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Modelling the vibration of composite structures requires including the effects of uncertain ma-
terial properties of individual components at mid-frequency. The purpose of this model is to
predict the vibration of double-leaf plate with random parameters. One plate is excited by
some force, then the vibration travels to the other plate viabeams. The random parameters
are the elastic modulus of the plates, and coupling conditions between components. The finite
element method often used to incorporate the uncertaintiesin the stiffness matrix. However
composite structures typically have tens of components, and formulating the stiffness matrix
becomes overwhelming. Here the solution is found by minimizing the lagrangian representing
the energy in the structure. The solution is expressed usingthe Fourier series. The coupling
between components are modelled as additional energy contribution. This energy is quantified
using varying resistance due to relative separation, slipping, and rotation between neighbour-
ing components. The uncertainties then can be represented by sub-matrices in the lagrangian.
As a result, the computation is simplified.

1. Introduction

This paper presents a computational modelling of vibrations of a double-leaf plates when it is
subjected to some external forces. Double-leaf plates havehigh strength-to-weight ratio, and are used
in many lightweight constructions. A simple design of a double-leaf plate has two plates sandwiching
reinforcement parallel beams. There are various methods ofjoining the two component, such as
nails and glue. The large number of distinct components and the complexity of the joints make the
mathematical representation of the plate difficult (e.g., [3, 4, 6]). The distinct components, which
in this case are plates and beams, require two different modelling regimes. For example, a typical
finite element method (FEM) would represent the junction between a plate and a beam as ‘T’ shaped
continuous object. This is not true in most cases because thebond at such junction would not be
perfect, and also the material properties of the plate and the beams may be completely different. This
paper uses an alternative way of modeling of the junctions, which are modeled how much energy is
required for any particular way of bonding. The amount of energy at the junction will be large (small)
if the bonding is strong (weak).

The contact conditions can be included in the formulation using the variational principle. The
irregularities, including the contact conditions, can be included in the formulation using the Fourier
basis expansion of the solution, which is an efficient way of finding the solution of the variational
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formulation. The size of the computation is small because ofthe small size of the matrices related
to the stiffness and the potential energies. The computation is further simplified using the simulation
of the random irregularities using the predetermined PSD and simulating the normally distributed
random parameters over the cosine functions. Actually it ispossible to generate irregularities with
any probability density function (PDF) as shown in [2]. The method here takes advantage of the
known Fourier transform of the cosine functions.

The size of the linear system here is small and inverting the matrix has little computational
costs. However the size of the matrix will become large as thenumber of components and associated
randomness increase. There are many numerical techniques to optimize the inversion of the matrix
and computational methods, such as parallelization. Theseare outside of the scope of this paper. The
size of the computation will increase as the number of the components and the randomness associated
with them becomes large.

This paper uses the normally distributed random parameter functions based on the given PSD.
The shape of the PSD of each parameter was chosen to mimic the reality of the material’s physical
properties. Though it is not clear what PDF is appropriate for the stiffness of plates, shape of beams,
and the coupling rigidity between the two. It is also not clear how to study the combinations of the
randomness of various components. This paper only considers the effects of the randomness of one
component (parameter function) at a time. For example, whenthe stiffness of the plate is random,
other parameters are fixed.

2. Method of solution

2.1 Variational formulation of the deflection of a double-le af plate

2.1.1 Kirchhoff plate and Euler beam models

Fig. 1 shows the depiction of a typical double-leaf plate. The top and bottom plates are mod-
elled using the Kirchhoff plate and the beams using the Eulerbeam. Therefore, only the relatively
small deflections (compare to their length/width) of these components are studied here. The deflec-

Figure 1. Schematics of a double-leaf plate.

tion of the individual components is the solutions, which will be computed in this paper. The local
coordinate systems are used for each components, that is, the origin is placed at the corner of each
plate, and each beam has the origin at one end. Here the simpleharmonic vibration is considered,
and hence the solutions will have the formRe [w(x, y) exp iωt] whereω is the radial frequency. The
deflection of each component is denoted byw1(x, y), w2(x, j), andw3(x, y) for the top plate,j’th
beam, and the bottom plate, respectively. Other parametersand functions will be denoted with the
corresponding subscripts 1,2, or 3 for the top plate, beams,and bottom plate, respectively. For exam-
ple, The thickness of the top plate is denoted byh1, and the mass density of the bottom plate will be
m3. The length (x-direction) and the width (y-direction) areA andB, respectively. Hence the plates
covers the area(x, y) ∈ [0, A] × [0, B], and the beams are modelled as one dimensional objects in
x ∈ [0, A]. The beams have the same size, mass density and elastic modulus.

We choose the variational formulation using the lagrangianof the deflection to compute the
vibration field of the structure. The vibration field of the structure is found by constructing the la-
grangian of the total energy in the structure. The solution,the deformation, will be found by mini-
mizing the lagrangian. The lagrangian for the whole structure is given by the following general form
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for the deformationw.

L(w) =

∫ T

0

∫

V

{P(t) +K(t)− F(t)} dvdt, (1)

whereP is the potential energy,K is the kinetic energy, andF is the work done to the object. The
integral is taken over the volume of the elastic body and the aperiod of timeT . Here the integral will
be taken over the plates and beams.

The classical Kirchhoff (thin elastic) plate model expresses the strain energy and kinetic energy
of a thin elastic plate, which has non-moving boundary, by

P1 =
1

2

∫ A

0

∫ B

0

D1(x, y)
∣

∣∇2w1

∣

∣

2
dxdy, K1 =

ρ1h1ω
2

2

∫ A

0

∫ B

0

|w1(x, y)|
2 dxdy,

whereD(x, y) = E1(x, y)h
3
1/ (12 (1− ν2)) is the flexural rigidity andh1, E1, andν are the plate

thickness, Young’s modulus, and Poisson ratio, respectively. Note that the effects of rotation is ne-
glected inK1. The minima of Eq. (1) is the solution of the thin plate equation,

∇2
(

D1(x, y)∇
2w1(x, y)

)

− ω2m1w1(x, y) = p (x, y) ,

wherem1 = ρ1h1 is the mass density per unit area, andp is the effective pressure acting on the plate.
The above differential equation is useful when analytical solution can be considered. We however
deal with irregular structural properties, and therefore the solution method is numerical. The energies
for the bottom plate is given by the same formula withP3 andK3 for w3.

The strain and kinetic energies for an Euler beam are given by

P2 =
1

2

S
∑

j=1

∫ A

0

E2I |w2xx(x, j)|
2 dx, K2 =

ρ2h2ω
2

2

S
∑

j=1

∫ A

0

|w2(x, j)|
2 dx,

whereE2 andI are the Young’s modulus and the moment of inertia of the beam,andρ2andh2 are the
mass density per unit length and the thickness of the beam, respectively.

2.1.2 Coupling conditions

In addition to the strain and kinematic energy, we include the energy contributions from the
coupling of top/bottom plate and the beam due to the discrepancy in the displacement of the two
components. For example, the coupling between the top plateand the beams is given by

Psep
1,2 =

1

2

S
∑

j=1

∫ A

0

σsep(x, j) |w1 (x, yj)− w2 (x, j)|
2 dx, (2)

Pslip
1,2 =

1

2

S
∑

j=1

∫ A

0

σslip (x, j) |h1w
′

1 (x, yj) + h2w
′

2 (x, j)|
2
dx, (3)

P rot
1,2 =

1

2

S
∑

j=1

∫ A

0

σrot (x, j) |w
′

1 (x, yj)− w′

2 (x, j)|
2
dx, (4)

where′ indicates thex-derivative andσsep, σslip, andσrot are the Hooke’s constants for springs resisting
relative separation, slipping, and rotation of the coupledlayers, respectively. These functions are
defined along the beams, and thus functions ofx. The subscripts(l, j) indicate the interaction between
either top plate and beams ((l, j) = (1, 2)), or bottom plate and the beams ((l, j) = (3, 2)). Note that
the stiffness of these springs may vary along the coupling layer and from one layer to another. The
simpler model of coupling between the plate and the beams maylet the separation constantσsep

become infinite, that is the separation is zero and the plate and the beams are always in contact. The
total potential energy,P, is the sum of all potential energies from individual layersand coupling
between layers.
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Figure 2. Depiction of the model for the coupling conditions. The springs give the resistance to the horizontal
(left), vertical (centre), and rotational (right) movements.

2.2 Computation method of solutions

2.2.1 The Fourier expansion of the solution

The method of solution chosen in this paper is the Fourier expansion method, which is ideal
because of the rectangular shape of the structure. Furthermore the boundary of the plate is assumed
to be simply supported. Thus the basis functions are sine-functions, further simplifying the solution.
Different basis functions must be chosen when the boundary conditions are different. There are a
few example sets of basis functions shown in [5] for free or clamped boundaries. Whatever the basis
functions may be, a linear system of equations for the coefficients of the expansion over the chosen
basis functions. Hence the method of solution shown here will be applicable.

The deflection of the top, bottom plates, and beams are written by

w1(x, y) =
N
∑

m,n=1

C(1)
mnφm(x)ψn(y), w3(x, y) =

N
∑

m,n=1

C(3)
mnφm(x)ψn(y), w2(x, j) =

N
∑

m=1

C
(2)
mjφm(x),

for j = 1, 2, ..., S, respectively, where the basis functions areφm(x) =
√

2/A sin kmx, andψn(y) =
√

2/B sin κny, and the wavenumbers are given bykm = πm/A andκn = πn/B. Note that the basis
functions are orthonormal. The positions of the joists are given by y = yj, j = 1, 2, ..., S. Note
that the number of terms in the series has already been truncated toN to construct the finite system
for the numerical computation. The operations are then expressed using the column vectors of the
coefficients,
c1 =

(

C
(1)
11 , C

(1)
21 , · · · , C

(1)
NN

)

, c2 =
(

C
(2)
11 , C

(2)
21 , · · · , C

(2)
NS

)

, andc3 =
(

C
(3)
11 , C

(3)
21 , · · · , C

(3)
NN

)

. The

variational formulation then becomes

1

2





c1

c2

c3





t

L





c1

c2

c3



 = f
t





c1

c2

c3



 .

whereL is the matrix from the integrals andf is the vector of the external forcing, whose elements are
given by

∫ A

0

∫ B

0
f(x, y)φm(x)ψn(y) dx with zero padding for the parts corresponding toc2 andc3. In

§2.2, the forcing is set to be a point forcing, that is,f(x, y) = δ(x− x0, y − y0) for some fixed point
(x0, y0), which makes the integrals unnecessary. The following subsections will give details how the
elements ofL are obtained.

2.2.2 Contact conditions between the plates and the beams

The irregularity in bonding between floor and joists can be included by changing the function
σslip(x), σrot(x), andσsep(x) in Eq. (3). In this paper, onlyσslip(x) is varied for the numerical simula-
tions.
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Substituting the Fourier series expansion for the deflectionsw1 andw2 to Eq. (3) gives

Pslip
1,2 =

S
∑

j=1

∫ A

0

σslip (x, j)

∣

∣

∣

∣

∣

h1

N
∑

m,n=1

kmC
(1)
mnϕm(x)ψn(yj) + h2

N
∑

m=1

kmC
(2)
mjϕm(x)

∣

∣

∣

∣

∣

2

dx

whereϕm(x) =
√

2/A cos kmx. Then the above integral will be obtained by computing
∫ A

0

σslip(x, j)ϕm(x)ϕm′(x) dx =
1

A

∫ A

0

σslip(x, j)

(

cos
π(m−m′)

A
x− cos

π(m+m′)

A
x

)

dx.

Notice that this integral is simply the Fourier cosine coefficients of the functionσslip (x, j), which can
be computed using the fast Fourier transform (FFT).

2.2.3 Elastic modulus of the plates

Substituting the series expansion forw1(x, y) to equation forP1 leads to vector and matrix
expression for the strain energy of the top plate. Let the functionD1 be separated intoD1(x, y) =
Dc1 + d1(x, y) whereDc1 is constant. The elements of the matrixL due to the the varying stiffness
D1(x, y) are computed using the integral

N
∑

m,n,m′,n′=1

∫ A

0

∫ B

0

d1(x, y)C
(1)
mnC

(1)
m′n′

(

k2m + κ2n
) (

k2m′ + κ2n′

)

φm(x)φm′(x)ψn(y)ψn′(y) dxdy.

The constant stiffnessDc1 will give us a diagonal matrix with its element(k2m + κ2n)
2 because of the

orthogonality of the functions{φm} and{ψn}. Note that the parts of the lagrangian matrix related to
the beams will have diagonal elements only because the stiffness of them is assumed to be constant.
Again the above integral is the formula for the 2d Fourier coefficients for the functiond1(x, y), which
can be found using the 2d FFT. The length of the transform mustbe double that of the sampled data
of d1(x, y). Furthermore, the products ofcosinecomponents are obtained by taking the real part of
the FFT inx andy directions. The contribution from the bottom plate can be derived using the same
formula withw3.

2.2.4 Shape of the joists

The numerical computation with twisting beams is not carried out here, and only the brief
derivation of the linear system will be given. In order to include not-so-straight shape of beams,
we here make a few assumptions and keep the model simple. The strain energy of the beams are
computed in the same way as before by integrating over thex from 0 toA. The shape ofj’th beam
is denoted by the function ofx, θj(x). Thus the contact between the top plate and the beam is given
by yj + θj(x). We first take the Taylor expansion of the modes at the contactcurves and omit the
higher terms becauseθj(x) is assumed small, that is,ψn(yj + θj(x)) ≈ (1 + κnθj(x))ψn(yj). Then
the displacement of the plate at the locations of the beams, denoted byBj are given by

w1 =

N
∑

m,n=1

(1 + κnθj(x))C
(1)
mnφm(x)ψn(yj), for (x, y) where the beams are.

The energy contributions{Pi,j}(i,j)=(1,2),(2,3) are now calculated from the above two expressions. For
example, the potential energy due to the slippage at the twisting beams is given by

Pslip
1,2 =

1

2

∫ A

0

σslip(x, j)

∣

∣

∣

∣

∣

h1

N
∑

m,n=1

C(1)
mn (km + kmκnθj(x))φm(x)ψn(yj) + h2

N
∑

m=1

kmC
(2)
mjφm(x)

∣

∣

∣

∣

∣

2

dx

Note that the higher order terms have been omitted. The aboveintegral can be expressed using vector
operations betweenc1 andc2 as shown in the previous section.
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2.3 Simulation of irregularities based on power spectral de nsity

The parameter functions with any PDF can be simulated using the method given in [2]. When
the PSD is given byPσ(x), the realizations of the parameter functionσ(x) with PDFpσ(x) are derived
by the following procedures. The parameter function can be expressed by

σ(x) =
√

2/M

M
∑

i=1

Qi cos (2πFix+ Φi) (5)

where the mean ofσ(x) is zero for allx ≥ 0. The PDF of the frequencyFi is determined by
pF (|f |) = 2/E [Q2]Pσ(f), for −1/2 ≤ f ≤ 1/2, wherePσ is the desired PSD ofσ, which in this is
given by a smoothhump-function (see Fig. 3). Thus the random variableFi has Gaussian distribution.
The PDF forQ is given by

pQ(q) = q

∫

∞

0

(

ψσ(
√

M/2v)
)1/M

J0(qv)v dv

whereψσ is the characteristic function,pQ(q) is the PDF of the amplitudeQi andJ0 is the Bessel
function of the first kind of order zero. The rigorous explanation of the above items is given in the
Appendix of [2]. Here the Gaussian distribution is chosen asthe target PDF, and thusQi is the
Rayleigh random variable.

The 2 dimensional functiond1(x, y), the deviation from the ideal stiffness, can be similarly
simulated using the expansion

d1(x, y) =
M
∑

i,j=1

QiRj cos (2πFix+ Φi) cos (2πGjy +Ψj) (6)

where the coefficients{Qi, Rj} are random variables with the PDFs given by the method above,
which again are the Rayleigh random variables. The phaseΦi andΨj are uniformly distributed
random values in[−π, π]. The frequenciesFi andGj are again Gaussian random variable.

3. Computation results and analysis

3.1 Simulation of σ(x) and D(x, y) from PSD

The functionsσslip(x) represents the qualitative bonding rigidity and is createdfor the conve-
nience of modelling, and thus cannot be measured directly. However, it may be reasonable to assume
σslip(x) to have Gaussian distribution. The simple Gaussian PDF1 in 1 and 2 dimensional spaces will
be considered for the PSD ofσslip(x, j), d1(x, y) andd3(x, y). The realizationsσslip(x) andd1(x, y)
are shown in Figs. 3 and 4 using the methods given by Eqs. (5) and (6) in §2.3. Two sets of slippage
and stiffness with two periods of variations along the beamsand over the plates have been used. The
variance of the simulated functions are set to 20% and 2% of the average constant for the slippage
and the stiffness, repectively.

3.2 Surface vibration levels

Fig. 5 shows the root mean square of the surface velocity at the frequencies from 150Hz to
250Hz. The slippage is randomized for Figs. 5(a) and (b), andthe stiffness is randomized for Figs. 5(c)
and (d). Figs. 5(a) corresponds to the slippage given by Fig.3(a,b), and Fig. 5(b) does to Fig. 3(c,d).

1The method of [2] allows any PDF for the frequency. The randomvariables can be generated using the inverse of the
cumulative distribution function of the uniform random variable.
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Figure 3. The PSD ((a) and (c)) of the simulatedσslip(x) and a few typical realizations ((b) and (d)) ofσslip(x).
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Figure 4. The PSD ((a) and (c)) of the simulatedd1(x, y) and a typical realization ((b) and (d)) ofd1(x, y).

The randomness of the slippage affects the surface velocitymostly near the resonant frequencies.
However, there is little effects showing between 220 and 240Hz, even thought there are several reso-
nances in that range. The stiffness for Figs. 5(c) and (d) arefrom the ones shown in Fig. 4(a,b) and
(c,d), respectively. The random stiffness with higher spacial frequency affects the higher frequency
range. The average resonant frequency peaks are smoothed when the stiffness is randomized. Further-
more the variance of the vibration level is nearly uniform after 220Hz. In both slippage and stiffness
cases, the lower variations of the random functions lead to slightly more smoothed out vibration
levels.

Figs. 6 and 7 show the distributions of the variance of the surface deflection of the top plate
when slippage and stiffness are randomized, respectively.There is little variance at a lower frequency.
At the higher frequencies, the location of the beams affectsthe variance distribution. However the
variance is not distributed evenly. The slippage affects lower frequency vibrations than it does the
higher frequency ones as shown in Fig. 5(a,b) with respect tothe mode shape. The stiffness affects
the higher frequency vibrations. The variance distribution become uneven.

The parameters for the beams and the plates are chosen from the nominal values for plywood
and timber beams,E1 = 109Pa,m1 = m2 = M3 = 500kg/m3, A = 5.1m, B = 3.2m, h1 =
h3 =0.015m,h2 =0.3m,ν =0.3 yj = jB/8, j = 1, 2, ..., 7, and the width of the beams is0.045m.
The average slippage constant is3×107N/m, which was determined from the experiments in [1]. The
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Figure 5. The average root-mean-square of the surface velocity from 150Hz to 250Hz when the slippage
resistance (a,b) and stiffness (c,d) are randomized. The variance is shown by the grey area.
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Figure 6. The distribution of the variance of the surface deflection at(a) 100Hz, (b) 150Hz, (c) 200Hz, and (d)
250Hz when the slippage resistance is randomized.
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Figure 7. The distribution of the variance of the surface deflection at(a) 100Hz, (b) 150Hz, (c) 200Hz, and (d)
250Hz when the stiffness of the top and the bottom plates is randomized.

location of the forcing is(2.85, 2.1).

4. Conclusions and summary

Even with the relatively simple model with two varying functions, slippage and stiffness, the
simulations generate a great deal of data, which makes analysing the effects of the randomness diffi-
cult. It is not clear how the combinations of particular randomness would affect the whole vibrations
the most or the least. The numerical simulations show that the irregularities (variations along the
beam or within the plate) affects the whole vibration. Thus the modelling of composite structure,
even this moderately complex double-leaf plate, require the random irregularities to be taken into ac-
count in order to make realistic estimates. The irregular features, stiffness of the plates, shape of the
beams and junction between the plates and the beams, are modelled using the variational principle.
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