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Abstract This paper provides a comprehensive literaturgwo implementations, EFUNN [32] and DENFIS [43] (see
survey on the evolving Spiking Neural Network (eSNN) ar-also [30, 31, 33,34,36,53,54].

chitecture since its introduction in 2006 as a further exten  £cos learn local models from data through clustering of
sion of the ECoS paradigm introduced by Kasabov in 19986 gata and associating a local output function for each clu
We summarize the functioning of the method, discuss sevg represented in a connectionist structure. Clustersiaf d
eral of its extensions and present a number of applications igre created based on similarity between data samples either
which the eSNN method was employed. We focus especially, ihe input space or in both the input and output space. the
on some proposed extensions that allow the processing @fst case is implemented in some of the ECoS models, e.g.,
spatio-temporal data and for feature and parameter optimjy,q dynamic evolving neuro-fuzzy inference system DEN-
sation of eSNN models to achieve better accuracy on clagg [34,36,43], while the second case is part of the EFUNN
sification/prediction problems and to facilitate new knewl \,qqels [32-34,36]. Samples that have a distance to an exist-
edge discovery. Finally, some open problems are discussggy node (cluster centre, rule node) less than a certaistihre
and future directions highlighted. old are allocated to the same cluster. Samples that do not fit
into existing clusters, form new clusters. Cluster cenares
continuously adjusted according to new data samples, and
new clusters are created incrementally.

Keywords Evolving Spiking Neural Network Evolving
Connectionist Systemspatio-temporal pattern recognition

ECoS learn from data and automatically create or up-
date a local output function for each cluster, the function
being represented in the connection weights, thus creating
local models. Different functionalities of ECoS have been

Evolving connectionist systems (ECoS) are modular “OMntroduced and studied in [32—-34,36,43] such as: on-line or

?ectlpnlstlftoa_sed systFems that |fe volve.th(e;r strlgc;ure anSt-line neuron aggregation and pruning; “sleep”-leagin
unctionaiity in a continuous, Seli-organised, on-linean- .,y rje extraction and rule adaptation (see also [35}); u

tive, interactive way from incoming information [30-34,36 ing SVM as local models [46]; evolutionary optimisation

43,53,54]. ECoS can leam both data and knowledge in 8f features and parameters of ECoS [35]; and others. Ap-

supervised and/or unsupervised way. They can learn in(?r%'lications of ECoS span across domain areas [34,36], e.g.

mentally single data ftems or chunks of data and also ng; o rmatics (see also [37]); speech and image procgssin
crementally change their input features [53,54]. Element?nultimodal audio-visual information processing; ecobag

ofII’E\IC?S hlflvsl\?een O}i)rlop(;soed ashpartso(l;medgasng:éll é\leﬁiodelling; robot control (see also [25]); personalised mod
ral Network (NN) models [20], such as [45], [3l, elling [71,42]; neuroinformatics and brain study. Softevar

Fuzzy ARTMap [7], Growing neural gas [16], neuro-fuzzy environment Neucom has been developed to include some

%f the ECoS methodsA detailed survey on ECoS can be
found in [82].

1 Introduction

with their applications, have been reported in [36, 1, 2724,
82]. Here we will briefly illustrate the concepts of ECoS on

1 http://ww. t heneucom com



While the classical ECoS uses a simple sigmoid modeboosted and affects the post-synaptic potential moregiyon
of a neuron, the further developed evolving spiking neurathan later spikes. This concept is very interesting dueeo th
network (eSNN) architecture uses a spiking neuron modehct that the brain is able to compute even complex tasks
for which similar ECoS principles and applications are ap-quickly and reliably. For example, the human brain requires
plicable. The aim of this paper is to present the currengstat for the processing of visual data only approximately 150rds [
of-the-art of the eSNN method first introduced in [90]. In 76], see also a similar study on rapid visual categorisatfon
the next section, we present the working principle of eSNNnhatural and artificial objects [81]. Since it is known thasth
along with all its components. Then, we highlight numerougdype of computation is partly sequential and several parts
extensions of the original method, followed by a discussiorof the brain involving millions of neurons participate ireth
of notable applications. Finally, we conclude this survgy b computation, it has been argued in [77] and [74] that each
addressing future research directions of eSNN. neuron has time and energy to emit only very few spikes

that can actually contribute to the processing of the input.
As a consequence, few spikes per neuron are biologically
2 Evolving Spiking Neural Network sufficient to solve a highly complex recognition task in real

time.
The desire to better understand the remarkable information  gjmilar to other models. the dynamics of the Thorpe

processing capabilities of the mammalian brain has regently,odel are described by the dynamics of the post-synaptic
led tq the developmgnt of more complex qqd bi°|09ica"ypotentialui(t) of a neuroni:
plausible connectionist models, namely spiking neural net

works (SNN). See e.g. [18] for a comprehensive standard ; (? if fired .
text on the material. These models use trains of spikes d&(t) =4 > wj; m{"™"?  otherwise (1)
internal information representation rather than contirsuo JlfG)<t

variables. Nowadays, many studies attempt to use SNN f%herewﬁ is the weight of a pre-synaptic neurgn f(5)
practical applications, some of them demonstrating veoys-is the firing time ofj, and0 < m; < 1 is a parameter of
ing results in solving complex real world problems. the model, namely the modulation factor. Functieder ()

Based on the ECoS methodology, an evolving spikingepresents the rank of the spike emitted by neyrdor ex-
neural network architecture (eSNN) was proposed in [9Oample, a rankorder(j) = 0 would be assigned if neuron
36] that was initially designed as a visual pattern recognij is the first among all pre-synaptic neurons; ¢hat emits
tion system. Other studies have utilised eSNN as a generglspike_ In a similar fashion, the spikes of all pre-synaptic
classification method, e.g. in the context of classifying wa neyrons are ranked and then used in the computation. of
ter and wine samples [70]. The first eSNNs were based OR neuroni fires a spike when its potential reaches a cer-
the Thorpe’s neural model [78], in which the importance ofi5in thresholdd. After emitting a spike, the potential resets
early spikes (after the onset of a certain stimulus) is Embst g u; = 0. Each neuron is allowed to emit only a single
called rank-order coding and learning. Synaptic plastisit spike at most. The thresholtl= ¢ u,,.. is Set to a fraction
employed by a fast supervised one-pass learning algorith@ - . ~ 1 of the maximum potentiad,... reachable for
that is explained as part of this section. Following eSNNy neuron. Figure 1 presents the change of the post-synaptic
architectures used both rank-order and time-based |€€ﬂm"botential for the Thorpe neural model if a series of input
methods to account for spatio-temporal data [41,52]. spikes stimulates the neuron through different synapses.

In the next sections, Thorpe’s neural model and the spike  These simplifications allow a very fast real-time simula-
encoding principle used in eSNN are presented, followegion of large networks. Due to its low computational costs
by the description of the one-pass learning method and thgis model was mainly used for studying image and speech
overall functioning of the eSNN method. Finally, a variety recognition methods involving thousands of connected neu-
of applications based on the eSNN architecture is surveyegns (e.g. [14] and [79]). Many studies have investigated th
and summarized. Thorpe model, e.g. for face recognition [80] and [12].

2.1 Neural model 2.2 Neural encoding

A simplified Leaky Integrate-and-Fire (LIF) model was for- In order to classify real-valued datasets, each data sample
mally proposed in [78]. However, the general idea of the.e. a vector of real-valued elements, is mapped into a se-
model can be traced back to publications as early as 1990 [#f8]lence of spikes using a certain neural encoding technique.
This model lacks the post-synaptic potential leakage. Thén the context of eSNN, the so-called rank order population

spike response of a neuron depends only on the arrival timencoding is employed, but other encoding may be suitable
of pre-synaptic spikes. The importance of early spikes iss well.
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Fig. 1: Dynamics of the post-synaptic potential (PSP) of the=ig. 2: Population encoding based on Gaussian receptive
Thorpe neuronal model for a given input stimulus. If the po-fields. For an input value = 0.75 (thick straight line in top
tential reaches thresholt] a spike is triggered and the PSP figure) the intersection points with each Gaussian is com-
is set to O for the rest of the simulation, even if the neuron iguted (triangles), which are in turn translated into spikest

still stimulated by incoming spike trains. delays (lower left figure).

The neural encoding technique is described in detaib 5 Learning
in [61,65]. We summarize it here for the sake of com-

pleteness. Rank order pqpulgtion encoding is an eXtenSithe eSNN learning algorithm was first described in [90].
of the rank order encoding introduced in [78]. It allows o0 '\ve provide a revised description that was first intro-
the mapping (')kf vectors oflreal-valu_ed (ta)lemznts INt0 & S€q,ced in [61]. The topology of eSNN is strictly feed-forward
quence of spikes. An implementation based on arrays of,\ may he organised in several layers. Weight modification
receptive fields is firstly described in [6]. Receptive f|eldsOnly oceurs on the connections between the neurons of the

allow the encoding of continuous values by using a collecy, o+ |ayer and the neurons of either hidden layer or the
tion of neurons with overlapping sensitivity profiles. Eachinput layer

input variable i ded ind dently b f
nput variable is encoded independently by a group\ The aim of the learning method is to create output neu-

one-dimensional receptive fields. For a variablan inter- ) :
val [I™. . T" ]is defined. The Gaussian receptive field of NS, each of them labelled with a certain class lakelL.
' The number and value of class labels depends on the clas-

min’ Tmazx
neuron; is given by its centre; I .
g y L sification problem to solve, i.d. corresponds to the set of

2% —3 v ", class labels of the given dataset. After presenting a certai
B In . _max min (2) ) . . .
Hi = tmin 9 M —9 input sample to the network, the corresponding spike train

is propagated through the SNN which may result in the fir-
and widtho: ing of certain output neurons. It is also possible that ne out
put neuron is activated and the network remains silent. In

1 . —I". . L . .
o= 3 . % (3) this case, the classification result is undetermined. Ifane

more output neurons have emitted a spike, the neuron with
with 1 < 3 < 2. Parametep directly controls the width of the shortest response time among all activated output neu-
each Gaussian receptive field. Figure 2 depicts an examp{€nS is determined, i.e. the output neuron with the earliest
encoding of a single variable. For the diagrain= 2 was spike time. The label of this neuron represents the classifi-
used, the input intervgll | I" ] was set td—1.5,1.5], cation result for the presented input sample.
andM = 5 receptive fields were used. The learning algorithm successively creates a repository
More information on rank order coding strategies canof trained output neurons during the presentation of tngini
be found in [55] and the accompanying article [12]. Verysamples. For each class lalleE L an individual reposi-
interesting is also the review on rapid spike-based preces#ory is evolved. The procedure is described in detail in Al-
ing strategies in the context of image recognition presentegorithm 1. For each training samplevith class label € L
in [75], where most work on the Thorpe neural model anda new output neuron is created and fully connected to the
rank order coding is summarised. Rank order coding waprevious layer of neurons resulting in a real-valued weight
also explored for speech recognition problems [49] and is &ectorw(?), with wgl) € R denoting the connection between
core part of the eSNN architecture. the pre-synaptic neurofiand the created neuran In the



Algorithm 1 Training an evolving spiking neural network
(eSNN)
Require: my, s;, ¢; for aclass label € L

1: initialise neuron repositorf?; = {}
2: for all samplesX (¥) belonging to clasédo

3: w§’) « (my)°rder(d) V5| j pre-synaptic neuron of
4 s X, wi? (my)order()

5: 9 clu%)am

6: if min(d(w®,w®))) < s, w®*) € R then

7: w®) «— mergew(andw(*) according to Equation 7
8: 9%  merged(Vand¥(*) according to Equation 8
9: else

10: R + Ry u{w®}

11:  endif

12: end for

next step, the input spikes are propagated through the net-

work and the value of weighbéi) is computed according
to theorder of spike transmission through a synapgsef.
line 3 in Algorithm 1:

w§i) = (my)°"%r @)V j | j pre-synaptic neuron of (4)

Parametern; is the modulation factor of the Thorpe neural
model. Differently labelled output neurons may have differ
ent modulation factorsy;. Functionorder(j) represents the
rank of the spike emitted by neurgnFor example, a rank
order(j) = 0 would be assigned, if neuronis the first
among all pre-synaptic neurons dthat emits a spike. In
a similar fashion the spikes of all pre-synaptic neurons ar
ranked and then used in the computation of the weights.
The firing threshold9(?) of the created neurohis de-
fined as the fraction; € R, 0 < ¢ < 1, of the maximal
possible potentiah%)m, cf. lines 4 and 5 in Algorithm 1:

9D = culd) (5)
iy = Y wf? (my)rer) (6)
i

The fractione; is a parameter of the model and for each class

labell € L a different fraction can be specified.

The weight vector of the trained neuron is then co
pared to the ones of neurons that are already stored ne
in the repositorycf. line 6 in Algorithm 1. If the minimal
Euclidean distance between the weight vectors of the ne
ron ¢ and an existing neuroh is smaller than a specified
similarity thresholds;, the two neurons are considered too
“similar” and both the firing thresholds and the weight vec-
tors are merged according’to

(#) (k)
w;’ + Nw;
wj(.k) jHiNJ,Vj | 7 pre-synaptic neuron of (7)
90 4+ Ny
T ®)

2 In [61] a slightly different definition of the firing thresholdas
introduced that deviates from the original description pnésgin [90].

u

IntegerN denotes the number of samples previously used to
update neurort. The merging is implemented as the (run-
ning) average of the connection weights, and the (running)
average of the two firing thresholds. After the merging, the
trained neurori is discarded and the next sample processed.
If no other neuron in the repository is similar to the trained
neuroni, the neuroni is added to the repository as a new
output neuron.

data receptive input evolving neuron
sample fields neurons repository
0.6|——
0.1 Class 1
vl Class 2
0.3[——

Fig. 3: Schematic illustration of the evolving spiking nalur
network architecture (eSNN). Real-valued vector elements
are mapped into the time domain using rank order popula-
tion encoding based on Gaussian receptive fields. As a con-
sequence of this transformation input neurons emit spikes a
gre-defined firing times, invoking the one-pass learning al-
gorithm of the eSNN. The learning iteratively creates repos
itories of output neurons, one repository for each classeHe

a two-class problem is presented. Due to the evolving nature
of the network, it is possible to accumulate knowledge as
it becomes available, without the requirement of re-tragni
with already learnt samples, which is one of the ECoS prin-
ciples.

Figure 3 depicts the eSNN architecture. Due to the incre-
mental evolution of output neurons, it is possible to accumu

m- . . .
urolr%e knowledge as it becomes available. Hence, a trained net

work is able to learn new data without the need of re-training
on already learnt samples as it is in all ECoS models.

2.4 Integrated feature selection and parameter optimizati

A number of studies have extended the eSNN architecture in
which a mechanism of automatically optimizing the features
of the given dataset along with most of the eSNN parameters
was proposed. In the next sections, we survey the Quantum-
inspired eSNN framework QiSNN [61] and the Dynamic
Quantum-inspired Particle Swarm Optimized eSNN method
eSNN-DQIPSO [22].
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2.4.1 QiSNN are transformed into a train of spikes using the rank order
population encoding technique, see Section 2.2 for details
The successful application of eSNN to a specific classificaFollowing the one-pass learning procedure, the connection
tion problem requires the identification of a suitable pagam weights of eSNN are trained according to the given param-
ter set for the neural model and the learning method. In [61]eter set. The learning process includes the presentation of
an evolutionary algorithm was suggested to automaticallwll training samples. After the learning, the classificatc-
optimize the network parameters. Simultaneously, the-algacuracy is determined on a set of test samples. This accuracy
rithm was also used to identify feature subsets that maxeimizprovides a quality measure of the feature subset and the used
the classification accuracy of eSNN. In this section, we sumparameter configuration. This quality feedback is passed to
marize the findings of this work along with some notablethe employed optimization algorithm. Based on the qual-
extensions and applications. ity, the optimizer adapts the search strategy and passes new
The eSNN extension presented in [61] combines a bifeature subsets and configurations to eSNN for evaluation.
nary optimization algorithm, namely the Versatile Quantum The whole process iterates until a termination criterion is
inspired Evolutionary Algorithm (VQEA) [9], with an met,i.e. a satisfying classification accuracy is reachedeor
eSNN. vQEA is a probabilistic approach in which a num-maximum number of iterations is exhausted.
ber of independent probability vectors is evolved in paral-  The automatic parameter adaptation of QiISNN is a highly
lel. These vectors may interact at certain intervals witthea desirable feature since it promotes the straightforwapti-ap
other forming a multi-model Estimation of Distribution Al- cation of the method to other problem domains. In section 4,
gorithm (EDA) [10]. Following the wrapper approach [44], we will present some of the applications in which QiSNN
VQEA identifies relevant feature subsets and simultangouskvas employed for knowledge discovery.
evolves an optimal eSNN parameter setting. Due to the For the simultaneous optimization of the network pa-
quantum metaphor employed in VQEA, the architecture wagameters and the feature subset, a heterogeneous seareh spa
named Quantum-inspired SNN (QiSNN) framework. Ap-has to be explored. A binary search space encodes the selec-
plied to benchmark data, the QISNN-based feature selectiafbn of specific features and a continuous search space rep-
reported excellent classification results and an accueate dresents the parameter space of eSNN. Therefore, the binary

tection of relevant information in the dataset [61-65]. nature of VQEA requires the conversion of bit strings into
real values which are then mapped into eSNN parameters.
. feature_recent  input weuron MBI The use pf a bmary optimiser for a real-valued search space
sample  mask  fields  neurons  repos. appeatrs inappropriate for a number of reasons.

First, for the mapping of bit strings into a real value addi-
tional computational resources are necessary. Furthermor
a granularity is introduced into a continuous search inter-
val. Even worse, neighbouring solutions in the continuous
domain might not be neighbours in their binary represen-
tation. Thus, exploring the local neighbourhood of a real-
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valued solution may require the optimiser to flip many bits in
| I e | Porameter ] the solution’s binary representation encouraging prereatu
Solution convergence and promoting the well-known phenomenon of
Optimizer | S A Sdapt hitch-hiking [59]. For these reasons VQEA was extended to-

wards continuous search spaces in [63] resulting in a novel

Fig. 4: The QiSNN [61] framework of eSNN with tightly Estimation of Distribution Algorithm (EDA) called the hier

coupled feature selection and parameter optimizatioe; int @rchical multi-model EDA (hMM-EDA). hMM-EDA uses a
grated with the data. continuous representation based on Gaussian distrilstition

optimize the parameter space of eSNN. The study presented
in [65] describes the algorithm in detail and compares its
The QiSNN framework is shown in Figure 4. The up- performance and its characteristics to related methods.

per part of the diagram represents the eSNN classification Similar to QiSNN, the combination of hMM-EDA and
method. Note the binary mask in the second step of the pr&SNN forms an integrated feature and parameter optimiza-
cess. This mask along with a specific configuration of neurdion framework based on the eSNN classification method.
and learning parameters is passed to eSNN from the optiFhe continuous representation in hMM-EDA is used to op-
mization method depicted in the lower part of the figure.timize the parameter space of eSNN, while the binary rep-
The binary mask describes the features to be selected frorasentation explores the feature space of the given dataset
a real-valued input data vector. Then, the selected featurd&he enhanced QiSNN was shown to converge faster, more



consistently and more reliably than the original QiSNN [63,extracted from a trained eSNN as suggested in [69], where
65, 60]. the output function is a class label.
In [62] a detailed experimental analysis of the behav-
ior and functioning of QiISNN was presented by the authors3 Spatio-t | patt i
The analysis focused on the process of the simultaneous patio-temporal patterm recognition

optimization of features subsets and eSNN parameters _arlqu this section, we describe a significant extension of the

their interaction and mutual influences. The study also INSSNN approach to allow the processing of spatio-temporal

vestigated the role of the neural encoding and its impact Ofhformation. Many of today’s data volumes are continuously

the cIaSS|f|ca.t|on. characteristics of QISNN. Recommenda- pdated adding an additional time dimension to the datasets
tions for configuring eSNN parameters that are not include h . . )
e classification of spatio-temporal patterns is a grealt ch

in the evolutionary optimization process were given. lenge for data mining methods. Many data vectors are se-
quentially presented to a classification algorithm which in

2.4.2 eSNN-DQIPSO turn learns the mapping of this sequence to a given class la-
bel. In its original form, the eSNN model does not allow the

An approach very similar to QiSNN was presented in [21].classification of spatio-temporal data.

Instead of using hMM-EDA as employed in QiSNN, a

Quantum-inspired Particle Swarm Optimizer (QiPSO) was _ )

investigated to perform both feature selection and paramet 3-1 €SNN with dynamic synapses (deSNN)

optimization of eSNN. Since QiPSO was designed as a bié | dels of eSNN h b " d
nary optimization method, the algorithm reported optimiza everal new models ot ave been recently propose
, . tP deal with spatio and spectro-temporal pattern recagniti

QISNN that employed the binary optimizer VOEA. A fu_?SSTPR), from a single neuron layer model, to reservoir-

ture study should attempt a formal comparison of these twgased models. In [41_’ 52] dynamlc synapses are adde_d 0
the LIF model, where in addition to the rank-order learning

QIiSNN variants. . . . . .
. . based on the order of incoming spikes, the synaptic weights
Later a heterogeneous version of QiPSO was propose . . .
change in an unsupervised mode based on the time of the

in [22,23], namely the Dynamic QiPSO, that was able to L . . .
) . X following incoming spikes to the post-synaptic neuron [17]
explore both continuous and binary search spaces simultg- . : : : -
. ; ) . his model is called dynamic eSNN (deSNN). It is efficient
neously. The method essentially combined QiPSO with a )
o ; in both address event representation (AER) and frame-based
traditional PSO to explore the two search spaces in paralle

. o . : . representation. In the former, only changes in the input in-
Additionally, some specialized particles were introduged formation are presented as incoming spikes. asvnchronous!
order to increase the diversity of the particle populathurst P gsp » asy 4

counteracting premature convergence of the algorithm, (e.g. [41]). In the latter whole frames of input data aresran

The same study also proposed another interesting varigg](;d into spikes one by one as a temporal sequence (€.g.
ation of the eSNN classifier. Following ideas of a proba- When the temporal input patterns are longer (e.g. last-

bilistic neural model introduced in [38], the probabilitf o . .
. . ing for seconds) a single neuron layer structure may not be
presence and absence of connections between inputand ous. .~ . ! .

icient in learning these sequences. In this case larger ne

put neurons of eSNN were also subjected to the evolution? B o
L . e ronal “reservoirs” would be needed.

ary optimization process. The resulting probabilistic &N

DQIiPSO was studied on the two-spiral problem and reported

superior classification performance compared to the deteB.2 Reservoir-based eSNN (reSNN)

ministic eSNN.
A reservoir extension of the standard LIF eSNN was pro-
posed in [68] that enables the method to process spatio-

2.5 Rule extraction from eSNN temporal information. The general idea is to add an addi-
tional layer to the network architecture that transfornes th

In ECoS models each cluster of training data is representegpatio-temporal input pattern into a single high-dimenalo

by a cluster centre captured in a (hidden) neuron called ruleetwork state. The mapping of this intermediate state into

node, and a local function to approximate the data in th@ desired class label can then be learned by the one-pass

cluster. The cluster information and the local function ardearning algorithm of eSNN. The study presented an initial

represented as fuzzy rules of the form: experimental analysis demonstrating the feasibility a$ th
IF z; is HIGH, i.e. data is in clustef; extension in principle and left a more comprehensive analy-
THEN the function isF; sis for future studies. The idea was further developed and in

wherex; are input variables. Similarly, fuzzy rules can be vestigated in [67][50] resulting in the reservoir based BISN
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Fig. 5: Architecture of the reservoir-based eSNN [67] cé@all processing spatio-temporal data. The colored (d3shed
boxes indicate novel parts in the original eSNN architextur

(reSNN) illustrated in Figure 5. Compared to the originalwork of [11,13] by including the on-line learning technique
eSNN, the novel parts in the architecture are indicated bgescribed above. In [90] and [85] the method was studied
the highlighted boxes. on an image dataset consisting of 400 faces of 40 different
We outline the working of the method by explaining the persons. The task here was to predict the class labels of pre-
diagram from left to right. Spatio-temporal data pattengs a sented images correctly. The system was trained on a subset
presented to the reSNN system in form of an ordered sesf the data and then tested on the remaining samples of the
quence of real-valued data vectors. In the first step, eadtiata. Classification results were similar to [11,13] with th
real-value of a data vector is transformed into a spike traimdditional advantages of the novel on-line learning method
using a population encoding already described in sectin 2.

A it of th ding. | " q The main principle of this image recognition method
s a result of the encoding, input neurons spike at pre % briefly outlined here. The neural network is composed

fined times according to the presented data vectors. The i four layers of Thorpe neurons, each of them grouping a

put spike trains are then fed into a spatio-temporal f'lterset of neurons into several two-dimensional maps, sodalle

which accumulates the temporal information of all input sig neural maps. Information in this network is propagated in a
nals into a single high-dimensional intermediate liquatest feed-forward manner. i.e. no recurrent connections eAist
The filter is implemented in the form of a liquid or a re‘ger'input frame in form of a grey-scale image is fed into the first

vorr [ZO]’ ter a tr.ecurrse.nt Slt\th’ .fotr Whlcdh. tFeIQS[\éN ?ctts ssneural layer (1), each pixel of the image corresponding to
a readout function. since the intermediate liquid state hag, . q,0n in a neural map 6f . Several neural maps may

no temporal dimension, the one-pass I'earning. algorithm oLyist in this layer. The map consists of “On” and “Off’ neu-
eSNN is able to learn the mapping of this state into ades,lregons that are responsible for the enhancement of the high

class label. contrast parts of the image. Each map is configured differ-

The SftUdSy’\:Rl [67]tr:nvest||gatel(; the Cll a35|f|cat|(()jn tperff[)rl_'lently and thus is sensitive to different grey scales in the im
mance orre onthe real-world sign-language datasel Ly 4o The output of this layer is transformed into the spike
BRAS. For the simulation of the reservoir the SNN simu-

lator Brian [19 4. reSNN tod .. domain using rank order encoding as described in [78]. As
ator brian [19] was used. re reported very promising, consequence of this encoding, pixels with higher contrast
classification accuracies which were at least comparable e prioritised in the neural processing

results obtained by traditional neural network approaches
The second layer, denotelh,, consists of orientation

o maps. Each map is selective for different directions, i.e.

4 Applications 0°,45°,...,315°, and is implemented by appropriately
parametrised Gabor functions. It is noted that the first two
Ié@/ers are passive filters that are not subject to any learn-
ing process. In the third layeks, the learning occurs using

the one-pass learning method described in section 2.3. Here
4.1 Visual pattern recognition neural maps are created and merged according to the rules of

the learning algorithm. Finally, the fourth layér,, consists

Among the earliest application of the eSNN is the visual patef a single neuron for each output class, which accumulates
tern recognition system presented in [90] which extends thepinions about the class label of a certain sequence of in-

The eSNN architectures described above have been used
a variety of applications that are briefly summarised here.



put frames. The weights betwedn and L, are fixed to a from individual modalities and cross-modal connections en
constant value, usually, and are not subject to learning. able the influence of one modality upon the other. A detailed
The firstL4 neuron that is activated by the presented stimuldiscussion of this system along with experimental evidence
determines the classification result for the input. Afte th is given in [87] and in the PhD dissertation of Simei Wysoski
activation of anL, neuron the system stops. in [84]. A later study suggests that this system might be suit
Experimental evidence about the suitability of this pat-able not only for audio and visual pattern recognition prob-
tern recognition system is provided in [88] along with alems, but also for more general brain-like multimodal infor
comparison to other typical classification methods. mation processing tasks [83, 89].
In a later study another processing layer was added to
the system which allows efficient multi-view visual pattern
recognition [88]. The additional layer accumulates infarm 4.4 Taste recognition
tion over several different views of an image in order to
reach a final decision about the associated class label 4fnother application of eSNN being discussed here investi-
the frames. Thus, it is possible to perform an efficient ongates the use of a SNN for taste recognition in a gustatory
line person authentication through the presentation obet sh model. The classification performance of eSNN was experi-

video clip to the system, although the audio information wagneéntally explored [70,69] based on water and wine samples
ignored in this study. collected from [8] and [58]. The topology of the model con-

sists of two layers. The first layer receives an input stimu-
lus obtained from the mapping of a real-valued sensory data
4.2 Auditory pattern recognition sample into spike trains using a rank order population en-
coding, cf. section 2.2. The weights from the first neural
A similar network, but in an entirely different context, was layer are subject to training according to the already dis-
investigated in [86], where a text-independent speaker awcussed one-pass learning method. Finally, the output of the
thentication system is presented. The classification task isecond neural layer determines the class label of the pre-
this work consisted of the correct labelling of audio stream sented input stimulus.
presented to the system. The method was investigated in a number of scenarios,
Speech signals are split into temporal frames, each conwhere the size of the datasets and the number of class labels
taining a signal segment over a short time period. Thevas varied. Generally, eSNN reported promising results on
frames are first pre-processed using the Mel Frequency Cepeth large and small datasets, which has motivated an FPGA
strum Coefficients (MFCC) [57] and then used to invoke thehardware implementation of the system [91].
eSNN. The MFCC frame is transformed into the spike do-
main using rank order encoding [78] and the resulting stim-
ulus is propagated to the first layer of neurons. This layer4.5 Ecological modeling
denotedl,, contains two neural ensembles representing the
speaker and the background model, respectively. While thEn€ QISNN framework as presented in section 2.4 was used
former model is trained on the voice of a certain speaker, thé! & case study on ecological modeling [64]. Meteorolog-
latter one is trained on the background noise of the audiéf@l data, such as monthly and seasonal temperature, rain
stream. This system also collects opinions about the cladd!l @nd soil moisture recordings for different geographi-
label of the presented sequence of input frames, which ical sites, were compiled from published results, and each
implemented by the second layer of the network. Laler global site was labelled according to the presence or ab-
consists of only two neurons, each of which accumulate§&nce of the Mediterranean fruit-fly (a serious fruit pest).
information about whether a given frame corresponds to 4 he study aimed towards the identification of important fea-
certain speaker or to the background noise. Whenevésan tures relevant for predicting the presence/absence oifthis

neuron is activated, the simulation of the network stops ang&Ct Species. From 68 features, QISNN identified 14 features
the classification output is presented. to be of particular importance. These features were andlyze

by an ecological expert and they compared well to results

found in related studies. The clear potential for further im
4.3 Audio-visual pattern recognition provement of classification accuracy with model refinement,

as well as automatic optimisation of parameters, suggested
The two recognition systems presented above were succes3iSNN as an useful approach for the analysis and modelling
fully combined, forming an audio-visual pattern recogmiti  of complex, noisy ecological data.
method. Both systems are trained individually, but thetr ou The same data was later revisited [63] and the experi-
put is propagated to an additional supra-modal layer. Thenents were repeated using the enhanced version of QiISNN
supra-modal layer integrates incoming sensory informatio (see section 2.4 for details). Compared to the originalystud
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the number of features could be further decreased (down tis listening a sound, seeing an image, both, or no stimulus is
nine relevant features) without affecting the overall sias presented. The best accuracy was obtained with the use of
fication accuracy. Related wrapper-based feature setectidghe deSNN when compared with the reSNN.

methods employing the same optimizer, i.e. VQEA, but a

different classification algorithm, e.g. the Na Bayesian

Classifier, identified significantly more features to be rele

vant on the same dataset.

5 Summary and future directions

4.6 Sign language recognition

In this paper, we have surveyed the recent developments on
The reSNN method discussed in section 3 is suitable to adhe eSNN classification method. We reviewed algorithmic
dress spatio-temporal pattern recognition problems.Th [6 details on the learning algorithm, on the neural model and
this method was investigated using a real-world datasein the neural encoding. Numerous models were discussed
called LIBRAS [15]. LIBRAS is the acronym fotlngua and many applications and case studies in which the eSNN
BRAsileira deSinais, which is the official Brazilian sign was successfully employed were presented.

language. The data contains 15 hand movements (signs) t0 The two models deSNN and reSNN, designed towards

be learned and' classified. The movements were pbtame(He processing of spatio-temporal real world data, apgear e
from recorded video of four different people performing the e cja|ly interesting. Future studies will focus on the tigh
movements in two sessions. In total 360 videos have begfegration of reservoir based techniques with the “evolv-
recorded, each video showing one movement lasting fof,y philosophy” of eSNN. Especially the automatic config-
about seven seconds. From the videos 45 frames uniformlyaiion of the reservoir represents a highly desirable.goal
distributed over the seven gecgnds have then been extractgg,q large number of parameters in the reservoir is clearly a
In each frame, the centroid pixels of the hand are used tg5yhack of the presented reSNN despite the promising re-

determine the movement. All samples have been organizeq,s that have been obtained with this method. Initial stud
in ten sub-datasets, each representing a different cla@ssifi joq aiming for a better controlled reservoir have suggested

tion scenario. More comprehensive details about the datasg, o simple mechanisms adjusting the overall neural ac-

can be found in [15]. The data can be obtained from the UCHity, of recurrent SNN based on the strength of the input
machine Iearmpg repository. o stimuli [66]. Some significantly improved separation capa-

As shown in [67], the classification performance of ijties of these adaptive reservoirs were reported based o
reSNN depends strongly on the employed readout method| nihetic datasets. Future studies are planned in whise the

extracting the reservoir or liquid state at pre-defined time findings are applied to the EEG based prediction of epileptic
tervals. Using an analog readout technique, a good overalli, res.

testing classification accuracy of around 82% was reported o . _ )

on this dataset. Additional optimization of the eSNN param- Other d_|rect|pns mvolve_the neurogenen_c mo_dellng ap-

eters and the features of the data using the DQIPSO alg&)_roaches firstly introduced in [40,4,5].. The idea is to adapt

rithm further increased this accuracy to around 89% whicti'® Parameters of a SNN using an additional gene regulatory

compares very favourably to the results reported in [15]1etwork which has to be optimized itself in order to achieve
where a traditional Multilayer Perceptron was used a desired network behavior of the SNN. Other studies have

recently investigated this direction in the context of riko

controllers [51], cognitive systems [36] and Alzheimer-dis
4.7 Object movement recognition ease models [28]. A 3D eSNN computational neurogenetic

model called NeuCube to map, learn and mine brain data,

In [41], the deSNN model was applied for moving objectwas proposed [29]. This model, if further developed, can
recognition using AER taken from a silicon retina cam-facilitate efficient real time applications such as: EEG pat
era [47]. The case study data created aimed at investigatif§™ recognition for BCI; fMRI pattern recognition; neuro-

the efficiency of the method for collision avoidance predic-rehabilitation robotics; neuro-prosthetics; cognitiodots;

tion when fast objects are moving towards the observer. ~Personalized modeling for the prognosis of fatal eventé suc
as stroke and degenerative progression of brain diseade, su

as AD. A combination of the fast evolving one-pass learning
4.8 EEG spatio/spectro temporal pattern recognition of eSNN with the automatic parameter adaptation of a ge-

netically controlled recurrent SNN could open the path for
In [52], several eSNN architectures were investigatedHer t numerous relevant real-world applications including oeur
recognition of four EEG patterns, recorded when a subjeanorphic computation systems [26,27,39].
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