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The alternating α-series process (AAS process) can be used to study ageing

repairable systems whose lifetime can be modelled as an alternating sequence
of operational times and repair times. In this paper the AAS process is defined,
and two key counting processes associated with the AAS process are analysed.
The AAS process and results in this paper can be applied in fields such as

warranty, maintenance and reliability cost analysis.

1. Introduction

Consider a repairable system, for which the lifetime can be modelled as an

alternating sequence of operational times and repair times. A variety of

models have been used to study this type of alternating system. For exam-

ple, [7] used an alternating renewal process to evaluate the warranty costs

over a finite time horizon for this type of system. For systems, which are

impacted by ageing, the operational times tend to decrease and repair times

tend to increase over time. Extending the geometric process (GP) [9] to

an alternating process, [2] introduced the alternating geometric (AG) pro-



cess, which models operational times using a decreasing geometric process

and repair times using an increasing geometric process, and demonstrate

its application to warranty cost analysis. [1] studied two counting processes

associated with the AG process. In addition to the geometric and AG pro-

cesses, there are a large number of other stochastic processes that can be

used to model trends in inter-event times; see [3] for a review of these pro-

cesses. One example of such a process is the α-series (AS) process, which

was introduced by [5]. The main advantage of the AS process over the GP

is that, under certain conditions, the number of events observed within a

finite time interval, under an decreasing AS process has a finite expected

value, unlike the decreasing GP. For more on the AS process see [6].

The main goal of this work is to introduce and study the alternating

α-series (AAS) process. Extensions of the results of [1,2] relating to the

two counting processes associated with the alternating α-series process are

also discussed.

The structure of the paper is as follows. In Section 2, the α-series pro-

cess is defined and the alternating α-series process is introduced, along with

two key counting processes associated with it. In Section 3, two approaches

for computing the mean and variance of the two counting processes are pro-

vided. The accuracy of these approaches is demonstrated using numerical

examples in Section 4. Section 5 concludes the paper.

2. AS process and AAS process

2.1. Definitions

Definition 1. α-series Process: Let {Xn, n = 1, 2, . . .} be a sequence of

independent, non-negative random variables. If the distribution function

of Xn is given by FXn(t) = F (nαx) for n = 1, 2, . . ., where α ∈ R, then

{Xn, n = 1, 2, . . .} is called an α-series process with parameters {α, FX1
(t)}.

The AS process can be used to model inter-event times in which a

trend is observed. An AS process is stochastically increasing if α < 0 and

stochastically decreasing if α > 0. If α = 0, then the AS process is a

renewal process.

Next, using the AS process the alternating α-series process (AAS pro-

cess) is defined. The AAS can be used to model ageing systems with

stochastically decreasing operational times and stochastically increasing re-

pair times. Consider a repairable item, which initially operates for a length

of time X1 and then fails and is repaired for a length of time Y1. After the

repair, the item is again operational for a time X2, which is followed by a



repair for a time Y2, and so on. The process is thus defined by a sequence

of alternating operational and repair times, so it is called an alternating

process.

Definition 2. Alternating α - series Process: Let {Xn}∞1 and {Yn}∞1
be independent sequences of random variables. If the sequence of the op-

erational times {Xi}∞1 is a stochastically decreasing AS process with pa-

rameters {α, FX1(t)}, α > 0 and the sequence of repair times {Yi}∞1 is a

stochastically increasing AS process with parameters {β, FY1
(t)}, β < 0,

then the corresponding alternating process is referred to as an alternating

α - series (AAS) process with parameters {α, FX1
(t); β, FY1

(t)}.

2.2. AAS Process – Counting Process 1: N(t) number of

cycles completed by time t

Consider an AAS process with parameters {α, FX1
(t); β, FY1

(t)}, with α >

0 and β < 0. Let a cycle be defined as a period of time consisting of

an operational time followed by the corresponding repair time. Denote by

Zn = Xn + Yn, the length of the nth cycle with cumulative distribution

function (CDF) Hn(t), where

Hn(z) = FXn
∗ FYn

(z), (1)

and “*” denotes a convolution. Let Tn =
∑n
i=1(Xi + Yi). Then, the CDF

of Tn is given by

Gn(t) = P (Tn ≤ t) = H1 ∗H2 ∗ · · · ∗Hn(t). (2)

The number of AAS process cycles completed by time t is given by

N(t) = sup{n : Tn ≤ t}, (3)

and it is well-known, see [10], that

{N(t) ≥ n} ⇐⇒ {Tn ≤ t}. (4)

2.3. AAS Process – Counting Process 2: M(t) number of

failures up to time t

Now, consider another counting process, M(t), which represents the number

of failures occurring before time t. Denote by Z ′n = Yn+Xn+1 the length of

the nth shifted cycle, i.e., the sum of the nth repair and (n+1)th operational

times, n = 1, 2, 3 . . .. with CDF H ′n(z) = FYn
∗ FXn+1

(z). The time until

the completion of the (n − 1)th shifted cycle is T ′n = X1 +
∑n−1
i=1 Z

′
i, for



n = 1, 2, . . . , with the empty sum for n = 1 equal to 0. Denote by G′n(t)

the CDF of T ′n, then G′n(t) = F1 ∗H ′1 ∗H ′2 ∗ · · · ∗H ′n−1(t). Results similar

to (3) and (4) can be derived for M(t).

3. Mean and variance of the counting processes N(t) and

M(t)

In this section two approaches for the computation of the mean and variance

of the counting processes N(t) and M(t) are outlined. These approaches

extend the method used to compute the mean and variance for the GP [4]

and the AG process [1]. Refer to [1] for further details of the approaches

outlined below.

3.1. Computing E[N(t)] and Var[N(t)]

Let the mean and variance of the number of cycles, N(t), be denoted by

E[N(t)] and Var[N(t)] respectively. Using (4) and the standard approach

for deriving results for the renewal (geometric) function [10] ([8]), the fol-

lowing formulae for the mean E[N(t)] and the variance Var[N(t)] functions

are obtained:

E[N(t)] =

∞∑
k=1

Gk(t), t ≥ 0 and (5)

Var[N(t)] = 2

∞∑
k=1

k Gk(t)− E[N(t)](1 + E[N(t)]), t ≥ 0. (6)

As in [1], we consider two approaches for the computation of E[N(t)] and

Var[N(t)].

Approach A

In order to approximate E[N(t)] and Var[N(t)], we adapt the approach

outlined in [1,4]. Consider a uniform partition of [0, t] into m equal sub-

intervals, then for n ≥ 2 and i = 1, 2, . . . ,m, Gn(ti) in (2) can be approxi-

mated as follows

G̃n(ti) =

i∑
j=1

G̃n−1(ti−j+1) + G̃n−1(ti−j)

2
(Hn(tj)−Hn(tj−1)) , (7)

where ti = it
m and G̃1(ti) = H1(ti) for i = 1, 2, . . . ,m. Using (5), (6) and

(7), approximations of E[N(t)] and Var[N(t)] can be obtained. For more

details see [1].



Approach B

Using the definition of the expected value and variance of a discrete random

variable, and the distribution P (N(t) = k), k = 0, 1, 2, . . ., t ≥ 0, then

E[N(t)] =

∞∑
k=0

k P (N(t) = k) and (8)

Var[N(t)] =

∞∑
k=0

k2 P (N(t) = k)− (E[N(t)])2. (9)

Using (4), the distribution of N(t) can be obtained as follows

P (N(t) = k) = P (N(t) ≥ k)− P (N(t) ≥ k + 1)

= P (Tk ≤ t)− P (Tk+1 ≤ t)
= Gk(t)−Gk+1(t). (10)

Using an appropriate method to approximate Gk(t) (e.g., (7)), and by trun-

cating the infinite series in (8) and (9), the mean E[N(t)] and variance

Var[N(t)] can be computed.

3.2. Computing E[M(t)] and Var[M(t)]

Let the mean and variance of the number of failures, M(t), be denoted

by E[M(t)] and Var[M(t)] respectively. Approximations for E[M(t)] and

Var[M(t)] can be obtained by appropriately adjusting (7) (Approach A)

and (8), (9) and (10) (Approach B).

4. Numerical Results

In this section the computation of E[N(t)] and Var[N(t)], associated with

the AAS process, are compared using simulation and the two numerical

approaches outlined above. Similar results were obtained and analysed for

E[M(t)] and Var[M(t)] but are not reported here.

Table 1 contains the values of E[N(t)] and Var[N(t)] computed via the

two numerical approaches and simulation, for an AAS process with E[X1] =

3, Var[X1] = 9, α = 1, E[Y1] = 0.01, Var[Y1] = 0.0001, β = −1, and where

FX1
and FY1

are the exponential CDF with the corresponding parameters.

The simulation values are the average values across 10,000,000 simulation

runs.

As shown in Table 1, the numerical approaches produce values that

are close to those obtained using simulation. We found that the mean



and variance computed using Approach B begin to deviate as t increases,

compared with the values computed using Approach A and simulation. We

expect that this is due to computing error accumulation, however this is

an area for further investigation. To demonstrate the variety of monotonic

trends that can be modelled using an AAS process, we have computed the

expected number of cycles E[N(t)] and the expected number of failures

E[M(t)] (not included in this paper) for a range of parameter values. The

results presented below were computed using both numerical approaches

and simulation, however due to the similarity of the results, only those for

Approach A are shown in the plots.

Table 1. Comparison of numerical approaches and simulation for an AASP
with E[X1] = 3, Var[X1] = 9, α = 1, E[Y1] = 0.01, Var[Y1] = 0.0001,

β = -1, FX1
, FY1

= exponential cdf. Settings for numerical approaches:

ε=10−3, t/m = 0.01, η = 10−16. Settings for simulation: n = 10000000

t E[N(t)] Var[N(t)]

Time Approach A Approach B Simulation Approach A Approach B Simulation

0.6 0.213682 0.213682 0.213738 0.250136 0.250136 0.250140

1.0 0.382684 0.382684 0.382808 0.504318 0.504318 0.504426

2.0 0.907106 0.907106 0.907360 1.582393 1.582393 1.583126
5.0 3.670939 3.670939 3.672390 12.160205 12.160205 12.167529

10.0 13.030337 13.030337 13.031078 59.528072 59.528072 59.546670

12.0 17.890105 17.890105 17.890020 76.948257 76.948257 76.967922
15.0 25.393798 25.393794 25.394476 89.810023 89.809996 89.826206

18.0 32.578429 32.575922 32.578501 89.169183 89.187123 89.171773

20.0 37.054373 37.004514 37.056137 84.715775 85.516449 84.763496

In Figure 1, the columns depict two different values of E[X1] and the

rows depict two different values of β. In the plot in the top left of Figure

1, the expected time until the first failure, E[X1] = 0.03, is similar to the

first expected repair time, E[Y1] = 0.01. The AS process parameter for

the repair times is β = −5, which means that the repair times increase

rapidly. Consequently, the first two repairs occur very quickly as both

E[X1] and E[Y1] are small. However, E[Yn] soon begins to increase rapidly

and becomes significantly larger than E[Xn]. Since the system cannot fail

while being repaired, the number of cycles increases at a slower rate for

n > 2. The AS process parameter for the operational times α has little

impact on the expected number of cycles as E[Yn] is larger than E[Xn] for

n > 2. A similar trend in E[N(t)] (an initial steep increase, followed by a

more gradual increase) is also shown in the plot in the top right of Figure 1.

However, in this case, due to the longer expected time until the first failure,



E[X1] = 3, the impact is less severe. Notice that α has an impact here,

with higher values of α leading to a more rapid decrease in the operational

times, and thus a higher number of cycles. Similar trends were observed

for E[M(t)].
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Figure 1. Expected number of completed AAS process cycles, E[N(t)], for α ∈
{0.1, 1, 2, 10} for FX1 , FY1 = exponential CDF. E[N(t)] was computed using numeri-
cal approach A, with ε = 10−3, t/m = 0.01, and η = 10−16.

In the two plots in the bottom row of Figure 1, β = −1, i.e., the increase

in the repair times is slower than in the top row. Once again, when E[X1]

is small, α does not have much impact as E[Xn] are small compared with

E[Yn]. However, since E[Yn] increases slower than in the plots in top row,

E[N(t)] is much larger. When E[X1] = 3, with α = 0.1, the operational

time decreases very slowly, leading to a low value of E[N(t)]. Similar trends

were observed for E[M(t)].

5. Conclusion

In this paper we define the AAS process and discuss two counting processes

associated with the AAS process: (1) N(t) - the number of cycles up to



time t and (2) M(t) - the number of failures up to time t, for t > 0. We

discuss two numerical approaches for the approximation of their mean and

variance functions.

For a system that can be successfully modelled by an AAS process

with parameters {α, FX1(t); β, FY1(t)} with ratios α > 0 and β < 0,

these results can be used to compute the mean value and the variance

of the warranty cost under different warranty strategies. These results

could be particularly useful for designing better warranty strategies as well

as assisting the producers in allocating appropriate funds to the warranty

reserves related to their products.
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