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ABSTRACT 

Blood pressure is one of the fundamental clinical measures. For more than 100 years, 

clinicians and researchers have used the mercury sphygmomanometer for blood 

pressure measurement. Environmental concern about mercury contamination has 

highlighted the need to find a replacement for traditional mercury sphygmomanometers.  

A number of currently used non-invasive blood pressure measurement methods have 

been studied in this research. The most commonly used automatic pressure monitoring 

method nowadays is the Oscillometric method. Height-based and Slope-based criteria 

are the two general means used to determine the systolic and diastolic pressures. 

However, these two criteria have many disputed points, making them debatable as a 

good standard for blood pressure measurement. For this reason, the auscultatory method 

continues to be the gold-standard for non-invasive blood pressure measurement.  

Current research uses a newly developed cuff with three different lengths of piezo film 

sensors and a pressure sensor to collect signals from the brachial artery. The objectives 

of the research are to process the measured signal from the sensors and develop a blood 

pressure measurement algorithm that will accurately determine the blood pressure non-

invasively.  

Signal processing and heart beat / heart rate detection software have been developed. 

The best algorithm has been selected from three developed algorithms for further 

modification and validation. The final algorithm used two feed-forward Neural 

Networks to classify the acquired pressure signals into various regions of the pressure 

signals. The final algorithm has been tested on 258 measurements from 86 subjects. The 

testing result showed that the algorithm achieved grade A for both systolic and diastolic 

pressures according to the British Hypertension Society protocol. The mean differences 

(SD) between the observers and the developed algorithm were 1.44 (5.27) mmHg and 

1.77 (6.17) mmHg for systolic and diastolic pressures, respectively, which also fulfilled 

the Association for the Advancement of Medical Instrumentation protocol. In 

conclusion, this algorithm was successfully developed and it is recommended for 

further clinical trial in a wider adult population. Further development of this algorithm 
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also includes extending to other subgroups such as pregnant women, arrhythmia, 

diabetics and other subjects with diseases. 
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Chapter 1   INTRODUCTION 

1.1 Background 

The determination of human blood pressure is very important to medical professionals 

especially for clinical studies of certain illnesses, blood hypertension classification and 

monitoring the condition of patients during operations. The general public measures 

blood pressure to check their cardiovascular health status. Blood pressure measurement 

(BPM) can be classified into two groups, invasive (direct) and non-invasive (indirect). 

Invasive techniques of BPM involve inserting a catheter into the vascular system which 

brings high risks of embolism, arrhythmia, heart attack and a certain percent of 

mortality [1]. This method is not convenient for everyday application. It will only be 

used when absolutely necessary. The non-invasive devices are safer, easier to use, and 

can be utilized in most situations [2, 3]. This research is focussed on the Non-Invasive 

Blood Pressure (NIBP) measurement. 

In 1896 the Italian paediatrician Scipione Riva-Rocci invented the air cuff 

sphygmomanometer measurement method [4]. Mercury sphygmomanometers soon 

become the gold-standard of NIBP measurement. Environmental concern about mercury 

contamination has highlighted the need to find a replacement for traditional mercury 

sphygmomanometers. Aneroid sphygmomanometers are the other option of manual 

sphygmomanometers but these have to be checked against a mercury manometer 

frequently if they are suspected of being out of calibration. The other type of blood 

pressure measuring devices is called automated or digital sphygmomanometers. These 

are easily operated and more practical in noisy environments. Although there are many 

different NIBP measurement devices in the market now, high accuracy clinical use 

devices are very expensive and in certain sub-groups of populations, such as pregnant 

women, NIBP devices remain inaccurate. A recent clinical review [5] showed that 23 

automated BP measurement devices have been validated according to the British 

Hypertension Society (BHS) [6] and Association for the Advancement of Medical 

Instrumentation (AAMI) [7] standard protocols. Five devices have been recommended 
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for clinical use and only one of the devices, the Omron HEM-772C, when tested on 

elderly subjects, achieved an A/A grading according to the BHS protocol.  

Pulsecor Ltd. is a New Zealand company developing a non-invasive medical 

measurement device. Pulsecor has developed a new prototype for automated NIBP 

measurement. Improvements in blood pressure cuffs were researched. Low-frequency, 

wideband external pulse transducers (sensors) were used and placed in the blood 

pressure cuffs to measure the pulse pressure waves from the brachial artery. The 

purpose of this research was to analyse the measured signal from the new developed 

sensors and develop a BPM algorithm that would accurately determine the blood 

pressure non-invasively. As the end product of this device will be used in American’s 

market, the AAMI standard protocol was the main standard used in this research. Both 

of the AAMI and BHS standard protocols will be briefly explained in Chapter 2. 

The following sections describe the background of blood pressure, various NIBP 

measurement techniques and some recent developments.  

1.2 Blood Pressure 

Blood pressure is the force exerted by the blood on the walls of the blood vessels [8]. 

Generally speaking “blood pressure” refers to systemic arterial blood pressure. Blood is 

pumped from the heart and the blood vessels carry blood from the heart to all the tissues. 

The pressures of the blood in other vessels are much lower than the arterial pressure. 

Figure 1.2.1 shows the BP changes in the different parts of the circulatory system. The 

BP in the arteries is determined by 1) the force provided to the blood by the heart during 

its contraction and ejection of blood into the arterial compartment, 2) the flow rate of 

blood out of the arterial compartment and into the tissues via the capillaries, 3) the 

volume of blood within the vascular compartment and 4) the tension generated by the 

walls of the blood vessel resisting the blood pushed into the arteries by the heart [9]. 
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Figure 1.2.1 Normal blood pressures in the different portions of the circulatory system [8]. 

The heart pumps out blood into the arteries on every heart beat. BP is at its highest 

value when the heart pumps the blood which is also known as the contraction of the 

heart. This is called systolic pressure (SP). When the heart refills with blood, between 

each systole, BP falls to its minimum. This is the diastolic pressure (DP) [10]. Figure 

1.2.2 shows a typical arterial blood pressure (ABP) waveform. The difference between 

the SP and DP is the pulse pressure. Mean blood pressure is often calculated as one 

third of the pulse pressure because almost 60% of the time the heart is in diastole [8, 11]. 

 

Figure 1.2.2 Illustration of the waveform of a pressure pulse [12]. 

BP is usually presented as two numbers, the SP and DP. These values are normally 

measured in millimetres of mercury (mmHg) because the mercury manometer has been 

used as the the standard reference for measuring pressure for a long time [8]. In a 

healthy adult, the systolic blood pressure is typically in the range of 120 ± 20 mmHg 

and the diastolic blood pressure is typically in the range of 75 ± 15 mmHg [13].  

Blood pressure values are not constant. It changes from beat to beat and throughout the 

day. It also changes in response to stress, nutritional factors, drugs, or diseases. BPM is 
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a very important indicator to monitor cardiovascular health and specifically to 

determine whether a patient has hypertension or not. 

1.3 Non-Invasive Blood Pressure Measurement Techniques 

There are many different NIBP measurement methods currently used in NIBP 

monitoring, which include the Auscultatory method, Oscillometric method, Electronic 

Palpation method, Unloading Plethysmographic method, Volume-Oscillometric (VO) 

method, Volume-Compensation (VC) method, Arterial Tonometry method, etc. These 

methods may be classified into two categories: intermittent methods and continuous 

methods [2, 14]. In intermittent methods, SP, DP, and mean arterial pressure (MAP) 

values are calculated over a period of time that encompasses more than one heartbeat, 

such as the Auscultatory method, Oscillometric method, etc. Continuous methods 

calculate pressure values in every heartbeat, e.g. Arterial Tonometry method, etc. 

The Auscultatory and the Oscillometric methods are the most common techniques used 

in commercial blood-pressure monitoring nowadays [2, 3, 15, 16]. Many studies are 

based on these two methods to develop new algorithm in order to improve accuracy and 

stability.  

1.3.1 Auscultatory (Riva-Rocci) Method 

The auscultatory method is often called the Riva-Rocci/Korotkoff method [14]. This 

method uses an occluding cuff and a stethoscope to listen to the presence and absence of 

acoustic pulses generated by an artery, called Korotkoff sounds [3, 17, 18]. The 

presence or absence of sound is used to identify the pressures at which blood initially 

begins to flow through the brachial artery (SP) and at which normal blood flow returns 

(DP) [17].  

This method has various sources of potential error, including the inconstant deflating 

rate, inappropriate cuff size with respect to arm diameter, different standard of 

identifying Korotkoff phases between observers and so on. Also high noise situations, 

such as ambulatory environments or patient movement, will cause great measurement 

errors [17]. 
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1.3.2 Oscillometric Method 

The most widely used automatic method nowadays is the oscillometric method. It is 

based on the principle that the pulsatile blood flowing through an artery creates 

oscillations of the arterial wall. As the occluding cuff pressure is gradually reduced from 

above SP to below DP, the actual values of the SP, the DP and the MAP can be 

determined [2, 16]. A typical example of oscillometric method is shown in Figure 1.3.1. 

The oscillation in the air pressure of the arm cuff was measured and plotted as an 

oscillation waveform. The waveform was analysed to identify the occurrence of the 

systolic and DP. The actual values for SP and DP were determined by the corresponding 

pressure in the cuff pressure curve. 

 

Figure 1.3.1 Cuff pressure signal (dense decreasing line) and oscillation waveform (thin line) [15]. 

The maximum amplitude of the cuff pressure has been accepted as the MAP [2, 15, 19-

21]. There are two general algorithms to determine the SP and DP values; they are 

height-based and slope-based. In the height-based approach, a ratio is obtained by 

dividing the amplitude over the maximum value. Those ratios before the maximum 

amplitude would be used to compare a certain ratio to determine the SP. Whereas those 

ratios after the maximum amplitude would be compared to another ratio to determine 

the DP [2, 15, 21]. The slope-based criterion applies the derivative of the oscillation 

amplitude curve with respect to cuff pressure. The maximum and minimum slope of the 

curve has been defined as the SP and DP respectively [2, 22].  



 

6 

For the height-based algorithm, there are several selection criteria for the ratio used by 

different investigators and manufacturers. Some researchers have proposed to take 

fractions of 40% and 60% [2] out of the maximum amplitude. Nippon Colin Ltd. takes a 

fraction of 55% for both systolic and diastolic values [23]. Geddes [24] observed that 

the best correlated values with the auscultatory method are 50% and 80% for the SP and 

DP respectively. Cuff Link takes fractions of 50% and 67% and BP Pump takes 

fractions of 54% and 59% [25].  

One of the most difficult problems with the oscillometric technique is the motion 

artefacts [15, 21, 26]. Those motion artefacts include respiration, speaking, involuntary 

or voluntary movement, etc. Patient motion produces pulses that appear similar to the 

arterial pulse and cause wide variations in pulse amplitudes. Another shortcoming is 

that a large number of cardiovascular diseases, such as arrhythmia, will lead to irregular 

oscillation amplitude. 

1.3.3 Electronic Palpation Method 

The electronic palpation method uses an arm cuff to occlude the brachial artery and then 

detect pressure pulses from the radial artery on the wrist. The radial artery sensor is 

based on a four-channel pulse sensor built in a wrist wrap. The measurement can be 

made either during the inflation or the deflation of the cuff.  

Nissilä et al [3] used a simple algorithm to determine the SP and DP points with great 

accuracy. Each pressure pulse was detected and its amplitude was determined. A typical 

pressure pulse signal and cuff pressure in the inflation mode is shown in Figure 1.3.2(a), 

and Figure 1.3.2(b) shows the deflation mode. In the inflation mode, the diastolic value 

is the point where the pressure pulse amplitude starts to attenuate; the SP value is the 

point where the pulse amplitude drops under the noise level. Whereas in the deflation 

mode, the SP value is the point where the pressure pulse from the radial artery starts to 

appear, and the diastolic value is at the point where the pressure pulse amplitude levels 

reach a flat terrain.  
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Figure 1.3.2 Typical pressure pulse signal and cuff pressure in a) the inflation mode and b) the deflation 

mode [3]. 

1.3.4  Unloading Plethysmographic Method 

An indirect unloading continuous plethysmographic technique can be used in the real 

time BP measurement [1]. This method is based on the idea of the relationship between 

the cuff pressure, arterial pressure and the arterial walls. When the cuff pressure is equal 

to the arterial pressure, the arterial walls will be unloaded and the arteries will not 

change in size. Therefore, the blood volume will be constant.  

Holejšovská et al [1] used the photoelectric technique to detect blood flow in the finger. 

The plethysmographic signal was analysed by the digital signal processor and then 

found out the character of the signal corresponding to the detected blood flow value. 

Improper setting of the reference value and the control system produced great 

measurement errors. Changes in the tension of the arterial wall and the movement of the 

body also caused a lot of measurement errors. This research is still in progress and the 

principle of this method has not been extended in the clinical application because of its 

insufficient accuracy and stability.  

1.3.5 Volume-Oscillometric and Volume-Compensation Method 

VO and VC methods for NIBP measurement were developed by Yamakoshi et al [27].  

Both methods are based on the vascular unloading principle and the characteristics of 

the pressure-volume relationship in the artery. Both methods employ photoelectric 

plethysmography to detect the volume changes in the artery. The VO method is similar 

to the oscillometric method except that it is based on arterial volume oscillations instead 
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of cuff pressure oscillations. It can measure SP and MAP, and can be used for long-term 

ambulatory monitoring. The criterion of determining DP from this method is apparently 

not well established. The VC method allows the continuous measurements of SP and 

DP and the recording of the pressure waveform non-invasively.  

Tanaka et al [28, 29] developed a new system for non-invasive measure of 

instantaneous blood pressure in the radial artery. The system was based on the VC 

method. The radial artery was chosen as a measuring site to avoid venous congestion 

during long term monitoring.  

Tanaka et al [28, 29] used a disk-type cuff for local pressurisation and a nozzle-flapper 

type electro-pneumatic converter for the cuff-pressure control was designed. The cuff-

pressure was gradually increased by a commercial air pump, and the unloaded vascular 

volume was determined from the mean level of the photo-plethysmographic signal. The 

results indicated that the radial artery could be completely compressed, and the nozzle-

flapper type electro-pneumatic converter had sufficient frequency response for BP 

measurement in humans. The prototype system was capable of measuring instantaneous 

blood pressure non-invasively in both rest and stressful conditions. 

1.3.6 Arterial Tonometry method 

The tonometry is a transcutaneous method for continuously monitoring arterial blood 

pressure. The principle of arterial tonometry is illustrated in Figure 1.3.3. An array of 

pressure transducers are embedded in a tonometric sensor to increase the chances that at 

least one transducer will be positioned over the artery. The radial artery is pressed 

against the radius bone by the tonometric sensor with hold-down pressure in an air 

chamber. The optimum hold-down pressure is given automatically to flatten a portion of 

the arterial wall and maximize the pulse pressure measured by the sensor elements 

which are positioned over the artery. Intra-arterial pressure (P) in Figure 1.3.3 is 

measured by the pressure transducer positioned over the flattened portion of the arterial 

wall. The circumferential tension (T) in the flattened arterial wall to the transducer is 

neglected [30, 31]. 
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Figure 1.3.3 Illustrations of the principles of arterial tonometry [31]. 

1.4 Literature Review 

It is not the intent of this research to provide an evaluation of the measurement methods 

or the technologies associated with the implementation of the methods. The measured 

signals from the new developed BP cuff are similar to an oscillometric waveform. The 

literature review section is therefore focusing only on the Oscillometric measurement 

algorithm developments. 

1.4.1 Prediction and Smoothing Algorithm 

Thomas J. Dorsett [26] developed a prediction and smoothing algorithm to predict the 

next oscillometric pulse amplitude and cuff pressure. The algorithm used Kalman filter 

equation to predict the next pulse amplitude, and polynomial curve fitting to produce a 

smooth curve to determine MAP, SP and DP. The result shows that the Kalman filter 

has the ability to reject the artefact motion and also meet the requirement of AAMI 

protocol. 

1.4.2 Fuzzy Logic 

Wang et al [16, 32] designed a NIBP method to measure blood pressure by detecting 

arterial volume pulsation. A Kalman filter has been designed to reduce the physiologic 

and measurement disturbance of the vessel volume oscillation amplitude. A linear 

predictor has been designed to estimate the changing tendency of the MAP in each HB, 

and the estimated result were feedback to the synthetic fuzzy logic controller (SFLC). 

The result showed that the MAP with changing rates of ±10, ±20 or ±30 mmHg/minute 
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could control the chamber pressure in real time with a mean square error of 1.9, 2.2 or 

2.8 mmHg, respectively [32]. 

Lin et al [15] developed a fuzzy-logic-based recursive weighted regression algorithm 

(RWRA) to reduce the interference in the oscillation amplitudes (OAs). A fuzzy logic 

discriminator has been designed to remove the interference in the OAs. The Lorentzian 

function has been used to fit the patterns of OAs of the cuff pressure. Clinical results 

demonstrated that the proposed RWRA was more robust than the traditional curve 

fitting algorithm and improved the accuracy of the oscillometric BP measurement. 

1.4.3 Fuzzy Pulse Qualifier 

Colak et al [33] developed a pulse qualifier based on fuzzy set theory. Quality 

assessment is based on the pulse features, pressure, height, width and derivative. This 

development evaluates the quality of each pulse before entering the analysis procedure. 

Then the BP estimation can be more accurate. 

1.4.4 Neural Network Method 

A feedforward neural network has been developed to estimate blood pressure [34]. A set 

of recorded database is low-pass filtered to eliminate the noise. Based on the research 

[34], a Lorentzian function has been used to fit the oscillation envelope. The results 

were compared with the traditional maximum amplitude pressure algorithm. The neural 

network yields improvements over the maximum amplitude algorithm. One major 

advantage with the neural network is that the waveform does not need to be above and 

below the SP and DP points respectively but it requires a huge database. 

1.4.5 Pattern Recognition 

A cuff signal pattern recognition method has been developed to measure blood pressure 

[35]. Peak positive (dP/dtMax), peak negative (dP/dtMin), and the time interval between 

peak positive and peak negative (tpp) were recorded from both invasive and non-

invasive waveforms. A comparison has been carried out to validate the accuracy of the 

non-invasive measurement. Linear regression analysis has been used to compare the 

invasive and non-invasive methods. The correlation coefficients of the systolic, diastolic 

and mean blood pressure for these two methods were 0.94, 0.91 and 0.95 respectively. 

The results obtained a strong correlation between these two methods. 



 

11 

1.4.6 Mathematical Modelling 

Ursino et al [36, 37] built a mathematical lumped parameter model to analyse the 

accuracy of NIBP measurement with the oscillometric technique. The model is used to 

examine how alterations in some biomechanical factors may affect the accuracy of 

pressure measurement. The results show that alterations in wall viscoelastic properties 

and in arterial pressure pulse amplitude may lead to errors as great as 15-20% in the 

computation of diastolic and systolic arterial pressures. The paper suggests that a better 

evaluation of the MAP is the lowest pressure at which the cuff pulse amplitude reaches 

a plateau.  

1.4.7 Blood Pressure Classification 

Colak et al [38] developed a fuzzy classification system to extract some parameters such 

as height and ratios of the pulses at certain pressure levels  from the cuff pressure. The 

Principal Component Analysis (PCA) technique was used to extract feature and fuzzy 

sets to classify pressure profiles. The result shows that diastolic classification 

performance is worse than systolic performance. Using additional features extracted 

from the waveform can increase classification accuracy. 

Colak et al [39] developed fuzzy set algorithms to classify systolic, mean and diastolic 

blood pressure. Algorithms are based on fuzzy sets, whose membership functions are 

determined by using neural networks. Researchers employed Gram-Schmidt orthogonal 

transformation [40] to select appropriate features for classification. Orthogonal feature 

subset selection method performs a good classification on the data. Diastolic 

classification with a selected feature performs better than the systolic classification. This 

result shows that satisfactory NIBP classification can be obtained, independent of age 

and arm circumference size for adults by using artificial neural networks (ANNs). 

1.4.8 Other Method / Algorithm 

Lee et al [21, 41] developed a digital envelope detector to detect the maximum 

oscillation criterion in the finger artery BP measurement. The volume oscillometric 

algorithm has been used. The digital envelope detector used a Hilbert transform to 

analyse the input signal and select peak values from the average of nine sequential 

point-moving window. Researchers used characteristic ratios of 0.5 for SP and 0.8 for 

DP estimation. The auscultatory method has been used as their reference. The result has 
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been compared with those cases where no envelope detection was applied. The mean 

difference error and standard deviation (SD) were improved by 30 ~ 40%. A summary 

of the result is shown in Table 1.4.1. 

Table 1.4.1 The algorithm results with and without digital envelope detection [21]. 

With digital 
envelope detector 

(± mmHg) 

Without digital 
envelope detector 

(± mmHg) 

 Systole Diastole Systole Diastole 

Mean difference error 3.8 5.1 8.3 8.6 

Standard Deviation 6.5 5 9.3 9.6 

 

Ball-llovera et al [2] developed an algorithm to calculate blood pressure values by 

applying mathematical methods to the pulse index waveform. Researchers used height 

criteria to calculate SP and DP values. A computer program was developed and used to 

statistically indicate the difference between the actual and the calculated values. The 

mean differences (standard deviation) between the observers and the developed 

algorithm were 0.09 (5.35) mmHg and -0.66 (4.06) mmHg for SP and DP, respectively. 

The results showed that the algorithm used in a bedside monitor (DOCTUS IV) fulfilled 

the AAMI standard requirement. 

Zong et al [42] developed an algorithm to detect the onset of ABP pulses. The algorithm 

employs a windowed and weighted slope sum function (SSF) to extract ABP waveform 

features. A decision rule has been established for the detection of each SSF pulse onset. 

The results indicate that the developed algorithm can detect the onset ABP pulse less 

than or equal to 20 ms compared to the reference value. 

Perfetto et al [43] developed an algorithm to detect systoles and diastoles from  

continuous blood pressure signals in head up tilt situations. The method follows blood 

pressure curve searching for maximum associated to systole. When systole is pointed, 

diastole is obtained following the curve in the inverse direction. The algorithm does not 

rely on the history of the signal. It can detect correctly through the rapid changes in the 

signal. 
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Gratze et al [44] developed a real-time software package for non-invasive beat-to-beat 

monitoring of stroke index (SI), blood pressure (BP) and total peripheral resistance 

index (TPRI). A meta-analysis has been used for the evaluation of autonomic function 

which includes spectral analysis of heat rate, BP, SI and TPRI and the automatic 

calculation of baroreceptor reflex sensitivity. The developed software package is 

suitable for online and non-invasive detection on a beat-to-beat basis.  

Moraes et al [45, 46] developed  a controlled linear deflation technique for BP 

measurement. The correlation among several quantities, such as reference BP 

measurements, actual cuff pressure, pulse amplitude, characteristic ratios, age, weight, 

height, arm circumference size, systolic, mean and diastolic blood pressures, has been 

analysed. Researchers used fixed percentile rule and characteristic ratio in relation to 

pressure rule to determine SP and DP. Table 2 shows the mean difference error and SD 

results from different rules. Parameters such as arm circumference size and maximum 

envelope amplitude have resulted in a more precise BP measurement with the use of the 

oscillometric method. Other parameters, such as age, weight, and height, are not so 

important. The method used in such oscillometric BP measurement systems produced 

better results, after an experimental comparison study was made. 

Table 1.4.2 The result obtained with fixed percentile rule and with different characteristic ratio [45]. 

With fixed  
percentile rule 

(± mmHg) 

With different  
characteristic ratio 

(± mmHg) 

 Systole Diastole Systole Diastole 

Mean difference error -0.9421 0.9589 -1.4927 0.6152 

Standard Deviation 6.9828 6.5146 5.1057 5.8931 

 

1.5 Objective 

Published studies of the oscillometric method introduced various algorithmic 

approaches for the determination of SP, DP and MAP. There is a general agreement for 

MAP determination but not SP and DP. Height-based and Slope-based criteria are the 

two general means used to determine the SP and DP values. However, these two criteria 

have many disputed points and the accuracy has been questioned. Researchers have 
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improved the algorithms to solve the problem caused by the fixed percentile algorithm. 

The accuracy of the SP and DP was also improved but most of the researches were more 

focused on general subjects. Accurately measuring BP from a special group of people 

such as those with cardiovascular diseases or pregnant women still remains unsolved. 

The new NIBP measurement prototype was developed by Pulsecor to accurately 

measure BP for both general and special subjects. In order to reach this goal, a general 

algorithm needs to be developed for this new device to accurately measure BP from 

general subjects.   

The purpose of this research was: 

♦ To build a database for healthy subjects, age 16 and above. 

♦ To develop BPM algorithms based on various methods and select the best 

algorithm for further development and modification. 

♦ To validate the final algorithm selected with two standard protocols (AAMI and 

BHS). 
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Chapter 2   Theory and Experimental Setup 

2.1 Introduction 

This chapter covers the basic principles of some digital signal processing and statistical 

analysis techniques applied in this research. The definition of a signal and the reason of 

applying those techniques will be explained in detail. Two standard protocols to validate 

the accuracy of the new developed device and the minimum requirements to pass the 

standard will be briefly explained. The details of the experimental apparatus, setups and 

procedures are also included in this chapter. 

2.2 Signal Processing 

A signal is a physical quantity that varies as a function of an independent variable [47, 

48]. Time is frequently used as the independent variable. A signal can be classified as 

either continuous or discrete. Continuous signals are signals that have a specific value at 

every instant of time. Discrete signals only have certain defined values at discrete points 

in time. This can be thought of as the result of continuous signals that have been 

sampled periodically. In this project, the signal measurements are considered discrete 

signals since a digital computer can only record a finite number of signal samples. 

The purpose of signal processing is to extract information from the signal, find the 

relationship between different signals, and/or produce an alternative representation of 

the signal. Signal processing is like a system analysis, the signal is the input to a “black 

box” which contains the rules for processing the signal, and the output is the desired 

information signal [48]. This project applied signal processing techniques in both 

hardware and software to remove unwanted signal components and extract useful 

information from the measured signal. 

A signal can be presented and processed in different domains. This project focused on 

the time and frequency domain. A signal in the time domain is represented as x(t), 
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where x refers to the dependent (measured) value and t is the time variable, and X(f) is 

the Fourier transform represented in the frequency domain. 

2.2.1 Fourier Transform 

The Fourier analysis is a mathematical technique for transforming a signal from the 

time domain to the frequency domain. It breaks a signal into constituent sinusoids (sines 

and cosines) of different frequencies. The Fourier transform is a generalisation of the 

Fourier series where function is represented by the sum of sines and cosines. 

The Fourier transform of input signal x(t) is defined in equation (2.1) 

 2( ) ( ) j ftX f x t e dtπ∞ −

−∞
= ∫  (2.1) 

where f is the input frequency in cycles per second. Another way of presenting the 

equation is by using the angular frequency ω in radians per second where ω = 2πf [49].  

If a signal is a sum of sinusoids of different frequencies, then equation (2.1) can produce 

a series of weighting factors of all the sinusoidal components that add up to the original 

signal x(t).  

The original signal x(t) can also be reconstructed by applying the inverse Fourier 

transform technique from the frequency domain as shown in equation (2.2). 

 2( ) ( ) ftx t X f e dfπ∞

−∞
= ∫  (2.2) 

The Fourier transform calculates the frequency, amplitude and phase of each sine wave 

from the original signal. Significant values can be obtained from this transformation. 

The spectrum of a continuous-time signal can also be found by computing the Fourier 

transform of the signal [50]. 

2.2.1.1 Fast Fourier transform (FFT) 

Since a digital computer only works with discrete data, the Discrete Fourier Transform 

(DFT) technique is used for transforming spectrum samples from the time domain to the 

frequency domain. The FFT is a mathematical algorithm developed by J.W. Cooley and 

J.W. Tukey in 1965 [49]. The FFT technique greatly reduces the number of 
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multiplications required in the calculation of the DFT and produces a result much faster 

with no mathematical difference between the DFT and the FFT calculations [47].  

Spectrum samples are computed with the DFT. The DFT (FFT) equation is shown in the 

equation (2.3) 

 
1

2

0

[ ] [ ] for 0,  1,  2,  ... 1
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j nk N

n

X k x n e k Nπ
−

−

=

= ⋅ = −∑  (2.3) 

where x[n] is the input sequence, X(k) is the DFT, 2πk is the angular frequency of the 

input sequence frequency (k) and N is the number of samples in both discrete-time and 

discrete-frequency domains. 

The inverse DFT (IFFT) is shown in the equation (2.4) [51] 

 2 ( 1)( 1)

1

1
[ ] [ ] for 1,  2,  3,  ... 
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j n k N
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x n X k e n N
N

π − −

=

= =∑  (2.4) 

The signal in the time domain can be converted into the frequency domain by applying 

the FFT function and the reverse conversion can be done by applying the IFFT function. 

Unwanted signals in different frequencies can be eliminated in the frequency domain 

before applying the IFFT function. Therefore, only the desired signals stay in the time 

domain. An example is shown in Figure 2.2.1. Figure 2.2.1(a) displayed a pure sine 

wave signal at 60 Hz with a data sampling frequency of 1000 Hz. Figure 2.2.1(b) is the 

signal corrupted with some random noise. The frequency spectrum resulting from FFT 

is demonstrated in Figure 2.2.1(c). It can be seen that the most significant signal 

occurred around the frequency between 59 Hz to 61 Hz. Figure 2.2.1(d) reconstructed 

the signal only with the frequency between 59 Hz to 61 Hz which is very similar to the 

original signal as shown in Figure 2.2.1(a). 
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Figure 2.2.1 (a) A pure sine wave signal at 60 Hz in the time domain. (b) Signal corrupted with random 
noise. (c) Fourier transform of signal (b). (d) Inverse Fourier transform of signal between frequency 59 

Hz to 61 Hz. 
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2.2.1.2 Short-Time Fourier Transform (STFT)  

As mentioned before, the Fourier analysis transforms a signal from the time domain to 

the frequency domain. However, STFT divides the original signal into small segments 

by means of the FFT and then displays the result spectra as a ‘spectrogram’ [52]. Each 

segment may be overlapped by the adjacent segment for a certain amount of time. The 

STFT represents a two-dimensional function of time and frequency. It can be 

represented in either a two-dimensional or three-dimensional view. Examples are shown 

in Figure 2.2.2. The STFT provides the magnitude of each segment signal at a different 

time and frequency. It shows that during the time between 0 ~ 0.25 seconds the largest 

magnitude (dark red) occurred at frequency between 60 ~ 70 Hz.  
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Figure 2.2.2 Time-Frequency diagram. (a) Two-Dimensional View. (b) Three-Dimensional View. 

 

This technique has certain precision limitations because the precision depends on the 

size of the window. A narrow window gives a good time resolution because it provides 

more details, but a poor frequency resolution, since the time is too short to observe the 

signal characteristics. Increases in the window size gives better frequency resolution but 

poor time resolution [53]. Table 2.2.1 shows the quality of resolutions by selecting 

different window sizes. Therefore, it is very important to select the right size of window 

to obtain the desired value during the process. 

Table 2.2.1 Time and Frequency Resolution by Window Width. 

 Time Resolution Frequency Resolution 

Narrow Window Good Poor 

Wide Window Poor Good 
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2.2.2 Power Spectral Density (PSD) 

The PSD is basically a method to describe the distribution of power contained in a 

signal, as a function of frequency [50]. This measures the contribution to the signal 

made by each of its sine wave components. The power spectrum of a signal can be 

simply obtained by calculating its DFT and summing the squares of its real and 

imaginary components at each frequency [49]. The power spectra can be used for 

detecting the signals hidden in wide-band noise.  

2.2.3 Noise Removal 

Removing noise from a signal is commonly applied in all situations. The goal is to 

remove the unwanted signal with the least distortion of the desired signal. Filters are 

designed for this purpose. Common categories of filters include high pass, low pass, 

band pass and band stop. Designing a filter can remove large amplitude and other 

unwanted noise signals from the required bandwidth [48, 52]. Therefore, it is very 

important to understand the properties of a desired signal.  

As mentioned above this project recorded the continuous-time signals using digital 

sampling at a certain sampling rate, therefore the filtering process can be done either 

before sampling using an analogue filter or after sampling using a digital filter. 

Analogue filters are circuits normally built from components such as resistors, 

capacitors and inductors. Applying an analogue filter before sampling can prevent 

aliasing during the measurement of the continuous-time signal but its operation is very 

sensitive to the values of the components used. On the other hand, digital filters are 

normally executed in software and might achieve the narrowing of the transition bands 

[48]. 

2.2.4 Windows 

The purpose of using windows in signal processing is to force the signal outside the 

chosen range to be zero [48]. The output value within the chosen range M is computed 

by multiplying the signal value x[nT] with the window function w[nT]. Other values 

outside the range M will become zero. The simplest window is the rectangular window. 

Unfortunately, it produces a filter with poor stop band attenuation. It is not sufficient to 

remove signals outside the pass band. Using a window with smoother edges can solve 

this problem [53]. The Hanning, Hamming, Blackman, and Kaiser windows give better 
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stop band attenuations. Figure 2.2.3 shows some commonly used windows and sketches 

of their forms.  

 
Figure 2.2.3 Window examples and functions [50]. 

 

2.2.5 Normalisation 

Normalisation is a technique to spread the component range of the signal values 

uniformly over the whole range of the input [54]. In other words, this technique rescales 

the input signal to the range which can be interpreted more easily for further analysis. 

For example, a signal measured in the range between 0.4 to 0.85 volts, by applying 

normalisation technique can be rescaled into a range within 0 and 1. Therefore, the 

minimum 0.4 V became 0 V and the maximum 0.85 V became 1 V. This could be used 

to find the similarity and the changes of a signal in a different signal range.  

The measured input variable x can be mapped to a scaled variable y according to 

equation (2.5). 

 ( )min
max min min

max min

x x
y y y y

x x

 −
= − + − 

 (2.5) 

where xmin is the minimum measured input variable value, xmax is the maximum 

measured input variable value, ymin is the minimum scaled variable value and ymax is the 

maximum scaled variable value [54]. 
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2.3 Statistical Analysis and Classification 

Statistical analysis and classification can be presented in many different ways. An 

Artificial Neural Network (ANN) is one of the artificial intelligence techniques which 

has been selected for use in this research. A basic introduction to the theoretical 

principles of the ANN will be briefly described in this section. Principle Component 

Analysis (PCA) is a method of identifying data patterns which can be used to reduce the 

dimension of the data set. The basic idea and the calculation procedure will be 

explained but the mathematical background used in the PCA method will not be 

covered in this thesis. Bland and Altman plot, which is one of the graphical methods for 

the statistical analysis, will be described as well. 

2.3.1 Artificial Neural Network 

An ANN is a mathematical model which is trying to model a system similar to the 

human brain. It consists of a number of simple and highly interconnected processors, 

called neurons which can be compared to the biological neurons in the brain. The ANN 

gained knowledge through the training process and stored this knowledge in long-term 

memory, called weights. Weights represent the importance of each neuron input. During 

the training process, weights are adjusted until the network output matches the target. 

ANNs have been widely used to solve complex functions in various fields including 

pattern recognition, identification, classification, speech, vision, control systems, and 

signal processing applications [55]. 

The basic element of an ANN is a neuron. A neuron receives input data, computes the 

weighted sum of the input data, calculates the transfer function and then sends the result 

as the output value [55]. Figure 2.3.1 shows a single-layer neuron model and its transfer 

function. Where R is the number of elements in input vector, p is the value of individual 

input, w is the weight of individual input, n is the net weighted input to the neuron, and 

a is the output of the neuron. The sum of the weighted input n is the argument of the 

transfer function f. There are four transfer functions commonly used to produce the 

output a. These functions and its mathematical expression are shown in Figure 2.3.2. 

The Hard-Limit Transfer Function in Figure 2.3.2(a) is used in decision-making neurons 

for classification and pattern recognition applications. The Linear Transfer Function in 

Figure 2.3.2(b) provides an output equal to the neuron weighted input. This function is 

used for linear approximation. Figure 2.3.2(c) shows the Sigmoid transfer function 



 

23 

which allows any input values and gives output value in the range between 0 and 1. This 

function is normally used in the non-linear classification [55], e.g. back-propagation 

networks. Figure 2.3.2(d) shows the Tan-Sigmoid transfer function which is very 

similar to the Sigmoid transfer function. This function gives output value in the range 

between -1 and 1.  
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Figure 2.3.1 Diagram of a single layer neuron model and its transfer function. 
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Figure 2.3.2 Transfer Functions of a neuron [56]. 

 

A single layer neuron by itself is not a very powerful tool. It can classify only linearly 

separable patterns. The real capability of ANN comes when neurons are combined into 

the multilayer structure called the neural networks. The structure of a neural network is 

based on a single layer neuron model interconnected with each other to form a 

multilayer network. A multilayer network consists of an input layer of source neurons, 

at least one or more hidden layer of computational neurons, and an output layer of 

computational neurons [55]. A multilayer network with two hidden layers is shown in 

Figure 2.3.3. Each layer in a multilayer neural network has a weight matrix w, a bias 

vector b, and an output vector a. The bias is much like a weight, except that it has a 

constant input of 1.  It is simply being added to the net weighted input in each neuron 

[56]. 
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Input layer First hidden layer Second hidden layer Output layer

)ba(LWfa)ba(LWfa)bp(IWfa 323,233212,12211,111 +=+=+=

)b)b)bp(IWf(LWf(LWfa 3211,112,123,233 +++=  

Figure 2.3.3 Multilayer neuron model with two hidden layers [56]. 

 

As described earlier in this section, an ANN needs to go through a training process and 

then adjusts weights until the network output matches the target. There are more than a 

hundred different training algorithms available but the most popular method is back-

propagation [55]. In a back-propagation neural network, the training algorithm has two 

phases. First, the network propagates the input data from input layer to each hidden 

layer(s) and generates output data from the output layer. If the output data is different 

from the target, an error is calculated and then propagated backwards through the 

network from the output layer back to the input layer. The weights are modified during 

the backward process. Properly trained back-propagation networks tend to give 

reasonable outputs when testing with new similar inputs data that the networks have 

never seen [56]. This is a good method for biomedical signal classification since any 

new signal data will get similar output if it is similar to the trained signal. 

2.3.2 Principal Component Analysis (PCA) 

PCA is a classical method of identifying patterns in data. Once these patterns in the data 

have been found, PCA can be used to reduce, compress or simplify the data set. The 

number of dimensions in the data can be reduced without losing much information. This 

method can help to reduce the number of input data in the ANN [57].  
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For PCA to work properly, each data dimension needs to first subtract its mean value to 

get a data set whose mean value is zero. The covariance matrix will then be calculated 

from the zero mean data set. The covariance matrix gives a square matrix which has the 

same dimension as the number of columns, i.e. for an m-by-n matrix, where m 

represents the number of rows and n represents the number of columns, the covariance 

matrix is n-by-n. Since the covariance matrix is a square matrix, the eigenvectors and 

eigenvalues of this matrix can be calculated. These values provide the information about 

the pattern in the input data and contribution of each data to the total variation in the 

data set. The eigenvector with the highest eigenvalue is the principal component of the 

data set. It is the most significant relationship between the data dimensions. The 

dimension of the input data set can be reduced by eliminating those principal 

components that have less significance. A principal component transformation matrix 

can be constructed by forming a matrix using those eigenvectors with the large 

eigenvalues in the columns. This transformation matrix can help in transforming 

original input data to a reduced dimension data set and vice versa [57, 58].  

2.3.3 Bland and Altman Plot 

Bland and Altman plot was designed for assessing the agreement between two 

measurement results [59]. It shows the difference between new and old methods based 

on the same subject. An example is shown in Figure 2.3.4. In this graphical method the 

differences between the new developed algorithm and the average results from two 

observers is plotted at y-axis. The average between these two values is plotted at x-axis. 

Horizontal (solid) lines are drawn at the mean difference, and at the mean difference 

±1.96 multiplied by the SD of the differences to show the 95% distribution of the 

difference values. Horizontal (dotted) lines can also be drawn at zero difference, ±5 

mmHg, ±10 mmHg and ±15 mmHg difference for the BHS protocol requirements. The 

Bland and Altman plot is useful to reveal a relationship between the differences and the 

averages. 
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Figure 2.3.4 An example of a Bland and Altman plot. 

 

2.4 Standard Protocols 

Accurate measurement of blood pressure is very important from the public health 

standpoint. Any new developed BP measurement devices should be validated with the 

standard protocols. Two widely used protocols for testing the accuracy of these devices 

are set by the AAMI with a pass/fail system, and the protocol from the BHS with an A-

D graded system. AAMI standard protocol recommended that for comparison of 

auscultatory monitors, at least 85 subjects should be studied. 80% of SP and DP should 

be within the range from 100 to 160 mmHg and 60 to 100 mmHg respectively, 10% 

above and below the range stated above. 80% of subjects should have an arm size 

between 25 to 35 cm in circumference and 10% above and below the range. A device 

would pass the AAMI protocol if its measurement error has a mean value of less than 5 

mmHg with a SD of no more than 8 mmHg. The BHS protocol would grant grade A to 

a device if 60% of its error measurements are within 5 mmHg, 85% of the errors are 

within 10 mmHg, and 95% errors fall within 15 mmHg. BHS has progressively less 

stringent criteria for the grades of B and C, and will assign a grade D if a device 

performs worse than C. Table 2.4.1 shows the summary of the grade system for BHS 

protocol. A device will only be recommended if it passed the AAMI criteria for both SP 

and DP and received a grade of A or B under the BHS protocol for both systolic and 
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diastolic blood pressures. 

Table 2.4.1 Grading criteria used by the British Society of Hypertension. 

Absolute difference between reference and test device (%) 
Grade 

≤ 5 mmHg ≤ 10 mmHg ≤ 15 mmHg 

A 60 85 95 

B 50 75 90 

C 40 65 85 

D Worse than C 

 

Both protocols are used in validating the accuracy of the new developed device. The 

experimental part carried out in this research was based on the AAMI protocol 

requirement.  

2.5 Experimental Setup  

2.5.1 Apparatus 

The new cuffs with three different sizes were made from Trimline blood pressure cuffs 

(Trimline Medical Products Corp, NJ, USA). DT1, DT2 and DT4 piezoelectric film 

sensor elements from Measurement Specialties (VA, USA) were attached on the surface 

of the cuff (refer to Figure 2.5.1) to collect signals from the brachial artery. The DT1 

and DT2 piezoelectric sensors were placed on the inside wall of each cuff in the axial 

direction. The DT4 piezoelectric sensor was placed on the outside wall of each cuff in 

the circumferential direction. The inside and outside sensors were attached to the cuff 

using cyanoacrylate. Signals were measured using the different voltage generated across 

the positive and negative terminals of each sensor.  
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(a) Inside sensors displacement

(b) Outside sensor displacement
 

Figure 2.5.1 Inside and outside sensors placement of a standard medium cuff. 

 

All negative pins of the sensors were connected together and routed to ground. The 

positive pin from the sensors was individually connected to an Operational Amplifier 

(OpAmp). The circuit configuration sheet can be found in Appendix I. The voltage 

output from each OpAmp was digitized using a data acquisition card, DAQCard-AI-

16XE-50 (National Instruments, TX, USA), in differential input mode to maintain a 

high-input impedance. A Virtual Instrument (VI) has been created for data recording in 

the text format by using v6.1 LabView software program. The inside, outside and cuff 

pressure sensor signals were recorded simultaneously for further processing.  
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The cuff has two air hoses protruding from the bladder.  One air hose was connected to 

a Medisave aneroid sphygmomanometer. The second air hose was connected to Welch 

Allyn® NIBP module which was used for inflation and deflation of the cuff 

automatically. Poemtalk software program (Welch Allyn … etc.) was used to control 

the NIBP module. The NIBP module was also connected to an ADP1 semiconductor 

pressure sensor (Matsuchita Electrical Works Ltd, Japan) via a tee-junction. The ADP1 

was powered using the 5V reference from the DAQCard, and the output voltage 

corresponding to pressure was measured using a differential analogue input on the 

DAQCard. 

The schematic setup of the apparatus is illustrated in Figure 2.5.2. Although two 

different software programs were run on the same computer, it is clearer to show them 

separately in the figure to demonstrate their different functions. Figure 2.5.3 to Figure 

2.5.8 show the actual apparatus setup in the data collection. 

Air 
Hos

e

 

Figure 2.5.2 Data collection apparatus setup schematic diagram. 
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Figure 2.5.3 Actual apparatus used in the data collection. 

 

 

Figure 2.5.4 Standard medium cuff and an aneroid sphygmomanometer. 

 

 

Figure 2.5.5 Data acquisition card.
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Figure 2.5.6 At the bottom of the box is the Operational Amplifier circuit board and the pressure sensor 
board is at the top of the box. 

 

 

Figure 2.5.7 Welch Allyn® NIBP module. 
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Figure 2.5.8 Teaching stethoscope. 

 

The bell mode side of a 3MTM Littmann® dual-head teaching stethoscope was used to 

measure auscultatory blood pressure.  This teaching stethoscope was used to allow two 

observers to listen simultaneously. 

2.5.2 Cuff Pressure Calibration  

The voltage output from the pressure transducer was calibrated against the aneroid 

sphygmomanometer over the range from 20 mmHg to 280 mmHg. The ADP1 

semiconductor pressure sensor was used for cuff pressure detection. Using the amplifier 

designed by Pulsecor Ltd., the pressure sensor produced a linear characteristic between 

0.5 to 3.5 output voltages. The calibration process has been repeated and carried out for 

the individual cuff. The small and medium cuffs were tested on a rigid metal cylinder 

tube with the diameter of 75 mm and the large cuff was tested on a solid lightweight 

formed concrete with the diameter of 100 mm. Figure 2.5.9 shows the actual material 

used. The cuff was manually pumped up to 300 mmHg. The pressure reading was based 

on the aneroid sphygmomanometer used in this research to keep the same reading from 

the observers. The cuff pressure was then gradually decreased to 280 mmHg. The 

LabView VI recorded 500 to 1000 samples of the output voltage from the OpAmp when 

the pressure was read at 280 mmHg. The LabView VI then recorded the output voltage 

at every 10 mmHg deflation on the cuff until the cuff pressure reached 20 mmHg. The 

cuff was then totally deflated and removed from the cylinder object. The cuff was 

replaced around the object three times to repeat the calibration procedure. Regular 
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calibration was performed throughout the data collection period to check the stability 

and the accuracy of the output signal. All the recorded data was used for the linear 

equation calculations. 

 

Figure 2.5.9 Cylindrical tubes used for cuff pressure calibration. The lightweight form concrete on the 
right hand side of the picture was used for large cuff calibration. The metal cylinder on the left hand side 

was used for medium and small cuffs calibration. 

 

It was discovered from the recorded data that the output voltage between 20 mmHg to 

250 mmHg had a linear relationship and that the voltage above 250 mmHg became 

constant as shown in Figure 2.5.10(a). Therefore, a best fit line was fitted into the values 

between 20 mmHg to 250 mmHg to produce a linear curve that could be used to 

calculate the cuff pressure. The polynomial curve fitting function was used to minimize 

the total square error at the data points [51]. The linear regression line equation is 

shown in the equation (2.6) 

 V aP b= +  (2.6) 

where P is the pressure value and V is the output voltage. The slope of the line is a, and 

b is the intercept (the value of V when P = 0).  

The function polyfit was used in MATLAB to calculate the polynomial coefficients (a 

and b), which is a row vector, that was saved and used for cuff pressure estimation in 

this research project. The result of the linear regression is plotted in Figure 2.5.10(b). 
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Figure 2.5.10 Cuff pressure calibration graphs. 

 

2.5.3 Data Collection 

Ethics approval was required before the data collection started since it involved human 

subjects. Application for ethics approval was submitted and approved by the Auckland 

University of Technology Ethics Committee (AUTEC) on 12 July 2006, AUTEC 

Reference number 06/126. All participants were required to sign a written consent form. 

The approved letter, Information Sheet and Consents Form can be found in Appendix II, 

Appendix III and Appendix IV, respectively. 

According to the AAMI standard requirement, 85 subjects were required to take part in 

this study. All invited participants were staff and students at AUT Wellesley campus. 

All subjects were recruited by personal approach. A complete set of three consecutive 

measurements was obtained by two observers. The Auscultatory method has been used 

as the reference. The SP and DP readings from both observers were controlled within 

the difference of ±5 mmHg. For any subject that did not contribute 3 data sets within the 

difference of ±5 mmHg between observers, an additional measurement was carried out. 

For participants requiring additional measurement, a maximum of five measurements 

were recorded. The subject data will not be used in this research if the above 

requirements were not met after five measurements. 

Only healthy subjects age 16 and above were invited for the study. For those subjects 

who had weak Korotkoff sounds, irregular heart rate and/or other problems found 

during the measurement process, the recorded data was destroyed and cannot be used in 

this research. Only those subjects who met the requirements as described above were 
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included in this study. Additional subjects have been measured to reach the total of 85 

subjects as the AAMI standard required. 

2.5.3.1 Procedures  

Before Data Collection 

Equipments were setup as described in Figure 2.5.2. The LabView VI program will be 

run so that settings can be made before data collection as shown in Figure 2.5.11. Four 

channels have been used to collect signal from the two inside sensors, the outside sensor 

and the pressure sensor. Input signal limits were set between the voltages from 0 to 5 

volts. The sampling rate has been set at 250 samples per second. Each measurement has 

been given a specific name of expXX_z to store measured data, where XX is the number 

assigned to the individual subject and z represented the number of measurements taken 

from that subject. 

 

Figure 2.5.11 Graphical User Interface of the LabView VI data collection program. 
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The Poemtalk software program was used to control the Welch Allyn® NIBP module. 

This software ran under Windows Command Prompt environment. Commands were 

entered to set the service mode and the maximum target pressure.  

All subjects were recruited by personal approach. Every subject received both 

information sheet and verbal explanations regarding the purpose of the research. 

Procedures were explained to them and time was given for them to decide to participate 

in this research project before written consent was obtained. Every subject was given a 

number instead of their name to ensure the confidentiality of the data collected. The 

subject’s arm circumference was measured and recorded to ensure the correct cuff had 

been used. If the arm circumference was measured less than 25 cm, the small adult cuff 

was used. If the arm circumference was measured greater than 35 cm, the large adult 

cuff was used. Otherwise, the medium cuff was used. Before the cuff wrapped around 

the upper arm, observers would ensure the cuff was totally deflated and the aneroid 

sphygmomanometer was read at zero mmHg.  

During Data Collection 

The subject was allowed to rest on a chair for a while before the data started recording. 

The selected cuff was placed around the subject’s right upper arm. The placement of the 

cuff was such that the subject’s brachial artery lay within two inside sensors to obtain 

the best signal result. The subject had been asked to sit comfortably, relax, keep still and 

avoid deep breathing during the data collection.  

Two observers sat beside the subject to take measurements using the ausculatory 

method. The teaching stethoscope was used to allow two observers to listen to the heart 

sound simultaneously. Observers recorded all subjects’ blood pressure separately on a 

different log sheet to prevent readings read by another observer being influenced in any 

way.  

The NIBP module inflated the cuff pressure to 150 mmHg for the first measurement. 

For subsequent measurements, the cuff pressure was inflated about 30 mmHg above the 

previous recorded SP. Then the deflation command was activated to deflate the cuff at a 

deflation rate of about 3 ~ 4 mmHg per second. The LabView VI was used to measure 

and record signal data from the cuff inflation until the cuff pressure was 30 mmHg 

below the recorded DP. Measured data was saved in a computer spreadsheet under the 

given file name for further analysis. After the LabView VI stopped recording, the fast 
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deflation command was used to totally deflate the cuff. The fast deflation command had 

to be entered after the LabView VI stopped recording to prevent large signal changes 

produced by the piezoelectric film elements.  

After Data Collection 

Two observers recorded the subject’s blood pressure separately. The recorded SP and 

DP values were compared between two observers. If the difference of either SP or DP 

value was greater than 5 mmHg, the data could not be used and an extra measurement 

had to be carried out. 

If all three pressure readings were within the limit range of 5 mmHg, an averaged blood 

pressure value was told to the subject. During the waiting period for the next 

measurement, time was given for the subject to ask questions. The collection date and 

time was recorded to ensure that more than a one minute break had been taken between 

the two measurements.  
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Chapter 3   Algorithm Development 

3.1 Introduction 

This chapter covers the application of the signal processing techniques described in the 

previous chapter and three different algorithm development procedures for BP 

measurement. Heart beat (HB) waveform and heart rate (HR) waveform detection 

methods will be covered in detail. The corresponding pressure value of each detected 

HB will be briefly explained. Developed algorithms were height-based algorithm, STFT 

algorithm and ANN classification algorithm. Results from each algorithm were included 

and discussed in this chapter. The best algorithm was selected for further development. 

Height-based algorithm was developed from the basic idea of the traditional 

Oscillometric height-based technique. STFT algorithm was developed based on signal 

magnitude and PSD found in the frequency domain. ANN classification algorithm was 

developed from the signal pattern changes through the measurement. 

The new developed cuff sensors were capable to pickup all the significant reflected 

waveform from the brachial artery as shown in Figure 3.1.1. Figure 3.1.1(a) shows the 

waveform changes from the supra-systolic region to the systolic region. Figure 3.1.1(b) 

shows the waveform changes from the diastolic region to the sub-diastolic region. The 

top part of the waveform (red) represents the measured cuff pressure values. The bottom 

part of the waveform (blue) represents the voltage difference between the two inside 

sensors. The vertical dashed line represents the average pressure obtained by two 

observers. It is quite easy to identify the signal changes by visualizing the measured 

signal. An ANN classifier was developed to classify each HB into one of the pressure 

regions, Supra-Systolic, Systolic to Diastolic and Sub-Diastolic region. 

MATLAB R2006a (The MathWorks, U.S.) software program was used to complete the 

signal processing and algorithm development design. Some MATLAB build in and self 

developed functions were used. In this report, the function name appeared in Arial font 

characters represented as build in functions in MATLAB, e.g. FFT. Whereas the 
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function name appeared in Italic font characters represented as self developed functions, 

e.g. funMag.  
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Figure 3.1.1Measured signal from the inside sensors (blue), pressure sensor (red) and the blood pressure 
estimated from observers (vertical dashed line). 

 

3.2 Signal Processing 

The purpose of raw data pre-processing was to eliminate unnecessary signals and 

strengthen the relevant features. As described in Chapter 2, the raw data was first 

measured from the subject’s brachial artery through an amplifier to enlarge the 

measured signal before passing on to the data acquisition card to convert the analogue 

signal to digital. The data acquisition card was installed with its running software, 

LabView, in the computer. The measured data signals were stored in a text formatted 

spreadsheet which was created by LabView.  

The MATLAB program was used for the rest of the signal analysis process. Typical 

signals measured from the new developed cuff are shown in Figure 3.2.1 for a cuff 

deflation cycle. The inside and outside sensor signals shown have been band-pass 

filtered using fourth order Butterworth digital filter with corner frequencies at 0.25 and 
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30 Hz and applied zero-phase digital filtering to ensure zero-phase distortion. The signal 

obtained from the inside sensors was the voltage difference between two sensors, DT2 

and DT1. The pressure sensor signal shown in Figure 3.2.1(c) has been low-pass filtered 

in both directions using the third order Butterworth digital filter with corner frequency 

at 10 Hz. The pressure values were estimated by applying the polynomial coefficients 

generated from the cuff calibration linear regression. 

(a) Inside Sensor

(b) Outside Sensor

(c) Pressure Snesor
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Figure 3.2.1 An example of signal data from subject 1, recording 2. 

 

In all cases the outside sensor produced a signal similar to an oscillometric plot. The 

amplitude increased as cuff pressure approached the mean blood pressure and decreased 

thereafter. The outside sensor appears relatively noise free and provides a good signal 

for identifying each HB. The HB detection method will be described in the following 

section. Each individual HB was then windowed using the Hanning window, where the 

window length was about 70 ~ 80% of the mean beat rate from the start of the beat. 

A number of algorithms were developed to estimate the blood pressure either from each 

HB waveform or the overall trend of the measured signals.  
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3.3 Heart Beat / Rate Determination 

The outside sensor signal as shown in Figure 3.2.1(b) was used for identifying each HB. 

A second order Butterworth Low-Pass Filter (LPF) was applied initially to the signal to 

filter out high frequency signals at corner frequency of 2 Hz. All the minimum turning 

points (troughs) from the low-pass filtered signal were detected. Each HB starting point 

was then defined as the maximum point (peak) of the initial signal between two troughs. 

The HR was calculated as one over the time difference between two peaks in beats per 

second, i.e. equation (3.1). Mean HR was calculated as the total HR divided by the total 

number of beats, i.e. equation (3.2).  

   
Time(1)Time(2)

1
HR

−
=  (3.1) 

 
HR

mean HR = 
No. of beats
∑  (3.2) 

HB detection algorithm did not always perfectly match the peak point. Subjects with 

faster or slower HR would end up with error detection. Error checking was carried out 

and the LPF corner frequency was adjusted if the detected HB did not pass the error 

checking. The first stage of the error checking algorithm was to calculate the mean HR 

from the whole signal excluding the first and the last three HB. The algorithm checked 

through each detected HB, if any of the HR was either 1.6 times greater or 0.5 times 

lesser than the mean HR, the HB with the smaller amplitude value was eliminated. The 

new HR of each HB and the mean HR was calculated. The new HR and mean HR 

results passed to the next stage of the checking algorithm. This part only checked the 

length of the first and the last three HB. If any of the first three HR was either 1.6 times 

greater or 0.5 times lesser than the mean HR, the HB and the HB before it was 

eliminated, e.g. if the second HB failed the test condition, both the first and second HB 

was eliminated. The same principle applied to the last three HB. This procedure 

removed the noise signal obtained during the data collection. If the result had only one 

HB left, the corner frequency of the LPF applied on the outside signal was reduced by 

0.1 Hz. Then the whole HB detection and the error checking procedures had to be 

carried out again. Otherwise, the program leads to the last stage of the checking 

algorithm which checked the length of the HB.  
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The shortest HB length must be greater than the length of the Hanning window. The 

Hanning window length was firstly set at 80% of the mean HB length. If the shortest 

HB length was lesser than the length of the Hanning window, the Hanning window 

length was decreased by 1%. The length of the Hanning window kept decreasing by 1% 

until the shortest HB length was greater or equal to the length of the Hanning window 

or the length of the Hanning window was lesser than 70% of the mean HB length. If the 

shortest HB length was greater than the Hanning window length, the HB detection was 

finalised. Otherwise, the corner frequency of the LPF applied on the outside signal was 

reduced by 0.1 Hz. Then the whole HB detection and the error checking procedures was 

carried out again. If the corner frequency decreased to 0.5 Hz and none of the HB 

detection procedures passed the error checking, an error message was displayed and the 

program stopped. When the HB detection finalised, each starting point of the HB was 

shifted by a fixed length forward to ensure the main pulse was covered within the 

detected HB. The shifting length was set at half of the mean HR. An example result is 

shown in Figure 3.3.1. The vertical straight lines in Figure 3.3.1(a) represent the final 

HB detected from the measurement. The dashed lines in Figure 3.3.1(b) represent the 

HB detected after shifting the starting point. The flowchart of the HB / HR 

determination program is shown in Figure 3.3.2. 
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Figure 3.3.1 HB determination result from outside sensor. 
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Figure 3.3.2 MATLAB development flowchart for heart beat / rate determination. 
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3.4 Pressure Selection 

After the HB was defined, the corresponding pressure value was from each HB. The 

cuff pressure value was measured from the pressure sensor. The length of each HB 

corresponds to a range of pressure values. The pressure oscillation signal was similar to 

the outside sensor. A pressure was selected at the point on the upstroke of the pressure 

oscillation signal.  

The selection program was implemented in MATLAB. The pressure sensor signal 

shown in Figure 3.4.1 has been band-pass filtered in both directions using the fourth 

order Butterworth digital filter with corner frequencies at 0.25 and 30 Hz. Pressure 

values have been divided based on the range of individual HB. All troughs from the first 

point of the HB range to the maximum point of each oscillation signal have been found. 

If only one trough has been found, that corresponding point would be selected as the 

pressure value. If more than one trough has been found and the minimum point of the 

oscillation signal was less than zero, the minimum point would be selected as the 

pressure value. Otherwise, the program would select the last trough point as the pressure 

value. The reason for selecting the minimum point will be discussed in the discussion 

section in Chapter 5, page 106. Figure 3.4.2 shows an example of the result of selected 

pressures which are given numerically. 
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Figure 3.4.1 Blue line is the pressure sensor signal after band-pass filtered. Red circles indicate the 
pressure selected point of each HB. 
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Figure 3.4.2 Blue line is the outside sensor oscillating signal. Green dashed lines indicate the start of each 
HB. Selected cuff pressures for each HB are given numerically. 

 

3.5 Height-based Algorithm 

Height-based algorithm was developed from the idea of the traditional method used in 

the Oscillometric method. This method has been discussed in Chapter 1. This algorithm 

calculated the amplitude of each HB. The amplitude was calculated by taking the 

difference between the maximum and minimum points of each HB. Amplitudes were 

then normalised to the maximum amplitude. SP and DP values were selected from the 

preset ratio compared to the maximum amplitude. 

SP and DP ratios were defined from the measured results. Auscultatory results obtained 

from two observers were used to find the average ratio where the SP and DP occurred. 

The average ratio to its maximum amplitude was calculated and stored. Twenty-seven 

measurements were used to find the average ratios for this algorithm. Three signal data 

(inside, outside and pressure sensors) from each measurement were tested separately as 

the input source. SP was selected at the pressure where the oscillation amplitude was 

60% of the maximum oscillation for the inside sensor signal and 70% for both the 

outside and the pressure sensor signals. DP was selected at the pressure where the 

oscillation amplitude was 40% of the maximum oscillation for the inside sensor signal 

and 60% for both the outside and the pressure sensor signals. The ratio taken for this 

algorithm was based on the Auscultatory results.  

The same twenty-seven measurements were tested by applying the preset ratio for each 

signal to estimate the BP for each subject. The flowchart of this algorithm is shown in 

Figure 3.5.1. The results were compared with the AAMI and BHS standards to check 

the accuracy of this algorithm.  
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Figure 3.5.1 Height-based algorithm flowchart. 

 

3.6 STFT Algorithm 

The STFT provides the information of the magnitude of each segment signal at different 

time and frequency. Spectrogram function in MATLAB was used to calculate the 

magnitude, frequencies, time and PSD of each segment signal. Arguments in the 

function were set 100 for the length of Hamming window, 50% overlap between 
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segments, 256 for FFT length and the sampling frequency for the function. An example 

of 2D graph Time-Frequency graph is shown in Figure 3.6.1. The colour represents the 

magnitude of each segment signal at a different time and frequency. It clearly shows 

that during the time between 10 ~ 35 seconds the magnitudes were higher than at the 

other times at the frequencies between 10 ~ 30 Hz. BP was estimated at the edge where 

the magnitude changed significantly. 3D Time-Frequency, frequency between 10 ~ 35 

Hz, and the magnitude graph is shown in Figure 3.6.2(a) and 3D Time-Frequency and 

PSD graph is shown in Figure 3.6.2(b). Both the average values at each time segment of 

frequency range between 10 ~ 35 Hz was calculated. The averaged values were 

normalised with the largest value to get a ratio plot as shown in Figure 3.6.3. It was 

clearer to see the changes of the PSD than the magnitude of the segment signal. A 

threshold was set at 30% of the signal and the first point above the threshold from the 

averaged PSD values as the systolic blood pressure and the last point as the diastolic 

blood pressure was selected. The flowchart of this algorithm is shown in Figure 3.6.4. 

This algorithm was tested on all sensor signals and the results were compared with the 

AAMI and BHS standards to check the accuracy. 
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Figure 3.6.1 Two-dimensional Time-Frequency plot for subject 9, recording 1.
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Figure 3.6.2 Three-dimensional STFT plot for subject 9, recording 1. Frequency range from 10 ~ 35 Hz. 
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Figure 3.6.3 Averaged values at each time segment at frequency range from 10 ~ 35 Hz. 
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Figure 3.6.4 STFT algorithm flowchart. 

 

3.7 Artificial Neural Network Classification 

As mentioned at the beginning of this chapter, the measured signals changed throughout 

the measurement from the supra-systolic pressure region to the sub-diastolic pressure 

region. An ANN classifier was developed to classify each detected HB.  

Raw signal data was pre-processed by following the procedure described in section 3.2. 

Each HB and HB pressure was determined as described in section 3.3 and 3.4. Twenty-

four features were extracted from each detected HB. The detail of individual features 

will be described in the next section. The extracted features were used as the input of 
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the ANN. The structure of the ANN and the training function was decided. Eighteen 

measurements were used for training the ANN and nine measurements were used for 

testing the trained ANN. SP and DP were selected from the output of the ANN. BP 

selection method will be described in detail. This algorithm was tested on all sensor 

signals and the results were compared with the AAMI and BHS standards to check the 

accuracy. 

3.7.1 Input Features Extraction  

Features were extracted from each detected HB and obtained from both frequency and 

time domain. Average magnitude and PSD was extracted from the frequency domain. 

Total amplitude of each turning point, area under the curve, peaks and rate of change 

(RoC) were extracted from the time domain. Individual feature extraction functions 

were developed in MATLAB. Functions were named by its function purpose. These 

functions returned results to the main program and saved results into an Excel 

spreadsheet for ANN training and testing purpose.  

Features obtained from the frequency were similar to the STFT algorithm. An 

individual HB signal was sent to the funMag and the funPSD functions. The Hanning 

window was applied to each HB. FFT function was used to calculate magnitudes and 

PSD of the signal in different frequencies. The average magnitude and PSD values of 

each HB at frequency range between 5 ~ 35 Hz, 10 ~ 35 Hz, 15 ~ 35 Hz, 20 ~ 35 Hz 

and 25 ~ 35 Hz were calculated and returned to the main program. The funMag and the 

funPSD flowcharts are shown in Figure 3.7.2(a) and Figure 3.7.2(b), respectively.  

FFT function was applied to each HB and then applied to the Hanning window to 

emphasise the main pulse and force the signal outside the pulse range to zero. The 

signal outside the detected HB range was set to zero too. A new signal waveform was 

formed. An absolute maximum value was found from the new signal. Every point was 

normalised to that maximum value, so that the negative signal remained negative. 

Features extracted from the time domain were then carried out afterward. 

funAmp function was developed to calculate the total amplitude of each HB. Each 

turning point was found and the amplitudes from point to point were calculated. The 

sum of the amplitudes was calculated and returned to the main program. The flowchart 

of funAmp is shown in Figure 3.7.2(c). 
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funArea function was developed to calculate the area under the curve of each HB. 

Integration can be used to compute the area under a signal function [51] and the sum of 

the trapezoidal area approximates the integral of the function. The trapezoidal numerical 

integration (trapz) function was used and the result was returned to the main program. 

The flowchart of funArea is shown in Figure 3.7.2(d). 

funPeak function was developed to count the peaks and troughs at different thresholds. 

Thresholds were set at ±0.1, ±0.3, ±0.5 and ±0.7. Total peaks were counted above each 

positive threshold value and total troughs were counted below each negative threshold. 

Eight values were obtained for each HB and returned to the main program. An example 

is shown in Figure 3.7.1. The counted peaks and troughs are shown at the right hand 

side of the plot. The flowchart of funPeak is shown in Figure 3.7.2(e). 
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Figure 3.7.1 Peaks and troughs counting example. Blue line represents one HB signal. Red vertical lines 
are the peaks above the positive threshold 0.1 and green dashed lines are the troughs below the negative 

threshold -0.1.  Counted peaks and troughs are given numerically at the right hand side. 

 

funROC was developed to calculate the maximum positive and the maximum negative 

RoC of each HB. Each turning point was found and the amplitudes from point to point 

were calculated. RoC was calculated as the amplitude divided by the change of time as 

shown in equation (3.3). Amplitude calculated from peak minus trough gives a positive 

RoC and trough minus peak gives a negative RoC. The maximum positive and the 
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maximum negative RoC values were returned to the program. The flowchart of funROC 

is shown in Figure 3.7.2(f). 

 
Change in amplitude

Rate of Change
Change in time

y

x

∆
= =
∆

 (3.3) 

fundPdt function was developed to calculate the maximum positive and the maximum 

negative slope of each HB. It was very similar to the funROC function. The only 

difference between them was the function fundPdt calculated the RoC at each data point 

instead of calculating the RoC at turning point to turning point. The maximum positive 

and the maximum negative slope values were returned to the program. The flowchart of 

fundPdt is shown in Figure 3.7.2(g). 

A total of 24 feature values, 10 values from the frequency domain and 14 values from 

the time domain, were extracted from each HB and saved into an Excel spreadsheet for 

ANN training and testing purpose.  
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Figure 3.7.2 Feature extraction functions. 
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3.7.2 Design and Training of the Neural Network  

As mentioned in 2.3.1, an ANN needs to go through the training process and adjust 

weights until the network output matches the target. There are four steps in the training 

process [56].  

1 Assemble the training data – the feature inputs extracted from each HB 

2 Design the network object – design and initialise the neural network 

3 Train the network – modify weights 

4 Simulate the network – compare the output and target values by applying new 

input data. 

Data Assembling 

The data were required to be organised according to the architectural structure of the 

neural network program. Input and output matrices were gathered for ANN training. For 

the input matrix, each HB with 24 features was gathered in a column vector. The total 

number of columns represented the total number of HB entered the ANN. Each HB has 

an output vector corresponded to its blood pressure region, either Supra-Systolic, 

Systolic to Diastolic or Sub-Diastolic region. The target vector of each region is shown 

in Figure 3.7.3 and the structure of the input and output matrices are shown in Figure 

3.7.4.  

   

 

Figure 3.7.3 Target vector of each pressure region. 
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No Features Subject 1 Subject 2 … Subject n 

  Time Domain HB 1 HB 2 … HB n HB 1 HB 2 … HB n … HB 1 HB 2 … HB n 

1 Total amplitude                       

2 Area under the curve                       

3 Max. + dP/dt                       

4 Max. - dP/dt                       

5 Peak < -0.1                       

6 Peak < -0.3                       

7 Peak < -0.5                       

8 Peak < -0.7                       

9 Peak > 0.1                       

10 Peak > 0.3                       

11 Peak > 0.5                       

12 Peak > 0.7                       

13 Max. + RoC                       

14 Max. - RoC                       

  Frequency Domain                       

15 Mag. 5 ~ 35 Hz                       

16 Mag. 10 ~ 35 Hz                       

17 Mag. 15 ~ 35 Hz                       

18 Mag. 20 ~ 35 Hz                       

19 Mag. 25 ~ 35 Hz                       

20 PSD 5 ~ 35 Hz                       

21 PSD 10 ~ 35 Hz                       

22 PSD 15 ~ 35 Hz                       

23 PSD 20 ~ 35 Hz                       

24 PSD 25 ~ 35 Hz                       

       

       

       

       

  

    

     

    

  1    0  …………………  1    0 

 Target output vector 0    0      0    0 

  0    1      0    1 
               
           

  

Output vector 
depends on the 
pressure region          

Figure 3.7.4 Input and output matrices for the ANN. 
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Designing and Training the Neural Network 

An input layer, a hidden layer and an output layer was constructed as shown in Figure 

3.7.5. Input matrix of all features extracted from each HB was inserted in the input layer. 

These values were the data used for training in the ANN. The hidden layer in the ANN 

consisted a number of neurons and a tan-sigmoid transfer function. The number of 

neurons (S1) in the hidden layer was selected from 1 to 30. The tan-sigmoid transfer 

function calculated output value in the range between -1 and 1. The output values of the 

hidden layer were used as the input values for the output layer. A log-sigmoid transfer 

function was used to calculate output value in the range between 0 and 1. A random 

seed (0) was selected for the initialization of the weights and bias. newff function was 

used to create a trainable feedforward network and initialize the weights and biases of 

the network [56].  

 

Figure 3.7.5 Network architecture built for ANN classification algorithms. 

 

Once the network weights and biases have been initialized, the network is ready for 

training. Levenberg-Marquardt backpropagation training function was selected to train 

the ANN in a faster way. Termination criteria Parameters were set as follows: 

� No. of epochs or iterations:  500 

� Performance Error Goal (PEG): 0.001 (0.1% error) 

� Maximum performance gradient: 1×10-10 
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During the training process, the ANN iteratively trained the network and modified the 

weights until one of the termination parameter reached the set value. 30 different 

numbers of neurons were used to construct 30 different ANNs, which were trained on 

each sensor signals and saved for simulation. The output result was compared to the 

target and the error between them was calculated. Any difference between the output 

vector and the target output vector would be counted as one error. Such error counting 

would be continued over the entire data set. The sum of counted errors divided by the 

total number of vectors would be used to calculate the percentage error for both training 

and testing data sets. A good ANN should have both training and testing errors as low 

as possible and as close as possible.  

3.7.3 Blood Pressure Selection Method 

Blood pressures were selected from the output vector of the ANN. Every output 

contained values between 0 and 1. An example of the target and the output values 

simulated by an ANN is shown in Figure 3.7.6. The output values almost perfectly 

matched the target. Another example in Figure 3.7.7 shows that the Supra-systolic and 

Sub-diastolic output were not as clear as the output between SP to DP. Therefore, blood 

pressures were selected from the SP to DP output only. int8 function was used to 

convert the output vector to a vector of signed 8-bit integers [51]. It means all values 

above 0.5 will become 1 and others are 0. From the designed target all pressure between 

SP and DP should have second row of output close to 1. The algorithm selected all the 

1s from the second row of the output. In some situations, large pulses caused by body 

motion were recorded at the beginning and/or at the end of the measurement. Therefore, 

the first three HB with consecutive output of 1s were picked and the first HB from that 

three was selected for SP. The last three HB with consecutive output of 1s were picked 

and the last HB from that three was selected for DP. An example is shown in Table 

3.7.1 for algorithm BP selection. 
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Figure 3.7.6 Example of an ANN simulated output for subject 4, recording 3. The symbol ○ with the blue 

solid line represents the target output for the Supra-SP region. The symbol * with the blue broken line 
represents the actual output from the ANN for the Supra-SP region. The symbol ◊ with the red solid line 

represents the target output between the SP and DP regions. The symbol + with the red broken line 
represents the actual output between the SP and DP regions. The symbol □ with the black solid line 

represents the target output for the Sub-DP region. The symbol × with the black broken line represents the 
actual output from the ANN for the Sub-DP region. 
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Figure 3.7.7 Example of an ANN simulated output for subject 7, recording 3. The symbol ○ with the blue 

solid line represents the target output for the Supra-SP region. The symbol * with the blue broken line 
represents the actual output from the ANN for the Supra-SP region. The symbol ◊ with the red solid line 

represents the target output between the SP and DP regions. The symbol + with the red broken line 
represents the actual output between the SP and DP regions. The symbol □ with the black solid line 

represents the target output for the Sub-DP region. The symbol × with the black broken line represents the 
actual output from the ANN for the Sub-DP region. 
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Table 3.7.1 ANN classification algorithm BP selection. Yellow boxes highlight the target HB for BP 
selection. Blue boxes highlight the algorithm selected HB for BP selection. 

 
Supra-Systolic 

Region 
Systolic to Diastolic Region Sub-Diastolic Region 

HB No. 1 2 3 4 5 6 7 8 9 10 11 

1 1 1 0 0 0 0 0 0 0 0 

0 0 0 1 1 1 1 1 0 0 0 
Target 
Output 

0 0 0 0 0 0 0 0 1 1 1 

0.86 0.73 0.47 0.66 0.38 0.21 0.46 0.3 0.11 0.32 0.24 

0.52 0.4 0.53 0.46 0.78 0.89 0.67 0.51 0.65 0.23 0.01 
ANN 
Output 

0.1 0.35 0.34 0.21 0.15 0.34 0.41 0.73 0.61 0.58 0.75 

1 1 0 1 0 0 0 0 0 0 0 

1 0 1 0 1 1 1 1 1 0 0 
Converted 

ANN 
Output 0 0 0 0 0 0 0 1 1 1 1 

 

3.8 Algorithm Validation Result Comparison 

Result from each algorithm was presented in Bland and Altman plots and a table to 

show the mean, SD and the percentage of the measurement error. The validation result 

which Passed/Failed the AAMI protocol and the grades obtained according to the BHS 

protocol were also included in the table. The algorithm will be considered for further 

development if it passed the AAMI criteria and received a grade of A or B under the 

BHS protocol for both systolic and diastolic blood pressures. 

3.8.1 Height-based Algorithm  

Figure 3.8.1 to Figure 3.8.3 show the Bland Altman plot to compare Auscultatory and 

Height-based algorithm results by using different sensor signals. Table 3.8.1 

demonstrates the result compared to the AAMI and BHS standard protocols. 
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Figure 3.8.1 Blood pressure estimation from inside sensor signal and Auscultatory result comparison. 
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Figure 3.8.2 Blood pressure estimation from outside sensor signal and Auscultatory result comparison. 
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Figure 3.8.3 Blood pressure estimation from pressure sensor signal and Auscultatory result comparison. 

 

Table 3.8.1 Height-based algorithm result compared to the standard protocols. 

Systolic Pressure Diastolic Pressure 
Standard 
(SP / DP) Height 

based Measurement 
Error 

Absolute difference 
(%) 

Measurement 
Error 

Absolute difference 
(%) 

AAMI BHS 

Sensor mean SD ≤ ±5 
≤ 

±10 
≤ ±15 mean SD ≤ ±5 

≤ 
±10 

≤ ±
15 

Pass/Fail Grades 

Inside -5.33 15.44 37.04 59.26 70.37 -2.85 5.65 44.44 92.59 100 F/P D/C 
Outside -5.73 10.79 66.67 74.07 88.89 -0.02 5.1 66.67 96.3 100 F/P C/A 
Pressure -3.38 11.67 40.74 74.07 81.48 2.22 5.61 66.67 88.89 100 F/P C/A 

 

Result from Table 3.8.1 shows that Height-based BP measurement algorithm failed both 

the AAMI and BHS standard protocols. Only DP measurement from the outside and the 

pressure sensors passed these two standard protocols. This algorithm used fixed 

percentile rule to estimate SP and DP values. The selected ratios for SP and DP would 

not be able to fit all subjects. Therefore, this algorithm was not selected for future 

development. But the amplitude of each HB could be a useful feature in the future 

development. 

3.8.2 STFT Algorithm 

Figure 3.8.4 to Figure 3.8.6 show the Bland Altman plot to compare Auscultatory and 

STFT algorithm results by using different sensor signals. Table 3.8.2 demonstrates the 

result compared to the AAMI and BHS standard protocols. 
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(a) Systolic Blood Pressure (b) Diastolic Blood Pressure
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Figure 3.8.4 Blood pressure estimation from inside sensor signal and Auscultatory result comparison. 
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Figure 3.8.5 Blood pressure estimation from outside sensor signal and Auscultatory result comparison. 
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Figure 3.8.6 Blood pressure estimation from pressure sensor signal and Auscultatory result comparison. 

 

Table 3.8.2 STFT algorithm result compared to the standard protocols. 

Systolic Pressure Diastolic Pressure 
Standard 
(SP / DP) 

STFT 
Measurement 

Error 
Absolute difference 

(%) 
Measurement 

Error 
Absolute difference 

(%) 
AAMI BHS 

Sensor mean SD ≤ ±5 
≤  

±10 
≤ ±15 mean SD ≤ ±5 

≤  
±10 

≤ ±15 Pass/Fail Grades 

Inside 3.74 10.86 70.37 92.59 92.59 8.04 13.79 29.63 62.96 85.19 F/F B/D 

Outside 20.59 19.97 0 7.41 18.52 1.15 16.02 40.74 77.78 92.59 F/F D/C 

Pressure 25.93 10.98 0 11.11 22.22 4.04 18.7 44.44 77.78 85.19 F/F D/C 

 

Result from Table 3.8.2 shows that STFT BP measurement algorithm failed both the 

AAMI and BHS standard protocols. Only SP measurement from the inside sensor signal 

passed the BHS standard protocol. Figure 3.8.5(a) and Figure 3.8.6(a) show that SP 

estimation from both outside and pressure sensors were overestimated for about 20 to 

25 mm Hg. A possible reason of this might be the unstable signal recorded during the 

first few seconds of data collection. After the STFT algorithm was applied, a large value 

would be calculated and selected as the SP. An example is shown in Figure 3.6.3(a). 

Therefore, this algorithm was not selected for future development.  

3.8.3 ANN Classification 

Figure 3.8.7 shows the training and testing errors tested from different sensor signals 

with a different number of neurons in each ANN. Total of 629 HBs (83 HBs from the 

Supra-systolic region, 453 HBs from the systolic to diastolic region and 93 HBs from 
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the Sub-diastolic region) from 18 measurements were used for training the ANN and 

273 HBs (51 HBs from the Supra-systolic region, 182 HBs from the systolic to diastolic 

region and 40 HBs from the Sub-diastolic region) from 9 different measurements were 

used for testing. A total of 30 ANNs were tested on each sensor signal. Table 3.8.3 

shows a summary result of the number of ANNs that passed each standard protocol. 

Figure 3.8.8 to Figure 3.8.10 show the Bland Altman plot of the best ANN from 

different sensor signals to compare ANN classification and Auscultatory algorithm 

results. Table 3.8.4 is the best ANN result compared to the AAMI and BHS standard 

protocols. 

(a) Inside Sensor Signal

(d) Testing Errors Comparison
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Figure 3.8.7 (a) to (d) show the training and testing errors from different sensor signals. The blue solid 

line represents the percentage of the training errors. The green dotted line represents the percentage of the 

testing errors. (d) shows the comparison of the testing error between different sensors. The blue solid line 

represents the percentage of the testing errors from the inside sensor signal. The green dotted line 

represents the percentage of the testing errors from the outside sensor signal. The red dash-dot line 

represents the percentage of the testing errors from the pressure sensor signal. 
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Table 3.8.3 Number of ANNs that passed the standard protocols. 

 Pass AAMI Pass BHS Grade A Pass BHS Grade B 

Sensor SP DP SP DP SP DP 

Inside 0 10 0 4 0 13 

Outside 1 13 0 4 0 12 

Pressure 23 30 15 29 4 0 
 

(a) Systolic Blood Pressure (b) Diastolic Blood Pressure
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Figure 3.8.8 Blood pressure estimated from inside sensor signal. Bland and Altman plot comparing ANN 
with 22 neurons and Auscultatory result. 
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Figure 3.8.9 Blood pressure estimated from outside sensor signal. Bland and Altman plot comparing 
ANN with 30 neurons and Auscultatory result. 
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Figure 3.8.10 Blood pressure estimated from pressure sensor signal. Bland and Altman plot comparing 
ANN with 26 neurons and Auscultatory result. 

 

Table 3.8.4 Best ANN algorithm result compared to the standard protocols. 

Systolic Pressure Diastolic Pressure 
Standard 
(SP / DP) Best 

ANN Measurement 
Error 

Absolute difference 
(%) 

Measurement 
Error 

Absolute difference 
(%) 

AAMI BHS 

Sensor 
(No. of 
neurons) 

mean SD ≤ ±5 
≤ ±
10 

≤ ±15 mean SD ≤ ±5 
≤ ±
10 

≤ ±15 Pass/Fail Grades 

Inside 
(22) 

3.74 12.31 25.93 74.07 85.19 2.61 6.31 62.96 88.89 96.3 F/P D/A 

Outside 
(30) 

-4.8 6.54 62.96 81.48 85.19 1.89 5.41 62.96 92.59 100 P/P C/A 

Pressure 
(26) 

1.22 4.61 66.67 100 100 1.28 5.58 66.67 88.89 100 P/P A/A 

 

Figure 3.8.7 shows that all the differences between training and testing errors from each 

ANN are too large. This means that the ANNs were over-trained by the training data. 

ANNs tend to match the training data perfectly, so the ANNs cannot identify the new 

data. Result from Table 3.8.3 shows that many ANNs tested on the pressure sensor 

passed both the AAMI and BHS standard protocols. Also the best ANN tested result 

shown in Table 3.8.4 gives a good result compared to the other two algorithms, i.e. 

Height-based and STFT. Therefore, ANN classification algorithm was selected for 

future development.  
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3.9 Summary 

Three algorithms, Height-based, STFT and ANN classification, were developed by 

applying signal processing techniques. Inside, outside and pressure sensor signals were 

tested on these three algorithms. A total of 3 measurements were taken from each of 9 

subjects (27 measurements) and these were used to validate these algorithms. Results 

obtained by each algorithm were compared to the AAMI and BHS standard protocols. 

ANN classification algorithm was selected for further development. More 

measurements from new subjects were required to validate the ANN algorithm. The 

ANN algorithm was further modified for faster and more accurate classification. 
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Chapter 4   Algorithm Modification, Validation and 

Finalisation 

4.1 Introduction 

This chapter covers the methods used to modify the selected algorithm (ANN 

classification) to get a better performance. Validations of the modified algorithms were 

tested using the new collected data before a final ANN was selected. Every modified 

algorithm was tested and compared to the standard protocols. The details of the 

modification, validation and finalisation procedures are described in this chapter. 

From the results of the three algorithms presented in Chapter 3, outside sensor signals 

produced a better result than the other two signals. Although more ANNs passed the 

AAMI and BHS standard protocols on the test of the pressure sensor signals, the overall 

ANN testing error for the outside sensor signals were lower than the pressure sensor 

signals. In consideration of the time required for ANN classification procedures for 

training, testing and BP estimation to validate the result of each measured signals, the 

outside sensor signal was selected for further testing.  

New measured data from 9 subjects, (each subject contributed 3 measurements,) were 

collected for the algorithm modification and validation. An algorithm which produced 

the best result would be selected for further testing. Then a total of 76 subjects, 

involving 228 measurements, was collected and tested on the selected algorithm. The 

BPM algorithm was kept modified until the result of the final algorithm met the 

requirements of the standard protocols. The final algorithm was tested on a total of 86 

subjects, involving 258 measurements, to pass the AAMI minimum requirement of 85 

subjects. 
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4.2 Algorithm Modification 

This research project focused on three main modifications of the ANN classification 

algorithm. This section describes the changes and modifications of the algorithm in 

detail. The first modification focused on the improvement of the existing ANNs. From 

the simulated output shown in Figure 3.7.6 and Figure 3.7.7 in Chapter 3, most of the 

output values were either greater than 0.8 or lesser than 0.2. The goal of the first 

modification was to train the ANN so that the simulated output had some transitional 

values. The second modification of the algorithm was to generate a second ANN after 

the first trained ANNs. The second ANN was trained to select the right HB for the BP 

estimation. The last modification was designed to get a better result by changing some 

of the features in the first ANN and using a different combination of the training inputs 

for the second ANN. 

4.2.1 ANN Improvement 

Results from the ANN training and testing errors in Chapter 3 showed that all the ANNs 

were over-trained. Those errors on the training set had a very small value, but the error 

became large when new data was tested on the network. A network that is simple (such 

as less neurons, features, etc) yet can complete the task without overfitting the data and 

with less error would be ideal. A few solutions for the training problem of ANNs are 

listed below: 

� Reset the initial network weights and biases with different values 

� Reduce the number of hidden layer neurons 

� Reduce number of training epochs (iterations) 

� Increase performance error goal (PEG) value 

� Decrease the number of input features 

� Use different training functions 

� Increase the number of training vectors 

Uniformly distributed pseudorandom numbers (rand) function was used to generate 

pseudorandom numbers. It was used to set the initial network of weight and bias values. 

This function initialized the state of a generator by entering a scalar integer value from 0 

to 232-1. A value of zero was used to set the generator to its default initial state. 

Numbers ranging from 0 to 100 were used to initialize 101 different weight and bias 
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matrices for ANNs.  

Numbers used for hidden layer neurons were ranged from 1 to 15 to generate 15 

different structures of ANN. The lesser the hidden layer neurons, the shorter the training 

time. The goal was to get the smallest number of hidden layer neurons that produced 

good training and testing results. 

The training epoch was set at 100 to shorten the training iteration. The training epoch 

was adjusted to check the difference between the training and testing results. If the 

result did not change much, then the smaller epoch value was selected. 

The PEG value was set between 0.001 and 0.2. Training and testing errors were 

calculated and compared. The PEG value was selected when the training and testing 

error values were low and the difference between them were small. 

The numbers of input features was reduced from 24 to 6, 12 and 18 inputs. The weight 

values of each trained ANN were checked. The weight values of each ANN were shown 

on an m-by-n matrix, where m is the number of neurons and n is the number of inputs. 

The average weight values of each input from the trained ANNs were calculated. Six 

input features were selected from the 6 highest weight values compared to the other 

inputs. Those features were the total amplitude, the area under the curve, the positive 

peaks above threshold 0.1 and 0.3, the maximum negative RoCand the average PSD 

value at a frequency range of 25 ~ 35 Hz of each HB. 12 input features would include 

the 6 inputs plus another 6 inputs which were the maximum negative slope, the positive 

peaks above threshold 0.7, the negative peaks below threshold 0.3, the average 

magnitudes at a frequency range of 5 ~ 35 and 10 ~ 35 Hz and the average PSD value at 

a frequency range of 15 ~ 35 Hz of each HB. 18 input features would include the 12 

inputs plus another 6 inputs which were the maximum positive slope, the positive peaks 

above threshold 0.5, the negative peaks below threshold 0.5, the average magnitudes at 

a frequency range of 15 ~ 35 and 20 ~ 35 Hz and the average PSD value at a frequency 

range of 10 ~ 35 Hz of each HB. New ANNs were trained by these new input data sets. 

Training and testing errors were recorded and compared to each other. The BP 

estimation results were compared to the standard protocols. 

PCA was also used to reduce the dimension of the input data sets. As discussed in 

section 2.3.2, each data dimension needs to get a zero mean data set. The mapstd 

function was applied to calculate it. The processpca function was used to process 
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input data sets using PCA so that each row was uncorrelated. The rows which 

contributed least to the total variation in the data sets were removed. Figure 4.2.1 shows 

the number of components left after running the processpca function by selecting 

different contribution thresholds. The contribution threshold was selected at the point 

where the numbers of components dropped deepest but without losing too many 

important values. In this case the contribution threshold was set at 0.014. New ANNs 

were trained by the new input data sets. Training and testing errors were recorded and 

compared to other input data sets. The BP estimation results were compared to the 

standard protocols. 
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Figure 4.2.1 PCA dimension reduction result. 

 

Different training functions were used to train the new ANNs. Levenberg-Marquardt 

backpropagation (Trainlm) training function was initially used. This function required 

less calculation speed and the performance function reduced at each iteration [56]. The 

training function Traingdx was used to update weight and bias values according to the 

gradient descent momentum and an adaptive learning rate. This function changes the 

learning rate to its optimal value during the training process. It takes more time than the 

other training functions. Another two training functions, Bayesian regularization 

(Trainbr) and BFGS Quasi-Newton backpropagation (Trainbfg), were used to improve 

the generalization of the ANNs. Trainbr is desirable to determine the optimal 

regularization parameters in an automated way. The Trainbfg algorithm modifies the 

typical performance function and the performance ratio to improve generalization for 
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training feedforward neural networks [56]. It generally converges in fewer iterations but 

requires more computation in each iteration. It is an efficient training function for 

smaller networks. New ANNs were trained by these training functions. Training and 

testing errors were recorded and compared to each other. The BP estimation results 

were compared to the standard protocols. 

4.2.2 Second ANN 

In all trained ANNs used so far, each HB has an output vector of three values 

representing the region of that HB. The BP estimation was decided from the second 

value of the output vector which represented the SP to DP region. The purpose of the 

second ANN was to utilise the output vector from the trained ANN as the input vector 

of the second ANN. The output of the second ANN has only one value to decide 

whether the HB lies within the SP to DP region. The pressure range of HB lay within 

and outside the SP to DP region represented by a target output of 1 and 0, respectively. 

Two networks, linear and feedforward backpropagation network, were tested and 

compared for the second ANN. 

A single Adaptive Linear Neuron network (ADALINE) was used for the second ANN. 

The diagram for this network is shown in Figure 4.2.2. The weight matrix w has only 

one row. The network output is: 

 1,1 1 1,2 2 1,3 3(Wp )a purelin b w p w p w p b= + = + + +  (4.1) 

The output a was equal to the target output and the bias b equal to 0. The weight matrix 

w was calculated by taking the target output divided by the input matrix (output of the 

first ANN). newlin function was used to create a linear layer. The number of output was 

set to 1. The algorithm used was the same as BP selection method described in section 

3.7.3 to select the HB for BP estimation. The results were compared to the standard 

protocols. 
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Figure 4.2.2 Adaptive Linear Neuron network architecture for 2nd ANN. 

 

Another simple feedforward backpropagation network was used to construct the second 

ANN instead of a linear network. The network structure is similar to the structure as 

shown in Figure 16 in Chapter 3. The input matrix was constructed from the output of 

the first ANN. A single hidden neuron and a tan-sigmoid transfer function were used in 

the hidden layer. A log-sigmoid transfer function was used to calculate a single output 

value in the range between 0 and 1. A different random seed from the first ANN was 

selected for the initialization of the weight and bias. newff function was used to create 

the network and Trainbfg function was used for the training function.  

4.2.3 Inputs Modification 

Inputs for the first ANN  

The original feature extractions for the first ANN inputs were described in section 3.7.1. 

The absolute maximum value of each measured signal was found from the processed 

signal. Every point was normalised to the maximum value for feature extractions in the 

time domain. If any one or two pulses were extremely larger than the other pulses, the 

significant features would not be able to be extracted after the normalisation procedure. 

Modifications of the inputs were made to improve this shortcoming.  

Approximate upper and lower envelopes were generated for each signal by interpolating 

a piecewise polynomial (spline) function through the peaks and minimum points of 

each HB. The amplitude was calculated by taking the difference between the lower and 
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the upper envelopes of each point. The result of the envelope amplitudes is shown in 

Figure 4.2.3.  

 

Figure 4.2.3 An example of envelope amplitude detection results from the outside sensor. The green solid 
line represents the measured signal. The vertical dashed lines represent the averaged SP and DP values 

measured by two observers. The symbol ○ represents the detected peaks of each HB. The blue dotted line 
represents the upper envelope through the peaks. The symbol □ represents the detected minimum points 
of each HB. The blue dash-dot line represents the lower envelope through the minimum points. The blue 

solid line represents the result of the envelope amplitudes. 

 

Features extracted from the frequency domain were unchanged. Before the features 

were extracted from the time domain, the envelope amplitudes were calculated for each 

individual HB. The maximum envelope amplitude of each HB was used as one of the 

input features. The signal of each individual HB was then normalised by subtracting the 

minimum lower envelope and then divided by the maximum upper envelope of that HB. 

Then the Hanning window was applied and the rest of the features were extracted from 

the time domain.  

After the normalisation of each HB, there were no more negative peaks existing. The 

features extracted from the time domain of each individual HB included the total 

amplitude, area under the curve, positive peaks from different thresholds, maximum 

positive and negative slopes, maximum positive and negative RoCand the envelope 

amplitude. The flowchart of features extraction is shown in Figure 4.2.4. ANNs were 

then trained and tested. 
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START

Heart Beat / Rate Determination

Get source signal

Apply band-pass filter to the signal data

Get lower and upper envelope values

Normalise each HB signal with its own 

envelope amplitude

Apply Hanning window to each HB

Save features matrix into a datasheet

End

Pressure Selection

Get features for each HB from 

frequency domain

Get features for each HB from time 

domain

 

Figure 4.2.4 Features extraction flowchart 

 

Inputs for the second ANN 

The original input vector for the second ANN was obtained directly from the output 

vector of the first ANN. It was based on the decision of the first ANN of that HB. 

Modification was made to include the trend of the waveform by gather the three 

consecutive output vectors as the input for the modified second ANN. This resulted in a 

total of 9 inputs instead of 3. Table 4.2.1 shows the structure of the modified input 

vector. 
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Table 4.2.1 Input and output matrices for the 2nd ANN. The yellow colour represents the corresponding 
output for each HB. The blue, gray and green colours represent how the modified 2nd ANN input 

matrices have been constructed. 

 
Supra-Systolic 

Region 
Systolic to Diastolic 

Region 
Sub-Diastolic 

Region  
HB No. 1 2 3 4 5 6 7 8 9 10 11 

1 1 1 0 0 0 0 0 0 0 0 

0 0 0 1 1 1 1 1 0 0 0 
1st ANN 

Target Output 
0 0 0 0 0 0 0 0 1 1 1 

0.86 0.73 0.47 0.66 0.38 0.21 0.46 0.3 0.11 0.32 0.24 

0.52 0.4 0.53 0.46 0.78 0.89 0.67 0.51 0.65 0.23 0.01 
1st ANN Output =  
2nd ANN Input 

0.1 0.35 0.34 0.21 0.15 0.34 0.41 0.73 0.61 0.58 0.75 

- 0.86 0.73 0.47 0.66 0.38 0.21 0.46 0.3 0.11 - 

- 0.52 0.4 0.53 0.46 0.78 0.89 0.67 0.51 0.65 - 

- 0.1 0.35 0.34 0.21 0.15 0.34 0.41 0.73 0.61 - 

- 0.73 0.47 0.66 0.38 0.21 0.46 0.3 0.11 0.32 - 

- 0.4 0.53 0.46 0.78 0.89 0.67 0.51 0.65 0.23 - 

- 0.35 0.34 0.21 0.15 0.34 0.41 0.73 0.61 0.58 - 

- 0.47 0.66 0.38 0.21 0.46 0.3 0.11 0.32 0.24 - 

- 0.53 0.46 0.78 0.89 0.67 0.51 0.65 0.23 0.01 - 

Modified 2nd ANN Input 

- 0.34 0.21 0.15 0.34 0.41 0.73 0.61 0.58 0.75 - 

2nd ANN Target Output - 0 0 1 1 1 1 1 0 0 - 
 

The number of output from this modified algorithm was two HBs shorter than the 

original number of HBs. A value of zero was added to the first HB so that the selection 

of the pressure corresponded to the selected HB. The blood pressure selection method 

was the same method described in section 3.7.3. Another selection was made without a 

zero added to the first HB so that the blood pressure selection was one HB higher than 

the output of the ANN classification algorithm. The results were compared to the 

standard protocols. 

4.3 Algorithm Validation 

4.3.1 Validation On Nine Subjects 

New measured data from 9 subjects, involving 27 measurements, was collected for the 

algorithm modification. First two measurements from each subject were used for 

training and the last measurement was used for testing purposes. A total of 429 HBs 

(139 HBs from the Supra-systolic region, 237 HBs from the systolic to diastolic region 

and 53 HBs from the Sub-diastolic region) from 18 measurements were used for 
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training the ANNs and 217 HBs (77 HBs from the Supra-systolic region, 114 HBs from 

the systolic to diastolic region and 26 HBs from the Sub-diastolic region) from 9 

different  measurements were used for testing. The algorithm which gave the best result 

was selected for further testing on more subjects. 

4.3.1.1 ANN Improvement 

101 different weight and bias matrices were initialised by using 101 different random 

seeds, 0 ~ 100. 15 different numbers of hidden layer neurons were combined with 101 

different initialised matrices to generate a total of 1515 numbers of ANNs. 6, 12, 18 and 

24 inputs were tested on these 1515 ANNs individually. The Trainlm training function 

was used to train the ANNs. The training epoch was set at 100 and the PEG was set at 

0.001. Each input vector with 15 different neuron numbers had 101 different training 

and testing results. The mean and minimum testing errors from those 101 results and the 

different input values were calculated and presented in Figure 4.3.1. Results showed 

that the ANNs using 1 or 2 hidden layer neurons have the highest testing errors. ANNs 

using 3 to 5 hidden layer neurons have less numbers of hidden layer neurons and testing 

errors. ANNs with 3 to 5 hidden layer neurons were thus selected for future testing. 

ANNs using 6 inputs have a higher mean and minimum testing error than the other 

number of inputs. Table 4.3.1 and Table 4.3.2 show the result of the number of ANNs 

that passed the standard protocols. Values in Table 4.3.1 are the summary of results 

from 1515 ANNs. Table 4.3.2 summarises those ANNs that passed standard protocols 

out of 303 ANNs where only those ANNs with 3 to 5 hidden layer neurons were 

selected for further comparison. The highlighted values are the values used for 

comparison. 
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(a) 6 Input Data Sets
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(b) 12 Input Data Sets

(c) 18 Input Data Sets (d) 24 Input Data Sets

(e) Mean Testing Errors Comparison (f) Minimum Testing Errors Comparison  
Figure 4.3.1 (a) to (d) show the mean and minimum testing error from 101 results of each input data set. 

The symbol ○ with the blue solid line represents the minimum testing errors from the same number of 

neurons with 101 different random seeds. The symbol □ with the green dotted line represents the mean 

testing errors from the same number of neurons with 101 different random seeds. (e) and (f) show the 

comparison of the mean and minimum testing error between input data sets. The symbol ○ with the blue 

solid line represents the result from the 6 input data sets. The symbol □ with the green dotted line 

represents the result from the 12 input data sets. The symbol * with the red dash-dot line represents the 

result from the 18 input data sets. The symbol ◊ with the cyan dashed line represents the result from the 

24 input data sets. 
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Table 4.3.1 Number of ANNs passed the standard protocols by using Trainlm training function with 
0.001 PEG. 

Pass AAMI 
Pass BHS 
Grade A 

Pass BHS 
Grade B 

BHS Recommended 
Grades (SP/DP) No. of 

Inputs 

No. of 
ANNs 

(15×101) SP DP SP DP SP DP A/A A/B B/A B/B 

6 1515 25 1360 0 1302 4 42 0 0 4 0 

12 1515 298 1414 7 1332 57 54 7 0 52 1 

18 1515 301 1389 26 1231 81 93 24 0 66 5 

24 1515 276 1380 21 1165 52 125 16 4 43 6 

Total 6060 900 5543 54 5030 194 314 47 4 165 12 
 

Table 4.3.2 Number of 3 to 5 hidden layer neuron ANNs passed the standard protocols. 

Pass AAMI 
Pass BHS 
Grade A 

Pass BHS 
Grade B 

BHS Recommended 
Grades (SP/DP) No. of 

Inputs 

No. of 
ANNs 
(3×101) SP DP SP DP SP DP A/A A/B B/A B/B 

6 303 1 275 0 267 0 8 0 0 0 0 

12 303 42 286 3 273 7 9 0 0 10 0 

18 303 63 276 10 239 14 18 9 0 11 0 

24 303 60 281 6 226 9 31 4 1 7 1 

Total 1212 166 1118 19 1005 30 66 13 1 28 1 
 

Table 4.3.1 shows that most of the ANNs passed both the AAMI and BHS standard 

protocols for DP selection. Trainlm and Traingdx training functions were used to train 

the 4 different input sets (6, 12, 18 and 24) of ANNs. Training epochs were set at 100 

and the PEGs were set at 0.1. Each input vectors were trained with 3 different numbers 

of neurons (3 to 5) and 101 different weight and bias matrices. The results of the 

number of ANNs that passed the standard protocols were shown in Table 4.3.3 and 

Table 4.3.4 by using Trainlm and Traingdx training functions, respectively. These 

results are not as good as those results shown in Table 4.3.2. A comparison of the 

training and testing errors tested from different training functions are shown in Figure 

4.3.2(a) to Figure 4.3.2(d). These results were selected from the ANNs by using 24 

inputs and 3 hidden layer neurons.  
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Table 4.3.3 Number of ANNs that passed the standard protocols by using Trainlm training function with 
0.1 PEG. 

Pass AAMI 
Pass BHS 
Grade A 

Pass BHS 
Grade B 

BHS Recommended 
Grades (SP/DP) No. of 

Inputs 

No. of 
ANNs 
(3×101) SP DP SP DP SP DP A/A A/B B/A B/B 

6 303 0 274 0 251 0 27 0 0 0 0 

12 303 23 273 1 243 8 22 1 0 7 1 

18 303 43 258 5 215 11 24 4 0 8 1 

24 303 50 247 4 200 19 31 3 0 14 1 

Total 1212 116 1052 10 909 38 104 8 0 29 3 
 

Table 4.3.4 Number of ANNs that passed the standard protocols by using Traingdx training function 
with 0.1 PEG. 

Pass AAMI 
Pass BHS 
Grade A 

Pass BHS 
Grade B 

BHS Recommended 
Grades (SP/DP) No. of 

Inputs 

No. of 
ANNs 
(3×101) SP DP SP DP SP DP A/A A/B B/A B/B 

6 303 0 301 0 290 0 12 0 0 0 0 

12 303 17 269 2 242 3 16 2 0 2 0 

18 303 33 265 4 218 8 34 2 2 7 0 

24 303 33 277 3 232 7 31 3 0 6 1 

Total 1212 83 1112 9 982 18 93 7 2 15 1 
 

(a) Trainlm Training Function with 
Performance Error Goal of 0.001

(b) Trainlm Training Function with 
Performance Error Goal of 0.1

(c) Traingdx Training Function with 
Performance Error Goal of 0.1

(d) Testing Error Comparison
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Figure 4.3.2 (a) to (c) show the training and testing errors tested by using different training functions. 
Plots were selected from ANNs using 24 input data sets with 3 hidden layer neurons. The blue solid line 
represents the percentage of the training errors. The green dotted line represents the percentage of the 

testing errors. (d) shows the comparison of the testing error between different training functions. The blue 
solid line represents the result from the Trainlm training function with PEG of 0.001. The green dotted 

line represents the result from the Trainlm training function with PEG of 0.1. The red dash-dot line 
represents the result from the Traingdx training function with PEG of 0.1. 
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Figure 4.3.2 (a) shows that the difference between the training and testing errors were 

too large. This meant that most of the ANNs were over-trained. Figure 4.3.2(b) and 

Figure 4.3.2(c) shows that a larger PEG reduced the difference between training and 

testing errors, but the overall errors were higher than the small PEG values as shown in 

Figure 4.3.2(d). The mean and minimum testing error from the 101 results on different 

random seeds and 4 different input sets by applying different training functions and 

PEGs are presented in Figure 4.3.3 to Figure 4.3.5. 

(a) Mean Testing Errors (b) Minimum Testing Errors
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Figure 4.3.3 The mean and minimum testing error calculated from 101 results for each input data set by 
using Trainlm training function with 0.001 PEG. The symbol ● with the blue solid line represents the 

result from the 6 input data sets. The symbol ■ with the green dotted line represents the result from the 12 
input data sets. The symbol * with the red dash-dot line represents the result from the 18 input data sets. 

The symbol ♦ with the cyan dashed line represents the result from the 24 input data sets. 
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Figure 4.3.4 The mean and minimum testing error calculated from 101 results for each input data set by 
using Trainlm training function with 0.1 PEG. The symbol ● with the blue solid line represents the result 
from the 6 input data sets. The symbol ■ with the green dotted line represents the result from the 12 input 
data sets. The symbol * with the red dash-dot line represents the result from the 18 input data sets. The 

symbol ♦ with the cyan dashed line represents the result from the 24 input data sets. 
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(a) Mean Testing Errors (b) Minimum Testing Errors
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Figure 4.3.5 The mean and minimum testing error calculated from 101 results for each input data set by 
using Traingdx training function with 0.1 PEG. The symbol ● with the blue solid line represents the 

result from the 6 input data sets. The symbol ■ with the green dotted line represents the result from the 12 
input data sets. The symbol * with the red dash-dot line represents the result from the 18 input data sets. 

The symbol ♦ with the cyan dashed line represents the result from the 24 input data sets. 

 

To improve the generalization of the ANNs, Trainbr and Trainbfg training functions 

were used. Numbers of training epochs and PEGs were selected and tested to compare 

the training and testing error result. 100 and 300 training epochs and 0.1, 0.01 and 0.001 

PEGs were set and tested. Random seed was set at 0 to reinitialise the weight and bias 

sets. 18 input data sets were selected and 3 different numbers of neurons were tested. 

The training and testing error result using the Trainbr training function is shown in 

Table 4.3.5. The results showed that the training errors were unchanged but the testing 

errors were slightly increased only when the training epoch increased to 300 with 3 

hidden layer neurons or the PEG set at 0.001 with 4 hidden layer neurons. The msereg 

performance function was set and 0.5, 0.25 and 0.75 performance ratio was set and 

tested by using the Trainbfg training function. The training and testing error result is 

shown in Table 4.3.6. The results show that the training and testing errors were higher 

when the PEG was set at 0.1. The ratio set at 0.5 and 0.75 gave a similar result. 

Compared to others, the ratio set at 0.25 gave higher testing errors when using 4 hidden 

layer neurons but lower testing errors when using 3 and 5 hidden layer neurons in the 

ANN. The best selection of the PEG and epoch values was 0.01 and 100 respectively 

for both Trainbr and Trainbfg training functions. The ratio was set at 0.5 for the 

Trainbfg training function. Four different input sets (6, 12, 18 and 24) with 3 different 

numbers of neurons (3 to 5) and 101 different weight and bias matrices were tested. The 
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results of the number of ANNs that passed the standard protocols were shown in Table 

4.3.7 and Table 4.3.8 by using Trainbr and Trainbfg training functions, respectively. A 

comparison of the training and testing errors tested from different training functions are 

shown in Figure 4.3.6(a) to Figure 4.3.6(c). These results were selected from the ANNs 

by using 24 inputs and 3 hidden layer neurons. 

Table 4.3.5 The training and testing error result using the Trainbr training function with a different 
combination of PEG and Epoch values. Shaded part highlights the increased value of the testing errors. 

Trainbr 
18 Inputs 

RandSeed = 0 
3 neurons 4 neurons 5 neurons 

PEG Epoch 
Training 

Errors (%) 
Testing 

Errors (%) 
Training 

Errors (%) 
Testing 

Errors (%) 
Training 

Errors (%) 
Testing 

Errors (%) 
0.1 100 0.93 18.43 0.00 16.59 0.23 19.82 

0.01 100 0.93 18.43 0.00 16.59 0.23 19.82 
0.001 100 0.93 18.43 0.00 17.05 0.23 19.82 
0.1 300 0.93 18.89 0.00 16.59 0.23 19.82 

0.01 300 0.93 18.89 0.00 16.59 0.23 19.82 
0.001 300 0.93 18.89 0.00 17.05 0.23 19.82 

 

Table 4.3.6 The training and testing error result using the Trainbfg training function with a different 
combination of Ratio, PEG and Epoch values. Shaded part highlights some different testing error results. 

Trainbfg 
18 Inputs 

RandSeed = 0 
3 neurons 4 neurons 5 neurons 

Ratio PEG Epoch 
Training 

Errors (%) 
Testing 

Errors (%) 
Training 

Errors (%) 
Testing 

Errors (%) 
Training 

Errors (%) 
Testing 

Errors (%) 
0.5 0.1 100 20.51 21.66 21.91 20.28 19.58 24.42 

0.5 0.01 100 9.09 14.75 8.86 13.82 8.86 15.67 
0.5 0.001 100 9.09 14.75 8.86 13.82 8.86 15.67 
0.5 0.01 300 9.09 14.75 8.86 13.82 9.09 15.21 

0.25 0.01 100 9.09 14.29 8.62 14.75 8.39 15.21 

0.25 0.01 300 9.09 14.75 8.86 14.75 6.99 14.29 

0.75 0.01 100 9.09 14.75 8.86 13.82 8.62 15.67 
 

 

 

 

 

 



 

 86 

Table 4.3.7 Number of ANNs that passed the standard protocols by using the Trainbr training function. 

Pass AAMI 
Pass BHS 
Grade A 

Pass BHS 
Grade B 

BHS Recommended 
Grades (SP/DP) No. of 

Inputs 

No. of 
ANNs 
(3×101) SP DP SP DP SP DP A/A A/B B/A B/B 

6 303 3 282 0 282 1 0 0 0 1 0 

12 303 61 295 1 269 11 20 1 0 10 0 

18 303 137 294 8 264 22 13 7 1 18 1 

24 303 162 296 6 249 32 21 6 0 28 1 

Total 1212 363 1167 15 1064 66 54 14 1 57 2 
 

Table 4.3.8 Number of ANNs that passed the standard protocols by using the Trainbfg training function. 

Pass AAMI 
Pass BHS 
Grade A 

Pass BHS 
Grade B 

BHS Recommended 
Grades (SP/DP) No. of 

Inputs 

No. of 
ANNs 
(3×101) SP DP SP DP SP DP A/A A/B B/A B/B 

6 303 0 303 0 303 0 0 0 0 0 0 

12 303 0 303 0 303 0 0 0 0 0 0 

18 303 203 303 52 303 98 0 52 0 98 0 

24 303 114 303 1 303 96 0 1 0 96 0 

Total 1212 317 1212 53 1212 194 0 53 0 194 0 
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(a) Trainbr Training Function (b) Trainbfg Training Function

(c) Combined Testing Result
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Figure 4.3.6 (a) and (b) show the training and testing errors tested by using Trainbr and Trainbfg 
training functions. Plots were selected from ANNs using 24 input data sets with 3 hidden layer neurons. 
The blue solid line represents the percentage of t nts the result from the Trainbr training function. The 

green dotted line represents the result from the Trainbfg he training errors. The green dotted line 
represents the percentage of the testing errors. (c) shows the comparison of the testing error between two 

training functions. The blue solid line represents the training function. 

 

Figure 4.3.6(b) shows that the ANNs gave smaller testing errors and closer values 

between the training errors and testing errors by applying the Trainbfg training function. 

It also shows that the errors did not vary much using different random seeds. The mean 

and minimum testing errors from the 101 results on different random seeds and 4 

different input sets by applying different training functions are presented in Figure 4.3.7 

and Figure 4.3.8. The Trainbfg training function produced the lowest testing errors and 

more ANNs passed the standard protocols. This training function was thus selected for 

further validation.  



 

 88 

(a) Mean Testing Errors (b) Minimum Testing Errors
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Figure 4.3.7 The mean and minimum testing error calculated from 101 results for each input data set by 
using Trainbr training function. The symbol ● with the blue solid line represents the result from the 6 

input data sets. The symbol ■ with the green dotted line represents the result from the 12 input data sets. 
The symbol * with the red dash-dot line represents the result from the 18 input data sets. The symbol ♦ 

with the cyan dashed line represents the result from the 24 input data sets. 
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Figure 4.3.8 The mean and minimum testing error calculated from 101 results for each input data set by 
using Trainbfg training function. The symbol ● with the blue solid line represents the result from the 6 
input data sets. The symbol ■ with the green dotted line represents the result from the 12 input data sets. 
The symbol * with the red dash-dot line represents the result from the 18 input data sets. The symbol ♦ 

with the cyan dashed line represents the result from the 24 input data sets. 

 

PCA was applied to the 24 input sets to reduce the data set to 11 inputs. The Trainbfg 

training function was used and the result of the number of ANNs that passed the 

standard protocols is shown in Table 4.3.9. The result shows that most of the ANNs 

passed the AAMI standard protocol but the DP selection only passed the BHS standard 

protocol. Figure 4.3.9 shows the Bland Altman plot of the best ANN BP estimation 
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result compared to Auscultatory algorithm result. It shows that most of the SPs were 

underestimated by the trained ANN than the results obtained by the observers.  

Table 4.3.9 Number of ANNs that passed the standard protocols by using PCA method as the input data 
sets. A total number of ANNs passed the standard protocols with 4 other input data sets were included. 

Pass AAMI 
Pass BHS 
Grade A 

Pass BHS 
Grade B 

BHS Recommended 
Grades (SP/DP) No. of 

Inputs 

No. of 
ANNs 
(3×101) SP DP SP DP SP DP A/A A/B B/A B/B 

11 (PCA) 303 194 303 0 303 0 0 0 0 0 0 

Total  
(5 inputs) 

1515 511 1515 53 1515 194 0 53 0 194 0 

 

(a) Systolic Blood Pressure (b) Diastolic Blood Pressure
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Figure 4.3.9 Blood pressure estimated from the ANN used PCA input data sets. Bland and Altman plot of 
the ANN and Auscultatory result comparison from 9 testing measurements. 

 

4.3.1.2 Second ANN 

The ANNs employing the Trainbfg training function produced the best results. Those 

networks were used for the 1st ANNs. Five different input sets (6, 12, 18, 24 and PCA) 

with 3 different numbers of neurons (3 to 5) and 101 different weight and bias matrices 

were tested for the 1st ANNs. The newlin function was used to create a linear layer for 

2nd ANN after each ANN training and used the output vector from the 1st ANN as the 

input. The results of the number of ANNs that passed the standard protocols are shown 

in Table 4.3.10. 
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Table 4.3.10 Number of ANNs that passed the standard protocols by using newlin function as the 2nd 
ANNs. 

Pass AAMI 
Pass BHS 
Grade A 

Pass BHS 
Grade B 

BHS Recommended 
Grades (SP/DP) No. of 

Inputs 

No. of 
ANNs 
(3×101) SP DP SP DP SP DP A/A A/B B/A B/B 

6 303 0 303 0 303 0 0 0 0 0 0 

12 303 0 303 0 303 0 0 0 0 0 0 

18 303 205 303 52 303 113 0 52 0 113 0 

24 303 114 303 1 303 100 0 1 0 100 0 

11 (PCA) 303 0 303 0 303 0 0 0 0 0 0 

Total 1515 319 1515 53 1515 213 0 53 0 213 0 
 

The 1st ANN results were unchanged and the Trainbfg training function was used for 

2nd ANN. 101 different weight and bias matrices were initialised by using another 101 

different random seeds, 500 ~ 600. The settings of the PEG, epoch and ratio values were 

0.01, 100 and 0.1, respectively. The results of the number of ANNs that passed the 

standard protocols are shown in Table 4.3.11. 

Table 4.3.11 Number of ANNs that passed the standard protocols by using Trainbfg training function as 
the 2nd ANNs. 

Pass AAMI 
Pass BHS 
Grade A 

Pass BHS 
Grade B 

BHS Recommended 
Grades (SP/DP) No. of 

Inputs 

No. of 
ANNs 
(3×101) SP DP SP DP SP DP A/A A/B B/A B/B 

6 303 0 291 0 291 0 0 0 0 0 0 

12 303 0 279 0 279 0 0 0 0 0 0 

18 303 39 281 0 281 4 0 0 0 4 0 

24 303 240 277 0 277 41 0 0 0 41 0 

11 (PCA) 303 25 281 0 281 0 0 0 0 0 0 

Total 1515 304 1409 0 1409 45 0 0 0 45 0 
 

2nd ANN applied the newlin function and produced a better BP estimation than the 

Trainbfg training function. However, both of the functions had lesser ANNs that passed 

the AMMI standard protocol than the trained 1st ANNs.  

4.3.1.3 Inputs Modification 

Since the 2nd ANNs did not give better result than the 1st ANNs, a modification of the 

input of the 2nd ANNs was made. Nine inputs were used instead of 3 as described in 
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section 4.2.3. The Trainbfg training function with the same settings as in last section 

(4.2.3) was used for 2nd ANN. Two different methods of selecting the HB for BP 

estimations were carried out. The first method used the original blood pressure selection 

method and another selected the pressure before the selected HB as described in the last 

part of section 4.2.3. The results of the number of ANNs that passed the standard 

protocols are shown in Table 4.3.12 and Table 4.3.13. 

Table 4.3.12 Number of ANNs that passed the standard protocols by using the original BP selection 
method. 

Pass AAMI 
Pass BHS 
Grade A 

Pass BHS 
Grade B 

BHS Recommended 
Grades (SP/DP) No. of 

Inputs 

No. of 
ANNs 
(3×101) SP DP SP DP SP DP A/A A/B B/A B/B 

6 303 0 303 0 289 0 0 0 0 0 0 

12 303 3 303 1 278 0 0 1 0 0 0 

18 303 279 303 1 280 25 2 1 0 25 0 

24 303 173 303 12 289 5 0 12 0 5 0 

11 (PCA) 303 20 303 0 282 1 0 0 0 1 0 

Total 1515 475 1515 14 1418 31 2 14 0 31 0 
 

Table 4.3.13 Number of ANNs that passed the standard protocols by using one HB shifting method as the 
BP selection method 

Pass AAMI 
Pass BHS 
Grade A 

Pass BHS 
Grade B 

BHS Recommended 
Grades (SP/DP) No. of 

Inputs 

No. of 
ANNs 
(3×101) SP DP SP DP SP DP A/A A/B B/A B/B 

6 303 0 302 0 301 0 2 0 0 0 0 

12 303 3 286 3 25 0 274 0 1 0 0 

18 303 280 49 279 22 0 17 1 17 0 0 

24 303 264 38 192 16 39 3 0 3 0 0 

11 (PCA) 303 280 58 22 22 171 1 0 1 0 0 

Total 1515 827 733 496 386 210 297 1 22 0 0 
 

Table 4.3.12 and Table 4.3.13 show that neither BP selection method met the BHS 

standard protocol requirements. Table 4.3.13 shows that selecting one HB before the 

original selection from the algorithm gave a better SP estimation than all the other 

tested algorithms. Therefore, a new blood pressure selection method was made by 

selecting the SP using the pressure value which is one HB before the original selection 

while keeping DP selection the same as the blood pressure selection method. The results 

of the number of ANNs that passed the standard protocols are shown in Table 4.3.14. 

 



 

 92 

Table 4.3.14 Number of ANNs that passed the standard protocols by using one HB shifting method for 
SP selection and original BP selection method for DP selection. 

Pass AAMI 
Pass BHS 
Grade A 

Pass BHS 
Grade B 

BHS Recommended 
Grades (SP/DP) No. of 

Inputs 

No. of 
ANNs 
(3×101) SP DP SP DP SP DP A/A A/B B/A B/B 

6 303 0 303 0 289 0 0 0 0 0 0 

12 303 3 303 3 278 0 0 3 0 0 0 

18 303 280 303 279 280 0 2 279 0 0 0 

24 303 264 303 192 288 39 1 191 1 39 0 

11 (PCA) 303 280 303 22 282 0 0 22 0 0 0 

Total 1515 827 1515 496 1417 39 3 495 1 39 0 
 

Table 4.3.14 shows that most of the trained ANNs with 18 and 24 input sets passed both 

the AAMI and BHS standard protocols with grade A. This method was therefore 

selected for further tests on more subjects. 

4.3.2 Algorithm Validation on 76 subjects 

New measured data from 76 subjects, involving 228 measurements, were collected for 

the algorithm validation. A total of 4694 HBs (1370 HBs from Supra-systolic region, 

1921 HBs from systolic to diastolic region and 1403 HBs from Sub-diastolic region) 

from 152 measurements were used for training the ANNs and 2388 HBs (713 HBs from 

Supra-systolic region, 928 HBs from systolic to diastolic region and 747 HBs from Sub-

diastolic region) from 76 different measurements were used for testing. The algorithm 

was modified to meet the requirements of the standard protocols. Final validation on 86 

subjects was later carried out. 

The Trainbfg training function was used for both 1st and 2nd ANNs. All the results have 

shown that 18 and 24 input sets gave best BP estimations. New measured data were 

used to extract 18 and 24 features from each HB as the input sets for the ANNs. Three 

different numbers of neurons (3 to 5) were applied in ANN constructions. Figure 

4.3.6(b) shows that the training and testing errors did not have much variation by using 

Trainbfg training function with different initialised weight and bias matrices. Therefore, 

11 different weight and bias matrices with random seeds from 0 ~ 10 and 500 ~ 510 

were used for the 1st and 2nd ANNs, respectively. The settings of the PEG, epoch and 

ratio values were 0.01, 100 and 0.1, respectively. The training and testing errors for 1st 

ANNs and 2nd ANNs are shown in Figure 4.3.10 and Figure 4.3.11, respectively. 
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(a) 3 neurons; 18 Input Data Sets (b) 3 neurons; 24 Input Data Sets

(c) 4 neurons; 18 Input Data Sets (b) 4 neurons; 24 Input Data Sets

(e) 5 neurons; 18 Input Data Sets (f) 5 neurons; 24 Input Data Sets
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Figure 4.3.10 Training and testing error results from 1st ANNs. The symbol ● with the blue solid line 
represents the percentage of the training errors. The symbol ■ with the green dotted line represents the 

percentage of the testing errors. 
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(a) 3 neurons; 18 Input Data Sets (b) 3 neurons; 24 Input Data Sets

(c) 4 neurons; 18 Input Data Sets (b) 4 neurons; 24 Input Data Sets

(e) 5 neurons; 18 Input Data Sets (f) 5 neurons; 24 Input Data Sets

0 2 4 6 8 10
5

10

15

20

25

30

35

40

45

Random Seed

E
rr

o
r 

(%
)

0 2 4 6 8 10
5

10

15

20

25

30

35

40

45

Random Seed

E
rr

o
r 

(%
)

0 2 4 6 8 10
5

10

15

20

25

30

35

40

45

Random Seed

E
rr

o
r 

(%
)

0 2 4 6 8 10
5

10

15

20

25

30

35

40

45

Random Seed

E
rr

o
r 

(%
)

0 2 4 6 8 10
5

10

15

20

25

30

35

40

45

Random Seed

E
rr

o
r 

(%
)

0 2 4 6 8 10
5

10

15

20

25

30

35

40

45

Random Seed

E
rr

o
r 

(%
)

 

Figure 4.3.11 Training and testing error results from 2nd ANNs. The symbol ● with the blue solid line 
represents the percentage of the training errors. The symbol ■ with the green dotted line represents the 

percentage of the testing errors. 

 

Figure 4.3.10 and Figure 4.3.11 show that all ANNs gave similar training and testing 

errors on the same input data sets except that a few ANNs in the 2nd ANNs gave 

extremely large errors. This means that the trained weights and biases were similar in 

each ANN. The ANN structure with 3 neurons and random seed of 0 for 1st ANN and 
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random seed of 500 for 2nd ANN were selected for validating the new measured 76 

subjects. Table 4.3.15 and Table 4.3.16 show the ANN results compared to the AAMI 

and BHS standard protocols for 18 and 24 input data sets. “Net 1” is the BP selection 

result from 1st ANN; “Net 2_1” is the BP selection result from 2nd ANN with original 

BP selection method; “Net 2_2” is the BP selection result from 2nd ANN with one HB 

shifting method and “Net 2_3” is the BP selection result from 2nd ANN with one HB 

shifting method on the SP selection and original selection on the DP selection. Figure 

4.3.12 and Figure 4.3.13 show the Bland Altman plot of the BP estimation from 

different input data sets to compare ANN classification results from Net 2_3 and 

Auscultatory algorithm results. 

Table 4.3.15 Results from 18 input data sets compared to the standard protocols by using different BP 
selection methods. 

Systolic Pressure Diastolic Pressure Standard (SP / DP) 
18 

Inputs Measurement 
Error 

Absolute difference 
(%) 

Measurement 
Error 

Absolute difference 
(%) 

AAMI  BHS 

Net mean SD ≤ ±5  ≤ ±10 ≤ ±15 mean SD ≤ ±5 ≤ ±10 ≤ ±15 Pass/Fail Grades  

1 -3.65  12.54  75.00 88.16 92.11  -2.21  10.28 63.16 89.47 94.74  F/F B/B 

2_1 -3.33  12.62  72.37 89.47 94.74  -1.64  10.53 61.84 88.16 93.42  F/F B/B 

2_2 0.02  12.83  63.16 92.11 96.05  1.40  10.79 55.26 82.89 97.37  F/F A/B 

2_3 0.02  12.83  63.16 92.11 96.05  -1.64  10.53 61.84 88.16 93.42  F/F A/B 

 

Table 4.3.16 Results from 24 input data sets compared to the standard protocols by using different BP 
selection methods. 

Systolic Pressure Diastolic Pressure Standard (SP / DP) 
24 

Inputs Measurement 
Error 

Absolute difference 
(%) 

Measurement 
Error 

Absolute difference 
(%) 

AAMI  BHS 

Net mean SD ≤ ±5  ≤ ±10 ≤ ±15 mean SD ≤ ±5 ≤ ±10 ≤ ±15 Pass/Fail Grades  

1 -3.74  12.42  73.68 89.47 93.42  -1.97  10.30 63.16 89.47 96.05  F/F B/A 

2_1 -3.64  12.41  71.05 90.79 94.74  -2.81  10.20 59.21 90.79 96.05  F/F B/B 

2_2 -0.24  12.68  68.42 93.42 96.05  0.26  10.51 64.47 84.21 96.05  F/F A/B 

2_3 -0.24  12.68  68.42 93.42 96.05  -2.81  10.20 59.21 90.79 96.05  F/F A/B 
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(a) Systolic Blood Pressure (b) Diastolic Blood Pressure
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Figure 4.3.12 Bland and Altman plot of 18 input data sets with 3 hidden layer neuron ANN and 
Auscultatory result comparison from 76 testing measurements. 
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Figure 4.3.13 Bland and Altman plot of 24 input data sets with 3 hidden layer neuron ANN and 
Auscultatory result comparison from 76 testing measurements. 

 

Table 4.3.15 and Table 4.3.16 show that the testing results met the standard protocol 

requirements except the SDs of measurement error. Figure 4.3.12 and Figure 4.3.13 

show that one measurement was undetected from the designed algorithm. The 

measurement was checked and the measured signal from the outside sensor is plotted in 

Figure 4.3.14. The target and the output values simulated by both 1st and 2nd ANN with 

18 and 24 input data sets were shown in Figure 4.3.15 and Figure 4.3.16, respectively.  
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Figure 4.3.14 Signal measured from the outside sensor on subject 45, reading 3. 
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(a) 1st ANN Output. The symbol ○ with the blue solid line represents the target output for the Supra-systolic 
pressure region. The symbol * with the blue broken line represents the actual output from the ANN for 
the Supra-systolic pressure region. The symbol  with the red solid line represents the target output 
between the systolic and diastolic pressure regions. The symbol + with the red broken line represents the 
actual output between the systolic and diastolic pressure regions. The symbol □ with the black solid line 
represents the target output for the Sub-diastolic pressure region. The symbol  with the black broken line 
represents the actual output from the ANN for the Sub-diastolic pressure region.

(b) 2nd ANN Output. The symbol ○ with the blue solid line represents the target output between the systolic 
and diastolic pressure regions. The symbol * with the blue broken line represents the actual output 
between the systolic and diastolic pressure regions.
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Figure 4.3.15 1st and 2nd ANNs simulated output for subject 45, recording 3, by using 18 input data sets. 
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(a) 1st ANN Output. The symbol ○ with the blue solid line represents the target output for the Supra-systolic 
pressure region. The symbol * with the blue broken line represents the actual output from the ANN for 
the Supra-systolic pressure region. The symbol  with the red solid line represents the target output 
between the systolic and diastolic pressure regions. The symbol + with the red broken line represents the 
actual output between the systolic and diastolic pressure regions. The symbol □ with the black solid line 
represents the target output for the Sub-diastolic pressure region. The symbol  with the black broken line 
represents the actual output from the ANN for the Sub-diastolic pressure region.

(b) 2nd ANN Output. The symbol ○ with the blue solid line represents the target output between the systolic 
and diastolic pressure regions. The symbol * with the blue broken line represents the actual output 
between the systolic and diastolic pressure regions.  

Figure 4.3.16 1st and 2nd ANNs simulated output for subject 45, recording 3, by using 24 input data sets. 
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Figure 4.3.14 shows that the last HB gives the largest amplitude from the entire 

measured signal. Such a signal might be caused by an artificial motion. Every point was 

normalised to that maximum value for feature extractions in the time domain. It caused 

the pulses between the SP and DP to become extremely small, therefore, making ANNs 

unable to classify those pulses into the right region. To solve this problem, envelope 

amplitudes were calculated for each individual HB and used as one of the input features. 

Therefore, the individual HB signals would not be affected by the artificial motion. 

Input features were modified for the 1st ANN as described in section 4.2.3. A total of 21 

features were extracted from each HB. The Trainbfg training function was used for 

both 1st and 2nd ANN. Three neurons and a random seed of 0 were applied in 1st ANN 

and a random seed of 500 was applied for 2nd ANN. The setting of the PEG, epoch and 

ratio values were 0.01, 100 and 0.1, respectively. The training and testing errors from 1st 

ANN were 13.36% and 14.99%, respectively. The training and testing errors from 2nd 

ANN were 8.93% and 8.18%, respectively. Table 4.3.17 summarises the ANN results 

compared to the AAMI and BHS standard protocols. Figure 4.3.17 shows the Bland 

Altman plot of the BP estimation to compare ANN classification results from Net 2_3 

and Auscultatory algorithm results. The undetected signal (subject 45, reading 3) from 

the previous algorithm was now detected. The target and the output values simulated by 

both 1st and 2nd ANN are shown in Figure 4.3.18. 

Table 4.3.17 Results from 21 input data sets compared to the standard protocols by using different BP 
selection methods. 

Systolic Pressure Diastolic Pressure Standard (SP / DP) 
21 

Inputs Measurement 
Error 

Absolute difference 
(%) 

Measurement 
Error 

Absolute difference 
(%) 

AAMI  BHS 

Net mean SD ≤ ±5  ≤ ±10 ≤ ±15 mean SD ≤ ±5 ≤ ±10 ≤ ±15 Pass/Fail Grades  

1 -3.15 6.01 63.16 90.79 94.74 -0.53 5.53 68.42 96.05 98.68 P/P B/A 

2_1 -2.97 5.45 65.79 92.11 97.37 0.69 4.96 68.42 96.05 100 P/P A/A 

2_2 0.46 5.46 73.68 97.37 97.37 3.77 5.05 56.58 86.84 100 P/P A/B 

2_3 0.46 5.46 73.68 97.37 97.37 0.69 4.96 68.42 96.05 100 P/P A/A 
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Figure 4.3.17 Bland and Altman plot of 21 input data sets with 3 hidden layer neurons in the ANN and 
Auscultatory result comparison from 76 testing measurements. 
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(a) 1st ANN Output. The symbol ○ with the blue solid line represents the target output for the Supra-systolic 
pressure region. The symbol * with the blue broken line represents the actual output from the ANN for 
the Supra-systolic pressure region. The symbol  with the red solid line represents the target output 
between the systolic and diastolic pressure regions. The symbol + with the red broken line represents the 
actual output between the systolic and diastolic pressure regions. The symbol □ with the black solid line 
represents the target output for the Sub-diastolic pressure region. The symbol  with the black broken line 
represents the actual output from the ANN for the Sub-diastolic pressure region.

(b) 2nd ANN Output. The symbol ○ with the blue solid line represents the target output between the systolic 
and diastolic pressure regions. The symbol * with the blue broken line represents the actual output 
between the systolic and diastolic pressure regions.  

Figure 4.3.18 1st and 2nd ANNs simulated output for subject 45, recording 3, by using 21 input data sets. 
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Table 4.3.17 shows a good result that all of the networks passed both the AAMI and 

BHS standard protocols. The final validation on 86 subjects was then carried out. 

4.4 Final Validation of Algorithm  

New measured data from 10 more subjects, involving 30 measurements, was collected 

to add up to 86 subjects, involving 258 measurements, for the algorithm final validation. 

The finalised ANNs were kept similar without using the new measured data for further 

training. Table 4.4.1 shows the ANN results from the total of 258 measurements and 

compared to the AAMI and BHS standard protocols. Figure 4.4.1 shows the Bland 

Altman plot of the BP estimation to compare ANN classification results from Net 2_3 

and Auscultatory algorithm results. 

Table 4.4.1 Results from 21 input data sets compared to the standard protocols by using different BP 
selection methods on 86 subjects, 258 measurements. 

Systolic Pressure Diastolic Pressure Standard (SP / DP) 
21 

Inputs Measurement 
Error 

Absolute difference 
(%) 

Measurement 
Error 

Absolute difference 
(%) 

AAMI  BHS 

Net mean SD ≤ ±5  ≤ ±10 ≤ ±15 mean SD ≤ ±5 ≤ ±10 ≤ ±15 Pass/Fail Grades  

1 -3.17  8.33  64.73 91.09  96.51 0.12  7.30  66.67 89.15  96.90 F/P A/A 

2_1 -2.06  5.21  72.48 92.25  98.45 1.77  6.17  63.95 89.53  96.12 P/P A/A 

2_2 1.44  5.27  71.32 96.51  98.06 5.02  6.33  45.35 81.40  94.96 P/F A/C 

2_3 1.44  5.27  71.32 96.51  98.06 1.77  6.17  63.95 89.53  96.12 P/P A/A 
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Figure 4.4.1 Bland and Altman plot of 21 input data sets with 3 hidden layer neurons in the ANN and 
Auscultatory result comparison from 86 subjects, 258 measurements. 
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4.5 Summary 

ANN classification was selected for algorithm modifications and validations. The first 

two measurements from 9 subjects were used for training and the last measurement 

from the same subjects was used for testing ANNs. Trainlm, Traingdx, Trainbr and 

Trainbfg training functions were tested with different combinations of initial network 

weight and bias values, number of hidden layer neurons, number of training epochs and 

PEG values. A second ANN was added to the network structure. Input features and 

blood pressure selection methods were modified. The final HB / HR detection function, 

the feature extraction functions, other used functions and the final algorithm program 

codes can be found in Appendix V, Appendix VI, Appendix VII and Appendix VIII, 

respectively. The final algorithm was tested on 258 measurements from 86 subjects. It 

fulfilled the AMMI criteria and also achieved an overall grade A for both SP and DP 

according to the BHS standard protocol. 
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Chapter 5   Discussion and Conclusion 

5.1 Introduction  

This chapter covers the discussions, conclusion and possible future works for this 

research. Discussions on all of the stages undertaken in this research were described in 

detail. Conclusion on the works that had been done during the research period and the 

results of the developed algorithm were included. A few possible future works were 

suggested in this chapter to further develop a better system.   

5.2 Discussion 

5.2.1 Data Collection 

The collection of the data was a massive workload to undertake. Ethical approval was 

required before the data collection as it involved human subjects as the participants. 

Application for ethics approval was approved by the AUTEC and the participants 

invited were focused on those staff and students in AUT Wellesley campus. The 

collection requirements and procedures stated in the AAMI protocol were carefully 

studied and followed during the data collection process. This ensured the consistency 

between observers and the participants to minimise any human error that could occur 

during the data collection process.  

Apparatus used in this research was supplied by Pulsecor Ltd. except the laptop used for 

data collection. A second laptop was used because the original laptop broke down 

during the data collection period due to non-project related events. Regular calibration 

of the cuff pressure output was performed throughout the data collection period. 

Although different laptops were used during data the collection process, the stability 

and the accuracy of the output signal was checked constantly.  

A total of 94 subjects participated in this research but 8 were excluded due to predefined 

criteria failure from the research requirements. Two subjects were excluded because 
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they did not contribute 3 data sets within the difference of ±5 mmHg between observers. 

One subject withdrew from the procedure due to the discomfort of cuff pressure. One 

subject was excluded because the Korotkoff sounds heard fell below 20 mmHg by the 

observers. One subject was excluded because the subject had an irregular HR which was 

discovered by the observers during the collection. Two subjects were excluded because 

these subjects were under medication and another subject had had heart valve surgery in 

the past. Therefore, a total of 86 subjects were left for BPM algorithm testing. 

The AAMI standard recommended that when using the auscultatory monitoring method 

for comparison, at least 10% of SP and DP values should fall outside the range from 

100 to 160 mmHg and 60 to 100 mmHg respectively. 10% of the total subjects should 

have an arm size above 35 cm and below 25 cm in circumference. None of the 86 

subjects had SP greater than 160 mmHg and DP greater than 100 mmHg. 14.7% of 

subjects had SP lesser than 100 mmHg and 17.8% of subjects had DP lesser than 60 

mmHg. In this research, there was only 1 subject (1.2%) that had an arm size greater 

than 35 cm and 11 subjects (12.8%) had an arm size less than 25 cm. This research 

focused on the healthy people in AUT Wellesley campus. None of them measured had 

hypertension. Not many people with an arm size greater than 35 cm were available on 

the campus and some of them did not want to participate in this research. Therefore, this 

requirement was not met. 

The AAMI standard recommended that for the auscultatory measurement, two trained 

observers should have 100% of simultaneous measurements within a difference of 10 

mmHg, and 90% or more within 5 mmHg. In order to enhance the credibility of the data 

since the two observers in this research were not professionally trained, the difference 

agreement between observers was tightened to 100% of measurements within 5 mmHg. 

At the end of this research, a total of 294 measurements had been taken from 86 

subjects. A total of 36 measurements had a difference of more than 5 mmHg between 

observers and the rest of the 258 measurements were used for testing the final algorithm.  

5.2.2 Algorithm Development 

The software development stage used MATLAB as the developing program. It was 

crucial in processing and analysing informaion. All efforts have been made to learn the 

MATLAB programming codes in order to build the signal processing tools for 

analysing, extracting features and classification of the measured signals.  
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Signal Processing 

The cutting line of each HB might not be the lower part of the pulse signal. Sometimes 

the pulse signal could be very small and / or fell into the negative region as shown in 

Chapter 3 Figure 3.1.1. When the amplitude at the cutting line is larger than the 

amplitude of the desired pulse, the calculated values for the height and area under the 

pulse would be incorrect. Therefore, each HB was windowed by using the Hanning 

window to bring down any signal outside the chosen range to zero. Although the band-

pass filter and FFT functions were also tried to perform the same purpose, the Hanning 

window produced the best result for the requirement of this research.  

Heart Beat / Heart Rate Determination 

The original HB and HR determinations were much simpler than the detail described in 

section 3.3. The first part of the measurements from 9 subjects did not have much 

variation in the measured signal. HBs were easily detected by applying a second order 

Butterworth LPF with a corner frequency at 1.3 Hz. When measurements increased to 

76 subjects, the developed HB detection algorithm was not able to detect the HB at the 

same corner frequency for all cases. Therefore, variable corner frequencies from 2 Hz to 

0.5 Hz were designed to perform the HB detection for all subjects (see page 42). This 

variation worked well for all healthy subjects involved in this research. However, it is 

understood that measurements from diseased subjects such as bradycardia (slow heart) 

or tachycardia (rapid beating) and subjects not in a resting situation may need another 

HB determination method. 

Pressure Selection 

A pressure value for each HB was selected after the HB was defined. The pressure value 

selected for each HB was the pressure at the point on the upstroke of the oscillation 

signal. An example of a measured pressure signal is shown in Figure 5.2.1. The 

Korotkoff sounds should be heard when the pressure dropps to the BP. The BP could 

not occur between point B and C or C and D of each pulse because the same pressure 

value occurred between point A and B. The possible pressure occurred between point D 

and E. It is also hard to define the point for pressure value at that range. Therefore, the 

upstroke of the pressure was defined as the pressure value for that HB for uniformity.  
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Figure 5.2.1 An example of pressure signal measured from subject 5, recording 1. 

 

Height-based Algorithm 

Height-based algorithm was developed based on the comparison of the amplitude of 

each HB. SP and DP obtained from observers were used to determine the ratio for all 27 

cases. An average ratio was obtained from 27 ratios calculated above. The average ratio 

was set as the preset ratio of the Height-based algorithm. 

The actual ratio varied from measurement to measurement. For the inside sensor signal, 

the minimum ratio for the SP was about 30% of its maximum amplitude and 3 

measurements had their maximum amplitude at the SP. The average preset ratio 

selected for SP was 60% of its maximum amplitude. The minimum and maximum ratios 

for the DP were about 10% and 90% respectively of its maximum amplitude. The 

average preset ratio selected for DP was 40% of its maximum amplitude. For the 

outside sensor signal, the minimum and maximum ratios for the SP were about 35% and 

85% respectively of its maximum amplitude. The average preset ratio selected for SP 

was 70% of its maximum amplitude. The minimum and maximum ratios for the DP 

were about 40% and 100% respectively of its maximum amplitude. The average preset 

ratio selected for DP was 60% of its maximum amplitude. For the pressure sensor signal, 

the minimum and maximum ratios for the SP were about 35% and 100% respectively of 

its maximum amplitude. The average preset ratio selected for SP was 70% of its 
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maximum amplitude. The minimum and maximum ratios for the DP were about 40% 

and 90% respectively of its maximum amplitude. The average preset ratio selected for 

DP was 60% of its maximum amplitude. The distributions of SP and DP ratio for each 

sensor are shown in Figure 5.2.2 to Figure 5.2.4. 
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Figure 5.2.2 Inside sensor height ratio distribution graph. 
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Figure 5.2.3 Outside sensor height ratio distribution graph. 
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Figure 5.2.4 Pressure sensor height ratio distribution graph. 

 

A wide range of ratios were distributed among 9 subjects, involving 27 measurements. 

The height-based algorithm could not detect the right BP by only setting average values 

for SP and DP ratios. Therefore, the height-based algorithm was not used for BP 

selection. 

STFT Algorithm 

STFT algorithm used the MATLAB built-in Spectrogram function to calculate the 

magnitude and PSD for each measurement. The algorithm divides the original signal 

into small segments as described in section 2.2.1.2. If the segments were small this 

would give a good time resolution but a poor frequency resolution. Increases in the 

segment size give a better frequency resolution but poor time resolution. The resolution 

selected for this research was the segment length lesser than the length of a pulse. The 

sampling frequency of the measured signals was 250 samples per second. The length of 

each segment, Hamming window, was set at 100 points with 50% overlap between 

segments, so that each segment covered 0.4 sec signal with the time interval at 0.2 sec.  

Inside sensors were more sensitive to pick up the reflection wave from the brachial 

artery. This algorithm gave better results for SP estimation from the inside sensor as 

shown in Chapter 3 Table 3.8.2. DP was not easy to determine by using this algorithm. 

Most of the cases were estimated outside the range of ± 10 mmHg compared to the 

reference values. Therefore, this algorithm was not selected for further development. 

However this algorithm gave a good analysis in the frequency domain. This method was 
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used in the ANN classification algorithm to extract input features from the frequency 

domain.  

Artificial Neural Network Classification 

Feature extraction of significant information from the measured signal data is the most 

difficult but crucial part for the ANN classification algorithm. It can affect the success 

or failure in the analysis. The selected features were based on those visualised signal 

changes among pulses.  

Results tested in this research showed that too small a number of inputs (6 or 12) or a 

large number of inputs (24) would not give good results. PCA was applied to reduce the 

number of inputs. Since the total number of inputs in this case were not in the range of 

hundreds or thousands, even significant inputs would be eliminated by the application 

of PCA during the analysis process. However, the training results obtained using the 

PCA input did not give as good a result as expected. 

For re-validation of the modified algorithm, there were only 53 HBs in the sub-diastolic 

pressure region for training and 26 HBs for testing the ANNs as described in section 

4.3.1. Because there were so few HBs in the sub-diastolic pressure region it was 

difficult to get results which showed the accuracy of the algorithm. The reason for that 

small number of HBs in the sub-diastolic pressure region was because the software 

chopped off the last few seconds of measured signal. Most of the measured signals 

found that there was some noise signals in the last few seconds. Some noise signals 

were small whereas some were larger than the significant signals. It was presumed that 

the noise signals were caused by the movement of the subjects. Every time the 

observers noted the DP from the subject, observers would proceed to record the BP for 

that subject before stopping the software recording. In addition, subjects would start to 

move their arms or clenched their fist during that time. These movements were easily 

picked up by the sensor, especially the inside sensors. Therefore, the software was 

designed to chop off those noise signals before the analysis began. After this problem 

was discovered, observers were advised to record BP after the software stopped 

recording to minimise the noise signals. The algorithm validation for 76 subjects 

therefore used the whole recorded signal without chopping any of the noise signals at 

the end. This made the training and testing of HBs in the sub-diastolic pressure region 

more balanced like the other two regions as described in section 4.3.2. 
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The outside sensor signal was selected for the final analysis. This sensor gave a clear 

signal and a similar pattern for most of the measurements. As mentioned above, inside 

sensors were closer to the brachial artery and thus more sensitive to the reflection waves 

as shown in Chapter 3 Figure 3.1.1. In many cases the inside sensors did not record the 

data signal as clearly as shown in the figure. This might be caused by the misplacement 

of the cuff or the depth of the brachial artery which depended on the individual subject. 

The actual problem could be discovered in future work. However, these sensors were 

too sensitive to pick up all the noise signals from any movements of the subject as 

shown in Figure 5.2.5. It was so challenging for the algorithm to select the BP from the 

trained ANNs. Signals measured from the pressure sensor also contained more noise 

signals after filtering than the signals measured from the outside sensor as shown in 

Chapter 3 Figure 3.4.1. Therefore, signals measured from both inside sensor and 

pressure sensor were not used for the final analysis.  
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Figure 5.2.5 Measured signal from the inside sensors (blue), pressure sensor (red) and the blood pressure 
estimated from observers (vertical dashed line). 

 

The newlin function and Trainbfg training function were tested on 2nd ANN. Results 

from Chapter 4 Table 4.3.10 and Table 4.3.11 show that 2nd ANN used the newlin 
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function gave a better BP estimation than the Trainbfg training function. However, the 

newlin function is used for linear approximation which gives output on any values. If 

more untrained signals entered the ANN classifier and the output values fell outside the 

range between 0 and 1, then the algorithm was not able to select the HB for the SP and 

DP estimation. Therefore, Trainbfg training function was selected for the final 

algorithm on both the 1st and 2nd ANN. 

5.3 Conclusions 

In summary, this research investigated aspects of the digital signal processing, statistical 

analysis techniques and developed various algorithms used for blood pressure 

estimation. Standard Auscultatory BP measurement procedures were performed based 

on the AAMI requirement. Algorithm developments were completed for signal 

processing, HB / HR detection and cuff pressure selection for each HB. Three 

algorithms, height-based algorithm, STFT algorithm and ANN classification algorithm, 

were initially developed and compared. ANN classification algorithm was selected for 

modifications and validations. The final algorithm used two ANNs in series to select 

blood pressures. This algorithm achieved a grade A for both SP and DP according to the 

BHS protocol. The mean differences (SD) between the observers and the developed 

algorithm were 1.44 (5.27) mmHg and 1.77 (6.17) mmHg for SP and DP, respectively, 

which also fulfilled the AAMI criteria. In conclusion, this algorithm was successfully 

developed and recommended for further clinical trials with the wider adult population. 

5.4 Recommendation and Future Work 

This research was successfully completed with good results, but there are some 

shortcomings that can be improved for future development. 

The reference values are very important during the development stage. These were 

treated as a perfect result for comparison with the newly developed devices or 

algorithms. If the reference values were not accurate enough, then the algorithm was 

inappropriately trained and thus would cause incorrect determination of SP and DP. The 

invasive method is the most accurate method to compare the new algorithms but it is 

inconvenient and may be dangerous to subjects. If the Auscultatory method was 

selected to obtain the reference value, then professionally trained observers should be 
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employed for the blood pressure data collection to minimise the errors due to untrained 

observers.  

The ANN is a strong mathematical model which is trying to model a system similar to 

the human brain. Feature selection is the most crucial part for the input of the ANNs. In 

this research, extracted features from each HB of the processed signal were used as the 

inputs of the ANNs. Those selected features were based on the visualised feature 

changes of signals in both time and frequency domains. Features can be also selected 

from Wavelet analysis, Orthogonal transformation or PCA selection methods. ANN can 

also be applied for pattern recognition purposes. These are the other good methods 

which can be selected for future testing. 

This research discovered that the inside sensor has the ability to pick up the reflection 

wave from the brachial artery. Further development can be made to improve the 

sensitivity and noise rejection. The measured signal can be tested and checked by 

changing the placement of the cuff on the upper arm. The placement of the sensors 

inside the cuff can also be modified to improve the whole measuring system. 

Lastly, if the inside sensor can measure the reflection wave with not much noise signal 

easily, then this newly developed device has great potential to measure blood pressure 

signals from different sub-groups, e.g. pregnant women, arrhythmia, diabetics and other 

subjects with diseases. New algorithms may be needed to accurately measure the blood 

pressure for these subjects or a tuneable algorithm can be developed for different 

purposes of measurement. 
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APPENDIX V Heart Beat / Rate Determination Function Codes 

%% Heart beat detection 
  
function [ind,HBind,N]=funHB(out,outfilt,Fs) 
  
lowFc=2; 
while 1 
    %low pass filter 
    [b3,a3] = butter(2,lowFc/Fs*2,'low'); 
    outlow=filtfilt(b3,a3,out); 
  
    %find min pt from outside sensor 
    MinPeakInd=funFindMin(outlow)+1; 
    HBind=[]; 
    Beat=[]; 
    for i=1:length(MinPeakInd)-1 
        %find max point from outside sensor.  
        [MaxOut indices]=max(outfilt(MinPeakInd(i):MinPeakInd(i+1)));   
        %find min point from outside sensor. 
        [MinOut MinInd]=min(outfilt(MinPeakInd(i):MinPeakInd(i+1)));    
        indices=indices+MinPeakInd(i)-1; 
        HBind(i)=indices; 
  
        if i>1 
            %calculate beat rate in beats per second 
            Beat(i-1)=Fs/(HBind(i)-HBind(i-1));     
        end 
    end 
  
    %Check all HB detection 
    meanBeat=mean(Beat(3:end-3)); 
    i=1; 
    while i<=length(Beat) 
        if (Beat(i)<meanBeat/1.95)||(Beat(i)>meanBeat*1.6) 
            if i==1 
                if outfilt(HBind(1))> outfilt(HBind(2)) 
                    HBind=[HBind(1) HBind(3:end)]; 
                else 
                    HBind=HBind(2:end); 
                end 
            else 
                if outfilt(HBind(i))> outfilt(HBind(i+1)) 
                    HBind=[HBind(1:i) HBind(i+2:end)]; 
                else 
                    HBind=[HBind(1:i-1) HBind(i+1:end)]; 
                end 
            end 
            %Calculate new Beat Rate 
            Beat=[]; 
            for i=1:length(HBind)-1 
                Beat(i)=Fs/(HBind(i+1)-HBind(i)); 
            end 
        end 
        i=i+1; 
    end 
  
    %Check first and last 3 HB detection 
    meanBeat=mean(Beat(3:end-3)); 
    for i=1:3 
        while (Beat(i)<meanBeat/1.95)||(Beat(i)>meanBeat*1.6) 
            Beat=Beat(i+1:end); 
            HBind=HBind(i+1:end); 
        end 
    end 
  
    for i=0:2 
        while (Beat(end-i)<meanBeat/1.95)||(Beat(end-i)>meanBeat*1.6) 
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            Beat=Beat(1:end-i-1); 
            HBind=HBind(1:end-i-1); 
        end 
    end 
  
    %Calculate new Beat Rate 
    Beat=[]; 
    for i=1:length(HBind)-1 
        Beat(i)=Fs/(HBind(i+1)-HBind(i)); 
    end 
  
    if length(HBind)==1 
        rate=0.5; 
    else 
        rate=0.8; 
        N=round(mean(diff(HBind))*rate);  %calculate number of Hann window 
        while min(diff(HBind))<N && rate>0.5 
            rate=rate-0.01; 
            N=round(mean(diff(HBind))*rate); 
        end 
    end 
    if rate >= 0.7 
        break; 
    else 
        lowFc=lowFc-0.1 
        HBind=[]; 
        Beat=[]; 
    end %end  
    if lowFc<0.5 
        disp(['Heart Rate is outside the calculation range.']); 
        break; 
    end 
end %end while 1 
  
meanHR=mean(Beat)*60; 
disp(['Average Heart Rate: ' num2str(round(meanHR))]); 
HalfBeat=0.3/mean(Beat);    %second per half beat 
ind=HBind-round(HalfBeat*Fs); %shift average half beat forward 



 

 128 

APPENDIX VI Feature Extraction Function Codes 

 

********************************************************************** 
%% Envelope detection 
  
function [MinEnv,Env1]=funEnv(HBind,ind,outfilt,t) 
  
%develope an envelope of the outside sensor 
for i=1:length(HBind) 
    splx(i)=outfilt(HBind(i)); 
    splt(i)=t(HBind(i)); 
    if i>1 
        [splx2(i-1) mInd]=min(outfilt(HBind(i-1):HBind(i))); 
        splt2(i-1)=t(mInd+HBind(i-1)-1); 
    end         
end 
% Positive envelope use spline function 
splxx=spline(splt,splx,t); 
splxx(1:HBind(1))=0; 
splxx(HBind(end):end)=0; 
  
splxx2=spline(splt2,splx2,t); 
splxx2(1:find(splt2(1)==t))=0; 
splxx2(find(splt2(end)==t):end)=0; 
  
for i=1:length(ind)-1 
    MaxEnv(i)=max(splxx(ind(i):ind(i+1))); 
    MinEnv(i)=min(splxx2(ind(i):ind(i+1))); 
    Env1(i)=MaxEnv(i)-MinEnv(i); 
End 
********************************************************************** 

  
********************************************************************** 
%%function to find mean magnitude for different frequency range 
  
function Mag=funMag(xx,tt,N,Fs) 
  
%Hanning Window 
Window = hann(N);    
xxWin = xx(1:N).*Window; 
  
%fft calculation 
xxfft=fft(xxWin); 
NoX=ceil(length(xxfft)/2); 
HalfX=xxfft(1:NoX); 
F=Fs*(0:NoX-1)/length(xxfft); 
  
Y=HalfX; 
  
ind5=min(find(F>5)); 
ind10=min(find(F>10)); 
ind15=min(find(F>15)); 
ind20=min(find(F>20)); 
ind25=min(find(F>25)); 
ind35=max(find(F<35)); 
  
%calculate mean magnitude 
Mag(1)=mean(Y(ind5:ind35));   %freq between 5~35Hz 
Mag(2)=mean(Y(ind10:ind35)); 
Mag(3)=mean(Y(ind15:ind35)); 
Mag(4)=mean(Y(ind20:ind35)); 
Mag(5)=mean(Y(ind25:ind35)); 
********************************************************************** 
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********************************************************************** 
%%function to find mean PSD for different frequency range 
  
function PSD=funPSD(xx,tt,N,Fs) 
   
%Hanning Window 
Window = hann(N);    
xxWin = xx(1:N).*Window; 
  
%fft calculation 
xxfft=fft(xxWin); 
NoX=ceil(length(xxfft)/2); 
F=Fs*(0:NoX-1)/length(xxfft); 
  
%PSD 
Pxx=xxfft.*conj(xxfft)/length(xxfft); 
HalfPxx=Pxx(1:NoX); 
  
P=HalfPxx; 
  
ind5=min(find(F>5)); 
ind10=min(find(F>10)); 
ind15=min(find(F>15)); 
ind20=min(find(F>20)); 
ind25=min(find(F>25)); 
ind35=max(find(F<35)); 
  
%calculate mean PSD 
PSD(1)=mean(P(ind5:ind35,:)); 
PSD(2)=mean(P(ind10:ind35,:)); 
PSD(3)=mean(P(ind15:ind35,:)); 
PSD(4)=mean(P(ind20:ind35,:)); 
PSD(5)=mean(P(ind25:ind35,:)); 
********************************************************************** 

 

********************************************************************** 
%%function to find total amplitude of each peak 
  
function Amp=funAmp(x) 
  
%find turning pt  
TPInd=funTurnPt(x)+1; 
  
FirstInd=max(find(x(1:TPInd(1))==0)); 
LastInd=min(find(x(TPInd(end):end)==0))+TPInd(end)-1; 
TPInd=[FirstInd TPInd LastInd]; 
  
Amp=0; 
for j=1:length(TPInd)-1  
    Amp=Amp+abs(x(TPInd(j+1))-x(TPInd(j))); 
End 
********************************************************************** 

 

********************************************************************** 
%%function to find area under the curve 
  
function Area=funArea(x) 
     
xx=abs(x);     
%Calculate area under the curve 
Area=trapz(xx); 
********************************************************************** 
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********************************************************************** 
%%function to find dPdt for each point 
%return two values; max/min dPdt  
function dPdt=fundPdt(x,t) 
     
dpdt=[]; 
dpdt(1:length(x))=0; 
for j=2:length(x)-1 
    %calculate dP/dt at each point 
    dpdt(j)=(x(j+1)-x(j-1))/(t(j+1)-t(j-1)); 
end 
  
dPdt(1)=max(dpdt);  %max dPdt 
dPdt(2)=min(dpdt);  %min dPdt 
********************************************************************** 

 

********************************************************************** 
%function to count peaks above different thresholds 
 
function Peak=funPeak(Norxx) 
  
%find turning pt  
MinTPInd=funFindMin(Norxx)+1; 
MaxTPInd=funFindMax(Norxx)+1; 
  
Peak(1)=length(find(Norxx(MaxTPInd)>0.1)); 
Peak(2)=length(find(Norxx(MaxTPInd)>0.3)); 
Peak(3)=length(find(Norxx(MaxTPInd)>0.5)); 
Peak(4)=length(find(Norxx(MaxTPInd)>0.7)); 
********************************************************************** 

 

********************************************************************** 
%function to find the max. positive/negative rate of change  
 
function ROC=funROC(xx,tt) 
  
TPInd=funTurnPt(xx)+1; 
FirstInd=max(find(xx(1:TPInd(1))==0)); 
LastInd=min(find(xx(TPInd(end):end)==0))+TPInd(end)-1; 
TPInd=[FirstInd TPInd LastInd]; 
  
roc=[]; 
for j=1:length(TPInd)-1 
    %calculate rate of change 
    roc(j)=(xx(TPInd(j+1))-xx(TPInd(j)))/(tt(TPInd(j+1))-tt(TPInd(j))); 
end 
  
ROC(1)=max(roc); 
ROC(2)=min(roc); 
********************************************************************** 
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APPENDIX VII Other Used Function Codes 

 

********************************************************************** 
%%function to find each turning point 
%return indices 
function ind=funTurnPt(x) 
  
xDiff=diff(x); 
j=1; 
ind=[]; 
for i=1:length(xDiff)-1 
    if (xDiff(i)>0 && xDiff(i+1)<0) || (xDiff(i)<0 && xDiff(i+1)>0) 
        ind(j)=i; 
        j=j+1; 
    end 
end 
if isempty(ind) 
    ind=1; 
end 
********************************************************************** 

 

********************************************************************** 
%%function to find maximum turning point 
%return indices 
function ind=funFindMax(x) 
  
xDiff=diff(x); 
j=1; 
ind=[]; 
for i=1:length(xDiff)-1 
    if xDiff(i)>0 && xDiff(i+1)<0 
        ind(j)=i; 
        j=j+1; 
    end 
end 
if isempty(ind) 
    ind=1; 
end 
********************************************************************** 

 

********************************************************************** 
%%function to find minimum turning point 
%return indices 
function ind=funFindMin(x) 
  
xDiff=diff(x); 
j=1; 
ind=[]; 
for i=1:length(xDiff)-1 
    if xDiff(i)<0 && xDiff(i+1)>0 
        ind(j)=i; 
        j=j+1; 
    end 
end 
if isempty(ind) 
    ind=1; 
end 
********************************************************************** 
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APPENDIX VIII Final Algorithm Codes 

%% BP Estimation Program 
  
% Get source signal (Raw Data) 
filename=['exp1_1.xls']; 
d.data=dlmread(filename,'\t',1,0); 
d.Fs=dlmread(filename,'\t',[0,0,0,0]); 
  
%find Max cuff pressure 
MaxInd=find(d.data(:,4)==max(d.data(:,4))); 
%ignore inflating part 
d.data=d.data(MaxInd:end,:); 
  
% frequency domain filter 
[b2,a2]=butter(3, 10/d.Fs*2); % filter for cuff pressure 
p=(filtfilt(b2,a2,d.data(:,4))-0.2703)/0.0131; 
  
x=[d.data(:,1) d.data(:,2) d.data(:,3)]; 
t=(0:size(d.data,1)-1)/d.Fs; 
  
%filtering 
[b4,a4]=butter(4,[0.5 30]/d.Fs*2); 
xfilt=filtfilt(b4,a4,x); 
pfilt=filtfilt(b4,a4,p); 
infilt=xfilt(:,2)-xfilt(:,3); 
outfilt=xfilt(:,1); 
  
% Get each heart beat 
[ind,HBind,N]=funHB2(x(:,1),outfilt,d.Fs); 
NegInd=find(ind<0); 
if isempty(NegInd)==0 ind=ind(max(NegInd)+1:end); end; 
outfilt(1:ind(1))=0; 
outfilt((end-round(ind(end)))/2+ind(end):end)=0; 
  
% Get envelope 
[MinEnv,Env1]=funEnv(HBind,ind,outfilt,t); 
  
for i=1:length(ind)-1 
    xx=outfilt(ind(i):ind(i+1)-1); 
    tt=t(ind(i):ind(i+1)-1); 
    pp=pfilt(ind(i):ind(i+1)-1); 
  
    %Find starting pulse pressure of each heart beat 
    MaxPInd=find(pp==max(pp));      %find max pt for each heart beat 
    MinPeakPInd=funFindMin(pp(1:MaxPInd))+1;  
    if length(MinPeakPInd)==1 
        BPInd(i)=ind(i)+MinPeakPInd;    %find index for beat pressure 
        BP(i)=p(ind(i)+MinPeakPInd);    %find pressure for each heart beat  
    elseif min(pp(MinPeakPInd))<0 
        ppMinInd=find(pp(MinPeakPInd)<0); 
        BPInd(i)=ind(i)+MinPeakPInd(max(ppMinInd)); %find index for beat pressure 
        BP(i)=p(ind(i)+MinPeakPInd(max(ppMinInd))); %find pressure for each HB 
    else 
        BPInd(i)=ind(i)+max(MinPeakPInd); %find index for beat pressure 
        BP(i)=p(ind(i)+max(MinPeakPInd)); %find pressure for each HB  
    end 
  
    %Get Mag and PSD features 
    mag(i,:)=funMag(xx,tt,N,d.Fs);  %mag=[m5 m10 m15 m20 m25] 
    psd(i,:)=funPSD(xx,tt,N,d.Fs);  %psd=[p5 p10 p15 p20 p25] 
  
    %Normalise each heart beat 
    shiftValue=MinEnv-0; 
    shiftmEnv=MinEnv-shiftValue; 
    shiftxx=xx-shiftValue(i); 
    Norxx=shiftxx/Env1(i);  %Normalise 
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    %Hanning Window 
    Window = hann(N);    
    xxWin = Norxx(1:N).*Window; 
    xxWin(N+1:length(Norxx))=0; 
     
    %Get features from time domain 
    TotAmp(i)=funAmp(xxWin);  %Calculate total amplitude for this heart beat 
    Area(i)=funArea(xxWin);    
    dpdt(i,:)=fundPdt(xxWin,tt);   %dPdt=[maxPosdPdt maxNegdPdt] 
    peak(i,:)=funPeak2(xxWin);    %peak=[M1 M3 M5 M7] 
    roc(i,:)=funROC(xxWin,tt);     %ROC=[maxPosROC maxNegROC] 
end 
  
%display feature matrix 
Feature=[[TotAmp]' [Area]' abs(dpdt) peak abs(roc) abs(mag) abs(psd) [Env1]']; 
%Normalise Feature 
[m,n]=size(Feature); 
Max=ones(m,1)*max(Feature); 
Feature=[Feature./Max]'; 
Feature(isnan(Feature))=0;    %replace NaN = 0; happend when max(peak)=0; 
%calculate all values into the range between -1~1 
Feature=2*Feature-1; 
  
%ANN simulation 
Ip=Feature; 
load('ANN21_3_0','net1')     %load weight and bias values 
a=sim(net1,Ip); 
  
%2nd ANN simulation 
for i=1:length(a)-2 
    Ip2(:,i)=[a(:,i);a(:,i+1);a(:,i+2)];    %get 2nd layer input 
end 
load('Net2ANN21_3_0', 'net3')   %load weight and bias values 
b=sim(net3,Ip2); 
b8=int8(b); %convert b to intergers 
OutPutInd=[]; 
OutPutInd=find(b8==1); 
%find SBP 
SBP=0; 
if isempty(OutPutInd) disp(['NO Blood Pressure Detected']); 
else 
    for i=1:length(OutPutInd)-2 
        if (OutPutInd(i+1)==OutPutInd(i)+1)&&(OutPutInd(i+2)==OutPutInd(i)+2) 
            SBP=BP(OutPutInd(i)); 
            break; 
        end 
    end 
    if SBP==0 disp(['NO Systolic Blood Pressure Detected ']); end; 
end                         
                 
b8=[0 b8 0]; 
OutPutInd=[]; 
OutPutInd=find(b8==1); 
%find DBP 
DBP=0; 
if isempty(OutPutInd) disp(['NO Blood Pressure Detected ']); 
else 
    DBP=0; 
    for i=length(OutPutInd):-1:3 
        if (OutPutInd(i-1)==OutPutInd(i)-1)&&(OutPutInd(i-2)==OutPutInd(i)-2) 
            DBP=BP(OutPutInd(i)); 
            break; 
        end 
    end 
    if DBP==0 disp(['NO Diastolic Blood Pressure Detected ']); end; 
end                         
  
%Display estimated BP 
disp(['BP = ' num2str(round(SBP)) '/' num2str(round(DBP))]); 


