A Personalised Stereoscopic 3D Gallery with
Virtual Reality Technology on Smartphone

Abstract—Virtual reality (VR) is becoming more and more
popular thanks to the recent advance of smartphones and low-
cost VR headsets. In this article; we propose an online system that
creates a stereoscopic 3D gallery for individual use. The system
allows the users to upload two photos of an interested object (e.g.
a personal collectable artefact) acquired by their smartphone.
The photos are needed to be close to a stereo pair: i.e. the
camera is slightly moved/translated to the right before acquiring
the second shot. The uploaded images are automatically rectified
into an epipolar stereo pair (photos will be horizontally aligned)
after several corresponding points were detected. A simple stereo
matching algorithm is applied to identify the average disparity
range between the two photos, to generate the most comfortable
VR viewable stereoscopic pictures. The system then builds a
gallery with the collected photos to display 3D visualisation on
VR devices such as Google Cardboard, the Samsung Gear VR
or Google Daydream. This system is low-cost, portable, simple
to set up and operate. With such system, Internet users all over
the World could easily visualise and share their collectable items
in 3D; which are believed to be useful for VR and social media
community.

Index Terms—Computer Vision, Stereo Vision, Virtual Reality,
Online, Internet.

I. INTRODUCTION

Colour and depth signals deliver visual information of the
World to us. Our brain continuously receives visual cues
(from the two eyes) to rebuild a spatial 3D structure of the
surrounding effortlessly. In other words, it is natural for people
to see things in 3D. This enables humans to discover the
appearance, shape, and distance of distinct objects on their
surroundings. The stereo vision system of animals including
humans has been evolving for millions of years and is evi-
denced to be an essential factor for survival. There are many
advantages to the human vision; the ability to perceive distance
is considered as an important factor. Even the human depth
estimation can be made from analysing the perspectives of
objects and their shadows. From our experience, the best and
fastest way is to solve the correspondence problem of stereo
vision. It determines the patterns viewed from the left eye
corresponding to which viewed from the right eye, to allocate
the same points or regions [1]. For instance, the separation
between two correspondences of the same point from the two
views defines how close or how far from us that point is in
space.

A. 3D Visualisation with VR Devices

In recent years, the increasing popularity of 3D cinemas
and 3D TVs have attracted attention from the public to the
science of this two-eyed depth perception. There has been
a dramatic expansion in the number of 3D display devices,

movies, and games with 3D content in the consumer market.
In principle, they attempt to deliver two different views, one to
each eye; and force the brain to recover the desired 3D scene.
For instance, 3D movies are simply made by two side-by-side
video cameras. They are placed mimicking the arrangement of
human eyes when observing scenes through two perspectives,
which are horizontally separated by a small distance. Similarly,
this principle also applies to the LCD screens of Virtual Reality
(VR) systems. When people view these with special eye-
wears, the 3D illusion of a stereoscopic scene still appears.
The human brain attempts to determine the same scene points
in 3D based on the similarities between left and right viewed
points [1]. It is scientifically known as the binocular vision
or stereo vision system. VR employs this knowledge to bring
3D perception to individuals home and office. Today, there
are many commodity VR systems such as Google Cardboard,
Samsung Gear VR. Underneath such systems are one flat LCD
screen that project two stereo images to the human left and
right eyes synchronously and simultaneously.

B. The Power of todays Smart-phones

Together with the World Wide Web, mobile devices and
their applications have also grown exponentially. In the last
ten years, there has been an unprecedented evolution of
cell-phones. The devices have been dramatically improved,
from the outside to the inside, from pricing to usability and
connectivity. Also, most newly-released smart-phones have
built-in Wi-Fi, 3G, GPS, high-resolution screens, and multiple
cameras, which enables efficient localisation data acquisition,
data transfer, and visualisation. They have become “could
not live without” devices for many people. Moreover, many
cameras and cell-phones today are manufactured with more
than one camera sensor: one at the front and one at the
back. The current mainstream VR consists of two types of
VR headsets: dedicated-hardware type, and smart-phone-based
type. While the former offers superior experience thanks to
a custom head-mounted display and a custom input device,
the premium price-tag has prevented them from becoming
ubiquitous. Smart-phone-based VR is designed to make use of
the smartphone display, processor, and sensor, thus reducing
the cost of the VR headset to as low as a couple of dollars
when excluding the smartphone cost. One popular example
is Google Cardboard, which only requires a cardboard-made
VR headset to experience VR through the smartphone. The
platform has been shipped over 10 million units in March 2017
[2]. With the advantages of low-cost and wide availability,
Smart-phone-based VR has a vital role of helping people



around the world create and enjoy their own 3D contents.
However, to acquire 3D photos, it is necessary to have a system
of two side-by-side cameras, which is still relatively rare on
the market.

C. Research Goal

Our ultimate goal is to fill this gap by bringing the latest
results of VR technology and Computational Stereo Vision
techniques to the public domain (general users) via one of the
most flexible platforms — the Internet. We build an interactive
public system and its network architecture that allow users to
build a personal online stereoscopic 3D gallery using only their
smart-phone. The users can navigate and visualise the gallery
using one of the low-cost VR devices such as the Google
Cardboard. The users only need to acquire two consecutive
shots of the personal artefact (the cameras position for the
second snapshot is slightly translated horizontally to the right
of the first one). The result is equivalent to stereoscopic
images taken by conventional 3D cameras; because we provide
automatic alignment of the image pair. From a practical aspect,
this system presents some benefits over other comparable
products:

o It works online, and pictures from phones can be up-
loaded directly.

o It provides stereo image rectification (horizontal align-
ment) using uncalibrated methods.

o It runs a simple stereo matching algorithms to estimate
the disparity range of two images, to reconstruct the most
comfortable visualised VR image pairs.

« It graphically renders VR scene on smartphones to allow
users to view and navigate data sets.

e Its VR applications for Apple iPhones and Android
phones are to be released.

II. SYSTEM DESIGN AND IMPLEMENTATION

We propose a system that allows the users to capture
3D photos, and share their collection to other users through
the internet as well. The system combines human-computer
interaction with local, and global systems collaboration. There
are two main modules of the system that can be seen in
Figure 1: Client Side, and Online Server Side.

A. Client-Server Architecture of the Interaction

The entire interaction and communication of the system
were built upon the foundation of a Client-Server architec-
ture [3]. This structure model defines two roles for computers
within a network: Client and Server. The Client is the user’s
smart-phone while the Server is a powerful machine which
solves problems requested by Clients. The overall interactions
between Servers and Clients are demonstrated in Figure 1,
they are separated and can only communicate with each other
via the Internet. The most complex and cumbersome works
are located on the powerful server with a fast connection.
The system is therefore capable of handling more flexible
data and from a wider range of inputs. Furthermore, a distinct
advantage of this architecture is its excellent portability, which
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Fig. 1. Basic processing steps: user uploads smart-phone images to a remote
server and receives a 3D description of the depicted scene.

can be performed safely on any web browsing clients without
the installation and execution of third party software. The
proposed system is fast, lightweight, and feasible to work on
a broad range of mobiles devices including smartphones and
tablets over a 3G, 4G or Wifi networks.

B. Client Side - User Interface

The system client provides a user-interface as well as the
system presentation for the users. The private, and portability
nature of this project encourages us to focus on developing
a mobile app as the system client. The app consists of two
main features: 3D photos capturing, and 3D photos gallery.
Each feature is separated from another. They have different
user-interface and can be chosen when the system client starts.

In 3D photo capturing feature, there are two options for the
users to take a stereoscopic photo. The first option is using
a stereoscopic lens attached to their phone camera. With this
approach, it is only necessary for the users to take a single
photo to produce a stereoscopic photo. This is because the
stereoscopic conversion has been done through the lens. The
second option is using their phone camera without additional
hardware. This option requires the users to take two different
photos of the same object. Each photo represents a different
angle of the object. In 3D photo gallery feature, the users can
choose to either view their photo collection or input a private
key to see the gallery from other users. The user-interface of
this feature has a design based on a virtual museum. With the
help of Unity 3D engine and VR technology; the users can
explore a 3D area where all of their or other users 3D photos
are placed around them.

Some screenshots of the client-side can be seen in Figure 2.
The first two are side-by-side views of the phone screen to be
observed by a standard VR headset. These scenes are in 3D
photo gallery feature. The last one is the image of the demo in
Unity 3D developer’s mode. Initially, there will be a prompt
that asks the users to either view their gallery or input a private
key to see a gallery from the other users. Many pictures are
hanging on the wall surrounding the users in such a way that
they are in a gallery in real life. On the floor, there are three
buttons: “Backward”, “Forward” are used to navigate next and
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Fig. 2. Screen-shots of our current Android application

last collection, and “Return” is used to go back to the feature
selection scene. (Figure 2(c)).

C. Data Acquisition and Processing

When the system client is installed, it will automatically
create a unique private key. This private key is used to help the
online server identify the ownership of each photo it receives
or in its online database. This key is also used as a way for
the users to share their photo gallery to the other. The system
client can send any private key that the users input to the online
server. Based on this key, the online server will push all of
the detailed stereoscopic photos in its database to the network
client that has just sent the key. When the users produce any
photo in the system client, depend on the picture capturing
option, the online server will perform a suitable task. If the
picture is already in stereoscopic format, it will be uploaded
straight to the online database. If there are two separated
pictures of the same object, the online system will perform
image calculation to convert them into a single stereoscopic
photo of the object, then upload it to the online database.

D. Server-Side Components

The server-side is the location where specific client requests
are processed. Except for the client component, the other three
server components are all on this side. They are the web server,
the database server, and the processing servers. The three
components work together to return results to the appropriate
users as quickly and securely as possible. The Apache web
server manages the web location www.ivs.auckland.ac.nz and
its sub-domains. It directly receives requests and delivers
content to all Internet users via a user agent tool such as
a mobile-phone application. In our system, the functions of
this server are to receive image contents and commands from
users, then send information to the MySQL server and deliver
tasks to processing servers. It also collects results and returns
them to users. To achieve this, a sequence of tasks is executed
on the server machine, called server-side actions. They are

implemented with a specific server-side scripting language, in
our case, Hypertext Preprocessor scripting language (PHP). To
initiate a process, a minimum of two images are required to be
posted to the server. The server script contains all the necessary
commands used to launch the entire server-side process of the
3D content extraction. Processing servers are computers which
handle the most complex tasks. They are computers connected
to the network but have special permission to access the web-
server’s resources (hard-drives).

III. IMAGE PROCESSING ON USER INPUTS

The server-side system automatically extracts or recon-
structs left/right stereo images and disparity range from user
uploaded data. Stereo reconstruction is used to estimate a
dense disparity map from a stereo pair within a chosen
disparity range. The user’s inputs are two consecutive photos
from single conventional cameras.d In particular, both the left
and right images of a stereo pair can be obtained either directly
or indirectly and the depth information can be extracted. The
obtained left and right images are converted into an epipolar
horizontally aligned stereo pair, and the anticipated disparity
range for stereo matching is estimated.

Here, a stereo-like pair is made by two consecutive captures
of a static scene as shown in Figure 3 (top-left image) by
any conventional camera from two different positions. The
apparent benefit of this stereo acquisition is cost efficiency as
no specific stereo camera is required. Another advantage is the
ability to adjust the stereo baseline length between two views.
However, such sequential acquisition has some drawbacks.
The inconsistent sharpness, quality, and intensity between
the two captures can be named in particular. Achieving an
entirely static scene is a challenging task. Also, no matter how
carefully the images have been acquired, the acquired left and
right images are still misaligned.

4) Rectify images along epipolar lines

\_ﬁ]_E;timate F matrix and epipolar lines

Fig. 3. The process of stereo image alignment.

Assuming that both photos are of equivalent quality, let us
concentrate only on horizontal image re-alignment by an un-
calibrated stereo image rectification. Stereo image rectification
projects two stereo images onto a common image plane and



does not need the camera calibration process. It is a well-
studied technique to make a left-right stereo pair with canon-
ical epipolar stereo geometry [4] (the epipolar geometry). In
the epipolar stereo images, every pair of corresponding image
points is located on the conjugate horizontal scan lines. In
other words, the stereo image rectification turns the unaligned
images (Figure 3, top-left) into a well-aligned stereo image
pair (Figure 3, bottom-right) as if a stereo camera produced
it.

In this application, the camera’s focal lengths, internal set-
tings, and image quality are assumed to vary slightly between
the two snapshots. The rectification must be carried out with-
out the prior knowledge of the camera parameters. Currently,
uncalibrated rectification is often accomplished by estimating
a fundamental matrix introduced by Luong and Faugeras [5].
The estimation is based on a set of known correspondences
between the left and right images of a near-stereo pair. This
3 x 3 matrix of rank 2 combines the column 3-vectors p;
and p,- of homogeneous coordinates of the corresponding 2D
points in the left and right images respectively as follows:

p, Fp =0 (1)

If the matrix F' is determined, an image pair can be re-
sampled to conform to the standard stereo geometry. The
rectification process moves the actual epipoles to the horizontal
position at infinity. The rectification process implemented in
our system is discussed next.

A. Image Rectification from the Fundamental Matrix

The image rectification pipeline in our system and as
accepted in various robust methods for estimating the fun-
damental matrix [6], consists of four procedural steps:

1) Feature point detection is used to select informative
pixels (such as corners) from both images.

2) Correspondence matching is the process which decides
corresponding pairs between the two sets of feature
points.

3) Robust estimation of the fundamental matrix uses
robust regression techniques to achieve a 3 x 3 matrix
that best fits all the points in the epipolar constraint
function.

4) Image rectification generates horizontally aligned
epipolar stereo pair.

Different approaches can be applied at each step, to obtain
the desired outputs. For instance, there are at least three
comparable algorithms that can be deployed in the corre-
spondence matching process as seen in Figure 4. Our task
is to figure out a suitable approach at each step to achieve
the positive outcomes under the short waiting time, i.e. to
determine the best path in Figure 4. In this section, we
illustrate some experimental results which help us choose
specific methods to be used. In Section III-B, we evaluate three
tracking algorithms: (i) the Lucas-Kanade optical flow [7]
in a pyramid, which matches good features to track (GFT)
points [8], namely the KLT method; (ii) the Speeded Up
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Fig. 4. Possible processes of the uncalibrated stereo image rectification.

Robust Features tracker (SURF) [9]; and (iii) the Scale-
Invariant Feature transform tracker (SIFT) [10]. Followed by
Section III-C, where we demonstrate other experiments to
determine the appropriateness of the two robust regression
algorithms — RANSAC [11] and LMedS [12] which obtain
the best-fitting fundamental matrix.

B. Evaluation of KLT, SIFT, and SURF

In stereo image rectification, the first crucial task is to obtain
a relatively large set of correspondences between left and
right images. These correspondences can be used in a robust
regression algorithm for the fundamental matrix estimation.
This image processing technique is often called feature or
salient point detection. It is widely used for tracking [13],
stereo matching [14], object recognition [15], and so on. In
general, the system initially finds a set of points on a reference
image, then it matches them to another set of correspondences
in another picture.

One of the most simple methods is Kanade-Lucas-Tomasi
(KLT) feature-tracker. KLT is based on Shi and Tomasi’s good
feature to track (GFT) [8] and Lucas-Kanade optical flow in a
pyramid [7] of Lucas et al. KLT is fast and relatively reliable.
However, it may return many outliers in some cases. To
enhance this correspondence matching process, we tried two of
the more advanced ones: the Scale-Invariant Feature transform
(SIFT) by Lowe et al. [10] or the Speeded Up Robust Features
(SURF) by Bay et al. [9]. Both of them are among the most



favourable and popularly used feature trackers [16] nowadays.
Both are relatively robust in various situations where there
are large scale changes and affine transformation of features
between the two images. Consequently, it was difficult to
determine whether they are more suitable than the current KLT
tracker based on the constraints of our system.

To find out, all KLT, SIFT and SURF feature trackers are
implemented and run. The three methods detect correspon-
dences in a large number of image pairs; the total processing
time and correspondence matching accuracy are collected to
determine their overall performances. Two sets of images were
tested:

1) Laboratory-produced stereo images with the known cor-
respondences (Section III-B1).

2) Real-life near stereo images with ground truth corre-
spondences are not known (Section III-B2).

1) Evaluation of KLT, SIFT, and SURF on 2005 and 2006
Middlebury Stereo Datasets: There are 30 pairs of indoor
images given in the reduced-sized 2005 and 2006 Middlebury
datasets; they are at a resolution of 430 x 370 pixels. The
images are carefully acquired in the Middlebury’s Vision lab
and ground truth is obtained using Structured Light tech-
niques [17]. All the image pairs are horizontally aligned;
therefore, the correspondence points are lying on the same
horizontal scan lines. We run KLT, SIFT and SURF on these
images to obtain 30 sets of correspondences for each. In more
detail, each of the methods finds as many as possible corre-
spondence points; then only the strongest pairs are selected
to go further. On average, KLT obtains 811 correspondences
in 1.15 seconds, SURF collects 810 correspondences in 1.72
seconds, and SIFT collects 714 correspondences in the longest
time — 2.04 seconds. Overall, the measurements are sum-
marised in Table I.

TABLE I
STATISTIC DETAILS OF MATCHES WITH KLT, SURF AND SIFT oON 2005
AND 2006 MIDDLEBURY STEREO DATASETS.

[ Method | AVG matches | STD matches [ AVG time [ STD time |

KLT 811 60 0.95s 0.29s
SURF 810 167 1.72s 0.36s
SIFT 714 235 2.04s 0.67s

As the images are rectified, the matched points should be
horizontally aligned. To determine the accuracy of a method,
we find the misalignment in y-direction € = |y, — yg|. The
average and standard deviation of each set are collected. From
these obtained data, if all € are taken into account, the averages
are all very large (21 to 31-pixel misalignment) which indicate
all three methods contain a large number of outliers. When
outliers are discarded by three thresholds ¢ < 0.5, ¢ < 1.0, and
€ < 2.0, the average misalignments are relatively close to zero.
SIFT yields the best; its averages are the smallest. However,
with large standard deviation values, there are many cases
SURF and KLT are better than SIFT. Overall from the 2005
and 2006 Middlebury data sets, the result shows that KLT,
SURF and SIFT are efficient tracking systems, the obtained

correspondence sets do contain mismatches. Moreover, they
are not significantly different in the correspondences’ vertical
misalignment. To conclude, SURF and SIFT, in general, take
longer to process (see Table I); however, do not obtain better
correspondence sets than KLT.

2) Evaluation of KLT, SIFT, and SURF on Real-life Images:
In the second test case, the three trackers: KLT, SIFT and
SUREF are evaluated on 200 real-life images which are ran-
domly selected from our shared image gallery'. These images
are resized to resolution of 1024 x 768 pixels. Moreover, rather
than only indoor, they are acquired under different conditions.
Similarly, all image pairs are tracked with KLT, SURF, and
SIFT for correspondences. After the experiment, on average,
KLT runs in 2.1£0.7 seconds, SURF runs in 5.7+2.9 seconds,
and SIFT takes 7.542.0 seconds to obtain up to 500 strongest
correspondences. With the standard deviation of 0.70 seconds,
KLT is found significantly faster than both SURF (~ 2 times)
and SIFT (~ 3 times). The ground-truth correspondences are
not known in these 200 pairs of images, thus, their relative
matching accuracy can only be evaluated after the images
are rectified (to be concluded at the end of Section III-C).
In conclusion, KLT is more suitable for our project.

C. Evaluation of RANSAC vs. LMedS

Assuming that we have a good set of correspondences
found by KLT. Robust regression algorithms can be used
to estimate the corresponding fundamental matrix. The five
most popular robust regression techniques are: Maximum-
likelihood estimators (M-Estimators), Least-Median-Squares
(LMedS), Random Sampling (RANSAC), Maximum Likeli-
hood Estimation SAmple Consensus (MLESAC) and Maximum
A Posteriori SAmple Consensus (MAPSAC). Their details and
performances were thoroughly investigated by Armangu et
al. [11]. They concluded that the geometries related to the
positions of the camera produced by RANSAC were the
closest to reality, but RANSAC was sensitive to outliers.
Moreover, the performance of RANSAC depends on the value
of the chosen threshold for outliers. On the other hand, LMedS
could obtain better results where many outliers are presented.
Which method: RANSAC or LMedS should we use?

In this experiment, the correspondences obtained from
Section III-B2 are supplied to both RANSAC and LMedS
regression processes. We assessed six different method com-
binations: KLT+RANSAC, KLT+LMedS. Each combination
returns 200 stereo pairs of rectified images, thus, totally
200 x 6 = 1200 rectified pairs of images are obtained.
To get the quality evaluation, we first assume that the best
method combination makes the best horizontally aligned im-
age pairs. The misalignments between these correspondences
are measured. Approximately 270,000 correspondences are
examined. We consider that correspondences with misalign-
ments: |y, — yr| > 4 pixels are outliers and ignored, we
have constructed a statistic table comparing the combinations
in Table II.

Thttp://www.ivs.auckland.ac.nz/web/scene_gallery.php



TABLE II
STATISTIC DETAILS OF MISALIGNMENT OF IMAGES AFTER RUNNING KLT
+ RANSAC, KLT + LMEDS ON 200 REAL-LIFE NEAR STEREO PAIRS.

[ Method [ Matches [ [yr —yr[ | IMIN, MAX] [ STD |
KLT+RANSAC 48,948 0.76 [0.0, 4.0] 0.72
KLT+LMedS 46,657 0.77 [0.0, 4.0] 0.74

From these details, with smallest means and standard de-
viations, the combinations KLT + RANSAC, KLT + LMedS
are relatively equivalent. They all have the statical means of
between 0.76 and 0.77 pixels and standard deviation between
0.72 and 0.74 pixels. KLT + RANSAC is slightly better; thus,
it is chosen for the rectification of our system. Overall, we
can conclude that KLT + RANSAC combination is the best
choice for uncalibrated image rectification within our system.

D. Stereo Matching to Vertically Align Images

Disparity range between stereo image significantly affects
the comfortability of viewing in VR devices. The best disparity
for viewing is zero, in this case, human eyes are paralleled,
and the focus point is on the horizon (very far point). For
the best viewing, the stereo pair should have a disparity range
[min, mid, max] where min < 0, mid = 0, and maz > 0.

Stereo Matching extracts disparity information from a stereo
pair of images. Given a stereo pair, the matching process
outputs a disparity map, which characterises the observed
3D surface. We apply a simple stereo matching on obtained
rectified stereo images, then from the disparity map, we
calculate the average disparity value a pixels. After that, we
can only need to shift one of the images by a pixels. This
action makes the average disparity between the two image
becomes zero. Now, the two images are horizontally aligned
and have zero average disparity, they ready to be sent back to
the client to display on VR devices.

IV. LIMITATION & FUTURE WORK

Currently, we have developed a system demo only in the
Android environment. Therefore, the current test result is only
valid in this smart-phone operating system. In our previous
work, The stereoscopic image reconstruction feature in our
server was tested; which has a result of being fast, and
accurate. When we set up a connection between the client
and the server; the feature was tested again through the use of
client interface. The current test result shows that the feature
works as intended, and our system is stable, accurate, and easy
to implement on our tested smart-phone model. However, it
is still not clear if the system is compatible with all types of
smart-phones available on the market, especially with the ones
having limited hardware.

In the future, we will port these frameworks to other popular
VR environments, and smartphone operating system such as
i0S, WebVR. More tests will be performed to ensure that the
system can achieve equally good performance in all popular
environments.

V. CONCLUSION

This paper describes an online Virtual Reality (VR) frame-
works that allow users to capture and views their photos in
stereoscopic 3D, as well as sharing them with the others. With
the use of our specialised client-server architecture and the mo-
bile VR platform from Google, our frameworks are designed
to achieve good performance in all of the smartphones that
are compatible with Google Cardboard and Google Daydream.
While our evaluation is limited due to time and budget. The
current results have shown a big potential for the system to
be implemented in community, education, and entertainment.
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