
ThinkingISsues

Tony Clear
School of Computer and Information Sciences

Auckland University of Technology,
Private Bag 92006, Auckland 1020, New Zealand

Tony.Clear@aut.ac.nz
Disciplined Design Practices – a Role for Refactoring in Software

Engineering?

Reflecting upon the recent experience of teaching
our undergraduate software engineering course has
caused me to revisit several questions at the core of
the discipline. What is the essence of software
design, how should it be taught and how does it
relate to software engineering?

Turning to the Guide to the Software Engineering
Body of Knowledge (Swebok) [1] issues related to
design can be found in two of the ten knowledge
areas, which are identified as “software design” and
“construction”. Software engineering itself is then
further defined as: “the application of a systematic,
disciplined, quantifiable approach to the
development, operation and maintenance of
software” [1].

In distinguishing the “construction” activity, the
Swebok [1] notes that linear models of the software
development process treat construction as “an
activity that occurs only after significant
prerequisite work has been completed – including
detailed requirements work, extensive design work
and detailed planning”. So then, does this ‘system’,
‘discipline’ and ‘quantification’ of the SE process
inherently depend upon a structured linear process,
with progressive delivery of robust formalized
artifacts? Problematically SE courses adopting
these approaches, while enabling the instructors to
design a tidy sequential course structure, often
result in a student perception of software
engineering as “document engineering”.

Yet, in elaborating upon construction models, the
Swebok [1] further notes that more iterative models
including “evolutionary prototyping, Extreme
Programming and Scrum…tend to treat
construction as an activity that occurs concurrently
with other software development activities,
including requirements, design or planning”. In
such models design, coding and testing activities
are intermingled, and in combination tend to be
treated as “construction”. Which begs the question
for SE - where does the system, discipline and
quantification lie in such iterative “construction”
models??

My own view on the question of software
development and design as expressed in our
capstone project guide offers only a partial
response.
“In some sense we may think of development as
involving a mapping process, which perhaps more
generally reflects the whole process of design. This
mapping process takes some real world practice or
issue, transforms it into a conceptual model or series
of models, and then further transforms that into a
computer implemented solution. In a good software
development process, these transformations
reconceive the real world practice in some way that
will improve upon the present. So the developer
works in partnership with a client to add value in
producing the new work practice or process and/or
supporting technologies and software” [2].
In addition to this model of design as a mapping
process, the conclusion we have come to regarding

the “system” and “discipline” of SE, is that it lies
inherently in a series of practices and processes
which support the activities involved in ‘software
development’ – a term I much prefer to the building
metaphor of ‘construction’.

So in returning to our question of ‘design’ and the
teaching of design versus construction, we can now
consider the question of effective design practices,
and how can they be taught in the context of more
iterative or agile methodologies.

Here we can introduce the notion of refactoring [3]
as one such useful practice. “Refactoring is the
process of changing a software system in such a
way that it does not alter the external behaviour of
the code yet improves its internal structure. It is a
disciplined way to clean up code that minimizes the
chances of introducing bugs. In essence when you
refactor you are improving the design of the code
after it has been written”.

“With refactoring you find the balance of work
changes. You find that design, rather than
occurring all up front, occurs continuously during
development. You learn from building the system
how to improve the design. The resulting
interaction leads to a program with a design that
stays good as development continues.” [3].

By way of contrast with this active, continual and
iterative model of design and construction
suggested by Fowler, the Swebok appears to
consider refactoring merely as a maintenance
technique, being a reverse engineering method, for
program transformation “which seeks to improve
program structure” [1].

Given the Object Oriented nature of the Java
development projects that our SE teams undertake,
and the variable nature of the lifecycle models they
may select, the idea of formal instruction in
refactoring seemed a useful contribution to
improving the design and construction practices of
our SE teams. Therefore we incorporated a session

on refactoring into the software engineering course
this semester. We surmised that the iterative O.O.
development undertaken by students would involve
a fair amount of tweaking of their code, and from
past experiences this redesign would often result in
software far removed from earlier versions of any
class diagrams that may have been developed in an
initial design activity. Which begs the question -
does a retrospectively developed tidy class diagram
handed in with the final portfolio submission
constitute good design practice? Or does this
simply represent the student state of the art, a “hack
first - document last” methodology?
If this then could be predicted as the classic
outcome from the team’s design process in a
“requirements, design, construction” model of SE,
perhaps more conscious practices supporting
continual and iterative design, and closer to the
code itself may be helpful and may actually be
applied by students.

At the completion of the course, students being
students it was not apparent that all our teams had
consciously applied refactoring and reflected upon
the practice. However, one team definitely used it
to good effect, and two of the specifically
mentioned refactoring procedures were the ‘move
method” and the “extract class”.

The “Move method” procedure supports reduced
coupling by moving a method from one class to
another class in which it more naturally belongs.
The feedback was that it had indeed proven useful,
had simplified and cleaned up a lot of the design,
both reducing the amount and increasing the quality
of the code.

The “extract class” procedure creates a new class
with selected attributes and methods from other
classes to improve cohesion. Use of this procedure
was reported by the team to have avoided
unnecessary repetition of attributes and methods in
their java bean classes and helped to create a
cleaner hierarchy and higher quality design.

Thus it appeared that the team were able to
comprehend some of the reasonably simple yet
powerful techniques of refactoring to improve their
design and the quality of their code as the project
developed. For me this demonstrated powerfully
the value of refactoring as an active design and
construction technique, and one which has a
definite place in any SE course attempting to teach
sound O.O. design practices.

1. Abran, A., Moore, J., Bourque, P.,
DuPuis, R. and Tripp, L. Guide to the
Software Engineering Body of
Knowledge - 2004 Version -
SWEBOK®, IEEE-CS - Professional
Practices Committee, Los Alamitos,
California, 2004, 202.

2. Clear, T. Bachelor of Computer &
Information Sciences - Research &
Development Project Guidebook, v. 1.9,
Auckland University of Technology,
Auckland, 2005, 1 -50.

3. Fowler, M. Refactoring - Improving the
Design of Existing Code. Addison
Wesley Longman, Boston, 1999.

