
Analyzing Confidentiality and Privacy Concerns:

Insights from Android Issue Logs
Sherlock A. Licorish

Department of Information Science
University of Otago

PO Box 56, Dunedin 9054, New Zealand

sherlock.licorish@otago.ac.nz

Stephen G. MacDonell and Tony Clear
SERL, School of Comp. & Math. Sciences

Auckland University of Technology
Auckland 1142, New Zealand

smacdone@aut.ac.nz, tony.clear@aut.ac.nz

ABSTRACT

Context: Post-release user feedback plays an integral role in

improving software quality and informing new features. Given its

growing importance, feedback concerning security enhancements

is particularly noteworthy. In considering the rapid uptake of

Android we have examined the scale and severity of Android

security threats as reported by its stakeholders. Objective: We

systematically mine Android issue logs to derive insights into

stakeholder perceptions and experiences in relation to certain

Android security issues. Method: We employed contextual

analysis techniques to study issues raised regarding confidentiality

and privacy in the last three major Android releases, considering

covariance of stakeholder comments, and the level of consistency

in user preferences and priorities. Results: Confidentiality and

privacy concerns varied in severity, and were most prevalent over

Jelly Bean releases. Issues raised in regard to confidentiality

related mostly to access, user credentials and permission

management, while privacy concerns were mainly expressed about

phone locking. Community users also expressed divergent

preferences for new security features, ranging from more relaxed

to very strict. Conclusions: Strategies that support continuous

corrective measures for both old and new Android releases would

likely maintain stakeholder confidence. An approach that provides

users with basic default security settings, but with the power to

configure additional security features if desired, would provide

the best balance for Android’s wide cohort of stakeholders.

Categories and Subject Descriptors

D.2.9 [Software Engineering]: Management.

General Terms: Quality, Security, Performance.

Keywords: Android, Security, Confidentiality, Privacy,

Content Analysis, Empirical Analysis.

1. INTRODUCTION
Post-release end-user feedback plays an integral role in improving

software quality [1]. Through end-users’ feedback developers are

able to gauge their sentiments about released products. In some

instances users are also able to rate software, which may inform

other users’ decisions. Furthermore, apart from improving the

quality of previously deployed software features, post-release

feedback also signals other desired functionality, and so can direct

a software product’s evolution. Insights from highly successful

cases could identify critical success factors for others.

The Android operating system (OS) has arguably become the

most widely adopted mobile OS [2]. In recent times, however,

there has been growing unease regarding the quality of the

Android platform [3]. In particular, security-related concerns have

become the focus of user reviews [3]. This is driven, in part, by

the increasing capabilities of mobile devices, with users now able

to store non-trivial amounts of private data on their mobile

handsets, along with the greater use of mobile devices in

corporate settings under bring-your-own-device (BYOD) policies.

Given the critical role security plays in assessments of software

quality [4], there is need for research to explore how such issues

have affected the Android OS. Beyond uncovering post-release

insights into a highly successful software product, such

explorations could also provide direction to developers in terms of

employing suitable precision when developing countermeasures

for particular security threats. In addition, insights regarding the

scale and severity of various Android security threats could ensure

new customer awareness. In order to ascertain the possible utility

of such a study we conducted a preliminary analysis of the

Android community’s concerns and found that 79% of Android

users’ security-related comments related to either confidentiality

or privacy. Understanding the nature of these issues, whether they

covary, and any variance in the community’s preferences and

priorities, could usefully inform remedial efforts.

While the Android OS and its in-built issue tracker have attracted

previous research efforts, there has been a tendency towards

manifest (surface) level analysis [5, 6]. We believe that, though

useful, such efforts only reveal a part of the picture, and so should

be supplemented by deeper contextual analyses. Moving beyond

analyses based on word use frequency, qualitative forms of

contextual analysis enable researchers to assess communicators’

intentions and the implications of these intentions on a process or

construct [7]. Such an approach would therefore help us to

unpack the details reported in the Android issue tracker, and

provide insights into the abovementioned issues. We therefore

used contextual analysis approaches to examine the details of

Android issues as logged by stakeholders over the last three major

Android OS releases: Ice Cream Sandwich (4.0, 4.03), Jelly Bean

(4.1, 4.2, 4.3) and KitKat (4.4). We provide empirical evidence of

the nature and scale of confidentiality and privacy issues facing

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than ACM must be

honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior

specific permission and/or a fee. Request permissions from

Permissions@acm.org.

EASE '15, April 27 - 29, 2015, Nanjing, China

Copyright 2015 ACM 978-1-4503-3350-4/15/04…$15.00

http://dx.doi.org/10.1145/2745802.2745819

mailto:Permissions@acm.org
http://dx.doi.org/10.1145/2745802.2745819

the Android community, how the mix of these issues changed

over the three releases, and stakeholders’ expressed preferences

and competing concerns. Our contributions are threefold, and

should support quality improvements: we discuss our findings in

relation to previous evidence and technical opinions, we identify

strategies for counterbalancing various stakeholders’ demands for

fixes, and we outline implications for the mobile community.

In the next section we provide our study background and state our

research questions, and we then describe our research setting in

Section 3. In Section 4 we present our results, and in Section 5 we

discuss our findings and outline potential strategies. We then

consider the threats to the work in Section 6, before outlining

implications for the mobile community and providing concluding

remarks in Section 7.

2. BACKGROUND AND QUESTIONS
There is clearly a strong imperative for software producers to

consider post-release reviews of their products. Previous work

considering the acceptance of users’ concerns and opinions on

such products has long established that software (and any

associated hardware) is most successful when end-user feedback

is accommodated [8, 9]. Literature examining the relationship

between end-users’ participation and software product success has

also linked the acceptance of end-user feedback to their

satisfaction with or acceptance of the product [10]. Willingness to

accommodate end-user feedback has also been shown to affect the

influence of the delivered system on the end-user community [11].

In delivering and sustaining software product quality, security-

related issues may be particularly noteworthy, as they are likely to

require urgent action from developers. Previous studies have lent

some support to this proposition. For instance, Zaman et al. [4]

compared developers’ focus on security and performance bugs in

Firefox and found that security bugs were favored for fixing over

those that were performance-related, and were fixed much more

quickly. Critical security bugs have also been removed from the

Android issue list to avoid or reduce exacerbation or exploitation

of such issues [12].

At the core of the Android OS stack is a modified Linux 2.6

monolithic kernel, with Java applications running on a virtual

machine [2]. Among the software programs that are shipped as

part of the Android OS, the Contacts application, Email client,

Web and Map browsers and Messaging application are those most

frequently included in vendor instantiations. Multiple handset

vendors collaborate with Google through the Open Handset

Alliance (OHA), extending these applications (i.e., how the

features appear), and the basic Android OS, to suit their hardware

offerings. Companies such as HTC, Samsung, LG and Sony are

among the device manufactures that offer Android phones, while

Sprint, Verizon, T-Mobile and AT&T offer services for Android

devices. These communities, along with other developer groups,

regular end-users, and Google itself, use the Android OS issue

tracker to report post-release issues and request enhancements to

features. Thus, the Android issue tracker provides the interface

between the Android OS (as the product), the producers of the

product (the Google developer community) and the consumers of

the product (device vendors, app and service developers and end-

users of Android devices).

Researchers have thus examined this interface to understand

various aspects of the Android OS. For instance, Kumar Maji et

al. [13] studied issues reported for four early versions of the

Android OS (versions 1.1, 1.5, 1.6 and 2.0) and found most

defects to be present in the application layer. Guana et al. [5]

classified 8,597 Android OS issues in four layers of this OS

(application framework, library, android runtime and Linux

kernel), omitting those that were suspected to be in the application

layer. They found higher levels of defect concentration in the

framework and kernel layers. Guana et al. [5] suggested that this

prevalence of defects closer to the OS kernel may be linked to

hardware compatibility issues.

As noted in Section 1, with security being seen as central to user

perceptions of software quality [4], leading in part to growing

interest in the security of mobile OSs [12, 14], it would seem

timely to explore and provide understandings for the nature of

Android security-related issues, how stakeholders’ views covary,

and various users’ preferences and priorities with respect to

changes. Such insights would provide indirect understandings

around the attention that is given to such issues by the

community. Furthermore, with Android devices leading mobile

device sales [2], understanding the frequency with which security

issues are raised in the current Android OS offerings would likely

support users’ confidence. We thus examine confidentiality and

privacy issues raised on the Android issue tracker in order to

answer the following questions:

RQ1. What is the scale of confidentiality and privacy issues raised

for the Android OS versions?

RQ2. Are specific versions of Android OS more issue-prone than

others?

RQ3. Are stakeholder views regarding confidentiality and privacy

issues homogeneous or are they likely to create dilemmas for

Android developers?

3. RESEARCH SETTING
Issues identified by the Android community are submitted to the

Android OS issue tracker hosted by Google; refer to

http://code.google.com/p/android/issues/list. Among the data that

is stored in the issue tracker are the following details: Issue ID,

Type, Status, Owner, Summary description, Stars (number of

people following the issue), Priority, Milestone, Attachments,

Open date, Close date, Reporter, Reporter Role, Project,

Component, and OS Version. We extracted a snapshot of the issue

tracker, comprising 21,547 issues logged between January 2008

and March 2014. These issues were then imported into a database,

and thereafter, we performed data cleaning by executing

previously written scripts to remove all HTML tags and foreign

characters [15, 16], and particularly those in the Summary

description field, to avoid confounding of our analysis.

We next employed exploratory data analysis (EDA) techniques to

investigate the data properties and to facilitate anomaly detection.

We observed that issues were labelled as defect (15,750 issues),

enhancement (5,354 issues) and others (5 issues); and 438 issues

had no type (being null). Issues had one of six statuses: new

(18,891 issues), needsinfo (143 issues), unassigned (476 issues),

assigned (2,001 issues), resolvedbyuser (1 issue) and accepted (32

issues). Three issues also had the null status. Issues had 140

different owners. They were logged mostly by those identifying

themselves as users (9,006 issues) and developers (7,804 issues);

with some 4,737 issues being entered anonymously. Issues were

reported for 13 different components, although for most of the

issues reported this field was left blank (15,711 issues altogether).

We observed that only 2,816 issues had the version field updated

(out of the total 21,547 issues), while the others were left blank.

http://code.google.com/p/android/issues/list

Given this, we did not perform extensive analysis on data columns

with missing values.

We examined the data of each issue in our database to correlate

these with the commercial releases of the Android OS (refer to

http://www.android.com). Its first release was in September 2008

(http://android-developers.blogspot.co.nz/2008/09/announcing-

android-10-sdk-release-1.html/), while the first issue was logged

in the issue tracker in January 2008. This suggests that the

community was already actively engaged with the Android OS

after the release of the first beta version in November 2007 (refer

to http://android-developers.blogspot.be/2007/11/android-first-

week.html/), with issues being reported just two months after the

first beta release. Given this level of active engagement and issue

identification, occurring even before the official Android OS

release, we partitioned the issues based on Android OS release

date and major name change. So, for instance, all of the issues

logged from January 2008 (the date of the first issue that was

entered on the issue tracker) to February 2009 (the date of one of

the Android releases before a major name change was made) were

labelled as ‘Early versions’, reflecting the period of the Android

OS releases 1.0 and 1.1 which were both without formal names.

The subsequent partition comprised the period between Android

OS version 1.1 and Cupcake (Android version 1.5), and so on.

Table 1 provides a summary of the numbers of issues that were

logged between each of the major releases, from the very first

commercial release (and using the release date of the first beta

version to compute the first entry) to KitKat – Android version

4.4. From column three of Table 1 (Number of days between

releases) it is noted that the time taken between the delivery of

most of Android OS’s major releases (those involving a name

change) fell between 80 and 156 days, with three of the ten

releases (Early versions, Gingerbread and Jelly Bean) falling

outside this range. The fourth column of Table 1 (Total issues

logged) shows that the number of issues reported increased

somewhat as the Android OS progressed, with this rise being

particularly evident when the mean number of issues reported per

day for each release is considered (refer to the values in the fifth

column for details). Over the six years of Android OS’s existence,

on average, 9.6 issues were logged every day (median = 4.4, Std

Dev = 13.6).

As noted in Sections 1 and 2, we were especially interested in the

security (confidentiality and privacy) issues that were reported for

the last three releases (as per the highlighted cells in Table 1). Our

selection of these three releases is driven by continued consumer

demand for these offerings (http://www.cnet.com/news/kitkat-

chews-up-more-than-20-percent-of-android-devices/), and by our

wish to provide actionable recommendations for the mobile

stakeholder community. We discuss the approach used for

extracting security-related issues and our analysis methods in the

next three subsections.

3.1 Classifying Security Issues
Bhattacharya et al. [12] identified 980 bug reports in the Android

OS by querying words such as “security”, “vulnerability”,

“attack”, “crash”, “buffer overflow” and “buffer overrun”. Other

security terms included under the ISO9126 quality model

functionality category, and used by Hindle et al. [6] in their

evaluation of MaxDB and MySQL, include “exploit”,

“certificate”, “secured”, “malicious” and “trustworthy”. The

mainstream OS literature generally considers multiple areas of

security, including privacy, confidentiality, integrity, availability

and reliability [17, 18]. Privacy denotes a state of being free from

intrusion; confidentiality relates to limiting unauthorized access.

Integrity denotes freedom from corruption; the state of being

available is defined as being accessible. Finally, reliability denotes

the state of being dependable. We anticipated that a classification

scheme considering these five areas would capture a broader

spectrum of security issues than had been considered in previous

studies (e.g., refer to [12]), and would also provide more granular

separation of security issues, although the terms considered under

each area still converge with those of the ISO9126 quality model.

Informed by these various threads in the literature we thus created

the classification scheme covering these five areas (shown in

Table 2) to classify Android OS security issues.

We tokenized the Summary description field of the issues into

word unigrams and, based on the classification scheme in Table 2,

we then extracted all of the security-related issues in our snapshot

of the Android issue tracker. We then visualized these results,

which revealed that, of the security-related concerns captured by

our protocol, those relating to privacy (36.7%) and confidentiality

(42.1%) dominated the issues raised, as depicted in Figure 1. We

thus scrutinize these two subsets of issues using the following

contextual analysis approaches.

3.2 Conventional Content Analysis
Our classification scheme in Table 2 identified 510 issues relating

to confidentiality and 1103 privacy-related issues in the Android

issue tracker over the last three OS releases (Ice Cream Sandwich,

Jelly Bean and KitKat). We first selected the smaller sample of

510 confidentiality issues for open coding using conventional

content analysis. In this phase of coding we decided to use a

bottom-up approach, where codes were derived from the issues as

against using a predefined coding scheme. Researchers employing

such an approach generally start the process of data analysis by

inductively examining the data, allowing meaning to flow from

the data, as against approaching data analysis with any

preconceptions [19]. Two coders (the first author and another

trained coder) initially perused 5% of the confidentiality issues

(26 in total), and assigned each to a topic. During this exercise it

was observed that, quite frequently, each issue addressed a single

topic, and was of four types: 1. Feature does not work as intended;

2. Feature violating constraint; 3. Need for new feature; or 4.

Feature does not work (see summary categories, examples and

frequencies in Table 3). In addition, we observed that issues

categorized as enhancement requests (i.e., 3. Need for new

feature) sometimes reflected competing concerns, which would

have the potential to create dilemmas for developers in terms of

their deciding on appropriate fixes. We then recoded all 1613

issues in a formal coding phase (around 5% had dual concerns),

with each issue being assigned to one of the four types just noted

(refer to Table 3 for a summary). We then performed formal

reliability assessment, which revealed that there was 88% inter-

rater agreement between the two coders as measured using

Holsti’s coefficient of reliability measurement (C.R) [20]. The

remaining coding differences were discussed and resolved by

consensus. Our reliability measure represents excellent agreement

between coders and suggests that a consistent and reliable

approach was being taken. The enhancement requests (those

issues that were coded as Scale 3 in Table 3) were then probed

further using the analysis approach outlined next (refer to Section

3.3). Prior to conducting this additional round of analysis on the

enhancement requests, however, we undertook a number of

landscape analyses to extract meaning from the issues raised, the

results of which are provided in Sections 4.1.1 and 4.2.1.

http://www.android.com/
http://android-developers.blogspot.co.nz/2008/09/announcing-android-10-sdk-release-1.html
http://android-developers.blogspot.co.nz/2008/09/announcing-android-10-sdk-release-1.html
http://android-developers.blogspot.be/2007/11/android-first-week.html
http://android-developers.blogspot.be/2007/11/android-first-week.html

3.3 Dilemma Analysis
As noted above, during our content analysis confidentiality and

privacy issues that suggested new features and directions for

improving the Android OS were coded as enhancements.

However, informal perusal of these enhancements also revealed

that there were some conflicting requests from the Android

stakeholders. Our first round of content analysis did not capture

these interpretations fully, but was instead closer to the surface of

the issues. We anticipated, however, that a deeper examination of

these conflicting requests would reveal competing concerns in the

Android community. Dilemma analysis, often referred to as the

sociological conception of contradiction, can be used to unpack

opposing points of view [21]. This approach guides the analysis

of transcripts to extract issues about which individuals hold

opinions. In our context, while the issues were not recorded as

transcripts as such, the enhancement requests contained sufficient

detail to enable us to both identify the new feature requested and

the potential benefit of having such a feature. Thus, it was

straightforward for us to identify competing concerns among such

issues. We thus examined each enhancement request, paying close

attention to those that conflicted with other issues. These results

are provided in Sections 4.1.2 and 4.2.2.

4. RESULTS
We separate the results for the two sets of security issues in

Sections 4.1 and 4.2. We first present our findings for the

confidentiality-related issues in Section 4.1. We then provide our

findings for those related to privacy in Section 4.2.

4.1 Confidentiality-Related Issues
We first outline the results from our conventional content analysis

in Section 4.1.1. We then examine the competing concerns in

Android stakeholders’ confidentiality-related enhancement

requests, and provide these results in Section 4.1.2.

4.1.1 Content Analysis: Confidentiality
Of the 510 confidentiality-related issues raised on the Android

issue tracker, stakeholders identifying themselves as users

registered 224 complaints, those registered as developers lodged

187 concerns and another 99 issues were recorded anonymously.

The largest number of confidentiality issues were labelled as

defects (388), and 122 issues were logged as enhancements.

Figure 2 (a) shows how these issues were distributed by

confidentiality terms overall (refer to Table 2 for details), where it

is revealed that issues related to access, username, password and

permission dominated these concerns in the Android issue tracker

over the latter three major releases (Ice Cream Sandwich, Jelly

Bean and KitKat). A Pearson Chi-square test was conducted to

ascertain whether the differences observed in Figure 2 (a) were

statistically significant. The results of the Chi-square test confirm

that there were significant differences in the types of issues that

were recorded on the Android issue tracker, and particularly for

the higher levels of access-, password-, and permission-related

issues that were logged (X2 = 68.08, df = 36, p < 0.01).

Given this finding, we considered how those issues were

distributed across the three releases concerned, and depict the

results in Figure 2 (b). Here it is shown that most issues were

raised over the course of the Jelly Bean releases, with concerns

about access, login/username, password, permission and

verification dominating those issues recorded. We also observe in

Figure 2 (b) that there has been heightened concern about

restriction since the last Android release (KitKat), and that

between the periods of the release of the Ice Cream Sandwich and

Jelly Bean versions stakeholders recorded the fewest

confidentiality-related issues. We again performed a Pearson Chi-

square test to ascertain whether the differences observed in Figure

2 (b) were statistically significant, considering the seven most

popular issues in Figure 2 (b) in our test. Our Chi-square test

confirms that there were significant differences in the number of

and types of confidentiality issues recorded over the latter three

major versions of the Android OS (X2 = 25.44, df = 6, p < 0.01).

We present a finer grained analysis of these results in Table 4,

considering the frequency (including percentages – though we

caution on the interpretation of percentages given the low

frequency of some issues) of issues for the most regularly reported

access, password and permission confidentiality concerns.

Notwithstanding the differences in frequencies, Table 4 shows

that for the access category, there was substantial variation in the

mean number of issues raised over the Jelly Bean releases when

compared to those noted after the release of Ice Cream Sandwich

and KitKat (67.9% and 74.1% compared to 9.4% and 7.4% for Ice

Cream Sandwich and 22.6% and 18.5% for KitKat respectively).

Table 1. Android OS issues over the major releases

Version (Release) Last release date
Number of days

between releases

Total issues

logged

Mean issues per

day

Early versions (1.0, 1.1) 09/02/2009 451 262* 0.6

Cupcake (1.5) 30/04/2009 80 101 1.3

Donut (1.6) 15/09/2009 138 266 1.9

Éclair (2.0, 2.01, 2.1) 12/01/2010 119 464 3.9

Froyo (2.2) 20/05/2010 128 490 3.8

Gingerbread (2.3, 2.37) 09/02/2011 265 1,291 4.9

Honeycomb (3.0, 3.1, 3.2) 15/07/2011 156 897 5.8

Ice Cream Sandwich (4.0, 4.03) 16/12/2011 154 1,127 7.3

Jelly Bean (4.1, 4.2, 4.3) 24/07/2013 586 12,148 20.7

KitKat (4.4) 31/10/2013 99 4,501 45.5

∑ = 2,176 ∑ = 21,547 = 9.6

* Total number of issues logged between the first beta release on 16/11/2007 and Android version 1.1 released on 09/02/2009

Table 2. Security labels and related terms

Label Related terms

Privacy authorization, phone lock, authentication, privacy,

seclusion, separateness, isolation, conceal, secure,

exploit, prevent, unauthorized, intrusion

Confidentiality secret, classified, privy, permission, password,

confidential, vulnerable, access, grant, restrict,

verify, privilege, username, login

Integrity corrupt, disrepute, cohesion, coherence, soundness,

wholeness, completeness, honest, license, integrity,

attack, malicious, modification, identity, detection,

sensitivity

Availability accessible, convenient, buffer overflow, buffer

overrun, crash, loss, destruction, available, obtain

Reliability trust, reliable, dependable, stable, safe(ty),

consistent, certification, validation, performance

Figure 1. Android OS security issues

Table 3. Coding categories and number of codes

Scale Category/Characteristic Example Confidentiality Codes (%) Privacy Codes (%)

1 Does not work as intended “Access to an account with two factor

authentication persists after deleting app-

specific password used to attach to

device”

146 (28.6) 440 (39.9)

2 Violating constraint “Accessing my call logs takes cool 4-5

seconds”

132 (25.9) 175 (15.9)

3 Need for new feature “When installing an app: the security

permission request to access contact

details should be in red or orange and first

in the list”

130 (25.5) 285 (25.8)

4 Does not work “Security exception when accessing

account manager data from other apps

signed with same keystore”

102 (20) 203 (18.4)

Figure 2. Android confidentiality issues

While the logging of access-related complaints by stakeholders of

Ice Cream Sandwich was below average for all four categories of

codes recorded (Scales 1 to 4), since the release of KitKat users

have logged more such issues (Scale 1 = 22.6%, Scale 2 = 25.6%,

Scale 3 = 40.7% and Scale 4 = 18.5%). We observe in Table 4

that 40.7% (or 24) of the requests for access-related features were

recorded since the release of KitKat. While there were fewer

password-related issues raised (as also seen in Figure 2 (a)),

Scales 1 and 4 categories of codes were also highest after Jelly

Bean releases (85.7% and 77.8% of the codes respectively). This

trend of higher numbers of issues raised was replicated for

permission-related issues. Most of the complaints coded Scale 3

were submitted anonymously (100% for Ice Cream Sandwich,

60% for Jelly Bean and 81.8% for KitKat), while users and

developers recorded a similar pattern of codes across versions.

We next take a detailed view of the confidentiality issues that

were labelled as enhancement requests (Need for new feature), to

assess the level of competing concerns faced by Google

developers in delivering on stakeholders’ requests.

4.1.2 Dilemma Analysis: Confidentiality
We examined the 122 confidentiality enhancement requests to

assess the level of stakeholders’ competing concerns. Of these, 57

related to access, 6 related to username/login, 26 related to

password, 25 related to permission, 4 related to restriction, 1

related to secret and 3 to verification. Ninety-six issues were

logged by anonymous users, 16 by developers and 9 by users. Of

the confidentiality-related enhancement requests 12 were lodged

for Ice cream Sandwich, 67 for Jelly Bean and 43 for KitKat,

somewhat replicating the general pattern noted above. Given this

small sample of enhancement requests we provide overall results,

as against separating the data across versions. These results are

summarized in Table 5.

Table 5 reveals that four types of confidentiality concerns

(regarding access, login, password and permission) demonstrated

some form of divergence among stakeholders’ preferences,

whereas issues related to restriction, secret and verification were

homogeneous. In Table 5 it is shown that while some stakeholders

were more cautious about how access to their data is managed,

others were less worried. In fact, one user sought authorized

access to stored contact details for some popular apps. On the

other hand, another group of users was extremely cautious about

any access being given to their contacts. Furthermore, while some

users were happy to authorize use of their cellular data when there

was no wifi connection, another group of stakeholders was

seeking more granular control, for example, to be able to grant

selected apps permission to use internet data but to restrict others.

Table 5 shows that under the login confidentiality keyword there

were two issues that saw major divergence: “automatic hotspot

login” and “phone restore after wiping”. While some stakeholders

desired the feature to login to hotspots automatically, others were

against this feature, instead opting to trust only some private IPs.

Such a split was also evident for the feature to login and restore

handsets after wiping. This divergence also extended to the use of

passwords. While some users favored caching passwords,

removing passwords for some VPNs and making passwords

visible, others were predisposed to password-protecting the use of

wifi, mobile purchases, and even the phone shutdown (see

examples in Table 5). For permission, there was greater leaning

towards granular permission management. Although some users

were less strict (e.g., “requesting the need for download without

notification”), others felt that more granular permission would

increase user confidence.

4.2 Privacy-Related Issues
We present the results from our analysis of the privacy-related

issues in this section. First, the results from our conventional

content analysis are provided in Section 4.2.1. We then examine

the competing concerns in Android stakeholders’ privacy-related

enhancement requests, and provide these results in Section 4.2.2.

4.2.1 Content Analysis: Privacy
Of the 1103 privacy-related issues recorded in our snapshot of the

Android issue tracker, stakeholders identifying themselves as

users registered 647 of these, developers lodged 221 issues and a

further 235 were recorded anonymously. The largest number of

privacy-related issues were labelled as defects (830 issues), while

273 were logged as enhancements. Figure 3 (a) shows how these

issues were distributed by terms that were classified under the

privacy category, where it is revealed that issues related to

authentication, lock and secure dominated the Android issue

tracker over the latter three major releases. A Pearson Chi-square

test was conducted to ascertain whether the differences observed

in Figure 3 (a) were statistically significant. We first removed all

the entries for terms that had a sample size of less than ten

respective codes (the assumption for utilizing a Chi-square test)

[22], before executing the test, which confirmed that there were

significant differences in the types of privacy issues that were

recorded on the Android issue tracker, and particularly for the

higher numbers of lock-related issues that were lodged (X2 =

28.08, df = 9, p < 0.01).

Table 4. Most regularly reported access, password and permission confidentiality concerns

Version
Access(%) Password(%) Permission(%)

1 2 3 4 1 2 3 4 1 2 3 4

ICS 5(9.4) 3(7.7) 1(1.7) 4(7.4) 2(4.8) 1(4.8) 6(21.4) 1(5.6) 2(9.1) 2(4.2) 3(12.0) 0(0)

JB 36(67.9) 26(66.7) 34(57.6) 40(74.1) 36(85.7) 18(85.7) 14(50.0) 14(77.8) 18(81.8) 26(54.2) 17(68.0) 6(54.5)

KK 12(22.6) 10(25.6) 24(40.7) 10(18.5) 4(9.5) 2(9.5) 8(28.6) 3(16.7) 2(9.1) 20(41.7) 5(20.0) 5(45.5)

ICS=Ice Cream Sandwich, JB=Jelly Bean, KK=KitKat, Scale 1=Does not work as intended, Scale 2=Violating constraint, Scale 3=Need for new feature, Scale 4= Does not work

Table 5. Confidentiality-related competing concerns

Terms
Competing concerns

(Grant versus Restrict)
Examples

Access Access to other peripheral via USB, Access to

contact details, Shared app access to

microphone, Apps access to cellular data if

wifi not available, Access to SD Card, Network

access, Internet access

“Provide anonymized/hashed access to contact details/contacts for instant messagers like

e.g. whatsapp, threema, etc.” + “Enable cellular data when connected wifi access point

doesn't provide internet connectivity” <<>> “When installing an app: the security

permission request to access contact details should be in red or orange and first in the list.”

+ “When roaming have an option to decide which apps can get internet access.”

Login Automatic hotspot login, Phone (access) restore

after wiping

 “After fresh login of account (after wiping phone) there no option to configure auto

download of apps by device / defer downloads” <<>> “Wipe after consecutive failed login

attempts? verify human. enter android to continue”

Password Cache password, Modify encryption pin,

Remove VPN password for some wifi, Make

password visible, Pin and password optional for

VPN, Password protect wifi, Purchase via

password protection, Shutdown with password

“Allow for a simpler unlock password/pin than the password/passphrase used for full disk

encryption” + “Enable slide unlock until timeout for pin, pattern, or password lock” <<>>

“Different passwords for encryption and screen lock” + “User profiles - increase security

by password protecting and segmenting” + “Password for purchases” + “provide a way to

password-protect shutdown”

Permission Google analytics without permission, Granular

permission, Restrict app to local data, App

accessing contacts - provide warning, Selected

permission when installing apps, There is need

for more granular permission, Reverse

previously granted permission

“Add download_without_notification to uses-permission drop-down” + “Use of google

analytics without asking for internet permission.” <<>> “Some permissions are scary and

for features people might never use. here's an idea on how to let users who wouldn't use

some features still install and use an app.” + “Divide read_phone_state permission in two

to provide more secure android for users” + “Permission request - reverse list” + “Ability

to deny select permission upon app install”

We next considered how those issues were distributed across the

three releases of interest, depicted in Figure 3 (b). We plot the

most prominent authentication, lock, privacy, secure and

separate/seclude issues in Figure 3 (b), which reveals that most

were logged over Jelly Bean releases, with issues for all of the five

keyword categories just mentioned being dominated over this

release. This pattern of results is similar to those that were

revealed for confidentiality-related issues, where most were

logged after Jelly Bean releases. We performed a second Pearson

Chi-square test to ascertain whether the differences observed in

Figure 3 (b) for the three Android releases were statistically

significant, and particularly for the most prevalent lock and secure

issues (comprising 72.4% and 10.3% of the issues overall). Our

Chi-square test confirmed that there were significant differences

in the number of lock and secure issues raised across the latter

three versions of the Android OS (X2 = 17.23, df = 3, p < 0.01),

Jelly Bean being the most problematic. Of note also is that the

role (user, developer or anonymous) of those logging issues did

not affect the pattern of results noted across versions.

We take a more fine-grained look at the measures for lock and

secure issues in Table 6, considering the frequency and scale

(including percentages) of these concerns. We are particularly

interested in features that did not work as intended (coded Scale

1) or those that did not work altogether (coded Scale 4). Table 6

shows that for the lock category, there were substantially more

issues logged over Jelly Bean versions when compared to those

recorded over Ice Cream Sandwich and KitKat (80.7% and 81.8%

compared to 3.1% and 3.6% for Ice Cream Sandwich and 16.2%

and 14.6% for KitKat respectively). Additionally, although of a

smaller magnitude, secure issues were also most prevalent for

Jelly Bean. On average, however, more secure issues were logged

for Ice Cream Sandwich and KitKat (refer to Table 6).

We next provide a detailed view of the privacy-related issues that

were labelled as enhancement requests, to assess the level of

competing privacy-related concerns.

4.2.2 Dilemma Analysis: Privacy
As in 4.1.2 above, we examined the 285 privacy-related issues

that were logged as enhancement requests to determine Android

stakeholders’ competing concerns. Of the set of privacy issues, 10

related to authentication, 2 related to authorization, 187 were

lock-related, 6 related to the prevent keyword, 13 had the privacy

keyword, 7 related to restriction, 37 were associated with security

and 23 with separation. Users logged 59 of these issues,

developers logged 18, and 208 were entered anonymously. In

terms of the distribution of enhancement requests across versions,

19 were logged for Ice Cream Sandwich, 208 for Jelly Bean and

58 for KitKat. We examined these issues for competing concerns,

and observed that of the eight types of issues, only authentication-

, lock- and privacy-related enhancement requests had conflicting

preferences. These are summarized in Table 7, which shows that

for authentication, while some users were keen on enhancing

Android’s authentication process, favoring a two stage approach,

another set of users was in favor of simpler proxy-based

authentication. Similarly, under the lock category there was

divergence in relation to lock mode, the level of locking, access to

phone resources when the phone was locked, the storage of user

security credentials, the rigor of Android’s locking process, the

number and enforcement of locking mechanisms, locking of data,

and locking of the security menu. For these issues, while some

users favored more liberal policies, others were encouraging

stricter phone resource monitoring and locking. For instance, one

user requested that the handset should be “locked without SIM

only at the startup”, so that if a SIM is removed after the handset

is fully started users should still have access to all phone

resources, whereas another user went as far as requesting that

Android devices should “randomly shuffle the keys in lockscreen

pin screen” and “improve phone lock security establishing

maximum number of intents”. Under the privacy keyword Table 7

shows that there was less divergence, except for how unknown

and private numbers are handled. We discuss these findings along

with those presented above in the next section.

Figure 3. Android privacy issues

Table 6. Most regularly reported lock and secure privacy concerns

Version Lock(%) Secure(%)

1 2 3 4 1 2 3 4

ICS 11(3.1) 5(4.0) 10(5.3) 5(3.6) 0(0) 2(9.5) 4(10.8) 4(13.8)

JB 284(80.7) 91(70.2) 143(76.5) 112(81.8) 20(74.1) 15(71.4) 23(62.2) 18(62.1)

KK 57(16.2) 30(23.8) 34(18.2) 20(14.6) 7(25.9) 4(19.0) 10(27.0) 7(24.1)

ICS=Ice Cream Sandwich, JB=Jelly Bean, KK=KitKat, Scale 1=Does not work as intended, Scale 2=Violating constraint, Scale 3=Need for new feature, Scale 4= Does not work

Table 7. Privacy-related competing concerns

Terms
Competing concerns

(Grant versus Restrict)
Examples

Authentication Two factor authentication, System wide

proxy authentication

“Add a web sign in button to initial set up for two factor authentication users” <<>>

“Android system wide proxy authentication” + “Enable proxy authentication for apps”

Lock Lock mode, Start-up lock only if SIM

absent, Face unlock, Restricted phone

access when phone is locked, Make SIM

pin accessible on device and reduce

rigour of unlock process, Relax security

for specific periods, Multi-lock, Number

of intents, Lock screen timer, Data use,

Security menu

 “Ability to switch between pattern lock and classic lockscreen” + “Make pin or password-

locked lockscreen optional when vpn is configured” <<>> “Two level unlock options” +

“Unlock by voice” + “Face unlock and slide unlock and vpn”

“Lock cellphone without sim only at the startup” <<>> “Improve phone lock security

establishing maximum number of intents” + “Lock device after a number of fails when

trying screen unlocking” + “Randomly shuffle the keys in lockscreen pin screen”

“Face unlock: secondary picture” + “Ability to retain or save facial training for face unlock

if switching to different unlock method” + “Option to skip face unlock” + “Face unlock user

auto detect” <<>> “Implement fingerprint reading (via the touch screen) as a more secure

alternative to face unlock” + “Face unlock: scan user's retinas with front camera as an added

layer of security”

“Ability to view read-only notifications on lock screen when protected with a

pattern/passcode” + “Add camera to locked screen” + “Open custom applications from lock

screen” + “Integrating music control on lockscreen” <<>> “Option to disable going to

camera from lockscreen” + “Need a lock screen without widgets and without any possible

actions on the status bar” + “Option to remove "power off" and "airplane mode" from

lockscreen to enhance smartphone security.”

“Enable slide unlock until timeout for pin, pattern, or password lock” <<>> “Improve

encrypted device behavior: after 24h w/o unlocking assume stolen and do encrypted

suspend to disk or power-off” + “Option to wipe device after a number of incorrect

unlocking attempts” + “Lock screen timer timeout to start after inactivity” + “Automatic

data switch off on screen lock” + “Add unlock code to access in security menu”

Privacy Unknown/private number “Allow blocking sms from unknown/private numbers” <<>> “Sms: enable private numbers

and numbers as normal characters”

5. DISCUSSION
RQ1. What is the scale of confidentiality and privacy issues

raised for the Android OS versions? The 1613 issues in our

snapshot that were found to be related to confidentiality and

privacy amount to less than one percent of the 17,776 issues that

were recorded across the latter three Android releases, perhaps

suggesting that such issues were infrequent, and therefore

unimportant. However, given the critical nature of security-related

concerns, the existence of any such issues could still negatively

impact quality perceptions. This position is particularly supported

by previous evidence that has noted that fixes for security issues

take longer than those that were otherwise classified [12]. Of the

four categories of codes that emerged from our content analysis

process, we observed that the highest number of stakeholders’

issues was recorded to the “does not work as intended” category.

Similarly, over 25% of the confidentiality and privacy issues

logged on the Android issue tracker outlined stakeholders’ desires

for new security features. We also note that there were more than

twice as many privacy issues as confidentiality issues raised. This

finding is revealing considering that Android users were

previously held to be minimally aware of such issues [23].

Overall, we observed an increase in the number of stakeholders’

issues raised in the latter releases of the Android OS. We

anticipate that this pattern may be linked to increasing capability

and complexity of Android devices and their associated OSs, as

well as to Android’s growing market share. For instance, the early

T-Mobile G1 (Android 1.0) device possessed basic hardware and

software capability, and had no on-screen keyboard or multi-touch

capability, whereas the recent Nexus 5 (Android 4.4) provides

these capabilities, along with advanced resource management and

optimization (for CPU, memory and I/O), multi-mode processing,

enhanced security and across-the-board application integration

(e.g., Contacts, Gmail and SMS). However, this finding might

also have been tempered, as latter Android releases were generally

held to be more security-focused, including using the SELinux

access control system (http://tinyurl.com/pyvb3he).

RQ2. Are specific versions of Android OS more issue-prone than

others? Our results show that some versions of the Android OS

led to more issues being raised than others. From a confidentiality

perspective, Android stakeholders were most concerned about

access, their credentials and the management of permission to

their phone resources over the three major releases considered

(Ice Cream Sandwich, Jelly Bean and KitKat). In regard to

privacy, stakeholders logged most issues about authentication,

phone lock and their phone resources being secure, with phone

lock issues being especially pronounced. Stakeholders recorded

the most confidentiality and privacy issues over the Jelly Bean

releases. The lock-related issues for “does not work as intended”

and “does not work” were particularly dominant over Jelly Bean

releases compared to Ice Cream Sandwich and KitKat. This

pattern of higher prevalence of issues in Jelly Bean may be related

to its higher level of usage [2, 24], and Android’s quest to deliver

superior mobile capability to that offered by its competitors may

also have impacted Google’s aggressive release cycles. Strikingly,

however, there were many major bug fixes delivered as part of the

Jelly Bean releases (http://tinyurl.com/pv79q5d). These fixes were

probably influenced by the high level of end-user complaints, as

seen in our results in terms of the number of issues that were

reported over these versions. In addition, KitKat is installed on a

larger cohort of Android devices than Jelly Bean

(http://tinyurl.com/palhx7q/), which suggests that the latter

versions of the OS were indeed potentially more problematic.

RQ3. Are stakeholder views regarding confidentiality and privacy

issues homogeneous or are they likely to create dilemmas for

Android developers? Android stakeholders were not

homogeneous in terms of their desire for confidentiality-related

enhancements around access, login, password and permission.

Rather, while some users were cautious about how access to their

data is managed, others were less worried. This divergence could

be problematic for those responsible for strategically directing

Android’s offerings. In addition, this spread of preference also

points to variation in end-users’ orientation and to varying levels

of security awareness in the Android community [3, 25]. In fact,

while some stakeholders’ requests are likely to create a problem

for other users if these were implemented by Google (e.g., some

users requested a feature to manage which apps are able to use the

internet; however, the need to actually manage such a granular

level of security could be annoying to others), others could create

or heighten a device’s vulnerabilities (e.g., “automatic hotspot

login”). We also observe variations in users’ willingness to be

systematic, which could also create burdens for the Android

community. For instance, while some stakeholders were happy to

quickly access their device in its previous usable state should it be

wiped, and so, wanted to download previously installed apps once

acquiring the recently erased handset, others were more cautious,

opting for a phased and controlled phone restore. This divergence

also extended to the use of passwords. There is likelihood that a

previously installed app(s) could have been the source of the

security breaches that resulted in the phone wipe in the first

instance, and thus, a hasty reinstallation could be ill-advised.

We also observed some conflicting privacy-related requests,

particularly those related to authentication, lock and privacy.

While some users requested enhancements to Android’s

authentication process, favoring a two stage approach, another set

of users was in favor of simpler proxy-based authentication,

potentially creating similar dilemmas to those mentioned above.

In fact, under the lock category there was divergence in terms of

lock mode, the level of locking, access to phone resources when

the phone is locked, the storage of user security credentials, the

rigor of Android’s locking process, the number and enforcement

of locking mechanisms, locking of data, and locking of the

security menu. In terms of competing concerns for the

management of permission, there was greater leaning towards

granular permission management. Although some users were less

strict, others felt that more granular permission management

would increase user confidence. Others were also promoting the

idea of reversing previously granted permissions and overriding

some default requested permissions during app installation.

The management of permissions has been shown to challenge

most mobile users [3], and so the demand for additional

management control seems impractical. However, perhaps the

power to override previously granted permissions may be helpful

to (some) stakeholders. Such a move would assume awareness of

resource violations, however, and it has been shown that on many

occasions users are unaware of malicious software exploiting their

resources [25]. One alternative would be for a centralized audit to

be performed by Google from time to time, to assess phone

activity logs for malicious activity. Through such an audit

malicious software may then be flagged or removed. While this

will require internet (data) usage and remote access to devices,

users may trade-off such issues with the increased security that

would result. Of course recent efforts by Google to add a face

unlock feature (in Ice Cream Sandwich), data usage analysis

monitors (in Jelly Bean) and modular update (in Jelly Bean),

would also reduce security threats, thereby improving Android’s

quality. We examine these issues further in Section 7.

6. THREATS TO VALIDITY
While we have examined an important topic area, and have

provided insights into Android OS’s confidentiality and privacy

issues, there are shortcomings to this work that may affect its

generalizability. We consider these in turn.

Although the Android issue tracker is publicly hosted, and so is

likely to capture most of the community’s concerns [13], issues

may also be informally communicated to and addressed within the

development teams at Google. Similarly, unreported issues are not

captured by our analysis. We also focused as far as possible to

include all terms and their synonyms to examine the concepts that

were under consideration [6]. However, we accept that there is a

possibility that we could have missed some relevant terms. That

said, the convergence of our results (revealed through multiple

contextual analysis techniques) triangulated our classification

scheme, and suggests that our approach was generally robust. In

fact, our reliability assessment measure revealed excellent

agreement between coders, suggesting that our findings benefitted

from accuracy, precision and objectivity [20].

We separated the issues based on the dates of the major Android

OS releases. Given that device manufacturers have been shown to

delay upgrading their hardware with recent Android OS releases

[26], there is a possibility that some issues reported between

specific releases were in fact related to earlier releases. However,

this misalignment was not detected during our contextual analysis,

suggesting that our approach appropriately classified issues.

Finally, although the issue trackers of many mobile OSs are not

publicly available, and the distribution of these OSs’ issues may

not be similar to what is observed in this work for the Android

OS, mobile OSs such as Microsoft Windows, Apple iOS,

Symbian and BlackBerry are all likely to follow release-

maintenance cycles similar to that of Android OS in order to

remain competitive in the market.

7. IMPLICATIONS AND CONCLUSIONS
Our findings in this work have implications for Android

community stakeholders. For instance, with Google’s release of

the Nexus 4 for KitKat (and Nexus 5, 6 and 9 for Android

Lollipop released on June 25, 2014), developers are likely to give

priority to fixes on these OS versions given the need to quickly

address stakeholder concerns on the new platforms. Thus, older

devices that continue to be shipped with Ice Cream Sandwich and

Jelly Bean are likely to inherit any reported security

vulnerabilities if these are not explicitly addressed. While there

were few reported threats for Ice Cream Sandwich releases, the

opposite was seen after the releases of Jelly Bean. Thus, Android

end-users should take this into consideration when acquiring new

devices. Perhaps a valid strategy for remedial work by Google

developers should be to prioritize issues regarding features that

“do not work as intended” and those that “do not work”. In fact,

although small relative to the number of issues that were reported

for Android overall, a strategy that focuses on addressing security

issues should help to instill stakeholders’ confidence in the quality

of the Android product range. Our evidence suggests that phone

lock and access, user credentials and the management of handsets’

permissions would be useful areas for consideration in Google’s

maintenance strategy. Stakeholders are also expressing growing

concern about phone restrictions for the recent KitKat release, and

so this issue should similarly be given priority.

Our evidence suggests that, in terms of expanding Android OS

security features, Google may face dilemmas in deciding to whose

views they should assign most weight. We observed that while

some users were cautious about how access to their device

resources is managed, others were less worried, in fact requesting

relaxed security procedures. This divergence in preferences

presents competing concerns among users, and so would need to

be carefully managed to satisfy Android’s diverse user cohort.

Perhaps a strategy to provide users with basic default security

settings, with the power to configure additional security features if

needed or desired, would provide the best balance. Such an

arrangement would allow those who are more security-conscious

to enact rigorous controls to protect their privacy, while others

who are less concerned may accept minimum security settings.

For example, for the “phone restore after wiping” issue, while

some stakeholders were happy to quickly access their device in its

previous usable state, others were more cautious, opting for a

phased and controlled phone restore. Thus, a routine that allows

users to configure either of these options would satisfy both

groups. In the same way, a strategy that enables users to configure

whether or not to enforce “password protection of mobile

purchases and mobile device shutdown” would satisfy both

groups’ desires. Furthermore, such strategies could be

supplemented by the power to override previously granted

permissions along with centralized audits performed by Google

for malicious activity in order to remove such threats.

8. REFERENCES
[1] Ko, A. J., Lee, M. J., Ferrari, V., Ip, S. and Tran, C. A case

study of post-deployment user feedback triage. In

Proceedings of the 4th CHASE (Honolulu, USA, 2011).

ACM.

[2] Butler, M. Android: Changing the Mobile Landscape. IEEE

Pervasive Computing, 10, 1 (Jan.-March 2011), 4-7.

[3] Vidas, T., Christin, N. and Cranor, L. F. Curbing Android

Permission Creep. In Proceedings of the 2011 W2SP

(California, USA, 2011), IEEE.

[4] Zaman, S., Adams, B. and Hassan, A. E. Security versus

performance bugs: a case study on Firefox. In Proceedings of

the 8th MSR (Honolulu, USA, 2011). ACM.

[5] Guana, V., Rocha, F., Hindle, A. and Stroulia, E. Do the

stars align? Multidimensional analysis of Android's layered

architecture. In Proceedings of the 9th MSR (Zurich,

Switzerland, 2012). IEEE Press.

[6] Hindle, A., Ernst, N. A., Godfrey, M. W. and Mylopoulos, J.

Automated topic naming to support cross-project analysis of

software maintenance activities. In Proceedings of the 8th

MSR (Honolulu, USA, 2011). ACM.

[7] Hsieh, H.-F. and Shannon, S. E. Three Approaches to

Qualitative Content Analysis. Qualitative Health Research,

15, 9 (2005), 1277-1288.

[8] Canel, C., Mathieu, R. G. and Das, S. R. The successful

development of information systems for FMS: some useful

lessons. Industrial Management & Data Systems, 97, 8

(1997), 316-319.

[9] McKeen, J. D., Guimaraes, T. and Wetherbe, J. C. The

Relationship between User Participation and User

Satisfaction: An Investigation of Four Contingency Factors.

MIS Quarterly, 18, 4 (1994), 427-451.

[10] Lin, W. T. and Shao, B. B. M. The relationship between user

participation and system success: a simultaneous contingency

approach. Info. & Management, 37, 6 (2000), 283-295.

[11] Lynch, T. and Gregor, S. User participation in decision

support systems development: Influencing system outcomes.

Euro. Jrnl. of Information Systems, 13, 4 (2004), 286-301.

[12] Bhattacharya, P., Ulanova, L., Neamtiu, I. and Koduru, S. C.

An Empirical Analysis of Bug Reports and Bug Fixing in

Open Source Android Apps. In Proceedings of the 17th

CSMR (Genova, 2013). IEEE Press.

[13] Kumar Maji, A., Kangli, H., Sultana, S. and Bagchi, S.

Characterizing Failures in Mobile OSes: A Case Study with

Android and Symbian. In Proceedings of the IEEE 21st

ISSRE (CA, USA, 2010). IEEE Press.

[14] Mahaffey, K. Security Alert: DroidDream Malware Found in

Official Android Market. Lookout, City, 2011.

[15] Licorish, S. A. and MacDonell, S. G. The true role of active

communicators: an empirical study of Jazz core developers.

In Proceedings of the 17th EASE 2013 (Porto de Galinhas,

Brazil, 2013). ACM.

[16] Licorish, S. A. and MacDonell, S. G. What can developers’

messages tell us?: A psycholinguistic analysis of Jazz teams’

attitudes and behavior patterns. In Proceedings of the 22th

ASWEC 2013 (Melbourne, Australia, 2013). IEEE Computer

Society.

[17] Tanenbaum, A. S. Modern Operating Systems. Prentice Hall

Press, Upper Saddle River, NJ, 2007.

[18] Jaeger, T. Operating System Security. Synthesis Lectures on

Information Security, Privacy, and Trust, 1, 1 (2008), 1-218.

[19] Mayring, P. Qualitative content analysis. City, 2000.

[20] Holsti, O. R. Content Analysis for the Social Sciences and

Humanities. Addison Wesley, Reading, MA, 1969.

[21] Winter, R. “Dilemma Analysis”: A contribution to

methodology for action research. Cambridge Journal of

Education, 12, 3 (1982), 161-174.

[22] Sharp, V. F. Statistics for the social sciences. the University

of Michigan, 1979.

[23] Eisner, A. iPhones, Backups and Toilets, What's the

Connection? Retrevo Blog, City, 2011.

[24] Gala-Perez, S., Robles, G., Gonzalez-Barahona, J. M. and

Herraiz, I. Intensive metrics for the study of the evolution of

open source projects: Case studies from Apache Software

Foundation projects. IEEE Press, 2013.

[25] Higgins, K. J. Researcher To Release Smartphone Botnet

Proof-Of-Concept Code. Information Week, 2011.

[26] Wimberly, T. Top 10 android phones, best selling get

software updates first. Android and Me, 2010.

