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Abstract- 

 

This thesis investigates the topic of “Wildfire hazard prediction” through conducting an in-

depth study on fuzzy prediction methods and geographically collected weather data. The 

study explores the impact of various environmental factors leading to Wildfire. These factors 

associated with Wildfire are extracted from analyzing the past raw weather data and using 

McArthur’s Fire Danger Index formulations. 

 

The indices calculated through the formula and the generated synthetic data are used to train 

a Fuzzy system developed in Matlab software. The trained Fuzzy system is then tested with a 

raw set of historical real weather data originated from National Rural Fire Authority (NRFA) 

and National Institute of Water and Atmospheric Research (NIWA) to analyze the accuracy 

of the system developed.  

 

Finally, the predicted results of the Fuzzy system are examined and compared with that 

calculated using the formula, including the error percentiles between the two. Impacts of the 

input weather factors are also plotted in relation to the Fire Danger Indices under various 

conditions to understand their sensitivity towards the final prediction. 
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CHAPTER 1: Introduction 

1.1 Motivation 

 

A wildfire is any form of unrestrained fire that erupts in the countryside or a deserted area. 

Also referred to as brush fire, bushfire, forest fire, grass fire, hill fire, etc., it can cause 

massive destruction. Known through various such names, the only difference lies in the way 

and the place where the phenomenon occurs. 

 

Wildfires have proven to be a massive form of destruction for humankind for many years. 

These will prevail and may continue if proper prediction and suppression strategies are not 

used. Three main measures are essential when dealing with wildfires: 

1. Prevention. 

2. Prediction.  

3. Suppression.  

 

Of the three phases, the prediction phase is more significant as it eradicates the potential of 

huge loss. There are different means of prediction that could cause the ignition. An 

understanding of the actual causes is essential before working on the prediction itself.   

1.2 Research scope and focus 

A robust research should have all the necessary effective ingredients to attain measurable 

results. As such, the research study should be educational, informative, meaningful and 

useful. 
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In this research, the study focuses on prediction of wildfire before its occurrence in order to 

minimise the loss of property and life.  

In general, this study is a comprehensive exploration of wildfire prediction modelling based 

on meteorological variables for two main locations acting as the case studies for the research 

project. Gisborne in North Island and Christchurch in South Island, both cities in New 

Zealand, are the locations chosen in order to analyse and exhibit the prediction fuzzy model 

and validate against the real and theoretical data. 

Fuzzy logic model is a subset of Matlab, which is a program that provides GUIs to perform 

fuzzy system development and pattern recognition. This Neuro-adaptive fuzzy inference 

system analyses the findings using both theoretical and real time data. This model was 

developed to predict wildfire using variables such as temperature, humidity, wind speed, soil 

moisture, amount of rain and number of days since the last rainfall to calculate the Fire 

Danger Index (FDI). 

Each component in this model interprets the values in the input vector and, based on the 

defined rules, assigns values to the output vector. The theoretical values obtained using the 

FDI formula are used to train the system. This training is at various estimated levels using 

both the minima and maxima methods. This method will enhance the accuracy of the module. 

The data used in the research are largely compatible with the FDI formula generated [1,2]. 

The prime idea is to develop an accurate fuzzy system to compute any given weather 

condition in order to predict the severity of fire danger at that location.  

Using the adaptive Neuro-Fuzzy Inference System (ANFIS), the model is designed with 

input/output data. This system’s learning enables an understanding of the fire danger from 
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different views, such as the rule viewer and surface viewer. By this method, wildfire hazard 

is estimated by using an absolute multiplicative model where the impact of each variable is 

understood separately [4]. 

 

1.3 Research Objective 

 

In this research, the main objective is to define the conditions prevailing during a wildfire and 

its significant reactions and impact on the nearby locations. Severe deforestation and 

degradation over the past two decades has acted as the primary and the most significant factor 

for wildfires, even today. Other causes include lightning, volcanic eruption, sparks from rock 

falls and spontaneous combustion [5, 7]. 

 

The other main cause of wildfires is, surprisingly, human carelessness. Carelessness can 

constitute handling fireworks, debris burning and arson, etc., all of are examples of human 

activities that often result in wildfires.  

 

Another reason for wildfires is the slash and burn form of farming, which is a common 

practice of cutting and burning woodlands and vegetation in order to clear the land. Quite 

often, the slash-and-burn practices result in catastrophic wildfires [8]. Volcanic activity is 

another reason, creating favourable conditions for the ignition of wildfires in nearby areas 

[9]. 
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Underground coal fires are slow and flameless forms of combustion, below the earth's 

surface. Such fires continue to burn for many years, resulting in the release of toxic fumes 

which lead to the destruction of vegetation and human property. 

 

Although, in most cases, natural disasters and human activities cause wildfires, it has been 

estimated that 90 per cent of cases of wildfires are mainly caused due to human interaction 

with nature, either directly or indirectly [10,11]. See Figure below [FIG 1.1]. 

Figure 1.1 Chart representing the different modes of wildfire causes 

 

Wildfires are more predominant in the summer and autumn seasons. They are also common 

during droughts, when the fallen branches and leaves become dry and flammable. The overall 

spread of wildfires depends on: 

 

1. Weather. 

2. Type of vegetation. 

3. Geography and topography. 

4.  Strong Winds. 

 

http://www.buzzle.com/articles/natural-disasters/
http://www.buzzle.com/articles/weather/
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An accurate estimation of wildfire hazard is tremendously important to aiding officials in 

preparing supplies and staff in preventing, combating, and controlling large wildfires. One 

way to obtain estimates of wildfire hazard would be to produce a statistical model that uses 

weather variables such as relative humidity, temperature, and precipitation in forecasting total 

daily burn area due to wildfires. While a variety of models are used to predict wildfire 

incidences of human or lightning-caused ignition, and other possible factors which are used 

to model the spread of existing fires, possibly relying on physical characteristics of the fires 

and the landscape, the prime focus here is on the forecasting of wildfire activity solely using 

meteorological variables. Such statistical forecasts may be useful, not only for planning and 

preventive purposes, but also for the sake of understanding the critical role that these weather 

variables can play in affecting wildfire incidences and behaviour [14,15]. 

 

Thus, the main objective of this research project is to develop a wildfire prediction system, 

with accuracy also playing a significantly important role. 

 1.4 Early Warning system 

 

At a time of global changes, the world is striving to adapt to inevitable natural disasters. 

 

An Early Warning System (EWS) enables humans to detect any undesirable situation early 

on. Current gaps are investigated continuously with the goal of laying out guidelines for 

developing a global multi-hazard early warning system. 
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Early warning systems help to reduce economic losses and alleviate the number of injuries or 

deaths from a disaster by providing information that allows individuals and communities to 

protect their lives and property. Early warning information enables people to take action 

when a disaster is about to happen. If well integrated with risk assessment studies, 

communication and action plans, early warning systems can lead to substantive benefits. As 

stated by Glints: “predictions are not useful, however, unless they are translated into a 

warning and action plan the public can understand and unless the information reaches the 

public in a timely manner”. 

 

AN effective EWS embraces all aspects of emergency management, such as risk assessment 

analysis and prediction techniques An EWS is designed to focus on monitoring and 

predicting the location and intensity of the natural disaster, alerting authorities to respond to 

the disaster. Commonly, early warning systems lack one or more elements. After reviewing 

research projects on existing early warning systems, in most cases communication systems 

and response plans are not handled in the most efficient manner. Monitoring and predicting 

has only been a key part of the early warning process. This provides the input information for 

the early warning process that needs to disseminate to those whose responsibility it is to 

respond to monitoring and predicting systems, and is closely associated with the 

communication system and response plans. It may be helpful for this information to be 

communicated efficiently with the targeted users, communities, regions, or to media (regional 

or global early warning applications). 
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This information makes it possibile to take action to initiate mitigation or security measures 

before a catastrophic event occurs. The main goal of an EWS is to take action to protect life, 

reduce loss of life, lessen damage and lessen economic loss by taking measures before the 

disaster occurs. 

 

Nevertheless, this warning must be timely in order to provide enough lead-time for 

responding, so that those responsible for responding to the warning will feel confident in 

taking action. Predictions become more reliable and accurate with time, when more 

observations work with the prediction system. There is, therefore, an inevitable trade-off 

between the amount of warning time obtainable and dependability on the predictions 

provided by the EWS. An initial alert signal sent is gives the maximum amount of warning 

time with a minimum level of prediction accuracy. 

 

However, the prediction accuracy for the location and size of the event will continue to 

improve as more predictions continue with the monitoring system as part of the EWS 

network. It is quite evident that every prediction is associated with uncertainty. Because of 

the uncertainties associated with the predicted parameters that characterise the incoming 

disaster, a wrong decision may be made. Two kinds of wrong decisions occur in most cases 

[16]. These are: 

 

1. Missed Alarm (or False Negative) - when the mitigation action is not taken. 

2. False alarm positive - the action takes place when it should not have been.  

 



 19 

Finally, the message communicated at such level of uncertainty must be communicated with 

clarity to those who are at the receiving end. Very often, there is a communication gap 

between EW specialists and the users themselves. EW specialists have the technical 

knowledge, whereas the users are not completely aware of all the technical aspects. To  

avoid this, these early warnings need to be reported concisely in layman’s terms and without 

scientific jargon [17]. The overview of an EWS constitutes various criteria [see Fig 1.2]. 

 

Early warning (EW) as defined by the UN is “the provision of timely and effective 

information, through identified institutions, that allows individuals exposed to hazard to take 

action to avoid or reduce their risk and prepare for effective response” [11]. 

    1.5 Fuzzy Development 

A Fuzzy Logic Toolbox provides MATLAB functions, graphical tools and a Simulink block for 

analysing, designing, and simulating systems based on fuzzy logic. Behavioural functions 

provided in this study cater to many methods, including fuzzy clustering and Adaptive-Neuro 

Fuzzy. 

Figure 1.2 Early Warning Systems 
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For this research, fuzzy inference systems are applied to model systems using input vectors 

(Weather variables) in order to understand the behaviour of the prediction system. 

The toolbox used will outline complex system behaviours using simple logic rules and then 

implement these rules in a fuzzy inference system. The ANFIS is used all through the research 

for design, development and validation.  The model is trained using synthetic data attained by 

using an established FDI formula. After training and testing the fuzzy controller, the fuzzy model 

is ready to work with any raw data in order to understand the Fire Danger.  

The final fuzzy model developed is for viewing, analysing and comparing various results. This is 

to cultivate an understanding of the model’s reliability.  
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CHAPTER 2: Wildfire Early Warning System: A literature review 
 

2.1 Introduction 

 

This chapter reviews the various conditions of the wildfire and its phenomenon leading to the 

importance of the existence of an early warning system to detect a wildfire before the 

occurrence. 

 

Towards attaining this goal, the most important aspect is to analyse the importance of the 

research. Various research articles and publications reviewed emphasise past projects and 

their findings. This chapter aims to understand and review the literature already published in 

order to provide a clearer outlook of this research. 

 

2.2 Overview of sensing parameters for prediction 

 

Among the most basic references towards attaining knowledge on the sensors, Miao [3] 

defines the sensor networks as a computer network composed of a large number of sensor 

nodes. This research article also explains the sensor capabilities in terms of resources, 

memory, computational speed and bandwidth. Further, the author writes about the various 

sensors that are available such as pressure, accelerometer, camera, thermal, microphone, etc., 

in order to understand the main aspects. All the weather variable capabilities used in this 

article are related to wildfire prediction directly or indirectly. However, if all the sensors are 

to be used for the fuzzy model, the result system will risk having a greater error percentage.  

 



 22 

The sensors within this article monitor different conditions at various locations, such as 

temperature, humidity, vehicular movement, lightening condition, pressure, soil makeup, 

noise levels, the presence or absence of a certain kind of objects, the current characteristics 

such as speed, direction and size of an object. Not all the sensor capabilities are completely 

associated with this study. However, some of the weather sensor information is valuable as it 

gives an understanding of the hardware capability of such a product. 

 

The applications of the sensors are military, environmental, health, home, etc. The author [3] 

brought up the various applications and the necessary data ffor each scenario. This helped to 

understand the importance of various factors over others for different categories of 

applications (in this case, wildfire hazard prediction). 

 

The report by ITU-T technology [4] reported on a Ubiquitous Sensor nNetwor (USN) which 

showed another perspective of the sensor networks. Such an enhancement would allow 

anyone to interact with the network with compactness and effectiveness. The report further 

delivers the nature of such sensor networks and complexity that can be included in such a 

network. The basic characteristics of USN[4], which set it apart, are its requirement of small-

scale sensor nodes, and limited power requirements that can be stored or harvested.  

 

This report also emphasises the use of compact sensors over a high range, which would 

provide dependability for a vast area. Further, the sensor nodes used can be reduced, 

improving the effectiveness of each node rather than having numerous sub-nodes. Working 

on nodes covering a vast area was a very significant input of this article, but the aspects of 
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accuracy over these ranges are not discussed in detail. Some factors about the use of compact 

sensors to improve effectiveness caught my interest [FIG 2.1]: 

 

 

 

 

 

 

 

 

 

The technical aspect of such sensor networks using Zigbee, an implementation of the IEEE 

802.15.4 standard for wireless personal area networks (WPAN), provides a suite of 

communication protocols [4]. Extension to the knowledge established via this paper gives an 

insight into the possibilities of sensor applications. However, the main concern with this paper 

is the main prediction system, which could be discussed in detail providing a deeper 

understanding of the sensors. 

Various papers explained the design methods of the concept with the possible errors that could 

prevail. An article by Chu [5] explained very well the design methods for a bushfire sensor 

system. The author explained about the nodes placed accordingly to pass the data to a base 

station. The sensors used consist of various aspects and levels of detection. These include 

detection of fire, gathering climate data and gathering fire behaviour data. The wireless sensors 

Figure 2.1: Overview of Sensor system 
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are suitable for bushfire or wildfire monitoring; this is because wireless sensor networks are of 

lower cost, finer grain, and greater coverage (time/space). Moreover, the wireless sensors have 

a lower delay, are automatic, and more reliable. All these positive aspects regarding the use of 

WSN make them a better method of monitoring wildfire [5] [FIG 2.2]. 

Chu [6] explains the technology used in 

developing a wildfire sensor and related modeling 

procedures. The author explains the monitoring 

equipment requirements for wireless sensing such 

as the processor unit, radio, memory and the 

various necessary sensors. The different 

members of the wireless sensor networks 

(WSN) are defined as normal, super, and base station [6]. It has been said that the networks can 

be chosen as required. For instance, greater radio range, longevity, and cost are a few of the 

factors to consider [6]. 

Both these authors describe the advantages of wireless technology when it is used more 

efficiently. All these factors are reassessed while choosing the best network for monitoring. The 

author explained about the importance of bushfire sensing and modelling equipment in order to 

perform experiments in a virtual environment that would otherwise be impossible in a reallife 

situation due to cost, danger, and lack of control [6]. 

The author further explained the use of a multilayered model for simulating the overall system. 

In such a way, the determination of each layer could capture the behaviour of each component. 

This technique is discussed in a very structured manner, without explaining the risks to the 

Figure 2.2: Sensors used for various hazard 
prediction systems 
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prediction system itself in different weather conditions. A multilayer system is indeed a great 

idea when a system is built for inevitable conditions such as wildfire prediction, which requires 

maximum accuracy and efficiency. 

To enable more clarity towards the prediction model, Power [7] proposed a method of mapping 

a potential bushfire hazard. The method the author specified focuses on the benefits of using the 

mapping method by deploying derivations. This can be done by mapping objectives, such as 

predictive fuel load modelling and the rate of spread modelling. Mapping of the data itself gives 

an in-depth idea of what to expect, but the author fails to extend the topic to real-life mapping, 

which would also be a significant improvement in the area of prediction modelling. 

Usage of remotely sensed data also assists in addressing the remote sensing of the fire risk 

mapping, which is manifold and advancing at an enormous rate [7]. The author illustrated the 

entire framework which maps the risk areas in order to predict a bushfire hazard. Li et al. [8] 

provided useful information about the use of GPS signals to map and monitor bushfires. This 

article provides a different perspective in order to understand bushfire monitoring. The author 

explains about the DGPS/INS integrated system. This includes the system design tightly 

coupled with integration software implementation, differential GPS, and particular methods 

for reconstructing the trajectory of the host vehicle based on the GPS data [8]. 

Three methods considered by the authors included the optimal Kalman predictor, the optimal 

smoother and the least-squares polynomial fitting method. All these methods were followed to 

gain the respective results in accordance with the factors given. They described this method by 

using GPS with various hardware and software equipment. The static and kinematic tests have 

demonstrated the functioning of the TCIKF software used in the experiments, followed by the 
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authors. The authors concluded that the least-squares polynomial fitting method gives better 

solutions than the other two proposed methods used for assuming the bushfire condition to 

prevail in mathematical terms [8]. These terms set a basic matrix format for the formula to 

calculate the fire danger indices. This indicates the complexity of the various inputs provided, 

depending on the weather conditions of each scenario [8]. The percentile error can be calculated 

for the research to understand the accuracy of the fuzzy system modelled. The only aspect the 

authors fail to discuss in detail is the calculation technique impact on the existing prediction 

systems and the systems yet to come. Consequently, all the major variables were not quantified 

enough to understand the concept better. 

With further research, a project progress report by Bushfire Cooperative Research Centre 

(CRC) [9] provided a concrete approach of projecting a high fire risk project and its progress. 

This report reviews and compares the various formal methods employed to correct the rate and 

direction of bushfire spread in the presence of both wind and slopes. The researchers claim 

these methods are critical, as are dealing with the natural resources. This paper draws together 

and explains those elements of mountain meteorology that have the potential to affect fire 

behaviour. The mountain meteorological literature has been extensively consulted and 

condensed into an easily readable form and is relevant to Bushfire CRC stakeholders and 

researchers [9]. However, the research has been carried out taking all aspects into consideration, 

while the comparison between studies does not allow it to be examined in a practical 

environment. Overall, the research article provided a great deal of computed information that 

made it easier to understand prediction systems better. 

Pook [50] explained the empirical model formulations to predict fine fuel moisture content, and 

also discussed fire prediction models. The author incorporated the methods, analysing the 
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performances of temperature and relative humidity inspired by McArthur’s models. [50] On the 

same grounds, Pook [51] explains the empirical formulation and some prominent features and 

procedures of the prediction models.  

Fire Hazard Analysis is discussed by Buklowski [10], who explained the risk analysis of fire 

and predicted a few approaches in order to potentially prevent a fire hazard. The author also 

wrote about the quantitate fire hazard analysis as the most fundamental tool of modern fire 

safety practices [10]. The analysis addressed all the salient scenarios and likely events, where 

all the assumptions were justified to provide a comfort level with all the code requirements 

[10]. 

The indices described the requirement for the application of designing a structure, briefing the 

understanding of the structure to design a wildfire early warning system. The different 

conditions provide an understanding of the various responses of different factors. The various 

factors affecting the fire dander index as described would be the wind, fuel moisture, and fuel 

availability conditions. In these various conditions, the given set of inputs using various sensors 

according to the requirement is a critical aspect. This idea is developed further throughout the 

research.  

 

2.3 Overview of an Early Warning Systems 

 

Early warning (EW) is “the provision of timely and effective information, through the identified 

institutions exposed to hazard to take action to avoid or reduce their risk and prepare for 

effective response” [11]. 
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Various types of early warning systems include Tsunami EW system, Earthquake EW system, 

Flood EW system and many more disaster EW systems. With the knowledge of all such 

systems, this allows an understanding of the importance of accuracy when developing an EW 

system for wildfire prediction. A report by the United Nations [11] provided a global survey of 

EWS. This report provided an assessment of capacities, gaps and opportunities toward building 

a comprehensive EWS for all natural hazards. 

The report speaks about the 

many gaps and shortcomings 

that have prevented the 

occurrence of EWS. In addition, 

the survey described that global 

systems for all hazards are not 

yet ready to be in place. More 

positively, there are committed 

capacities and  

strengths available upon which truly effective globally comprehensive early warning systems 

can be built, but as a network of interacting systems and components, drawing on the expertise 

and technical capacities of the different hazard fields and the knowledge and insight of the 

relevant associated social and economic fields.[11]. A vast study was conducted to give an 

understanding of the early warning systems. However, consideration of the various locations 

that could be an impact to the hazard is not given. Nevertheless, the report specifies that all the 

EWSs are supposed to be people-centric, and that there are four elements that every EWS 

Figure 2.3: Four elements of EWS  
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should abide by in order to gain maximum usability, as follows: i) Risk knowledge; ii) 

Monitoring & warning service; iii) Dissemination & communication; and iv) Response 

capability [Figure 2.3]. 

Similarly, a research report by NOAA science board [12] had an in-depth view about the 

catastrophic destruction causing loss of life, destruction of property and critical infrastructure, 

and widespread environmental damage. In the United States, human population densities in 

wildfire-prone areas are increasing. In particular, areas of intersection between human 

populations and wild land, called the “wildland urban interface” (WUI), has been increasing, 

with 2000 Census data showing that 100 million people now live in WUI areas [12]. 

Consequently, the vulnerability of communities to the incursion of wildland fire, both in human 

and economic terms, is escalating [12]. 

The report also produced numerous examples in recent years of the exceptional fires that caused 

death and destruction at remarkable levels. Moreover, the report emphasises the significant role 

of the weather in the initiation of fire. Much of the historical research on fires has focused on 

surface conditions, but there is increasing recognition that the three-dimensional atmosphere 

also plays a key role. While the specific effects of climate change on wildfire occurrence, 

extent, and severity are likely to vary in different regions of a country, there is growing 

scientific evidence that climate change will increase the number and size of wildfires [12]. 

An integrated approach to bushfire management by the Bushfire CRC [13] states the damage 

caused by bushfire is estimated at $29 million. In addition, the report describes the fire 

behaviour as eucalypt dominant ecosystems and exhibits some remarkably different and yet 
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imperfectly understood characteristics. The nature of fires in forests and woodlands 

significantly depends on the dynamics of available fuels [13]. 

The Bushfire CRC is further undertaking two projects that will considerably enhance the 

capacity of existing bushfire management decision support tools. In addition, most other CRC 

projects have the capacity to feed directly into these models [13]. 

The bushfire risk model provides data in a fire manager-friendly fashion. This report has 

provided a clear view on the risk management of bushfires by providing the estimations of loss 

due to wildfires [13]. 

A report by Ensis [14] on forest security and protection explains the vital contribution to the 

economy and environmental protection. It also explains the key factor in taking effective 

management action before and during fires is high-resolution fire behaviour prediction. The 

report emphasises the effects of seasonal to decadal climate variability on fire climate and fire 

danger trends. 

It also determines that the degree of grass curing (or percentage dead) is a hugely significant 

determinant fire danger and fire behaviour potential in grasslands. It is a critical input required 

for the Australian and New Zealand fire danger rating systems. Current visual assessments in 

the field are largely inaccurate, and remote sensing techniques need to be updated with newer 

technology. Using remote sensing to assess curing across both countries with confidence 

requires the development of separate relationships for the different grassland regions [14]. 

Further, an article by Oldford et al. [15] discusses predicting slow-drying fire weather. The 

article states that the fire danger predicted by the Canadian Fire Weather Index, a system based 

on point source weather records, is limited spatially. NOAA AVHRR images used to model two 
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slow-drying fuel moisture codes, the duff moisture code and the drought code of the fire 

weather index, in boreal forests of 250,000 sqkm portions of northern Alberta and the southern 

Northwest Territories, Canada. Temporal and spatial factors affecting both codes and spectral 

variables (normalised difference vegetation index, surface temperature, relative greenness, and 

the ratio between normalised difference vegetation index and surface temperature) are 

identified. Models were developed on a yearly and seasonal basis. They were strongest in 

spring, but had a tendency to saturate. Drought code was best modelled (R 2 = 0.34-0.75) in the 

spring of 1995, when data are categorised spatially by broad forest cover types [15]. These 

models showed improved spatial resolution by mapping drought code at the pixel level 

compared with broadly interpolated weather station-based estimates [15]. 

Harttung, Han and Holbrook [16] discussed a multitier portable wireless system for monitoring 

weather conditions in wildland fire environments. In this article, the authors discussed wireless 

technology as a means of bringing communications to remote areas, while short-range sensor 

networks were seen as a means of gathering large amounts of data from small areas. The 

authors blended these two ideals into an actual real-world deployment that combines the best of 

both technologies. In so doing, the authors built a system that successfully presented an 

elevation gradient of environmental conditions in wildland fire environments. This previously 

unattainable information would help fire behaviour analysts make better predictions about fire 

conditions and create a more aware environment in the fire community which will, in turn, help 

make fighting forest fires safer in the future [16]. 

Mills [17] discussed the improvement and understanding of fire weather, which is the main 

cause of wildfires. In this article, the author suggests a way of improving the operational utility 

of fire weather forecasts and outlooks, by providing better knowledge and understanding of 
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wind, temperature and humidity structures and distributions, on the short-term, and seasonal 

through to climate, time-scales[17]. This article further explained the medium-range 

predictability and possible application of seasonal prediction. Fire databases and outcomes were 

also discussed [17]. 

Keenan [18] closely relates the research proposal by testifying that a global early warning 

system is a very valuable benefit to humankind. The significant ecosystem destruction, which is 

caused by hazards like wildfire, has a negative impact. Regarding this, the significant loss of 

life, including the negative social impact and economic losses, are also discussed. The potential 

impact on climate change by the increased use of aerosols was also a matter discussed without 

proper consideration of the prime causes of the hazard, but which would have been of value to 

the research work conducted by the author [18]. 

Information from all the research publications and surveys resulted in an understanding of the 

concept of EWS. The current status was best summed up in a report by the United Nations [11], 

which conducted a comprehensive survey in 23 countries involving 20 international agencies. 

The findings obtained mainly synthesised the gaps in the field of EWS. It can be seen that 

considerable progress has been made in developing the knowledge and technical tools to assess 

risks and to generate and communicate predictions and warnings, particularly as a result of 

growing scientific understanding and the use of modern information and communication 

technologies.  

However, EW systems are available on a limited basis on both the natural hazards and the 

operating countries. Use of a scientific understanding of the natural hazards themselves and 

predicting them accurately is the key. In this research, the focus is to design the prediction 
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system after understanding the causes of wildfire and predict their occurrence as accurately as 

possible. 

 

2.4 Overview of Wireless sensors and smart environments 

 

Smart environments represent the next evolutionary development step in building, utilities, 

industrial, home, shipboard, and transportation systems automation. Such environments were 

clearly reviewed and discussed by F.L. Lewis in the article produced by the Automation and 

Robotics Research Institute. Like any other organism, the smart environment relies mostly 

and foremost on the sensory data from the real world. Sensory data can be obtained from 

multiple sensors of different modalities in various locations [9]. 

 

Lewis further explained the 

various challenges in the 

hierarchy of detecting the 

relevant quantities, monitoring 

and collecting the data, 

assessing and evaluating the information, formulating meaningful user displays, and 

performing decision-making and alarm functions. The information needed by smart 

environments is provided by Distributed Wireless Sensor Networks, which are responsible 

for sensing as well as for the first stages of the processing hierarchy. The number of recent 

funding initiatives, including the DARPA SENSIT program, military programs, and NSF 

Program Announcements, highlights the importance of sensor networks. Figure 2.4 shows the 

Figure 2.4: Sensor system used in earthquake warning system [19] 
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complexity of wireless sensor networks, which generally consist of a data acquisition 

network and a data distribution network, monitored and controlled by a management centre.  

In the project, looking at all the required sensors in the prediction of the fire danger index is 

the key aspect. To get the prediction accurate, fuzzy inference systems are used to relate each 

sensor capability to the outcome - the FDI. The study of the sensor technology creates a 

degree of flexibility when deciding on the sensors according to the requirements. 

 

2.5 Real life wildfire data – An analysis 

 

A brief report by Bushfire CRC [19] on the Lake Taylor project: “Project Fuse: Fire Shrub 

land Experiments” with attention to wind, aims to continue the development of the 

heath/shrub fire behaviour model by conducting experiments in different heath/shrub/scrub 

fuel structures at different sites in Australia and New Zealand. These experiments examine 

how fire spread is affected by slope, as well as other factors like ignition pattern. The Lake 

Taylor New Zealand burn experiments, the first stage of Project Fuse, were carried out in 

March 2005 in thick shrub vegetation on very steep slopes. These experiments add to the 

scientific understanding of fire behaviour in scrub fuels enhancing fire fighter safety, public 

safety, prescribed burn planning and wildfire management [19]. 

 

The elements comprising the fire environment like the topography, fuels and weather are 

discussed. With respect to wildland fuels, we consider fuel models, live and dead fuels, and 

the role of remote sensing in this arena. Weather, both current and forecast, are seen to be 

crucial and the one element common to all operational systems. Considering the fire models, 
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which utilise the environmental input and produce fire danger output related to either fire 

potential or behaviour, is critical. 

2.6 Summary 

This chapter gives an overview of the different sensing parameters required for an effective 

sensing of fire danger. In addition, an understanding of the early warning systems for different 

natural hazards is also discussed in order to improvise the efficiency of the research. 
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CHAPTER 3: A Framework for Wildfire Prediction methods - An 

Architectural view and Methodology 

3.1 Introduction 

In this chapter, the wildfire prediction system and its methodology is discussed in detail. This 

chapter explains the methodology used while developing the prediction system, as well as 

explaining each of the weather variables used in a descriptive manner. 

In addition, this chapter gives an overview of the complete system mainly focusing on the 

block system and the formulae used to analyse the findings. 

 

3.2 System Architecture 

 

Predicting wildfire constitutes various inputs that are used together to develop a model. This 

model will be capable of predicting the wildfire occurrence according to the data it receives. 

A wildfire prediction system is integrated with a variety of input factors that cause the 

wildfire and produce a trained system. This would give the EWS a reliability and 

consistency. 

 

While outlining the exact concept on which the system would run, there were various 

implications that could be related to the WPS. This is so as the concept is related to 

expectations and forecasting. In addition, this should be very strong with significant progress 

towards producing a consistent, reliable and objective prediction system. Lack of 

infrastructure and a variety of modelling tools and information technology ideas could be the 
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only drawbacks of producing such system. However, this idea has a key element in producing 

the application models, which would suit the needs of the environment at a global level [24, 

25]. 

 

Producing an early warning system provides the decision makers and users with an insight 

into the future status of the wildfire ecosystem and its evaluation. By gathering the real time 

data of the various wildfire analyses of selected scenarios, this would provide us with 

measurements related to the WPS that we are to produce [25, 26]. For any key research, 

preparing the raw factors is a key factor. Various observations through this concept globally 

provided the decision-making tool by which to understand the natural hazards in the 

exploitation of economically advantageous trends.  

 

Recent advances in climate forecasting have elicited strong interest in a variety of economic 

sectors: agriculture [30], and health and water resources [32]. The climate forecasting 

capabilities of coupled ocean-atmosphere global circulation models (GCMs) have steadily 

improved over the past decade [33]. Given observed anomalies in sea-surface temperatures 

(SSTs) from satellite data, GCMs are now able to forecast general climatic conditions, 

including temperature and precipitation trends, 6 to 12 months into the future with reasonable 

accuracy [32,28].  

 

While such climatic forecasts alone are useful, the advances in ecosystem modelling allow 

specific exploration of the direct impacts of these future climate trends on the ecosystem. 

One-day predictions made in March might accurately forecast whether Montana's July winter 
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wheat harvest will be greater or less than normal and whether the growing season will be 

early or late. 

 

Figure 3.1 shows the block diagram of the WPS, which is designed in stages. In the initial 

stage, all forms of raw data related to wildfire either directly or indirectly, along with the 

boundary values, are formulated into an initial model, which takes place in the “model” 

section of the block diagram. This model developed is used for four main actions, which are 

prediction, assimilation, monitoring and verification. All these are directly communicated to 

the users. WPS is designed in such a way that the user is able to access all the necessary areas 

of the system to get information. As seen in the diagram below, the user has the ability to 

carry on the main actions with a WPS. For example: the user is able to access the “model” for 

information on the actual design, “prediction” for the result which can be in the form of 

graphs or indices, “verification” to verify the  output of the whole system, and “monitoring” 

or “assimilation” to finally check the data which was used by the model.  A WPS is to be 

modelled in such a way that the end user can easily access any part of the information in the 

system to judge and take necessary action accordingly. 
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During this research, the prediction block is experimented thoroughly for a potential fire 

hazard indication. The “Prediction” block is defined, verified and validated in the further 

chapters of this research [Figure 3.1]. 

 

 

 

One of the key problems in adapting climate forecasts to natural ecosystems is the "memory" 

that these systems carry from one season to the next. Simulation models are often the best 

tools to carry forward information about this Spatio-temporal memory [34].  

 

The ability of models to describe and to predict ecosystem behaviour has advanced 

dramatically over the last two decades. This has been driven by major improvements in 

process-level understanding, climate mapping, computing technology, and the availability of 

a wide range of satellite and ground-based sensors. In this chapter, we summarise the efforts 

of the Ecological Forecasting Group at NASA Ames Research Center over the past six years 

to integrate advances in these areas and develop an operational ecological forecasting system. 

Figure 3.1: Prediction, monitoring and verification of the WPS 

PREDICTION 
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3.3 Setting and Operations 

 

3.3.1 Fire Danger- Factors and Weather conditions 

 

The potential for the occurrence and development of bushfires is dependent upon the 

interaction of fuels with a number of weather elements that vary over long and short 

timescales. Consequently, various methods have been developed around the world to 

combine information on weather and fuels into a fire danger prediction system index. Fire 

danger indices provide a measurement of the chances of a fire to occur. Various other 

impacts can also be studied concerning fire danger, such as: 

 

1. Rate of spread. 

2. Intensity.  

3. Difficulty to suppress. 

 

The above can be studied with a combination of weather factors such as temperature, relative 

humidity, wind speed and the drought effects. 

As fire prediction is probably the most efficient means of protecting forests, suitable methods 

are developed for estimating the fire danger. Fire danger is composed of ecological, human 

and climatic factors. Therefore, the systematic analysis of factors includes forest 

characteristics, meteorological status, and topographic conditions causing forest fire danger; 

it is the result of both constant and variable fire danger factors affecting the development, 
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spread and difficulty of control of fires and the damage they cause. Constant factors are those 

that change slowly and vary with location, e.g. slope and fuel. Variable factors change 

rapidly with time but can influence extensive areas, such as wind speed, relative humidity 

and temperature [21]. 

 

Fire danger indices (FDI) are used as a measure to inform the public of bushfires in addition 

to assessing a fire behaviour potential in an operational setting. In south-eastern Australia, 

fire danger is determined using McArthur's forest and grassland fire danger metres [1]. The 

metres take the form of circular slide rules according to the type of fuel under consideration. 

The content of the metres can be expressed as equations [1,2], which express fire danger as 

exponential functions of temperature, relative humidity, precipitation, wind speed, grass 

curing, fuel moisture content and drought factor. The equations provide a way of including 

the fire danger metres in computer systems, which allow for an advanced modelling of the 

fire system. 

 

3.3.2 Fuzzy modelling - An overview 

 

Fuzzy inference systems interpret the values of the various input factors, namely temperature, 

soil moisture, humidity, gas and wind speed, which lead to the wildfire in any form of 

atmospheric factors. 

 

The fuzzy logic model for this project is built using the MATLAB 7.0 software. The fuzzy 

logic toolbox leads us to build the FIS based on the rules set, the membership functions, 
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which are provided to the system using the input modelling according to the formulae that we 

use to gain the FDI for the system. 

 

Due to the flexibility of the FIS, the information given to the system can be edited and 

displayed at any point of the structuring. In addition, the 3D display and surface gives us a 

clearer picture of the output of the system. 

 

Three different scenarios are used to test the formulae on the ANFIS structure modelled. The 

simultaneous use of the FIS is structured to interpret the prediction system three times with 

the input of the formula and the various datasets of the scenarios. 

 

3.3.3 Formulation of FDI – Mathematical theory 

 

The equations of Noble et al. [1,2] provide an optimal fit to the circular slide rules developed 

by McArthur, but are not intuitive. The prevalence of tools such as the Tolhurst Fuel 

Moisture Meter opens up opportunities for the development of new intuitive approaches to 

modelling fire danger that generally reproduce what is in current use. As a starting point, we 

consider the factors known to affect the fire danger directly. 

 

Wind is the most critical meteorological factor affecting fire potential and is one of the main 

components determining the rate of spread and direction of a fire. Moreover, it aids 

combustion by causing the flames to lean towards unburnt fuel, supplying the fire with 
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oxygen and carrying moist air, which would otherwise restrict the amount of heat available to 

ignite un-burnt fuel. 

 

The fuel moisture content also directly influences fire potential. The fuel moisture content is 

a combination of a long-term dryness component and a component of dryness governed by 

the ambient air. The long-term dryness of fuel affects the flammability of fuels. It is a 

measure of the proportion of the fine fuel that is able to become flammable.  The moisture in 

the ambient air will also affect the flammability of fuels, as it is a measure of the efficiency 

with which flammable fuel will burn. 

 

Other factors such as temperature and relative humidity have direct and indirect effects on 

fire danger. It is also pertinent to note that site-specific factors such as terrain and fuel are not 

listed. These have a role in fire behaviour, not in fire danger, which is a regional tool [25].  

 

Intuitively, then, fire danger should increase as wind speed increases and should decrease as 

fuel moisture content increases. Thus, in basic terms, a fire danger index should be something 

along the lines of [20, 21]: 

 

FMC

U
FDI

f
   (1) 

 

Where    is the wind speed at the fire and FMC is the fuel moisture content. 
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     3.3.3.1 Wind  

 

A fire is directly affected by wind at the fire front. Typically, the most relevant part of the 

wind is at a height of approximately 2m. Meteorological wind, on the other hand, is defined 

to be the wind measured at 10m above the ground, in a clear site. The wind at the fire front 

   can be estimated from the meteorological wind by means of a canopy reduction factor ( γ 

), which ranges from 0 to 1: 

 

10UU f      (2) 

 

Where     is used to denote the meteorological wind. All wind measurements have units of 

kilometers per hour. The canopy reduction factor is a term that describes attenuation of the 

wind by vegetation. Typically, for a forest γ ≈  0.3. In other words, 70% of the wind speed is 

attenuated by the canopy and does not affect the fire.  

A further consideration is the in draught    created by the fire. Air heated by a fire will rise 

and expand, causing the surrounding air to flow in to replace it. The net effect at the head fire 

is a counter-wind that alters   , 

 

inff UUU      (3) 
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Typically,     ≈ 3 km h-1 for grassland and    ≈  0.2km h-1 for forest. However, for the 

purposes of determining fire danger,    cannot fall below a minimum value   , which 

corresponds to the rate of spread of a backing fire [21]. Hence: 

),(max 10 inbf UUUU   (4)                               

 

3.3.3.2 Fuel moisture content 

 

Fuel moisture content is expressed in percentiles. It is the moisture weight of a fuel sample 

expressed as a percent of the oven-dried weight. For example, if a kilogram fuel sample is 

dried and weighs 900g, then the fuel moisture content is 11%. Fuel moisture content is 

affected by three sources of moisture - air, soil and rainfall. 

 

The influence of the air on fuel moisture content can be approximated with the following 

basic expression [21]: 

 
4

10
HT

FMCa


             (5) 

 

Where T is air temperature (C) and H is the relative humidity (%). Equation (5) implies that 

hotter and drier air lowers FMCa, which specifies the fuel moisture content in %. In addition, it 

was mentioned in [21] that equation (5) is an approximation based on the regression results in 

[50, 51] and the coefficients have been rounded for the sake of convenience. There is 
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approximately a 1.5-hour lag time for fuel moisture content to respond to major changes in the 

air.  

 

As this study is purely based on the prediction model derived by McArthur [1], the above 

equation is used to understand the impact of each variable only. 

 

The soil and rainfall influences on long-term moisture are handled by the drought factor (DF) 

and curing (C), for forest and grassland, respectively. This changes much more slowly than 

the moisture content of the air. Drought factor ranges from 0 (lowest) to 10 (highest), and 

curing ranges of  0% to 100%.  

 

The influence of the drought factor (or equivalent) is given by the long-term dryness 

factor    , which can be estimated via the drought factor as:  

 

DF
DLT

7
     (6) 

 

Combining the long-term dryness and the influence of moisture in the air, we can express the 

net fuel moisture content as the product: 

 

aLT FMCDFMC 
(7) 
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3.3.3.3 Fire danger index 

A fire danger index is then a combination of wind, long-term dryness and the fuel moisture 

content of the air [21]: 

 

aLT

f

FMCD

U
FDI


  (8) 

 

Note that this equation possesses a calibration constant α, which needs to be approximately 

20 to provide reasonable agreement with the McArthur models.  

 

Equation (8) can be combined with equations (4) and (5) results in:  

 
HT

DFUUU
FDI inb






40

,max 10
  (9) 

 

Where β = 4α/7 is another calibration constant that needs to be determined. In what follows, 

the calibration constant α (and hence β) will be selected to give the best agreement with the 

McArthur Fire Danger Indices. 

 

Even though the above FDI formula derivation agrees with the McArthur derivations, the 

above equations were primarily used to understand the impact of each variable only as each 

variable was rounded to the convenience of the author [21]. To further research on the FDI 
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and its overall impact, the more established and widely accepted formulae by McArthur are 

used in our case studies.  

 

Fire danger ratings are used to indicate the type of threat that wildfires may pose given the 

forecast weather conditions. The fire danger ratings provide the community with an 

indication of the sort of wildfire behaviour that could be experienced on that day. The FDI 

usually ranges from 1 to 100, with 1 being the least likely condition for a wildfire and 100 

being the most likely. However, there are instances for a FDI to be above 100. Such ranges 

where the FDI is above 100 are classified as catastrophic wildfire. Under these types of 

weather conditions, fires will be unpredictable, uncontrollable and fast moving. The Fire 

Danger Index from 1 to 35 are categorised as being low probability, 35-50 being high 

probability and over 50 being highly probable for this project. Thus, a FDI value of 35 is used 

as the boundary line to distinguish between safe and unsafe conditions using the fuzzy 

system.  

 

The Bureau of Meteorology uses consistent language and terminologies familiar to the 

community in their fire weather forecasts in order to facilitate their understanding about the 

severity of the threats from wildfires.  

 

According to McArthur’s derivations, the fire danger index (FDI) is defined as [1]: 

 

FDI = 1.275 D^ 0.987 * [exp(0.0338T -  0.1345H)] * [exp(0.0234V)]                             (10)
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Where, 

 

D (or DF) = Drought factor 

T = Maximum air temperature (°c ) 

H = Minimum relative humidity(%) 

V = Daily mean wind speed 

 

 The fire danger index (FDI) is categorised into three zones according to the severity of fire 

danger that it predicts. 

 

Firstly, FDI ranging from 0 to 18 is considered as the safe zone where there are almost nil 

chances that a wildfire will take place. Whereas, 19 to 35 FDI mean that the wildfire has the 

probability to occur but has little chance. At this stage, the other factor, the drought factor, is 

considered to understand the severity of the wildfire. 

However, FDI of 35 and above is considered dangerous to extremely dangerous, and the 

wildfire is most likely to appear in this range [20]. 

 

Synthetic data is created using equation (10) for calculating the FDI. Synthetic data is chosen 

over actual data to enable a more flexible incorporation of various ranges for all weather 

variables. This way, the ANFIS model can be trained more extensively, thus result in a better 

prediction accuracy. The relationship between each variable and FDI is also discussed in the 

following sections. The synthetic data obtained is as follows: 
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DROUGHT FACTOR TEMPERATURE HUMIDITY WINDSPEED FIRE DANGER INDEX 

3 29.8 20 30.2 10 

5 50.5 30 10 34.1 

6 12.3 2 50 19.4 

10 42.6 22.3 15.9 45 

2.7 21.3 23.4 34.2 7 

9.7 30.1 10.02 19.3 34 

3 30.8 4.98 25.6 15 

1.8 34.9 4.3 1.6 5 

6.7 19 51.9 18.9 5 

5.8 23 34.6 17.8 11 

8.4 32.2 23.3 20.2 27 

6.8 29.9 24.0 12 18 

3. 29.7 50.9 40.4 8 

4.6 49.8 3.284 32.9  34 
   Table 1:  Sample FDI  

 

3.3.3.3.1 Temperature  

 

Each sample location, with the maximum temperature occurring during the last days directly 

proportional to the humidity, is to be calculated to an accuracy of (±2°c) in order to attain the 

final accuracy, as explained by Mills [17]. Therefore, it is essential that the temperature accuracy 

should be within ±2°c at all instances to maintain an accurate output. This is because, if the 

temperature increased over the acceptable range, there would be a risk in the resulting FDI 

becoming inaccurate. 

 

The FDI is plotted against a range of temperatures in order to understand the effect of the various 

ranges, and whether they are to be considered safe or unsafe considering different variations. The 

FDI 1, 2 and 3 are plotted against the temperature while understanding the range.  
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The conditions through which the FDI’s are plotted are: 

1. FDI 1 - Low DF (3), Low RH (15%), Low WS (23m/s). 

2. FDI 2 - High DF (10), Medium RH (35%), Medium WS (76m/s). 

3. FDI 3 - Medium DF (5), High RH (76%) and High WS (60m/s). 

 

The FDI of Plot 1, 2 and 3 is integrated to form an output graph in order to understand the 

complexity of FDI under all conditions [Figure 3.2]: 

 

 

 

 

 

 

 

    

Figure 3.2: FDI 1, 2 and 3 integrating with varying temperature 

 

The above graph represents the mapping of the FDI plotted against a range of temperatures 

(15C to 55C). The aim is to understand the behaviour of the other factors at different 

instances and their correspondence to the behaviour on the FDI.  

The graph also emphasises that FDI 2 with a high DF will significantly increase the risk of 

wildfire. On the contrary, the graph also Emphasises that a low DF does not present any risk 

of a wildfire at any temperature level up to 55C. 
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The temperature ranging from 0˚C to 25˚C is considered a very safe environment, where there 

is no chance of a fire unless other factors lead to fire danger. 

 

The temperature ranging from 26˚C to 35˚C is considered as a moderate environment where 

there is a minor chance of a fire danger. This depends on the severity of the other parameters 

leading to fire prediction. 

 

A temperature above 35˚C is considered highly dangerous and such condition is optimum and it 

is likely that a wildfire may follow. 

 

The above conditions will be carefully considered when the research proceeds to train the ANFIS 

structure in the following chapters. 

 

3.3.3.3.2 Relative humidity  

 

Relative humidity could be sensed in the sampled location by measuring relative humidity in the 

range of 0-100%. This factor can be calculated at an accuracy of ± 5–6% as explained by Mills 

[17]. Therefore, it is essential that the Relative Humidity accuracy should be within ±5% at all 

instances to maintain an accurate output. This is because, if the temperature increased in the 

acceptable range, there is a risk for the resulting FDI to become imprecise. 

 

Relative humidity also plays a crucial factor in the development of wildfire. The humidity that 

is used in this research ranges from 2 to 80%. The humidity from 40 to 80% is considered as a 
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safe environment and would clearly not lead to a wildfire provided other parameters are not 

out of range. 

 

Moderate environment is when the humidity falls between 18 to 39% where there are very 

minor chances that the wildfire may occur, depending on the other parameters. 

The range from 2 to 18% is considered an extreme condition, where wildfire is most likely to 

take place [17]. 

The conditions through which the FDIs are plotted are: 

1. FDI 4 - Low DF (3), Low Temp (20 C), High WS (70m/s) 

2. FDI 5 - Med DF (4), Medium Temp (27 C), Medium WS (30m/s) 

3. FDI 6 - High DF (9), Medium Temp (31 C) and High WS (72m/s) 

The FDIs of Plot 4, 5 and 6 is integrated to form an output graph in order to understand the 

complexity of FDI under all conditions [Figure 3.3]: 

 

 

 

 

 

 

 

 

Figure 3.3: FDI 4, 5 and 6 integrated with varying humidity 
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The above graph represents the mapping of the FDI plotted against a range of humidity in the 

air (0 to 60). The aim is to understand the behaviour of the remaining factors at different 

instances and their correspondence to the behaviour on the FDI [Figure 3.3] 

The graph emphasises that FDI 6 with a high DF will significantly increase the risk of a 

wildfire. On the contrary, the graph also emphasises that a low DF does not present any risk of a 

wildfire at any humidity level in the air. 

The above conditions will be carefully considered when the research proceeds to train the ANFIS 

structure in the following chapters. 

 

3.3.3.3.3 Wind Speed 

The wind speed sensor is a four-blade helicoids propeller. Propeller rotation produces an AC 

sine wave voltage signal with frequency directly proportional to wind speed. Slip rings and 

brushes are eliminated for increased reliability. The wind direction sensor is a rugged yet 

lightweight vane with a sufficiently low aspect ratio to assure proper fidelity in fluctuating 

wind conditions.  

The wind speed from 15 to 25 m/sec is considered as a safe environment and would certainly 

not lead to a wildfire, provided other parameters are not out of range. 

Moderate environment is when the wind speed is between 25 to 50 m/sec where there are very 

minor chances that the wildfire may occur depending on the other parameters. 

The range from 50 m/sec and above is considered an extreme condition where the wildfire is 

most likely to take place. 
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The conditions through which the FDIs are plotted are: 

1. FDI 7 - Med DF (5), Medium Temp (30 C), Low RH (15%) 

2. FDI 8 - High DF (9), Low Temp (10 C), Low RH (20%) 

3. FDI 9 - Low DF (3), Medium Temp (35 C) and High RH(76%). 

 

The FDI of Plot 7, 8 and 9 is integrated to form an output graph in order to understand the 

complexity of FDI under all conditions [Figure 3.4]. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4: FDI 7, 8 and 9 integrated with varying wind speed  

 

The above graph represents the mapping of the FDI plotted against a range of wind speed (0 

to 50). The aim is to understand the behaviour of the rest of the factors at different instances 

and their correspondence to the behaviour on the FDI. 
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The graph emphasises that FDI 8 with a high DF will significantly increase the risk of 

wildfire. On the contrary, the graph also emphasises that a low DF does not present any risk 

of a wildfire at any wind speed up to 50 m/s. 

The above conditions will be considered when the research proceeds to train the ANFIS structure 

in the following chapters. 

 

3.3.3.4 Drought factor 

 

Drought factor is a broad measure of fuel availability as determined by seasonal severity and 

recent rain effects [1]. Drought is also known as a condition of dryness in the duff and upper 

soil layers that progress from total moisture saturation to an absence of available moisture. The 

Keetch-Byram Drought Index is defined as "a number representing the net effect of 

evapotranspiration and precipitation in producing cumulative moisture deficiency in deep duff 

and upper soil layers”. It is a measure of moisture in the tested layers of soil, and is based on an 

arbitrary 8 inches of water in the litter/duff/soil column. When the full 8 inches of water are 

available, the Index value is 0. As water is removed from the soil column by evapotranspiration, 

the numerical value of the Index can increase to a maximum value of 800, which is the 

condition when the 8 inches of water will have been removed completely. Thus, an Index of 250 

means there is a deficit of 2.5 inches of water out of the original 8 inches, leaving a content of 

5.5 inches of water. The KBDI attempts to measure the amount of precipitation necessary to 

return the soil to full field capacity. It is a closed system ranging from 0 to 800 units and 

represents a moisture regime from 0 to 8 inches of water through the soil layer. At 8 inches of 

water, the KBDI assumes (by definition) saturation. 0 is the point of no moisture deficiency and 
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800 is the maximum drought that is possible. At any point along the scale, the index number 

indicates the amount of net rainfall that is required to reduce the index to zero, or saturation. 

Where the effect of one rain period is superimposed on another, the lowest drought factor 

should be used. This is used as a measure of seasonal severity and fuel availability. It is 

derived from daily records of maximum temperature and rainfall. 

The conditions through which the FDIs are plotted are as follows: 

1. FDI 10- Med Temp (30 C), High RH (75%), Low WS (20m/s) 

2. FDI 11- High Temp (40 C), Low RH (15%), High WS (55 m/s) 

3. FDI 12- Med Temp (30 C), Medium RH (25%), High WS (60m/s). 

 

The FDI of Plot 10, 11 and 12 is integrated to form an output graph in order to understand the 

complexity of FDI under all conditions [Figure 3.5]: 

 

 

 

 

 

 

 

 

 

 

                 Figure 3.5: FDI 10, 11 and 12 integrated with varying drought factor 
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A Drought Factor of 5 is intended to indicate that about 50% of the fine fuel should be 

available to burn, while a Drought Factor of 10 is intended to indicate that 100% of the fine 

fuel should be available to burn. 

 

The Drought factor is a broad measure of fuel availability as determined by seasonal severity 

and recent rain effects. Where the effect of one rain period is superimposed on another, use 

the lowest drought factor. 

 

 

The equation for Drought factor (D or DF) is defined as [1]: 

D = [0.191(I + 104)(N + 1)
1.5

]/[3.52 (N + 1)
1.5

 + R – 1]   (11) 

 

Where, 

D (or DF) = Drought factor 

N - Number of days since last rain 

R - Total rain in the most recent 24 hours with rain (mm) 

I - Amount of rain needed to restore soil moisture to 200mm (also known as KBDI)  

The Drought factor index lies in the range of 0-10 with 10 being the most favourable 

condition for a fire danger. This is because the drought factor of 10 indicates an almost nil 

moisture level in the soil and a dry atmosphere plays an important role leading to wildfire. 

Different means of moisture days since last rain, soil moisture and the amount of rain are 

used to calculate the DF to maximise efficiency, resulting in more accurate FDI finally. 
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A set of synthetic data [Table 2] is generated covering the maximum range of the result DF to 

implement the ANFIS accurately. This table is further analysed very thoroughly in order to 

understand the effect of each parameter when determining the overall FDI. 

 

I (mm) N (No. of 
days-
numeric) 

R(mm) Drought factor 

4.98 5.76 6.9 5.7 

3.98 4 5 5.8 

39.98 1 0 8.6 

3 0 2 4.8 

56.78 9.8 4 8.2 

61.23 30.9 3.4 8.8 

12.75 15.7 8.0 5.8 

43.52 26 2.21 7.9 

10.98 2.1 3.43 5.4 

28.09 1.1 2.154 6.4 

65.7 0.4 6.98 5 

23.98 3.67 3.43 6.3 

80.8 0.12 9.8 4 

70.8 1.2 7 6.2 

    

                Table 2:  Sample DF  

Using the formula, graphs are plotted in the section below to understand each of the parameter’s 

capability towards each other and to the overall estimation of the Drought factor. Each 

parameter is discussed below. 

3.3.3.4.1Soil Moisture (I) 

The Soil Moisture ranging above 100 is considered a very safe environment, where there is no 

chance of a fire unless other factors leading to fire danger might constitute dangerous conditions. 
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The Soil Moisture ranging from 71 to 100 mm/sqm is considered as a moderate environment 

where there is a minor chance of a fire danger. This depends on the severity of the other 

parameters leading to fire prediction. 

  

The Soil Moisture above the range of 0 to 70 mm/sqm is considered highly dangerous. Such 

condition is optimum and it is likely that a wildfire may follow. 

 

3.3.3.4.2 Number of Days since last rain (N) 

The N ranging from 0 to 5 days is considered a very safe environment where there is no chance 

of a fire, unless other factors leading to fire danger are in dangerous conditions. 

 

The N ranging from 6 to 20 days is considered as a moderate environment where there is a 

minor chance of a fire danger. This depends on the severity of the other parameters leading to 

fire prediction. 

 

The N above 30 days is considered highly dangerous and such condition is very optimum and it 

is likely that a wildfire may follow. 

 

3.3.3.4.3 Total rain (R) 

The Rain ranging from 13mm and higher is considered a very safe environment where there is 

no chance of a fire unless other factors leading to fire danger might be in dangerous conditions. 
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The Rain ranging from 4 to 12 mm is considered as a moderate environment where there is a 

minor chance of a fire danger. This depends on the severity of the other parameters leading to 

fire prediction. 

 

The Rain ranging from zero to 4 mm is considered highly dangerous and such condition is 

optimum and it is likely that a wildfire may follow. 

 

3.3.4. Organisation for calculating the Fire Danger Index 

 

After understanding the different inputs and elements of the evolution of FDI and DF, a block 

diagram is provided. The block diagram emphasises the different elements that formulate the 

outputs. 

The complete model is structured into two different formulations that are used later for the fuzzy 

system. The Drought factor is calculated from three input factors: amount of rain, number of 

days since rain, and Soil moisture. The D or DF then extracted is fed to evaluate the FDI. Apart 

from the DF, Wind speed, Humidity and Temperature are used to compute the FDI. The FDI 

then calculated is identified to understand the criteria to which the severity of the Danger is 

predicted [Figure 3.6]. 
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Figure 3.6:  Fire Danger Index computation system 

 

The above model is used for the project to predict the fire danger of any specified area. The 

above block layout is divided into two different fuzzy systems to calculate the Fire 

Prediction. In the block diagram layout, the input vectors amount of rain, number of days 

since last rain and Soil moisture are used to compute Drought factor. The Drought factor 

computed lies in a range of 1-10. The Drought factor mainly calculates the moisture level of 

the area. Drought factor attained here is used as one of the input vectors to further compute 

the FDI. Along with the DF, the other input variables used are the Wind Speed, Humidity and 

Temperature. All these variables are computed to result in FDI. The FDI lies in the range of 

1-100. 
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CHAPTER 4: Fire Indices Fuzzy Models 
 

4.1 Introduction 

In this chapter, the layout of the Wildfire Prediction System (WPS) is modelled through the 

development of fuzzy models for Fire Danger Indices. The modeling in this research is carried 

out using the fuzzy logic toolbox of MATLAB. Through the FDI formulations, synthetic data is 

generated which is used to train the fuzzy system, and evaluate its accuracy for wildfire 

prediction. 

4.2 Development of Fuzzy Model for Fire Danger Indices 

Fuzzy logic is a form of multi-valued logic derived from any fuzzy set theory to deal with 

reasoning. The fuzzy logic variables have binary sets, having a truth-value that ranges between 

0 and 1. The linguistic degrees are also a mode of understanding the range of the fuzzy logic 

implementation. Fuzzy implementation always has a value ranging from low to medium to 

high [24]. 

FL emerged as a result of the 1965 proposal of a fuzzy set theory. Fuzzy logic is applied to 

many fields, from control theory to artificial intelligence. It remains the most preferred form of 

prediction tool for many engineers and researchers. Even though various kinds of theories are 

available to be worked on, especially in the area of artificial intelligence or Neuro-Adaptive 

networks, fuzzy logic is evaluated to be the best suitable option for this research. After 

thorough consideration, FL had all the features that are required for the implementation of a 

prediction system. One of the prime reasons is the multi-tier capability of the ANFIS method, 
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which can compute and link multiple models both simultaneously and collectively to produce a 

result. In this project, where DF and FDI are to be implemented, DF (or D) as one of the input 

variables to the ANFIS model of FDI proved to be a huge advantage. Apart from that, the 

flexibility of adding raw weather data and training the system accordingly is also an added 

advantage of fuzzy logic implementation over other forms of robotic and artificial intelligence 

methodologies. 

Depending on the system, it may be necessary to evaluate every possible input combination 

since some seldom occur.  By making this evaluation, fewer rules are used, thus simplifying 

the processing logic and perhaps even improving the fuzzy logic system and its performance 

[25]. 

In this project, the input membership function is divided into three linguistic values, denoted as 

low, medium and high. The determination of the membership functions are prepared by using 

the help of the ANFIS Toolbox in MATLAB. For this, the synthetic data is used to train the 

fuzzy system with limited membership functions, mostly covering all the probabilities of 

occurrence. Furthermore, as the system is trained, the Neuro-adaptive technique is used 

automatically by the system. This technique means that the first set of data is completely new 

to the system but, as the synthetic data is loaded, the fuzzy system already learns from 

previously fed data. This improves the efficiency of the system itself. 

The membership functions and set of rules are fed into the system in determining the response 

for each set of data obtained synthetically. Each rule in the system is considered critical in 

order to generate the predictions in numeric form. The snapshot of the membership function 
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plot and rules fed into the system are shown in Figures 4.3 and 4.5 in the section 4.3.1.1 and 

4.3.2.2 respectively. 

All the membership functions and the rules develop the fuzzy system and the factors act in 

combination to provide a result. After the formulations using these variables, the FDI is 

calculated by which the rate of danger is estimated according to a scale of 1 to 100 with 35 

being a safe mode.  

The data included various parameters: Temperature, Relative humidity, Soil Moisture and 

Wind speed. Moreover, these parameters varied over a period of 48 hours. 

In order to create a fuzzy inference system, mamdani architecture is used to develop and model 

an ANFIS system for wildfire modelling. 

 

4.2.1Model development using Adaptive-network-based fuzzy inference system 

This section presents the architecture and learning procedure underlying ANFIS, which is a 

fuzzy inference system implemented in the framework of adaptive networks. Using a hybrid 

learning procedure, an input-output mapping can be constructed based on both  human  

knowledge  (in the form of fuzzy if-then rules) and stipulated input-output data  pairs [42]. By 

using the fuzzy model for this research, a range of inputs can be fed into the system, which will 

return a FDI through which the fire danger can be easily recognised. Using a formula, such as the 

McArthur formula, it is possible to calculate fire danger only at a single point in time, i.e. the 

time at which the data used by the formula was captured. For better accuracy, the average values 

of the data can be used, but this requires the user of the formula to perform data averaging over a 

sufficient time window. However, by using a fuzzy model that has been adequately trained using 
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historical data sets, anyone who has the real-time data, which are available in the meteorological 

bureaus, can utilise them directly to make accurate predictions. This also enables the system to 

be more user-friendly. 

In this perspective, the aim of this research is to use ANFIS architecture to develop a fuzzy 

model, which can serve the basis of calculating the Fire Danger Index using real-time weather 

data captured at any time.   

The fuzzy model is further developed using the multi-level functionality to attain the maximum 

accuracy possible. One level uses input vectors to calculate the DF and the other used a few more 

input vectors, along with the DF, to calculate the FDI. Using the multi-level functionality was an 

idea developed while reviewing the literature articles. The flowchart below presents the method 

used to identify the ANFIS modelling approach using multiple level formulations [Figure 4.1]. 
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Figure 4.1 Flowchart representations of the ANFIS modeling approach 

 

The ANFIS modelling approach is used with the WPS to predict the wildfire occurrence ahead 

of time. 
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Firstly, a parameterised model is hypothesised. This model structure relates the inputs to the 

membership functions. After this, the input and the output data, which were gathered from the 

National Climate Centre, New Zealand, are entered in the system using the table. 

The system is trained with the FIS model to emulate the training data presented to it by 

modifying the membership function according to its structure and the requirement. In general, 

this type of modelling works well if the training data presented to ANFIS for training 

(estimating) membership function parameters is fully representative of the features of the data 

that the trained FIS is intended to model. 

4.2.1.1 Model Development for Drought Factor (DF) 

The fuzzy index processor is grouped to two different projects to attain the highest accuracy 

with the fire prediction. 

The data is used to calculate the fire prediction with the highest perfection. To test the ANFIS 

model, the data used are the first 20 sets based on the formula for the Drought factor, as shown 

in equation (11) [1]. 

The ANFIS model is designed based on the above formula generating the data used for training. 

The complete step-to-step method to model the structure is explained below. 

 

DF is first generated by giving the I, N and R inputs to the FIS structure with the specific 

range. The range further defines different low, moderate and the high membership function 

according to their range [Figure 4.2]: 
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The DF processor is then trained with the same set of theoretical data to verify the final model 

and the effect of each of the inputs to the DF calculation. The set of rules are shown in Figure 

4.3 

 

 

 

 

 

 

The above sets of rules are placed by understanding each of the criteria of the parameters in the 

fuzzy processor. Few rules were exempted during this process as the scenarios were providing 

negligible variation in the output. These rules are then used to generate the DF. The rules are 

formatted as below: 

Figure 4.2: DF processor Structure 

Figure 4.3: Set of rules for DF  
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TABLE 3: Ranges used for DF  

Using the above data with the ANFIS model, each of the input effects are then plotted. 

4.2.1.2 Model Development for Fire Danger Index (FDI) 

The data are used to calculate the fire prediction with the highest perfection. To test the ANFIS 

model, the data used are the first 20 sets based on equation 10. 

 

The above attained DF is then fed as an input to the FDI processor with the other inputs used, 

and the set of rules are also placed as used to analyse each of them [Figure 4.4]. The set of 

rules are also added for the FDI [Figure 4.5]. 

Soil Moisture (mm/sqm) No. of days since last rain Total rain (mm) Drought factor (1-10scale) 

L L L M 

M H M M 

H M H L 

H L M L 

M M H M 

L H L M 

H M L L 

L L M H 

L H H M 

M M M M 

L L M H 
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Now, the set of data [Table 4] is used to train the ANFIS structure. 

DROUGHT FACTOR TEMPERATURE HUMIDITY WINDSPEED FDI  

3 20 58.01 17 1.3 

4 23.5 51 20 4.4 

5 51.8 18 24 35 

5 34 17 23.5 19 

Figure 4.4:  FDI processor structure 

Figure 4.5:  Set of rules for FDI 
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           TABLE 4: Training data 

 

The above training data are used to train the ANFIS model. By training, the model, the structure 

will be ready for further testing of the data. The model that is trained constitutes the data that is 

put into the model in the form of providing structured data. 

Such data used will train the model at 5 epochs in order to acquire all the information sent in a 

timely manner. 

5.5 54 23 30 40.5 

6 34.6 31 45 23.2 

6 52.3 34 32.2 39 

6 45.6 33 30 30.6 

7 32 36 42 22.7 

8 38 39 19.5 26 

9 51 41 23 50.7 

9 32 42 45.6 27.07 

9.5 55.5 43.4 30 64.7 

10 45.5 32.6 50 56.9 

6 45.5 55.1 34 25.5 

7 52.2 52.6 12 35.6 

1 27 23 43 3.47 

9 43 44.6 43 40 

10 22 21.6 23.6 22 

5 0 21.6 32 6.3 

7 10 12.3 12.4 10.6 

3 15 2.4 23.7 7.5 

4 27 21 35.8 12.7 

7 35 23 61.5 33.7 

8 32 43 32.4 21.7 

3 21 43 17 3.2 

2 30 42 18.5 4.6 
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Further, to enhance the fuzzy model, the training data is checked for any error formed while 

training. This is done in order to maximise the accuracy of the model. When the training data 

was checked for any error formation, the training error pointed to ‘Zero’, which means that 

the training has no error and is sent in the fuzzy without any error formation [Figure 4.7]. 

 

 

   Figure 4.6: ANFIS training process  

               Figure 4.7: Training error output   
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The FDI processor has the inputs and its effects are thus analysed. FDI is then plotted against 

temperature to understand the effect of the various ranges of temperature to be considered safe 

and unsafe based on different variations. 

The conditions through which the FDIs are plotted are as the graph below [4.8]: 

1. FDI 1- Low DF, Low WS, Low RH 

2. FDI 2-High DF, High WS, Med RH 

3. FDI 3- Med DF, High WS, High RH 

 

 

 

 

 

 

Figure 4.8: FDI 1, 2 and 3 integrated with varying temperature using FIS 

 

The Humidity is then analysed with the other input factors to the final FDI, as shown below 

[Figure 4.9]. 

The conditions through which the FDIs are plotted are: 

1. FDI 4- Low DF, High WS, Low Temp 

2. FDI 5-Med DF, medium WS, Med Temp 

3. FDI 6- High DF, High WS, Med Temp 
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The Wind Speed is then analysed with the other input factors to the final FDI, as shown below 

[Figure 4.10]. 

The conditions through which the FDIs are plotted are: 

1. FDI 7- Med DF, Med Temp, Low RH 

2. FDI 8-High DF, High Temp, Low RH 

3. FDI 9- Low DF, Med Temp, High RH 

 

 

 

 

 

 

 

 

Figure 4.10: FDI 7, 8 and 9 integrated with varying wind speed using FIS 

               Figure 4.9: FDI 4 ,5 and 6 integrated with varying humidity using FIS 
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The Drought Factor is then analysed with the other input factors to the final FDI, as shown 

below [Figure 4.11]. 

The conditions through which the FDIs are plotted are: 

1. FDI 10- Med Temp, High RH, Low WS 

2. FDI 11-High Temp, Low RH, High WS 

3. FDI 12- Med Temp, Medium RH, High WS 

 

 

 

 

 

Figure 4.11: FDI 10, 11 and 12 integrated with varying Drought factor using FIS 

 

By taking certain sets of data from training, the same is checked in fuzzy for validation. A 

single set of the training data is used here to crosscheck the training data sent to the model. 

The Training set is given as input to the fuzzy to check the output FDI. By checking the FDI, 

the training is validated. The training set 1 used here has a DF of 6, Temperature of 45.5˚C, 

Humidity of 55.1% and Wind speed of 34 m/s. This set of data has theoretically given a 

value of 25.6 FDI. By cross-checking, the fuzzy provided similar outcome. Hence, training 

is provided in an accurate manner as seen below. 
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By taking certain sets of data from training, the same is checked in fuzzy for validation. A 

single set of the training data is used here to cross-check the training data sent to the model. The 

Training set is given as input to the fuzzy to check the output FDI. By checking the FDI, the 

training is validated. The training set 2 used here has a DF of 1, Temperature of 27˚C, Humidity 

of 23% and Wind speed of 43 m/s. This set of data has theoretically given a value of 3.41 FDI. 

By cross-checking, the fuzzy provided a similar outcome. Hence, training is provided in an 

accurate manner as seen below in Figure 4.13. 

 

 

 

 

Figure 4.12:  Checking training set in FIS (Check 1) 
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After cross-checking the training set of data in the fuzzy for maximum accuracy,  the next step 

is to test the fuzzy with a new set of data as shown in Table 5. 

Drought factor Temperature Relative Humidity Wind speed FDI 

4 43 21 15.7 19.089 

7 21 23 13.7 13.18 

10 34 44 22 25.623 

3 43 23 23 14.786 

5 15 80 45 0.367 

6 32 21 34.6 22.051 

5 51 44 12.7 26.426 

1 21 43 33 1.66 

2 2 12 42 4.097 

9 15 25 21 13.95 

4 43 21 15.7 19.08 

7 21 23 13.7 13.18 

10 34 44 22 25.62 

3 43 23 23 14.78 

5 15 80 45 0.36 

6 32 21 34.6 22.05 

Figure 4.13: Checking training set in FIS (check 2)  
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TABLE 5: Testing data 

The Testing set is given to the fuzzy to check the output FDI. By checking the FDI, the testing 

error is validated. The testing set 1 used here has a DF of 4, Temperature of 43˚C, Humidity of 

21% and Wind speed of 15.7 m/s. This set of data has theoretically given a value of 19.08 FDI. 

By cross-checking, the fuzzy provided 20.8 FDI. Hence, the testing error is calculated as 1.72 

(1.09% error) point FDI scale (20.8-19.08). This error is due to the variation of the data 

structures used for training, which are not in the complete range of operation. 

 

5 51 44 12.7 26.42 

1 21 43 33 1.6 

Figure 4.14: Checking test data in FIS (Test 1)   
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Another testing set is applied on the fuzzy model to check the output FDI. For example, the 

testing set 2 used here has a DF of 5, Temperature of 51˚C, Humidity of 44% and Wind speed 

of 12.7 m/s. This set of data has theoretically given a value of 26.5 FDI. The fuzzy model for 

the same set provides an FDI of 30. A testing error of 3.57 (1.13% error) point FDI scale is 

obtained. This error is due to the variation of the data structures used for training, which do not 

cover the complete range of operation.  

Figure 4.15: Checking test data in FIS (Test 2) 
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The model is then plotted against the testing data to calculate the average testing error. The error 

came out to be 0.13007 on average over the whole set of the testing data.  

 

 

 

4.2.2 Fuzzy Model results as compared to analytical system 

The trained fuzzy model is used for predicting wildfire risk in terms of the FDI using the 

generated synthetic data set. 

Graph 1: Both the theoretical and fuzzy predicted outputs as a function of temperature are 

plotted and the error is checked to find the accuracy. 

The average error rate = {(Maxima (range) – Minima (range))/Total set of data values} [49] 

                                    = (30.12+29.7)-(50.2+53)/(30set of values) 

                                   = 1.446 FDI scale value (0.12% average) 

 

 

 

Figure 4.16: Checking the final error (training v/s testing) 
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Graph 2: Both the theoretical and fuzzy predicted outputs as a function of humidity are plotted 

and the error is checked to find the accuracy. 

The average error rate = {(Maxima (range) – Minima (range))/Total set of data values}[49] 

=(26+29.7)-(0.2+0)/(30set of values) 

= 0.883 FDI scale value (0.029% average) 

 

 

 

 

 

 

 

Figure 4.17: Overall FDI check (Fuzzy and theoretical towards temperature) 

Figure 4.18: Overall FDI check (Fuzzy and theoretical towards humidity) 
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Graph 3: Both the theoretical and fuzzy predicted outputs as a function of wind speed are 

plotted and the error is checked to find the accuracy. 

The average error rate = {(Maxima (range) – Minima (range))/Total set of data values}[49] 

                         =(5+6)-(0.12+0.03)/(30set of values) 

                       = 0.361 FDI scale value (0.012% average) 

 

 

 

 

 

 

 

Graph 4: Both the theoretical and fuzzy predicted outputs as a function of drought factor are 

plotted and the error is checked to find the accuracy. 

The average error rate= {(Maxima (range) – Minima (range))/Total set of data values}[49] 

=(11+22.1)-(21.09+34.2)-(20.9+21.1)/(30set of values) 

                                    = (32.1-55.29-47.47)/3 

                                    = 1.50 FDI scale value (0.05% average) 

Figure 4.19: Overall FDI check (Fuzzy and theoretical towards Wind speed) 
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4.3 Summary 

The formulae by McArthur have been used to develop synthetic data for both DF and FDI, 

which is chosen to train the ANFIS model across a wide range of input variables. The ANFIS 

structure is further explained clearly using a flowchart, which uses the multitier system to 

compute the FDI. 

 

The ANFIS Design model is used to attain the graphs where the FDI is plotted against the 

other input variables to estimate the danger level, thus comparing each variable to the FDI to 

understand the accuracy level. After training the system completely, the trained model was 

tested against raw weather data resulting in an overall error of   +/- 0.13007. 

 

  

Figure 4.20: Overall FDI check (Fuzzy and theoretical towards Drought factor) 
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CHAPTER 5: RESULTS, TESTING AND VALIDATION 

5.1 Introduction 

 In this chapter, the fuzzy model that has been trained and tested is subjected to some real-life 

weather data from the past. The prime reason for this is to validate the fuzzy model against a 

concrete set of data. 

Raw weather data from NRFA (New Zealand Rural Fire Authority) is collected for two set 

dates during the summer months where the risks of wildfire are potentially high. This range of 

data is fed into the fuzzy system to predict the fire risk in accordance with the training that 

was provided to the system. In addition to this, Fire danger maps are also used to understand 

the area with a high risk of wildfire. 

Furthermore, the relationship between the predicted outcome and the different factors (e.g. 

temperature, humidity, rainfall, and wind speed) is analysed. Finally, a comparison is made 

between the predicted outcome and that calculated using the FDI formula and real-time in 

order to validate the developed fuzzy model. 

5.2 Implementation of Fuzzy Model on NZ National Weather data 

There are two main scenarios that have been considered for this research experiment. The 

scenarios have been chosen in order that two different locations with different weather 

conditions and, therefore, presenting different levels of wildfire risk, are considered to 

evaluate the fuzzy system. 

The aim is to validate that the fuzzy model can predict the Fire Danger with the raw data 

provided under all circumstances. 
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5.2.1 New Zealand wildfire history 

Under section 14 of the Fire Service Act, the NRFA is required to monitor fire danger 

conditions throughout the country. In partnership with Rural Fire Authorities and a number of 

other organisations, a national network of over 150 Remote Automatic Weather Stations has 

been established. 

The network delivers information based on the current weather conditions at a given point. 

This information is used in conjunction with the Fire Weather Index System, which is used to 

calculate fuel (vegetation) moisture, and expected fire behaviour. This data is distributed to 

the fire managers as an aid to fire management, planning and suppression efforts. This 

information is based on the 12:00 NZST weather readings (1pm daylight savings time). The 

sooner they receive the warning of a potential hazardous situation, the better, as this would 

allow them some time to take precautionary measures and/or combat the situation 

Weather readings are collected every day. Of the 150 weather stations, around 100 of these 

can be dialled directly by telephone modem in order to collect data. New Zealand’s Met 

Service supplies the rest of the data. Each call can typically take anywhere between 30 

seconds and 2 minutes.  

This information is used to: 

1. Provide rural fire decision support. 

2. Guide rural fire prevention. 

3. Assist in preparedness planning. 

4. Predict potential fire behaviour. 

5. Assist in risk assessment. 
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6. Analyse seasonal fire danger trends. 

7. Meet the requirements of the Forest and Rural Fires Act 1977.  

The new fire weather system will provide the following benefits including: 

1. More timely information. 

2. More accurate information. 

3. Lower operational and support costs. 

4. Provide better decision-making. 

The NRFA maintains its own system for collecting, storing and distributing fire weather data. 

Until 1996, an application built around Fire Weather Plus (an early version of Weather Pro) 

was used. This was not an automated system and required an operator to be present 

throughout the summer to collect the data and facts reports. 

In 1996, a fully automated system was built which made use of the "fledgling" Internet by 

distributing reports by e-mail and posting on the NRFA's new web site. Faxes were also 

automated, but were phased out as the Internet provided a cheaper, more reliable mechanism 

for distribution. 

After six years of operation, the fire weather information provided by the NRFA could hardly 

be described as "state of the art". This, coupled with impending obsolescence and reliability 

issues, made for a compelling business case for the development of a new system. It is only 

natural that we look overseas at existing successful developments.  

The British Columbia Ministry of Forests is responsible for an area of approximately the size 

of New Zealand and has around 200 fire weather stations, which they monitor every day. 
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They have an existing system built for their staff to provide them with access to the data and 

tools for querying and manipulating the data. This system is not available to the public and is 

accessed by authorised users such as NRFA, New Zealand. 

New Zealand is now able to share the core of these systems by pooling all our resources, as 

well as making use of their expertise in developing specific enhancements for our situation. 

Even with an ever-increasing network of weather stations, the Fire Weather Monitoring 

System will be able to provide the foundation for monitoring fire danger conditions 

throughout the country for some years to come. 

 

5.2.2 Fire Weather mapping: New Zealand 

Case study 1: 

 

Location: Christchurch, New Zealand 

Date: 1 January 2009 

 

The data for Christchurch in South Island has been provided by NRFA. The data includes all 

the factors that are required for understanding the fuzzy model’s reliability.  The time-

varying data for each of the factors is plotted and later mapped to understand the accuracy of 

the model. 

The real-time data for Temperature, Relative Humidity, Rainfall and Wind Speed are 

plotted, along with the corresponding FDI, calculated using these data and the formula 

denoted as FDI (real time data) as shown below figure [5.1]. 
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In addition, the same inputs are mapped on the country’s map in order to understand the 

spread of the danger. That is, the mapping has been used to determine the area with extreme 

to low fire danger. 

The maps indicate towards the prime weather factors that may cause Wildfire, which can be 

seen very clearly with the help of the maps below in Figure 5.2. 
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The weather conditions across the few areas where Christchurch is located in South Island had 

certain weather conditions prevailing to cause wildfire. As seen in Figure 5.2, Christchurch and 

Figure 5.2: The impact of each weather variable to Fire Danger for Christchurch on 1 Jan 2009 (from 
top left to bottom right) a) Temperature mapping b) RH mapping c) 24hr Rainfall mapping d) WS 
mapping  
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the surrounding area have higher temperatures and lower humidity levels, forming an ideal 

weather condition for the wildfire to occur. 

Case study 2 

Location: Gisborne, New Zealand 

Date: 19 February 2003 

 

Similar to Case study 1, the real-time weather data for Gisborne in the North Island are obtained 

and plotted, along with the corresponding FDI, calculated using these data and the formula 

denoted as FDI (real time) as seen below Figure [5.3]. 

 

 

The corresponding maps for each weather factor (Temperature, Relative Humidity, Rainfall, 

and Wind Speed) are also shown below in Figure 5.4. 
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 Figure 5.4: The impact of each weather variable to Fire Danger for Gisborne on 19 Feb 2003 (from 
top left to bottom right) a) Temperature mapping b) RH mapping c) 24hr Rainfall mapping d) WS 
mapping  
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In addition, similar to Christchurch, the Gisborne area located in North Island has favourable 

conditions for a wildfire to occur. As seen in Figure 5.4, Gisborne and the surrounding areas 

have higher temperatures and lower rainfall creating ideal conditions for wildfire. 

5.2.3 Fire Danger mapping and final validation 

In this section, two main criteria have been used to analyse and justify the fuzzy model made 

through this research. Firstly, the raw data taken from the NRFA on a particular day is used to 

calculate the FDI using the formula, which is shown in the plotted graphs as FDI (real time). The 

same raw data that was used for the first instance is fed into the trained fuzzy system to predict 

the wildfire risk similarly in terms of FDI for the same duration, denoted as FDI (Fuzzy model). 

The predicted FDI is then compared with the calculated result using the formula to verify the 

correctness of the developed fuzzy model. 

The following plots the FDI (real time) and FDI (Fuzzy model) obtained under the two different 

scenarios as previously mentioned [Figure 5.5 and 5.6]. The results are compared and the error 

percentage between the two is found to be approximately 0.83%. 
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Figure 5.5: FDI comparison plot Christchurch, 1 Jan 2009 



 94 

 

 

 

5.3 Summary 

This chapter discusses the different scenarios checked across New Zealand in which the 

mapping is done. The data is checked for two different kinds of atmosphere in the chapter 

for the understanding of the changes according to the changing weather conditions. The 

mapping is plotted according to the results obtained from the equation. The purpose of such 

plots is to give an understanding of the impact of each of the factors and its role in causing 

wildfires. 
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CHAPTER 6: CONCLUSIONS AND FUTUREWORK 

6.1 Conclusions 

This study aimed to give an understanding of those weather factors that lead to wildfires and 

conducted ANFIS modelling to predict the hazard accurately. Towards understanding the core 

variables, extensive research is done to develop an understanding on early warning systems 

and their importance in predicting wildfire.  In addition, accuracy of results in modelling the 

prediction system using MATLAB is also given significant importance in this research. 

 

Using fuzzy logic, the ANFIS model was trained with a set of synthetic data derived from the 

formulae by McArthur, which are also used by the Australian meteorological bureau. The data 

used to train the ANFIS had been chosen such that it covered all the ranges of the weather 

parameters. The training proved to be efficient when an error of 0 was achieved during this 

research.  

 

After coming to the conclusion that the training system was reliable, the ANFIS system was 

validated against past real-time data. By working with the past data, the solutions were 

comparable with the outputs of the ANFIS model. Overall, the error percentage was calculated 

to be +/-0.13007.  

 

With the complete design system trained and tested, it was fed real-time raw weather data for 

two locations, Gisborne and Christchurch of New Zealand, during different time span and 

months. These were selected in order to validate the model against different locations and 

periods to ensure reliability. 
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Finally, the results of the ANFIS model have been graphed for the same period with the actual 

results provided by NRFA and NIWA. The error of the final plot comparing the design to the 

actual result is calculated to be 0.83% approximately. The main advantage of using the 

developed ANFIS model for predicting wildfire is that the user can directly utilise real-time 

weather data from meteorological bureaus to make accurate predictions, rather than having to 

perform data averaging when using the simple formula approach. 

 

6.2 Future Work 

This work initially appeared to be a straightforward research study but, along the way, it has 

led to the development of many new ideas. If time and resources were unlimited, the study 

would have been improved in several ways. This research was mainly focussed on the design 

of a fuzzy system to calculate FDI using raw weather data. The design was based on Matlab 

for execution on conventional computing platforms. It would be interesting to port the design 

for execution in an embedded hardware, such as a sensor node, in real-time. Although some 

initial code has been written in C language for a Chipcon processor, the code could not be 

completed due to the scarcity of time and resources. Another idea is to use wireless 

communication technologies such as Zigbee to communicate the predicted fire danger from 

the field to the user. This will elevate the usability of the model to a broader level. 
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APPENDICES 

APPENDIX A: OFFICIAL WEATHER DATA: NEWZEALAND 

 

            Max_min: Hourly 
          Statio

n Date(NZST) 
Tmax(
C) 

Period(Hr
s) 

Tmin(
C) 

Period(Hr
s) 

Tgmin(
C) 

Period(Hr
s) 

Tmean(
C) 

RHmean(
%) 

Period(Hr
s) 

Fre
q 

3925 
20091016:00
00 11.8 1 10.8 1 10.1 1 11.2 89 1 H 

3925 
20091016:01
00 10.9 1 10.7 1 10.1 1 10.8 93 1 H 

3925 
20091016:02
00 10.9 1 10.5 1 10.1 1 10.6 95 1 H 

3925 
20091016:03
00 10.7 1 10.4 1 9.9 1 10.5 96 1 H 

3925 
20091016:04
00 10.6 1 9.6 1 9.6 1 10.2 96 1 H 

3925 
20091016:05
00 9.9 1 9.6 1 9.2 1 9.8 92 1 H 

3925 
20091016:06
00 9.8 1 9.6 1 9.2 1 9.7 93 1 H 

3925 
20091016:07
00 10 1 9.5 1 9.4 1 9.7 94 1 H 

3925 
20091016:08
00 11.3 1 9.6 1 10.8 1 10.5 93 1 H 

3925 
20091016:09
00 12.6 1 11.1 1 13.5 1 11.8 91 1 H 

3925 
20091016:10
00 13.3 1 12.4 1 16.5 1 13 83 1 H 

3925 
20091016:11
00 13.7 1 12.9 1 14.7 1 13.4 81 1 H 

3925 
20091016:12
00 13 1 11.1 1 11.8 1 12.4 88 1 H 

3925 
20091016:13
00 11.2 1 10.6 1 11.6 1 10.8 93 1 H 

3925 
20091016:14
00 12 1 10.7 1 12.4 1 11.2 91 1 H 

3925 
20091016:15
00 13.6 1 11.9 1 15.2 1 12.8 82 1 H 

3925 
20091016:16
00 14.2 1 13.4 1 16.8 1 13.8 75 1 H 

3925 
20091016:17
00 14.3 1 13.4 1 14.1 1 14 76 1 H 

3925 20091016:18 13.5 1 12.2 1 12.4 1 12.7 89 1 H 



 103 

00 

3925 
20091016:19
00 12.3 1 11.5 1 10.2 1 11.9 93 1 H 

3925 
20091016:20
00 11.6 1 11 1 8.4 1 11.4 88 1 H 

3925 
20091016:21
00 11.1 1 9.6 1 6.9 1 10.2 92 1 H 

3925 
20091016:22
00 9.7 1 8.5 1 5.4 1 9.3 95 1 H 

3925 
20091016:23
00 8.8 1 8 1 3.8 1 8.4 96 1 H 

3925 
20091017:00
00 8.3 1 7.7 1 4.4 1 8.1 97 1 H 

3925 
20091017:01
00 8.1 1 7.3 1 4.1 1 7.7 97 1 H 

3925 
20091017:02
00 8 1 7.3 1 5.6 1 7.7 98 1 H 

3925 
20091017:03
00 7.5 1 6.9 1 4.9 1 7.1 98 1 H 

3925 
20091017:04
00 7.2 1 6.8 1 5.3 1 7.1 98 1 H 

3925 
20091017:05
00 6.9 1 5.9 1 3.6 1 6.4 98 1 H 

3925 
20091017:06
00 6 1 5.2 1 2.4 1 5.7 98 1 H 

3925 
20091017:07
00 6.9 1 5.2 1 3.1 1 5.7 98 1 H 

3925 
20091017:08
00 8.7 1 6.8 1 7.6 1 7.9 98 1 H 

3925 
20091017:09
00 9.9 1 8.5 1 12.8 1 9.3 98 1 H 

3925 
20091017:10
00 11.4 1 9.8 1 14.7 1 10.6 93 1 H 

3925 
20091017:11
00 11.8 1 11.3 1 13 1 11.5 86 1 H 

3925 
20091017:12
00 11.8 1 11.2 1 12.6 1 11.5 87 1 H 

3925 
20091017:13
00 11.6 1 11 1 12.6 1 11.3 89 1 H 

3925 
20091017:14
00 11.4 1 11.1 1 12.8 1 11.3 88 1 H 

3925 
20091017:15
00 11.6 1 11.2 1 12.9 1 11.4 88 1 H 

3925 
20091017:16
00 11.5 1 10.9 1 12.2 1 11.2 88 1 H 

3925 
20091017:17
00 11.3 1 10.9 1 11.6 1 11.1 89 1 H 

3925 20091017:18 11.1 1 10.9 1 10.8 1 11 92 1 H 



 104 

00 

3925 
20091017:19
00 11 1 10.2 1 9.8 1 10.5 94 1 H 

3925 
20091017:20
00 10.3 1 9.8 1 9.3 1 10 94 1 H 

3925 
20091017:21
00 9.9 1 9.4 1 9.2 1 9.7 95 1 H 

3925 
20091017:22
00 9.9 1 9.4 1 9.1 1 9.6 95 1 H 

3925 
20091017:23
00 9.6 1 9.2 1 9.1 1 9.4 96 1 H 

3925 
20091018:00
00 9.6 1 9.2 1 8.7 1 9.3 95 1 H 
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