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ABSTRACT 

An important component of near-real-time data warehouses is the near-real-time integration layer. 
One important element in near-real-time data integration is the join of a continuous input data stream 
with a disk-based relation. For high-throughput streams, stream-based algorithms, such as Mesh Join 
(MESHJOIN), can be used. However, in MESHJOIN the performance of the algorithm is inversely 
proportional to the size of disk-based relation. Also, MESHJOIN cannot deal with intermittent streams 
efficiently, because tuples could wait for an undetermined time, thus defying the near-real-time charac-
ter of the stream. The Index Nested Loop Join (INLJ) can be set up so that it processes stream input, 
and can deal with intermittences in the update stream but it has low throughput. In this paper we intro-
duce a robust stream-based join algorithm called Hybrid Join (HYBRIDJOIN) which combines the two 
approaches. As a theoretical result we show that HYBRIDJOIN is asymptotically as fast as the fastest 
of both algorithms. We present performance measurements of our implementation. We use synthetic 
data that we base on a Zipfian distribution, which is widely accepted as a plausible distribution for 
real world identifier sets in many domains. In our experiments, HYBRIDJOIN performs significantly 
better for typical parameters of the Zipfian distribution, and in general performs in accordance with 
the theoretical model while the other two algorithms are unacceptably slow under different settings. 
Hence HYBRIDJOIN is a robust algorithm that generally performs at an acceptable speed.  
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mance and tuning 
 

 

1.  INTRODUCTION 

Near-real-time data warehousing exploits the 
concepts of data freshness in traditional static da-
ta repositories in order to meet the required deci-
sion support capabilities. The tools and tech-
niques for promoting these concepts are rapidly 
evolving (Pedersen, 2009) (Golfarelli & Rizzi, 
2009b) (Golfarelli & Rizzi, 2009a) (Vassiliadis, 
2009). Most data warehouses have already 
switched from a full refresh (Gupta & Mumick, 

1999) (Zhang & Rundensteiner, 2002) (Zhuge, 
García-Molina, Hammer, & Widom, 1995) to an 
incremental refresh policy (W. Labio & Garcia-
Molina, 1996) (W. J. Labio, Wiener, Garcia-
Molina, & Gorelik, 2000) (W. Labio, Yang, Cui, 
Garcia-Molina, & Widom, 2000). Furthermore, 
the batch-oriented, incremental refresh approach 
is moving towards a continuous, incremental re-
fresh approach (Thiele, Fischer, & Lehner, 2007) 



(Karakasidis, Vassiliadis, & Pitoura, 2005) (Tho 
Manh Nguyen, 2003). 

With regards to terminology, data warehous-
ing approaches that follow such a best-effort data 
freshness approach have various names. Fre-
quently used terms are zero-latency, active, real-
time or near-real-time data warehouses. The term 
near-real-time is the most descriptive in a context 
where there could be a confusion with real-time 
control systems, but for the sake of brevity, we 
will mostly use the term real-time in this paper 
where no such confusion is possible. 

One important research area in the field of da-
ta warehousing is data transformation, since the 
updates coming from the data sources are often 
not in the format required for the data warehouse. 
For real-time data warehousing a continuous 
transformation from a source to target format is 
required, so the task becomes more challenging. 

In the ETL (Extract-Transform-Load) layer, a 
number of transformations are performed such as 
the detection of duplicate tuples, identification of 
newly inserted tuples, and the enriching of up-
dates with values from the master data. Enrich-
ment in particular can often be expressed as a join 
between the update stream and the master data 
(Naeem, Dobbie, & Weber, 2008). One important 
example of enrichment is a key transformation. 
Normally the key used in the data source is dif-
ferent from that in the data warehouse and there-
fore needs to be replaced. This transformation 
can be obtained by implementing a join operation 
between the update tuples and a lookup table. 
The lookup table contains the mapping between 
the source keys and the warehouse keys. Figure 1 
shows a graphical interpretation of such a trans-
formation. The attributes with column name id in 
both data sources DS1 and DS2 contain the source 
data keys and the attribute with name warehouse 
key in the lookup table contains the warehouse 
key value corresponding to these data source 
keys. Before loading each transaction into the 
data warehouse each source key is replaced by 
the warehouse key with the help of a join opera-
tor. 
 

Figure 1: An example of stream-based join 
 

 
 

In traditional data warehousing the update 
tuples are buffered in memory and joined when 
resources become available (Annita N. Wilschut 
& Apers, 1991) (Shapiro, 1986). Whereas, in 
real-time data warehousing these update tuples 
are joined immediately when they are generated 
in the data sources. One important factor related 
to the join is that both inputs of the join come 
from different sources with different arrival rates. 
The input from the data sources is in the form of 
an update stream which is fast, while the access 
rate of the lookup table is comparatively slow due 
to disk I/O cost. 

A novel stream-based equijoin algorithm, 
MESHJOIN (N. Polyzotis, Skiadopoulos, 
Vassiliadis, Simitsis, & Frantzell, 2007) (Neoklis 
Polyzotis, Skiadopoulos, Vassiliadis, Simitsis, & 
Frantzell, 2008) is in principle a hash join, where 
the stream serves as the build input and the disk-
based relation serves as the probe input. The 
main contribution is a staggered execution of the 
hash table build and an optimization of the disk 
buffer for the disk-based relation. 

The algorithm successfully joins the conti-
nuous data stream of updates with the slow 
access rate disk-based relation. However, we 
have identified two issues that have to be ad-
dressed. Firstly, the throughput of MESHJOIN is 
inversely proportional to the size of the disk-
based master data table. Secondly, the algorithm 
cannot deal with an intermittent update stream 
efficiently. An intermittent stream is a stream that 
is dropping to a rate close to zero tuples per unit 
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of time for periods of time. A detailed explana-
tion of these issues is provided in Section 3. 

The Index Nested Loop Join (INLJ) 
(Ramakrishnan, 1999) is traditionally considered 
for non-stream data, but it can easily be set up so 
that it joins a continuous data stream with a disk-
based relation, which is capable of dealing with 
intermittent data streams. However, every index 
has to be considered non-clustered with respect to 
the stream data. This is because stream data ar-
rive in the order that the updates are performed. 
The natural assumption is e.g. that purchases are 
random. INLJ is known to be inefficient for non-
clustered index access. The disk I/O cost cannot 
be amortized over multiple tuples of the stream 
and eventually produces a low service rate. 

Based on these observations, we propose a 
stream-based join, called Hybrid Join (HYBRID-
JOIN). The key difference between HYBRID-
JOIN and MESHJOIN is that HYBRIDJOIN 
does not read the entire disk relation sequentially 
but instead accesses it using an index. This can 
reduce the disk I/O cost by guaranteeing that 
every partition read from the disk-based relation 
is at least used for one stream tuple, while in 
MESHJOIN there is no guarantee. To amortize 
the disk read over many stream tuples, the algo-
rithm performs the join of a disk partition with all 
stream tuples currently in memory. This approach 
guarantees that HYBRIDJOIN is never asymptot-
ically slower than MESHJOIN. In addition, in 
HYBRIDJOIN, unlike MESHJOIN, the disk load 
is not synchronised with stream input providing 
better service rates for intermittent streams. 

The rest of this paper is structured as follows. 
The related work is presented in Section 2. Sec-
tion 3 describes our observations with regard to 
the current approach. In Section 4 we present the 
architecture, algorithm, theoretical analysis, cost 
model, and tuning of our proposed HYBRID-
JOIN. The design and implementation of a 
benchmark for testing HYBRIDJOIN is de-
scribed in Section 5. The experimental study is 
discussed in Section 6 and finally Section 7 con-
cludes the paper. 
 

2.  RELATED WORK 

In real-time data warehousing, updates occur-
ring at the source need to be processed in an on-
line fashion. This real-time processing of the up-
date stream introduces the interesting challenges 
related to throughput for join algorithms. Some 
techniques have been introduced already to 
process join queries over continuous streaming 
data (Golab & Özsu, 2003) (Babu & Widom, 
2001) (Hammad, Aref, & Elmagarmid, 2008) 
(Palma, Akbarinia, Pacitti, & Valduriez, 2009) 
(Kim & Park, 2005) (Nguyen, Brezany, Tjoa, & 
Weippl, 2005). In this section we will outline the 
well known work that has already been done in 
this area with a particular focus on those which 
are closely related to our problem domain. 

The non-blocking symmetric hash join (SHJ) 
(Annita N. Wilschut & Apers, 1991) (A. N. 
Wilschut & Apers, 1990) promotes the proprie-
tary hash join algorithm by generating the join 
output in a pipeline. In the symmetric hash join 
there is a separate hash table for each input rela-
tion. When the tuple of one input arrives it probes 
the hash table of the other input, generates a re-
sult and stores it in its own hash table. SHJ can 
produce a result before reading either input rela-
tion entirely, however, the algorithm keeps both 
the hash tables, required for each input, in memo-
ry. 

The Double Pipelined Hash Join (DPHJ) (Ives, 
Florescu, Friedman, Levy, & Weld, 1999) with a 
two stage join algorithm is an extension of SHJ. 
The XJoin algorithm (Urhan & Franklin, 2000) is 
another extension of SHJ. Hash-Merge Join 
(HMJ) (Mokbel, Lu, & Aref, 2004)  which is also 
based on symmetric join algorithm, uses push 
technology and consists of two phases, hashing 
and merging. 

Early Hash Join (EHJ) (Lawrence, 2005) is a 
further extension of XJoin. EHJ introduces a new 
biased flushing policy that flushes the partitions 
of the largest input first. EHJ also simplifies the 
strategies to determine the duplicate tuples, based 
on cardinality and therefore no timestamps are 
required for arrival and departure of input tuples. 



However, because EHJ is based on pull technolo-
gy, a reading policy is required for inputs. 

Mesh Join (MESHJOIN) (N. Polyzotis, et al., 
2007) (Neoklis Polyzotis, et al., 2008), is de-
signed especially for joining a continuous stream 
with a disk-based relation for active data ware-
housing. Although it is an adaptive approach, 
there are some issues related to the strategy for 
accessing the disk-based relation. 

Most recently a partition-based approach 
(Chakraborty & Singh, 2009) was introduced that 
focuses on minimizing the disk overhead in the 
MESHJOIN algorithm. However, a switch opera-
tor is introduced to switch between the Index 
Nested Loop Join (INLJ) and MESHJOIN. This 
switching mode depends on a threshold value for 
stream tuples in the input buffer. The key com-
ponent is a wait buffer that holds only join 
attribute values and maintains them in separate 
slots with respect to the partitions of the disk-
based relation. Each disk invocation takes place 
when either the number of attribute values in any 
slot of the wait buffer crosses the predefined thre-
shold value or when the whole wait buffer be-
comes full. We observe that the join attribute 
values waiting in the slots of the wait buffer, 
which are not frequent in the input stream, need 
to wait longer than in the original MESHJOIN 
algorithm, because the slot does not reach the 
threshold limit. In addition the author focuses on 
the analysis of the stream buffer in terms of back 
log tuples and the delay time rather than analys-
ing the algorithm performance in terms of service 
rate. Because the author does not provide code 
for his implementation, we are unable to test this 
approach in practice. 

 

3.  PRELIMINARIES: MESHJOIN 

In this section we summarize the constraints on 
the MESHJOIN and INLJ algorithms. At the end 
of the section we outline the observations that we 
focus on in this paper. 

MESHJOIN was designed to support stream-
ing updates over persistent data in the field of 
real-time data warehousing. The algorithm reads 

the disk-based relation sequentially in partitions. 
Once the last partition is read, it again starts from 
the first partition. The algorithm contains a buf-
fer, called the disk buffer, to store each disk parti-
tion in memory one at a time. The algorithm uses 
a hash table to store the stream tuples, while the 
key attribute for each tuple is stored in the queue. 
All partitions in the queue are equal in size. The 
total number of partitions is equal to the number 
of partitions on the disk while the size of each 
partition on the disk is equal to the size of the 
disk buffer. There is a stream buffer of negligible 
size that is used to hold the fast stream if re-
quired.  

In each iteration the algorithm reads one disk 
partition into the disk buffer and loads a chunk of 
stream tuples into the hash table while also plac-
ing their key attributes in the queue. After load-
ing the disk partition into memory it joins each 
tuple from that partition with matching stream 
tuples in the hash table. Before the next iteration 
the oldest stream tuples are removed from the 
hash table with their key attribute values from the 
queue. All chunks of the stream in the queue are 
advanced by one step. In the next iteration the 
algorithm replaces the current disk partition with 
the next one, loads a chunk of new stream tuples 
into the hash table and places their key attributes 
values in the queue, and repeats the above proce-
dure.  

The crux of the algorithm is that the total num-
ber of partitions in the stream queue must be 
equal to the total number of partitions on the disk 
and that number can be determined by dividing 
the size of the disk-based relation R by the size of 
the disk buffer b (i.e. k=NR/b). This constraint 
ensures that a stream tuple that is loaded into 
memory is matched against the entire disk rela-
tion before it expires. 

An overview of MESHJOIN is presented in 
Figure 2 where we consider only three partitions 
in the queue, with the same number of partitions 
on disk.  At any time t, for example when disk 
partition p3 is in memory the status of the stream 
tuples in memory can be explained. In the queue 
w1 tuples have already joined with disk partition 



p1 and p2 and therefore after joining with partition 
p3 they will be dropped out of memory. While 
tuples w2 have joined with partition p2 only and 
therefore, after joining with partition p3 they will 
advance one step in the queue. Finally, tuples w3 
have not joined with any disk partition and they 
will also advance one step in the queue after join-
ing with partition p3. Once the algorithm com-
pletes the cycle of R, it again starts loading se-
quentially from the first partition. 
 
Figure 2: Example of MESHJOIN when disk par-
tition p3 is in memory 
 

 
 

The MESHJOIN algorithm successfully amor-
tizes the fast arrival rate of the incoming stream 
by executing the join of disk partitions with a 
large number of stream tuples. However there are 
still some further issues that exist in the algo-
rithm. Firstly due to the sequential access of R, 
the algorithm reads the unused or less used parti-
tions of R into memory with equal frequency, 
which increases the processing time for every 
stream tuple in the queue due to extra disk I/O. 
Processing time is the time that every stream 
tuple spends in the join window from loading to 
matching without including any delay due to the 
low arrival rate of the stream. The average 

processing time in the case of MESHJOIN can be 
estimated using the given formula. 

Average processing time (secs) = 
2

1
 (seek time + 

processing time) for the whole of R 
 

To determine the access rate of disk partitions 
of R we performed an experiment using a bench-
mark that is based on Zipf’s Law to model com-
mercial applications (Knuth, 1998) (Anderson, 
2006), the detail is available in Section 5. In this 
experiment we assumed that R is sorted in as-
cending order with respect to the join attribute 
value and we measure the rate of use for the pag-
es at different locations of R. From the results 
shown in Figure 3 it can be seen that the rate of 
page use decreases towards the end of R. The 
MESHJOIN algorithm does not consider this fac-
tor and reads all disk pages with the same fre-
quency. 

 
Figure 3: Measured rate of page use at different 
locations of R while the size of total R is 16000 
pages 
 

 
 
Secondly, MESHJOIN cannot deal with bursty 

input streams effectively. In MESHJOIN a disk 
invocation occurs when the number of tuples in 
the stream buffer is equal to or greater than the 
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stream input size w. In the case of intermittent or 
low arrival rate (λ) of the input stream, the tuples 
already in the queue need to wait longer due to  
disk invocation delay. This waiting time nega-
tively affects the performance. The average wait-
ing time can be calculated using the given formu-
la. 

 

Average waiting time (secs) = 
௪

ఒ
 

 

Index Nested Loop Join (INLJ) is another join 
operator that can be used to join an input stream S 
with the disk-based relation R, using an index on 
the join attribute. In INLJ for each iteration, the 
algorithm reads one tuple from S and accesses R 
randomly with the help of the index. Although in 
this approach both of the issues presented in 
MESHJOIN can be handled, the access of R for 
each tuple of S makes the disk I/O cost dominant. 
This factor affects the ability of the algorithm to 
cope with the fast arrival stream of updates and 
eventually decreases the performance significant-
ly.  

In summary, the problems that we consider in 
this paper are: (a) the minimization of the 
processing time and waiting time for the stream 
tuples by accessing the disk-based relation effi-
ciently, (b) dealing with bursty stream effective-
ly. 
 

4.  HYBRIDJOIN  

In previous section we highlighted observa-
tions related to the MESHJOIN and INLJ algo-
rithms. As a solution to the stated problems we 
propose a stream-based join algorithm called Hy-
brid Join (HYBRIDJOIN). In HYBRIDJOIN we 
address two major aims which are not supported 
in MESHJOIN: (a) efficient access of disk-based 
relation R by loading only the useful part of R 
into memory, (b) dealing with bursty streams ef-
fectively. This section describes the data struc-
tures, pseudo-code and run time analysis of HY-
BRIDJOIN. We also present the cost model that 
is used for estimating the cost of our algorithm, 
and for tuning the algorithm. 
 

4.1 Data structures and architecture 
 

The data structures that HYBRIDJOIN uses 
are shown in Figure 4. Like in MESHJOIN key 
components of HYBRIDJOIN are disk buffer, 
hash table, queue and stream buffer. The disk-
based relation R and stream S are the inputs. Con-
trary to MESHJOIN in HYBRIDJOIN we assume 
that R contains the unique values of join attribute 
and has an index on it. We also assume that the 
values of join attribute are sorted. The disk parti-
tion of size vP from relation R is loaded into the 
disk buffer in memory. The queue is used to store 
the value of the join attribute and each node in 
the queue also contains the addresses of its one 
step neighbour nodes. Unlike the queue in 
MESHJOIN we implement an extra feature of 
random deletion in our HYBRIDJOIN queue by 
using a doubly-linked-list.  

The hash table is an important component that 
stores the stream tuples and the addresses of the 
nodes in the queue corresponding to the tuples. 
The key benefit of this is when the disk partition 
is loaded into memory using the join attribute 
value from the queue as an index, instead of only 
matching one tuple as in INLJ; the algorithm 
matches the disk partition with all the matching 
tuples in the queue. This helps to amortize the 
expensive disk I/O cost over fast arrival stream. 
In the case where there is a match, the algorithm 
generates that tuple as an output and deletes it 
from the hash table along with the corresponding 
node from the queue while the unmatched tuples 
in the queue are dealt with in a similar way to the 
MESHJOIN strategy. The role of the stream buf-
fer is just to hold the fast stream if necessary. 
To deal with the intermittencies in the stream, for 
each iteration the algorithm checks the status of 
the stream buffer. In the case where no stream 
tuples are available in the stream buffer the algo-
rithm will not stop but continues its working until 
the hash table becomes empty. However, the 
queue keeps on shrinking continuously and will 
become empty when all tuples in the hash table 
are joined. On the other hand when tuples arrive 
from the stream, the queue again starts growing. 



In MESHJOIN every disk input is bound to the 
stream input while in HYBRIDJOIN we remove 
this constraint by making each disk invocation 
independent from the stream input. 
 
Figure 4: Data structures used in HYBRIDJOIN 
 

 
 

4.2 Algorithm 
 

Once the memory is distributed among the 
join components HYBRIDJOIN starts its execu-
tion according to the procedure defined in Figure 
5. Initially since the hash table is empty, hS is as-
signed to stream input size w where hS is the total 
number of slots in the hash table H (line 1). The 
algorithm consists of two loops: one is called the 
outer loop while the other one is called the inner 
loop. The outer loop which is an endless loop is 
used to read the stream input into the hash table 
(line 2). While the inner loop is used to probe the 
hash table (line 9). In each outer loop iteration, 
the algorithm examines the availability of stream 
tuples in the stream buffer. If the required number 
of stream tuples available, the algorithm reads w 
tuples of the stream and loads them into the hash 
table while placing their join attribute values in 
the queue. Once the stream input is read the algo-
rithm resets the value of w to 0 (line 3-6). The 
algorithm then reads the oldest value of a join 
attribute from the queue and loads a disk partition 
p into the disk buffer, using that join attribute 

value as an index (line 7, 8). After loading the 
disk partition into memory the inner loop starts 
and for each iteration of the inner loop the algo-
rithm reads one disk tuple from the disk buffer 
and probes the hash table. In the case of a match, 
the algorithm generates the join output. Since the 
hash table is multi-hash-map, there can be more 
than one match against one disk tuple. After ge-
nerating the join output the algorithm deletes all 
matched tuples from the hash table along with the 
corresponding nodes from the queue. Finally, the 
algorithm increments w with the number of va-
cated slots in the hash table (line 9-15). 
 
Figure 5: Pseudo-code for HYBRIDJOIN 
 

 
 

4.3 Asymptotic runtime analysis 
 

We compare the asymptotic runtime of HY-
BRIDJOIN with that of MESHJOIN and INLJ. 
As a unit of measurement we use the time needed 
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to process a stream chunk. The time needed to 
process a single tuple is the inverse of the service 
rate, which is the number of tuples processed in a 
time interval. The unit of measurement used here 
has the advantage, that “smaller is better” in ac-
cordance with common usage in asymptotic anal-
ysis of algorithms. Every stream section can be 
viewed as a binary sequence, and by viewing this 
binary sequence as a natural number, we can ap-
ply asymptotic complexity classes to functions on 
stream sections as binary numbers. Note there-
fore that the following theorems do not use func-
tions on input lengths, but on binary numbers 
representing stream sections. We denote the time 
needed to process stream section s as MEJ(s) for 
MESHJOIN, as INLJ(s) for index nested loop 
join, and as HYJ(s) for HYBRIDJOIN. The re-
sulting theorems imply analogous asymptotic be-
havior on input length, but are stronger than 
statements on input length. We assume that the 
setup for HYBRIDJOIN and for MESHJOIN is 
such that they have the same number hS of stream 
tuples in the hash table - and in the queue accor-
dingly. 
Comparison with MESHJOIN: 
Theorem 1: HYJ(s) = O(MEJ(s)) 

Proof: To prove the theorem, we have to 
prove that HYBRIDJOIN performs no worse than 
MESHJOIN. The cost of MESHJOIN is domi-
nated by the number of accesses to R. For asymp-
totic runtime, random access of disk partitions is 
as fast as sequential access (seek time is a con-
stant factor). For MESHJOIN with its cyclic 
access pattern for R, every partition of R is ac-
cessed exactly once after every hS stream tuples. 
We have to show that for HYBRIDJOIN no parti-
tion is accessed more frequently. For that we look 
at an arbitrary partition p of R at the time it is ac-
cessed by HYBRIDJOIN. The stream tuple at the 
front of the queue has some position i in the 
stream. There are hS stream tuples currently in the 
hash table, and the first tuple of the stream that is 
not yet read into the hash table has position i+hS 
in the stream. All stream tuples in the hash table 
are joined against the disk-based master data 
tuples on p, and all matching tuples are removed 

from the queue. We now have to determine the 
earliest time that p could be loaded again by 
HYBRIDJOIN. For p to be loaded again, a 
stream tuple must be at the front of the queue, 
and has to match a master data tuple on p. The 
first stream tuple that can do so is the aforemen-
tioned stream tuple with position i+hS, because 
all earlier stream tuples that match data on p have 
been deleted from the queue. This proves the 
theorem. 
Comparison with INLJ: 
Theorem 2: HYJ(s) = O(INLJ(s)) 

Proof: INLJ performs a constant number of 
disk accesses per stream tuple. For the theorem it 
suffices to prove that HYBRIDJOIN performs no 
more than a constant number of disk accesses per 
stream tuple as well. We consider first those 
stream tuples that remain in the queue until they 
reach the front of the queue. For each of these 
tuples, HYBRIDJOIN loads a part of R and hence 
makes a constant number of disk accesses. For all 
other stream tuples, no separate disk access is 
made. This proves the theorem. 

The theorems show that except for a single 
constant factor c, HYBRIDJOIN performs on 
each individual input at least as well as any of the 
two other algorithms. The maximum factor is de-
termined by the ratio of continuous disk access 
time versus random disk access time for different 
disk portions. This is a free parameter of the cost 
model. In practice it depends on the technical pa-
rameters of the disk used, particularly the seek 
time, and on the choice of the disk portions that 
are loaded in one step. In our setup the factor is 
smaller than 2 for Theorem 1 and smaller than 5 
for Theorem 2, i.e. even in the worst case, HY-
BRIDJOIN would be at most 2 times slower than 
MESHJOIN and at most 5 times slower than in-
dex nested loop join. 
 
4.4 Cost model 
 

In this section we derive the general formulas 
to calculate the cost of our proposed HYBRID-
JOIN. Since it is important to compare our cost 
model with the cost model presented for MESH-



JOIN in (Neoklis Polyzotis, et al., 2008) we use 
the same notation where possible and also calcu-
late the cost in terms of memory and processing 
time. Equation (1) describes the total memory 
used to implement the algorithm (excluding the 
stream buffer). Equation (3) calculates the 
processing cost for w tuples while the average 
size for w can be calculated using Equation (2). 
The service rate can be calculated using Equation 
(4). The symbols used in the equations are speci-
fied in Table 1. 
 
4.4.1 Memory cost 
 

In HYBRIDJOIN, the largest portion of the to-
tal memory is used for the hash table H while a 
comparatively smaller amount is used for the disk 
buffer. The queue size is linear to the hash table 
size, but considerably smaller. We can easily cal-
culate the size for each of them separately. 
Memory for the disk buffer (bytes) = ݒ௉. 
Memory for the hash (bytes) ൌ ܯሺߙ െ   .௉ሻݒ
Memory for the queue (bytes) = (1 െ ܯሻሺߙ െ   .௉ሻݒ
The total memory used by HYBRIDJOIN can be 
determined by aggregating all the above. 
 
ܯ ൌ ௉ݒ ൅ ܯሺߙ െ ௉ሻݒ ൅ ሺ1 െ ܯሻሺߙ െ  ௉ሻ     (1)ݒ
 

We are not including the memory reserved for 
the stream buffer because it is negligible (0.05 
MB was sufficient in all our experiments). 
 
4.4.2 Processing cost 
 

In this section we calculate the processing cost 
for HYBRIDJOIN. To calculate the processing 
cost it is necessary to calculate the average 
stream input size, w, first. 
Calculate average stream input size w: In HY-
BRIDJOIN the average stream input size w de-
pends on the following four parameters. 

 Size of hash table hS 
 Size of disk buffer d 
 Size of disk-based relation Rt 
 The exponent value for benchmark e 

Table 1: Notations used for cost estimation of 
HYBRIDJOIN 

 

Parameter name Symbol 
Total allocated memory (bytes) M 
Stream arrival rate (tuples/sec) λ 
Service rate (processed tuples/sec) µ 
Average stream input size (tuples) w 
Stream tuple size (bytes) vS 
Size of disk buffer (bytes) vP 
Size of disk tuple (bytes) vR 
Size of disk buffer (tuples) d 
Memory weight for hash table α 
Memory weight for queue (1- α) 
Size of hash table (tuples) hS 
Size of disk-based relation R (tuples) Rt 
Exponent value for benchmark e 
Cost to read one disk partition into 
disk buffer (nanosecs) 

cI/O(vP) 

Cost to probe one disk tuple into hash 
table (nanosecs) 

cH 

Cost to generate output for one tuple 
(nano sec) 

cO 

Cost to delete one tuple from hash and 
queue (nanosecs) 

cE 

Cost to read one tuples into stream 
buffer (nanosecs) 

cS 

Cost to add one tuples into hash and 
queue (nanosecs) 

cA 

Cost for one loop iteration of HY-
BRIDJOIN (sec) 

cloop 

 

In our experiments w is directly proportional 
to the size of the hash table hS and the size of the 
disk buffer d, and is inversely proportional to the 
size of disk-based relation Rt. The fourth parame-
ter represents the exponent value for Zipfian dis-
tribution, explained in Section 5, and by using an 
exponent value of 1 we approximately model the 
80/20 Rule (Anderson, 2006) for market sales. 
Therefore, the formula for w is: 

 
 

ݓ ∝
݄ௌ ൈ ݀ ൈ ݁

ܴ௧
 

 

ݓ ൌ ݇
݄ௌ ൈ ݀

ܴ௧
 (2) 

 



where k is a constant influenced by system para-
meters. We obtained the value of k from mea-
surements, in our setup it is is 1.36. 

On the basis of w we can calculate the 
processing cost for one step of the iteration. In 
order to calculate the cost for one loop iteration 
the major components are: 
Cost to read one disk partition = ܿூ/ைሺݒ௉ሻ. 
Cost to probe one disk partition into the hash ta-
ble = 

௩ು

௩ೃ
ܿு. 

Cost to generate the output for w matching tuples 
.ݓ = ܿை 
Cost to delete w tuples from the hash table and 
the queue = ݓ. ܿா. 
Cost to read w tuples from stream S = ݓ. ܿௌ. 
Cost to append w tuples into the hash table and 
the queue = ݓ. ஺ܿ. 
By aggregation, the total cost for one loop itera-
tion is: 
 

ܿ௟௢௢௣ ൌ 10ିଽሾܿ಺
ೀ

ሺݒ௉ሻ ൅
௩ು

௩ೃ
ܿு ൅ .ݓ ܿை ൅

.ݓ                 ܿா ൅ .ݓ ܿௌ ൅ .ݓ ஺ܿሿ               (3) 
 

Since in cloop seconds, the algorithm processes 
w tuples of stream S, the service rate µ can be 
calculated by dividing w by the cost for one loop 
iteration. 

ߤ ൌ
ݓ

ܿ௟௢௢௣
    (4) 

 
   

4.5 Tuning 
 

Tuning of the join components is important to 
make efficient use of available resources. In HY-
BRIDJOIN the disk buffer is the key component 
to tune to amortize the disk I/O cost on fast input 
data streams. From Equation (4) the service rate 
depends on w and the cost cloop which is required 
to process these w tuples. In HYBRIDJOIN for a 
particular setting (M = 50MB) assuming the size 
of R and the exponent value for Zipfian distribu-
tion are fixed (Rt = 2 million and e =1), from Eq-
uation (2) w then depends on the size of hash ta-
ble and the size of disk buffer. Furthermore the 
size of hash table is also dependent on the size of 
the disk buffer as shown in Equation (1). There-

fore, using Equations (2), (3) and (4) the service 
rate µ can be specified as a function of vP and the 
value for vP at which the service rate is maximum 
can be determined by applying standard calculus 
rules. 

Figure 6 shows the relationship between the 
I/O cost and service rate as measured in experi-
ments. From Figure 6 it can be observed that in 
the beginning, for a small disk buffer size, the 
service rate is also small because there are fewer 
matching tuples in the queue. However, the ser-
vice rate increases with an increase in the size of 
the disk buffer due to more matching tuples in the 
queue. After reaching a particular value of the 
disk buffer size the trend changes and perfor-
mance decreases with further increments in the 
size of the disk buffer. The plausible reason be-
hind this decrease is the rapid increase in the disk 
I/O cost and the decrease in memory size for the 
hash table. 

 
Figure 6: Tuning of disk buffer 
 

 
 

5.  TESTS WITH LOCALITY OF 
DISK ACCESS 

Crucial to the HYBRIDJOIN performance is 
the distribution of master data keys in the stream. 
If the distribution is uniform, then HYBRIDJOIN 
may perform worse than MESHJOIN, but by a 
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constant factor, in line with the theoretical analy-
sis. Note however, that HYBRIDJOIN still has 
the advantage of being efficient for intermittent 
streams, while the original MESHJOIN would 
pause with intermittent streams, and leave tuples 
unprocessed for an open-ended period. 

It is also obvious that HYBRIDJOIN has ad-
vantages if R contains unmatched data, for exam-
ple if there are old product records that are cur-
rently very rarely accessed, that are clustered in 
R. HYBRIDJOIN would not access these areas of 
R, while MESHJOIN accesses the whole of R. 
More interestingly, however, is whether HY-
BRIDJOIN can also benefit from more general 
locality. Therefore the question arises whether we 
can demonstrate a natural distribution where 
HYBRIDJOIN measurably improves over the 
uniform distribution, because of locality. 

Common non-uniform  distributions are Zip-
fian distributions, which exhibit a power law sim-
ilar to Zipf's law (Knuth, 1998). Zipfian distribu-
tions are discussed as a plausible model for sales 
(Anderson, 2006), where some products are sold 
frequently while most are sold rarely. The distri-
bution generated  using Zipf’s law with an expo-
nent 1 is close to the 80/20 Rule (Anderson, 
2006)  i.e. 80% of the sales are from 20% of the 
products. 

We designed a generator for synthetic data 
that follows a Zipfian distribution. The generated 
benchmark is based on two characteristics: (a) the 
frequency of selling each product and it approx-
imately models the 80/20 Rule, (b) the flow of 
sales transactions and it is a self-similar. By using 
the generated benchmark we demonstrate that 
HYBRIDJOIN performance improves when lo-
cality is considered, and that HYBRIDJOIN out-
performs MESHJOIN. 

In order to simplify the model, we assume that 
the product keys are sorted in the master data ta-
ble according to their frequency in the stream. 
This is a simplifying assumption that would not 
automatically hold in typical warehouse cata-
logues, but it does provide a plausible locality 
behavior and makes the degree of locality very 
transparent.  

6.  EXPERIMENTS 

We performed an experimental evaluation of 
HYBRIDJOIN, using synthetic datasets. In this 
section we describe the environment of our expe-
riments and analyze the results that we obtained 
using different scenarios. 
 
6.1 Experimental setup 
 

In order to implement the prototypes of exist-
ing MESHJOIN, Index Nested Loop Join (INLJ) 
and our proposed HYBRIDJOIN algorithms we 
used the following hardware and data specifica-
tions. 

Hardware specifications: We carried out our 
experimentation on a Pentium-IV 2X2.13GHz 
machine with 3G main and 160G disk memory 
under WindowsXP. We implemented the experi-
ment in Java using the Eclipse IDE 3.3.1.1. We 
also used built-in plugins, provided by Apache, 
and nanoTime(), provided by the Java API, to 
measure the memory and processing time respec-
tively. 

Data specifications: We analyzed the perfor-
mance of each of the algorithms using synthetic 
data. The relation R is stored on disk using 
MySQL 5.0 database, while the bursty type of 
stream data is generated at run time using our 
own generator. Both the algorithms read master 
data from the database. In transformation, join is 
normally performed between the primary key of 
the lookup table and the foreign key in the stream 
tuple and therefore our HYBRIDJOIN supports 
join for one-to-many relationships and it can be 
extended for many-to-many relationships easily. 
In order to implement the join for one-to-many 
relationships it needs to store multiple values in 
the hash table against one key value. However the 
hash table provided by the Java API does not 
support this feature therefore, we used Multi-
Hash-Map, provided by Apache, as the hash table 
in our experiments. The detailed specification of 
the data set that we used for analysis is shown in 
Table 2.  



We compare the performance of HYBRID-
JOIN with MESHJOIN and INLJ while varying 
total allocated memory M, the size of relation R 
on disk, the value of the exponent for the Zipfian 
distribution, and the stream arrival rate λ. The 
other parameters such as the size of disk buffer, 
size of stream buffer, size of each disk tuple, size 
of each stream tuple, and the size of each node in 
the queue are considered fixed. The stream data-
set we used to evaluate HYBRIDJOIN is based 
on Zipf’s law and has two important characteris-
tics, bursty and self-similarity (for details, see the 
appendix). We test the performance of all the al-
gorithms by varying the Zipfian exponent value 
from 0 to 1. 
  
Table 2: Data specifications 
 

 
 
 

Parameter Value 
Memory 

Total allocated memory M 50MB to 250MB 
Exponent 

Zipfian exponent value 0 to 1 
Disk-based data 

Size of disk-based relation R 0.5 million to 8  
million tuples 

Size of each disk tuple  120 bytes 

Stream data 

Size each stream tuple 20 bytes 
Size of each nodes in queue 12 bytes 
Stream arrival rate λ 125 to 2000 

tuples/sec 
Benchmark 

Based on Zipf’s law 
Characteristics Bursty and self-

similar 

 
Measurement strategy: The performance or 

service rate of the join is measured by calculating 
the maximum number of tuples processed in a 
unit second. In each experiment the algorithm 
runs for one hour and we start our measurements 
after 20 minutes and continue it for 20 minutes. 
For more accuracy we take three readings for 

each specification and then calculate confidence 
intervals for every result by considering 95% ac-
curacy. Moreover, during the execution of the 
algorithm it is assumed that no other application 
is running in parallel. 
 
6.2 Experimental results 
 

We conducted two kinds of evaluation. In Sec-
tion 6.2.1 we compare the performance of all 
three approaches, while in Section 6.2.2 we vali-
date the cost by comparing it with the predicted 
cost. 
 
6.2.1 Performance comparison 
 

As the source code for MESHJOIN is not 
openly available, we implemented the MESH-
JOIN algorithm ourselves. In our experiments we 
compare the performance in two different ways. 
First, we compare HYBRIDJOIN with MESH-
JOIN with respect to the time, both processing 
time and waiting time. Second, we compare the 
performance in terms of service rate with other 
two algorithms. 

Performance comparisons with respect to 
time: To test the performance with respect to 
time we conduct two different experiments. The 
experiment, shown in Figure 7(a), presents the 
comparisons with respect to processing time on a 
log scale, while Figure 7(b) depicts the compari-
sons with respect to the waiting time. The terms 
processing time and waiting time have already 
been defined in Section 3. According to Figure 
7(a) the processing time in the case of HYBRID-
JOIN is significantly smaller than that of MESH-
JOIN. The reason behind this is the different 
strategy to access R. The MESHJOIN algorithm 
accesses all disk partitions with the same fre-
quency without considering the rate of use of 
each partition on the disk. In HYBRIDJOIN an 
index based approach is implemented that never 
reads unused disk partitions of R. In this experi-
ment we do not reflect the processing time for 
INLJ because it is constant even when the size of 
R changes.  
 
 



Figure 7: Performance evaluation 
 

 
(a) Processing time  
 

 
(b) Waiting time in case of low stream arrival rate 

 
(c) Performance comparison with 95% confidence interval 
while M=50MB and R varies 

 
(d) Performance comparison with 95% confidence interval 
while R=2 million tuples and M varies 

 

 
(e) Performance comparison for varying Zipfian exponent 

 
In the experiment shown in Figure 7(b) we 

compare the time that each algorithm waits (ex-
cept Index Nested Loop Join). In the case of 
INLJ, since the algorithm works at tuple level, 
the algorithm does not need to wait but this delay 
then appears in the form of stream backlog that 
occurs due to a faster incoming stream rate than 
the processing rate. Also this delay (waiting time) 
increases with an increase in the stream arrival 
rate. 

In the other two approaches the waiting time in 
MESHJOIN is greater than in HYBRIDJOIN. In 
HYBRIDJOIN since there is no constraint to 
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match each stream tuple with the whole of R, 
each disk invocation is not synchronized with the 
stream input. However, for stream arrival rates 
less than 150 tuples/sec, the waiting time in HY-
BRIDJOIN is greater than that in INLJ. A plausi-
ble reason for this is the greater I/O cost in the 
case of HYBRIDJOIN when the size of the input 
stream is assumed to be equal in both algorithms. 

Performance comparisons with respect to 
service rate: In this category of our experiments 
we compare the performance of HYBRIDJOIN in 
terms of the service rate with the other two join 
algorithms by varying different parameters such 
as the total memory budget, the size of R, and the 
value of Zipfian exponent. In the experiment 
shown in Figure 7(c) we assume the total allo-
cated memory for the join is fixed while the size 
of R varies exponentially. From Figure 7(c) it can 
be observed that for all sizes of R, the perfor-
mance of HYBRIDJOIN is significantly better 
compared with the other join approaches. In our 
second experiment of this category we analyse 
the performance of HYBRIDJOIN using different 
memory budgets, while the size of R is fixed (2 
million tuples). Figure 7(d) depicts the compari-
sons of all three approaches. From Figure 7(d) it 
is clear that for all memory budgets the perfor-
mance of HYBRIDJOIN is better as compared to 
the other two algorithms.  

Finally, we evaluate the performance of HY-
BRIDJOIN by varying the skew in input stream 
S. To vary the skew, we vary the value of the 
Zipfian exponent e. In our experiments we allow 
it to range from 0 to 1. At 0 the input stream S is 
uniform and the skew increases as e increases. 
Figure 7(e) presents the results of our experiment. 
It is clear from Figure 7(e) that under all values 
of e except 0, HYBRIDJOIN performs consider-
ably better than MESHJOIN and INLJ. Also this 
improvement increases with an increase in e. The 
plausible reason for this better performance in the 
case of HYBRIDJOIN is that the algorithm does 
not read unused parts of R into memory and it 
saves unnecessary I/O cost. Moreover, when e 
increases the input stream S gets more skewed 
and consequently, the I/O cost decreases due to 

an increase in the size of the unused part of R.  
However, when e is equal to 0, HYBRIDJOIN 
performs worse than MESHJOIN but it is only 
worse by a constant factor. 

 
Figure 8: Cost validation 
 

 
(a) HYBRIDJOIN 

 

 
(b) MESHJOIN 

 

 
(c) INLJ 
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6.2.2 Cost validation 
 

In this experiment we validate the cost model 
for all three approaches by comparing the pre-
dicted cost with the measured cost. Figure 8 
presents the comparisons of both costs. In Figure 
8 it is demonstrated that the predicted cost closely 
resembles the measured cost in every approach 
which validates the accuracy of our cost model. 

 

7.  CONCLUSIONS AND FUTURE 
WORK 

In the context of real-time data warehousing a 
join operator is required to perform a continuous 
join between the fast stream and the disk-based 
relation within limited resources. In this paper we 
investigated two available stream-based join al-
gorithms and presented a robust join algorithm, 
HYBRIDJOIN.  

Our main objectives in HYBRIDJOIN are: (a) 
to minimize the stay of every stream tuple in the 
join window by improving the efficiency of the 
access to the disk-based relation, (b) to deal with 
the bursty data streams. We developed a cost 
model and tuning methodology in order to 
achieve the maximum performance within the 
limited resources. We designed our own bench-
mark to test our approach according to current 
market economics. To validate our arguments we 
implemented a prototype of HYBRIDJOIN that 
demonstrates a significant improvement in ser-
vice rate under limited memory. We also provide 
the implementations. 
In order to further improve the performance of 
HYBRIDJOIN, we will extend the implementa-
tion of the proposed join algorithm by dynamical-
ly ordering the disk-based relation with respect to 
access frequency. 
 
Source URL: The source of our implementations 
for HYBRIDJOIN, MESHJOIN and INLJ can be 
downloaded from: 
http://www.cs.auckland.ac.nz/research/groups/serg/hybridjoin/ 
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 APPENDIX 
 

BENCHMARK 

In order to demonstrate the behavior of the algo-
rithm with a bursty stream, we implemented a 
stream generator that produces stream tuples with 
a timing that is self-similar. 
This bursty generation of tuples models a flow of 
sales transactions which depends upon fluctua-
tions over several time periods, such as market 
hours, weekly rhythms and seasons. 
The pseudo-code for the generation of our 
benchmark is shown in Figure 9. In Figure 9 
STREAMGENERATOR is the main procedure while 
GETDISTRIBUTIONVALUE and SWAPSTATUS are the sub-
procedures that are called from the main proce-
dure. According to the main procedure a number 
of virtual stream objects (in our case 10 ), each 
representing the same distribution value obtained 
from the GETDISTRIBUTIONVALUE procedure, are in-
serted into a priority queue, which always keeps 
sorting these objects into ascending order (line 5 
to 7). Once all the virtual stream objects are in-
serted into the priority queue the top most stream 
object is taken out (line 8). To generate an infi-
nite stream a loop is executed (line 9 to 18). In 
each iteration of the loop, the algorithm waits for 
a while (depending on the value of variable oneS-
tep) and then checks whether the current time is 
greater than the time when that particular object 
was inserted. If the condition is true the algorithm 
dequeues the next object from the priority queue 
and calls the SWAPSTATUS procedure (line 11 to 
14). The SWAPSTATUS procedure enqueues the cur-
rent dequeued stream object by updating its time 
interval and bandwidth (line 19 to 27). Once the 
value of the variable totalCurrentBandwidth is 
updated, the main procedure generates the final 
stream tuple values as an output using the proce-
dure GETDISTRIBUTIONVALUE line (15 to 17). For 
each call to procedure GETDISTRIBUTIONVALUE, it 
returns the random value by implementing Zipf's 
law with exponent value equal to 1 (line 28 to 
31). 
Figure 9: Pseudo-code for benchmark 

 

 
 
The experimental representation of our bench-
mark is shown in Figure 10 and Figure 11, while 
the environment in which the experiments are 
conducted is described in Section 6.1. As de-
scribed earlier in this section, our benchmark is 
based on two characteristics; one is the frequency 



of selling each product while the other is the flow 
of these sales transactions. Figure 10 validates the 
first characteristic about real market sales. In 
Figure 10 the x-axis represents the variety of 
products while the y-axis represents the sales. 
Therefore, from Figure 10 it can be observed that 
only a limited number of products (20%) are sold 
frequently while the rest of the products are rare-
ly sold. 
Our proposed HYBRIDJOIN is fully adapted to 
such kinds of data in which only a small portion 
of R is accessed again and again while the rest of 
R is accessed rarely. 

 
Figure 10: A skewed distribution based on Zipf's 
law using exponent value is equal to1 
 
 

 
(a)  on plain scale 

 

 
(b)  on log scale (both axis are on log scale) 

Figure 11: An input stream having bursty and 
self-similarity type of characteristics 

 

 
 

Figure 11 represents the flow of transactions, 
which is the second characteristic of our bench-
mark. From Figure 11 it is clear that the flow of 
transactions varies with time and is bursty rather 
than appearing at a regular rate. 


