
HYBRIDJOIN for Near-Real-Time Data
Warehousing

M. Asif Naeem, The University of Auckland, New Zealand

Gillian Dobbie, The University of Auckland, New Zealand

Gerald Weber, The University of Auckland, New Zealand

ABSTRACT

An important component of near-real-time data warehouses is the near-real-time integration layer.
One important element in near-real-time data integration is the join of a continuous input data stream
with a disk-based relation. For high-throughput streams, stream-based algorithms, such as Mesh Join
(MESHJOIN), can be used. However, in MESHJOIN the performance of the algorithm is inversely
proportional to the size of disk-based relation. Also, MESHJOIN cannot deal with intermittent streams
efficiently, because tuples could wait for an undetermined time, thus defying the near-real-time charac-
ter of the stream. The Index Nested Loop Join (INLJ) can be set up so that it processes stream input,
and can deal with intermittences in the update stream but it has low throughput. In this paper we intro-
duce a robust stream-based join algorithm called Hybrid Join (HYBRIDJOIN) which combines the two
approaches. As a theoretical result we show that HYBRIDJOIN is asymptotically as fast as the fastest
of both algorithms. We present performance measurements of our implementation. We use synthetic
data that we base on a Zipfian distribution, which is widely accepted as a plausible distribution for
real world identifier sets in many domains. In our experiments, HYBRIDJOIN performs significantly
better for typical parameters of the Zipfian distribution, and in general performs in accordance with
the theoretical model while the other two algorithms are unacceptably slow under different settings.
Hence HYBRIDJOIN is a robust algorithm that generally performs at an acceptable speed.

Keywords: Near-real-time; data warehousing; stream-based join; data transformation; perfor-
mance and tuning

1. INTRODUCTION

Near-real-time data warehousing exploits the
concepts of data freshness in traditional static da-
ta repositories in order to meet the required deci-
sion support capabilities. The tools and tech-
niques for promoting these concepts are rapidly
evolving (Pedersen, 2009) (Golfarelli & Rizzi,
2009b) (Golfarelli & Rizzi, 2009a) (Vassiliadis,
2009). Most data warehouses have already
switched from a full refresh (Gupta & Mumick,

1999) (Zhang & Rundensteiner, 2002) (Zhuge,
García-Molina, Hammer, & Widom, 1995) to an
incremental refresh policy (W. Labio & Garcia-
Molina, 1996) (W. J. Labio, Wiener, Garcia-
Molina, & Gorelik, 2000) (W. Labio, Yang, Cui,
Garcia-Molina, & Widom, 2000). Furthermore,
the batch-oriented, incremental refresh approach
is moving towards a continuous, incremental re-
fresh approach (Thiele, Fischer, & Lehner, 2007)

(Karakasidis, Vassiliadis, & Pitoura, 2005) (Tho
Manh Nguyen, 2003).

With regards to terminology, data warehous-
ing approaches that follow such a best-effort data
freshness approach have various names. Fre-
quently used terms are zero-latency, active, real-
time or near-real-time data warehouses. The term
near-real-time is the most descriptive in a context
where there could be a confusion with real-time
control systems, but for the sake of brevity, we
will mostly use the term real-time in this paper
where no such confusion is possible.

One important research area in the field of da-
ta warehousing is data transformation, since the
updates coming from the data sources are often
not in the format required for the data warehouse.
For real-time data warehousing a continuous
transformation from a source to target format is
required, so the task becomes more challenging.

In the ETL (Extract-Transform-Load) layer, a
number of transformations are performed such as
the detection of duplicate tuples, identification of
newly inserted tuples, and the enriching of up-
dates with values from the master data. Enrich-
ment in particular can often be expressed as a join
between the update stream and the master data
(Naeem, Dobbie, & Weber, 2008). One important
example of enrichment is a key transformation.
Normally the key used in the data source is dif-
ferent from that in the data warehouse and there-
fore needs to be replaced. This transformation
can be obtained by implementing a join operation
between the update tuples and a lookup table.
The lookup table contains the mapping between
the source keys and the warehouse keys. Figure 1
shows a graphical interpretation of such a trans-
formation. The attributes with column name id in
both data sources DS1 and DS2 contain the source
data keys and the attribute with name warehouse
key in the lookup table contains the warehouse
key value corresponding to these data source
keys. Before loading each transaction into the
data warehouse each source key is replaced by
the warehouse key with the help of a join opera-
tor.

Figure 1: An example of stream-based join

In traditional data warehousing the update
tuples are buffered in memory and joined when
resources become available (Annita N. Wilschut
& Apers, 1991) (Shapiro, 1986). Whereas, in
real-time data warehousing these update tuples
are joined immediately when they are generated
in the data sources. One important factor related
to the join is that both inputs of the join come
from different sources with different arrival rates.
The input from the data sources is in the form of
an update stream which is fast, while the access
rate of the lookup table is comparatively slow due
to disk I/O cost.

A novel stream-based equijoin algorithm,
MESHJOIN (N. Polyzotis, Skiadopoulos,
Vassiliadis, Simitsis, & Frantzell, 2007) (Neoklis
Polyzotis, Skiadopoulos, Vassiliadis, Simitsis, &
Frantzell, 2008) is in principle a hash join, where
the stream serves as the build input and the disk-
based relation serves as the probe input. The
main contribution is a staggered execution of the
hash table build and an optimization of the disk
buffer for the disk-based relation.

The algorithm successfully joins the conti-
nuous data stream of updates with the slow
access rate disk-based relation. However, we
have identified two issues that have to be ad-
dressed. Firstly, the throughput of MESHJOIN is
inversely proportional to the size of the disk-
based master data table. Secondly, the algorithm
cannot deal with an intermittent update stream
efficiently. An intermittent stream is a stream that
is dropping to a rate close to zero tuples per unit

Stream-based

join operator

id name

KBD_01 Keyboard

M_02 Mouse

id name

KBD_01 Keyboard

CPU_03 CPU

DS1

DS2

Data Sources

id name warehouse key

KBD_01 Keyboard 101

M_02 Mouse 102

CPU_03 CPU 103

Look -up table

Master Data

id name

101 Keyboard

102 Mouse

103 CPU

Fact table

Data Warehouse

of time for periods of time. A detailed explana-
tion of these issues is provided in Section 3.

The Index Nested Loop Join (INLJ)
(Ramakrishnan, 1999) is traditionally considered
for non-stream data, but it can easily be set up so
that it joins a continuous data stream with a disk-
based relation, which is capable of dealing with
intermittent data streams. However, every index
has to be considered non-clustered with respect to
the stream data. This is because stream data ar-
rive in the order that the updates are performed.
The natural assumption is e.g. that purchases are
random. INLJ is known to be inefficient for non-
clustered index access. The disk I/O cost cannot
be amortized over multiple tuples of the stream
and eventually produces a low service rate.

Based on these observations, we propose a
stream-based join, called Hybrid Join (HYBRID-
JOIN). The key difference between HYBRID-
JOIN and MESHJOIN is that HYBRIDJOIN
does not read the entire disk relation sequentially
but instead accesses it using an index. This can
reduce the disk I/O cost by guaranteeing that
every partition read from the disk-based relation
is at least used for one stream tuple, while in
MESHJOIN there is no guarantee. To amortize
the disk read over many stream tuples, the algo-
rithm performs the join of a disk partition with all
stream tuples currently in memory. This approach
guarantees that HYBRIDJOIN is never asymptot-
ically slower than MESHJOIN. In addition, in
HYBRIDJOIN, unlike MESHJOIN, the disk load
is not synchronised with stream input providing
better service rates for intermittent streams.

The rest of this paper is structured as follows.
The related work is presented in Section 2. Sec-
tion 3 describes our observations with regard to
the current approach. In Section 4 we present the
architecture, algorithm, theoretical analysis, cost
model, and tuning of our proposed HYBRID-
JOIN. The design and implementation of a
benchmark for testing HYBRIDJOIN is de-
scribed in Section 5. The experimental study is
discussed in Section 6 and finally Section 7 con-
cludes the paper.

2. RELATED WORK

In real-time data warehousing, updates occur-
ring at the source need to be processed in an on-
line fashion. This real-time processing of the up-
date stream introduces the interesting challenges
related to throughput for join algorithms. Some
techniques have been introduced already to
process join queries over continuous streaming
data (Golab & Özsu, 2003) (Babu & Widom,
2001) (Hammad, Aref, & Elmagarmid, 2008)
(Palma, Akbarinia, Pacitti, & Valduriez, 2009)
(Kim & Park, 2005) (Nguyen, Brezany, Tjoa, &
Weippl, 2005). In this section we will outline the
well known work that has already been done in
this area with a particular focus on those which
are closely related to our problem domain.

The non-blocking symmetric hash join (SHJ)
(Annita N. Wilschut & Apers, 1991) (A. N.
Wilschut & Apers, 1990) promotes the proprie-
tary hash join algorithm by generating the join
output in a pipeline. In the symmetric hash join
there is a separate hash table for each input rela-
tion. When the tuple of one input arrives it probes
the hash table of the other input, generates a re-
sult and stores it in its own hash table. SHJ can
produce a result before reading either input rela-
tion entirely, however, the algorithm keeps both
the hash tables, required for each input, in memo-
ry.

The Double Pipelined Hash Join (DPHJ) (Ives,
Florescu, Friedman, Levy, & Weld, 1999) with a
two stage join algorithm is an extension of SHJ.
The XJoin algorithm (Urhan & Franklin, 2000) is
another extension of SHJ. Hash-Merge Join
(HMJ) (Mokbel, Lu, & Aref, 2004) which is also
based on symmetric join algorithm, uses push
technology and consists of two phases, hashing
and merging.

Early Hash Join (EHJ) (Lawrence, 2005) is a
further extension of XJoin. EHJ introduces a new
biased flushing policy that flushes the partitions
of the largest input first. EHJ also simplifies the
strategies to determine the duplicate tuples, based
on cardinality and therefore no timestamps are
required for arrival and departure of input tuples.

However, because EHJ is based on pull technolo-
gy, a reading policy is required for inputs.

Mesh Join (MESHJOIN) (N. Polyzotis, et al.,
2007) (Neoklis Polyzotis, et al., 2008), is de-
signed especially for joining a continuous stream
with a disk-based relation for active data ware-
housing. Although it is an adaptive approach,
there are some issues related to the strategy for
accessing the disk-based relation.

Most recently a partition-based approach
(Chakraborty & Singh, 2009) was introduced that
focuses on minimizing the disk overhead in the
MESHJOIN algorithm. However, a switch opera-
tor is introduced to switch between the Index
Nested Loop Join (INLJ) and MESHJOIN. This
switching mode depends on a threshold value for
stream tuples in the input buffer. The key com-
ponent is a wait buffer that holds only join
attribute values and maintains them in separate
slots with respect to the partitions of the disk-
based relation. Each disk invocation takes place
when either the number of attribute values in any
slot of the wait buffer crosses the predefined thre-
shold value or when the whole wait buffer be-
comes full. We observe that the join attribute
values waiting in the slots of the wait buffer,
which are not frequent in the input stream, need
to wait longer than in the original MESHJOIN
algorithm, because the slot does not reach the
threshold limit. In addition the author focuses on
the analysis of the stream buffer in terms of back
log tuples and the delay time rather than analys-
ing the algorithm performance in terms of service
rate. Because the author does not provide code
for his implementation, we are unable to test this
approach in practice.

3. PRELIMINARIES: MESHJOIN

In this section we summarize the constraints on
the MESHJOIN and INLJ algorithms. At the end
of the section we outline the observations that we
focus on in this paper.

MESHJOIN was designed to support stream-
ing updates over persistent data in the field of
real-time data warehousing. The algorithm reads

the disk-based relation sequentially in partitions.
Once the last partition is read, it again starts from
the first partition. The algorithm contains a buf-
fer, called the disk buffer, to store each disk parti-
tion in memory one at a time. The algorithm uses
a hash table to store the stream tuples, while the
key attribute for each tuple is stored in the queue.
All partitions in the queue are equal in size. The
total number of partitions is equal to the number
of partitions on the disk while the size of each
partition on the disk is equal to the size of the
disk buffer. There is a stream buffer of negligible
size that is used to hold the fast stream if re-
quired.

In each iteration the algorithm reads one disk
partition into the disk buffer and loads a chunk of
stream tuples into the hash table while also plac-
ing their key attributes in the queue. After load-
ing the disk partition into memory it joins each
tuple from that partition with matching stream
tuples in the hash table. Before the next iteration
the oldest stream tuples are removed from the
hash table with their key attribute values from the
queue. All chunks of the stream in the queue are
advanced by one step. In the next iteration the
algorithm replaces the current disk partition with
the next one, loads a chunk of new stream tuples
into the hash table and places their key attributes
values in the queue, and repeats the above proce-
dure.

The crux of the algorithm is that the total num-
ber of partitions in the stream queue must be
equal to the total number of partitions on the disk
and that number can be determined by dividing
the size of the disk-based relation R by the size of
the disk buffer b (i.e. k=NR/b). This constraint
ensures that a stream tuple that is loaded into
memory is matched against the entire disk rela-
tion before it expires.

An overview of MESHJOIN is presented in
Figure 2 where we consider only three partitions
in the queue, with the same number of partitions
on disk. At any time t, for example when disk
partition p3 is in memory the status of the stream
tuples in memory can be explained. In the queue
w1 tuples have already joined with disk partition

p1 and p2 and therefore after joining with partition
p3 they will be dropped out of memory. While
tuples w2 have joined with partition p2 only and
therefore, after joining with partition p3 they will
advance one step in the queue. Finally, tuples w3
have not joined with any disk partition and they
will also advance one step in the queue after join-
ing with partition p3. Once the algorithm com-
pletes the cycle of R, it again starts loading se-
quentially from the first partition.

Figure 2: Example of MESHJOIN when disk par-
tition p3 is in memory

The MESHJOIN algorithm successfully amor-
tizes the fast arrival rate of the incoming stream
by executing the join of disk partitions with a
large number of stream tuples. However there are
still some further issues that exist in the algo-
rithm. Firstly due to the sequential access of R,
the algorithm reads the unused or less used parti-
tions of R into memory with equal frequency,
which increases the processing time for every
stream tuple in the queue due to extra disk I/O.
Processing time is the time that every stream
tuple spends in the join window from loading to
matching without including any delay due to the
low arrival rate of the stream. The average

processing time in the case of MESHJOIN can be
estimated using the given formula.

Average processing time (secs) =
2

1
 (seek time +

processing time) for the whole of R

To determine the access rate of disk partitions
of R we performed an experiment using a bench-
mark that is based on Zipf’s Law to model com-
mercial applications (Knuth, 1998) (Anderson,
2006), the detail is available in Section 5. In this
experiment we assumed that R is sorted in as-
cending order with respect to the join attribute
value and we measure the rate of use for the pag-
es at different locations of R. From the results
shown in Figure 3 it can be seen that the rate of
page use decreases towards the end of R. The
MESHJOIN algorithm does not consider this fac-
tor and reads all disk pages with the same fre-
quency.

Figure 3: Measured rate of page use at different
locations of R while the size of total R is 16000
pages

Secondly, MESHJOIN cannot deal with bursty

input streams effectively. In MESHJOIN a disk
invocation occurs when the number of tuples in
the stream buffer is equal to or greater than the

p3disk buffer

input
stream

queue

disk-based

relation

w3 w2 w1

p1

p2

p3

p2

p1

p2

Hash
function

stream
buffer

hash table 1939

1336

910

630
471

0

500

1000

1500

2000

2500

R
a

te
 o

f u
sa

b
ili

ty

Segments of pages at different locations in R

stream input size w. In the case of intermittent or
low arrival rate (λ) of the input stream, the tuples
already in the queue need to wait longer due to
disk invocation delay. This waiting time nega-
tively affects the performance. The average wait-
ing time can be calculated using the given formu-
la.

Average waiting time (secs) =
௪

ఒ

Index Nested Loop Join (INLJ) is another join
operator that can be used to join an input stream S
with the disk-based relation R, using an index on
the join attribute. In INLJ for each iteration, the
algorithm reads one tuple from S and accesses R
randomly with the help of the index. Although in
this approach both of the issues presented in
MESHJOIN can be handled, the access of R for
each tuple of S makes the disk I/O cost dominant.
This factor affects the ability of the algorithm to
cope with the fast arrival stream of updates and
eventually decreases the performance significant-
ly.

In summary, the problems that we consider in
this paper are: (a) the minimization of the
processing time and waiting time for the stream
tuples by accessing the disk-based relation effi-
ciently, (b) dealing with bursty stream effective-
ly.

4. HYBRIDJOIN

In previous section we highlighted observa-
tions related to the MESHJOIN and INLJ algo-
rithms. As a solution to the stated problems we
propose a stream-based join algorithm called Hy-
brid Join (HYBRIDJOIN). In HYBRIDJOIN we
address two major aims which are not supported
in MESHJOIN: (a) efficient access of disk-based
relation R by loading only the useful part of R
into memory, (b) dealing with bursty streams ef-
fectively. This section describes the data struc-
tures, pseudo-code and run time analysis of HY-
BRIDJOIN. We also present the cost model that
is used for estimating the cost of our algorithm,
and for tuning the algorithm.

4.1 Data structures and architecture

The data structures that HYBRIDJOIN uses
are shown in Figure 4. Like in MESHJOIN key
components of HYBRIDJOIN are disk buffer,
hash table, queue and stream buffer. The disk-
based relation R and stream S are the inputs. Con-
trary to MESHJOIN in HYBRIDJOIN we assume
that R contains the unique values of join attribute
and has an index on it. We also assume that the
values of join attribute are sorted. The disk parti-
tion of size vP from relation R is loaded into the
disk buffer in memory. The queue is used to store
the value of the join attribute and each node in
the queue also contains the addresses of its one
step neighbour nodes. Unlike the queue in
MESHJOIN we implement an extra feature of
random deletion in our HYBRIDJOIN queue by
using a doubly-linked-list.

The hash table is an important component that
stores the stream tuples and the addresses of the
nodes in the queue corresponding to the tuples.
The key benefit of this is when the disk partition
is loaded into memory using the join attribute
value from the queue as an index, instead of only
matching one tuple as in INLJ; the algorithm
matches the disk partition with all the matching
tuples in the queue. This helps to amortize the
expensive disk I/O cost over fast arrival stream.
In the case where there is a match, the algorithm
generates that tuple as an output and deletes it
from the hash table along with the corresponding
node from the queue while the unmatched tuples
in the queue are dealt with in a similar way to the
MESHJOIN strategy. The role of the stream buf-
fer is just to hold the fast stream if necessary.
To deal with the intermittencies in the stream, for
each iteration the algorithm checks the status of
the stream buffer. In the case where no stream
tuples are available in the stream buffer the algo-
rithm will not stop but continues its working until
the hash table becomes empty. However, the
queue keeps on shrinking continuously and will
become empty when all tuples in the hash table
are joined. On the other hand when tuples arrive
from the stream, the queue again starts growing.

In MESHJOIN every disk input is bound to the
stream input while in HYBRIDJOIN we remove
this constraint by making each disk invocation
independent from the stream input.

Figure 4: Data structures used in HYBRIDJOIN

4.2 Algorithm

Once the memory is distributed among the
join components HYBRIDJOIN starts its execu-
tion according to the procedure defined in Figure
5. Initially since the hash table is empty, hS is as-
signed to stream input size w where hS is the total
number of slots in the hash table H (line 1). The
algorithm consists of two loops: one is called the
outer loop while the other one is called the inner
loop. The outer loop which is an endless loop is
used to read the stream input into the hash table
(line 2). While the inner loop is used to probe the
hash table (line 9). In each outer loop iteration,
the algorithm examines the availability of stream
tuples in the stream buffer. If the required number
of stream tuples available, the algorithm reads w
tuples of the stream and loads them into the hash
table while placing their join attribute values in
the queue. Once the stream input is read the algo-
rithm resets the value of w to 0 (line 3-6). The
algorithm then reads the oldest value of a join
attribute from the queue and loads a disk partition
p into the disk buffer, using that join attribute

value as an index (line 7, 8). After loading the
disk partition into memory the inner loop starts
and for each iteration of the inner loop the algo-
rithm reads one disk tuple from the disk buffer
and probes the hash table. In the case of a match,
the algorithm generates the join output. Since the
hash table is multi-hash-map, there can be more
than one match against one disk tuple. After ge-
nerating the join output the algorithm deletes all
matched tuples from the hash table along with the
corresponding nodes from the queue. Finally, the
algorithm increments w with the number of va-
cated slots in the hash table (line 9-15).

Figure 5: Pseudo-code for HYBRIDJOIN

4.3 Asymptotic runtime analysis

We compare the asymptotic runtime of HY-
BRIDJOIN with that of MESHJOIN and INLJ.
As a unit of measurement we use the time needed

Disk buffer

………...

………...

………...

Stream buffer

Hash

function

Hash table

Stream
S

Join

output

Join window

Disk-based
relation

R

. . . .
Queue

to process a stream chunk. The time needed to
process a single tuple is the inverse of the service
rate, which is the number of tuples processed in a
time interval. The unit of measurement used here
has the advantage, that “smaller is better” in ac-
cordance with common usage in asymptotic anal-
ysis of algorithms. Every stream section can be
viewed as a binary sequence, and by viewing this
binary sequence as a natural number, we can ap-
ply asymptotic complexity classes to functions on
stream sections as binary numbers. Note there-
fore that the following theorems do not use func-
tions on input lengths, but on binary numbers
representing stream sections. We denote the time
needed to process stream section s as MEJ(s) for
MESHJOIN, as INLJ(s) for index nested loop
join, and as HYJ(s) for HYBRIDJOIN. The re-
sulting theorems imply analogous asymptotic be-
havior on input length, but are stronger than
statements on input length. We assume that the
setup for HYBRIDJOIN and for MESHJOIN is
such that they have the same number hS of stream
tuples in the hash table - and in the queue accor-
dingly.
Comparison with MESHJOIN:
Theorem 1: HYJ(s) = O(MEJ(s))

Proof: To prove the theorem, we have to
prove that HYBRIDJOIN performs no worse than
MESHJOIN. The cost of MESHJOIN is domi-
nated by the number of accesses to R. For asymp-
totic runtime, random access of disk partitions is
as fast as sequential access (seek time is a con-
stant factor). For MESHJOIN with its cyclic
access pattern for R, every partition of R is ac-
cessed exactly once after every hS stream tuples.
We have to show that for HYBRIDJOIN no parti-
tion is accessed more frequently. For that we look
at an arbitrary partition p of R at the time it is ac-
cessed by HYBRIDJOIN. The stream tuple at the
front of the queue has some position i in the
stream. There are hS stream tuples currently in the
hash table, and the first tuple of the stream that is
not yet read into the hash table has position i+hS
in the stream. All stream tuples in the hash table
are joined against the disk-based master data
tuples on p, and all matching tuples are removed

from the queue. We now have to determine the
earliest time that p could be loaded again by
HYBRIDJOIN. For p to be loaded again, a
stream tuple must be at the front of the queue,
and has to match a master data tuple on p. The
first stream tuple that can do so is the aforemen-
tioned stream tuple with position i+hS, because
all earlier stream tuples that match data on p have
been deleted from the queue. This proves the
theorem.
Comparison with INLJ:
Theorem 2: HYJ(s) = O(INLJ(s))

Proof: INLJ performs a constant number of
disk accesses per stream tuple. For the theorem it
suffices to prove that HYBRIDJOIN performs no
more than a constant number of disk accesses per
stream tuple as well. We consider first those
stream tuples that remain in the queue until they
reach the front of the queue. For each of these
tuples, HYBRIDJOIN loads a part of R and hence
makes a constant number of disk accesses. For all
other stream tuples, no separate disk access is
made. This proves the theorem.

The theorems show that except for a single
constant factor c, HYBRIDJOIN performs on
each individual input at least as well as any of the
two other algorithms. The maximum factor is de-
termined by the ratio of continuous disk access
time versus random disk access time for different
disk portions. This is a free parameter of the cost
model. In practice it depends on the technical pa-
rameters of the disk used, particularly the seek
time, and on the choice of the disk portions that
are loaded in one step. In our setup the factor is
smaller than 2 for Theorem 1 and smaller than 5
for Theorem 2, i.e. even in the worst case, HY-
BRIDJOIN would be at most 2 times slower than
MESHJOIN and at most 5 times slower than in-
dex nested loop join.

4.4 Cost model

In this section we derive the general formulas
to calculate the cost of our proposed HYBRID-
JOIN. Since it is important to compare our cost
model with the cost model presented for MESH-

JOIN in (Neoklis Polyzotis, et al., 2008) we use
the same notation where possible and also calcu-
late the cost in terms of memory and processing
time. Equation (1) describes the total memory
used to implement the algorithm (excluding the
stream buffer). Equation (3) calculates the
processing cost for w tuples while the average
size for w can be calculated using Equation (2).
The service rate can be calculated using Equation
(4). The symbols used in the equations are speci-
fied in Table 1.

4.4.1 Memory cost

In HYBRIDJOIN, the largest portion of the to-
tal memory is used for the hash table H while a
comparatively smaller amount is used for the disk
buffer. The queue size is linear to the hash table
size, but considerably smaller. We can easily cal-
culate the size for each of them separately.
Memory for the disk buffer (bytes) = ݒ௉.
Memory for the hash (bytes) ൌ ܯሺߙ െ .௉ሻݒ
Memory for the queue (bytes) = (1 െ ܯሻሺߙ െ .௉ሻݒ
The total memory used by HYBRIDJOIN can be
determined by aggregating all the above.

ܯ ൌ ௉ݒ ൅ ܯሺߙ െ ௉ሻݒ ൅ ሺ1 െ ܯሻሺߙ െ ௉ሻ (1)ݒ

We are not including the memory reserved for
the stream buffer because it is negligible (0.05
MB was sufficient in all our experiments).

4.4.2 Processing cost

In this section we calculate the processing cost
for HYBRIDJOIN. To calculate the processing
cost it is necessary to calculate the average
stream input size, w, first.
Calculate average stream input size w: In HY-
BRIDJOIN the average stream input size w de-
pends on the following four parameters.

 Size of hash table hS
 Size of disk buffer d
 Size of disk-based relation Rt
 The exponent value for benchmark e

Table 1: Notations used for cost estimation of
HYBRIDJOIN

Parameter name Symbol
Total allocated memory (bytes) M
Stream arrival rate (tuples/sec) λ
Service rate (processed tuples/sec) µ
Average stream input size (tuples) w
Stream tuple size (bytes) vS
Size of disk buffer (bytes) vP
Size of disk tuple (bytes) vR
Size of disk buffer (tuples) d
Memory weight for hash table α
Memory weight for queue (1- α)
Size of hash table (tuples) hS
Size of disk-based relation R (tuples) Rt
Exponent value for benchmark e
Cost to read one disk partition into
disk buffer (nanosecs)

cI/O(vP)

Cost to probe one disk tuple into hash
table (nanosecs)

cH

Cost to generate output for one tuple
(nano sec)

cO

Cost to delete one tuple from hash and
queue (nanosecs)

cE

Cost to read one tuples into stream
buffer (nanosecs)

cS

Cost to add one tuples into hash and
queue (nanosecs)

cA

Cost for one loop iteration of HY-
BRIDJOIN (sec)

cloop

In our experiments w is directly proportional
to the size of the hash table hS and the size of the
disk buffer d, and is inversely proportional to the
size of disk-based relation Rt. The fourth parame-
ter represents the exponent value for Zipfian dis-
tribution, explained in Section 5, and by using an
exponent value of 1 we approximately model the
80/20 Rule (Anderson, 2006) for market sales.
Therefore, the formula for w is:

ݓ ∝
݄ௌ ൈ ݀ ൈ ݁

ܴ௧

ݓ ൌ ݇
݄ௌ ൈ ݀

ܴ௧
 (2)

where k is a constant influenced by system para-
meters. We obtained the value of k from mea-
surements, in our setup it is is 1.36.

On the basis of w we can calculate the
processing cost for one step of the iteration. In
order to calculate the cost for one loop iteration
the major components are:
Cost to read one disk partition = ܿூ/ைሺݒ௉ሻ.
Cost to probe one disk partition into the hash ta-
ble =

௩ು

௩ೃ
ܿு.

Cost to generate the output for w matching tuples
.ݓ = ܿை
Cost to delete w tuples from the hash table and
the queue = ݓ. ܿா.
Cost to read w tuples from stream S = ݓ. ܿௌ.
Cost to append w tuples into the hash table and
the queue = ݓ. ஺ܿ.
By aggregation, the total cost for one loop itera-
tion is:

ܿ௟௢௢௣ ൌ 10ିଽሾܿ಺
ೀ

ሺݒ௉ሻ ൅
௩ು

௩ೃ
ܿு ൅ .ݓ ܿை ൅

.ݓ ܿா ൅ .ݓ ܿௌ ൅ .ݓ ஺ܿሿ (3)

Since in cloop seconds, the algorithm processes
w tuples of stream S, the service rate µ can be
calculated by dividing w by the cost for one loop
iteration.

ߤ ൌ
ݓ

ܿ௟௢௢௣
 (4)

4.5 Tuning

Tuning of the join components is important to
make efficient use of available resources. In HY-
BRIDJOIN the disk buffer is the key component
to tune to amortize the disk I/O cost on fast input
data streams. From Equation (4) the service rate
depends on w and the cost cloop which is required
to process these w tuples. In HYBRIDJOIN for a
particular setting (M = 50MB) assuming the size
of R and the exponent value for Zipfian distribu-
tion are fixed (Rt = 2 million and e =1), from Eq-
uation (2) w then depends on the size of hash ta-
ble and the size of disk buffer. Furthermore the
size of hash table is also dependent on the size of
the disk buffer as shown in Equation (1). There-

fore, using Equations (2), (3) and (4) the service
rate µ can be specified as a function of vP and the
value for vP at which the service rate is maximum
can be determined by applying standard calculus
rules.

Figure 6 shows the relationship between the
I/O cost and service rate as measured in experi-
ments. From Figure 6 it can be observed that in
the beginning, for a small disk buffer size, the
service rate is also small because there are fewer
matching tuples in the queue. However, the ser-
vice rate increases with an increase in the size of
the disk buffer due to more matching tuples in the
queue. After reaching a particular value of the
disk buffer size the trend changes and perfor-
mance decreases with further increments in the
size of the disk buffer. The plausible reason be-
hind this decrease is the rapid increase in the disk
I/O cost and the decrease in memory size for the
hash table.

Figure 6: Tuning of disk buffer

5. TESTS WITH LOCALITY OF
DISK ACCESS

Crucial to the HYBRIDJOIN performance is
the distribution of master data keys in the stream.
If the distribution is uniform, then HYBRIDJOIN
may perform worse than MESHJOIN, but by a

30 60 120 240 480 960
0

50

100

150

200

250

Disk buffer size (KB)
on log scale

Service rate (10 2 tuples/sec)
I/O cost (milliseconds)

constant factor, in line with the theoretical analy-
sis. Note however, that HYBRIDJOIN still has
the advantage of being efficient for intermittent
streams, while the original MESHJOIN would
pause with intermittent streams, and leave tuples
unprocessed for an open-ended period.

It is also obvious that HYBRIDJOIN has ad-
vantages if R contains unmatched data, for exam-
ple if there are old product records that are cur-
rently very rarely accessed, that are clustered in
R. HYBRIDJOIN would not access these areas of
R, while MESHJOIN accesses the whole of R.
More interestingly, however, is whether HY-
BRIDJOIN can also benefit from more general
locality. Therefore the question arises whether we
can demonstrate a natural distribution where
HYBRIDJOIN measurably improves over the
uniform distribution, because of locality.

Common non-uniform distributions are Zip-
fian distributions, which exhibit a power law sim-
ilar to Zipf's law (Knuth, 1998). Zipfian distribu-
tions are discussed as a plausible model for sales
(Anderson, 2006), where some products are sold
frequently while most are sold rarely. The distri-
bution generated using Zipf’s law with an expo-
nent 1 is close to the 80/20 Rule (Anderson,
2006) i.e. 80% of the sales are from 20% of the
products.

We designed a generator for synthetic data
that follows a Zipfian distribution. The generated
benchmark is based on two characteristics: (a) the
frequency of selling each product and it approx-
imately models the 80/20 Rule, (b) the flow of
sales transactions and it is a self-similar. By using
the generated benchmark we demonstrate that
HYBRIDJOIN performance improves when lo-
cality is considered, and that HYBRIDJOIN out-
performs MESHJOIN.

In order to simplify the model, we assume that
the product keys are sorted in the master data ta-
ble according to their frequency in the stream.
This is a simplifying assumption that would not
automatically hold in typical warehouse cata-
logues, but it does provide a plausible locality
behavior and makes the degree of locality very
transparent.

6. EXPERIMENTS

We performed an experimental evaluation of
HYBRIDJOIN, using synthetic datasets. In this
section we describe the environment of our expe-
riments and analyze the results that we obtained
using different scenarios.

6.1 Experimental setup

In order to implement the prototypes of exist-
ing MESHJOIN, Index Nested Loop Join (INLJ)
and our proposed HYBRIDJOIN algorithms we
used the following hardware and data specifica-
tions.

Hardware specifications: We carried out our
experimentation on a Pentium-IV 2X2.13GHz
machine with 3G main and 160G disk memory
under WindowsXP. We implemented the experi-
ment in Java using the Eclipse IDE 3.3.1.1. We
also used built-in plugins, provided by Apache,
and nanoTime(), provided by the Java API, to
measure the memory and processing time respec-
tively.

Data specifications: We analyzed the perfor-
mance of each of the algorithms using synthetic
data. The relation R is stored on disk using
MySQL 5.0 database, while the bursty type of
stream data is generated at run time using our
own generator. Both the algorithms read master
data from the database. In transformation, join is
normally performed between the primary key of
the lookup table and the foreign key in the stream
tuple and therefore our HYBRIDJOIN supports
join for one-to-many relationships and it can be
extended for many-to-many relationships easily.
In order to implement the join for one-to-many
relationships it needs to store multiple values in
the hash table against one key value. However the
hash table provided by the Java API does not
support this feature therefore, we used Multi-
Hash-Map, provided by Apache, as the hash table
in our experiments. The detailed specification of
the data set that we used for analysis is shown in
Table 2.

We compare the performance of HYBRID-
JOIN with MESHJOIN and INLJ while varying
total allocated memory M, the size of relation R
on disk, the value of the exponent for the Zipfian
distribution, and the stream arrival rate λ. The
other parameters such as the size of disk buffer,
size of stream buffer, size of each disk tuple, size
of each stream tuple, and the size of each node in
the queue are considered fixed. The stream data-
set we used to evaluate HYBRIDJOIN is based
on Zipf’s law and has two important characteris-
tics, bursty and self-similarity (for details, see the
appendix). We test the performance of all the al-
gorithms by varying the Zipfian exponent value
from 0 to 1.

Table 2: Data specifications

Parameter Value
Memory

Total allocated memory M 50MB to 250MB
Exponent

Zipfian exponent value 0 to 1
Disk-based data

Size of disk-based relation R 0.5 million to 8
million tuples

Size of each disk tuple 120 bytes

Stream data

Size each stream tuple 20 bytes
Size of each nodes in queue 12 bytes
Stream arrival rate λ 125 to 2000

tuples/sec
Benchmark

Based on Zipf’s law
Characteristics Bursty and self-

similar

Measurement strategy: The performance or

service rate of the join is measured by calculating
the maximum number of tuples processed in a
unit second. In each experiment the algorithm
runs for one hour and we start our measurements
after 20 minutes and continue it for 20 minutes.
For more accuracy we take three readings for

each specification and then calculate confidence
intervals for every result by considering 95% ac-
curacy. Moreover, during the execution of the
algorithm it is assumed that no other application
is running in parallel.

6.2 Experimental results

We conducted two kinds of evaluation. In Sec-
tion 6.2.1 we compare the performance of all
three approaches, while in Section 6.2.2 we vali-
date the cost by comparing it with the predicted
cost.

6.2.1 Performance comparison

As the source code for MESHJOIN is not
openly available, we implemented the MESH-
JOIN algorithm ourselves. In our experiments we
compare the performance in two different ways.
First, we compare HYBRIDJOIN with MESH-
JOIN with respect to the time, both processing
time and waiting time. Second, we compare the
performance in terms of service rate with other
two algorithms.

Performance comparisons with respect to
time: To test the performance with respect to
time we conduct two different experiments. The
experiment, shown in Figure 7(a), presents the
comparisons with respect to processing time on a
log scale, while Figure 7(b) depicts the compari-
sons with respect to the waiting time. The terms
processing time and waiting time have already
been defined in Section 3. According to Figure
7(a) the processing time in the case of HYBRID-
JOIN is significantly smaller than that of MESH-
JOIN. The reason behind this is the different
strategy to access R. The MESHJOIN algorithm
accesses all disk partitions with the same fre-
quency without considering the rate of use of
each partition on the disk. In HYBRIDJOIN an
index based approach is implemented that never
reads unused disk partitions of R. In this experi-
ment we do not reflect the processing time for
INLJ because it is constant even when the size of
R changes.

Figure 7: Performance evaluation

(a) Processing time

(b) Waiting time in case of low stream arrival rate

(c) Performance comparison with 95% confidence interval
while M=50MB and R varies

(d) Performance comparison with 95% confidence interval
while R=2 million tuples and M varies

(e) Performance comparison for varying Zipfian exponent

In the experiment shown in Figure 7(b) we

compare the time that each algorithm waits (ex-
cept Index Nested Loop Join). In the case of
INLJ, since the algorithm works at tuple level,
the algorithm does not need to wait but this delay
then appears in the form of stream backlog that
occurs due to a faster incoming stream rate than
the processing rate. Also this delay (waiting time)
increases with an increase in the stream arrival
rate.

In the other two approaches the waiting time in
MESHJOIN is greater than in HYBRIDJOIN. In
HYBRIDJOIN since there is no constraint to

0.5 1 2 4 8
10

1

10
0

10
1

Size of disk relation R (tuples in millions)
 on log scale

A
ve

ra
ge

 p
ro

ce
ss

in
g

tim
e

fo
r

ea
ch

 t
up

le
 (

m
in

ut
es

)

 o

n
lo

g
sc

al
e

HYBRIDJOIN
MESHJOIN

125 250 500 10001000 2000
10

1

10
2

10
3

10
4

Stream arrival rate (tuples/sec)
 on log scale

W
ai

tin
g

tim
e

(m
ili

se
co

nd
s)

 o

n
lo

g
sc

al
e

HYBRIDJOIN

MESHJOIN

INLJ

0.5 1 2 4 8
0

0.5

1

1.5

2

2.5

3
x 10

4

Size of disk relation R (million tuples)
 on log scale

S
er

vi
ce

 r
at

e
(t

up
le

s/
se

c)

HYBRIDJOIN
MESHJOIN
INLJ

50 100 150 200 250
0

0.5

1

1.5

2

2.5

3
x 10

4

Total memory (MB)

S
e

rv
ic

e
 r

a
te

 (
tu

p
le

s/
se

c)

HYBRIDJOIN
MESHJOIN
INLJ

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 0.25 0.5 0.75 1

S
er

vi
ce

 r
at

e
(t

u
p

le
s/

se
co

n
d

)

x 104

Zipfian exponent value

HYBRIDJOIN
MESHJOIN
INLJ

match each stream tuple with the whole of R,
each disk invocation is not synchronized with the
stream input. However, for stream arrival rates
less than 150 tuples/sec, the waiting time in HY-
BRIDJOIN is greater than that in INLJ. A plausi-
ble reason for this is the greater I/O cost in the
case of HYBRIDJOIN when the size of the input
stream is assumed to be equal in both algorithms.

Performance comparisons with respect to
service rate: In this category of our experiments
we compare the performance of HYBRIDJOIN in
terms of the service rate with the other two join
algorithms by varying different parameters such
as the total memory budget, the size of R, and the
value of Zipfian exponent. In the experiment
shown in Figure 7(c) we assume the total allo-
cated memory for the join is fixed while the size
of R varies exponentially. From Figure 7(c) it can
be observed that for all sizes of R, the perfor-
mance of HYBRIDJOIN is significantly better
compared with the other join approaches. In our
second experiment of this category we analyse
the performance of HYBRIDJOIN using different
memory budgets, while the size of R is fixed (2
million tuples). Figure 7(d) depicts the compari-
sons of all three approaches. From Figure 7(d) it
is clear that for all memory budgets the perfor-
mance of HYBRIDJOIN is better as compared to
the other two algorithms.

Finally, we evaluate the performance of HY-
BRIDJOIN by varying the skew in input stream
S. To vary the skew, we vary the value of the
Zipfian exponent e. In our experiments we allow
it to range from 0 to 1. At 0 the input stream S is
uniform and the skew increases as e increases.
Figure 7(e) presents the results of our experiment.
It is clear from Figure 7(e) that under all values
of e except 0, HYBRIDJOIN performs consider-
ably better than MESHJOIN and INLJ. Also this
improvement increases with an increase in e. The
plausible reason for this better performance in the
case of HYBRIDJOIN is that the algorithm does
not read unused parts of R into memory and it
saves unnecessary I/O cost. Moreover, when e
increases the input stream S gets more skewed
and consequently, the I/O cost decreases due to

an increase in the size of the unused part of R.
However, when e is equal to 0, HYBRIDJOIN
performs worse than MESHJOIN but it is only
worse by a constant factor.

Figure 8: Cost validation

(a) HYBRIDJOIN

(b) MESHJOIN

(c) INLJ

50 100 150 200 250
0.012

0.013

0.014

0.015

0.016

0.017

0.018

0.019

0.02

Total memory (MB)
P

ro
ce

ss
in

g
co

st
 (

se
co

nd
s)

measured
estimated

50 100 150 200 250
0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

Total memory (MB)

P
ro

ce
ss

in
g

co
st

 (
se

co
nd

s)

measured
estimated

50 100 150 200 250
200

220

240

260

280

300

Total memory (MB)

P
ro

ce
ss

in
g
 c

o
st

 (
se

co
n
d
s)

measured
estimated

6.2.2 Cost validation

In this experiment we validate the cost model
for all three approaches by comparing the pre-
dicted cost with the measured cost. Figure 8
presents the comparisons of both costs. In Figure
8 it is demonstrated that the predicted cost closely
resembles the measured cost in every approach
which validates the accuracy of our cost model.

7. CONCLUSIONS AND FUTURE
WORK

In the context of real-time data warehousing a
join operator is required to perform a continuous
join between the fast stream and the disk-based
relation within limited resources. In this paper we
investigated two available stream-based join al-
gorithms and presented a robust join algorithm,
HYBRIDJOIN.

Our main objectives in HYBRIDJOIN are: (a)
to minimize the stay of every stream tuple in the
join window by improving the efficiency of the
access to the disk-based relation, (b) to deal with
the bursty data streams. We developed a cost
model and tuning methodology in order to
achieve the maximum performance within the
limited resources. We designed our own bench-
mark to test our approach according to current
market economics. To validate our arguments we
implemented a prototype of HYBRIDJOIN that
demonstrates a significant improvement in ser-
vice rate under limited memory. We also provide
the implementations.
In order to further improve the performance of
HYBRIDJOIN, we will extend the implementa-
tion of the proposed join algorithm by dynamical-
ly ordering the disk-based relation with respect to
access frequency.

Source URL: The source of our implementations
for HYBRIDJOIN, MESHJOIN and INLJ can be
downloaded from:
http://www.cs.auckland.ac.nz/research/groups/serg/hybridjoin/

8. REFERENCES

Anderson, C. (2006). The Long Tail: Why the
Future of Business Is Selling Less of
More: Hyperion, pp. 130--135.

Babu, S., & Widom, J. (2001). Continuous
queries over data streams. SIGMOD Rec.,
30(3), 109-120.

Chakraborty, A., & Singh, A. (2009). A partition-
based approach to support streaming
updates over persistent data in an active
datawarehouse. In Proceedings of the
2009 IEEE International Symposium on
Parallel & Distributed Processing.
Washington, DC, USA, 1-11.

Golab, L., & Özsu, M. T. (2003). Processing
sliding window multi-joins in continuous
queries over data streams. In Proceedings
of the 29th International Conference on
Very Large Data Bases. Berlin,
Germany, 500-511.

Golfarelli, M., & Rizzi, S. (2009a). A Survey on
Temporal Data Warehousing.
International Journal of Data
Warehousing and Mining (IJDWM), 5(1),
pp. 1-17.

Golfarelli, M., & Rizzi, S. (2009b). What-if
Simulation Modeling in Business
Intelligence. International Journal of
Data Warehousing and Mining (IJDWM),
5(4), pp. 24-43.

Gupta, A., & Mumick, I. S. (1999). Maintenance
of materialized views: problems,
techniques, and applications (Vol. 18).
Cambridge, MA, USA: MIT Press.

Hammad, M. A., Aref, W. G., & Elmagarmid, A.
K. (2008). Query processing of multi-way
stream window joins. The VLDB Journal,
17(3), 469-488.

Ives, Z. G., Florescu, D., Friedman, M., Levy, A.,
& Weld, D. S. (1999). An adaptive query
execution system for data integration.
SIGMOD Rec., 28(2), 299-310.

Karakasidis, A., Vassiliadis, P., & Pitoura, E.
(2005). ETL queues for active data
warehousing. In Proceedings of the 2nd

International Workshop on Information
Quality in Information Systems.
Baltimore, Maryland, 28-39.

Kim, J., & Park, S. (2005). Periodic Streaming
Data Reduction Using Flexible
Adjustment of Time Section Size.
International Journal of Data
Warehousing and Mining (IJDWM), 1(1),
pp. 37-56.

Knuth, D. E. (1998). The Art of Computer
Programming (Vol. 3): Addison-Wesley
Longman Publishing Co., pp. 400-401.

Labio, W., & Garcia-Molina, H. (1996). Efficient
Snapshot Differential Algorithms for Data
Warehousing. In Proceedings of the 22th
International Conference on Very Large
Data Bases. San Francisco, CA, USA,
63-74.

Labio, W., Yang, J., Cui, Y., Garcia-Molina, H.,
& Widom, J. (2000). Performance Issues
in Incremental Warehouse Maintenance.
In Proceedings of the 26th International
Conference on Very Large Data Bases.
San Francisco, CA, USA, 461-472.

Labio, W. J., Wiener, J. L., Garcia-Molina, H., &
Gorelik, V. (2000). Efficient resumption
of interrupted warehouse loads. SIGMOD
Rec., 29(2), 46-57.

Lawrence, R. (2005). Early Hash Join: a
configurable algorithm for the efficient
and early production of join results. In
Proceedings of the 31st International
Conference on Very Large Data Bases.
Trondheim, Norway, 841-852.

Mokbel, M. F., Lu, M., & Aref, W. G. (2004).
Hash-Merge Join: A Non-blocking Join
Algorithm for Producing Fast and Early
Join Results. In Proceedings of the 20th
International Conference on Data
Engineering, ICDE 2004. Washington,
DC, USA, 251-263.

Naeem, M. A., Dobbie, G., & Weber, G. (2008).
An Event-Based Near Real-Time Data
Integration Architecture. In Proceedings
of the 12th Enterprise Distributed Object
Computing Conference Workshops,

EDOCW '08. Washington, DC, USA,
401-404.

Nguyen, T. M., Brezany, P., Tjoa, A. M., &
Weippl, E. (2005). Toward a Grid-Based
Zero-Latency Data Warehousing
Implementation for Continuous Data
Streams Processing. International Journal
of Data Warehousing and Mining
(IJDWM), 1(4), pp. 22-55.

Palma, W., Akbarinia, R., Pacitti, E., &
Valduriez, P. (2009). DHTJoin:
processing continuous join queries using
DHT networks. Distrib. Parallel
Databases, 26(2-3), 291-317.

Pedersen, C. T. a. T. B. (2009). A Survey of
Open Source Tools for Business
Intelligence. International Journal of
Data Warehousing and Mining (IJDWM),
5(3), pp. 56-75.

Polyzotis, N., Skiadopoulos, S., Vassiliadis, P.,
Simitsis, A., & Frantzell, N. (2008).
Meshing Streaming Updates with
Persistent Data in an Active Data
Warehouse. IEEE Trans. on Knowl. and
Data Eng., 20(7), 976-991.

Polyzotis, N., Skiadopoulos, S., Vassiliadis, P.,
Simitsis, A., & Frantzell, N. E. (2007).
Supporting Streaming Updates in an
Active Data Warehouse. In Proceedings
of the 23rd International Conference on
Data Engineering, ICDE 2007, Istanbul,
Turkey, 476-485.

Ramakrishnan, R. (1999). Database Management
Systems (2nd ed.): McGraw-Hill, Inc., pp.
337-339.

Shapiro, L. D. (1986). Join processing in
database systems with large main
memories. ACM Trans. Database Syst.,
11(3), 239-264.

Thiele, M., Fischer, U., & Lehner, W. (2007).
Partition-based workload scheduling in
living data warehouse environments. In
Proceedings of the ACM tenth
international workshop on Data
warehousing and OLAP. Lisbon,
Portugal, 57-64.

Tho Manh Nguyen, A. M. T. (2003). Zero-
latency data warehousing for
heterogeneous data sources and
continuous data streams. In Proceedings
of the iiWAS'2003 - The Fifth
International Conference on Information
Integrationand Web-based Applications
Services, Jakarta, Indonesia, 55-64.

Urhan, T., & Franklin, M. (2000). XJoin: A
Reactively-Scheduled Pipelined Join
Operator. IEEE Data Engineering
Bulletin, 23(27).

Vassiliadis, P. (2009). A Survey of Extract–
Transform–Load Technology.
International Journal of Data
Warehousing and Mining (IJDWM), 5(3),
1-27.

Wilschut, A. N., & Apers, P. M. G. (1990).
Pipelining in query execution. In
Proceedings of the International
Conference on Databases, Parallel
Architectures and Their Applications,.
PARBASE-90, Miami Beach, FL, USA,
562.

Wilschut, A. N., & Apers, P. M. G. (1991).
Dataflow query execution in a parallel
main-memory environment. In
Proceedings of the first International
Conference on Parallel and Distributed
Information Systems. Miami, Florida,
United States, 68-77.

Zhang, X., & Rundensteiner, E. A. (2002).
Integrating the maintenance and
synchronization of data warehouses using
a cooperative framework. Information
Systems, 27(4), 219-243.

Zhuge, Y., García-Molina, H., Hammer, J., &
Widom, J. (1995). View maintenance in a
warehousing environment. In Proceedings
of the 1995 ACM SIGMOD international
conference on Management of data. San
Jose, California, United States, 316-327.

 APPENDIX

BENCHMARK

In order to demonstrate the behavior of the algo-
rithm with a bursty stream, we implemented a
stream generator that produces stream tuples with
a timing that is self-similar.
This bursty generation of tuples models a flow of
sales transactions which depends upon fluctua-
tions over several time periods, such as market
hours, weekly rhythms and seasons.
The pseudo-code for the generation of our
benchmark is shown in Figure 9. In Figure 9
STREAMGENERATOR is the main procedure while
GETDISTRIBUTIONVALUE and SWAPSTATUS are the sub-
procedures that are called from the main proce-
dure. According to the main procedure a number
of virtual stream objects (in our case 10), each
representing the same distribution value obtained
from the GETDISTRIBUTIONVALUE procedure, are in-
serted into a priority queue, which always keeps
sorting these objects into ascending order (line 5
to 7). Once all the virtual stream objects are in-
serted into the priority queue the top most stream
object is taken out (line 8). To generate an infi-
nite stream a loop is executed (line 9 to 18). In
each iteration of the loop, the algorithm waits for
a while (depending on the value of variable oneS-
tep) and then checks whether the current time is
greater than the time when that particular object
was inserted. If the condition is true the algorithm
dequeues the next object from the priority queue
and calls the SWAPSTATUS procedure (line 11 to
14). The SWAPSTATUS procedure enqueues the cur-
rent dequeued stream object by updating its time
interval and bandwidth (line 19 to 27). Once the
value of the variable totalCurrentBandwidth is
updated, the main procedure generates the final
stream tuple values as an output using the proce-
dure GETDISTRIBUTIONVALUE line (15 to 17). For
each call to procedure GETDISTRIBUTIONVALUE, it
returns the random value by implementing Zipf's
law with exponent value equal to 1 (line 28 to
31).
Figure 9: Pseudo-code for benchmark

The experimental representation of our bench-
mark is shown in Figure 10 and Figure 11, while
the environment in which the experiments are
conducted is described in Section 6.1. As de-
scribed earlier in this section, our benchmark is
based on two characteristics; one is the frequency

of selling each product while the other is the flow
of these sales transactions. Figure 10 validates the
first characteristic about real market sales. In
Figure 10 the x-axis represents the variety of
products while the y-axis represents the sales.
Therefore, from Figure 10 it can be observed that
only a limited number of products (20%) are sold
frequently while the rest of the products are rare-
ly sold.
Our proposed HYBRIDJOIN is fully adapted to
such kinds of data in which only a small portion
of R is accessed again and again while the rest of
R is accessed rarely.

Figure 10: A skewed distribution based on Zipf's
law using exponent value is equal to1

(a) on plain scale

(b) on log scale (both axis are on log scale)

Figure 11: An input stream having bursty and
self-similarity type of characteristics

Figure 11 represents the flow of transactions,
which is the second characteristic of our bench-
mark. From Figure 11 it is clear that the flow of
transactions varies with time and is bursty rather
than appearing at a regular rate.

