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Abbreviations: n-CPAP: Nasal-Applied Continuous Positive 
Airway Pressure; OSA: Obstructive Sleep Apnea; OSAS: Obstructive 
Sleep Apnoea Syndrome

Introduction
Normal nasal airflow alternates in dominance through the 

two nostrils with an ultradian physiological rhythm called the 
“nasal cycle.” Nasal-applied continuous positive airway pressure 
(n-CPAP), the clinical “gold standard” for the treatment of 
moderate to severe obstructive sleep apnea (OSA) [1], forces 
air under pressure down both sides of the nose. During awake 
breathing, n-CPAP disrupts normal inter-nasal airflow partitioning 
[2]. During sleep, n-CPAP could potentially alter the nasal cycle, 
disturbing the nose’s normal air conditioning functions.

Nasal Cycle
Normally, the airflow and resistance in each nasal airway 

alternates between a patent and partially congested state for 
periods ranging from 25 minutes to greater than 4 hours, with 
a mean of 2.5 hours [3-5]. Some evidence suggests that the nasal 
cycle is longer during sleep compared to the waking state [3,5,6]. 
During sleep, changes in the nasal cycle often coincide with 
postural changes and may occur more often in transitions to REM 
sleep [5-7].

Eccles [3] has proposed that the nasal cycle enables cells and 
glands on the congested side to rest and recover [8]. The nasal 
cycle probably controls the balance between the fluxes of heat and 

water vapour required to condition the inspired air, and the ability 
of nasal blood flow and mucus secretion to supply sufficient heat 
and water to the surface tissue [9]. White et al. [10] has shown 
that the nasal cycle allows the anterior conducting airways to 
cope with the conflicting demands of air-conditioning and mucus 
clearance [10].

The nasal cycle is related to REM and non-REM sleep [7,11]. 
Greater left hemisphere EEG power is coupled to REM sleep, 
and greater right hemisphere EEG power is coupled to non-
REM stage 4 sleep [12]. In conscious people, greater EEG power 
is exhibited in the hemisphere contralateral to the nostril with 
the dominant airflow [13,14]. In awake people, unilateral forced 
nostril breathing leads to selective unilateral activation of the 
opposing cerebral hemisphere [4]. By forcing air under pressure 
equally down both sides of the nose during sleep, n-CPAP could 
potentially affect brain wave activity and sleep quality.

Nasal-applied continuous positive airway pressure

Despite n-CPAP’s efficacy and substantial benefits, long-term 
n-CPAP adherence rates remain low [15,16]. Numerous reasons 
for suboptimal patient n-CPAP adherence have been explored [15-
17]. The mask-nose interface, the discomfort of breathing against 
pressure and the irritation of pressurised air in the nose might 
all contribute to low n-CPAP adherence [1,17-21]. Up to 65% of 
obstructive sleep apnoea syndrome (OSAS) suffers receiving 
n-CPAP report adverse nasal symptoms such as a dry nose, nasal 
congestion, nasal crusting, rhinorrhoea, epistaxis and sneezing 
[17,19, 22-25]. 
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Abstract

Normal nasal airflow alternates in dominance between the two nostrils with an 
ultradian rhythm called the “nasal cycle.” The nasal cycle is thought to enable the 
patent airway to perform the majority of the air-conditioning functions, while the 
congested side undergoes a period of recovery. Nasal-applied continuous positive 
airway pressure (n-CPAP) forces air equally up both sides of the nose disrupting 
the nasal cycle, which could contribute to nasal side-effects, such as nasal 
dryness, crusting and congestion. The development of a n-CPAP machine, which 
approximates physiological alternating nasal airflow during sleep, could reduce 
nasal side effects and improve n-CPAP adherence. A n-CPAP mask would need 
modification so that air under pressure could be independently directed to and 
received from each side of the nose. The system would allow for the pre-setting of 
both the nasal cycle duration time and the degree of airflow partitioning between 
each naris. A n-CPAP machine that approximates the normal physiological nasal 
cycle during sleep could reduce the incidence of adverse nasal symptoms and 
improve sleep quality leading to improved n-CPAP compliance.
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Modifications to improve n-CPAP compliance have included 
improved humidification and CPAP pressure adjustments. Heated 
humidification decreases nasal symptomatology and mucosal 
inflammation [19,23], however the current evidence supporting 
the routine use of humidification to improve CPAP compliance is 
minimal [19-21,26,27]. Delivery pressures have been adjusted in 
order to improve patient comfort [19,21]. Pressure reduction on 
exhalation (BiPAP) and auto-adjusting PAP has been trialled. No 
adherence improvement, change in the apnoea-hypopnea index 
or daytime sleepiness with BiPAP has been found [21,26]. With 
auto-adjusting PAP, the pressure changes in response to changes 
in airflow, respiratory events, and snoring throughout the night. 
Pressure reduction does not dramatically improve adherence [19-
21,26,28,29]. 

The nasal cycle appears important in the air conditioning 
functions of the nose and n-CPAP appears to disturb normal inter-
nasal airflow partitioning in conscious subjects [2]. Modification 
of current n-CPAP technology to approximate normal nasal 
physiology during sleep would seem an option worth exploring. 

Modifying a n-CPAP machine

A n-CPAP mask would need modification so that air could be 
directed to and received independently from each side of the nose. 
A n-CPAP machine would need modification so that the patent 
nasal airway could be detected and receive an initial higher air 
pressure than the congested nasal airway during the inhalation 
phase of breathing during sleep initiation. During exhalation, 
the patent nasal airway would have to receive a lower pressure 
than the congested nasal airway to maintain appropriate airflow 
partitioning. The system would have to allow for the pre-setting 
of both the nasal cycle duration time and the degree of airflow 
partitioning between each naris.

Conclusion
N-CPAP is an effective treatment for OSA, but long-term 

n-CPAP adherence rates remain low [15,16]. Unfortunately recent 
n-CPAP humidification and pressure modifications have not 
dramatically improved patient compliance. An n-CPAP machine 
that approximates the normal nasal cycle restoring normal nasal 
respiratory physiological processes could reduce the incidence of 
adverse nasal symptoms leading to improved n-CPAP compliance.
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