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                                                       Abstract 
 
The talk presents an overview of current methods of computational intelligence (CI) 
called evolving CI (eCI) and how they can be used in to create adaptive, computational 
intelligence (CI) systems across areas of applications. Evolving systems evolve their 
structure and functionality in a self-organised, adaptive, incremental way to capture 
patterns form input data. The methods presented include: evolving connections systems 
(ECOS) and evolving neuro-fuzzy systems in particular [1]; evolving spiking neural 
networks (eSNN) [2-5]; evolutionary and neurogenetic systems [6]; quantum inspired 
evolutionary computation [7,8]; rule extraction from ECOS [1] and eSNN [9].  
     The methods above are suitable for incremental adaptive, on-line learning from data 
and data mining. They are applied on spatio and spectro temporal data modeling and 
pattern recognition problems, including: moving object recognition, gesture- and sign 
language recognition [5]; bioinformatics [10]; ecological and environmental modeling, 
such as establishment and spread of invasive species [11]; cybersecurity [12]; brain 
data modeling and brain-computer interfaces [13]. eSNN have  proved superior for 
spatio and spectro-temporal data analysis, modeling and pattern recognition 
(http://ncs.ethz.ch/projects/evospike/). Future directions for eCI are discussed including 
hardware-software system development and neuromorphic engineering [14].   
     Materials related to the lecture, such as papers, data and software systems can be 
found on the Knowledge Engineering and Discovery Research Institute KEDRI web site 
(www.kedri.info) of the Auckland University of Technology.  
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1. Evolving Computational Intelligence (eCI)     

• Modelling complex processes is a difficult task: adaptation is needed based on new 
data and new information  

•  Knowledge discovery – always evolving, improving , changing 

•  A wide range of real-world on-line applications 

• Nature inspired methods for eCI 
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Brain –inspired adaptive ANN  
 

• NN are computational models 
that mimic the nervous system 
in its main function of adaptive 
learning.  

• Frank Rosenblatt (1928-1971), 
Perceptron, 1962 

• ANN can learn from data and 
make generalisations 

• ANN are universal 
computational models 

• Software and hardware 
realisation of ANN 

• Neurocomputing 
 

Presenter
Presentation Notes
Artificial neural networks (ANN) (also called connectionist systems) are computational models that mimic the nervous system in its main function of adaptive learning. 

An ANN consists of small processing units - artificial neurons, connected to one another. The connections between the neurons are analogous to the synapses in the nervous system.

Like the rule-based systems, ANN are universal computational models. They can be applied to solving any problem, even if the problem does not have a clear algorithmic solution. They find the solution through learning from data examples. 

An ANN could learn to speak, if we provided examples of how words are pronounced and let the system learn from these examples for some time. The example shows a system NetTalk developed by Terence Sejnowsky.

ANN are widely applied and used in almost every area of science, engineering, technology, business and art. The USA Government and the National Science Foundation have put the area of ANN research on the list of strategic areas for the next century and double the allocated funds for research every year. While ANN are very efficient at learning from data and generalisation, it is not clear what they have learned, the knowledge (the rules) is somehow buried in the connections. We need a technique to extract these rules. That is the main reason for combining ANN with other AI techniques into knowledge-based neural networks and hybrid systems. 
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Evolving Fuzzy Systems for eCI  

• Rigid propositional logic: Aristotle (4th century 
BC), e.g.: IF A and B THEN C (true or false) 
 

• Fuzzy logic as  an extension of propositional logic 
(L.Zadeh, 1965): If A is Small THEN C is Medium   
 

• Fuzzy neural networks (Yamakawa, 1990; and 
others) 
 

• Evolving fuzzy neural networks (EFuNN 
Kasabov, 1998; Angelov, 2002; others) 

 

Short    Medium          Long 

0.8 

              4.9 min                                             Time [min] 

Presenter
Presentation Notes
Fuzzy logic is an extension of the propositional logic. It was first introduced by Lotfi Zadeh in 1965. It deals with fuzzy propositions that can have any truth value between true (1) and false(0). In this example the proposition  “washing time is short” is true to a degree of 0.8 if the time is 4.9 min as shown on the figure.

Fuzzy rules represent human knowledge, e.g. “IF wash load is small THEN washing time is short

Similar common sense rules can be articulated for many other tasks, and are implemented in many devices, e.g. video cameras, rice cookers, cars, automatic landing controller for aircraft, subway control devices, etc. 
     



Evolutionary Computation for eCI 
• Species  develop through genetic evolution  
• Survival of the fittest individuals 
• Genes: carrier of information 
• A set of  chromosomes define an individual  
• Population of individuals  
• Generations of populations 
• Crossover 
• Mutation 
• Fitness function 
• Selection 

nkasabov@aut.ac.nz 
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Quantum Inspired Technologies  for eCI  

• Quantum principles: superposition; entanglement, interference, parallelism  
– Quantum bits (qu-bits)  

 
 
 

• - Quantum vectors (qu-vectors) 
 
 
 

• Quantum gates 
 
 
 
 

• Applications:  
 

– Specific algorithms with polynomial time complexity for NP-complete problems 
(e.g. factorising large numbers, Shor, 1997; cryptography)  

– Search algorithms ( Grover, 1996), O(N1/2) vs O(N) complexity) 
– Quantum associative memories  
– Quantum inspired evolutionary algorithms and neural networks  
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2. Evolving Connectionist  Systems (ECOS)     
  

• ECOS are modular connectionist-based systems that evolve their structure and 
functionality in  a continuous, self-organised, in on-line, adaptive, interactive way from 
incoming information facilitating knowledge discovery (Kasabov, 1998, 2002, 2007).  

    
 
 
 
 
 
 
 
 

• Early ECOS models: RAN (J.Platt, 1991) – evolving RBF NN; Incremental 
FuzzyARTMAP (Carpenter , Grossberg); Growing gas; EFuNN (Kasabov, 1998, 2001); 
ESOM (Deng and Kasabov, 2002); DENFIS (Kasabov, Song, 2002); EFuRS, eTS 
(Angelov, 2002;Filev, 2002). 
 

• M.Watts, Ten years of Kasabov’s evolving connectionist systems, IEEE Tr SMC- part B, 
2008. 
 

• New developments: Ensembles of EFuNNs (T. Ljudemir, 2008-); Application oriented 
ECOS (B.Gabric, R.Duro, McGinitty et al.); Incremental feature selection (Ozawa, 
Pang, Kasabov, Polikar, Minhu Lee); evolving spiking neural networks (eSNN); 
computational neuro-genetic systems; quantum inspired eSNN.       
 
 
 
 
 
 

 
 

 

 
 

 

Environment 
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Evolving clustering methods  
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• No predefined 
clusters 
 

• Clusters are 
created from 
incoming data  
 

• Centre and  
Radius of a 
cluster are 
evolving  
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Evolving  Fuzzy Neural Network (EFuNN) 
• Incremental, supervised clustering 

 
• Input and/or output variables can be 

non-fuzzy (crisp)  or fuzzy 
 

• Hidden nodes evolve to capture clusters 
(prototypes) of input vectors  
 

• Input weights change based on 
Euclidean distance between input 
vectors and  prototype nodes (evolving 
clustering):   

                 Δw=lrate  * E(x, Rn) 
 

• Output weights evolve to capture local 
output function  and change based on 
output error.  
 

• EFuNN, N. Kasabov, IEEE Tr SMC, 2001 
• DENFIS, N.Kasabov , Q.Song, IEEE Tr FS, 

2002 
• ECOS Toolbox available in MATLAB  
• NeuCom Software available: www.kedri.info 
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DENFIS: Evolving Neuro-Fuzzy Inference System 
(DENFIS, Kasabov and Song, 2002, IEEE Tr Fuzzy Systems) 
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DENFIS algorithm: 
(1) Learning: 

 - Unsupervised, incremental clustering.  
-  For each cluster there is a Takagi-Sugeno 

fuzzy rule created: IF x  is in cluster Cj 
THEN  yj = fj (x),  

where: yi = β0 + β1 x1 + β2 x2 + … + βq 
- Incremental learning of the function 

coefficients and weights of the 
functions through least square 
error 

 
(2) Fuzzy inference over fuzzy rules: 
 -  For a new input vector x = [x1,x2, 

… , xq] DENFIS chooses m 
fuzzy rules from the whole fuzzy 
rule set for forming a current 
inference system.  

-  The inference result is:  
 

               Σ i=1,m  [ ωi fi ( x1, x2, …, xq )] 
    y   = ______________________________ 
                            Σ i=1,m ωi    

mailto:nkasabov@aut.ac.nz
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Example: Locally adaptive decision support system based on  
DENFIS 
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Evolutionary Computation (EC) for feature-, parameter-, and 
structure optimisation of ECOS  

• GA optimisation of the 
parameters of the model 
and the input features 
 

•  A chromosome 
contains as “genes” all 
model parameters and 
input features (yes, no) 
 

• Replication of individual 
models and selection of: 

- The best one  
- The best m 

averaged, etc 
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NeuCom: A Software Environment for  NeuroComputing, Data 
Mining and Intelligent  System Design (www.theneucom.com) 

• A generic environment, that incorporates 
60 traditional and new techniques for 
intelligent data analysis and the creation 
of intelligent systems, including: 

– Statistical methods 
– Neural networks 
  

• Methods for feature selection 
• Methods for classification 
• Methods for prediction 
• Methods for knowledge extraction 
• Fast data analysis and visualisation 
• Fast model prototyping 
• A free copy available for education and 

research from: www.theneucom.com 
• DENFIS for prediction 
• ECF for classification 

mailto:nkasabov@aut.ac.nz
http://www.kedri.info/
http://www.theneucom.com/
http://www.theneucom.com/
http://www.theneucom.com/
http://www.theneucom.com/
http://www.theneucom.com/
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3. Spiking Neural  Networks (SNN) and eSNN 
 Brain-like ANN 
A single neuron is very rich of information 

processes: time; frequency; phase; 
field potentials; molecular (genetic) 
information; space.      

 
Three, mutually interacting, memory types  
- short term;  
- long term  
- genetic  
 
SNN  can accommodate both spatial and 

temporal information as location of 
neurons/synapses  and their spiking 
activity over time.  
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Encoding information as spikes: Rate vs time-based 
 Rate-based coding: A spiking characteristic within a time interval, e.g. frequency.  

 
 Time-based (temporal) coding: Information is encoded in the time of spikes. Every 

spike matters! For example: class A is a spike at time 10 ms, class B is a spike at 
time 20 ms. 
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Models of spiking neurons:  
(Hodgkin-Huxley 1952; Abbott, 2000; Maas, Izhikevich; other) 

Most popular is the Leaky Integrate and Fire Model (LIF)  . 
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     Evolving SNN – eSNN    
• eSNN: Creating and merging neurons based on localised information (Kasabov, 2007; 

Wysoski, Benuskova and  Kasabov, 2006-2009) 
• Uses the first spike principle (Thorpe et al.) for fast on-line training 
• For each input vector  

a) Create (evolve) a new output spiking neuron and its connections 
b) Propagate the input vector into the network and train the newly created neuron  
 
 
 
 
c) Calculate the similarity between weight vectors of newly created neuron and existing  

neurons: IF similarity > Threshold THEN  Merge newly created neuron with the most 
similar neuron 

 
              
  where N is the number of  samples previously used to update the respective neuron.  

d) Update the corresponding threshold ϑ: 
 

• Schliebs, S. and N.Kasabov, Evolving spiking neural networks: A Survey, Evolving 
Systems, Springer, 2013.  
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eSNN evolve new output neurons to learn new input patterns through one-pass  RO 
learning. 

Merging can be applied based on Euclidean distance     
Example: Person authentication based on speech and face data    

(Wysoski, Benuskova and Kasabov, Neural Networks, 2010)  
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Methods for fuzzy rule extraction from eSNN 
  

(S.Soltic, N.Kasabov, Int. J. Neural Systems, World Sc. Publ., 2010)  

Ci Cj 

L1m 

L2i L2j 

i

j

IF v is SMALL THEN C
IF v is LARGE THEN C
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Reservoir-based eSNN  

 Maass, W., Natschl¨ager, T., Markram, H.: Real-time 
computing without stable states, Neur. Comp. 14(11),2002;   

 Input (feature) neurons connected to part of the LSM    
 Output neurons connected to part of the LSM    
 LSM recurrent connections, e.g. small world connections  
 Excitatory 80%, Inhibitory 20% 
 Learning in LSM: STDP; spike time delay ....???  
 Polychronization (Izhikevich): ‘opening the box’?  

2
,

2 /
,

λbaD
ba eCp −×=
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Quantum-inspired EC for the optimisation of eSNN  
 (Kasabov, 2007-2008; S.Schliebs, M.Defoin-Platel and N.Kasabov, 2008) 

nkasabov@aut.ac.nz, sschlieb@aut.ac.nz 
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The EvoSpike Simulator   
 
A collection of modules and functions written in Python using functions from Brian library:  
- Converting continuous-value input data into spike trains;  
- SNN for spatio-temporal pattern recognition (SPAN, deSNN, LSM deSNN, …); 
- Knowledge extraction from trained eSNN;  
- Presenting results and visualisation of learning processes ;  
- Connecting software modules with neuromorphic hardware. 
  
       

 

 
 
 
 
 
 
 
 
 
 
 
 
 
  



Progress in neuromorphic computation  
 Hodgin- Huxley model (1952) 

 
Carver Mead (1989): A hardware model of an IF neuron: 
 The Axon-Hillock circuit;  
 
INI Zurich SNN chips (Giacomo Indivery, 2008 and 2012) 
 
FPGA  SNN realisations (McGinnity, Ulster, 2010);  
 
The IBM chip (D.Modha, 2012): 256 LIF neurons and 64k 
synapses in a chip. 
  
U. Manchester SpiNNaker (216 computer chips, 2011; 1 mln 
neurons 2013) 
 
Stanford U., NeuroGrid (Kwabena Boahen et al), 1mln 
neurons on a board, 63 bln connections ; hybrid - analogue 
/digital)  
 
The challenge: Technology is available, but how do we use 
it for engineering applications? 
  
 
  
 
 
 
 
 

nkasabov@aut.ac.nz             www.kedri.info 

mailto:nkasabov@aut.ac.nz
http://www.kedri.info/


a) Object movement recognition from video data 
b) Audio/video data modelling   
c) Brain signals (EEG, MEG, fMRI) 
d) Brain- computer interfaces 
e) Motor control for prosthetics 
f) Ecological and environmental data, e.g. earthquake prediction  
g) Robot control 
h) Cyber-security data 

 
 Goal: Developing new methods based on ECOS and eSNN for STPR  

4. Applications for Spatio/Spectro-temporal Pattern 
Recognition  

 
•  Most real world data is spatio- or spectro- temporal.  
• In STPR problems spatial and temporal components of the information are 

interrelated.  
• Examples of spatio-temporal data and related problems are: 
EsfrExamples of STPR problems:  
 
E 
NTRODU 
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The EvoSpike Project: EU FP7Marie Curie                                                     

(http://ncs.ethz.ch/projects/evospike)  
  
 

nkasabov@aut.ac.nz                   www.kedri.info        ncs.ethz.ch/projects/evospike 
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               What can a single spiking neuron do in terms of STPR?  
 
 A single LIF neuron with simple synapses can be trained with the STDP unsupervised rule to 
discriminate a repeating pattern of synchronised spike trains of thousands inputs from noise  
             (T. Masquelier, R. Guyonneau and S. Thorpe, PlosONE, Jan2008)) 
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SPAN: Spike Pattern Association Neuron and the Delta Rule  
(A.Mohhemed et al, EANN 2011, ICONIP2011, IJNS, 2012; Neurocomputing, 2012))   

nkasabov@aut.ac.nz          www.kedrui.info 

Spike pattern association neuronal models: SpikeProp; ReSuMe; Tempotron;  
Chronotron.  



Moving object recognition using AER and eSNN  
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A single sample for each of the 15 classes is shown. The colour indicates the spatial 
position in 2D of a single point in time (black/white corresponds to earlier/later time 

points). 

3.0  EXPERIMENT 
       a)  Dataset 
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Brazilian Sign Language LIBRAS Pattern Recognition  
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LIBRAS recognition with LSM reservoir and eSNN classifier  
using different methods to read the state of the LSM  

(Schliebs, Nuzlu and Kasabov, ICONIP 2011)    

nkasabov@aut.ac.nz          www.kedri.info 
 

mailto:nkasabov@aut.ac.nz
http://www.kedri.info/


http://www.nuroshop.com (McFarland, Anderson, MÜller,  
Schlögl, Krusienski , 2006) 
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http://www.nzherald.co.nz 
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       Example: STPR of brain EEG data in response to four stimuli   
Data collected in RIKEN by van Leuwen: 64 channel EEG data of 500 msec is 

measured when four different stimuli are presented to one subject: image; sound; 
both, none.   
 

nkasabov@aut.ac.nz       www.kedri.info 

(a) Encoding EEG signals into spikes using the BSA (Ben’s Spike Algorithm) 
by Schrauwen and van Campenhout, 2003 (N.Nuntalid and N.Kasabov, ICONIP2011) 

(b) Exemplar spike trains on all 64 inputs for one EEG data sample (upper figure) and the weights changes of one output 
neuron (dedicated to this input sample) during the one pass presentation of the spike inputs to the DepSNNs model..  

mailto:nkasabov@aut.ac.nz
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         Results on the  case study problem of EEG STPR  
 

   Classifier  Accuracy Number of 

training 

iterations  

MLP 64.87% 150  

DepSNNs 75% 1 

nkasabov@aut.ac.nz       www.kedri.info 
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A NeuCube Framework and a Simulator for Brain Data 
Modelling and brain STPR 
(Kasabov, Springer LNAI 7477, 2012) 
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NeuCube for fMRI STBD  
 
  



             Computational  Neuro-Genetic Modelling  (CNGM)  
- SNN that incorporate a gene regulatory network (GRN) as a dynamic paramter 
systems to capture dynamic interaction of genes (parameters) related to neuronal 
activities of the SNN. 
 - Functions of neurons and neural networks are influenced by internal networks 
of interacting genes and proteins forming an abstract GRN model. 
 - The GRN and the SNN function at different time scales. 
-   
- Benuskova and Kasabov (2007); Meng and Jin (2011) 
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Neurogenetic modelling for cognitive and emotional robots 
and AD 

(N.Kasabov, R.Schliebs, H.Kojima, IEEE TAMD, v.3, No.4, December  2011)  
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Applications for adaptive, autonomous robots  
(e.g. work by P.Kormushev –IIT, Genoa; R.Duro – U. la Coruna, 

 P.Angelov – U.Lancaster; KIT Japan; U.Ulster, NASA, )    
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Presenter
Presentation Notes

The ECOS paradigm is currently being experimented  for the development of an intelligent navigation and communication system installed in a small mobile robot. 

The robot can continuously learn to navigate and to create maps of the environment. It can also communicate in a spoken language.

Rokel is about to start mastering the NZ accent.
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Estimating the risk of establishment of invasive species on a certain location 
at a certain time 

          (S.Schliebs, Defoin-Platel, N.Kasabov, S.Worner et al, Neural Networks, No.22, 2009)  
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Example: Through modelling a world map was created for the estimation of the 
probability of p.citri  insect establishment 

nkasabov@aut.ac.nz 
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Wind energy prediction   
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5. Future Directions  

• Neuromorphic system design for 
specialised applications such as: 
Engineering; BCI; Robotics; 
Neuroprostetics; Environment protection.  

• Implementation of EvoSpike models on a 
SNN supercomputer (e.g. SpiNNacker, 
U.Manchester) for a large scale spatio-
temporal data mapping, learning and 
mining.  

• Further interdisciplinary research in the 
three areas of CI, BI and NI 

• The Springer Handbook of Bio-
Neuroinformatics, 2013 (N.Kasabov, ed)  

• The Springer Series of Bio-
Neuroinformatics (N.Kasabov, ed) 

• Springer journal Evolving Systems  
 

 ‘  

       NI 
           BI 

 

CI  
 (incl. Mathematics, 

Physics,  
Chemistry,  

Engineering) 
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