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ABSTRACT 

Disability associated with chronic pain is a prevalent worldwide problem. Much of our 

understanding of how and why chronic pain develops has been provided through 

developments in neural imaging and assessment techniques. Such investigations have 

highlighted the substantial amount of neural plasticity, or neural reorganisation, that is 

possible within the nociceptive system. While this plasticity is often physiologically 

beneficial and usually reverses over time, persistent plasticity can occur following long term 

activation or damage to the nociceptive system. These adaptations are associated with the 

development and maintenance of chronic pain conditions. This review provides an outline 

of the nociceptive system and describes the evidence for plasticity of the system at 

peripheral, spinal, and supraspinal levels. A number of clinical symptoms associated with 

chronic pain are described along with the possible neural mechanisms that may contribute 

to the presentation. Finally, chronic pain management approaches that promote 

reorganisation of the nociceptive system are discussed. These include sensory training, non-

invasive brain stimulation, and mechanisms-based treatment. 
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I. INTRODUCTION 

Chronic pain is defined by the International Association for the Study of Pain (IASP) as pain 

persisting for more than 3 months, or beyond the expected time of tissue healing.1 

Worldwide, chronic pain has a prevalence of approximately 15-20% of the adult 

population.2-5 It is therefore one of the most disabling chronic conditions, yet it suffers from 

a distinct lack of identity, recognition, and acceptance. Pain is so often viewed as a symptom 

of another condition, e.g. arthritis or spinal cord injury, that the neural changes that occur 

with long term pain are rarely acknowledged. Part of the problem contributing to the 

limited recognition of chronic pain is that pain is a purely subjective experience and there 

are no valid physical tests that can be used for diagnosis. It is also complicated in that pain is 

multidimensional, being both a sensory and emotional experience, and is commonly 

associated with adaptations in other areas of the nervous system, including somatosensory, 

motor, autonomic, and cognitive functions. However, chronic pain is now receiving 

recognition as its own disease entity, and with advances in neural imaging and assessment 

techniques, greater insight has been provided on the plasticity that occurs within the 

nervous system in long term pain conditions. This paper will highlight evidence of this neural 

plasticity and attempt to link it to the common symptoms present in chronic pain. 

II. OVERVIEW OF THE NOCICEPTIVE SYSTEM 

To more fully understand the neuroplastic changes in the nociceptive system associated 

with long-term pain, an overview of the system is presented first. There are a wealth of 

textbooks and review articles that provide this information in detail,6-9 so a brief and simple 

version is presented here. Receptors that are sensitive to noxious stimuli (nociceptors) are 

present in most tissues of the body. These nociceptors are free nerve endings that respond 
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to harmful or potentially harmful chemical, mechanical, and thermal stimuli and relay this 

information via Aδ and C fibre axons (also termed group III and IV fibres, respectively) to the 

dorsal horn of the spinal cord. Aδ fibres are lightly myelinated and relatively fast conducting, 

while C fibres are non-myelinated and have a small axon diameter, making them the slowest 

conducting of our sensory afferents. In the dorsal horn, nociceptive afferents predominantly 

synapse with onto second order neurons in superficial laminae I and II as well as deeper into 

laminae IV-VI. Second order neurons in laminae I and II are primarily nociceptive specific 

neurons that only receive input from Aδ and C fibres. In lamina IV-VI, nociceptors synapse 

with wide dynamic range (WDR) second order neurons that receive input from multiple 

afferents. WDR neurons are principally located in laminae IV-VI but can also be found in 

laminae I and II. In comparison to Aδ and C fibres, axons from non-noxious touch and 

proprioceptive receptors, known as Aβ fibres, synapse in the deeper laminae III-V only.  

Nociceptors predominantly communicate using the neurotransmitters glutamate, an amino 

acid, and substance P, a slow-acting neuropeptide. In normal conditions, glutamate binds to 

α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors on the dorsal horn 

cells and causes a short acting excitatory potential. Substance P binds to the neurokinin-1 

receptor, a G-protein couple receptor, to generate a much slower and longer acting 

depolarisation. Glutamate may also bind to N-methyl-d-aspartate (NMDA) receptors but at 

resting membrane potential the NMDA receptors are blocked by the ion Mg2+. Dorsal horn 

neurons themselves are connected both within the same spinal cord layer through 

interneurons that traverse laminae, and within close spinal segments through ascending and 

descending propriospinal interneurons.  
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From the dorsal horn, nociceptive information ascends to brainstem and cortical regions in 

medial and lateral pathways. Key areas in the brainstem that receive direct nociceptive 

input are the midbrain periaqueductal grey (PAG), the rostral ventromedial medulla (RVM), 

and the reticular formation. These areas have notable roles in the modulation of the 

ascending nociceptive signal. Cortical and subcortical regions receiving direct nociceptive 

input reflect a highly connected network of sites involved in the perception, interpretation, 

and behavioural response to nociceptive input. These areas include the thalamus, primary 

and secondary somatosensory cortices, anterior cingulate cortex, amygdala, prefrontal 

cortex, and the insula, and are collectively referred to as the neuromatrix. It is when 

nociceptive information arrives in the neuromatrix that the lived experience of pain is 

created, with the lateral system providing the sensory-discriminative component of pain and 

the medial system contributing to the emotional-aversive component. The neuromatrix 

itself has bilateral projections to brainstem modulatory areas, providing a means for 

cognitive and emotional modulation of the ascending nociceptive signal. The hypothalamus 

is also intimately connected with neuromatrix and brainstem regions, facilitating interaction 

between the autonomic and nociceptive components of the nervous systems. 

Modulation of the ascending nociceptive signals can be both facilitatory and inhibitory and 

occurs at multiple levels of the nociceptive system. Descending excitatory and inhibitory 

modulatory pathways are tonically active, with the extent of activation influenced by 

nociceptive input, psychological stress, or other forms of nervous system stimulation. Shifts 

in the balance of inhibitory and excitatory activation therefore determine the overall 

modulation of nociceptive signals. In the periphery, nociceptive signals can be facilitated 

through sensitisation of nociceptors that occurs following tissue injury and inflammation, 
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while activation of non-noxious mechanoreceptors can activate the dorsal horn spinal gating 

mechanism and reduce nociceptive input. Within the dorsal horn, a multitude of inhibitory 

and excitatory interneurons serve to modulate the transmission from nociceptors to 

ascending pathways. GABAergic inhibitory interneurons play a particularly important role at 

this level in reducing the ascending signal. In key modulatory regions of the brainstem, 

including the RVM and PAG, there are classes of neurons termed ON and OFF cells. These 

cells activate descending facilitatory and inhibitory pathways, respectively, that act directly 

or indirectly on dorsal horn neurons. Two of the main neurotransmitters associated with 

inhibitory pathways are serotonin, released following activation of the raphe magnus 

nucleus, and noradrenaline, released following activation of the locus ceruleus. A further, 

well established inhibitory system involves the activation of diffuse noxious inhibitory 

control neurons located in the caudal medulla. At a cortical level, the strong bi-directional 

interaction with brainstem centres affords a means for cognitive and emotional factors to 

modulate the nociceptive signal. These include psychological factors such as attention, 

expectations, mood, arousal, and beliefs regarding pain. Finally, the hormonal system 

provides an additional important source of nociceptive modulation. Circulating endogenous 

opioids can act to inhibit the nociceptive signal through receptor activation at peripheral 

nociceptors, spinal cord dorsal horn, brainstem, and cortical sites. Importantly, opioid 

receptor density and distribution is dynamic and is regulated by activation of the 

nociceptive system, nerve and tissue damage, and the peptide hormone cholecystokinin 

(CCK). 

It is apparent that the nociceptive system is a multi-faceted and dynamic network that 

affords enormous capacity for short- and long-term plasticity. Nociception facilitation and 
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inhibition is normally regulated physiologically to provide a useful response that at first 

alerts us to actual or potential tissue damage, promotes recovery and restoration, and then 

enables increasing use and activity as the body recovers. Thus, the pain experience is 

temporally matched to tissue damage and repair. When this process escapes tight 

regulation and pain continues far beyond the period of tissue recovery, the consequences 

can be catastrophic for an individual. It is indeed not surprising that chronic pain is 

commonly associated with depression, anxiety, reduced participation, and impaired quality 

of life.2,10-12 There is increasing evidence that this dysregulated response of the nociceptive 

system arises through persistent plasticity. The following sections of this review will 

examine in more depth the neural changes that have been identified in the nociceptive 

system following tissue damage and how these may underlie the common clinical features 

of chronic pain conditions. 

III. PLASTICITY IN THE NOCICEPTIVE SYSTEM 

There are many mechanisms that can underlie neural plasticity and many levels within the 

nociceptive system at which plasticity can occur. In general, the adaptive responses to acute, 

nociceptive pain are physiologically useful and predominantly serve to augment the 

ascending nociceptive signal to promote awareness of tissue injury and recuperative 

behaviour. However, much of the reorganisation that occurs with chronic pain appears to 

serve no biological purpose, and may even be profoundly detrimental, contributing to the 

maintenance of pain. The following provides a description of potential neural plasticity at 

each level of the nociceptive system. 



8 
 

A. Peripheral nociceptors 

Tissue damage or inflammation and the subsequent activation of nociceptors result in 

almost immediate changes in peripheral nociceptive system function. A soup of chemical 

mediators, including inflammatory substances, catecholamines, and neuropeptides are 

released locally. These substances can directly activate free nerve endings and rapidly 

increase their excitability, a process termed peripheral sensitisation. Peripheral sensitisation 

is characterised by a reduction in nociceptor activation threshold and the development of 

spontaneous nociceptor discharge, leading to an increased nociceptor response to a given 

noxious stimulus. Nerve growth factor is a particularly important sensitising agent that is 

implicated in the development of longer-term neuronal changes.13 Nociceptors themselves 

play a contributory role in peripheral sensitisation through the antidromic propagation of 

action potentials and subsequent release of substance P and calcitonin gene related peptide 

(CGRP) from their sensory terminals into the peripheral tissue.14 These substances cause 

enhanced vascular permeability, vasodilation, and increased synthesis of prostaglandins, 

further enhancing nociceptor activation and sensitisation. As well as these effects on 

functioning nociceptors, a group of nociceptors that are normally dormant, termed silent 

nociceptors, become activated during inflammation and sensitisation.15 These newly 

awakened receptors respond intensely to both noxious and non-noxious stimuli, increasing 

the peripheral afferent barrage into the spinal cord. Additionally, glial cells (microglia and 

astrocytes), long thought to play a strictly structural role in the nervous system, are now 

known to contribute to peripheral sensitisation. Glia are activated by pathogens and 

inflammation and release pro-inflammatory cytokines that further facilitate nociceptor 

sensitisation.16 Emerging evidence from animal studies suggests that peripheral sensitisation 

can cause nociceptors to respond more vigorously the next time they are exposed to 
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inflammatory mediators, a phenomenon termed “hyperalgesic priming”.17 In their primed 

state, the resulting sensitisation of nociceptors is much stronger and longer lasting when 

exposed to a second dose of inflammatory mediators. The length of time the exposed 

nociceptors remain in this primed state is unknown but appears to be at least a few weeks 

after the initial inflammatory response.17       

Nociceptor axons that are damaged through demyelination or a lesion can fire 

spontaneously, sending a constant volley of signals to the dorsal horn. Termed ectopic 

discharge, the spontaneous activation can begin early following nerve damage, can be 

rhythmic or irregular depending on the fibres involved,18 and appears to arise through 

upregulation and altered trafficking of Na+ channel expression.19 Damaged axons are 

particularly sensitive to circulating catecholamines,20,21 which can lead to further axonal 

firing. Traumatic axonal damage commonly results in the formation of neuroma, or an 

accumulation of nerve tissue. Neuroma themselves facilitate spontaneous firing of action 

potentials due to the accumulation of Na+ channels.22 Nerve injury also causes the 

expression of novel receptors in the neuroma that are sensitive to inflammatory chemicals,6 

adding to the spontaneous axonal firing. Ectopic discharge from axons or neuroma can 

continue for lengthy periods of time, providing a continuous input to second order neurons 

within the spinal cord.  

Damage or demyelination of multiple axon types also can lead to ephaptic discharge. In this 

case, afferent signals jump across axons in areas of damage. Thus, ephaptic transfer may 

lead to an action potential along an Aβ fibre transferring to a neighbouring nociceptor axon 

and subsequently ascending to the cortex in normally nociceptor-specific pathways.23 

Additionally, a phenotypic switch in non-noxious Aβ fibres to release substance P has been 
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documented following nerve damage or inflammation.24,25 This enables non-noxious stimuli 

to activate dorsal horn neurons that are usually responsive to noxious input only. 

B. Spinal Cord Dorsal Horn 

Prolonged nociceptive input, particularly from deep tissue afferents, instigates additional 

neuroplastic changes within the spinal cord dorsal horn. The release of the slow-acting 

neurotransmitter substance P causes sustained depolarisation of dorsal horn neurons, 

instigating changes in neurotransmitter receptor availability. Depolarisation of second order 

neurons stimulates the removal of the Mg2+ block from NMDA receptors, making them 

available for glutamate binding.26 Activation of pre- and post-synaptic NMDA receptors in 

the dorsal horn causes a large and prolonged depolarisation, increased intracellular Ca2+ 

influx, and can stimulate the additional release of neuropeptides, such as substance P.27-29 

NMDA receptor activation also enables the phenomenon of windup to occur in WDR 

neurons. Windup is instigated by temporal summation of high frequency (>0.3 Hz) 

nociceptive input that gives rise to a progressively increased depolarisation of WDR 

neurons.26,30 This process results in an increase in firing frequency of the second order 

neurons. In addition, sustained depolarisation leads to an expansion of the receptive zone of 

WDR neurons,31 may cause new receptive fields to be established,32 and increases the 

sensitivity of WDR neurons to both noxious and non-noxious inputs.31 These are the first 

and fundamental steps of central sensitisation. The overall effect is an increased number of 

action potentials generated in nociceptive pathways ascending to neuromatrix regions.  

Glial cells, substance P, and the enzyme cyclo-oxygenase-2 (COX-2) also play a role in 

facilitating nociceptive transmission at the dorsal horn and a spread from local to more 

diffuse effects. Glial cells are incredibly well interconnected and communicate via gap 
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junctions, facilitating a rapid spread of activation. Activated glial cells facilitate the release of 

substance P from nociceptors16 and pro-inflammatory cytokines,33 increasing depolarisation 

of second order neurons and enhancing COX-2 expression in the dorsal horn. The extended 

release and slow re-uptake properties of substance P enable the peptide to diffuse to 

adjacent synapses or even across the dorsal horn,34 contributing to the sensitisation of 

second order neurons in remote areas. The enzyme COX-2 is used in the synthesis of 

prostaglandins from arachidonic acid. COX-2 that is produced in the dorsal horn does not 

remain local but travels through the spinal cord and to supraspinal regions.35 This can lead 

to increased prostaglandin production in cerebrospinal fluid and widespread facilitation of 

dorsal horn sensitisation.  

Further, longer lasting changes in the dorsal horn occur with prolonged stimulation. 

Sustained activation of nociceptors or nerve damage causes upregulation of c-fos, an 

immediate early gene and a marker of neuronal activity. Several seconds of activation is 

enough to induce transient labelling in superficial laminae of the dorsal horn, while 4-5 

hours of stimulation can lead to labelling in deeper laminae.36 Such activation can cause 

alterations in the expression of neurotransmitters, receptor availability, ion channel 

function and numbers, and even structural reorganisation. Following inflammation or nerve 

damage, there is an increase in receptor availability for glutamate and substance P in dorsal 

horn cells37 and enhanced release of these neurotransmitters.29 There are also alterations 

associated with inhibitory pathways. Changes in the opioid system at the dorsal horn 

include a reduction in opioid receptor numbers,38 up-regulation of opioid receptor 

antagonists,39 and increased CCK release that reduces the ability of morphine to bind to 

receptors.40 There also may be loss of inhibitory glycine receptors,41 depression of gamma-
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aminobutyric acid (GABA) inhibitory interneurons,42 or even a functional switch of GABA-

mediated synapses from inhibitory to excitatory.43  

Peripheral nerve damage may also lead to alterations in neuronal firing properties and 

dorsal horn connectivity. Dorsal horn neurons can alter from a tonic firing pattern to the 

formation of plateau potentials,44 which enhances and amplifies signal transmission. Glia 

present in the dorsal horn can be upregulated following nerve damage,45 reinforcing their 

sensitising effect on second order neurons. Interneurons present within the dorsal horn that 

connect deeper to superficial laminae are normally inactive, but following nerve injury these 

pathways may be facilitated.46 This polysynaptic pathway provides a means for non-noxious 

Aβ input into deeper laminae to indirectly activate superficial dorsal horn neurons and 

ascending nociceptive pathways. 

Structural changes around the dorsal horn can also occur. Peripheral axonal damage can 

lead to fibre death; this appears to be more predominant in non-myelinated C fibres.47 With 

the death and withdrawal of C fibres, Aβ fibres have been shown to invade the superficial 

laminae of the dorsal horn and make functional synapses with nociceptive specific 

neurons.48,49 The release of nerve growth factor in the dorsal horn can also instigate C fibre 

sprouting,50 increasing the number of functional synapses from nociceptors to second order 

neurons. Apoptosis, or death, of dorsal horn GABA inhibitory interneurons may also occur,42 

although more recent findings have challenged this assertion.51 

These factors may all contribute to central sensitisation at the spinal cord level. While acute 

central sensitisation may be useful in nociceptive pain, long-standing sensitisation of dorsal 

horn neurons is pathological. A number of the mechanisms of plasticity described above can 
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lead to sensitisation persisting after removal of incoming nociceptive stimuli, or result in 

very little input needed to sustain sensitisation.52,53 

C. Brainstem Regions 

Neuroplasticity is not limited to the dorsal horn but can continue into supraspinal regions. 

There is now good evidence of alterations in brainstem descending pain inhibitory and 

facilitatory pathways in many chronic pain populations. Although it is difficult to establish 

the chronology of such alterations, several studies have provided evidence that 

inflammation and peripheral nerve damage can give rise to subsequent changes in 

brainstem modulatory regions, suggesting a causative effect.  

After acute tissue injury or inflammation, there is net increase in both descending inhibition 

and facilitation from multiple supraspinal sites, particularly the RVM and locus ceruleus.54 As 

well as altered activity in existing ON and OFF cells, a phenotypic switch of neurons may 

occur. A third class of cells in brainstem regions, termed NEUTRAL cells, do not normally 

respond to nociceptive input. However, following activation of the nociceptive system, 

these NEUTRAL cells can be converted to ON or OFF cells, potentially mediating the 

increased descending activity.55 Although the overall modulation of ascending nociceptive 

signals is upregulated, there are distinct temporal shifts in the balance between inhibition 

and facilitation. Facilitation dominates early after injury, with inhibition taking time to 

build.56 The delayed inhibition predominates with time and likely serves as a mechanism to 

dampen dorsal horn hyperexcitability. However, in a chronic inflammatory model, it has 

recently been shown that despite descending inhibition being increased, the mechanical 

threshold for an OFF cell pause (i.e., removal of descending inhibition) is significantly 
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lowered,57 perhaps providing a basis for mechanical hypersensitivity in prolonged 

inflammatory states.  

More sustained changes in the balance of descending facilitation and inhibition occur with 

ongoing nociceptive input. Following nerve injury, there is evidence of reduced inhibition 

and increased facilitation from the medulla58,59 and death of some RVM cells may occur.60 

Additionally, the normally inhibitory locus ceruleus, which gives rise to the descending 

ceruleospinal pathway, may switch to a facilitatory input.61 Long-term exposure to 

morphine also has been shown to increase the number of ON cells in the RVM.62 Such 

changes would give rise to a shift in the balance of descending modulation towards tonic 

facilitation. In support of this, increased activity in the RVM and PAG has been documented 

in people with chronic allodynia following nerve injury63 and is associated with punctuate 

hyperalgesia in chronic hip osteoarthritis,64 suggestive of enhanced facilitation of 

nociceptive input by these supraspinal centres.  

It is also now established that several chronic pain populations have impaired conditioned 

pain modulation,65 a paradigm used to assess the function of the diffuse noxious inhibitory 

control system. Impaired inhibition by this system has been documented in people with 

arthritis,66,67 fibromyalgia,68,69 chronic headache,70-72 irritable bowel syndrome,73-75 and 

temperomandibular joint disorder.76,77 Thus, it appears to be a phenomenon that is not 

specific to any particular chronic pain pathology. Of note, there is evidence that impaired 

conditioned pain modulation can be restored with pain relief.67,78 These studies provide 

evidence that conditioned pain modulation is modifiable over time and is temporally 

associated with the pain experience. Animal models of mild or chronic stress also have 

shown that brainstem regions are involved in the development of hyperalgesia,79-81 
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providing evidence for a “top-down” modulation of plasticity in brainstem pathways by 

cortical regions.  

D. Cortical reorganisation 

Brain structural and functional imaging techniques have provided evidence of morphological, 

metabolite, and neuronal excitability changes in people with various long term pain 

conditions. Numerous magnetic resonance imaging (MRI) studies have shown atrophy of 

grey matter in neuromatrix regions. These have included populations with low back 

pain,82,83 headache,84,85 irritable bowel syndrome,86 osteoarthritis,87,88 complex regional pain 

syndrome (CRPS),89 and fibromyalgia.90 This is not a widespread phenomenon but appears 

to be a functionally specific atrophy that is regionally different among the various pain 

conditions. The chronology of such grey matter changes is difficult to determine, but a 

handful of longitudinal studies have convincingly demonstrated that changes in reported 

pain intensity over time are mirrored by alterations in structural grey matter 

volume,83,85,87,88 suggesting that the latter may be a consequence of the former. One caveat 

that should be mentioned is that most of these studies have not taken patient co-

morbidities into account and some have revealed structural changes in non-neuromatrix 

regions, so such reorganisation may not always be pain-specific.91 

Changes in concentration of specific brain metabolites have been demonstrated in 

neuromatrix regions of people with chronic low back pain,92-95 CRPS,96,97 spinal cord 

injury,98,99 and post-herpetic neuralgia.97 In fact, it was some of this early work using 

magnetic resonance spectroscopy that lead to the hypothesis that morphological changes 

may be present in the brain. These studies have predominantly reported decreased 

concentration of N-acetyl-aspartate (NAA; a marker of neuronal function) and glutamate 
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metabolites in several cortical and subcortical regions, including the primary sensorimotor 

cortex, thalamus, insula, and anterior cingulate cortex. The clinical importance of such 

findings is evident in that the concentration of metabolites related to glutamate and NAA in 

people with spinal cord injury was able to distinguish between those with pain and those 

without.98,99 Reduced concentration of these specific metabolites reflects a loss of neurons 

or neuronal dysfunction in specific neuromatrix regions. It has been speculated that this 

arises through a neurodegenerative processes due to enhanced neural activity in these 

regions in people with long-term pain.96 Of note, individuals with visceral pain who had the 

lowest baseline concentrations of glutamate and NAA showed the greatest pain reduction 

with treatment,100 suggesting that lowered concentrations of the metabolites are a marker 

of potential pain recovery. 

Furthermore, there is evidence for more specific reorganisation occurring within the 

primary somatosensory and motor cortices in chronic pain conditions. Flor and colleagues101 

were one of first to document shifts in cortical sensory representation maps of people with 

phantom limb pain. Since then, numerous studies have reported similar alterations in bodily 

representation in the somatosensory cortex of amputees with phantom limb pain102-105 that 

are not present in those without pain.105 It is possible that this plasticity reflects a 

compensatory measure to restore function in deafferented cortical regions. However, there 

are alterations in cortical representation in other chronic pain conditions that do not involve 

amputation, so this reorganisation is not entirely dependent on structural deafferentation. 

For example, in people with chronic back pain, a medial shift of the back representation 

within the somatosensory cortex has been reported without any reorganisation in other, 

non-painful body regions.106 Additionally, reduced or altered locations of primary 
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somatosensory cortex representations of the painful body region have been documented in 

studies involving people with CRPS,107-110 spinal cord injury pain,111 and those with pain 

associated with carpal tunnel syndrome.112  

There are also structural and functional changes in the primary motor cortex in populations 

with chronic pain. Shifts in motor cortical representation in people with low back pain113,114 

and phantom limb pain103,104,115 have been reported. Studies using transcranial magnetic 

stimulation to examine corticomotor excitability in chronic pain have shown altered 

responses in a number of chronic pain populations. The findings have generally indicated an 

increase in corticomotor excitability115,116 and a reduction in intracortical inhibition117-123 in 

the affected body region. These findings appear to be supported by a functional MRI (fMRI) 

study showing increased ispi- and contra-lateral primary motor cortex activation in people 

with CRPS during hand movement.124 However, some authors have reported normal121 or 

reduced corticomotor excitability122 in chronic pain populations, and it is likely that the 

outcomes are influenced by the pain condition or methodological differences among studies. 

Regardless, it seems obvious that ongoing nociceptive input influences cortical motor 

regions. The noted reduction in intracortical inhibition may be particularly important given 

the role of these circuits in cortical plasticity.125  

In addition to these morphological and neural excitability changes, there is evidence of 

adaptations in white matter tracts, glia concentration, and cortical opioid binding potential 

in those with chronic pain. Regional white matter abnormalities, reflecting plasticity of 

connectivity between neuromatrix regions, have recently been shown in people with 

CRPS,89 irritable bowel syndrome,126 spinal cord injury pain,127 and chronic back pain.94 

Similar to the alterations in grey matter, the white matter alterations appear to reflect 
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anatomically specific adaptations rather than a global reduction or increase in connectivity. 

Other studies have shown reduced opioid binding potential in several cortical neuromatrix 

regions. These have included people with fibromyalgia,128 rheumatoid arthritis,129 and 

stroke,130 although the precise locations involved appear to differ among population groups. 

These studies raise the possibility that chronic activation of receptors by endogenous 

opioids in long-term pain conditions leads to a down regulation of receptor availability. 

Finally, a recent magnetic resonance spectroscopy study showed greater concentration of 

metabolites related to glial markers in the anterior cingulate cortex of people with severe 

neuropathic pain following spinal cord injury.99 This alteration was not present in those with 

spinal cord injury without pain or with less severe pain, and provides evidence that 

proliferation of glia and glial activation within the cortex may contribute to the maintenance 

of neuropathic pain. 

E. Summary 

These examples of plasticity show the many levels within the nociceptive system that can 

adapt in response to ongoing stimulation of the system. The time-course of these events 

can be remarkably rapid. Windup of dorsal horn neurons takes less than 100 ms to manifest, 

changes in receptor availability and receptive zones can occur within minutes, programmed 

cell death and unmasking of latent connections may be evident within hours, while dorsal 

horn sprouting and other anatomical changes can arise in days.7 Chronic inputs can serve to 

reinforce this plasticity, contributing to an ongoing cycle of pain and adaptation. Importantly, 

such adaptation should not be looked at in isolation. Plasticity in the periphery, dorsal horn, 

supraspinal regions, and in glia is inter-related and reflects the complexity and marked 

interaction of the nociceptive system across many levels. 
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IV. CLINICAL PRESENTATIONS OF NEURAL PLASTICITY IN CHRONIC PAIN 

Classic findings in people with chronic pain are an increased response to noxious stimuli at 

the site of injury (primary hyperalgesia) and at neighbouring regions (secondary 

hyperalgesia), a pain response to harmless stimuli that would not normally be painful 

(allodynia), and the presence of spontaneous innocuous (parathesia) and unpleasant 

(dysesthesia) sensations. Disturbances in additional sensory and perceptual systems as well 

as motor symptoms are also common presentations in chronic pain. The following section 

presents some of the possible underlying neural mechanisms associated with these signs 

and symptoms based on the descriptions of plasticity provided above.  

A. Spontaneous pain and phantom pain 

Spontaneous pain is common following nerve damage and is commonly described as 

shooting, burning, or stabbing sensations. Ectopic discharge from damaged neurons or 

neuromata provide a source of nociceptive input to the spinal cord dorsal horn. If this input 

is sufficient to activate second order neurons, an ascending signal will be sent to the 

neuromatrix and may lead to pain being experienced. Spontaneous pain arising solely from 

ectopic discharge can be blocked by anaesthesia of the nerve, so it is relatively simple to 

determine if this is the sole contributor to spontaneous pain sensations. Since sympathetic 

discharge and circulating catecholamines can facilitate ectopic discharge from damaged 

axons or neuromata, people with chronic pain may report greater spontaneous pain 

sensations when under emotional stress. 

Cortical plasticity may also underlie spontaneous and phantom pain. Reorganisation within 

the primary somatosensory101,102,131 and motor103,104 cortices has been associated with the 

magnitude of reported phantom limb pain. While some report that these representational 
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shifts are not present in congenital amputation or those without phantom limb pain,102 

others have provided evidence of reorganisation in amputees who do not experience 

pain.132 It is known that deafferentation or amputation itself can lead to sensory and motor 

cortical plasticity.132,133 Thus, alterations in cortical sensory and motor map representations 

do not necessarily give rise to phantom pain in amputees, but may contribute to its 

maintenance. People with phantom limb pain appear to have disordered motor control of 

the phantom limb compared to those without pain, and it is speculated that an inability to 

move the phantom limb and generate afferent feedback to the sensory cortex may 

contribute to this pain.134 

B. Allodynia 

Allodynia is the perception of pain in response to a non-noxious stimulus. It is commonly 

assessed using brush, touch, thermal, or vibration stimuli and is a frequent symptom in 

chronic pain conditions such as CRPS135 and whiplash.136,137 According to international 

criteria, the term allodynia must only be used when it is certain that the stimulus does not 

activate nociceptors, and therefore it is primarily associated with Aβ fibre activation. 

Evidence for the involvement of Aβ fibres is provided by the rapid activation of cortical 

regions following application of allodynic stimuli, which is consistent with involvement of 

fast conducting axons.138 

Allodynia can arise through several of the mechanisms described in the preceding section. 

This includes sensitisation of WDR neurons and subsequent increased responsiveness to 

non-noxious input, ephaptic discharge between Aβ and nociceptive fibres, invasion of Aβ 

fibres into the superficial laminae of the dorsal horn, activation of latent interneurons from 

deep to superficial dorsal horn laminae, and release of substance P by Aβ fibres. While 
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evidence for the occurrence of these processes is difficult to provide in man, there is 

substantial evidence of such plasticity in animal work described in the preceding section.  

In humans, cortical imaging studies have perhaps provided the best evidence of altered 

neural processing in allodynia. Several studies undertaken with neuropathic pain patients 

have shown cortical activation networks in allodynia that are different from that seen during 

the presentation of equivalent, non-painful stimuli or during nociceptive pain.139-142 

Maihöfner and colleagues143 also have shown altered neuromatrix activation during skin 

brushing in healthy people who have been given experimentally induced allodynia. Thus, the 

experience of allodynia clearly arises through altered processing of non-noxious input. 

While not all of the clinical studies elicited common activation networks, in general there is 

evidence of a larger extent of cortical activation during allodynia and a shift to more lateral 

or sensory-dominant neuromatrix regions. 

C. Hyperalgesia 

Consistently, people with chronic pain have reduced pain thresholds, or, for a given 

intensity of noxious stimulation, will report a higher pain rating. Localised reductions in 

threshold that are specific to the area of tissue injury or pathology are common. For 

example, significantly reduced pain thresholds in local pain areas have been reported in 

fibromyalgia,144,145 whiplash,146,147 visceral pain syndromes,75,148 low back pain,149 arthritis,66 

and headache.150 This hyperalgesia could reflect peripheral sensitisation of the nociceptors, 

localised central sensitisation within the dorsal horn, or sensitisation of cortical regions.  

The clinical detection and differentiation of peripheral and central sensitisation can be 

challenging, but surprisingly detailed conclusions can be made on the basis of routine 

sensory examinations and slightly more sophisticated quantitative sensory testing 
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procedures. Evidence that the threshold for eliciting the lower limb nociceptive flexion 

reflex is reduced in people with chronic whiplash and fibromyalgia151 shows that there is a 

definite spinal level adaptation in these conditions as the flexion reflex is not dependent on 

subjective pain report. If reductions in pain threshold can be ameliorated or eliminated by 

local anaesthesia, then it is likely that sensitisation is at least partly mediated by a short-

term mechanism that is sustained by peripheral nociceptive. If sensitisation or hyperalgesia 

is not abolished through peripheral analgesia, it is indicative of central structural alterations 

or changes in neurotransmitter or receptor types. Sprouting of nociceptor terminals, 

opening of dorsal horn latent connections, reduced glycinergic or GABAergic inhibition of 

second order dorsal horn neurons, switches from inhibitory to excitatory transmission, shifts 

in the balance of descending regulation, and reduced responsiveness to endogenous opioids 

can all contribute to central sensitisation and localised hyperalgesia.  

There is also evidence of cortical plasticity associated with hyperalgesia. The intensity of 

current or ongoing pain has been correlated with primary somatosensory cortex 

reorganisation in CRPS,107,110 spinal cord injury,111 and phantom limb pain.152 Others have 

reported that cortical metabolite concentrations98,99 and the extent of atrophy of the 

insula89 correlate with pain intensity. Stronger evidence of a relationship between pain and 

cortical plasticity has been shown in a few longitudinal studies. Functional connectivity 

involving the primary sensorimotor cortex was modulated in healthy individuals during 

sustained (6 minutes) experimental pain, with a shift towards a salience network evident.153 

Additionally, Birbaumer and colleagues105 found that an anaesthetic block both reduced the 

extent of phantom limb pain and gave rise to a normalisation of primary somatosensory 

cortex representation in amputees. The somatosensory cortex was unchanged in those who 
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did not experience analgesia. Reorganisation within the primary somatosensory cortex also 

has shown to be reversed in people with CRPS coincident with clinical improvement,109 

while brain metabolite concentrations of glutamate and NAA increased with treatment in 

people with visceral pain.100 In the latter study, the reduction in clinical pain correlated with 

changes in metabolite concentration. Thus, it is likely that these cortical adaptations reflect 

neural plasticity in response to the ongoing nociceptive signals, but they may serve to 

maintain or facilitate pain over time. 

The knowledge that a history of pain,154-156 multiple sites of pain,157-159 and prior trauma160 

are predictors of the development and impact of chronic pain following injury suggests that 

some individuals may be more susceptible to central sensitisation and hyperalgesia. Their 

baseline nociceptive system is likely to be in a state that is more likely to lead to persistent 

plasticity and transform an innocuous event into a chronic problem.  

D. Windup 

Windup is an exaggerated pain response following repeated, high frequency nociceptor 

activation. It is evident clinically as rapidly increasing pain during application of repetitive 

noxious stimuli and serves as a biomarker of central sensitisation. High frequency 

nociceptive input induces temporal summation in WDR dorsal horn neurons, the perceptual 

correlate of windup, and the presence of an exaggerated response indicates that 

sensitisation of the WDR neurons has taken place. Indeed, the temporal summation 

response is a more sensitive indicator of central sensitisation than the response to a single 

noxious stimulus.66,144  

Evidence of a relationship between peripheral tissue damage and an enhanced windup 

response is provided by a study that induced delayed onset muscle soreness in healthy 
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individuals.161 Following the induction of muscle soreness, temporal summation threshold 

was significantly reduced in the painful muscle. This suggests that sensitisation of WDR 

neurons contributed to the induced muscle hyperalgesia. Clinically, enhanced susceptibility 

to temporal summation means that persistent, minor nociceptive input from the periphery 

can lead to the perception of pain when it would normally remain subthreshold. The 

relevance of windup and temporal summation for chronic pain conditions is further evident 

in that the duration of pain symptoms has been correlated with temporal summation 

threshold in people with osteoarthritis.66  

E. Referred sensations  

Referred sensations are those that arise from areas distant to a primary location receiving 

noxious stimulation. Referred sensations are commonly reported in people with CRPS,135,162 

phantom limb pain,102,163 facial pain,163 whiplash,164 spinal cord injury,165 and 

fibromyalgia.166 During experimentally induced pain in healthy volunteers, referred pain is 

usually felt distal to the primary site, but it is often reported to spread proximally in some 

people with chronic pain. The referred sensations can match the modality of the primary 

stimulation but also may be different and can be both painful and non-painful.152 Referred 

sensations are normally present with a slight time delay (20-40 s) from the primary 

stimulation.167 

Referred sensations have been reported to be more common in people with complete 

spinal cord injury with neuropathic pain compared to those without pain165 and in amputees 

with phantom limb pain compared to those without.102 Because of this association with 

neuropathic pain, it is likely that referred sensations are related to neural plasticity. A 

possible mechanism of referred sensation is the spatial summation of noxious afferents 
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from the primary source and non-noxious afferents from the referred area.168 The use of 

anaesthetic blocks has shown that input from the primary source of pain is required for 

referred sensations to be felt.169 While some studies have shown that referred muscle pain 

persists after anaesthetising peripheral nerves innervating the referred area,170 others have 

shown a reduction in pain intensity when large afferents are blocked.168,171 This suggests 

that afferent input from the referred area is not necessary for referred sensations to 

develop but may serve to enhance those that are experienced. Since ongoing stimulation is 

required to elicit referred sensations in healthy people and there is a time delay between 

the primary and referred sensation, it is probable that central sensitisation of dorsal horn 

neurons is required. A sensitised dorsal horn may open the normally latent connections 

from nociceptors mediating pain from the primary area, activating secondary neurons that 

normally receive input from the referred pain area.164 

Interestingly, the number or extent of referred sensations elicited by painful stimuli has 

been correlated with the extent of primary somatosensory cortex reorganisation in people 

with phantom limb pain,131,152,172 suggesting a possible cortical contribution. Referred 

sensations from non-noxious stimuli were also present in the same individuals and have 

previously been reported in people with subcortical stroke who do not have ongoing pain;173 

however, the extent of cortical reorganisation was only correlated with sensations arising 

from painful stimuli.131,152,172 Therefore, while referred sensations from non-noxious stimuli 

may be a manifestation of more general cortical sensorimotor reorganisation, there appears 

to be a relationship between primary somatosensory cortex plasticity, nociceptive 

processing, and referred pain.  
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F. Widespread pain 

Many studies in people with regional chronic pain conditions have shown that pain 

thresholds are also reduced at remote, non-painful body regions.66,67,78,137,174-178 Widespread 

hyperalgesia is more severe when present across a number of stimulus modalities and 

locations,179 in people with longer term duration of pain,174,178 and in people with more 

intense pain.66,78,180,181 This widespread hyperalgesia cannot be accounted for by peripheral 

sensitisation as there is no damage or inflammation at the local site; therefore, it must be 

due to hypersensitivity in the central nervous system.  

A potential mechanism of this diffuse central sensitisation is the activation of 

intersegmental propriospinal interneurons that provide a link between second order 

neurons in the dorsal horn. An intersegmental mechanism is favoured as the spread of 

hyperalgesia does not follow dermatomal patterns. Indirect evidence of this has been 

provided by several studies examining the spread of experimentally-induced pain in chronic 

pain populations. Following the injection of hypertonic saline into specific muscles, a diffuse 

spread of pain has been reported in people with osteoarthritis,166,182 fibromyalgia,183 

whiplash,184 and chronic low back pain.149 Compared to healthy controls, the spread of pain 

was greater, lasted longer, and was more intense in the chronic pain populations. In some 

cases, pain spread to other segments of the limb or to the contralateral side. The fact that 

ketamine, an NMDA receptor antagonist, can block the spread of pain185 also points to a 

central sensitisation process involving a change in glutamate receptor availability in the 

dorsal horn. The substantial evidence that people with a longer duration of pain and more 

intense current pain are more likely to show widespread pain suggests it may take some 

time for sensitisation to spread. Ongoing peripheral input is likely to drive this plasticity at 

central regions. Indeed, evidence for the reversibility of widespread sensitisation with 
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changes in nociceptor input has been provided by Graven-Nielsen and colleagues,78 who 

showed that pain thresholds at multiple sites increased following knee joint replacement in 

people with osteoarthritis. At least for this pathological entity, maintenance of central 

hypersensitivity seems to be reliant on peripheral input. 

Alternative possible spinal cord mechanisms contributing to widespread pain are the 

opening of latent synaptic connections to WDR neurons with ongoing input, similar to the 

mechanism for referred pain, or the diffusion of substance P within the spinal cord dorsal 

horn, leading to a spread of activation of WDR neurons.186 At a supraspinal level, an 

imbalance in descending inhibition and facilitation may lead to a widespread increase in the 

excitability of dorsal horn neurons. For example, descending facilitation from the RVM 

would contribute to secondary hyperalgesia as it can impact at multiple spinal segments,56 

while blocking descending inhibition can increase the number of receptive fields of dorsal 

horn cells.186 Glial cell connections also may play a role given their extensive and rapid 

potential for activation. Any change in connectivity driven by persistent local inflammation 

may facilitate the sensitising effect of glia at other segmental locations. Finally, if the 

concentration of the prostaglandin forming enzyme COX-2 is elevated centrally following 

persistent inflammation, it will facilitate widespread production of prostaglandins in the 

dorsal horn, which will contribute to sensitisation of dorsal horn neurons at multiple levels. 

Of note, elevated levels of substance P, CGRP, and excitatory amino acids have been found 

in the cerebrospinal fluid of people with fibromyalgia187,188 and CRPS.189 

G. Sensory disturbances 

Impairments in other sensory modalities are frequently reported in long term pain 

conditions. For example, in people with CRPS, reduced tactile108-110 and touch thresholds,178 
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reduced awareness of limb position,190 dysgraphesia,135 body perception disturbances,135,190 

and neglect191 have been reported. Similar findings are evident in other chronic pain 

populations. Decreased kinaesthesia, altered body perception, reduced acuity, or 

dysgraphesia have been reported in chronic low back pain patients192-194 and people with 

repetitive strain injury,195 and hypoesthesia to multiple stimulus modalities is common in 

chronic whiplash.137 Additionally, telescoping, or the perception of shrinking and retraction 

of the phantom limb towards the residual limb, is often present in amputees196 but appears 

to be more prevalent in those with phantom limb pain than those without pain.102 The 

finding in two studies that abnormal sensory function in people with CRPS correlates with 

pain severity110,197 and that reduced joint position sense in whiplash is greater in those with 

higher levels of pain198 provides evidence of a relationship between these sensory 

disturbances and the nociceptive system.  

Alterations in somatosensory cortex representation are perhaps most likely to contribute to 

the reported features of reduced sensory acuity and impaired body perception disturbance. 

Tactile threshold is often normal in such populations192,194 even though the ability to use this 

information is impaired, and there is often no evidence of peripheral tissue damage or 

sensory deficits are present in areas remote from tissue damage. Therefore, impaired 

sensory function is likely to be of central origin. Some evidence for this is that two-point 

discrimination ability was shown to be related to the amount of primary somatosensory 

cortex reorganisation in people with CRPS.110 Reorganisation of the primary somatosensory 

cortex in phantom limb pain has also been associated with increased, non-painful stump 

sensations.131  
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An altered primary somatosensory cortex representation is also likely to increase difficulty 

in recognising body image. Studies involving people with chronic unilateral pain conditions 

have consistently indicated laterality recognition impairments compared to healthy 

individuals. Laterality testing involves assessing the person’s ability to identify the laterality, 

or side, of a visually presented body limb, most commonly a hand or foot. Such testing has 

shown that identification of the painful side is slower in populations with CRPS,199 phantom 

limb pain,200 and low back pain.201 This provides some evidence of a disordered working 

body schema in these populations and a reduced ability to correctly and rapidly identify 

body parts. Recent research in both experimental and chronic pain has revealed that visually 

manipulating body perception of the painful body part can provide pain relief,202-204 

although the hyper- and an-algesic effects of enlargement and shrinking were not consistent 

across these studies. Still, they provide further evidence of a strong link between body 

perception and pain. 

While cortical reorganisation may be large contributor to sensory disturbances, it is likely 

that spinal level plasticity initiated such alterations. Expanded and overlapping fields of WDR 

neurons that occur when sensitised are likely to alter the ascending input to the primary 

somatosensory cortex and drive the reorganisation occurring at this level.   

H. Impaired motor control 

Impairments in various aspects of motor control are routinely reported in chronic pain 

conditions. Indeed, the presence of motor signs and symptoms forms part of the diagnostic 

criteria for CRPS,205 with altered range of motion, tremor, weakness, dystonia, and 

discoordination commonly evident.206 In people with chronic low back pain, there have 

been reports of altered postural muscle activation113,207,208 and disturbances in 
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postural193,209 and balance210 tasks. Additionally, reduced muscle strength, impaired timing 

of muscle activation, and reduced range of motion are routinely present in people with 

whiplash.198 

Although motor impairments are common in a variety of chronic pain conditions, why they 

arise and how they are maintained is currently undetermined. A circular argument exists as 

to whether ongoing nociceptive input drives plasticity in the motor system and causes 

movement impairments, or impaired motor function contributes to activation of the 

nociceptive system and increases pain. Indeed, there have been many theories proposed211-

213 to account for the relationship between pain and motor dysfunction in people with 

painful musculoskeletal conditions, none of which completely explain symptoms in chronic 

neuropathic pain. It is likely that it is a highly complex relationship that may not be uniform 

among pain conditions. 

A large amount of evidence was provided in the preceding chapter of plasticity in motor 

cortex representation and excitability in chronic pain conditions, and it is likely that this 

central, motor cortical reorganisation is associated with movement impairments. An fMRI 

study showed that motor dysfunction in a reach-to-grasp task performed by people with 

CRPS was related to increased primary motor cortex and supplementary motor area 

activation during hand movement, with the amount of dysfunction correlated with 

activation in these regions.124 In a further study, the location and volume of trunk muscle 

representation in the primary motor cortex was associated with deficits in postural control 

in people with chronic back pain.113 The extent of motor reorganisation was correlated with 

the delayed onset of muscle activity during rapid arm movements. Thus, these studies 
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provide some evidence of a relationship between cortical motor plasticity and function 

impairments in people with long-term pain.  

One hypothesis is that this motor cortical reorganisation results in a difficulty integrating 

sensory information and motor output, and that this incongruence may indeed contribute 

to pain.214 It is known that acute experimental pain disrupts motor control,215 causes 

changes in spinal motoneuron216,217 and corticomotor excitability,216,218,219 and degrades 

proprioceptive information.220,221 In the long-term, such alterations, particularly in the 

quality and extent of afferent information, may cause more permanent changes in cortical 

motor representation and lead to sustained impairments in motor function. Plasticity in 

sensory regions may well contribute to motor impairment. Support for the importance of 

sensory information in chronic pain is provided by a study showing that tactile acuity was 

related to impaired motor control in people with low back pain.193 However, the cause and 

effect nature of this finding cannot be determined and the exact reasons for motor 

impairments in chronic pain populations remain challenging to determine. Perhaps the best 

insight will come from studies that have manipulated cortical motor excitability and 

examined the effect on pain and motor function. 

V. MANAGEMENT HARNESSING NEUROPLASTICITY 

While most of the preceding information has shown neuroplastic phenomena that may be 

causing or contributing to the chronic pain experience, it is also possible to take advantage 

of the highly plastic nature of the nervous system to identify appropriate treatment 

strategies and promote restoration of function and management of pain. The remainder of 

this article will focus on three techniques that aim to achieve this.  
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A. Sensory training  

Sensory discrimination training for chronic pain is not new, but developments in imaging 

technology have now provided evidence of neural plasticity in response to such 

interventions and have resulted in refined applications and wider acceptance of its use. 

Through focusing the patient’s attention on sensory information, sensory training aims to 

reverse reorganisation within the somatosensory cortex and reduce pain. Flor and 

colleagues222 were one of the first groups to specifically use sensory discrimination training 

for chronic pain. In this study, people with phantom limb pain were given electrical stimuli 

over their stump and were asked to discriminate the location and frequency of the stimuli. 

As well as improvements in the sensory task, there were marked significant reductions in 

pain and somatosensory cortex reorganisation. Notably, these changes in function, pain, 

and cortical representation were positively correlated. 

Sensory training has since been implemented in other chronic pain populations. In people 

with CRPS, it has been shown to reduce pain,108,223,224 improved sensory acuity,108,223,224 and 

improve function,223 while it was also effective in reducing pain and disability in people with 

chronic low back pain.225 Of note, Pleger and colleagues108 also reported an increased 

spatial representation in the primary and secondary somatosensory cortex in people with 

CRPS following training, suggesting a reversal of cortical reorganisation coincident with 

improved function and reduced pain. The provision of normal, contextual sensory 

information may therefore serve to undo the cortical reorganisation that has occurred and 

restore functional neural connections.  

It seems that focussed attention and functional use of the sensory input is integral to the 

success of sensory discrimination tasks. These factors are likely to prioritise non-noxious 
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afferent input to the spinal cord and supraspinal regions over any on-going nociceptive 

input. In support of this theory, there was no change in sensory performance or sensory 

cortical representation when CRPS patients undertook motor training without a sensory 

discrimination component.108 Additionally, Moseley223 reported that a sensory task involving 

discrimination of clinically relevant sensory stimuli was effective in reducing pain, but just 

receiving the equivalent sensory stimuli without the discrimination component was not 

effective. Visual attention toward the limb during training also appears to be an important 

factor for modulating the magnitude and duration of analgesia.224 

It is known that attention and task complexity enhance neural plasticity during motor 

learning226,227 and it is apparent that this also applies to neuroplastic changes in the sensory 

system during sensory training. Clinically, this would mean that progressively graded 

sensory discrimination training that requires the patient’s attention would be most 

beneficial. Functionally relevant stimuli should be used, potentially with multiple modalities, 

and the training should be individually adapted so that it constantly challenges the ability of 

the patient. Appropriate tasks include two-point spatial discrimination, identification of 

object textures, stimulus localisation identification, and graphethesia training.225 

B. Non-invasive brain stimulation 

Stimulation of the primary motor cortex for the treatment of chronic pain originated in the 

early 1990s using electrodes that were implanted within the cerebral cortex.228,229 Whilst 

effective pain relief was evident, the surgical procedure is highly invasive and comes with 

the associated risks of brain surgery. The development of non-invasive magnetic and 

electrical methods of brain stimulation saw these, far safer, techniques applied in people 

with chronic pain. Repetitive transcranial magnetic stimulation (rTMS) was initially trialled in 
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the 2000s and early results showed that a modest amount of pain relief could be 

achieved.230 More recent studies have made use of transcranial direct current stimulation 

(tDCS), which involves the delivery of current to the brain through electrodes placed over 

the scalp.  

Approximately 20 randomised controlled trials have examined the effect of non-invasive 

brain stimulation in neuropathic pain populations.231,232 The overwhelming majority of these 

have shown significant reductions in pain and often improvements in function or quality of 

life,233,234 clearly demonstrating the clinical potential of non-invasive brain stimulation. A 

recent meta-analysis revealed an effect size on pain of approximately 1.5 for tDCS applied to 

chronic pain populations,232 which is a clinically important effect. It is noteworthy that the 

majority of participants involved in these studies are drug-resistant patients who have not 

responded to other treatment methods.  

Both rTMS and tDCS can induce alterations in cortical excitability that outlast the period of 

stimulation.235-237 This lasting effect has important implications as it indicates the 

development of plasticity within intracortical structures. The excitatory effects of high 

frequency rTMS appear to arise through a long-term potentiation-like process subsequent 

to the development of cortical disinhibition.238-241 tDCS acts by modifying the 

transmembrane neuronal potential,242 influencing the level of resting excitability of 

individual neurons, and it is speculated that the lasting effects of stimulation are mediated 

via increased activation of NMDA channels.243 Importantly, the effects of motor cortex 

stimulation are not restricted to the area receiving stimulation; the function of distant sites 

also can be modulated through neuronal network connections.244  
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Exactly how motor cortex brain stimulation elicits its analgesic effects remains a mystery. It 

may act through direct connections from the primary motor cortex to the thalamus and 

primary somatosensory cortex. When applied to people with chronic pain, the analgesic 

effects of rTMS have been associated with normalisation of intracortical excitability,120,245 

which suggests that the mechanism of action may be related to changes in intracortical 

modulation. The high connectivity between the primary motor cortex, thalamus, and 

somatosensory cortex could mean that this modulation of intracortical motor circuits 

subsequently alters the processing of nociceptive input at these two locations. This 

mechanism would dictate that the sensory component of pain would primarily be 

influenced. There is, however, evidence that primary motor cortex stimulation has at least 

as great an effect on the affective aspect of pain.233,245 Alternatively, motor cortical 

polarisation could give rise to indirect activation of brainstem inhibitory pathways via 

connections from the motor cortex to other areas of the brain. Altered activation in the 

anterior cingulate cortex, insula, orbitofrontal regions, and brainstem has been documented 

following motor cortex stimulation,246-249 providing some evidence for this mechanism. It is 

also been shown that opioids meditate at least part of the analgesic response,250 and it is 

known that these brain areas have a high density of opioid receptors. Therefore, primary 

motor cortex stimulation may instigate opioid release that subsequently initiates activity in 

these limbic regions. In healthy individuals, direct stimulation over the dorsal lateral 

prefrontal cortex increases pain tolerance, suggesting that altered activation of this cortical 

area can modulate the affective experience of pain.250,251  

Both rTMS and tDCS are commonly used forms of brain stimulation, but tDCS is a clinically 

more practical and cheaper option. Indeed, programmable take-home versions of tDCS units 
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are now commercially available. The most frequently used stimulation parameters are 

anodal electrical or high frequency magnetic stimulation applied over the primary motor 

cortex representation. Optimal results appear to be seen with 5 consecutive days of 

stimulation. There is some evidence that this can provide significant pain relief for up to 3 

weeks233,234,252,253 but it is likely that the duration of this would be enhanced if further 

stimulation was provided. In support of this, Mhalla et al.245 demonstrated that the 

cumulative effect of a tapered rTMS protocol gave rise to pain relief for up to 6 months. 

Given the proposed mechanisms of action, some consideration of the location of application 

is warranted; stimulation over pre-frontal regions may be indicated for those who are not 

responsive to primary motor cortex stimulation. 

C. Mechanisms-based treatment approach 

As outlined in the previous sections, chronic pain may be associated with a multitude of 

neuroplastic changes at a number of different levels of the nervous system. Even within the 

same pain condition, there is a large degree of variability in the clinical presentation of pain-

related signs and symptoms.254-258 This is thought to reflect individual differences in the 

neuroplastic changes that drive the chronic pain experience for one person compared to 

another. Conversely, the type of pain treatment an individual receives is usually based on 

their diagnosed pain condition and the clinical experience of the treating health professional. 

In recent years, personalised treatment using a mechanisms-based approach has been 

advocated for chronic pain.259 Under this approach, symptom profiling and quantitative 

sensory testing are used in an attempt to delineate the specific neuroplastic changes 

underlying an individual’s pain experience and/or identify potential responders from a 

group of individuals prescribed the same treatment.  
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There are many examples that individuals who demonstrate marked allodynia and 

hyperalgesia with quantitative sensory testing may respond better to medications that 

reduce neuronal hyperexcitability. In people with neuropathic pain due to spinal cord injury, 

the systemic infusion of lamatrogine was more effective in those with brush allodynia and 

wind-up to punctuate mechanical input.260 Similarly, people with neuropathic pain who 

reported mechanical allodynia had a significantly greater reduction in ongoing pain with 

intravenous lidocaine infusion compared to those without allodynia.261 In individuals with 

HIV induced neuropathic pain, pregabalin did not significantly reduce pain compared to 

placebo;262 however, there was a reduction in pain in a subgroup with strong hyperalgesia 

to punctuate mechanical input. Finally, in a recent study of people with chronic pancreatic 

pain,263 pregabalin was found to be most effective in individuals with localised 

hypersensitivity to electrical stimulation over the upper abdomen when compared to a 

control site. Localised electrical hypersensitivity at baseline was able to predict the pain 

relieving effects of pregabalin with a classification accuracy of 84%.  

Further studies in people with painful diabetic neuropathy have shown that assessment of 

the nociceptive system can predict individual responses to specific analgesic medication. 

Campbell et al.264 categorised patients according to their response to capsaicin prior to 

undergoing treatment with topical clonidine gel or a placebo. It was hypothesised that a 

strong capsaicin response would indicate hypersensitive TRPV-1 (non-selective cation 

channel activated by noxious heat and chemical compounds) cutaneous nociceptors, a 

potential therapeutic target for clonidine. In people who failed to respond to capsaicin, 

clonidine was found to be ineffective compared to placebo. However, those who had a 

painful response to capsaicin showed a significant reduction in ongoing neuropathic pain 
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with clonidine compared to placebo. Yarnitsky et al.265 found that quantitative sensory 

testing of endogenous pain inhibitory pathways was able to predict the pain-relieving 

effects of duloxetine, a monoamine reuptake inhibitor. Individuals with less effective 

conditioned pain modulation at baseline had a greater reduction in pain, a response that is 

to be expected as conditioned pain modulation is largely determined by descending 

inhibition from brainstem monoamine pathways. In addition, the treatment-induced 

improvement in conditioned pain modulation was found to be correlated with medication 

efficacy.  

The observations above support the premise of a mechanisms-based approach to 

pharmacological management of chronic pain. By relating individual sensory profiles to 

specific neuroplastic changes that occur in the nociceptive system, it is hoped that 

individuals may receive more targeted interventions. In turn, this may achieve better 

therapeutic efficacy while limiting exposure to ineffective treatments and their associated 

side effects. While there is still a long way to go until such an approach becomes common 

practice, the evidence presented above suggests that this is a rational approach that holds 

considerable promise for the future treatment of chronic pain. 
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