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Modelling the vibration of composite structures requireduding the effects of uncertain ma-
terial properties of individual components at mid-freqeyenThe purpose of this model is to
predict the vibration of double-leaf plate with random paesers. One plate is excited by
some force, then the vibration travels to the other platebe@ams. The random parameters
are the elastic modulus of the plates, and coupling conditietween components. The finite
element method often used to incorporate the uncertaiimtidge stiffness matrix. However
composite structures typically have tens of components famulating the stiffness matrix
becomes overwhelming. Here the solution is found by minimgizthe lagrangian representing
the energy in the structure. The solution is expressed ukmgourier series. The coupling
between components are modelled as additional energyilmatidn. This energy is quantified
using varying resistance due to relative separation, isiipand rotation between neighbour-
ing components. The uncertainties then can be represeptadbbmatrices in the lagrangian.
As a result, the computation is simplified.

1. Introduction

This paper presents a computational modelling of vibratioina double-leaf plates when it is
subjected to some external forces. Double-leaf plates hig¥estrength-to-weight ratio, and are used
in many lightweight constructions. A simple design of a detlleaf plate has two plates sandwiching
reinforcement parallel beams. There are various methoggirihg the two component, such as
nails and glue. The large number of distinct components hadomplexity of the joints make the
mathematical representation of the plate difficult (e.8,,4, 6]). The distinct components, which
in this case are plates and beams, require two different lmogieegimes. For example, a typical
finite element method (FEM) would represent the junctionveen a plate and a beam as ‘T’ shaped
continuous object. This is not true in most cases becausbahé at such junction would not be
perfect, and also the material properties of the plate amtdétams may be completely different. This
paper uses an alternative way of modeling of the junctiorgciivare modeled how much energy is
required for any particular way of bonding. The amount ofrgpat the junction will be large (small)
if the bonding is strong (weak).

The contact conditions can be included in the formulatiangighe variational principle. The
irregularities, including the contact conditions, can ibeuded in the formulation using the Fourier
basis expansion of the solution, which is an efficient way wdifig the solution of the variational
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formulation. The size of the computation is small becausthefsmall size of the matrices related
to the stiffness and the potential energies. The computaiturther simplified using the simulation
of the random irregularities using the predetermined PS® samulating the normally distributed
random parameters over the cosine functions. Actually possible to generate irregularities with
any probability density function (PDF) as shown in [2]. Thethod here takes advantage of the
known Fourier transform of the cosine functions.

The size of the linear system here is small and inverting th&rirhas little computational
costs. However the size of the matrix will become large asitireber of components and associated
randomness increase. There are many numerical technigwgditize the inversion of the matrix
and computational methods, such as parallelization. Taesseutside of the scope of this paper. The
size of the computation will increase as the number of thepmrants and the randomness associated
with them becomes large.

This paper uses the normally distributed random parametetibns based on the given PSD.
The shape of the PSD of each parameter was chosen to mimiedhiy 10f the material’'s physical
properties. Though it is not clear what PDF is appropriatétfe stiffness of plates, shape of beams,
and the coupling rigidity between the two. It is also not cleaw to study the combinations of the
randomness of various components. This paper only corssidereffects of the randomness of one
component (parameter function) at a time. For example, wherstiffness of the plate is random,
other parameters are fixed.

2. Method of solution

2.1 Variational formulation of the deflection of a double-le af plate
2.1.1 Kirchhoff plate and Euler beam models

Fig. 1 shows the depiction of a typical double-leaf platee Tdp and bottom plates are mod-
elled using the Kirchhoff plate and the beams using the Hudam. Therefore, only the relatively
small deflections (compare to their length/width) of theseponents are studied here. The deflec-
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Figure 1. Schematics of a double-leaf plate.

tion of the individual components is the solutions, whichl \Wwe computed in this paper. The local
coordinate systems are used for each components, thaeisrithin is placed at the corner of each
plate, and each beam has the origin at one end. Here the divatenic vibration is considered,
and hence the solutions will have the foRe|w(x, y) expiwt] wherew is the radial frequency. The
deflection of each component is denotedunyx, ), ws(z, j), andws(z,y) for the top plate,’th
beam, and the bottom plate, respectively. Other paramatetgunctions will be denoted with the
corresponding subscripts 1,2, or 3 for the top plate, beantspbottom plate, respectively. For exam-
ple, The thickness of the top plate is denotedhbyand the mass density of the bottom plate will be
ms. The length ¢-direction) and the widthy(-direction) areA and B, respectively. Hence the plates
covers the areér,y) € [0, A] x [0, B], and the beams are modelled as one dimensional objects in
x € [0, A]. The beams have the same size, mass density and elasticusodul

We choose the variational formulation using the lagrangifithe deflection to compute the
vibration field of the structure. The vibration field of theustture is found by constructing the la-
grangian of the total energy in the structure. The solutibe,deformation, will be found by mini-
mizing the lagrangian. The lagrangian for the whole strgcts given by the following general form
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for the deformationw.

L(w) = /0 /V (P() + K(t) — F(#)} dudt, )

whereP is the potential energy is the kinetic energy, an# is the work done to the object. The
integral is taken over the volume of the elastic body and thereod of timeT'. Here the integral will
be taken over the plates and beams.

The classical Kirchhoff (thin elastic) plate model expessthe strain energy and kinetic energy
of a thin elastic plate, which has non-moving boundary, by

1 A B ) 9 p1h1w2 A B )
P = Dy(z,y) ‘V wl‘ drdy, K, = lwi(z,y)|" dxdy,
2Jo Jo 2 0o Jo

where D(z,y) = Ei(x,y)h3/ (12 (1 — v?)) is the flexural rigidity andh,, E£;, andv are the plate
thickness, Young’s modulus, and Poisson ratio, respdgtiwote that the effects of rotation is ne-
glected ink;. The minima of Eq. (1) is the solution of the thin plate eqomati

V2 (Du(w,y)Viwi(2,y)) = wimawi (2,y) = p(z,y),

wherem; = pih, is the mass density per unit area, and the effective pressure acting on the plate.
The above differential equation is useful when analyticdliton can be considered. We however
deal with irregular structural properties, and thereftieegolution method is numerical. The energies
for the bottom plate is given by the same formula Wwithand 5 for ws.

The strain and kinetic energies for an Euler beam are given by

1[4 2 pahow? [
PR— ] = ‘ 2
PQ — 5 ]Zl/(; EQI |w2$$(x7j)| dl‘, ICQ - 9 ]Zl/ov |w2(l’,])| d![’,

whereF, and! are the Young’s modulus and the moment of inertia of the beah,),andh, are the
mass density per unit length and the thickness of the beapecavely.

2.1.2 Coupling conditions

In addition to the strain and kinematic energy, we include energy contributions from the
coupling of top/bottom plate and the beam due to the disogpan the displacement of the two
components. For example, the coupling between the top pratéhe beams is given by

S A
1 , .

Py = 52/ osep(, J) [wi (2, ;) — wy (, 5)[* da, ()
j=170
. 1 s A

PE =52 / Osip (. 7) [haw (2, ;) + hawy (2, )| de, 3
j=1"0
1< A

. (2

P =53 [ ) ) = (o) @)

j=1""0

where’ indicates the:-derivative an@sep, osiip, ando; are the Hooke’s constants for springs resisting
relative separation, slipping, and rotation of the coupbsgers, respectively. These functions are
defined along the beams, and thus functions.dfhe subscript§/, j) indicate the interaction between
either top plate and beam@.(j) = (1, 2)), or bottom plate and the beam,(j) = (3, 2)). Note that
the stiffness of these springs may vary along the coupliygrland from one layer to another. The
simpler model of coupling between the plate and the beams letayjie separation constante,
become infinite, that is the separation is zero and the piatdlee beams are always in contact. The
total potential energypP, is the sum of all potential energies from individual layarsed coupling
between layers.
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Figure 2. Depiction of the model for the coupling conditions. The sgs give the resistance to the horizontal
(left), vertical (centre), and rotational (right) moventgn

2.2 Computation method of solutions
2.2.1 The Fourier expansion of the solution

The method of solution chosen in this paper is the Fourieaegion method, which is ideal
because of the rectangular shape of the structure. Furtinerthe boundary of the plate is assumed
to be simply supported. Thus the basis functions are sinetifons, further simplifying the solution.
Different basis functions must be chosen when the boundamgitons are different. There are a
few example sets of basis functions shown in [5] for free angded boundaries. Whatever the basis
functions may be, a linear system of equations for the coeffis of the expansion over the chosen
basis functions. Hence the method of solution shown heleowidpplicable.

The deflection of the top, bottom plates, and beams are wiiige

N
ZC“ Ual(y), ws(z,y) = 203) Un(y), wa(z,j) =Y CLlém(x)
m=1

m,n=1 m,n=1

forj =1,2,..., 5, respectively, where the basis functions afgx) = \/2/Asin k,,x, andy, (y) =
\/2/Bsin k,y, and the wavenumbers are givenky = mm/A andx,, = 7n/B. Note that the basis
functions are orthonormal. The positions of the joists avermgbyy = y;, 7 = 1,2,...,S. Note
that the number of terms in the series has already been tachtta/V to construct the finite system
for the numerical computation. The operations are thenesgad using the column vectors of the
coefficients,

¢ = (cﬁ’,cﬁ),.-. ,C}@}V), co = (Cf?,cﬁ),.-. ,C}V?)S), andcs = (cf;’,cg?;’, - ,c}?}v). The
variational formulation then becomes

t

1 Cy Cy Cy
— Co L Co = ft Co
C3 C3 C3

whereL is the matrix from the integrals arfds the vector of the external forcing, whose elements are
given byf0 fo (x,y)dm (), (y) dz with zero padding for the parts corresponding{@ndcs. In
§2.2, the forcing is set to be a point forcing, thatf$z, y) = 0(x — zo, y — yo) for some fixed point
(x0, o), which makes the integrals unnecessary. The followingettimns will give details how the
elements oL are obtained.

2.2.2 Contact conditions between the plates and the beams

The irregularity in bonding between floor and joists can lmuded by changing the function
osiip(x), orot(z), @andosegx) in EQ. (3). In this paper, onlyy(z) is varied for the numerical simula-
tions.
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Substituting the Fourier series expansion for the deflestiq andw, to Eq. (3) gives

2
1S“2p = Z/ Ushp X ] dx
whereyp,,(z) = \/2/Acos k,,x. Then the above integral will be obtained by computing
A A ! /
/ Tsiip(Z, J)pm () o () do = = / Tsiip(T, J) (cos Mw — cos Mx) dx.
: A J, A A

Notice that this integral is simply the Fourier cosine caaiits of the functioms, (x, j), which can
be computed using the fast Fourier transform (FFT).

hl Z k mn‘pm wn y] —|—h221€ jﬁpm( )

m,n=1

2.2.3 Elastic modulus of the plates

Substituting the series expansion for(z, y) to equation forP; leads to vector and matrix
expression for the strain energy of the top plate. Let thetion D; be separated int®; (z,y) =
Deq + dyi(z,y) whereDg, is constant. The elements of the mattixdue to the the varying stiffness
Dy (z, y) are computed using the integral

/ / @) CLCD, (2, + K2) (k2 + 52) b (2) e (2 () () vy
mn,m’ n'=1
The constant stiffnesB., will give us a diagonal matrix with its elemeft?, + x2)? because of the
orthogonality of the function§s,,,} and{v,,}. Note that the parts of the lagrangian matrix related to
the beams will have diagonal elements only because thaessfof them is assumed to be constant.
Again the above integral is the formula for the 2d Fourierfii@ients for the functiont, (z, y), which
can be found using the 2d FFT. The length of the transform imeistouble that of the sampled data
of di(z,y). Furthermore, the products obsinecomponents are obtained by taking the real part of
the FFT inx andy directions. The contribution from the bottom plate can bevee using the same
formula withws.

2.2.4 Shape of the joists

The numerical computation with twisting beams is not cdrieit here, and only the brief
derivation of the linear system will be given. In order tolirde not-so-straight shape of beams,
we here make a few assumptions and keep the model simple. tfEHne snergy of the beams are
computed in the same way as before by integrating ovet tihem 0 to A. The shape of’th beam
is denoted by the function of, §;(x). Thus the contact between the top plate and the beam is given
by y; + 0;(x). We first take the Taylor expansion of the modes at the coctawes and omit the
higher terms becausg(z) is assumed small, that ig,,(y; + 0;(z)) ~ (1 + x,0;(x)) ¥n(y;). Then
the displacement of the plate at the locations of the beaemgtdd byS; are given by

N
wr = Y (14 ku;(x)) CO)dm(@)thn(y;), for (a,y) where the beams are.
m,n=1

The energy contrlbutlonsPu} (i.j)=(12),(2,3) @re now calculated from the above two expressions. For
example, the potential energy due to the slippage at théingibeams is given by

1
,Psllp — 5/ o‘s“p T ]
0

Note that the higher order terms have been omitted. The dhtagral can be expressed using vector
operations betweety andc, as shown in the previous section.

2
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m,n=1
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2.3 Simulation of irregularities based on power spectral de nsity

The parameter functions with any PDF can be simulated usagnethod given in [2]. When
the PSD is given by, (x), the realizations of the parameter functiofx) with PDFp, () are derived
by the following procedures. The parameter function candpeessed by

M
o(x) =\/2/M > Qicos (2rFix + ®;) (5)

where the mean of (z) is zero for allz > 0. The PDF of the frequency; is determined by
pr(|f]) = 2/E Q% P,(f), for —1/2 < f < 1/2, whereP, is the desired PSD of, which in this is
given by a smoothumpfunction (see Fig. 3). Thus the random variablédnas Gaussian distribution.
The PDF forQ is given by

1/M

polq) = Q/OOO (%r(\/ﬁ@) / Jo(qu)v dv

where), is the characteristic function(q) is the PDF of the amplitud®); and J, is the Bessel
function of the first kind of order zero. The rigorous explama of the above items is given in the
Appendix of [2]. Here the Gaussian distribution is chosenhastarget PDF, and thug; is the
Rayleigh random variable.

The 2 dimensional functiod, (z, y), the deviation from the ideal stiffness, can be similarly
simulated using the expansion

M
di(x,y) = Z QiRjcos 2mFix + ©;) cos 2nGy + V) (6)

ij=1

where the coefficient$@);, R;} are random variables with the PDFs given by the method above,
which again are the Rayleigh random variables. The pldgsand ¥; are uniformly distributed
random values ifi—7, 7|. The frequencie$; andG; are again Gaussian random variable.

3. Computation results and analysis
3.1 Simulation of ¢(z) and D(x,y) from PSD

The functionsogip(x) represents the qualitative bonding rigidity and is credtedhe conve-
nience of modelling, and thus cannot be measured directiyweder, it may be reasonable to assume
osip(x) to have Gaussian distribution. The simple Gaussian'RBDE and 2 dimensional spaces will
be considered for the PSD ofj,(x, j), di(z,y) andds(z,y). The realizationsyi,(z) andd, (z, y)
are shown in Figs. 3 and 4 using the methods given by Egs. (bj@&rnn §2.3. Two sets of slippage
and stiffness with two periods of variations along the beantover the plates have been used. The
variance of the simulated functions are set to 20% and 2%eaterage constant for the slippage
and the stiffness, repectively.

3.2 Surface vibration levels

Fig. 5 shows the root mean square of the surface velocityeafréguencies from 150Hz to
250Hz. The slippage is randomized for Figs. 5(a) and (b)tla@dtiffness is randomized for Figs. 5(c)
and (d). Figs. 5(a) corresponds to the slippage given by3ab), and Fig. 5(b) does to Fig. 3(c,d).

1The method of [2] allows any PDF for the frequency. The randanebles can be generated using the inverse of the
cumulative distribution function of the uniform random iedole.
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Figure3. The PSD ((a) and (c)) of the simulatedli,(x) and a few typical realizations ((b) and (d))@fiip(z).
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Figure4. The PSD ((a) and (c)) of the simulatéd(z, y) and a typical realization ((b) and (d)) @f (x, y).

The randomness of the slippage affects the surface velouitstly near the resonant frequencies.
However, there is little effects showing between 220 andH4@ven thought there are several reso-
nances in that range. The stiffness for Figs. 5(c) and (djrare the ones shown in Fig. 4(a,b) and
(c,d), respectively. The random stiffness with higher sgdcequency affects the higher frequency
range. The average resonant frequency peaks are smootbkadhvestiffness is randomized. Further-
more the variance of the vibration level is nearly uniforrea220Hz. In both slippage and stiffness
cases, the lower variations of the random functions leadightsy more smoothed out vibration
levels.

Figs. 6 and 7 show the distributions of the variance of théaserdeflection of the top plate
when slippage and stiffness are randomized, respectiVabre is little variance at a lower frequency.
At the higher frequencies, the location of the beams afféesvariance distribution. However the
variance is not distributed evenly. The slippage affecigelofrequency vibrations than it does the
higher frequency ones as shown in Fig. 5(a,b) with respetttdanode shape. The stiffness affects
the higher frequency vibrations. The variance distribubecome uneven.

The parameters for the beams and the plates are chosen feomotthinal values for plywood
and timber beamsE;, = 10°Pa,m; = my = M3 = 500kg/m*, A = 5.1m, B = 3.2m, h; =
hs =0.015m,h, =0.3m,v =0.3y,; = jB/8, j = 1,2,...,7, and the width of the beams (5045m.
The average slippage constant is 10"N/m, which was determined from the experiments in [1]. The
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Figure5. The average root-mean-square of the surface velocity flebiHz to 250Hz when the slippage
resistance (a,b) and stiffness (c,d) are randomized. Tiiene® is shown by the grey area.
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Figure 6. The distribution of the variance of the surface deflectiof@atl00Hz, (b) 150Hz, (c) 200Hz, and (d)
250Hz when the slippage resistance is randomized.
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Figure 7. The distribution of the variance of the surface deflectiof@atl00Hz, (b) 150Hz, (c) 200Hz, and (d)
250Hz when the stiffness of the top and the bottom platesidamized.

location of the forcing i2.85,2.1).

4. Conclusions and summary

Even with the relatively simple model with two varying furmts, slippage and stiffness, the
simulations generate a great deal of data, which makessinglthe effects of the randomness diffi-
cult. It is not clear how the combinations of particular ranthess would affect the whole vibrations
the most or the least. The numerical simulations show thairtiegularities (variations along the
beam or within the plate) affects the whole vibration. Thius inodelling of composite structure,
even this moderately complex double-leaf plate, requieadmdom irregularities to be taken into ac-
count in order to make realistic estimates. The irregulatuies, stiffness of the plates, shape of the
beams and junction between the plates and the beams, ardedagsng the variational principle.
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