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ABSTRACT The fifth generation (5G) mobile communication adopted the usage of Millimeter Wave
(mmWave) bands to ignite prospects of gigabit data rates in mobile networks. However, mmWave propaga-
tion is highly susceptible to competing factors of user and topographic dynamics: they formulate irregular
cell patterns. The irregularities in mmWave cell patterns cause unreliable connectivity and can instigate
unnecessary Handoffs (HOs). This behavior ultimately increases the risk of 5G link failures. To improve
mmWave link connectivity hence guarantee continuous connectivity in 5Gmobile communication, this paper
proposes a HO scheme that predicts target link deterioration patterns to select the most reliable mmWave link
for a mobile user. The scheme is based on Game Theory (GT) and Jump Markov Linear Systems (JMLS).
JMLSs are known to account for abrupt/erratic changes in system dynamic predictions. We amalgamate GT
with JMLS capability to predict target mmWave link pattern/behavior after the HO execution. Specifically,
given channel gain and received power variation over distance, the GT-JMLS HO scheme predicts the
sustainability of the signal-interference-noise ratio (SINR) pattern of a target link above threshold. This is
paramount to reducing the selection of mmWave links that prematurely fail or require multiple HOs to sustain
connectivity over a short distance or period. Our simulation results show that our proposed HO scheme offers
target links with higher: throughput, energy efficiency, reliability, and longer dwell time between HOs than
classical HO schemes.

INDEX TERMS Millimeter wave (mmWave), handover (HO), received power, game theory, jump Markov
linear systems, 5G.

I. INTRODUCTION
The millimeter wave (mmWave) bands (30–300 GHz) hold
great prospects of offering gigabit data rates in mobile
networks, particularly in the fifth generation (5G) mobile
networks and beyond. However, their sensitivity to con-
crete, water, street infrastructure, humans, among other things
degrades their prospects of deployment in mobile network-
ing. For instance, mmWave path loss is around 20–25 dB
greater than that in microwave. Received power between line
of sight (LOS) and non-line of sight (NLOS) is also known
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to hugely degrade in orders of 30 dB. Further, materials
such as brick/mortar, attenuate mmWave signals by as much
as 40–80 dB. Human bodies also cause losses of 20–35dB.
Further, the doppler effects can be over 3 kHz (e.g., at 60 km/h
for 60 GHz bands) with channels changing in orders of
hundreds per microsecond faster than microwaves [1]. Thus,
in mmWave communication, unlike microwave, several per-
formance deteriorating factors co-exist in competition. This
mmWave propagation behavior significantly degrades net-
work reliability in 5G. Particularly at system level, mmWave
sensitivity to usermobility and topographic dynamics induces
too early, unnecessary or too late Handoffs [2]. To therefore
enhance mmWave link connectivity hence reliability in 5G

116410

 2023 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 11, 2023

https://orcid.org/0000-0003-4839-905X
https://orcid.org/0000-0003-3993-1120
https://orcid.org/0000-0002-5375-8961
https://orcid.org/0000-0002-4065-2906


M. Chiputa et al.: Pattern Based Mobility Management in 5G Networks

mobile communication and, meet the desired data rate for
mobile users, several mitigation measures for mobility man-
agement have been studied and proposed. These include the
use of statistical, artificial intelligence (AI) [3] and game
theory (GT) techniques in Handoff (HO) schemes [4]. Oth-
ers include the use of dual connectivity (DC) model, with
the interoperability of the LTE and mmWave protocol [5].
However, the challenges with most of the HO techniques
is that they do not always predict nor consider the coex-
istence/competing effects of user and topographic network
performance deterioration factors. This leads to inaccurate
selection of the target cells, waste of transmission power,
link failure and huge system overhead. Ultimately, ineffective
handling of mmWave reduces in 5G can increase overhead,
and cause too early, late, or incorrect HOs.

To thus be more viable and ensure 5G mobile network
connectivity is continuous, we propose an augmented use
of the Jump Markov Linear Systems (JMLS) modeling and
Game Theory to predict the long-term deterioration pattern
of target links. Our proposed HO scheme ultimately selects
target links that sustain mmWave connectivity longer than the
rest. JMLS modelling is known to account for both gradual
and abrupt changes [6]. We use this JMLS capability in the
5G network to learn to predict the mmWave target link’s
abrupt and gradual deterioration pattern and vulnerability
prior to executing a HO. Technically, given the deterioration
power pattern by JMLS, we trade off channel gain and power
effects on signal-interference-noise ratio (SINR) values in
both LoS and NLoS to improve target link behavior predic-
tions. Simulation results show that our proposed scheme can
achieve higher throughput averaging over 20% than any other
scheme. Additionally, the scheme can select more reliable
target links with longer connectivity time between HOs.

A. CONTRIBUTIONS
• We propose a GT-JMLS based HO model with the link
selection criteria considering not just the initial perfor-
mance of a target link after HO but also the long-term
behavior between HO. The scheme predicts the likely
abrupt and gradual changes on the target link as the user
moves. This helps assess the target link’s ability to not
just meet the desired QoS but sustain connectivity before
another HO.

• We propose a HO scheme that learns to predict the
deterioration performance pattern of a link prior to HO.
In this regard, we amalgamate the learning capability of
JMLS and GT.

• We explore the effects of relying on received power
and channel gain when selecting target links in HOs.
The concept explores the tradeoffs between the channel
gain and the power requirements in meeting the desired
SINR in both NLOS and LOS scenarios. This is vital for
link connectivity survival in vulnerable situations, e.g.,
NLOS scenarios. It is also vital to minimize HOs where
the LOS obstruction is temporal.

• We study different user types and their respective effects
on network performance. We study the impact of each
user type behavior on the network performance and
target link deterioration pattern.

B. RELATED WORKS
Considering multiple coexisting and competing mmWave
link deteriorating factors as described earlier, various HO
schemes based on tradeoffs and machine learning techniques
including GT and artificial Intelligence (AI) have been pro-
posed for 5G mobile networks [6]. In [7], for instance,
a tradeoff between high mmWave Base Station (mm-BS)
spatial density is done against limited front and backhaul
capacity. A decentralized user-centric game theoretic energy
efficiencyHO system is proposed in [8] tominimize backhaul
load and increase mm-BS spatial density. Another classic
game theory concept in [3] is used to make interactive
decision-making policies for energy and bandwidth resource
optimization. The challenge however in 5G mmWave net-
works is that they are a lot of competing factors to be traded
off against. Unlike the classical game theory concepts in
previous generation networks, different groups/players face
dynamic performance deteriorating factors requiring differ-
ent QoS analyses at different times/place [9]. For instance,
topographic effects may have higher priority in one area than
user mobility effects in determining the selection of target
links. However, the HO trade off parameters may ignore
the impact of topographic effects or vice-versa at the time
when it is needed. To that effect, current classical games with
prechosen tradeoff factors like in [4], [8], [9], [10], and [11]
may not always yield desirable results and inevitably may
cause too early/late or wasteful Hos leading to link failures
in 5G.

On the other hand, multiple computing techniques have
been amalgamated to get better results and overcome the
shortfalls of learning concepts for 5G mobile connectivity.
For instance, Deep Reinforcement Learning (DRL) tech-
niques have been used to simultaneously learn co-existing
effects of network load and user speed in 5G networks. One
such example is the simultaneous deployment and tradeoff
of Mobility Robust Optimization (MRO) [13] and Mobility
Load Balancing (MLB) techniques in 5G mobility manage-
ment in [12]. Authors in [14] use deep Q-learning for tradeoff
offloading and selecting optimal edge links. The challenge,
however, compared to game theory is that DRL requires
thousands of samples to learn useful policies. Additionally,
DRL is terribly unstable where there is a large source of
local channel variances e.g., as exhibited in mmWave [2].
In a short term, most DRL-based HO policies pose huge 5G
connectivity inconsistences. Therefore, they fail to warrant
longer connectivity time. To warrant better useful policies
within a short training time, studies in [15], [17], [18], [20],
[21], and [22] incorporate RL with JMLS and GT tech-
niques. In [21] the particle-filter-based RL is incorporated to
predict a finite number of disturbances and states within a
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randomly chosen sample of trajectories. The author in [22]
amalgamates JMLS formulation into game theory concepts
to tackle distributed decision-making scenarios. All these
concepts aim to improve GT and DRL performance. We thus
expound on game theory with JMLS concepts to robustly
expediate the analysis of deterioration predictions in 5G links
and guarantee stability in HOs.

II. PROPOSED MODEL
To find reliable target links during HOs in 5G networks for a
diverse user, we consider the mmWave target link deteriora-
tion behavior/pattern for three types of users including cars,
pedestrians, and cyclists. For a given velocity of a user type,
channel coherence time is linear with carrier frequency and
velocity [1]. Thus, given the channel state for each user type,
and to sustain SINR above a given threshold, we first learn
to predict the mmWave received power deterioration pattern
at the user after a HO. We use JMLS modelling to model the
pattern. Due to limited and sometimes fast changing channel
state information (CSI), the initial values of the deteriora-
tion pattern are inferred using Expected Maximization (EM)
algorithm. However, EM is intractable in instances where CSI
changes are drastic [6]. Thus,it is important to understand the
rapid fluctuation and intermittent connectivity in mmWave
networks [4]. Particularly to understand, anticipate and cope
with the dynamics of rapid mmWave target link deteriora-
tion behavior, we augment EM inference with mean field
approximation [2]. Here no single set of players’ CSI is used
to predict the global optimum deterioration path expected
on target links. Instead, the aggregative behavior of all user
types predicts the payoff(s); hence, the pattern of the target
link deterioration is likely to take. We trade off the effects of
channel gain against energy cost (received power) in LOS and
NLOS to optimize the EM’s initial estimations and find the
likely target links that will consistentlymeet the desired SINR
after HOs. Technically, we incorporate deterioration predic-
tion samples initiated by EM into a game value function. This
used as initial experience by mean field games to optimize
the target link received power pattern prediction during HO
selection. Understanding the behavior of the received power
pattern and hence limits, for instance, in NLOS reveals a
wealth of information about the underlying SINR distribution
as usersmoves towards/away from serving cells. For instance,
as a HO problem in our scheme, we are given n possible
values of received powers, x1, . . . , xn, over a given range
of transmission states, s1, . . . , sn, by JMLS-GM algorithm.
The values from the JMLS-GM training are then used as
set values required by the target link to, at least, meet the
threshold of the desired SINR/data rate with a certain level
of energy efficiency (reward r). During HO, the goal is to
find a target link that can simultaneously satisfy, x1, . . . , xn,
and corresponding SINR over n states, i.e., s1, . . . , sn. Partic-
ularly, at HO, the scheme looks at how each user’s potential
received power pattern for a specific/individual target link
over a given transmission range given s1, . . . , sn will deviate
from the optimal global optimal pattern x1, . . . , xn. The level

FIGURE 1. Multiuser-mobility model.

of deviation of a target link’s expected deterioration pattern
determines its reliability after HO for a given number of
states.

A. MANHATTAN GRID MOBILITY MODEL
A Manhattan grid model [12] is used to model the road
network with streets and intersections in an urban scenario as
shown in Fig. 1. The network area is 100m x 50m. We have
three types of users: pedestrians, cyclists, and cars totaling
200. A third of the total number of users are pedestrians with
speeds of 1.4m/s. Another third are cyclists with velocities
between 7 and 8m/s. The other third are car users with average
velocities of between 10 and 14m/s. Cars in the range of
3m or less to each other adjust their velocities by between
1 and 3m/s to avoid collision. Car velocities are updated
every 3s to decrease/increase. Each street consists of right
and left lanes for each user-type. Given user directions, i.e.,
y, the probability, Py, of delay or slowing at the crossing
is [13] and [15]

Py =
1
k

k∑
i=1

str (Gi)− 1

link (Gi)+
(
Pi
/
T iδintv

) (1)

where k is the number of all possible crossings at the inter-
section, str (Gi) is the number of crossings available after
the ith street is blocked or not allowed due to traffic rules,
link (Gi) is the number of street available to cross to after the
ith number of streets is blocked. Gi represents the crossing
after the ith combination of streets. T i and Pi are the average
delay time at crossing and the probability that the user will
be in LOS with a serving mm-BS, respectively. δint and v
are user density and lane average velocity, respectively. Here,
Py lies in between (0, 1]. It holds true that higher Py values
imply, low robustness at crossing, i.e., longer delays with link
degradation.

B. DATA RATE
The data rate, rm, given a transmit power, P, is defined as [16]

rm = blog2

(
1+

P
∣∣hHp∣∣2

(1+ d∝)
Fx
(∣∣∣θ lk ∣∣∣)

)
(2a)
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hHp =
∑K

k=1
gk (t) e−2π ifd cos

(
ϕlk

)
t , (2b)

ϕlk
(
◦
)
=

1.4 x104

fc (GHz) .v
(
km
/
h
) , (2c)

where θ lk =
2d sinϕlk

λ
is the normalized central angle of arrival

of beam, p,with respect to a user beam given user velocity, v,
under 50 Km/h and carrier frequency, fc, as in (2b). fd is the
maximumDoppler shift given the central ϕlk (◦) .

∣∣hHp∣∣2 is the
channel gain [6] coefficient.Fx

(∣∣θ lk ∣∣) denotes the Fejér kernel
value variation such that as SINR approaches maximum,
as user speed approaches zero, i.e., Fx

(∣∣θ lk ∣∣) → ú1, par-
ticularly because the user beam aligns with the transmission
beam. Otherwise, Fx approaches 0 as v increases [4] due to
rapid variation. α is the path loss exponent [9]. The respective
LOS and NLOS pathloss exponents are denoted by ∝kL and
∝
kNL , ∀k ∈ {1, . . . ,K } , in LOS and NLOS. gk (t) is the

time-varying gain of the channel over K clusters.

C. RESOURCE ALLOCATION PROBLEM
Assuming 2 is a set of optimization parameters from (2a) to
(2c) with access policy, π . The outage probability, Pπ , over
observable signal set, Yk , can be defined as [2], [11], and [23]

Pπ (Yk |2) ≜ P
(∑

l

∑
sk
bl log2

(
1+ γ̂t (x)

)
≥ Ýrmζ

l

)
,

(3a)

where γ̂t is the measured SINR and rmζ
l is the targeted data

rate given channel state, st ∈ S. bl is the bandwidth given
link channel l on signal y ∈ Yk . We assume three sources
of outage for a mmWave link, and all mm-BSs directionally
transmit equal maximum power P. Firstly, all users have a
receiver sensitivity of xkmin and a threshold xk0, thus must
sustain xk0 > xkmin to avoid outage. Secondly, any user-mm-
BS link that requires transmit power that exceeds maximum
P to meet target data rate will not be established, i.e., will
experience truncation outage [16] at a distance, d . That is
for LOS and NLOS scenarios, users at distances greater

than, (P/xk0)
1

∝ØkL and (P/xk0)
1

∝ØkNL [4], from target BSs are
unable to communicate, respectively. Thirdly, outage may be
due to not just meeting the desired rate, rmζ

l , in (3). The
minimum rate requirement problem of Rm under total power
constraint and minimal outage requirement at t is defined as:

Rm
:

∑
t

∑
St ,l

[(
1− βl

(
Pm|xtπ PNLk + P

m|ut
π PNLk

))
rmζ
l (y)

]
,

(3b)

where Pm|xtπ and Pm|utπ are LOS or NLOS conditional outage
probabilities for a user in the mth state of a user, respectively,
given the mean outage probability, PNLk , at a particular trans-
mission distance. rmζ

l is the optimal attainable rate for the l th

link at d . βl is a binary factor. It is 1 or 0 for either the first or
second component of (3a) depending onwhether the expected
outage condition at d is given access policy π is in LOS or
NLOS. The corresponding energy cost, Ec, consists of two

parts; transmission energy consumption in LOS and energy
consumption in NLOS as defined as [7] and [8]

Ec = β

{
Pi
c (t − w)

Rm + e0 ∗ ζc (t − w)

}
, (3c)

where Pi is the transmission power in link i, c (t − w) is
the total actual number of packets received at time t during
window w at a distance dt ∈ st and e0 is the unit energy
per packet size in byte. ζc (t − w) is the lost number of
packets given the total expected packet over window w. β

is the cost per unit energy. Thus, under the constraints of
maximum transmission power, receiver sensitivity, gain and
bandwidth constraints in NLOS and LOS scenarios [5], the
problem is maximizing link utility with efficient and least
power cost. To maximize long-term link utility of a target
link, the long-term projected power, xt+1, over for aminimum
latency, c (t − w)

/
Rm, is estimated as (4c):

xt+1 = max
∑
xt ,ut

{
γmin

γ̂
xt −

αu2t
βγ̂ 2

}+
, (3d)

where {.}+ = {max, 0} .xt is current LOS received power;
and ut is likely discrepancy in NLOS received power over
the same distance between user and mm-BS. γmin is the
minimum required SINR to satisfy the desire QoS and γ̂ is
the measured SINR. The second term parameters, α and β,
are power and SINR scaling factors, respectively, account
discrepancies betweenNLOS and LOS scenarios for the same
distance.

We utilize JMLS to model feasible optimal received power
for the long-term link utility of target links with optimal
latency and minimal energy cost. JMLS is known for mod-
elling abrupt and continuous behavior changes in failure
prone systems [16]; thus, can incorporate abrupt effects of
mmWave’s NLOS and LOS switching dynamics.

III. JMLS-MFGT SYSTEM DEFINITION
We first reformulate the link optimization problems in
(3b)–(3d) into JMLS learning problem.

A. THE JMLS REPRESENTATION
Let’s the values of (3a)-(3c) be defined as JMLS equations
[12], [16]

xt+1 = A(st )xt + B(st) ut + g (st)wt
yt = rmin (st) xt+1 + Q (st) vt ,
M = (2,P (S) , π)

(4a)

where xt ∈ X is the current received power in LOS given
state, st , with the initial value, x0, at an initial distance,
do; ut ∈ U is the associated power discrepancy due to
blockage/ NLOS effects; A(st ) and B(st ) are dynamic SINR
over power coefficient matrices with respect to (4c), Q(st )
and g (st) are dynamic weighted noise given channel-gain
measurement on SINR and EE(rmin), respectively. st denotes
the state governing parameter set2 =

{
A,B,R,rmin,Q

}
and
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belongs to Markov process at time t as defined as: st =
{rt ,Tt , dt , ηt , v, b} , where:

v = [v1, . . . ,vT ] : is a vector of user velocity,
rt = [r1, . . . ,rt] : is a vector representing user data rate,
T t =

[
tm1 , . . . ,tmN

]
is a vector of average service time,

d =
[
dmt , . . . ,dmT

]
is a vector of transmission distance
points that have matching SINR and
power values,

η =
[
η1, . . . ,ηN

]
is a vector of user direction in nth

sample,
b = [b1, . . . ,bT ] is a vector of mm BS.

rmin (st) is the immediate reward following a HO to a link
with received power, xt+1, given observable signal yt ∈ Y .
rmin (st) is defined as a function of energy efficiency at the
receiver.

rmin (st) =
rm (st ,PLos)
PLos + PC

, (4b)

where rm (st ,PLos) is the maximum expected data rate,
PLos ≤ P is the maximum transmission power at distance,
d ∈ st , PC is the circuit power consumption. The transition
probability function between different states is given by:

P (S) ≜ P
(
st+1 = mj|st = mi

)
, (4c)

The normalized transmission energy cost index, J (xt ), overN
sampled distances/states from BSs is defined by:

J (xt) = E
{∑N

j=1
∥xt∥2Q(st ) +

∑N−1

j=0
∥ut∥2R(st )

}
, (4d)

where ∥xt∥2Q(st ) > 0 and ∥ut∥2R(st ) > 0 represent weighted
norm energy costs for actual received packets and lost packets
(e.g., due to NLOS effects), respectively, given the expected
number of packets over window, w. J (xt) ≜ εEc, where ε is
normalization factor of the energy cost, Ec.

B. INITIAL TRAINING
Letting YT ,XT and ST denote patterns of observed chan-
nels {y1, . . . , yT }, the corresponding received power pattern
{x0, . . . xT }, and states {s1, . . . , sT } until time T , respec-
tively. Given a finite set, YT , is observed over ST , the JMLS
model learning problem is to predict the best pattern, XT , for
parameter set 2, over a finite distance {d} ∈ ST , i.e., the
desired QoS, particularly the SINR given latency and energy
efficiency effects in mmWaves. Here, given P (yt , st |xt , 2)

is the conditional distribution of yt , for, xt estimates in
state st , we use Expectation-Maximization (EM) algorithm
in [7] where Bayesian inference [6] automatically infer ini-
tial unknown values of parameter set, 2, over ST and XT ,
Q
(
2 |2k

)
, as defined by:

Q
(
2 |2k

)
= E

[
logP (XT−1, ST ,YT |2) |Xk , 2k

]
, (5a)

2k
= argmax

A∈2
Q
(
2 |2k

)
, (5b)

where 2k is the current known parameter estimate at the kth

iteration. The values are optimized based on the updates of

the SINR changes corresponding energy cost in (4d). At every
state, ST , the received power pattern of a target over distance
needs to be enough to meet the desired SINR to avert outage.
In scenarios where the LOS is not clear, signals are deflected,
diffused and reflected. We thus look at the extent of channel
gain influence for a transmitted signal to meet SINR value
per state. We note however, that the influence of channel
gain is hidden from EM estimates. We thus use Mean Field
Game Theory to simultaneously and strategically trade off the
influence of received power against channel gain in predicting
the SINR hence data rate and EE over distance for a target
network. The MFGT considers three possible values and
choose the target link with the least energy cost: hence best
EE. The three energy cost factors to estimate on target link
with reference to (4d) are:
1) the energy cost in LOS given a maximum received

power is received for a maximum SINR value, a ∈ A

J (xt , a) = max
(x,a)

E
{∑N

0j=1
∥xt∥2Q(st )

}
; (5c)

2) the energy cost in NLOS given a channel gain, h,
compensates limits in received power for a max-SINR
value, a ∈ A (power limited)

J (ht) = max
(x,a)

E
{∑N−1

j=0
∥ut∥2R(st )

}
; (5d)

3) the minimal energy cost based a balance in h and xt is

J (ht , xt) = minE {αJ (xt)} +minE {βJ (ht)}. (5e)

Considering c(J (ht) , J (xt , a) , J (ht , xt)) is the ultimate
cost of the three, i.e., a convex function of J (ht). For the
agent, in state st , the learning problem for the desired xt
becomes;

xt (yt) ≜ argmin c (J (ht) , J (xt) , J (ht , xt))

+ argmaxrmin (si). (5f)

We use mean field game theory [8], [9] to know the best
energy cost over long-termmmWave connectivity.Withmean
field GT, we do not need the full analysis of all possible opti-
mal power deterioration patterns. We just need to know the
distribution of the similar energy cost experience, J (ht , xt)
given received power, xt , and channel gain, ht as factors
influencing the SINR value in (5). The following section
defines the mean field function value.

C. MEAN FIELD GAME VALUE FUNCTION
Let a be the SINR value under consideration and â denote
the SINR estimates by EM for x ∈ X . We define the
expected power value, xt , as a variable of the immediate
reward rmin

(
â, st , a

)
given the mean field value function,

V (xt):

V (xt) = max
π

E
{∑K

k=0
δkrmin

(
â, sk , ak

)
|π(xt | θπ)

}
,

(6a)
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with policy, π , at each state, s defined as

π = arg max
a0,...ak

[
rmin (, sk , a)+

∑
s

P (sk+1|sk , a)V (st+1)

]
,

(6b)

where δ ∈ (0, 1) is the discount factor and moves to closer
to 1 as energy cost factor J , reduces.
The long-term value function, V

(
x̌k
)
, is approximated as

V
(
x̌k
)
=

∑
a0,...ak

Pπ (xk |yt , θ(ak ))

{
rmin (−a, sk , ak)

+δk
∑
x

P (sk+1|sk , a, x)V (st+1)

}
(6c)

where Pπ (xk |ak) denotes the probability of obtaining a SINR
value, a, given policy π . The mean field game looks for a
target link whose SINR values satisfy a condition a ≥ â over
sk when less than xk is received power needed to satisfy â.
The discount factor, δk , is a tolerate factor over SK states.
Principally, to get the link with the desired SINR, using EM
estimates, the mean field game theory selects target links with
high channel gain to compensate for any received power loss
e.g., in NLoS scenarios. And the following section explains
in detail.

D. DETERIORATION PATH PROJECTION EHHANCEMENT
To find the optimal power pattern over k states, we let g (x) :
Rd
→ R represent the mmWave link terminating cost factor

and r (x, a,−a) : RdxRm
→ R denote its running reward

given the function value, V
(
x̌k
)
, in each state over set, YK ,

HJB such that

V
(
x̌k
)
max
a∈A
−E

{∫ K

0
δkr (x, a,−a) ds (t)+δkg (x) |Yk

}
=0,

(7a)

where the terminal energy cost factor, g (x) , corresponds
to the outage costs, c (∗) satisfying the receiver sensitivity
threshold condition, xk0 > xkmin. Here for every given step in
Q
(
2 |2k

)
by EM, the pattern X = {x0, . . . xk} is calculated

using the Hamilton–Jacobi–Bellman (HJB) equation in (7a):

x ≜ V (st)+ sup
hEU

H
(
x, hHp

)
, (7b)

where the Hamiltonian function, H
(
x, hHp

)
, is defined by

a Hamilton principle [9]. The principle of HJB states that
the true evolution of points in X (t) , i.e., between x1 and x2,
is described byK states {V1 (st) , . . . ,Vk (st)}where a ∈ A(t)
is a stationary value (a SINR point of x where the variation
of SINR is zero):

H
(
x,hHp, a

)
= 0. (7c)

This is achieved by ensuring any received power value change
between states, is compensated by a feasible channel gain
value, hHp, to satisfy desired SINR. Technically, HJB values

for a selected value, x must satisfy the conditions in (7c) in
each, k th state for the serving cell to sustain connectivity.
For the mean Field principle [16], the best SINR link state

sj following user transition from si is determined by trading
off the cost of receiving xj ∈ XT with channel gain to obtain
the same or better SINR value for a given set of valuables, 0,

in the game,

0 <
{
Jij
}
,
{
Sij
}
,H (u, xi, t) >, (7d)

A Nash Equilibria here is thus a set of received power
{x̄i, . . . , x̄N } over N states (s̄1, . . . , s̄N ) such that it is
’’costly’’, i.e., in terms of energy, for a player/user to select a
link that deviates from receiving power pattern {x̄i, . . . , x̄N }
over (s̄1, . . . , s̄N ) states to meet the threshold of the desired
SINR over N states. Thus, any target link that meets the
equilibria condition is worth the HO. Technically, the target
link that meets the equilibria conditions {x̄i, . . . , x̄N } is likely
to sustain connectivity hence SINR above threshold over, N
states (s̄1, . . . , s̄N ).

E. THE MIXED NASH EQUILIBRIUM
Pure Nash equilibria with {x̄i, . . . , x̄N } over (s̄1, . . . , s̄N )

states does not however exist, Simultaneous effects of par-
tial, and full NLOS, LOS and block over. Wave propagation
makes it challenging to yield {x̄i, . . . , x̄N } values over. Thus,
we introduce the notion of mixed values. A certain innova-
tion, F,i→j, cost determined by the tradeoff between received
power and channel gain variation:

F,i→j = max
a∈A

[
Vijxixj + H (u, xi, t)

]
, (8a)

This means that each player anticipates a certain set of
received power values from a given mm-BS connection with
a certain probability, P (Vi), where xi, does not meet the
desired SINR. Particularly, given ad ∈ Ã is the desired SINR
value at a distance d ∈ s. The sufficient and necessary
condition for ad given corresponding EM value âd needs is
asymmetric Nash Equilibrium defined as:

rmin
(
âd , sk , a

d (s)
)

+ δk
∑
x

P
(
sk+1|sk , âd , ad (s), x

)
V (sk+1)

≥ rmin
(
â, sk , a (s)

)
+ δk

∑
x

P
(
sk+1|sk , âd , ad (s), x

)
V (sk+1). (8b)

By solving the above conditions, the mean-field approxi-
mation as the function, F∗, of the innovation over all time
t = 1, . . . ,T can be defined by (8c) as [9]

F∗ =

∑
i,j

Vi,jEµ

[
XiX j

]
+

∑
i

H
(xi+1

2

) , (8c)
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where µ is the probability that the user value xi at distance d
can be calculated based on the partial costs as

µd,i (t) =
1

1+ exp
(∑

i̸=j Vd,xi − Vd,xj

) . (8d)

The HJB equation corresponding best pattern XT is solved
backwards in time, starting from a state with t = T and
ending at t = 0 [12] i.e., given S, for X .
At HO, the divergence of individual target link pattern is

compared to global optimal pattern is measured generated
from a collection of all data. The higher the divergence, the
less reliable the target link and connection is. We use the
Kullback-Leibler (KL) divergence to measure the level of
unreliability of a target cell and is explained in detail in the
following sections below.

F. DETERIORATION PATTERN ANALYSIS
We use the KL divergence to measure the divergence
of target (local) pattern X , and function values, VLos

(
št
)

and VNLOS
(
št
)
, in LOS and NLOS, respectively, from

the global pattern values Vi
(
št
)
. KL measures how either

xLos
(
ši+t

)
orxNLOS

(
št
)
with reference to their respective

value functions, VLos (si) and VNLOS (si) , will deviate from
desired x

(
št
)
∈ Vi

(
št
)
∀X̄ . The KL equation and three con-

ditions used for prediction of target link behavior are given
by

KL (V (st) ||V (st+1)) = E
[
log

(
V (st)
V (st+1)

)]
. (9)

1) Using forward KL [12], the difference between V
(
x̌k
)

and VLos (si+1) /VNLos (si+1) is weighted by V
(
x̌k
)
, If,

for instance, the reward is zero, i.e., V (st) = 0 then the
current predicted pattern X̄ needs to be updated to know
which target cell would deteriorate optimally. In other
words, x̄t as minimal received power is not desirable
and will not satisfy receiver sensitivity condition xt >

xko to avert outage.
2) Conversely, if V (st) > 0, then the log

(
V (st )

V(st+1)

)
term values will contribute to deterioration pattern
(x̄1, . . . , x̄N ) updates using pattern (x1, . . . , xN ). If the
divergence is high, this is not good because our objec-
tive is to minimize KL divergence with discrepancy
predicted, x̄t , and the target cell local value xt . Wemea-
sure V (si) with either VLos (si+1) or VNLOS (si+1) and
whichever target link gives minimal KL divergence
value will cause less abrupt changes in received power
requirement. It also implies the target link can get
the desired SINR over different states. Particularly by
using the channel gain to balance up received power
deficits in achieving the desired SINR within each
transmission range.

3) We use Reverse KL to assess the target cells to meet
the conditions in (1) and (2). The target cell whose KL
difference between (1) and (2) is lower than that of
other cells ismore reliable. A higher reverseKL implies

a wide divergence on how a target link is likely to
perform after HO. This also indicates to how much the
likely target link predicted desired pattern, x1, . . . , xN ,
will likely not be meet given the optimal desirable
deterioration pattern (x̄1, . . . , x̄N ). This form of KL
Divergence indicates how global V (st) and local V (st)
estimate difference approach 0 on some areas where the
link of a target link is more reliable and stable.

IV. ONLINE UPDATE OF THE PROPOSED MODEL
They are two ways in which the deterioration experience is
updated. We consider two forms of link deterioration experi-
ence; 1) locally on individual mmWave BSs and 2) a global
deterioration pattern, i.e., aggregative experience of distribute
mmWave BSs. In this approach, the overall experience is
independent of the number of mmWave BSs and may be
scaled as desired at the cost of additional communication
overhead. To findXT over YT , the online optimization process
is summarized in Algorithm I. It follows the classical EM
algorithms [7] and alternates it with game theory at each step.
Given the current iteration, the new path,Xt , uses the previous
pattern, Xt−1, as a warm restart. The coefficients computed
during the previous iterations for Xt−1 are used as aggregate
information for Xt . The information from past coefficients is
thus carried forward in matrices as initial input to the later
parameters. For instance, the SINR values, γ̂1, γ̂2, . . . , γ̂t , are
carried forward in matrices as in step (10):

At ← At−1 + γminγ̂ and Bt ← Bt−1 + γ̂ ut . (10)

This allows the HO scheme to update received power patterns
based on previous information without accessing the old data
samples. The projected, XT+1, is then optimized by using
(10) and the previous global pattern, XT−1, as input to XT .
This accelerates convergence rate and pattern prediction than
classical batch algorithms. The learning scales up gracefully
to use large data sets as more data samples build.

V. PERFORMANCE EVALUATION
In this Section, we describe the simulation model used and
present the simulated results to study the performances of our
proposed HO scheme.

A. NUMERICAL ANALYSIS MODEL
We take into accountmmWaveBS downlinks and concentrate
on user experiences with SINR outages. With unique spatial
densities, gains, receiver sensitivity, blockage parameters,
and pathloss exponents, (see Table 1) BSs are dispersed
randomly. A density λu, users are dispersed spatially within
a voronoi circle denoting a mmWave cell using independent
homogeneous Poisson point process (PPP) for user connec-
tion. BSs equally are dispersed in a homogenous PPP denoted
by 8 and the BS density λBS . Each BS serves at least user
selected at random from a Voronoi cell [11] using a round
robin scheduler, hence the densities of users and BSs are
assumed similar. Even after forming a single association with
BS, we expect that the active users continue with a PPP [12].
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The approximation does not take into account the connec-
tion of BS and served user point operations and assumes
free space attenuation of a link. For analysis, the correla-
tion between the reference BS and user link reliability is a
derivation of SINR outage probability at various receiver sen-
sitivity threshold with respect to KL divergence calculation
V
(
st , λBs, λu

)
,V

(
st+1, λBs, λu

)
in (9). Analytical results are

depicted in Fig. 10.

B. DESCRIPTION OF THE SIMULATION MODEL
We assume that the state information, e.g., distance, speed,
etc., can be known by any mm-BS in the network using a
location-based service such as GLS [4] or HLS [5]. For our
simulation, we use the DC LTE-mmWave model introduced
by the NYU and the University of Padova [3] where LTE BSs
(L-BS) manage mmWave BS (mm-BS). The model carefully
considers an end-to-end mmWave cellular network perfor-
mance. It uses ns-3 simulator featuring 3GPP channel model
for frequencies above 6 GHz and a 3GPP-like cellular proto-
col stack [8]. NS-3 employs a Spatial Channel Model (SCM)
in this evaluation of NR networks at mmWave frequencies.
Here, the channel matrix,

∣∣hHp∣∣2 with an entry transmitter, t,
and receiver, r , models the channel between the t-th and r-th
antenna elements at the transmitter and receiver, respectively.
Evert link entry (t; r) is determined by the contribution of N
clusters to depict NLOS reflections and the direct LOS path
(if in existence). To replicate each cluster, different powers
and durations are used, which is reliant on a number of
rays spread around a common cluster angle of arrival and
departure (see (1) - (4)]. Parameters here rely on the time
varying Rician K factor determined by the instantaneous
velocity of the measured vehicle [2], [5], [22]. A summary
of simulation parameters is given in Table 1 while more
details can be found in [8]. The initial stages of our model
determine possible received power deterioration patterns for
different users. We use the EM estimator on JMLS. The
latter stages involve optimizing the initial pattern using game
theory. At HO selection stage, i.e., to choose the best target
cell, individual cell deterioration patterns with respect to user
type are compared to the global JMLS-mean field GT pattern
optimized. We use reverse KL divergence [12] to understand
the margin of divergence of the target cell pattern from that
of the global optimized pattern. The smaller the divergence
the more reliable the target cell is during and the post HO
process. The learning algorithm is online processed at the
core network and is developed on an augmented ns-3-OpenAI
Gym [10] toolkit as summarized in Algorithm I. Open AI
Gym is integrable with ns-3 and supports the teaching agents
for the variety of applications.

C. IMPLEMENTATION OF THE SIMULATION MODEL
Dynamic system level simulations are performed to evaluate
the performances. Fig. 2 shows the flow chart of HO exe-
cution. The distribution of the received powers with respect
to different states of the target links is predicted using EM

TABLE 1. Simulation parameters [4].

estimations given a few initial values obtained from user
connections and expert data values. Initial optimal received
power patterns are then generated. The patterns are classified
into two sets. One set is assumed to be influenced by high
gain due to NLoS and while the other set is influenced by
high received power values due to LoS to achieve the same
SINR. In the meantime, the total reward, which is the energy
efficiency (EE) of each pattern state, is also calculated based
on the received power pattern estimations in the flowchart in
Fig. 2 using the following steps.
Step 1:Using EM, the scheme estimates the received power

in LOS and NLOS.
Step 2: For the received power values in LOS set, the

objective is to find values that have least energy cost. A local
optimization strategy set is obtained in this step by Hamilton–
Jacobi–Bellman function conditions in (7)-(8).
Step 3: Received values from the partially NLOS user set

and those from the LOS set are involved in a game. The users’
received power values in the NLOS set(s) are assumed to
be low but compensated by the high channel gain to get the
same SINR value(s) obtained in LOS. Users with improved
or degraded received power patterns given different states are
moved to or from the NLOS set, while game values in the
LOS sets are improved per state. Users failing to meet desired
received power values are moved to NLOS set. The scheme
skips to Step 4 if none of the parameters for users with regard
to improving the network into the LOS value set. Otherwise,
if there is a new value for a user state, we go back to Step 2.
Step 4: Repeat Step 3 until the shifting/HO condition

for each state is met, i.e., attainable or empirical minimum
received powers pattern. For the best target link, each user’s
received power about the mean at different states (distances)
is not supposed to drop beyond user type pattern values to
avoid link failure or outage.
Step 5:Calculate the total reward, EE using the final energy

cost and received power pattern in (9). The power pattern
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FIGURE 2. The flow chart of received power pattern estimations.

corresponds to the highest EE values defining the pattern Xat
each state.

The flow in Fig. 2 summarizes the above steps. The first
dashed box is the LOS SINR value set and the second dashed
box is the game’s SINR parameters optimized using the
Hamilton–Jacobi–Bellman solution in (7c).

D. RESULTS AND ANALYSIS
Wasteful HOs (or repeated HOs) refer to unnecessary han-
dovers to the same serving BS. This is because the same
serving BS triggers/refreshes a HO process instead of
just maintaining the existing link or selecting another BS
with a better link that would support longer connectivity.
An increase in the number of wasteful HOs increase the HO
overhead. Thus, we investigate the percentage of wasteful
HOs over a period of time of training our proposed scheme as
shown in Fig. 3. It is observed that the percentage of waste-
ful/repeated HOs using our proposed HO scheme decreases
over time. In fact, after the 70th iteration, the training con-
verges because the HO link selection is optimized. It shows
that any link selection/HO process initiated after the 70th

iteration has less than 0.5% chance of being wasteful/being
repeated. This performance is attributed to the reliability

FIGURE 3. Wasteful/repeated HO vs. number of iterations.

FIGURE 4. Energy efficiency vs number of iteration.

of the proposed HO scheme to accurately predicted the
behavioural pattern of mmWave links and ultimately select
the most stable target links.

Fig. 4 shows the energy efficiency (EE) in terms of bits
received over the amount of energy transmitted. The EE
increases over time and thus there is an equivalent reduction
in the energy cost. The increase of the EE also corresponds
to the reduction in wasteful HOs over time as shown in
Fig. 3. For instance, steep/swift increase in EE over time
observed at around the 40th episodes in Fig. 4 correspond
to swift reduction in wasteful HO observed around the
40th episode in Fig. 3. The mark, ‘‘∗’’, in Fig. 3 corre-
sponds to the sharp changes associated with learning pattern
rate of our scheme i.e., drastic learning improvement once
minimal but considerable training data has been collected
online. Additionally sharp improvements further show how
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FIGURE 5. (a) Pedestrian user average received power vs distance from
target cell. (b) Channel gain(dB) vs distance (m).

the proposed scheme is able to make sufficient improvements
with minimal training data, e.g., within less than 40 training
episodes. Particularly, with respect to user position andmove-
ments with respect to target mm-BS position. Our proposed
JMLS-MFGT technique has the ability to learn fast and select
more LOS target links (less wasteful HO) compared to NLOS
links once a considerable but minimal amount of training data
samples/iteration have been accumulated.

Fig. 5(a), shows the pedestrian user received power from
the target cell vs. the user distance from the target cell in
which a user is moving towards (−) and from (+) the mm-BS
within a stretch of 100m. The dotted blue line shows the
actual user received power within a coverage of 100m of a
selected target mm-BS. The solid red line shows the pre-
dicted user received power by our proposed scheme from
a selected target mm-BS that meets the desired SINR over

FIGURE 6. Average user throughput vs distance for different user types.

the transmission range. This closeness between the predicted
and actual received power pattern proves that our proposed
HO scheme can accurately predict the likely network per-
formance behavior of the target link after a HO is executed.
Fig. 5 further affirms the ability to predict accurately the
received power pattern of target links prior to HO. Fig. 5(b),
further shows the corresponding channel gain to distance
behavior in respect to predicted and actual values in a multi
array mmWave propagation condition.

Fig. 6 shows the average throughput for different user types
at various user-mm-BS distances. The results suggest that
pedestrian users have higher average throughput compared
to any other user types. The is attributed to the ability of the
proposed HO scheme to predict more accurately the behavior
of the user’s receive power pattern hence SINR of target
links connecting to low speed users. Particularly, the channel
state information (CSI) with respect to SINR performance
parameters as denoted in equation no. 3 changes gradually
for slower users. This gives ample time for the proposed HO
scheme to predict more accurately the likely changes in the
target link performance pattern from one state to the other as
usersmove. This is unlike high-speed user training datawhere
the change in CSI is more than often rapid, abrupt and incon-
siderate of the usually slow learning rate. This ultimately
negatively affects the incremental behavioral prediction of the
pattern of a target link by our proposed scheme. Additionally,
we closely analyzed how the corresponding SINR to the
throughput changes over distance in Fig. 6. It was revealed
that the throughput spikes are generally influenced by an
increase in received power, e.g., due to improved LoS states.

Fig. 7 shows theHO failure rate against number ofmm-BSs
for different HO schemes. We compare the performance of
our proposed HO scheme to other HO schemes based on
mobility awareness [6], SINR-based [4] and DRL-JMLS [5].
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FIGURE 7. HO failure rate vs No. of mmWave BS for different HO schemes.

The mobility awareness in [6] executes HO commands based
on user speed. The SINR-based in [4] executes HO com-
mands based on the next mm-BS with the highest SINR/data
rate. The DRL-JMLS [5] is based on DRL and JMLS models
to complete the HOs. As shown in Fig. 7, our proposed
scheme experiences lesser HO failures with the number of
mm-BS. This is because the scheme does not just select target
BSs because of their high initial data rate/SINR/ received
power. It also considers received power and channel gain vari-
ance post-HO using the KL divergence test (see section IVB).
However, for a larger number of mm-BSs, the HO failure
rate for DRL-JMLS and our proposed scheme is similar. This
attributed to the fact that both have diverse data sufficient for
training andmaking reliable HO policies within a short period
of data collection from BSs. It must be emphasized that for
a smaller number of BS our proposed HO scheme performs
better than any other HO scheme in Fig. 7. This makes the
proposed scheme more appealing for quick adjustment in HO
failure decision and additionally less expensive to manage
(requires less BSs to reduce HO failure rate). Further, it can
make more reliable HO decisions with less resources (BS)
and diversity of training data. Particularly, the lesser the num-
ber of BSs, the smaller the number of training samples the
training process can collect in each training episode. This also
reduces the diversity of training data collected per episode
and ultimately affects the accuracy and the diversity of HO
decisions.

Fig. 8 shows the average data rate of the network when
different HO schemes are used. Similar to Fig.7, our proposed
HO scheme gives the highest average data rate as compared
to others. For a large number of mm-BSs, the average data
rate for DRL-JMLS and our proposed scheme similar as
both are able to scope sufficient and diverse training data
within a short time3arn to select better target links, i.e.,

FIGURE 8. Average data rate vs no. of BSs for different HO schemes.

FIGURE 9. The Energy Efficiency vs mmWave BS Density variation.

links with good LOS. Our proposed scheme however out-
performs DRL-JMLS scheme when using fewer BS. This is
because our proposed scheme even in limited training data
(as explained in Fig. 4), requires lesser data for training and
making more reliable HO decisions.

Fig. 9 compares the variation of energy efficiency for
different HO schemes against the density of mm-BS. For the
same value of mm-BS/km2, the proposed HO scheme has
higher EE than other 3 schemes. At peak, i.e., 90 BS/km2,
our proposed scheme is about 17% to 40% better than other
3 schemes. As the number of the mm-BSs increases, the EE
rose to 90BSs/km2. It then slowly decreaseswhen the number
of mm-BS increases beyond 90. The decrease emanates from
increasing distortion brought about bymmWave transmission
sensitivity. We also observed that EE decreases with the
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TABLE 2. Summary of pros and cons of different ho schemes.

FIGURE 10. The truncation outage vs receiver sensitivity threshold.

increase in cellular number. This can be attributed to the
increase in cellular power interference.

In Fig. 10, we assess the performance of different HO
schemes in terms of outage probability of the mmWave link
given the changes in receiver sensitivity threshold values.
Particularly, any user experiences a truncation outage with
respect to the serving link if the user transmitted power fails
to meet the receiver sensitivity threshold µ. The proposed
scheme outperformed other HO schemes especially at higher
thresholds i.e., above −20dbm. This can be attributed to the
scheme’s ability to correctly predict the receive power pattern
of the target link and select reliable (continuously above
threshold) links.

Additionally, based on (3a), (7c), (8b) and (9), we theo-
retically analyzed outage in Fig. 10. The analytical results
are in tandem with the simulated results for the most part
of the threshold choices. In fact, given the variation of

received power sensitivity with outage, further information
was deduced via comparison of the analytical and simulated
results. Particularly, it is observed in Fig. 10 that the theoreti-
cal outage at low received power sensitivity threshold values
behave the same as the simulated results. This is despite
assuming the received power behaviour to be the same as
the free space attenuation in our theoretical analysis. This
similarity is because for simulated results, the reception of
the reflected rays (considered) and their contribution on the
received power to be above the threshold is small due to the
large reflection angles and small sender-receiver distance at
HO. Therefore, the contribution to the total received power
being above the receiver sensitivity threshold is also small.
This makes the effects of both theoretical and simulated
received power results on outage be similar at low thresh-
old. However, as the threshold increases, given the dynamic
changes in link distances for simulated environments, the
reception of the reflected rays increases. The contribution
to the overall received power to avert outage also increases
as shown in Fig. 10. The increase in received power due
to reflected rays negates outage probability in simulated
environments. This causes a sharper rise in outage in our the-
oretical analysis because effects of reflected rays are ignored.
Table 2 summarizes the pros and cons of different HO
schemes used. It particularly highlights the computational,
environmental and scalability advantage and disadvantages
of different HO compared to the proposed scheme.

VI. CONCLUSION
In this work, we investigated the performance of using
the deterioration pattern to determine reliable links in 5G
mobile networks. An efficient JMLS-MFGT modelling of
likely target link variation/pattern was presented to solve
the challenges of selecting reliable mmWave links during
HO processes in 5G mobile networks. Specifically, mean
field-based game theory has been applied to optimize EM
estimates in the HO selection matrix. Simulation results show
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that our proposed joint trained JMLS-MFGT scheme outper-
forms the existing HO algorithms with robust EE and longer
stable connectivity. Thus, we conclude that the proposed
JMLS-MFGT HO scheme can be employed as an alternative
to classic HO schemes to optimize 5G networks.
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