the full score of 1.0, which may infer a 

number of things. Perhaps the runs were not sufficiently long. If a genetic algorithm is not 

able to run through enough iterations to reach the stopping criteria, optimisation will 

terminate prematurely. If this was the case, the user simply did not make enough selections 

to reach the theoretical maximum fitness (playability) defined by the designer expert agent. 

Another possible explanation is that the ranking score is simply not reachable, and that the 

criteria that the agent is based on are flawed. I believe the latter is not the case. Looking at 

the combined plots of the mean of all runs, it can be seen that the fitness ranking did not 

achieve saturation, and the maximum continued increasing in an almost linear fashion 

following the initial rapid increase over 20 generations. I believe that a fitness value close to 

the theoretical maximum of 1.0 can be reached, given enough iterations. Previous studies and 

my own observations confirm that user fatigue arose after some time. Additionally, the 

subjective nature of what a ‘good, playable level’ is may also have played a role here. If users 

felt that there was no significant improvement to be gained after many selections, they may 

have terminated the run. Looking at the score that the average run reached, a fitness of 0.65 



112 
 

may have been considered sufficient. In conclusion, I believe that user fatigue contributed to 

premature termination, but that this can be mitigated by adding a user preference agent 

(Kruse & Connor, 2015). Furthermore, it does not mean that the resulting levels are not 

playable. The theoretical maximum of 1.0 is based on expert accounts, that includes 

professionals who created some of the most popular and highly acclaimed FPS levels ever. 

Here, the score can simply serve as what it is – a theoretical maximum. My aspiration, 

however, is to design an agent system that gets close to producing the best possible levels. I 

believe that supporting the designer through a preference agent can improve these results.  

5.1.4.2 User selections 

As indicated in the methodology section of this thesis, I initially decided to present the 

selections made by the human designer as a pseudo-heatmap visualisation, rather than pure 

numerical data, as numbers may not particularly intuitive to some, in which case they would 

offer little value. The table in Appendix A shows an example of such tabular representation. 

The first column represents the generation (zero indexed), while columns Parent1 and 

Parent2 are the index of the selected candidates. It is easy to see why a different tool for their 

analysis was needed. Figure 24 is an example indicating user input where it occurred. Given 

that the user’s mouse-clicks generally occurred somewhere inside the candidate tiles (which 

confuses the picture due to their random click positions), the clicks have been re-centred 

towards the middle of each tile for easier reading. The light green and light blue colours 

indicate each parent, while the small text field on the lower left is for debugging purposes 

only. This simplified representation shows an indication of the user selections at first glance 

and makes it straightforward and very intuitive to observe where most clicks occurred.  



113 
 

 

Figure 23 - Pseudo heatmap representing user input. Dark blue-green denotes fewer clicks and light blue-green more clicks. 

Employing this method to gain a better understanding of user selections did not prove to be 

of great value. I also found, when comparing these particular visual maps to numerical data, 

that it was difficult to interpret and draw robust conclusions from the former.  

Thus, this study used simple statistical approaches to extract meaning from the telemetry 

data. I ran each telemetry file from every run in RStudio and investigated the relationship 

between frequency of clicks and the candidates, as shown in Figure 25. I was particularly 

interested in noting whether there was a difference between runs where the agents were 

inactive and runs where the agents were active; their two highest ranked recommendations 

are shown in C3 and C4. I also wanted to observe whether users made use of the elitist parents 

in C1 and C2, which gave them an opportunity to incorporate the previous selection into the 

current run. 

Figure 25 depicts a plot of all selections by all users across all runs, where the agent system 

was deactivated. The intent behind these runs was to create a baseline for the multi-agent 

system. Green represents the two elitist parents, whereas the blue bars represent the number 

of clicks for the random candidates. 



114 

Figure 24 - Plot across all runs with agents inactive. 

Figure 25 - User selections plot across all runs with agents active. 



115 
 

Participants showed a significant preference of the two elitist parents, which at first glance 

may seem surprising. My observations and think-out-loud data, however, confirm that users 

tended to select one of the previous parents, and combine it with a random candidate for 

breeding. Participants stated that they used this mix of previous selection and new choice to 

‘explore additional options’, without losing specific features they wished to preserve. Some 

viewed it as an opportunity to ‘create potentially more interesting variations’ of an already 

‘good’ level. Therefore, a certain preference is to be expected. Additionally, the intuitive 

conclusion that there was a very high preference for the elitist levels needs to be viewed in 

relative terms. Overall, either of the two elitist levels were selected 209 times, but random 

levels were selected 561 times. Given that the elitist levels presumably represent a level that 

the user considered the best possible selection in the previous run (and therefore selected 

it), it should be expected that this choice would not be fully abandoned in favour of random 

levels from the breeding pool. It can, however, be said that users seem to use the system to 

evolve previous selections, rather than breed, based on random choices. Assuming that 

participants were following a structured approach towards certain experience goals, it seems 

logical that roughly every third selection involved previous choices.  

Figure 26 shows a plot of all selections by all users across all runs with active agents. Green 

highlights the two elitist parents, red the two agent suggestions, and blue all randomly 

selected candidates.  

There is a relatively even distribution of clicks across all random candidates in blue. However, 

candidates in C1 to C4 show a significantly higher click frequency. The two agent selections 

average twice the number of clicks, while the two elitist parents are slightly higher, similar to 

runs without agents active. Acknowledging the significant preference for the agent-based 

suggestions feels like stating the obvious, but rather than jumping to possible conclusions, I 

would like to note a few important points. The outcomes here are slightly distorted, as these 

two bar-graphs show all clicks across all runs for all users. However, as the decision to 

terminate a run had been up to the user, the overall count for runs with agents (968 clicks), 

as opposed to runs without agents (770 clicks), differed by almost 200 clicks. This may have 

led to a slightly distorted interpretation. The jump in clicks for C3 and C4 from no agents to 

active agents was quite significant (from 53 clicks to 201 clicks). C3 and C4 received four times 

as many clicks when the agents placed their suggestions here, compared to without any agent 



116 
 

support. Participants seemed to have responded to the suggestions in a very positive manner, 

placing their importance almost on par with the elitist suggestions, at least according to their 

selection behaviour.  

5.1.5 Eye tracking results 

I have previously noted that I wanted to treat this study as an opportunity to challenge myself, 

to use a variety of different research methods in order to make mistakes, learn from these 

mistakes, and expand my own horizons. Given that I already had a quantitative component in 

the form of telemetry data from the software prototype in my research design, and given that 

this keyboard and mouse data would allow me to triangulate the qualitative results of my 

study, the addition of eye tracking as yet another quantitative data source could have been 

viewed as redundant. However, ‘hindsight is bliss’, as the proverb states, and I have to admit 

that I did not foresee the value that eye tracking subsequently added to my findings. 

Additionally, while unnecessary data may only produce more noise, I believe that this 

additional metric would be useful, because it represents a very different quality in the form 

of observing the designer’s decision-making process, compared to keyboard and mouse data. 

While keyboard and mouse clicks merely indicate the actual decisions made by the designer, 

the eye tracking data provides continuous insight into what the designer physically looked at 

while forming the basis for these decisions. Instead of a simple snapshot (a mouse or 

keyboard click), it adds a temporal component. Though it is still bound to interpretation, I felt 

that it would help me to capture the time during which the decisions had been formed, rather 

than the result of this decision-making process per se. This proved to be more valuable than 

I anticipated, and I believe it adds to the overall rigour of my research, as I will show in this 

section of my thesis. 

The heatmaps are listed in Appendices 8.2 and 8.3, based on whether the agents were active 

or not. For the sake of clarity, I will only provide two examples here, one from each category. 

I believe these are representative of the overall results. 

Figure 27 shows an example of eye tracking data with an active multi-agent system. The top 

left cells, C1 and C2, show light heat, which indicates very moderate interest on the part of 

the user, as does C7. C3 and C4, on the other hand, show very intense heat, an indication that 

the user had an elevated interest in these candidates. While not all heatmaps show strong 

indications like this, most of them reveal a common pattern: either C3 or C4 (or both) indicate 



117 
 

strong focus on the part of the user, with moderate interest in C1 and C2, and a low average 

interest in C5 to C16. 

 

Figure 26 - Heatmap of eye tracking data (active agents). 

Figure 28 shows a plot of a run without agents. It can be seen that user interest was fairly 

evenly spread across all candidates. The heatmap does not indicate a particular importance 

for any candidate. 

 

Figure 27 - Eye tracking heatmap without agents. 



118 
 

Contrasting any claims made by some participants that they were not biased towards the 

agent suggestions, which they knew were present in C3 and C4, there is a strong indication 

that whenever the agents were active, the users seemed to look at the top right corner a 

great deal (C3 or C4). This is in line with a number of notes made in the observation protocols. 

While this does not hold true for all cases, there appears to have been a bias for this screen 

position. My first possible explanation when I initially looked at these images was that users 

possibly had a bias towards focusing on the top right corner. All participants hailed from a 

Western background and identifies as European, New Zealand European, American, or 

Pakeha. As such, my initial expectation was, in fact, a bias towards the top left corner, given 

that this is where Western reading starts, and I believed that this trained behaviour may have 

an impact on my findings. I assumed that, based on Western reading, there may have been a 

preference for looking at the top part of the screen first, and perhaps for a longer time, which 

would have explained an accumulation of gaze blobs in the top row. This was, however, not 

the case, and I will show why not presently. My second assumption, based on the images 

above, was that for a reason unknown to me and unrelated to the position of the outputs of 

the designer expert agent, users may have had a tendency to favour the top right. Both these 

premises turned out to be false. The following depictions of runs without any agent 

suggestions clearly contradict both these assumptions. In these runs, no bias towards the top 

right corner is visible at all; however, this would have been the case had there been a cause 

unrelated to the test, such as our natural tendency to start at the top left, according to reading 

habits in certain cultures. I believe that the bias towards the top right can be cautiously 

assumed to be linked to the presence of the agent-based solutions in C3 and C4, and the 

tendency towards C1 and C2 may be the result of these being the elitist parent candidates. 

Designers seemed to show a preference for these candidates. I am aware that ‘preference’ 

does not mean ‘confirmation’ at all, and that the heatmaps, as well as the possible reasons 

for what they indicate, are subject to my own interpretations; however, the observed 

preference could be an indication that the agents had an impact on designers’ decision-

making processes and drew designers’ attention towards them. Keeping in mind that this is a 

foundational study that can only serve as a precursor to a broader and deeper investigation 

into the quality of multi-agent systems, I believe that these indications are quite positive 

signals. Moreover, it can be said that these quantitative measures signal a good option for 



119 
 

verifying interview responses and observations, and I would employ these or similar methods 

again to triangulate qualitative results in future research. 

A potential anomaly in the data was visible in runs 12 to 14 without agents (Appendix C). A 

participant seemed to show a preference for the left side of the grid, and barely looked at any 

of the candidates in C4, C8, C12, and C16. However, given the insignificant sample size, I 

believe this claim may not hold up to additional testing. To substantiate this further, the same 

participant conducted runs 11 and 12 (with agents). The same pattern could not be confirmed 

there; instead, a number of hotspots are visible on the right side of the grid. I believe that the 

bias towards the left side when tested without agents happened by pure chance, but cannot 

dismiss nor verify this, as doing so requires additional research. Given that the eye tracking 

only complements the selections (clicks) and interview responses, I believe this irregularity 

had no significant impact on the results of this study. 

Another potential anomaly was hidden in the strong bias towards either C3 or C4, but almost 

never towards both at the same time. This seemed odd at first, but a possible explanation is 

that both agent-based candidates in C3 and C4 are often very similar in path length, starting 

and end point positions for teams, flag pole position, and even (for the most part) the position 

of obstacles for cover and breaking line of sight. These similarities are owed to the selections 

that C3 and C4 represent, namely, the two top performers in the ranked breeding pool. 

Particularly in an advanced breeding pool, after a number of generations, the potential 

candidates will converge towards similar features, given that a large number of imperfections 

would have been bred out of the DNA. The agents working on the selection process alongside 

the user will accelerate the increase in fitness of each generation, and this will give rise to 

solutions that were either similarly good or bad in terms of fulfilling the design expert criteria. 

Selecting the top two performers of the breeding pool will yield two very similar selections. 

However, this does not explain why the users chose to favour either C3 or C4, and why they 

did not alternate between the two. This is certainly a question that needs to be asked in 

future. However, given that the analysis of the eye tracking data did not happen in situ, I did 

not have the opportunity to include this question in the semi-structured interviews. My best 

guess is that users may start out favouring certain candidate tiles, because subconsciously, 

they found solutions in these tiles that they considered having been successful in previous 

runs, and therefore tended to again start looking for similar successes at the same position. 



120 
 

This is of course only an assumption; it would be interesting to investigate the reason for this 

bias in a separate study. 

Most of the measurement points were within the grid-layout of the candidate tiles. However, 

in some cases, there are points outside the grid, which can easily be explained. These were 

created by the user looking away from the candidate tiles. In some cases, this was simply 

caused by looking around, for example, at the keyboard or away from the screen. This is very 

normal in many activities, and I did not consider it important to filter these strays, simply 

because users were generally very focused on the task and as such, looking at the relevant 

content. In some cases, there are significant amounts of blobs visible on the right hand side 

of the screen. This is also easy to explain, as this was the location where the two three-

dimensional depictions of the two currently selected parents were located. Some users made 

more use of this feature than others, resulting in a slightly higher density outside the 16 tiles. 

A surprising element was evident in the comparison of the semi-structured interview 

responses given by the designers and eye tracking data, in relation to the question of whether 

participants felt that the computational agents added any value, and whether they could see 

a difference between the runs. At this point, participants were made aware of the fact that 

the agents were not active in all runs, but only in roughly half of them. The responses were 

mixed. Some participants felt that the agents may have added interesting variants in some 

cases. Others pointed (correctly) to a run that was perceived as problematic, as it did not lead 

to any desired result, or at least, not very quickly. These were indeed the runs in which the 

agents were switched off. However, all of these more or less constructive statements were 

contradicted by the two most senior designers that took part in this study. Both strongly 

rejected the idea that the agents were of any value and confirmed they would only follow 

their own experience. They were also not able to tell the difference between any of the runs. 

A surprising aspect is noted here: both of these designers produced the following eye tracking 

and selection (mouse and keyboard) results. It is clearly visible in the figures (see Appendix) 

that they made heavy use of the agent-based suggestions and looked at them much more 

frequently than any of the other candidates, aside from their own previous selections (elitist 

candidates). There are two possible explanations for this. First, perhaps they were very much 

in line with the agents, and for this reason, the heatmap and selections show a strong 

preference of these specific solutions. This will serve as an indication that the expert agent is 



121 

performing reasonably well, subject to testing with a larger veteran game designer group. 

Alternatively, the longer an expert spent designing levels, in particular when they were long-

term domain experts, the more significantly they became pre-occupied by their own views, 

and strongly believed that their expertise and skills were more important to their success than 

the tools they used. While this may be true, it indicates a much stronger bias than that shown 

by intermediate or junior game designers, who seemed to be more open to new technologies, 

and positively embraced the opportunities that this system offered them. 



122 
 

6 Discussion and Recommendations 

The main outcomes of this study can be found in the evaluation of the game level design 

prototype, a multi-agent system that employs computational agents and a human designer 

to run an evolutionary algorithm. The outputs of this prototype are simple, yet still offer 

playable game levels that provide sufficient immersion for promoting gameplay. The results 

of said evaluation show that the agents employed in this study had a significant impact on 

designers’ decision-making processes. When active, the agents selected the highest-ranked 

candidates from the breeding pool and offered them amongst a number of elitist and random 

level candidates to the user. The core of this system is an agent modelled on expert designers’ 

accounts of their design processes. This agent seems to capture core qualities of ‘good’ levels, 

i.e. levels with a high playability score, based on a selection of domain-specific features that 

are applied during the design period, and these core qualities appear to be what game level 

designers are attracted to.  

The following sections conclude the final chapter of this thesis by considering the original 

contributions made herein, the findings and limitations of the presented work, as well as 

some suggestions for future research.  

6.1 Contributions 

This thesis makes a number of contributions to the field of procedural content generation and 

evaluation. The most significant is a novel designer expert agent that models the design 

process of expert game level designers for FPS games. Based on several accounts of the 

decision-making process behind FPS level designs, a number of metrics have been extracted 

and implemented as a computational agent. This agent has been evaluated as part of a 

human-machine multi-agent system running an evolutionary design task. The results appear 

quite promising and provides a solid foundation for future research in this domain. The study 

implements and uses an evaluator based on how designers think, contrary to the commonly 

applied player-centric approach. This fills a gap in the literature identified by recent 

publications. 

An additional contribution of this foundational study is that it employs a low-cost eye tracking 

device as a tool for triangulating qualitative results in design research. The workflow and code 

will be published in open source format to help other researchers interested in utilising this 



123 
 

powerful tool, but who do not have the know-how to implement the software themselves. 

The study also uses telemetry for triangulation. The need for applying rigour via the use of 

complementary interviews and observations made using quantitative tools was confirmed on 

several occasions throughout the study, as qualitative results would have led to a potentially 

distorted interpretation. The eye tracking in particular is very easy to add, and cost-effective, 

requiring less than $200 for the device6, and is transparent to the user, as it does not appear 

as invasive as other biometric triangulation tools. The cognitive biases of expert designers 

appear to have had an impact on their decisions, and quantitative methods can mitigate these 

impacts. Together, these aspects render this solution accessible to a broad population of 

researchers and has the potential to add rigour to qualitative studies. 

6.2 Findings 

In this section, I will highlight how the research question and its sub-questions have been 

addressed, starting with the sub-questions. 

6.2.1 Sub-question 1 

(Q1) Are cognitive agents as game content evaluators considered a useful addition to 

game level design by experienced game designers? 

This study extracted a range of qualitative data from expert accounts and modelled two 

agents, based on traits that emerged as a scheme from the accounts. This DEA made level 

design suggestions to participating game levels designers, who showed a clear preference for 

these suggestions when compared to a baseline, where the DEA was inactive, and random 

levels were selected from the breeding pool for generation presented to participants. While 

the number of participants in this study does not represent a statistically viable sample (with 

more research required), the initial results obtained by this study indicate a promising 

outcome. 

6.2.2 Sub-question 2 

 (Q2) Can a cognitive model be devised as an expert system, and can it employ 

knowledge extracted from secondary sources such as the personal accounts of expert 

game level designers? 

 
6 Disclaimer: I am not hired or paid by Tobii to promote their products. 



124 

This research shows that a simple approach such as using a rule-based expert system, rather 

than more sophisticated, deep neural network-based machine learners, can create an 

effective cognitive model of expert designers. ‘Simple’ instead of ‘sophisticated’ has been the 

mantra of this study, and I believe this has enabled me to discover some interesting results 

reasonably fast, while at the same time providing interesting expansions for my next research 

project. These expansions may include changes such as using a more sophisticated expert 

system, or perhaps using a more sophisticated asset pool, in order for resulting game levels 

to achieve a higher visual impact. 

The DEA appears to have suggested levels that my participants responded to. Assuming that 

the users of the design prototype tool were aiming to create levels with high playability, a 

DEA appears to offer benefits, despite users’ verbal responses in interviews that may appear 

contradictory to this notion. These responses may simply represent an initial reaction to a 

computational tool that seeks to help, rather than replace. The responses may also have been 

driven by a bias, and the user relying too much on perceived experience, as opposed to than 

factual expertise. Given that these suggestions are, however, based on assumptions and a 

small number of participants, these initial findings should be considered with care, and an 

emphasis placed on the fact that more research is needed. 

While the quantitative data indicates a strong preference among participants for using the 

suggestions made by the agents, long standing expert designers in particular appeared to 

reject the idea that cognitive agents are helpful, even when shown evidence to support this. 

Expert game level designers seemed to believe that they needed to rely on their expertise 

more than ‘metrics and algorithms’. However, this study cannot fully confirm this 

preconception. Using statistical data to triangulate these responses indicates a discrepancy 

between the perception of experts and the actual decisions made during design time. To 

confirm or reject this hypothesis, a study with a larger number of participants may be useful. 

Another possibility is to investigate whether this is simply a bias that can be found within 

creative industries, perhaps beyond the scope of game design, and specifically, within game 

level design. Perhaps this indicates that the often-cited Dunning-Kruger effect (Kruger & 

Dunning, 1999) does not necessarily hold true in certain domains? Dunning-Kruger is often 

associated with an unskilled individual unable to adequately estimate their own skill, which 

more often than not results in an overestimation of individual skills (Kruger & Dunning, 1999). 



125 
 

David Dunning (2011) clarifies, however, that this is not only true for unskilled individuals. 

According to Dunning, highly-skilled individuals also appear to underestimate their own skills 

(Kruger & Dunning, 1999). I involved highly-skilled individuals in my research and expected to 

see them underestimate their skills. However, I discovered a very contrasting result, where 

these experts seemingly overestimated their own abilities, emphasising their own experience 

and dismissing strong indications that they do rely on helpers. This may indicate two things: 

either these proclaimed experts were, in fact, not highly skilled, or they were unable to 

interpret their own abilities correctly. The former can be dismissed based on evidenced 

experience, and a track record of having successfully designed levels particular to this specific 

domain. The latter, however, may hold up following additional testing. A third possible 

explanation may simply be that these experts relied on their skills and experience, and as a 

result, selected levels that were very good (in terms of playability) in their opinion. However, 

this would only confirm that the agent-selected levels are indeed in line with what expert 

designers would choose to create, and thus confirm that the agents in this study were quite 

successful in selecting good playable levels. 

6.2.3 Expert suggestions 

All of my participants made a number of suggestions and gave very specific responses to a 

range of questions involving aspects of the game level design prototype. These suggestions 

and ideas need further investigation in some instances, given that they may be based on a 

fear to relinquish control of parts of the design process to a computational entity. In 

particular, the strong rejection pertaining to agent support suggests that fear to submit 

control could be the issue at hand. The question that needs to be asked here is whether 

suggestions made by experts can lead to improved workflows, more efficient design 

processes, and enable users to create more content for a wider audience, or if it has a more 

self-serving function, essentially, to reduce any computational support as much as possible, 

and to rely primarily on personal experience. If reliance on personal experience is the 

dominating factor here, this may indicate a bias, as discussed in the previous section. But it 

could also simply mean that experts do not want an increased computational support for their 

design tasks, and rather adhere to their existing tools and workflows. This question cannot be 

resolved without further investigation. 



126 
 

6.2.4 Expert responses in interviews also require triangulation 

It would be an easy assumption to surmise that non-experts within a specific domain may 

provide responses that do not reflect reality as a result of their inexperience. This seems likely 

to be true. On the other hand, it can be assumed that experts are much more conscious of 

their actions and are able to assess their own views in a much more nuanced manner. My 

results, however, appear to contradict this assumption. Experts rejected the idea that the 

computational agents made any significant difference to their decision- making processes 

during design-time using my game level prototyping tool. However, the heavy inclination to 

not only divert their attention towards the agent-selected candidates, which was confirmed 

using eye tracking data, as well as the over-proportional selection of the agent-suggested 

candidates, appears to contradict the self-assessment of experts. Furthermore, while I cannot 

be sure that this finding holds true for all experts, due to the small number of participants 

included in this study, to me, it highlights the necessity for using a range of different data 

acquisition methods in order to be able to triangulate qualitative data. 

I did not expect such strong indication of the value of triangulation, and never hypothesised 

it, but it is nonetheless an intriguing and happy accident. I believe it will be interesting to 

dedicate more time to this, perhaps within a domain where a much larger number of 

participants can be employed in a future study, to observe whether this is worth investigating 

further. It would also be interesting to see if it held true not only with a larger statistical 

sample, but also across different domains. 

6.2.5 Educating users about autonomous systems 

Understanding, at least at a basic level, how an autonomous system works has been 

established a crucial aspect of a design process in which human and computational agents 

undertake design tasks, particularly in those involving evolutionary systems. A recently 

published position paper introduces the concept of a triple-loop for design supported by 

autonomous tools (Seidel et al., 2018). The authors emphasise that simply considering the 

learning conducted by the machine, which results in a computational model that helps 

choosing the right actions in order to achieve a specific result, is simply not enough. They 

argue that the human designer also formulates a mental model that needs to be trained in 

order to achieve effective results when working with the support of autonomous tools. This 

human model includes an understanding of some of the inner workings of the autonomous 



127 
 

design tools, so that both systems can evolve their capabilities, and subsequently become a 

more effective system as a whole (Seidel et al., 2018). I believe that Seidel et al.’s findings 

support some of the approaches taken in this study. Educating the user, at least at a 

fundamental level, so that they understand how the autonomous tools may respond under 

certain circumstances, was a choice I made as part of my pre-participation briefs with 

participants. I agree with the article published by Seidel et al. (2018), and do not think that 

my brief explanation induced bias to my evaluations, because my participants were not aware 

of whether the computational agents were active or not. 

6.3 Limitations 

I have deliberately pointed to some of the limitations of this study throughout this thesis, as 

I believe that a progressive approach to highlighting the boundaries of this study, while also 

looking for potential future solutions, allowed me to take a critical view of the work presented 

here. The following sections unpack these limitations and point to possible solutions that can 

be explored in future work. 

6.3.1 Sample size 

The main limitation, in my opinion, was the relatively small sample size, and thus, the low 

number of participating game level designers. Access to game level designers is limited, and 

particularly considering that I needed them to engage with the eye tracking system. It can be 

argued that such a limitation could have been avoided by either including a larger 

geographical area, or by simply removing the eye tracking method from this study. 

While I could have expanded my search for participants, for example, to Australia, which has 

a healthy game development industry and presumably, a number of game level designers, 

this was cost-prohibitive. If I am able to secure additional funding, I would certainly prefer to 

expand the recruitment range and increase the sample size. 

The second option of removing the eye tracking method from this study is likely not ideal, 

given that this study established the necessity to triangulate interview responses with 

quantitative data, and since eye tracking in particular provided interesting insights into the 

behaviour of participants. Thus, if at all possible, I will attempt to include eye tracking again 

in future studies, and rather find sufficient funding for expanding the geographical area to 

conduct a larger study. 



128 

6.3.2 Rule-based Expert System 

Due to the lengthy nature of a PhD and rapid development in the area of procedural content 

generation, neural network-based agents and the recent rise of deep neural networks, the 

two agents in this prototype may appear very traditional, and not particularly progressive. A 

rule-based expert system to capture human decision-making may be viewed as conservative 

when compared with deep learning for decision-making support systems. This can be viewed 

as a limitation of this study. I would argue, however, that the underlying principle of merging 

human and computational capacity in the form of different roles within a multi agent system, 

which in turn drives part of an interactive genetic algorithm, is an advancement of existing 

knowledge, and therefore, a contribution of this thesis. The contribution here lies in the 

addition of several computational agents to the system, following Kosorukoff’s (2001) original 

proposal. The next step, in my view, is an additional agent based on a deep neural network, 

most likely a generative adversarial network, which is capable of generating new variations, 

based on a learned set of features (Giacomello et al., 2018). I believe that extending the 

existing system is reasonably straightforward and would allow for rapid prototyping of new 

agents, either replacing existing agents or simply adding new capabilities to the overall 

system. Testing the success or failure of these additions will be fast, assuming another set of 

evaluations with experienced game design experts can be conducted. But there are also a few 

important points to consider. An expert system is directly connected to the data derived from 

designers. A generative adversarial network is trained based on outcomes (the actual levels) 

of the design process. While there are numerous diagrams or images of levels available, which 

can be used to train the network, the number of levels that are considered very good and that 

match the popularity, and presumably the playability of the levels discussed by the experts 

that served as data for the cognitive model created in this study, are scant. Training a deep 

neural network with very little training data will potentially be very difficult, and a simpler 

approach, such as creating a rule-based system, is relatively easy to achieve. It is not an 

automated and domain-independent method, but it is also not bound to the use of large 

datasets, which is an advantage in applications that do not offer rich and readily available 

large sets of data. 



129 
 

6.3.3 Tracking individual agent performance 

With the current setup of the design prototype, there is no provision to track the performance 

of individual agents. While the current results show some promise and indicate that the multi-

agent system is a helpful addition to pure interactive evolutionary content generation, it is 

impossible to draw any conclusions linked to the contribution of the diversity agent and the 

DEA. This may appear to be a major flaw of this study. I would argue against this, however, 

because the diversity agent is heavily dependent on the DEA for making any decisions. 

Without the ranked top candidate selected by the DEA, there is no way for the diversity agent 

to find a top ranked candidate that has one different heuristic feature. The latter requires the 

former to finish the search first, and to publish the message that identifies the top ranks. 

Therefore, the diversity agent depends on another computational agent. As such, at least the 

statement that the designer expert agent seems to perform reasonably well and increases 

the speed of convergence towards a high fitness of the overall pool, is defendable. 

Furthermore, the claim that the designer expert agent helps to augment the human user by 

offering a fast track towards solutions that the user is in favour of, and which therefore 

improves the overall system performance, is also likely accurate, albeit additional research is 

needed to clearly support this. 

6.3.4 Post-design play-testing 

Furthermore, and this leads to a second limitation of this work, it will be beneficial to conduct 

broader play-testing with a large number of users, in order to establish the success of the 

resulting levels. Design experts may offer opinions and assumptions about the resulting levels 

that can be extrapolated from their responses; however, play-testing with the end user is 

viewed as the ultimate test and was also suggested by one of the participants in this study. 

The data generated via a large-scale playtest can also be fed back into the original generative 

system in the form of an agent, given that a large dataset of user inputs and actions can be 

used as training data for a deep neural network. This can ultimately lead to a system that 

improves over time, by capturing the designer’s intent, as well as player actions. 

6.4 Future Work 

In the previous section, I discussed a number of limitations of this study. While I consider the 

sample size of the current research the most significant restriction, I will likely make a number 



130 
 

of adjustments to the overall methodology in future work, and not only increase the number 

of participants.  

The above recommendations for future work are captured in this section. 

6.4.1 Sample size 

Two possible ways to increase the sample size, which has been identified as a possible issue 

of this study, are highlighted in the limitations section. Given the value that eye tracking 

shows as a means for triangulating interview responses, I will most certainly prefer to increase 

the sample by expanding the recruitment to other locations, which in turn requires an 

increase in research budget for future studies. 

6.4.2 Exclusion agent 

Two participants suggested enabling the user to move beyond simple parent/parent 

selections, and to also allow for excluding specific candidates from future breeding. This is an 

idea that I had worked on before even starting the evaluation, but in favour of a pure 

approach to the genetic algorithm, I decided not to use this agent. The focus of my thesis is 

on one of its main contributions, the designer expert agent, which acts as an evaluator in a 

procedural content generation system. The integration of an exclusion mechanic through the 

recording of user input, and feeding it into an additional agent is too close to Kosorukoff’s 

(2001) human-based genetic algorithm, as it makes use of the suggested multi-role of human 

agents. However, I wanted to focus on the designer model rather than a sophisticated (and 

large) multi-agent system. Therefore, I decided not to use an exclusion agent in my prototype 

evaluation. Part of this decision was also my aim to preserve the simple use of the tool. Adding 

additional steps would have potentially increased complexity for the user, which may have 

added to user fatigue. 

An exclusion agent kept track of candidates that the user selected as unsuitable, and that the 

user did not wish to use in any future generation. This was easily implemented by taking the 

designer agent’s output, which reflects a highly desirable set of goals, and benchmarking the 

selected unwanted candidate against these goals. The largest resulting discrepancy would be 

a feature that was to be avoided in future populations, by allowing the exclusion agent to 

reject randomly selected candidates for the next population based on their undesirable 

features. The usefulness and performance of an exclusion agent is subject to future research.  



131 
 

6.4.3 Additional features 

A number of feature suggestions were made by participants that can potentially improve the 

usability of the design tool and enable the designer to take an active role in some of the tasks 

currently handled by agents or operators of the genetic algorithm.  

While some feature suggestions may only provide minor workflow improvements, a couple 

of points appear important, and should be considered in future work. These include visual 

aids that would likely enable the user to conduct a more efficient assessment of the 

candidates. Adding a grid is not a significant change, but given the known issue of user fatigue 

in interactive computational systems, it seems like a good suggestion to increase overall 

system performance and usability. Additionally, an overlay that shows how the agents 

assessed the levels may be useful, as it will help designers to understand what the 

autonomous system does, and there is evidence in other publications that this may be 

important in hybrid systems (Seidel et al., 2018). However, there is also the argument that 

increasing the cognitive load by increasing visual elements may have a negative impact on 

attention (see, for example Kiefer, Giannopoulos, Raubal & Duchowski, 2017), and lead to 

increased user fatigue. Based on previous experience with interactive evolutionary systems 

(Kruse & Connor, 2015), it may be worth investigating a system that offers additional visual 

information to the user, while at the same time includes a user preference agent that 

mitigates the risk of fatigue. 

6.5 Conclusion 

This thesis discusses a novel approach to FPS game level evaluation, based on a multi-agent 

system that includes the designer, rather that attempting to replace them. A novel DEA 

performs tasks based on traits that have been extracted from expert game level designer 

accounts, and that are subsequently transformed into a decision-support system. The system 

was evaluated and indicates promising results. Participants also provided some surprising 

interview responses that contradicted their own selections and differed to what they paid 

significant attention to. While the results need to be verified in future research using a larger 

sample size, the project is deemed a small success within a much larger trajectory. 

  



132 
 

7 References 

Adams, E. (2013). Fundamentals of Game Design (3 edition). Berkeley, CA: New Riders. 

Alroobaea, R., & Mayhew, P. J. (2014). How many participants are really enough for usability 

studies? 2014 Science and Information Conference, 48–56. 

https://doi.org/10.1109/SAI.2014.6918171 

Andersen, R. A., Bracewell, R. M., Barash, S., Gnadt, J. W., & Fogassi, L. (1990). Eye position 

effects on visual, memory, and saccade-related activity in areas LIP and 7a of 

macaque. Journal of Neuroscience, 10(4), 1176–1196. 

Anderson, C., Buchsbaum, D., Potter, J., & Bonabeau, E. (2008). Making Interactive 

Evolutionary Graphic Design Practical. In A. P. T. Yu, P. L. Davis, D. C. Baydar, & P. R. 

Roy (Eds.), Evolutionary Computation in Practice (pp. 125–141). Retrieved from 

http://link.springer.com/chapter/10.1007/978-3-540-75771-9_6 

Bakkes, S. C. J., Spronck, P. H. M., & van Lankveld, G. (2012). Player behavioural modelling for 

video games. Entertainment Computing, 3(3), 71–79. 

https://doi.org/10.1016/j.entcom.2011.12.001 

Bentley, P. (1999). Evolutionary Design by Computers. Morgan Kaufmann. 

Beyer, H.-G., & Schwefel, H.-P. (2002). Evolution Strategies - A Comprehensive Introduction. 

1(1), 3–52. https://doi.org/10.1023/A:1015059928466 

Boden, M. A. (1977). Artificial intelligence and natural man (Vol. 5). JSTOR. 

Boden, M. A. (2006). Mind as machine : a history of cognitive science. Oxford : Clarendon 

Press ; New York : Oxford University Press, 2006. (City Campus Main Collection 153.09 

BOD). 

Bohil, C. J., & Biocca, F. A. (2007). Cognitive Modeling of Video Game Players. Retrieved from 

Mindlab website: http://mindlab.org/images/d/DOC1089.pdf 



133 

Bohnacker, H. (2012). Generative design: visualize, program, and create with processing. New 

York: Princeton Architectural Press. 

Bresenham, J. E. (1965). Algorithm for computer control of a digital plotter. IBM Systems 

Journal, 4(1), 25–30. https://doi.org/10.1147/sj.41.0025 

Brown, D. (2012). The suspension of disbelief in videogames (Brunel University School of Arts 

PhD Theses). Retrieved from http://v-scheiner.brunel.ac.uk/handle/2438/7457 

Brustoloni, J. C. (1991). Autonomous agents: characterization and requirements. School of 

Computer Science, Carnegie Mellon University. 

Bryman, A. (2012). Social Research Methods. OUP Oxford. 

Bryman, A. (2016). Social research methods. Oxford : Oxford University Press, [2016]. (South 

Campus Main Collection 300.72 BRY). 

Buchanan, B., Randall, D., & Feigenbaum, E. (2006). Expert Systems: A Perspective from 

Computer Science. Cambridge Handbook of Expertise and Expert Performance. 

Candy, L. (2006, November). Practice Based Research Guide. Retrieved May 26, 2012, from 

http://www.scribd.com/doc/72480138/Practice-Based-Research-Guide 

Charles, D., McNeill, M., McAlister, M., Black, M., Moore, A., Stringer, K., … Kerr, A. (2005). 

Player-Centred Game Design: Player Modelling and Adaptive Digital Games. 

Proceedings of DiGRA 2005 Conference. Presented at the Digital Games Research 

Association  Conference, Vancouver, Canada. Retrieved from 

https://www.cp.eng.chula.ac.th/~vishnu/gameResearch/AI_november_2005/digra0

5.pdf

Charters, E. (2003). The use of think-aloud methods in qualitative research an introduction to 

think-aloud methods. Brock Education Journal, 12(2). 



134 
 

Connor, A., Greig, T., & Kruse, J. (2018). Evolutionary generation of game levels. EAI Endorsed 

Transactions on Creative Technologies, 5(15). Retrieved from 

http://eudl.eu/doi/10.4108/eai.10-4-2018.155857 

Connor, A. M. (1996). The synthesis of hybrid mechanisms using genetic algorithms (BL) 

(Ph.D., Liverpool John Moores University (United Kingdom)). Retrieved from 

http://search.proquest.com/docview/301467506?pq-origsite=summon 

Cook, M., & Colton, S. (2011). Multi-Faceted Evolution Of Simple Arcade Games. CIG, 289–

296. 

Cook, M., Colton, S., & Gow, J. (2017). The ANGELINA Videogame Design System—Part II. IEEE 

Transactions on Computational Intelligence and AI in Games, 9(3), 254–266. 

Creswell, J. W. (2014). Research design : qualitative, quantitative, and mixed methods 

approaches. Thousand Oaks : SAGE Publications, [2014]. (North Campus Main 

Collection 300.72 CRE). 

Dawkins, R. (1986). The blind watchmaker: why the evidence of evolution reveals a universe 

without design. New York: Norton. 

Dawson, M. R. W. (2003). Minds and Machines: Connectionism and Psychological Modeling (1 

edition). Malden, MA: Wiley-Blackwell. 

Dean, R. T., & Smith, H. (2009). Practice-led Research, Research-led Practice in the Creative 

Arts (1st ed.). Edinburgh: Edinburgh University Press. 

Desurvire, H., Caplan, M., & Toth, J. A. (2004). Using Heuristics to Evaluate the Playability of 

Games. CHI ’04 Extended Abstracts on Human Factors in Computing Systems, 1509–

1512. https://doi.org/10.1145/985921.986102 

Duchowski, A. T. (2007). Eye tracking methodology : theory and practice. London : Springer, 

c2007. 



135 
 

Duda, R. O., & Shortliffe, E. H. (1983). Expert systems research. Science, 220(4594), 261–268. 

Dunning, D. (2011). Chapter five - The Dunning–Kruger Effect: On Being Ignorant of One’s 

Own Ignorance. In J. M. Olson & M. P. Zanna (Eds.), Advances in Experimental Social 

Psychology (Vol. 44, pp. 247–296). https://doi.org/10.1016/B978-0-12-385522-

0.00005-6 

Edwards, R. (2006, May). The Economics of Game Publishing - IGN. Retrieved February 23, 

2019, from IGN website: https://www.ign.com/articles/2006/05/06/the-economics-

of-game-publishing 

Einhäuser, W., Schumann, F., Bardins, S., Bartl, K., Böning, G., Schneider, E., & König, P. (2007). 

Human eye-head co-ordination in natural exploration. Network: Computation in 

Neural Systems, 18(3), 267–297. 

Elshoff, J. L., & Hulina, P. T. (1970). The Binary Floating Point Digital Differential Analyzer. 

Proceedings of the November 17-19, 1970, Fall Joint Computer Conference, 369–376. 

https://doi.org/10.1145/1478462.1478516 

Ericsson, K. A., & Simon, H. A. (1993). Protocol analysis : verbal reports as data. Cambridge, 

Mass. : MIT Press, [1993]. (City Campus Main Collection 006.3 ERI). 

Faulkner, L. (2003). Beyond the five-user assumption: Benefits of increased sample sizes in 

usability testing. Behavior Research Methods, Instruments, & Computers, 35(3), 379–

383. 

Feigenbaum, E. A. (1980). Expert systems in the 1980s. Retrieved from 

https://stacks.stanford.edu/file/druid:vf069sz9374/vf069sz9374.pdf 

Feigenbaum, E. A., & Feldman, J. (1963). Computers and Thought. New York, NY, USA: 

McGraw-Hill, Inc. 



136 
 

Ferro, L. S., Walz, S. P., & Greuter, S. (2013). Towards Personalised, Gamified Systems: An 

Investigation into Game Design, Personality and Player Typologies. Proceedings of The 

9th Australasian Conference on Interactive Entertainment: Matters of Life and Death, 

7:1–7:6. https://doi.org/10.1145/2513002.2513024 

Ferrucci, D., Levas, A., Bagchi, S., Gondek, D., & Mueller, E. T. (2013). Watson: Beyond 

Jeopardy! Artificial Intelligence, 199–200, 93–105. 

https://doi.org/10.1016/j.artint.2012.06.009 

Finlay, J., Connor, A. M., & Pears, R. (2011). Mining Software Metrics from Jazz. 2011 9th 

International Conference on Software Engineering Research, Management and 

Applications (SERA), 39–45. https://doi.org/10.1109/SERA.2011.40 

Fisher, G. (2014). Blender 3D Basics: Second Edition (2 edition). Birmingham, UK: Packt 

Publishing - ebooks Account. 

Fogel, D. B. (2006). Evolutionary Computation: Toward a New Philosophy of Machine 

Intelligence. Wiley. 

Franklin, S. (1997). Artificial Minds. MIT Press. 

Franklin, S., & Graesser, A. (1996). Is it an Agent, or just a Program?: A Taxonomy for 

Autonomous Agents. 21–35. Springer-Verlag. 

Fraser, A., & Burnell, D. (1970). Computer models in genetics. Computer Models in Genetics. 

Retrieved from https://www.cabdirect.org/cabdirect/abstract/19711604313 

Freyermuth, G. S. (2015). Games, Game Design, Game Studies: An Introduction. transcript 

Verlag. 

Fullerton, T. (2008). Game Design Workshop: A Playcentric Approach to Creating Innovative 

Games (2 edition). Amsterdam ; Boston: Morgan Kaufmann. 



137 

Fum, D., Missier, F. D., & Stocco, A. (2007). The Cognitive Modeling of Human Behavior: Why 

a Model is (Sometimes) Better Than 10,000 Words. Cogn. Syst. Res., 8(3), 135–142. 

https://doi.org/10.1016/j.cogsys.2007.07.001 

Galanter, P. (2012). Computational Aesthetic Evaluation: Past and Future. In J. McCormack & 

M. d’Inverno (Eds.), Computers and Creativity (pp. 255–293). Retrieved from

http://link.springer.com/chapter/10.1007/978-3-642-31727-9_10 

Galuzin, A. (2016). Preproduction Blueprint: How to Plan Game Environments and Level 

Designs (2 edition). North Charleston, South Carolina: CreateSpace Independent 

Publishing Platform. 

Gaudiosi, J. (2016, April 6). These Are The Most Popular ESports Games On Twitch. Retrieved 

November 6, 2017, from Fortune website: http://fortune.com/2016/04/06/most-

popular-esports-games-on-twitch/ 

Giacomello, E., Lanzi, P. L., & Loiacono, D. (2018). DOOM Level Generation using Generative 

Adversarial Networks. Retrieved from https://arxiv.org/abs/1804.09154 

Given, L. (2008). The SAGE Encyclopedia of Qualitative Research Methods. 

https://doi.org/10.4135/9781412963909 

Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization, and Machine Learning (1 

edition). Reading, Mass: Addison-Wesley Professional. 

Goldberg, J. H., & Kotval, X. P. (1999). Computer interface evaluation using eye movements: 

methods and constructs. International Journal of Industrial Ergonomics, 24(6), 631–

645. https://doi.org/10.1016/S0169-8141(98)00068-7

Greenberg, I., Xu, D., & Kumar, D. (2013). Processing: Creative Coding and Generative Art in 

Processing 2 (2 edition). Berkeley, Calif.; London: friendsofED. 



138 

Greuter, S., Parker, J., Stewart, N., & Leach, G. (2003). Real-time procedural generation 

ofpseudo infinite’cities. Proceedings of the 1st International Conference on Computer 

Graphics and Interactive Techniques in Australasia and South East Asia, 87–ff. ACM. 

Gu, Z., Xi Tang, M., & Frazer, J. H. (2006). Capturing aesthetic intention during interactive 

evolution. Computer-Aided Design, 38(3), 224–237. 

https://doi.org/10.1016/j.cad.2005.10.008 

Hendrikx, M., Meijer, S., Van Der Velden, J., & Iosup, A. (2013). Procedural content generation 

for games: A survey. ACM Transactions on Multimedia Computing, Communications, 

and Applications (TOMM), 9(1), 1. 

Hevner, A. R., March, S. T., Park, J., & Ram, S. (2004). Design Science in Information Systems 

Research. MIS Quarterly, 28(1), 75–105. 

Holland, J. H. (1975). Adaptation in Natural and Artificial Systems: An Introductory Analysis 

with Applications to Biology, Control, and Artificial Intelligence. Ann Arbor: University 

of Michigan Press. 

Hsieh, H.-F., & Shannon, S. E. (2005). Three Approaches to Qualitative Content Analysis. 

Qualitative Health Research, 15(9), 1277–1288. 

https://doi.org/10.1177/1049732305276687 

Hwang, W., & Salvendy, G. (2010). Number of people required for usability evaluation: the 10 

+/- 2 rule. Communications of the ACM, 53(5), 130–133. 

Jackson, P. (1998). Introduction to Expert Systems (3rd ed.). Boston, MA, USA: Addison-Wesley 

Longman Publishing Co., Inc. 

Järvinen, A. (2007). Introducing Applied Ludology: Hands-on Methods for Game Studies. 

DiGRA Conference. Presented at the Tokyo, Japan. Tokyo, Japan. 



139 
 

Järvinen, A. (2009). Games Without Frontiers: Methods for Game Studies and Design. 

Tampere, Finland: VDM, Verlag Dr. Müller. 

Jenkins, H. (2004). Game Design as Narrative Architecture. Computer, 44, 53. 

Jennett, C., Cox, A. L., Cairns, P., Dhoparee, S., Epps, A., Tijs, T., & Walton, A. (2008). Measuring 

and defining the experience of immersion in games. International Journal of Human-

Computer Studies, 66(9), 641–661. https://doi.org/10.1016/j.ijhcs.2008.04.004 

Juul, J. (2011). Half-Real: Video Games between Real Rules and Fictional Worlds. MIT Press. 

Keeton, W. T. (1996). Biological Science (6 edition). New York: W W Norton & Co Inc. 

Kelly, G., & McCabe, H. (2007). Citygen: An interactive system for procedural city generation. 

Presented at the GDTW, Liverpool, UK. Retrieved from 

http://procedural.googlecode.com/svn-

history/r121/trunk/articles_cities/citygen_gdtw07.pdf 

Kiefer, P., Giannopoulos, I., Raubal, M., & Duchowski, A. (2017). Eye tracking for spatial 

research: Cognition, computation, challenges. Spatial Cognition & Computation, 17(1–

2), 1–19. https://doi.org/10.1080/13875868.2016.1254634 

Kosorukoff, A. (2001). Human based genetic algorithm. 2001 IEEE International Conference on 

Systems, Man, and Cybernetics, 5, 3464–3469 vol.5. 

https://doi.org/10.1109/ICSMC.2001.972056 

Koster, R. (2018, January 17). The cost of games. Retrieved February 23, 2019, from 

Gamasutra website: 

https://www.gamasutra.com/blogs/RaphKoster/20180117/313211/The_cost_of_ga

mes.php 

Koza, J. R. (1992). Genetic Programming: On the Programming of Computers by Means of 

Natural Selection (1 edition). Cambridge, Mass: A Bradford Book. 



140 

Koza, J. R., Keane, M. A., Streeter, M. J., Mydlowec, W., Yu, J., & Lanza, G. (2003). Genetic 

Programming IV: Routine Human-Competitive Machine Intelligence (1st ed. 2003. 

Corr. 2nd printing edition). Norwell, Mass: Springer. 

Kruger, J., & Dunning, D. (1999). Unskilled and unaware of it: How difficulties in recognizing 

one’s own incompetence lead to inflated self-assessments. Journal of Personality and 

Social Psychology, 77(6), 1121–1134. https://doi.org/10.1037/0022-3514.77.6.1121 

Kruse, J. (2014). Interactive evolutionary computation in design applications for virtual worlds 

(Thesis, Auckland University of Technology). Retrieved from 

http://aut.researchgateway.ac.nz/handle/10292/8593 

Kruse, J., & Connor, A. M. (2015). Multi-agent evolutionary systems for the generation of 

complex virtual worlds. EAI Endorsed Transactions on Creative Technologies. 

Lally, A., Prager, J. M., McCord, M. C., Boguraev, B. K., Patwardhan, S., Fan, J., … Chu-Carroll, 

J. (2012). Question analysis: How Watson reads a clue. IBM Journal of Research and

Development, 56(3.4), 2:1-2:14. https://doi.org/10.1147/JRD.2012.2184637 

Lavrakas, P. (2008). Conversational Interviewing. In Encyclopedia of Survey Research Methods. 

https://doi.org/10.4135/9781412963947.n107 

Lawson, B. (1997). How designers think : the design process demystified. Oxford ; Boston : 

Architectural Press, [1997]. (City Campus Main Collection 745.4 LAW). 

Liapis, A., Yannakakis, G. N., & Togelius, J. (2013a). Sentient Sketchbook: Computer-aided 

game level authoring. FDG, 213–220. 

Liapis, A., Yannakakis, G. N., & Togelius, J. (2013b). Towards a Generic Method of Evaluating 

Game Levels. AIIDE. 



141 
 

Liapis, A., Yannakakis, G. N., & Togelius, J. (2014). Computational game creativity. Proceedings 

of the Fifth International Conference on Computational Creativity, 285–292. Retrieved 

from http://www.itu.dk/people/anli/research/computational_game_creativity.pdf 

Macklin, C., & Sharp, J. (2016). Games, Design and Play: A detailed approach to iterative game 

design (1 edition). Boston, MA ; San Francisco, CA: Addison-Wesley Professional. 

Marks, S. (2006). Evolving autonomous locomotion of virtual characters in a simulated 

physical environment via neural networks and evolutionary strategies. University of 

Applied Sciences Gelsenkirchen, Gelsenkirchen. 

Mitchell, B. L. (2012). Game Design Essentials (1 edition). Indianapolis, Indiana, USA: Sybex. 

Mitchell, M. (1998). An Introduction to Genetic Algorithms. MIT Press. 

Moogk, D. R. (2012). Minimum Viable Product and the Importance of Experimentation in 

Technology Startups. Technology Innovation Management Review, (March 2012: 

Technology Entrepreneurship), 23–26. 

Mühlenbein, H. (1992). How Genetic Algorithms Really Work: Mutation and Hillclimbing. 

Berlin: Springer. 

Münch, J., Fagerholm, F., Johnson, P., Pirttilahti, J., Torkkel, J., & Jäarvinen, J. (2013). Creating 

Minimum Viable Products in Industry-Academia Collaborations. In B. Fitzgerald, K. 

Conboy, K. Power, R. Valerdi, L. Morgan, & K.-J. Stol (Eds.), Lean Enterprise Software 

and Systems (pp. 137–151). Berlin: Springer Berlin Heidelberg. 

Murdock, K. (2017). Autodesk Maya 2018 Basics Guide (Pap/Psc edition). Mission, KS, USA: 

SDC Publications. 

Museth, K. (2013). VDB: High-resolution sparse volumes with dynamic topology. ACM 

Transactions on Graphics (TOG), 32(3), 27. 



142 
 

Museth, K. (2014). Hierarchical digital differential analyzer for efficient ray-marching in 

openvdb. ACM SIGGRAPH 2014 Talks, 40. ACM. 

Musil, J., Schweda, A., Winkler, D., & Biffl, S. (2010). Improving Video Game Development: 

Facilitating Heterogeneous Team Collaboration through Flexible Software Processes. 

In A. Riel, R. O’Connor, S. Tichkiewitch, & R. Messnarz (Eds.), Systems, Software and 

Services Process Improvement (pp. 83–94). Springer Berlin Heidelberg. 

Nacke, L., Drachen, A., Kuikkaniemi, K., Niesenhaus, J., Korhonen, H. J., Hoogen, W. M. van 

den, … Kort, Y. A. W. de. (2009). Playability and Player Experience Research. Presented 

at the Proceedings of DiGRA 2009: Breaking New Ground: Innovation in Games, Play, 

Practice and Theory. Retrieved from http://www.diva-

portal.org/smash/record.jsf?pid=diva2:835637 

Nacke, L. E., & Lindley, C. A. (2010). Affective Ludology, Flow and Immersion in a First- Person 

Shooter: Measurement of Player Experience. ArXiv:1004.0248 [Cs]. Retrieved from 

http://arxiv.org/abs/1004.0248 

Nagle, A., Wolf, P., & Riener, R. (2016). Towards a system of customized video game 

mechanics based on player personality: Relating the Big Five personality traits with 

difficulty adaptation in a first-person shooter game. Entertainment Computing, 

13(Supplement C), 10–24. https://doi.org/10.1016/j.entcom.2016.01.002 

Negnevitsky, M. (2004). Artificial Intelligence: A Guide to Intelligent Systems (2nd ed.). 

Addison-Wesley. 

Nickerson, R. S. (1998). Confirmation bias: A ubiquitous phenomenon in many guises. Review 

of General Psychology, 2(2), 175. 

Okita, A. (2015). Learning C♯ programming with Unity 3D. Boca Raton : CRC Press, [2015]. 



143 
 

Okun, J. A., & Zwerman, S. (Eds.). (2010). The VES Handbook of Visual Effects: Industry 

Standard VFX Practices and Procedures (1st ed.). Burlington, MA: Focal Press. 

Olson, G. M., Duffy, S. A., & Mack, R. L. (2018). Thinking-Out-Loud as a Method for Studying 

11 Real-Time Comprehension Processes. New Methods in Reading Comprehension 

Research, 253. 

Ølsted, P. T., Ma, B., & Risi, S. (2015). Interactive evolution of levels for a competitive 

multiplayer FPS. 2015 IEEE Congress on Evolutionary Computation (CEC), 1527–1534. 

https://doi.org/10.1109/CEC.2015.7257069 

Paavilainen, J., Korhonen, H., & Saarenpää, H. (2012). Comparing two playability heuristic sets 

with expert review method: A case study of mobile game evaluation. In Media in the 

ubiquitous era: Ambient, social and gaming media (pp. 29–52). IGI Global. 

Parish, Y. I. H., & Müller, P. (2001). Procedural Modeling of Cities. Proceedings of the 28th 

Annual Conference on Computer Graphics and Interactive Techniques, 301–308. 

https://doi.org/10.1145/383259.383292 

Pearson, M. (2011). Generative Art (1 edition). Shelter Island, NY : London: Manning 

Publications. 

Pentland, A., & Liu, A. (1999). Modeling and prediction of human behavior. Neural 

Computation, 11(1), 229–242. 

Pimpale, P., & Bhande, N. (2007, December). Genetic Algorithms Made Easy. Retrieved from 

http://www.slideshare.net/pbpimpale/genetic-algorithms-200688 

Pinelle, D., Wong, N., & Stach, T. (2008). Heuristic evaluation for games: usability principles 

for video game design. Proceedings of the SIGCHI Conference on Human Factors in 

Computing Systems, 1453–1462. Retrieved from 

http://dl.acm.org/citation.cfm?id=1357282 



144 

Prager, J. M., Brown, E. W., & Chu-Carroll, J. (2012). Special Questions and techniques. IBM 

Journal of Research and Development, 56(3.4), 11:1-11:13. 

https://doi.org/10.1147/JRD.2012.2187392 

Prieto-Díaz, R. (1990). Domain analysis: An introduction. ACM SIGSOFT Software Engineering 

Notes, 15(2), 47–54. 

Raffe, W. L., Zambetta, F., Li, X., & Stanley, K. O. (2015). Integrated Approach to Personalized 

Procedural Map Generation Using Evolutionary Algorithms. IEEE Transactions on 

Computational Intelligence and AI in Games, 7(2), 139–155. 

https://doi.org/10.1109/TCIAIG.2014.2341665 

Renner, G., & Ekárt, A. (2003). Genetic algorithms in computer aided design. Computer-Aided 

Design, 35(8), 709–726. https://doi.org/10.1016/S0010-4485(03)00003-4 

RStudio Team. (2015). RStudio: Integrated Development for R. Retrieved from 

http://www.rstudio.com/ 

Rudolph, G. (1994). Convergence analysis of canonical genetic algorithms. IEEE Transactions 

on Neural Networks, 5(1), 96–101. https://doi.org/10.1109/72.265964 

Russell, S. J., & Norvig, P. (1994). Artificial intelligence: a modern approach (1st ed). Upper 

Saddle River, N.J: Prentice Hall. 

Russell, S. J., & Norvig, P. (2003). Artificial intelligence: a modern approach (2nd ed). Upper 

Saddle River, N.J: Prentice Hall. 

Sadilek, A. (2012). Modeling human behavior at a large scale. University of Rochester. 

Saldaña, J. (2012). The Coding Manual for Qualitative Researchers (2 edition). Los Angeles: 

SAGE Publications Ltd. 

Salen, K., & Zimmerman, E. (2004). Rules of Play: Game Design Fundamentals. MIT Press. 



145 
 

Sánchez, J. L. G., Simarro, F. M., Zea, N. P., & Vela, F. L. G. (2009). Playability as Extension of 

Quality in Use in Video Games. I-USED. 

Saygin, A. P., Cicekli, I., & Akman, V. (2000). Turing Test: 50 Years Later. Minds and Machines, 

10(4), 463–518. https://doi.org/10.1023/A:1011288000451 

Schatz, E. (2017, June 27). Defining Environment Language for Video Games. Retrieved 

February 23, 2019, from 80lv website: https://80.lv/articles/defining-environment-

language-for-video-games/ 

Schell, J. (2014). The Art of Game Design: A Book of Lenses, Second Edition (2 edition). Boca 

Raton, Florida, USA: A K Peters/CRC Press. 

Schmettow, M. (2012). Sample size in usability studies. Commun. ACM, 55(4), 64–70. 

Seidel, S., Berente, N., Lindberg, A., Lyytinen, K., & Nickerson, J. V. (2018). Autonomous Tools 

and Design: A Triple-loop Approach to Human-machine Learning. Commun. ACM, 

62(1), 50–57. https://doi.org/10.1145/3210753 

Shaker, N., Shaker, M., Abu-Abdallah, I., Al-Zengi, M., & Sarhan, M. H. (2013). A Quantitative 

Approach for Modelling and Personalizing Player Experience in First-Person Shooter 

Games. UMAP 2013 Extended Proceedings, 997. https://doi.org/urn:nbn:de:0074-

997-7 

Shaker, N., Smith, G., & Yannakakis, G. N. (2016). Evaluating content generators. In N. Shaker, 

J. Togelius, & M. J. Nelson (Eds.), Procedural Content Generation in Games (pp. 215–

224). https://doi.org/10.1007/978-3-319-42716-4_12 

Shaker, N., Togelius, J., & Nelson, M. J. (2016a). Fractals, noise and agents with applications 

to landscapes. In N. Shaker, J. Togelius, & M. J. Nelson, Procedural Content Generation 

in Games (pp. 57–72). https://doi.org/10.1007/978-3-319-42716-4_4 



146 
 

Shaker, N., Togelius, J., & Nelson, M. J. (2016b). Procedural Content Generation in Games (1st 

ed. 2016 edition). Springer. 

Shoham, Y. (1993). Agent-oriented Programming. Artificial Intelligence, 60(1), 51–92. 

https://doi.org/10.1016/0004-3702(93)90034-9 

Short, T. X., & Adams, T. (Eds.). (2017). Procedural Generation in Game Design (1 edition). 

Boca Raton, USA: Routledge. 

Sims, K. (1992). Interactive evolution of dynamical systems. In Proceedings of the First 

European Conference on Artificial Life. Toward a practice of autonomous systems (pp. 

171–178). 

Smith, D. C., Cypher, A., & Spohrer, J. (1994). KidSim: Programming Agents Without a 

Programming Language. Commun. ACM, 37(7), 54–67. 

https://doi.org/10.1145/176789.176795 

Smith, G., Gan, E., Othenin-Girard, A., & Whitehead, J. (2011). PCG-based game design: 

enabling new play experiences through procedural content generation. Proceedings 

of the 2nd International Workshop on Procedural Content Generation in Games, 7. 

Bordeaux, France: ACM. 

Sprague, R. E. (1952). Technical Developments: Fundamental Concepts of the Digital 

Differential Analyzer Method of Computation. Mathematical Tables and Other Aids to 

Computation, 6(37), 41–49. https://doi.org/10.2307/2002747 

Summerville, A., Mariño, J. R., Snodgrass, S., Ontañón, S., & Lelis, L. H. (2017). Understanding 

mario: an evaluation of design metrics for platformers. Proceedings of the 12th 

International Conference on the Foundations of Digital Games, 8. Hyannis, MA, USA: 

ACM. 



147 
 

Takagi, H. (1998). Interactive evolutionary computation: System optimization based on 

human subjective evaluation. IEEE Int. Conf. on Intelligent Engineering Systems 

(INES’98), 17–19. Retrieved from 

http://pdf.aminer.org/000/305/069/discrete_fitness_values_for_improving_human_

interface_in_an_interactive.pdf 

Takagi, H. (2001). Interactive evolutionary computation: fusion of the capabilities of EC 

optimization and human evaluation. Proceedings of the IEEE, 89(9), 1275–1296. 

https://doi.org/10.1109/5.949485 

Takagi, H., & Iba, H. (2005). Interactive Evolutionary Computation. New Generation 

Computing, 23(2), 113–114. 

Thompson, J., Berbank-Green, B., & Cusworth, N. (2007). Game Design: Principles, Practice, 

and Techniques - The Ultimate Guide for the Aspiring Game Designer (1 edition). 

Hoboken, N.J, USA: Wiley. 

Togelius, J., Kastbjerg, E., Schedl, D., & Yannakakis, G. N. (2011). What is Procedural Content 

Generation?: Mario on the Borderline. Proceedings of the 2Nd International Workshop 

on Procedural Content Generation in Games, 3:1–3:6. 

https://doi.org/10.1145/2000919.2000922 

Togelius, J., & Shaker, N. (2016). The search-based approach. In N. Shaker, J. Togelius, & M. J. 

Nelson, Procedural Content Generation in Games (pp. 17–30). 

https://doi.org/10.1007/978-3-319-42716-4_2 

Togelius, J., Shaker, N., & Dormans, J. (2016). Grammars and L-systems with applications to 

vegetation and levels. In N. Shaker, J. Togelius, & M. J. Nelson, Procedural Content 

Generation in Games (pp. 73–98). https://doi.org/10.1007/978-3-319-42716-4_5 



148 
 

Togelius, J., Shaker, N., & Nelson, M. J. (2016). Introduction. In N. Shaker, J. Togelius, & M. J. 

Nelson (Eds.), Procedural Content Generation in Games (pp. 1–15). 

https://doi.org/10.1007/978-3-319-42716-4_1 

Togelius, J., Shaker, N., & Yannakakis, G. N. (2013). Active player modelling. ArXiv Preprint 

ArXiv:1312.2936. Retrieved from http://arxiv.org/abs/1312.2936 

Toy, M., Wichman, G., Arnold, K., & Lane, J. (1980). Rogue. Computer Science Research Group, 

UC Berkeley. 

Turing, A. M. (1950). Computing Machinery and Intelligence. In R. Epstein, G. Roberts, & G. 

Beber (Eds.), Parsing the Turing Test (pp. 23–65). Retrieved from 

http://link.springer.com/chapter/10.1007/978-1-4020-6710-5_3 

Vaishnavi, V. (2008). Design science research methods and patterns: innovating information 

and communication technology. Boca Raton: Auerbach Publications. 

Vaismoradi, M., Turunen, H., & Bondas, T. (2013). Content analysis and thematic analysis: 

Implications for conducting a qualitative descriptive study. Nursing & Health Sciences, 

15(3), 398–405. https://doi.org/10.1111/nhs.12048 

Verzani, J. (2011). Getting started with RStudio.  O’Reilly Media, Inc. 

Vygotskiĭ. (2012). Thought and language. Massachusetts, PA, USA: MIT Press. 

Warman, P. (2017, February 14). Global Esports Market Report. Retrieved November 6, 2017, 

from Newzoo website: https://newzoo.com/insights/articles/esports-revenues-will-

reach-696-million-in-2017/ 

Wolcott, H. F. (1990). Writing Up Qualitative Research. Newbury Park, Calif: SAGE 

Publications, Inc. 

Wooldridge, M. J. (2009). An Introduction to MultiAgent Systems (2nd Edition edition). 

Chichester, U.K: John Wiley & Sons. 



149 

Wooldridge, M., & Jennings, N. R. (1995). Agent theories, architectures, and languages: A 

survey. In M. J. Wooldridge & N. R. Jennings (Eds.), Intelligent Agents (pp. 1–39). 

Retrieved from http://link.springer.com/chapter/10.1007/3-540-58855-8_1 

Wright, T., Boria, E., & Breidenbach, P. (2002). Creative player actions in FPS online video 

games: Playing Counter-Strike. Game Studies, 2(2), 103–123. 

Yannakakis, G. N., Spronck, P., Loiacono, D., & André, E. (2013). Player Modeling. Artificial and 

Computational Intelligence in Games, 6, 45–59. 

Yannakakis, G. N., & Togelius, J. (2011). Experience-driven procedural content generation. 

Affective Computing, IEEE Transactions On, 2(3), 147–161. 

Zhong, W., Liu, J., Xue, M., & Jiao, L. (2004). A multiagent genetic algorithm for global 

numerical optimization. Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE 

Transactions On, 34(2), 1128–1141. 

Zhu, M., Zhao, F., Fang, X., & Moser, C. (2017). Developing Playability Heuristics Based on 

Nouns and Adjectives from Online Game Reviews. International Journal of Human–

Computer Interaction, 33(3), 241–253. 

https://doi.org/10.1080/10447318.2016.1240283 

Ziebart, B. D., Maas, A. L., Bagnell, J. A., & Dey, A. K. (2009). Human Behavior Modeling with 

Maximum Entropy Inverse Optimal Control. AAAI Spring Symposium: Human Behavior 

Modeling, 92. 



150 

Appendix 

A. Selection data as table

Table 1 - Example of numerical selection representation 

Generation Parent1 Parent2 
0 15 9 
1 0 6 
2 15 4 
3 10 4 
4 0 8 
5 13 10 
6 13 4 
7 9 0 
8 12 1 
9 11 4 

10 4 1 
11 0 11 
12 7 1 
13 11 1 
14 2 9 
15 1 0 
16 1 3 
17 1 8 
18 1 9 
19 8 0 
20 0 2 
21 1 9 
22 0 9 
23 7 10 
24 6 0 
25 1 1 
26 1 5 
27 8 0 
28 1 2 



151 

B. Eye tracking heatmaps (agents active)

1 
Eye tracking result shows a strong 
tendency towards the second agent-
based candidate (C4). 

There is also a moderate bias towards 
one of the elitist parents (C2) and a 
random candidate (C6). 

2 
A strong indication in C4, a moderate 
indication that C1 (parent) was of interest 
and the expected browsing of the 
random candidates over time. 

3 
A strong marker on C4, but also moderate 
to strong indications of some random 
candidates. The eyes of the participant 
spent most of their time on C4 though. 

4 
Strong indications on C4 and C12 as well 
as C5. It would be a stretch to claim that 
this result shows a bias towards the 
agent-based candidates in C3 and C4. 



152 
 

5  

A strong bias towards C3 and even C2. 
Otherwise a distribution across most of 
the random cells. C1 seems to be almost 
ignored. 

6  

The strongest indication is in C3. 
Otherwise a reasonably even 
distribution, but very sparse. This 
indicates a short run. 

7  

Strong indication in C1 and C4. Shows a 
preference for agent-based candidate 
and previous parents. Overall a bias 
towards the top row C1-C4). 

Also a few stray blobs next to C12 which 
indicates the use of the three-
dimensional depiction of the parents. 

8  

A very strong indication on C4, plus 
moderate bias towards C3, C7 and 
(probably) C9 – this light red blob sits on 
the border to C5. 



153 

9 
A strong marker on C4 and moderate 
activity in C2 and C3 as well as C15/C16 
border.  

There is an indication that this participant 
made use of the three-dimensional view 
as well (next to C8). Observation protocol 
notes that the participant called C4 very 
interesting in a number of runs. 

10 
Two strong indications on C3 and C4, with 
a very even distribution across the other 
candidates. 

This participant showed a strong 
tendency to consider agent-based 
candidates. 

Observation protocol entries confirm 
this. 

11 
There are strong indications in C1 – C3. 
While there is virtually no consideration 
of C4, this heatmap shows a strong bias 
towards the elitist parents and an agent-
based suggestion.  

12 
This heatmap shows several tiles with a 
strong signature. But this only means that 
this was a very long run. Given that a 
number of tiles have large red areas, for 
example C2, C4, C6, C12, it would be false 
to point to the agent-based solutions 
here. However, observation protocols 
show that the participant was looking for 
“something different” and want to “push 
the algorithm into a different direction”. 



154 

13 
A strong marker on C1 and moderate to 
strong indications on C3 and C8. 

The user looked at the previous choice 
(elitist parent in C1) a lot. There is no clear 
indication that the agents made a 
contribution to the decision-making 
process. 

This was not a very long run according to 
the distribution of the markers. 

14 
The strongest marker is on C4. Moderate 
indications on C2, C12 and C13.  

The sparse distribution of measurements 
indicate a short run. 

15 
The strongest indication is in C4. 

But also C8 and C12 show hotspots. There 
is only moderate heat in C1 and C7.  

This could indicate a preference of C4, 
but C8 and C12 are also quite strong, so 
that this result should be used for only a 
careful indication of user preference. 



155 
 

C. Eye tracking data (agents not active) 

1

 

 

A strong marker on C9 and C10, 
otherwise low to moderate distribution 
across all candidates. There is no 
emphasis on either parents in C1 and C2 
nor C3 and C4 as before (the agents are 
inactive here). 

2 

 

 

The distribution is fairly even across all 
candidates with moderate increase on C6 
and C10. There is no indication of 
preference for C1 to C4. 

3 

 

 

C11 is highlighted and C2 and C14 receive 
moderate attention. There is no 
significance on C3 or C4 nor C1.  

4  

C1, C2, C5 and C9 as well as C15 are 
emphasized. Otherwise a reasonably 
even distribution. While the elitist 
parents in C1 and C2 receive some 
attention, there are other candidates 
that are highlighted as well. This does not 
seem to indicate any particular 
preference. The intensity indicates a very 
long run. 



156 
 

 

5 

 

 

C1 is highlighted and some other 
candidates receive moderate attention 
(C2, C8, C12 and C15) in an otherwise 
even distribution. There is no clear 
evidence of any attention to C3 and C4. 

6 

 

 

Overall a tendency towards the bottom 
of the screen with very little activity at 
the top and left side. The main hotspots 
are C11 as well as C10 and C15. 

There are no significant markers on C1 to 
C4 at all. 

7 

 

 

This run shows a very even distribution 
across all candidates with C4 and C12 
being slightly more emphasized than a 
number of other hotspots. This heatmap 
indicates a fairly long run without any 
particular preference. It is interesting 
that there is an emphasis on C4, but this 
could also be a random occurrence given 
the large number of other hotspots. 



157 
 

8 

 

 

There are three hotspots in this heatmap 
on C2, the boundary of C6 to C10 and C8. 
The hotspot on the boundary seems to 
align with a path that was very close to 
the bottom of the map. This is a glitch 
that only appeared a few times until I 
could track down the bug. All other 
significant markers seem to align with the 
grid, so I do not think that the calibration 
of the eye-tracker caused the anomaly. 

9 

 

 

This run is another case where numerous 
hotspots are visible due to a long run. 
There is no emphasis on the top row 
though, with C5, C10 and C15 being the 
most significant markers.  

This plot also shows a marker off to the 
right of C4, which is owed to the position 
of the three dimensional display of the 
selected parents. This participant made 
some use of that feature. 

10 

 

 

A shorter run with rather faint markers all 
over, and just one moderate hotspot on 
C2. 

 

11

 

 

This run has one clear preference for C8, 
which is one of the random candidates. 
Further, there are three moderate 
hotspots on C1 (elitist parent), C11 and 
C12.  

No particular emphasis on the top row. 



158 

12 
This run has a clear emphasis on C5 and 
moderate markers on C2 and C7. 
Otherwise a reasonably even 
distribution. 

The participant shows a tendency to 
prefer the left side of the grid. 

13 
There are two main hotspots in this 
heatmap in C5 and C10. A moderate 
density on C2. This participant looked 
mostly to the left side of the grid. 

14
The overall density is lower than in (12) 
and (13), but there seems to be a similar 
tendency to favour the left side of the 
grid. It is the same participant as in (12) 
and (13) and there seems to be a 
preferred gaze direction. I am going to 
unpack this as part of the overall 
discussion of the eye tracking results. 

15 

This run has a couple of moderate 
hotspots in C7 and C13 with an otherwise 
reasonably even distribution across other 
grid cells.  



159 
 

16 

 

 

 

This heatmap shows a hotspot in C11 and 
a moderate emphasis on C10. The 
distribution is spread across the whole 
grid without any particular attention to 
the top row C1 to C4. 

 

  



160 

D. Participant Information Sheet, Questionnaire and Interview Questions



161 
 

 

  



162 
 

 

 

  



163 



164 
 

 

  



165 


	1 Introduction
	1.1 Problem Statement
	1.2 Research Question
	1.3 Research Approach
	1.4 Contributions
	1.5 Structure of this Thesis

	2 Literature Review
	2.1 Game Design
	2.1.1 Game Elements
	2.1.2 Generative Design
	2.1.3 Design Cycle
	2.1.4 Computational Creativity

	2.2 Creating computer game content
	2.2.1 Traditional Approaches
	2.2.2 Procedural Content Generation
	2.2.3 Procedural Content Evaluation

	2.3 Cognitive Modelling
	2.3.1 Player Experience Goals, Playability Heuristics, and Playability
	2.3.2 Player Experience Goals
	2.3.3 Playability Heuristics
	2.3.4 Applications of Cognitive Models
	2.3.5 Cognitive Designer Model

	2.4 Artificial Intelligence
	2.4.1 Machine Learning
	2.4.2 Definitions of Artificial Intelligence
	2.4.3 Agents
	2.4.3.1 Raycasting using Digital Differential Analysis

	2.4.4 Expert Systems
	2.4.5 Multi-Agent Systems

	2.5 Evolutionary Computation
	2.5.1 Genetic Algorithms
	2.5.1.1 History of Genetic Algorithms
	2.5.1.2 Canonical Genetic Algorithm Overview
	2.5.1.3 Convergence
	2.5.1.4 Encoding
	2.5.1.5 Fitness Function

	2.5.2 Interactive Genetic Algorithms
	2.5.3 Human-Based Genetic Algorithms

	2.6 Summary

	3 Methodology and Research Design
	3.1 Research Questions
	3.2 Methodology
	3.3 Research Design
	3.3.1 Game Level Design Tool Evaluation
	3.3.1.1 Structure of the evaluation

	3.3.2 Think-aloud and Observation
	3.3.3 Eye Tracking
	3.3.4 Semi-structured interviews
	3.3.5 Questionnaires

	3.4 Design Prototype Evaluation
	3.4.1 Qualitative data analysis
	3.4.1.1 Coding in NVivo

	3.4.2 Quantitative data analysis

	3.5 Ethical Considerations
	3.5.1 Participant selection

	3.6 Summary
	3.7

	4 Design Prototype Implementation
	4.1.1 Resulting Game Levels
	4.1.1.1 Genre and Setting
	4.1.1.2 Game Mode
	4.1.1.3 Level elements

	4.1.2 Genetic Algorithm Implementation
	4.1.2.1 Encoding
	4.1.2.2 Recombination

	4.1.3 Level design prototype Interface
	4.1.4 Player experience goals
	4.1.5 Design Expert Agent
	4.1.5.1 Heuristics
	4.1.5.2 Digital differential analysis implementation
	4.1.5.3 Fitness assessment

	4.1.6 Diversity Agent
	4.1.7 User Preference Agent
	4.1.8 Multi-Agent System
	4.1.9 Eye tracking and heatmap generation

	5 Results and Observations
	5.1 Evaluation of Game Level Design Prototype
	5.1.1 Participating Game Designers
	5.1.2 Observations and think-out-loud results
	5.1.2.1 Stated design goals
	5.1.2.2 Comments related to computational agents

	5.1.3 Interview responses
	5.1.3.1 Usability and User Experience
	5.1.3.2 Multi-Agent System
	5.1.3.3 Feature suggestions

	5.1.4 Telemetry data
	5.1.4.1 Breeding pool fitness
	5.1.4.2 User selections

	5.1.5 Eye tracking results


	6 Discussion and Recommendations
	6.1 Contributions
	6.2 Findings
	6.2.1 Sub-question 1
	6.2.2 Sub-question 2
	6.2.3 Expert suggestions
	6.2.4 Expert responses in interviews also require triangulation
	6.2.5 Educating users about autonomous systems

	6.3 Limitations
	6.3.1 Sample size
	6.3.2 Rule-based Expert System
	6.3.3 Tracking individual agent performance
	6.3.4 Post-design play-testing

	6.4 Future Work
	6.4.1 Sample size
	6.4.2 Exclusion agent
	6.4.3 Additional features

	6.5 Conclusion

	7 References
	Appendix
	A. Selection data as table
	B. Eye tracking heatmaps (agents active)
	C. Eye tracking data (agents not active)
	D. Participant Information Sheet, Questionnaire and Interview Questions


