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Abstract

This project describes a novel intelligent E-mail reply system through in-

formation retrieval and information generation techniques. There are several

difficulties to realise different kinds of functions using machine learning and

deep learning algorithms. For example, the publicly available raw training data-

sets cannot meet the functional requirements of the model, and the information

generation class models cannot satisfy the long text-based predictions due to

limitations of the algorithm. It is well known that the Term Frequency-Inverse

Document Frequency (TF-IDF) model is one of the most widely used feature

extraction methods in information retrieval because of its simple algorithm and

excellent performance. Meanwhile, The Document to Vector (Doc2Vec) model

is an extension algorithm of Word to Vector (Word2Vec), which can train the

index of documents together based on turning words into vectors. Good results

have been achieved in determining the relationship between words within a

document, as well as the correlation between different documents. Recently,

the Gated Recurrent Unit (GRU) model is playing an increasingly important

role in natural language processing (NLP) as an advanced method of applying

a recurrent neural network (RNN). Also, the GRU model utilises deep neural

networks to predict and generate information instead of extracting the original

existing information. Specifically, we use these three algorithms to train and

implement our models after heavily processing our training data. Experimental
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results show that a hybrid model combining the GRU information generation

model as the base with the method of sentence to vector embedding (Sent2Vec)

is a practicable method for long-text prediction. In the end, an intelligent E-mail

reply system is implemented in our experiment. Three models are compared

through subjective human evaluation.
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Chapter 1

Introduction

Currently, there is a strongly increasing trend of social media use, such as

using social networking sites and instant messaging (WhatsApp and Facebook

etc.), dominating our communications (Tsay-Vogel, Shanahan & Signorielli,

2018; Batra, Sidhu & Sharma, 2018). However, Electronic mail (E-mail) is still

the most common form of online business correspondence and is still a growing

and effective communication tool for most enterprises and individuals (Tsay-

Vogel et al., 2018). Meanwhile, E-mail is also an integral part of related personal

Internet experience (Coussement & Van den Poel, 2008). For example, E-mail

accounts (or E-mail addresses) are almost always required for registering on

website accounts, including social networking sites, instant messaging and any

other types of Internet services. Therefore, E-mail has become fully integrated

into our daily lives and business activities.

According to the Radicati Group’s statistics and projections (2018), more

than 281 billion E-mails are sent and received worldwide every day, and this

number is expected to increase by 18.5 per cent over the next four years. In

2018, more than half of the world’s population used E-mail, with more than

3.8 billion users (GROUP et al., 2018). Based on the above statement, it can be

11



Chapter 1. Introduction 12

determined that an average user sends and receives an average of 74 E-mails

per day, which also reveals the problem of E-mail overload.

1.1 Research Motivation

The problem of E-mail overload has not been solved in nearly half a century,

and it is continually becoming worse. Enterprises still maintain and manage

customer resources using E-mails because of handling users’ feedback and con-

sultation (Coussement & Van den Poel, 2008). To be specific, some customer

service centres of various organisations receive hundreds of thousands of E-mails

from customers every day. Although the staff in the customer service centres

have high-level training, there is striking similarity among huge E-mail data.

They need to spend lots of time replying to these E-mails, which results in high

labour cost during this process for enterprises. Every E-mail user also suffers

from E-mail overload. The development of the information age brings various

benefits to our daily life, however, alongside its convenience, attendant problems

are equally persistent.

For E-mail systems, E-mail overload was proclaimed as a ’universal problem’

(Whittaker & Sidner, 1996). As a formal means of communication, E-mail is

’central’ (L. A. Dabbish & Kraut, 2006), ’ubiquitous’ (Pazos, Chung & Micari,

2013) and ’indispensable’ (Hair, Renaud & Ramsay, 2007). Whittaker and Sidner

(1996) presented that E-mail users tend to leave an increasing volume of unread

or non-replied messages every day. Most users have numerous E-mails that they

do not ever read or get to reply to in time, which leads to E-mail management

issues, predominantly a messy and overwhelming mailbox.

There is a lot of time and labour wasted due to repeated E-mail responses;
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thus, a rapid and efficient method is highly needed. We believe that NLP tech-

niques using machine learning and deep learning algorithms have an incredible

role in solving the above issues.

The current research mostly focuses on developing an E-mail system with

an intelligent response function. However, there are still enormous research

gaps either in reusing old E-mails based on an information retrieval method

or the research of predictive generation-based responses based on neural net-

works. Therefore, the chance to solve these issues and find solutions sparked my

motivation for investigating a novel E-mail reply system.

1.2 Research Questions

The main research question (MRQ) is: how can one use the most advanced

text processing, machine learning and deep learning technology to design and

develop an intelligent E-mail management system that sequentially implements

intelligent response solutions to improve E-mail response efficiency and reduce

the E-mail burden? This MRQ can be further divided into three sub-questions:

SRQ1: How can one improve the quality and trainability of the existing

dataset by removing noise and marking data, so as to provide a good foundation

for subsequent model training?

SRQ2: How can one design an intelligent reply function of an E-mail system

with practical use value, which methods and algorithms should be chosen and

how should the structure of the models and the architecture of the system should

be designed in the experiment?

SRQ3: How can one evaluate the model quality and implementation results

to verify the effect of this research project?
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1.3 Contributions

This study contributes to the improvement of the existing model and relevant

practical application. The holistic analysis of this study added to existing research

by identifying a group of three essential models that should be considered in

reducing E-mail overload, compared to existing models that are less innovative.

For example, although the TF-IDF model was applied in intelligent E-mail systems

in 2017 (Linggawa, 2017), there exist some limitations such as not marking

E-mail labels and too much noise in the datasets. Holistic analysis of the benefits

of the Doc2Vec model has not been done before. Certainly, for the GRU-Sent2Vec

hybrid model, it uses a combination of information generation and retrieval,

which is an innovative model and is proposed for the first time. Therefore, the

study confirmed some results of innovative research that also emphasised the

contributions of three aspects.

1. Current popular methods are limited to short text prediction, at the word-

level. Like Chatbots, it can predict the next sentence based on the last

sentence. However, E-mails are long-text, and if the content of the reply

can be predicted from the whole of the received E-mail, work efficiency of

E-mail users will be greatly improved. In this study, Sent2Vec is introduced

into GRU and a novel hybrid model is constructed to make predictions

based at the sentence-level rather than word-level. However, it should

be noted that the scenarios applied by the models in this research are

not limited to long text prediction but are suited for short-text prediction

scenarios, such as Chatbots used in automatic reply in a chat room.

2. Using tags to improve the training corpus. The E-mail dataset is processed
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using a logical matching method, which matches sent and received E-

mails and uses them as a reference for answering new E-mails. This

study expands the sample diversity of the public E-mail dataset, and the

processed dataset will be published on GitHub1 for further research.

3. By creating user interfaces to implement core functions, our research is

truly applicable for many enterprise customer service departments. This

intelligent E-mail reply suggestion system allows users to choose an intelli-

gent reply function or direct reply. The system provides an opportunity for

users to review automatically generated replies before they are sent.

Overall, our research achieves the study purpose from model design to

algorithm improvement to a functional reality.

1.4 Thesis Organisation

In order to achieve the aim of this research, this paper is structured as follows:

Chapter 2: Chapter 2 studies the background of the development of E-mail

technology and determines the most serious problems existing

in the current E-mail management system. By searching and

studying other researchers’ methods of intelligently replying

to a new E-mail and technologies in related fields, we find

the idea of designing a new smart E-mail management system

and determine the technical direction to be applied in this

experiment.

Chapter 3: Chapter 3 demonstrates the research design which includes

system design and the design of our three models. This chapter
1https://github.com/fxyfeier
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shows all the techniques and methods used in the research

experiments as well as including cosine similarity, machine

learning algorithms and deep learning algorithms.

Chapter 4: Based on the system and model design of the previous chapter,

Chapter 4 discusses the implementation of the entire system,

involving the collection and pre-processing of data, modelling

and training of the three models, parameter optimisation, and

E-mail system client design for visual presentations.

Chapter 5: Chapter 5 mainly describes the evaluation of the models and

discusses the results. Firstly, we carry out self-evaluation of

the first two models that are based on an information retrieval

method and determine the final three models based on their op-

timal parameters. Through human evaluation, we subjectively

evaluate the effects of the three models. Finally, we have an

in-depth discussion of the results.

Chapter 6: Chapter 6 summarises the effective implementation process and

significant results of this research experiment. The constraints

and challenges in our research are discussed and future research

directions are considered.



Chapter 2

Related Work

In this chapter, our work covers several research areas. To promote the

excellent performance of our research result, we reviewed recent relevant stud-

ies on intelligent E-mail management system solutions, information retrieval

methods, and applications on machine learning and deep learning algorithms.

We sought to understand current problems and investigated related technologies

and existing solutions so that the more optimal models and methods could be

integrated and implemented.

This chapter is organised as follows: Section 2.1 identifies the most significant

problem that current users still face with E-mail. Our goal is also to mitigate this

problem. In Section 2.2, we explore various approaches to designing an E-mail

management system with intelligent responsiveness, which can be grouped

into three categories. Section 2.3 describes novel technologies related to our

research and their corresponding application areas and achievements. Section

2.4 illustrates the research gaps in this field by analysing the results of other

researchers. Finally, in section 2.5, we summarise all the techniques of design

and implementation in the relevant literature.

17
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2.1 Recognition of E-mail System Problem

E-mail has been around for nearly fifty years, during which time technology

has changed dramatically. It evolved from a simple communication system to

support various management functions, including task management, personal

archiving (Whittaker & Sidner, 1996), time management (Bellotti, Ducheneaut,

Howard, Smith & Grinter, 2005), task coordination (Martin, Van Durme, Raulas

& Merisavo, 2003) and information management (Whittaker, Bellotti & Gwizdka,

2006).

2.1.1 Background of E-mail System Development

According to Tomlinson (2009), E-mail was born in the fall of 1971, when

there were two types of computer programs that could transmit files and raw

information. However, both had significant usage limitations. For example, a

person using a messaging program could only send notifications to recipients

whose computers were matched with the senders. Ray Tomlinson studied these

computer programs and developed a new one that could send and receive

information over the Internet.

Although E-mail was invented in the 1970s (Tomlinson, 2009), it did not

flourish until the 1980s. E-mail was not widely adopted in the 1970s, mainly

because few people used ARPANET, a fundamental network system used before

the Internet as we know it now. ARPANET was created in the late 1960s, and

the network was slow. Limited by the network speed, users could only send

very short messages, and could not send as much data as they do now. By the

mid-1980s, with the rise of personal computers, E-mail began to be widely used

among computer enthusiasts and college students. By the mid-1990s, thanks to

the birth of the Internet browser, the number of Internet users around the world
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had surged, and E-mail began to boom (Partridge, 2008).

E-mail increased more than sixfold from 1995 to 2001, according to a 2001

survey by Rogen International (Kirkgöz, 2010). In addition, it took about two

hours a day for users to receive, check, prepare, and send the required E-mails.

The rise of E-mail as a form of communication has also attracted more people to

develop and improve its functions. With many unique features, it has become

more user-friendly.

Thomas et al. (2006) compared E-mail with five forms of workplace me-

dia (face-to-face conversations, telephone, voice mail, postal mail, and faxes)

and found that E-mail has four particular characteristics: it is asynchronous,

text-based, multiple-recipient addressable and has built-in memory that allows

messages to be stored, retrieved and forwarded.

The expansion and optimisation of these functions provided more conveni-

ence and benefits to users and contributed to the prosperity of E-mail. However,

there is a problem that researchers and developers have been working on for

more than two decades: E-mail overload (Whittaker & Sidner, 1996).

2.1.2 E-mail Overload

Whittaker and Sidner (1996) introduced the term ’E-mail overload’. They

analysed the chaotic use of E-mail and concluded that the overload of E-mail

was caused by the lack of capacity of the E-mail system to support asynchronous

communication. It is embodied in two aspects: First, how to manage whether

historical E-mail is easy to retrieve; second, how to track the current E-mail

session state, and then provide and display the current task information.

Over the next decade, the problem of E-mail overload has worsened, and

many researchers have tried to analyse the causes of the problem and actively



Chapter 2. Related Work 20

sought solutions. Thomas et al. (2006) addressed E-mail-related social processes

using three data-set sources with E-mail log and textual analysis. This paper

revealed the reasons for the E-mail overload to be unstable request and response

pressures, task delegation, and shifting interactants.

Dabbish and Kraut (2006) proposed an important quantitative examination

of E-mail overload. A nested model was built for regression analysis using

the standard least squares method, and the model features were identified by

predicting the importance and quantity of E-mail overload.

Stross (2008) made an interesting description ’E-mail has become the bane

of some people’s careers’. Many ’knowledge workers’, like office workers, have

experienced a deluge of E-mails waiting to be answered in their inboxes. Com-

monly, some crucial E-mails were ignored among these E-mails because they

were not replied to or even noticed. A wave of high-profile Internet companies

focused on eliminating E-mail overload.

NBC News (Tahmincioglu, 2011) reported that more than 100 trillion E-mails

were sent worldwide in 2010, about 294 billion sent every day, 16.7% more than

the previous year (from a technology research company Radicati Group). Faced

with constant E-mail flow, many users often failed to read their E-mails on the

same day, leaving many unread or unresolved messages in their E-mail inboxes.

Szóstek (2011) used several methods related to E-mail organisation and

retrieval and proposed some methods of E-mail management. He focused

on reducing E-mail stress for latent users and believed that archiving, filtering,

regularly checking and continuously monitoring could help employees effectively

manage their work E-mails.

Unfortunately, solutions from these studies still do not fundamentally solve

the problem of E-mail overload. The main reason for E-mail overload has always

been difficulty in keeping up with the speed of receiving E-mails (Grevet, Choi,



Chapter 2. Related Work 21

Kumar & Gilbert, 2014). Dabbish and Kraut (2006) showed that workers could

control E-mail overload by using software designed to make E-mail easier to use

or by adopting effective strategies.

It has long been expected that developing software can significantly reduce

the administrative burden of a large amount of E-mail (Stross, 2008). Stross

hypothesised that this technical solution could help deal with users’ public E-mail

accounts by preparing automatic replies.

2.2 New E-mail Response Approaches

In the previous section, by reviewing the technological development of the E-

mail system over the past half-century, we found that the problem that remained

unresolved was E-mail overload. Although the researchers were provided with

tons of related suggestions and solutions, there has been still no substantial

improvement.

E-mail users, especially those working in customer-related areas such as

customer service departments and help desks, use E-mails to answer customer

questions (Coussement & Van den Poel, 2008). Most of the time, the customer

service person has probably responded to a lot of similar inquiries, however,

they may still need to spend much time searching past replies to provide a

similar solution (Coussement & Van den Poel, 2008). Users are eager to adopt a

software application that can automatically identify the content of E-mails and

generate suggestions for replies, reducing the daily pressure of responding to a

large number of E-mails (Linggawa, 2017).

Some researchers have come up with several techniques for automatic reply

to try to ease this tedious and frustrating process. Three of the major auto-

response E-mail solutions are predicting response behaviour, reusing Previous



Chapter 2. Related Work 22

Reply E-mails, and automatically generating E-mail Response.

2.2.1 Predicting response behaviour

If an inbox is filled with a large collection of unread E-mails, users may have

a hard time finding messages they need to read and respond to (Whittaker &

Sidner, 1997; Bellotti, Ducheneaut, Howard & Smith, 2003).

Dabbish et al. (2005), used an organisational survey to analyse people’s

behaviour when they receive and respond to new E-mails. The survey was

conducted by sending E-mails to 1,100 E-mail addresses of professors, faculty

and students at Carnegie Mellon University. By collecting the participants’ work

environment (such as the nature of the job), the status of their E-mail use

(including the frequency of E-mails sent and received), the habit of replying to

E-mails and the details of behaviour they provided to handle five new non-spam

E-mails with the category of the E-mail content, Dabbish et al. found that the

use of E-mail reflects personal orientation, job requirements and interpersonal

differences. This study provided a necessary reference for further research on

predicting E-mail reply behaviour.

Dredze et al. (Dredze et al., 2008) developed a prototype of an intelligent

E-mail system that could predict the response behaviour to an E-mail intelligently.

It can be used to predict whether an incoming E-mail needs to be replied to and

manages which E-mails need to be replied to in a time sensitive manner. At the

same time, the alert system will also issue an alarm when an expected attachment

is missing from the reply. In the whole research process, logistic regression

was used as a classifier algorithm, and the sender-to-recipient relationship was

extracted as the main feature for feature learning, while text features (such as the

marking feature of the problem), keyword features, and word frequency-inverse
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document frequency were also used in the training process. The prototype has

been implemented as an extension of Mozilla Thunderbird E-mail client, which

is an initial intelligent messaging system.

In a recent study, Yang et al. (2017) found various features that affect E-mail

response behaviour, such as E-mail content, meta-data factors, and time series

features. Considering binary dialogue and group discussions, they used the

Avocado Research E-mail collection, a public dataset that is used to build models

to predict recipients’ response behaviours (response time and reply behaviour),

as a training dataset. They conducted a detailed experiment at a technology

company, and the results represented an understanding of E-mail response

behaviour in an enterprise environment.

In many predictive response behaviour models, the primary method is to

classify E-mails based on their subject or extracted content. Feature extraction

is done by performing tag checking. First, the question keywords in the E-mail

content, the question marks, the E-mail addresses, some particular keywords

(such as attach, attachments, attached) in the E-mail are marked as special

identifying information (Dredze et al., 2008). Then the word frequency from

the training dataset is calculated. The next step is to generate a prediction of

whether the received E-mail needs to be replied to, and then to mark each E-mail

’reply required’ or ’no reply required’. The last step is to display it or provide a

warning to the user (Ayodele & Zhou, 2009; L. Dabbish, Kraut, Fussell & Kiesler,

2004).

Most of these models adopt rule-based classification technology. However, the

necessary condition of classification optimisation is a large amount of labelled

training data, so it is an essential and challenging task to collect or process

enough training datasets to construct a classifier knowledge base. Therefore,

based on the limitations of the training corpus we can find, we will not use this
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approach in our research.

2.2.2 Reusing Previous Reply E-mails

The second primary approach to designing an intelligent E-mail system is to

reuse previous reply E-mails. This is also known as textual case-based reasoning

(CBR) (Lapalme & Kosseim, 2003). The method is inspired by a scientific study

of human memory cognition (Schank, 1982), using previous experience to solve

similar new problems.

Lapalme and Kosseim (2003) divided CBR processing into three stages: case

retrieval, case reuse and answer penalisation. Based on TF-IDF and mutual

information measurement algorithms, they collected all basic word pairs from

received E-mails and their replies and selected the most crucial word pairs.

Lapalme and Kosseim’s experimental process was based on the substitution

of entities in E-mails, a classification model determined the extraction of words

representing role information. Specifically, entities such as the sender name,

company name, and specific business need to be tagged with the corresponding

reply content using senders, subsidiaries, or financial institutions provided in

the prepared repository (Lapalme & Kosseim, 2003). However, the limitation of

this study is that its application field is very narrow, and this substitution mainly

depends on specific enterprises. It is impossible to predict various relational

areas and perform tag matching, and it is hard to adjust the numeric information

(such as price, date and age). Their research was limited mainly to technologies

of fifteen years ago. However, this research idea still provides us with a valuable

reference.

Hewlett and Freed (2008) present a much better process of responding to

recommendations. Their research focused on receiving a large number of similar
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inquiry E-mails over a limited period time by engaging in user participation

feedback, designing the system, and selecting the most relevant quick learning

answers. The machine learning method they chose is Margin Infused Relaxed

Algorithm (MIRA), which was proposed by Crammer and Singer (2003) used for

dealing with multi-class problems. Also, all the existing messages with triggering

properties and queries are simultaneously converted into TF-IDF vectors. In each

round of testing, eight stimuli messages that are closest to the query message

will be selected and displayed to users participating in the test, and machine

learning algorithms are executed on the response selected by these users. Their

research has achieved better performance than previous work.

The latest research using case-based reasoning to design an intelligent E-mail

function is in Linggawa’s (2017) master’s thesis. He stored historical responses

in a case base and resolved new mail issues by reusing previous solutions. The

process combined text processing, semantic analysis (such as lexical analysis

and synonym expansion) and a TF-IDF retrieved-based method to find similar

exact matching cases. The experimental results showed that synonym expansion

could improve the accuracy of retrieval matching. The training corpus used is

the Enron E-mail dataset, which is a free online data resource.

It is a good design idea to reuse a similar previous E-mails as a new response.

Although there is not much research that can be used for a reference regarding

this method, our research will draw on the ideas of previous studies. Moreover,

we will introduce the latest cutting-edge technologies and some new ideas.

2.2.3 Automatically generating E-mail Response

In some E-mail management systems, an E-mail response program is in-

tegrated, which can automatically predict response suggestions based on new
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received E-mail.

In the early years, leading automatically generated responsive E-mail systems

used three steps to form a response: 1, Identify the issues contained in the E-mail

content; 2, Search the predefined solutions in the knowledge base; 3, Provide

a reformulated solution (Busemann, Schmeier & Arens, 2000). In the study by

Busemann et al. (2000), they used shallow text-based methods and machine

learning techniques (STP and SML) to classify E-mail request categories.

The simplest and most common applications used pre-written response tem-

plates and filled in the blanks to assist the creation of new E-mails. Some

systems were even able to extract templates automatically. For example, some

call centres, such as Kana and RightNow, saved response time by tracking cus-

tomer E-mails and designing answer templates for the common questions and

answers (Lapalme & Kosseim, 2003).

Kosseim et al. (2001) used the information retrieval method and NLP tech-

nology in their research. Based on the Lexico-syntactic extraction methods,

specific information (such as date, structure and organisation name) in a specific

discourse domain of a message is presented in a structured template format.

Then by combining semantic validation and discourse reasoning, a template of

the answers is selected, the selected normative replies are filled into the tem-

plate correspondingly, and the answers are organised into semantic responsive

answers.

In recent years, artificial intelligence has made rapid progress in NLP. Based

on previous research, a large number of studies have adopted new algorithms

and models and made many breakthroughs. Among them, Google Gmail team

research on intelligent E-mail response is very prominent.

In the paper, ’Smart Reply: Automated Response Suggestion for E-mail’

(Kannan et al., 2016), published by the Google team in August 2016, a new deep
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learning algorithm, RNN (Giles, Kuhn & Williams, 1994), was implemented for

the design of an auto-reply E-mail function. They used the Long Short-Term

Memory (LSTM) neural network (an improved model of the RNN) (Hochreiter

& Schmidhuber, 1997) to process received messages and predict responses.

Considering the high training cost of the LSTM neural network model, in order

to improve the response quality, they combined semi-supervised graph learning

(Ravi & Diao, 2016) and a semantic intention clustering method to generate

offline response space, and then reduced selection to provide the best response

suggestion.

Referring to the techniques proposed in the previous article in combina-

tion with machine learning classification, weighted keywords and similarity

measurement techniques, Parameswaran et al. (2018) designed a function of

automatically generating and suggesting short E-mails. The system was designed

to respond to the various types of queries submitted by university staff and

students. Their research has also been applied to the functional services of their

university, which sends and receives large numbers of inquiry E-mails every day.

In May 2018, Google’s research team improved their auto-reply model on

Gmail’s smart prediction function1. This impressive function has dramatically

improved the Gmail user experience. The model they used is shown in Figure

2.1. It can predict the next word in a sentence that a user might want to type,

based on the order of the preceding words. The core technology they used

is still the LSTM neural network, which combines the natural Bag-of-Words

(BOW) (Bengio, Ducharme, Vincent & Jauvin, 2003) method to balance delay

constraints. At the same time, their research results benefit from the development

of hardware technology. Most of their computing is performed using the TPUv2

1https://ai.googleblog.com/2018/05/smart-compose-using-neural-networks-to.html
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Pod2. Practically real-time prediction is achieved.

Figure 2.1: Gmail Smart Prediction Model3

It is a very challenging approach because deep neural networks have higher

requirements in all aspects, such as the quality of training data. If the dataset is

not large enough, then this high-level neural network may not learn relevance

properly. Meanwhile, since it is an end-to-end unsupervised learning method,

we cannot control the learning process and results. Nevertheless, although the

dataset we can use is small, we still wanted to try the most advanced approach

in this study. In order to make up the deficiency of objective conditions, we will

introduce some new ideas to optimise the model structure.

2.3 Related Techniques

In the field of NPL (Manning, Manning & Schütze, 1999), technology is

advancing rapidly. In the previous section, we analysed and discussed the three

main types of E-mail responses in the existing literature. In this section, we

mainly study related technologies that may be involved in this research. The

2https://cloud.google.com/tpu/
3https://2.bp.blogspot.com/-ilOCekdQP0Y/WvxdAt6fPZI/AAAAAAAACvE/2_bZTVZt2D8i

wSeiKx1rB2rpTVbr_v9KQCLcBGAs/s1600/model3.png
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main research interests include the application of TF-IDF in the field of inform-

ation retrieval, similarity calculation, prevalent word embedding technology,

neural network technology in the deep learning, and the design idea of Chatbot

in the field of similar technology.

2.3.1 Traditional Feature Extraction Methods

The information retrieval method (Mooers, 1950), which requires users to

access pre-stored information, is a technology closely integrated into this study.

The core of the information retrieval process is retrieving the close correlation

between query questions and query content (Baeza-Yates, Ribeiro et al., 2011),

to extract the characteristics that reflect information content. The traditional

feature extraction methods are based on the vector space model, including

TF-IDF and One-hot vectors. Salton and Buckley (1988) proposed the concept of

TF-IDF, which became the most widely used solution in the information retrieval

field.

TF-IDF Weighting

Ramos et al. (2003) demonstrated the excellent performance of TF-IDF in

determining critical information in the documents of corpus. The corpus they

used was a random collection of 1,400 documents from an extensive United

Nations database in 1988. In order to test the stability of TF-IDF in noisy

environments, their experiment retained the original format tags and simulated

more noise. They calculated the weight of queries based on the formula

∑
i

Wi,d
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and selected the top 100 relevant documents in descending order. Compared

with naÔve, another query retrieval method, the results showed that this simple

algorithm could effectively enhance the query retrieval function through classi-

fication.

Chum et al. (2008) combined the weighting algorithm of TF-IDF with the

minimum hash algorithm in their study and proposed a method to calculate the

similarity between images and video, realising a fast index. Their experimental

results confirmed that the TF-IDF algorithm improved the efficiency and quality

of similarity calculation between the image and video field.

The feature extraction process of Dredze et al. (2008) used TF-IDF scores to

find the words that best represent questions. For instance, the TF score is used

to indicate the number of times a word appears in the question, the IDF value is

the total number of sentences containing the word, and the words expressing

the question are defined as the top 30 words with the highest TF-IDF score.

In a very recent paper, Kim et al. (2019) proposed a multi-co-training

(MCT) approach in the field of document classification, combining TF-IDF, latent

Dirichlet allocation (LDA) (Blei, Ng & Jordan, 2003) and Doc2Vec (Le & Mikolov,

2014) based on shallow neural networks. The combination of these three

methods increased the diversity of feature sets used for classification. They also

analysed and compared the characteristics of each method in their research.

Through a study of the above literature, we found that TF-IDF is the most

straightforward algorithm, and it still has good performance in the field of

information retrieval and information classification. One of our goals is to try

using a simple algorithm to get excellent results.
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2.3.2 Word Embedding

Traditional methods of information retrieval and classification mainly adopt

algorithms based on Continuous Bag-of-Words (CBOW) or word frequency stat-

istics. Whether generating one-hot vectors or TF-IDF weights, its disadvantages

are that it ignores the position information of the words and the relationship

between them, so the generated features are discrete and sparse, which may

eventually lead to too many dimensions. In the process of NLP, grammar, word

order, and semantics between words are important and cannot be underestim-

ated (Lilleberg, Zhu & Zhang, 2015; Tang et al., 2014). Thus, the concept of

word distribution in vector space was proposed (Rumelhart, Hinton, Williams

et al., 1988). This way represents a word vector as a dense vector by reducing

the number of dimensions used to represent a word, namely, word embedding

or distributed representation of a word (Mikolov, Sutskever, Chen, Corrado &

Dean, 2013a). Embedding word vectors enables models to capture the contex-

tual semantics and syntactic similarity of words in a document, as well as their

relationships to other words (Mikolov et al., 2013a; Tang et al., 2014).

Word to Vector

Currently, the most popular word embedding methods are Word2Vec (Mikolov

et al., 2013a) and Glove (Pennington, Socher & Manning, 2014). In our research,

the techniques used are derivative algorithms based on Word2Vec: Doc2Vec and

Sent2Vec. Although the performance of Glove is better than Word2Vec in some

cases (Pennington et al., 2014), we did not select Glove in our study because we

chose to focus on applying the extended algorithms of Word2Vec.

The literal meaning of Word2Vec is to convert words into vector representa-

tions. Developed by the Google R&D team in 2013, the algorithm has become
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one of the most popular techniques for word embedding. By using a shallow

neural network, a well-trained model can learn the expressive relationships

between semantics. It currently performs well in text classification, machine

translation, subject recognition, and various NLP tasks.

Lilleberg, Yun, and Yanqing (2015) introduced the application of Word2Vec in

text mining in their paper. The assumption in this research is that Word2Vec will

bring additional semantic features to help with text categorisation. After deleting

the stop words, they combined TF-IDF and Word2Vec to create a weighted sum

of word vectors for the words in the corpus. Comparing the experimental results

of the above method with those of TF-IDF and Word2Vec alone, showed that the

performance of the former is the best in most cases. It also proved that TF-IDF

and Word2Vec algorithms are reliable in text mining.

Zhou et al. (2015) applied the Skip-gram method (Mikolov, Chen, Corrado

& Dean, 2013b) in Word2Vec to the research of community question and answer

retrieval. In this experiment, the framework of the Fisher Kernel (Clinchant &

Perronnin, 2013) was used to aggregate variable-size words into embedding

fixed-length vectors. They showed that the advantage of this model is that it can

find the semantic relations in the context, which can improve the performance

of question-and-answer retrieval of community files. The effect of this model is

significantly better than that of the latent topics model (Cai, Zhou, Liu & Zhao,

2011).

In the field of machine translation, many studies have shown that context

within the scope of discourse can help achieve a smooth translation (Hardmeier,

Stymne, Tiedemann & Nivre, 2013). When used to predict the semantic rela-

tionship between words across languages, Garcia et al. (Garcia, Tiedemann,

España-Bonet & Màrquez, 2014) demonstrated that these models have powerful

capabilities. They used the CBOW mode (Mikolov et al., 2013b) in Word2Vec for
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bilingual cases and evaluated the model by predicting semantic-related words

and cross-linguistic vocabulary substitution. The biggest challenge, however, is

that some words in the translation pairs are lost during the training process.

With the rise of deep learning and various neural networks in the field of

NLP, the Word2Vec algorithm plays an important role. Specifically, input from

the source language is often inconsistent in length, and Word2Vec serves to align

the length of the vector in the input layer (Singh et al., 2017).

Paragraph to vector

From the above literature research, we know that the Word2Vec algorithm

is a distributed semantic representation of word construction. Training can be

divided into two different models: CBOW and Skip-gram. The former model

uses the context words to predict the centre word, while the latter model focuses

on the use of the current word to predict the context words (Mikolov et al.,

2013b). These ideas can also be extended to sentences and full documents.

Mikolov, Le and Sutskever (2013c) mentioned the limitations of the Word2Vec

algorithm. That is because when faced with words with multiple meanings, the

process of Word2Vec is to mix them into a common representation. Therefore it

cannot resolve lexical ambiguity. Additionally, many complex language phenom-

ena such as sarcasm, cannot be recognised (Le & Mikolov, 2014). In this case,

the method of paragraph vector is factored out. In their research, Le and Mikolov

(2014) introduced a more advanced algorithm based on Word2Vec and stated

that it is superior to the Bag-of-words model and other techniques. Para2Vec,

which uses vectors to represent paragraphs, can also be extended to a model

of Sent2Vec or Doc2Vec, which means to use vectors to represent sentences or

documents.
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Le and Mikolov (2014) not only proposed two models of paragraph vector

but also used the paragraph vector as a method of text comprehension, which

is applied to emotion analysis and information retrieval. The training datasets

used were Stanford sentiment treebank dataset (Socher et al., 2013) and IMDB

dataset (Maas et al., 2011) respectively. The experimental results showed that

the unsupervised paragraph vector algorithm could learn vector representations

of texts of different lengths. The good performance in capturing paragraph

semantics proves that this method is more competitive in the NLP field.

Zhu, Li and Melo (2018) proposed a framework for generating experimental

sentence triplets, by comparing three methods of sentence embedding, this paper

explored whether and how the similarity of sentence embedding is affected by

the syntactic structure or semantic changes of a given sentence. They concluded

that the method of sentence embedding could distinguish between negative and

synonymous information in a sentence. In this case, the performance of the

sentence embedding method is much better than that of the word embedding

method.

The method of sentence embedding is also common in the related research

of sentiment analysis and problem classification (Kiros et al., 2015). Although

the method of sentence embedding performs well in analysing the relationships

between sentences in a document, we cannot deny that the word embedding

method performs well in some related fields. They all play an essential role in

the research of NLP.

2.3.3 Similarity Measurement

In information retrieval and text mining, many algorithms use vectors to

represent the features of the document. Theoretically, terms can be assigned to
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vectors in different dimensions, then the Cosine similarity becomes a powerful

metric when measuring the similarity between two documents using these vector

relations (Singhal et al., 2001).

Salton et al. (Salton, Wong & Yang, 1975) proposed a model, namely

the vector space model, for an automatic indexing system. The model can

represent a document in a multi-dimensional vector space, and the terms in the

document can be assigned to different dimensions by their weights, depending

on their importance in the document. In this way, measuring the similarity

between documents in the vector space can be converted into the method of

measuring the distance between the two vectors by their cosine angle in that

space. Therefore, the distance between vectors can reflect the degree of similarity

between documents.

This model is very beneficial and can be extended to calculate similarity that

can be represented by any vector. For example, it can be combined with the

weights generated by TF-IDF, or with vectors generated by Word2Vec, Sent2Vec

or Doc2Vec model, so it will be applied in our research.

2.3.4 Deep Learning and Neural Network

Hinton, Osindero and Teh (2006) put forward the concept of deep learning

in their article. Based on the Directed Belief Networks (DBN), an unsupervised

greedy layer-by-layer training algorithm was proposed to bring about the hope

of solving the deep structure-related optimisation problems. Then the deep

structure of the multi-layer automatic encoder was proposed. In addition, the

Convolutional Neural Network (CNN) was presented by Lecun et al. (1989).

It is the first real multi-layer structure learning algorithm to improve training

performance by using spatial correlation and reducing the number of parameters.
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This theory has become a solid foundation for modern deep learning research.

RNN

In many studies, we can see that deep learning has been successfully applied

in many fields, such as computer vision, speech recognition, memory networks

and NLP. One algorithm for processing language sequences is RNN (Rumelhart et

al., 1988). The structure can process input sequences using its internal storage

state, which is very suitable for serialisation processing, such as continuous

handwriting recognition (Graves et al., 2009) or speech recognition (X. Li & Wu,

2015).

Vinyals and Le (2015) applied the sequence-to-sequence characteristics of

the RNN to the task of conversation modelling to predict responses in question-

and-answer conversations. Surprisingly, the experimental results were good in

terms of fluency and accuracy. Their experiment used two training datasets:

one from the IT help desk chat service and the other from movie transcripts.

They found that this conversational model could extract knowledge from noisy

but open domain datasets and generate simple and basic conversations. At the

same time, the model could capture more important long-range correlations

than the N-gram model, which became an important idea for designing Chatbots.

However, they pointed out in their study that lack of consistency in the dialogue

was the biggest problem that still needed to be addressed.

Following this research, one year later Jiwei et al. (2016) proposed an

advanced Neural Conversation Model based on persona information.

RNN also extended out of many variants, including Bidirectional Associative

Memory (BAM) Network (Kosko, 1988), Echo State Network (ESN) (Jaeger &

4https://en.wikipedia.org/wiki/Recurrent_neural_network/media/File:Recurrent_neural
_network_unfold.svg
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Figure 2.2: One RNN Cell Unit4

Haas, 2004), Neural History Compressor(Schmidhuber, 1992), as well as the

most widely used LSTM (Hochreiter & Schmidhuber, 1997) and GRUs (Cho et

al., 2014), which use gates to control their unit cells. A basic RNN cell unit is

shown in Figure 2.2.

LSTM

A typical LSTM unit (as shown in Figure 2.3) consists of an input gate, an

output gate and a forgotten gate. The unit can remember values at any time

interval, and the three gates jointly determine the flow of information in and

out of the unit (Hochreiter & Schmidhuber, 1997).

Figure 2.3: One LSTM Cell Unit 5
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GRU

The GRU algorithm is an improved LSTM algorithm proposed by Chung et al.

(2014). Based on LSTM, it combines the forgotten gate and input gate into an

update gate and combines the data unit state and hidden state, which makes the

model structure simpler than LSTM. Its basic unit is shown in Figure 2.4. Since

it is designed as two gates, its parameters are smaller than LSTM’s, which is an

advantage but also has limitations compared with LSTM.

Figure 2.4: One GRU Cell Unit6

2.4 Research Gap

Developing an E-mail system with an intelligent reply function is still the

direction that researchers are working on to solve the E-mail overload problem.

In many studies, there is a big gap in both the reuse of past E-mails based on the

information retrieval method and the prediction generated responses based on

neural networks.
5https://en.wikipedia.org/wiki/Recurrent_neural_network/media/File:Long_Short

-Term_Memory.svg
6https://en.wikipedia.org/wiki/Recurrent_neural_network/media/File:Gated_Recurrent

_Unit.svg
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There is not much research on reusing previous reply E-mails because this

method needs ideal E-mail datasets in order to get good performance. But

the E-mail datasets that can be used for research are limited. Some studies

used small datasets collected by themselves or after simply processing the data,

directly adopted the method of information retrieval. In this case, it was difficult

to achieve the desired effect.

As for automatically generating E-mail response, many researchers have

introduced word embedding, deep learning algorithms and various neural net-

works. Even Gmail, now the best at responding intelligently to E-mails, uses

technology based on word-level predictions. This means using words to predict

the following possible word in a sentence. However, most E-mails are long text;

and even short E-mails usually contain more than two sentences. Research and

exploration in this area are still lacking regarding how to predict and generate

an E-mail consisting of multiple sentences. Part of our research is to design a

model that combines multiple deep learning algorithms to explore the way to

generate E-mail responses at the sentence or paragraph level.

2.5 Summary

E-mail overload is still the biggest problem facing users today. In our review

of E-mail management system technology, we found that there is still a lot of

research potential in this space. Many researchers continue to contribute and

believe that intelligent E-mail management systems will play an important role

in alleviating E-mail overload.

After reviewing three main design methods of intelligent E-mail management

systems, we adopted two main methods: E-mail reuse based on the information

retrieval method and predictive response generation based on neural networks.
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Relevant machine learning and deep learning algorithms will be involved in this

study, including TF-IDF, Doc2Vec, Sent2Vec and GRU.

We found that the TF-IDF algorithm is the simplest and most direct algorithm,

and it has good performance in the field of information retrieval and information

classification. One of our goals is to try to use a simple algorithm to get excellent

results. Moreover, although Glove performance is better than Word2Vec in

some cases, in this study, in order to find semantic correlation, we adopted the

derivative algorithms based on Word2Vec, namely Doc2Vec and Sent2Vec. In

addition, due to the small number of training sets used in the experiment, we

will adopt a lightweight GRU relative to LSTM for the neural network-based

method of generating predicted responses.



Chapter 3

Design and Methodology

In Chapter 2, we explored previous research and techniques often used to

develop intelligent E-mail response functions. In this chapter, we describe the

system architecture design of the project and the architecture design of the three

models. Also, we explain the related algorithms and principles used in these

models in detail.

The following details the organisation of this chapter. Section 3.1 presents

the design thoughts and system framework of the project. Section 3.2 intro-

duces three models and presents relevant algorithms research. The models

include TF-IDF, Doc2Vec and GRU-Sent2Vec hybrid model. Since the algorithms

applied in each model are very different, the research on the algorithms is

to fully understand and prepare for parameter adjustment in the process of

model implementation. Section 3.3 gives a brief summary of this design and

methodology.
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3.1 System Design

Our research aims to provide an intelligent response solution for individuals

or corporate departments (such as service centres or help desks) that receive a

large number of similar E-mails every day. This kind of solution can significantly

save time, improve work efficiency and promote social productivity.

For this purpose, we developed an intelligent E-mail client with core function-

ality to extract information and learn new information based on learning from

previous E-mails and then give intelligent response suggestions to new E-mails.

Three models were trained in this experiment in order to explore better

performance: TF-IDF model, Doc2Vec model and GRU-Sent2Vec hybrid model.

Their operating principles are different. The first two models belong to the

information retrieval method, and the last model is a combination of the in-

formation retrieval method and the information generated method, which is a

hybrid model specially designed for this experiment. The methods we use are

also widely used in popular applications such as Chatbot. We have improved

our method on the basis of relevant work and adapted it to the long-text E-mail

format.

The system framework of this experiment is shown in Figure 3.1. Initially,

we needed to execute a series of text prepossessing steps on the original E-mail

dataset. For the processed E-mails, we only kept the matching E-mail pairs

(namely received E-mail - reply E-mail), so that we could obtain the relationships

between the received E-mails and reply E-mails and put them into two databases.

The next step is to train our three models using the results of text processing.

Upon completion of the model training, when a new E-mail is received, the

intelligent E-mail management system client will offer users two options: one

is to reply directly, and the other is to use the smart reply function. In terms
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of the smart reply function, users can choose their preferred reply suggestion

generated by the three models.

Regardless of whether users directly reply to an E-mail or modify the response

suggestions generated by the models, after replying, the newly received E-mail

will be paired with the sent E-mail, and then the results will be stored in both

databases in preparation for the models’ further learning.

In this study, we chose not only a traditional machine learning method,

but also a neural network based on a word embedding algorithm and deep

learning algorithm. Our development vision is not limited to a rules-based

specific field, nor is it intended to produce only brief, common, yet ineffective

feedback suggestions (e.g. Thank you, Yes, please, No, thank you, Best regards,

and so on) — our aim is to design a long-text response suggestion that is more

suitable for the E-mail format. The application scenario is more suitable for a

company’s service centre because there, a large number of similar E-mails need

to be sent and received manually. The next section will introduce the design

ideas of the three models.

3.2 Model Design

In reviewing relevant techniques from previous studies, we identified two

main approaches to designing our models: information retrieval (Figure 3.2)

and information generation (Figure 3.3). For the retrieval-based model, this

project adopted TF-IDF and Doc2Vec algorithms for experiments. TF-IDF is a

classical algorithm that is applied in the fields of information retrieval and text

classification. Due to its good performance, Doc2Vec has become more and

more popular in the industry in recent years. In addition, Linggawa (2017) also

used the TF-IDF algorithm to design an intelligent E-mail client sharing a similar



Chapter 3. Design and Methodology 45

motivation.

In terms of the second approach mentioned above, we selected a deep

learning algorithm to design our generative model. Since the sequence-to-

sequence (seq2seq) model was successfully introduced from the field of machine

translation into the Chatbot dialogue system, we tried to apply a seq2seq model,

GRU, to our intelligent E-mail management system. In order to obtain better

experimental performance, we improved some algorithm aspects, such as nested

Sent2Vec into GRU, and designed a hybrid model of information generation

combined with information retrieval. Next, we will illustrate the design thoughts

of these three models.

3.2.1 TF-IDF Based Model

TF-IDF is a popular term weighting scheme widely used in information

retrieval and text mining (Trstenjak, Mikac & Donko, 2014). In this section, we

will introduce the TF-IDF model’s core content, the TF-IDF algorithm and the

Cosine Similarity algorithm of the vector space model. In the modelling process,

we used the Python programming language library, Scikit-learn library1.

Term Frequency (TF): According to the statement by Luhn (1957), the TF

weight of the terms for a document is proportional to the frequency of terms

appearing. In the traditional formula, the number of occurrences of terms

indicates the frequency of occurrence of terms, as shown in Equation 3.1. The

modelling algorithm of TF-IDF is modified in the Scikit-learn library (such as TF

for word frequency), which is slightly different from the traditional formula.

TF(t,d) = ni,j (3.1)

1https://scikit-learn.org/stable/
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Figure 3.2: Retrieval-based Model

Figure 3.3: Generative-based Model
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with:

• ni,j: The number of times the word ti appears in the document dj.

Inverse Document Frequency (IDF): Inverse Document Frequency, also

known as IDF (Equation 3.22), measures the importance of terms in the docu-

ment or its particularity in the whole corpus. Actually, certain terms (such as

’the’, ’of’, ’is’) have a very high frequency in most documents, but they contribute

very little to the importance of the content in the document. Sometimes less

frequent terms, however, are more relevant to the topic of the document.

IDF(d,t) = log
N(D) + 1

N(t,D) + 1
+ 1 (3.2)

with:

• N(D): Total number of documents in Corpus D.

• N(t,D): The number of documents containing the word t.

• IDF(d,t) : The word t’s IDF value in the document dj.

TF * IDF: The value of TF-IDF (Equation 3.3) is the multiplication of TF

and IDF (Ramos et al., 2003). This numerical result is intended to reflect the

importance of words to documents in collections or corpus.

TF − IDF(n,d) = TF ∗ IDF (3.3)

The vector of TF-IDF is normalised by the Euclidean norm (Equation 3.4):

vnorn =
vvv

∣∣vvv∣∣
(3.4)

2https://scikit-learn.org/stable/modules/feature_extraction.html
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TF-IDF is a method based on the Bag-of-words statistics (J. Yang, Jiang,

Hauptmann & Ngo, 2007). Assuming the document is just a collection of words,

the document can be vectorised by calculating the TF − IDF(n,d) value of each

word. The vectorised document refers to the vector space model, which allows

calculation of the similarity between all documents in a corpus by using the

Cosine theorem.

Cosine Similarity: Using the Euclidean dot product formula, the magnitude

and angle of two non-zero vectors (AAA and BBB) can be expressed. Moreover, the

included angles between vectors provide a basis for calculating the similarity of

documents, which is called Cosine Similarity (as shown in Equation3.5).

AAA ⋅BBB = ∣∣AAA∣∣ ⋅ ∣∣BBB∣∣ ∗ cos(θ) (3.5)

The Cosine Similarity method is suited to any number of dimensions; hence,

documents are represented by vectors in information retrieval and text mining.

Also, Cosine Similarity is treated as a high-dimensional positive space for each

different term that is assigned to a different dimension. Therefore, we can

measure the similarity between the two documents in terms of the subject (Jeon,

Croft & Lee, 2005).

In this case, we use one of the simplest examples to show how to calculate the

semantic similarity between two documents. Suppose we have two documents,

A and B, each consisting of four words. The two document vectors can be

represented as AAA = [aaa1,aaa2,aaa3,aaa4] and BBB = [bbb1, bbb2, bbb3, bbb4]. The similarity between

document A and B can be calculated by Equation 3.6.
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similarity(A,B) = cos(AAA,BBB) = AAA ⋅BBB
∣∣AAA∣∣ ⋅ ∣∣BBB∣∣

= ∑ni=1(Ai ∗Bi)√
∑ni=1(A2

i ) ∗
√
∑ni=1(B2

i )

= a1 ∗ b1 + a2 ∗ b2 + a3 ∗ b3 + a4 ∗ b4√
a21 + a22 + a23 + a24 ∗

√
b21 + b22 + b23 + b24

(3.6)

This method can help us calculate the similarity of all the documents in the

corpus. The implementation of this model will be demonstrated in the following

chapter.

3.2.2 Doc2Vec Based Model

Doc2Vec is an extension of Word2Vec (Le & Mikolov, 2014), similar to

Word2Vec, except that it uses a fixed-length vector to represent an entire doc-

ument. This unsupervised learning algorithm can express paragraphs or docu-

ments as vectors that are well suited for document processing tasks. For example,

it can be used to compare similarities between paragraphs or documents. In this

section, we will explain the related algorithms for the implementation of the

four modes in the Doc2Vec model.

PV-DM: In the Distributed Memory Model of Paragraph Vectors (PV-DM)

architecture (Figure 3.4), the algorithm is similar to CBOW in Word2Vec, but

with a new document’s ID added during the training process. Combined with

the document’s ID, this mode can predict the next word from the previous word

in the specified window range. The ID, like a common word, is mapped to a

vector that has the same dimensions as other word vectors, but it comes from
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Figure 3.4: PV-DM Mode

the other different vector spaces. It can be expressed as Equation 3.7.

L = ∑
w∈C

log p(DocID,w(t−2),w(t−1),w(t)∣w(t+1)) (3.7)

with:

• DocID: The ID of one document.

• w: The words in corpus C.

• w(t): The word in the current time t in the time series.

In the training process of the document, the words in the same document

share the same document vector, which is equivalent to using the semantics of

the entire document to predict the probability of each word.
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PV-DBOW: PV-DBOW is an abbreviation for Paragraph Vector - Distributed

Bag of Words (Mikolov et al., 2013b). As can be seen from Figure 3.5, its

architectural design is similar to the Skip-gram in Word2Vec. Nevertheless,

this mode differs in that it predicts the probability of current words based on

document’s ID, and the output is a randomly sampled word in the paragraph. It

can be expressed as a maximum likelihood function, as shown in Equation 3.8.

L = ∑
w∈C

log p(w(t−2),w(t−1),w(t),w(t+1)∣DocID) (3.8)

with:

• DocID: The ID of one document.

• w: The words in corpus C.

• w(t): The word in the current time t in the time series.

According to some related experiments, PV-DBOW is faster than PV-DM in

computing speed, because it stores less data in the operation process. However,

PV-DM works better for less frequent word prediction. We will conduct specific

experimental operations in Chapter 4, and evaluate the effects of experimental

results in Chapter 5.

Furthermore, based on the above two different architectures, there are

two different modes in the training stage: Hierarchical Softmax and Negative

Sampling.

Hierarchical Softmax: The core idea of the Hierarchical Softmax method

is to use the Huffman Tree, which is the optimal binary tree with the shortest

weighted path length. By putting the information with high weight in front, the

maximum value of approximate conditional likelihood is calculated to reduce

the computational burden. It can be expressed as Equation 3.9.
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Figure 3.5: PV-DBOW Mode

p(dwj ∣Xw, θ
w
j−1) = [σ(XT

wθ
w
j−1)]1−d

w
j ∗ [1 − σ(XT

wθ
w
j−1)]d

w
j (3.9)

with:

• dwj : The encoding of the word w on the jth node.

• Xw: The sum of the context vectors. In the projection layer, the vectors of

the input layer are combined to form a matrix Xw.

• θwj−1: The parameter vector corresponding to the non-leaf node in the path.

• XT
w : Xw’s transpose.

For example, we have a training sample with the centre word w, and the
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context around it is written as context(w). We can obtain the probability of a

predicted word expression as Equation 3.10.

L = ∑
w∈C

log
lw

∏
j=2

[σ(XT
wθ

w
j−1)]1−d

w
j ∗ [1 − σ(XT

wθ
w
j−1)]d

w
j

= ∑
w∈C

lw

∑
j=2

(1 − dwj ) ∗ log[σ(XT
wθ

w
j−1)] + dwj ∗ log[1 − σ(XT

wθ
w
j−1)]

(3.10)

To solve the maximum value, we can use the gradient ascending algorithm

to calculate the derivatives of θ and X, and the operation process is as follows

Equation 3.11.

∂L(w, j)
∂θwj−1

= [1 − dwj − σ(XT
wθ

w
j−1)]Xw

∂L(w, j)
∂Xw

= [1 − dwj − σ(XT
wθ

w
j−1)]θwj−1

(3.11)

Parameter θ and the word vector updated expression formulas are shown in

Equation 3.12.

θwj−1 = θwj−1 + η[1 − dwj − σ(XT
wθ

w
j−1)]Xw

v(w̃) = v(w̃) + η[1 − dwj − σ(XT
wθ

w
j−1)]θwj−1

(3.12)

with:

• η: learning rate.

• v(w̃): The word w’s vector.

Negative Sampling: Because Hierarchical Softmax has some disadvantages,

for instance, once the corpus is very large or the central word w in a training

sample is a very uncommon word, it will take a long time to find the word in the

Hoffman Tree. Negative Sampling is a valid solution because it can eliminate the
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complex computation of the Huffman Tree and make the model much simpler.

In the Negative Sampling method, the central word w is related to context(w).

If the prediction is correct, it is defined as a positive sample; if the prediction is

wrong, it is defined as a negative sample. For a given sample, the probability is

expressed as Equation 3.13.

p(u∣context(w)) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

σ(XT
wθ

u) Positive sample

1 − σ(XT
wθ

u) Negative sample
(3.13)

with:

• u: The central word u to be predicted

• p(u∣context(w)): The probability of being correct for a given sample u.

• θu: The parameter vector corresponding to the given sample.

• Xw: The sum of the context vectors. In the projection layer, the vectors of

the input layer are combined to form a matrix Xw.

• σ(XT
wθ

u): The probability when the context is context(w) and the predicted

central word is u.

Then a negative sample function can be expressed as Equation 3.14.

g(w) = ∏
u∈{w}∪NEG(w)

p(u∣context(w)) (3.14)

with:

• u ∈ ∪NEG(w): When the context is context(w), the probability that the

predicted central word is u.



Chapter 3. Design and Methodology 55

Using logistic regression, we can obtain the corresponding log-likelihood

function as Equation 3.15.

L = log∏
w∈c

g(w)

= ∑
w∈C

log ∏
u∈{w}∪NEG(w)

[σ(XT
wθ

u)]Lw
(u) ∗ [1 − σ(XT

wθ
u)]1−Lw

(u)
(3.15)

with:

• Lw(u): The frequency of a word u appearing in a context is represented by

a random length.

Similar to Hierarchical Softmax, we use the stochastic gradient ascent method

to update the gradient with just one sample at a time for an iterative update,

and then get the Equation 3.16.

θu = θu + η[Lw(u) − σ(XT
wθ

u)]Xw

v(w̃) = v(w̃) + η ∑
u∈{w}∪NEG(w)

∂L(w,u)
∂Xw

(3.16)

3.2.3 GRU-Sent2Vec Hybrid Model

With the rapid improvement of hardware that supports extensive capabilities

and advances in deep learning technology, many researchers proposed various

novel neural network algorithms. Especially after the concept of distributed

representations of word vector (Mikolov et al., 2013b) was widely accepted,

Mikolov et al. (2011) found that many results have verified those language

models trained by using a neural network based on big datasets are significantly

superior to traditional language models in terms of performance. They also

stated that deep learning methods had achieved very high performance across

different NLP tasks. Different from Doc2Vec, sequence neural network models
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such as GRU are related to the order of words or sentences, which determines

the whole process of model training. The structure of one single GRU cell is

shown in Figure 3.6.

Figure 3.6: Basic One GRU Cell Unit

As we mentioned in the last chapter, Chung et al. (2014) proposed the

structure of the GRU, which was designed as a reset gate that enables data

learning and updating. It is much easier to implement than LSTM because GRU

removes the cell state, then uses a hidden state to transfer information, and

relatively reduces the amount of parameter tuning tasks during data model-

ling and training tasks (Chung et al., 2014). As far as we know, the original

RNN suffers from short-term memory and the vanishing gradient issues in the

process of backpropagation. If the sequence is long enough, it is difficult to

pass information from the earlier time step to the end step. However, if the

gradient value becomes extremely small, then the neural network learns nothing.
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Therefore, the core thought of GRU is to allow the model to transmit information

completely to the cells in order to avoid the disappearance of gradient chains

caused by the length of the sequence.

Moreover, Sent2Vec whose algorithm mechanism is the same as Doc2Vec,

will be implemented to the embedded layer of GRU to realise a new algorithm

mechanism in this experiment. To study the GRU algorithm mechanism (refer to

(Chung et al., 2014)), we split the model structure into four parts.

The Structure of One GRU Cell

This part is the process of implementing data encoding.

Reset Gate: We start with the calculation method of the reset gate rt (seeing

Equation 3.17). Basically, at time step t, it is used to decide how much past

information for the model should be dropped.

rt = σ(Wt ⋅ [xt, ht−1]) (3.17)

with:

• xt: The input at the time t.

• ht−1: At the last time t − 1, the information that is remembered in the

hidden layer.

• Wt: The weight matrices of Reset Gate.

Update Gate: The update gate zt for time step t using Equation 3.18.

zt = σ(Wz ⋅ [xt, ht−1]) (3.18)

with:
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• Wz: The weight matrices of Update Gate.

The purpose of the update gate is to decide what information needs to be

discarded or added. When the input xt of the current time t enters the network

cell, it is with the output ht−1 of the previous time t − 1, multiplied by its weight

W (z), and then applies the Sigmoid Activation function to compress the results

between 0 and 1, indicating how much of the previous information is discarded.

Through copying all previous information, the update gate helps the model

eliminate the risk of vanishing gradient issues.

Current Memory Content: The formula of rt ∗ ht−1 in this step determines

what to remove from the previous time step. The calculation process is an

element-wise multiplication between the previous output ht−1 and the value

of reset gate function rt with a weight W , and then the nonlinear activation

function Tanh (Equation 3.19) is applied to the scope convergence of the input

xt.

h̃t = tanh(W ⋅ [rt ∗ ht−1, xt]) (3.19)

with:

• W : The weight matrices of Current Memory Content.

Final Memory at Current Time Step: In the final step (Equation 3.20), the

neural network adds the information (1 − zt) ∗ ht−1 retained from the output

at the previous moment, and the new information learned from the current

moment zt ∗ h̃t to memory. In this way, the output value ht at time t can be

obtained and passed into the next network cell.

ht = (1 − zt) ∗ ht−1 + zt ∗ h̃t (3.20)
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After a series of calculation steps, we can discover how the GRU uses the

update and reset gates to store and filter information. This process acceptably

eliminates the problem of disappearing gradients because the model knows the

new input each time instead of retaining the relevant information and passing it

to the next time step of the network, which also solves the problem of short-term

memory. Therefore, after training appropriately, the model can execute well

even in a complicated situation.

Decoding Process

GRU decoding is essentially a multi-classification prediction process. The

formula can be expressed as Equation 3.21.

ht = f(W ∗ ht−1)

yt = softmax(Wh ⋅ ht)
(3.21)

with:

• yt: The output at time t.

The Related Functions

Sigmoid Activation (σ): The Sigmoid Activation (Figure 3.7) is to compress

the value range between 0 and 1, which implements updating or forgetting

data (Yonaba, Anctil & Fortin, 2010). Specifically, any number times 0 equals

0, which means that the value of information disappears or is ’forgotten’. Also,

any number times 1 is the original value, so it stays the same or called ’holds’.

Values of 0 to 1 characterise how much information is selected to be forgotten

or retained. Through the neural networks, GRU cells learn which unimportant

data will be forgotten, which data is important and will be retained.
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Figure 3.7: Sigmode Activation

Tanh Activation(tanh): A Tanh Activation function3 (Figure 3.8) is similar

to a Sigmoid Activation function. The difference is that it compresses values

between -1 and 1. To be specific, when vectors go through neural networks

because of various mathematical operations, they may undergo many trans-

formations, that may result in some values exploding. In this case, the Tanh

Activation is used to help ensure the values stay between -1 and 1 to go through

the networks.

Loss Function: In order to avoid the problem of the learning rate falling

in the process caused by the dispersion of the gradient, we used Cross-entropy

(Equation 3.22) as the loss function to solve it. Cross-entropy loss is usually

used to measure the performance of the classification model. The output of the

classification model is a probability value between 0 and 1. When the prediction

probability deviates from the actual value, the Cross-entropy loss increases.

Therefore, the loss of a perfect model is zero (Murphy, 2012).

3https://towardsdatascience.com/activation-functions-neural-networks-1cbd9f8d91d6
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Figure 3.8: Tanh Activation

maxθ
1

N

N

∑
n=1

log pθ(y(n)∣x(n)) (3.22)

Attention Mechanism: When Bahdanau, Cho and Bengio (2014) introduced

a Soft Attention Model, the attention mechanism began to play an increasingly

important role in the NLP field, for it allows the neural network to know how

to ignore the noise and focus on related things (as shown in Equation 3.23). It

uses the probability of the output as a weight reference.

ci =
Tx

∑
j=1

yijhj (3.23)

3.3 Summary

This chapter presented the design ideas and system framework of an in-

telligent E-mail management system based on three methods, which belong

to the information retrieval method and the information generation method.

In addition, relevant algorithms and calculation principles related to TF-IDF,
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Doc2Vec and GRU models are studied in depth. Understanding these state-of-

the-art algorithms can help us successfully implement the core functions of this

experiment in the next chapter.



Chapter 4

Implementation

In this chapter, we present the details of the implementation process. The

following details the organisation of this chapter. Section 4.1 illustrates the data

preparation process and operational details. Data processing is a vital part of

the whole project implementation process. From Section 4.2 to Section 4.4, we

mostly describe the implementation process of these three models and adjust

the different parameters to determine the performance effect. In Section 4.5, a

simple client is designed to display and visualise the effect of our project, which

is of great significance for us to understand and analyse the experimental results

more intuitively. Section 4.6 is a short summary of the chapter.

4.1 Data Preparing

The preparation and processing of training data is the first step in project

development. As far as we know, the quality of the data will directly affect the

results of the project. In order to obtain the best results based on the limited

resources, we have invested significant time and effort to prepare ideal data for

this experiment. In this section, we specifically focus on data collection and data

63
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pre-processing.

4.1.1 Data Collection

In Chapter 2, we looked at training corpora from other studies that could be

used by us. We found that most of the E-mail datasets are small-scale datasets

collected by researchers, but there are also some large E-mail datasets, such as

Avocado Research E-mail (L. Yang et al., 2017), Yahoo! E-Mail dataset (Kooti,

Aiello, Grbovic, Lerman & Mantrach, 2015; Di Castro, Karnin, Lewin-Eytan &

Maarek, 2016), and Gmail dataset (Kannan et al., 2016) that are used for their

own companies’ research. Due to privacy or copyright restrictions, most datasets

are not publicly available, or some datasets need to be purchased.

Fortunately, there is also a ’real’ public free E-mail dataset, the Enron E-mail

Dataset1. It provides us with the ability to perform research work on E-mail.

This E-mail dataset was collected and prepared by the CALO Project from ap-

proximately 150 executives of Enron, which was published online by the Federal

Energy Regulatory Commission during the investigation of Enron’s economic

problems. This dataset contains no attachments, some sensitive messages have

been deleted, and some recipients or addresses have been replaced with other

information (such as user@enron.com). However, this is the best training data-

set available to us. After selecting the dataset, we need to fully understand the

data, including the content and the structure of the data, and then deal with it

to meet our model requirements.

1https://www.cs.cmu.edu/ enron/
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4.1.2 Data Pre-processing

Data Pre-processing Flowchart: Figure 4.1 shows the workflow of the data

pre-processing. The purpose of this process is to produce a generic dataset for

our three models.

Figure 4.1: Data Processing Flowchart

Data Understanding and Information selection: The understanding of the

dataset is our experimental foundation for data processing. The dataset that we

downloaded was composed of a large number of TXT files, which means that

every letter in their inbox and outbox of these 150 employees was one TXT file.
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The raw data sample is shown in appendix A.

The first step was to transfer all the E-mails into a CSV file with the in-

formation we needed. Each column contains the sending date, sender E-mail

address, receiver E-mail address, E-mail subject and E-mail content. It is easy to

experiment using a unified data processing method. The sorted data is shown in

Figure 4.2.

Figure 4.2: Dataset Overview

Figure 4.3: Raw E-mail Content

Removing Duplication: From the data overview (Figure 4.2), it can be
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seen that the total number rows in the dataset is 517,401, among which there

are 498,214 messages with titles, and the highest frequency of occurrence is

’RE:’, appearing 6,477 times. Meanwhile, in the content column of the E-mail

dataset, we found that nearly half of the content is duplicate. The reason is

that if employee A sends an E-mail to employee B, the E-mail in A’s outbox will

be the same as the E-mail received in B’s inbox. Therefore, we realised that

duplicate messages need to be removed entirely leaving unique messages for

further processing. The process of this step is to compare the title and content at

the same time to avoid the possibility that the content is the same but not sent

by the same person.

Removing Noise: We randomly read the contents of three E-mails (Figure

4.3) and found much noise in our dataset. For example, many numbers, symbols,

and E-mails with past responses, and such useless information will lead to

poor model training results. Finally, we obtained a relatively clean dataset by

removing this noise.

Figure 4.4: E-mail Content Length Statistics

Controlling The Length of E-mail Contents: After cleaning up the useless

information in the E-mail content, our dataset still contained a large number
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of empty E-mails and excessively long E-mails, which is not conducive to our

training of the sequence model (GRU model). According to the statistics of

E-mail content length (shown in Figure 4.4), approximately 75% of the 254,676

processed E-mails contain less than 150 words or 10 sentences. Therefore,

considering the requirements of the models we chose and to avoid significantly

affecting the size of the E-mail dataset, we decided to remove E-mails that were

empty or longer than 30 sentences.

Pairing Received - Response E-mails: The vital role of this step is self-

evident, as it is the basic form for three models training. The method used

in the E-mail pairing process is that we logically filtered messages using the

sending time, title, and the name of the senders and receivers, the code sample

is shown in appendix B.1. We then selected the E-mails that most likely relate to

each other and placed them into two databases (Received E-mail Dataset and

Response E-mail Dataset) separately. The result after processing is shown in

Figure 4.5.

Figure 4.5: Received-Response E-mail Pairs

The raw data was successfully processed for our three models after a series



Chapter 4. Implementation 69

Figure 4.6: Processed E-mail Content Length Statistics

of processing. Finally, we got a total of 19,871 pairs of E-mails, each with a

content-length range of 1 to 30 sentences (as shown in Figure 4.6). Next, we

can entered the model training stage.

4.2 TF-IDF Based Model

Figure 4.7 presents the workflow of specialised text processing and model

training for TF-IDF modelling.

4.2.1 Data Processing for TF-IDF

Based on the general dataset processing in the previous section, we needed

to process further the data to adapt to the different models.

Word Lowercasing: In text processing, if the first case of the same word

is different, it is treated as two different words. To avoid this, we expressed

all the letters in lowercase. The NLTK2 library helped us achieve this process

outstandingly.

2https://www.nltk.org/
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Figure 4.7: TF-IDF Based Model

Word Tokenization: The next step was to split the document into a word list

and remove the punctuation without real semantics. We used the word_tokenize()

method, which is the key to stemming words and stop-word removing and to
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facilitate the vocabulary for corpus.

Stop Word Removal: The term ’stop words’ or related term ’stop list’ was

created by Hans Peter Luhn (1960), the father of information retrieval. It usually

refers to the commonly used words or phrases in a document without any

information that expresses important meanings, such as auxiliary words, relative

pronouns, letters and punctuation marks.

In data or text processing, it is usually necessary to remove stop words to

improve efficiency and save space and time for processing big data. In practice,

the list of stop words is dynamic and needs to be selected based on the specific

situation and the functions to be implemented. In this experiment, the stop word

list we designed for the three models contains 422 words.

Word Stemming: The introduction of stem analysis in linguistic morphology

into information retrieval techniques is a milestone in NLP. The core content

of word stemming is to convert words into their corresponding similar forms

like their stems or roots and then to merge all the related words as long as

sufficient (Porter, 1980). Dr. Porter won the Tony Kent Strix award in 2000 for

this algorithm.

In text processing, there are many words from the same root word, such as

’love, loved, loving, lovely, lover, lovingly’. They have similar meanings, but these

different forms unnecessarily increase the dimensions of the word vector space.

The stemming process was done by converting these words into the unified

source of ’love’, aiming to help reduce the dimensions of the term matrix and

improve the efficiency of the classifier.

After deep processing, the data we obtained was more suitable for modelling

TF-IDF.
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4.2.2 TF-IDF Modelling

In the modelling process, we used a Python programming language library,

Scikit-learn library3, which is an efficient tool for machine learning and data

analysis, as it encapsulates the TF-IDF algorithm and Cosine Similarity algorithm

in the modelling process.

Building Vocabulary: First of all, we used the function of feature extraction,

CountVectorizer in Scikit-learn to count the number of times each word appears.

It is an easy way to tag a collection of text documents, index each known word,

and encode new documents using the index set as well.

The fit() function can index one or more documents, and each document

can be encoded as a vector by calling the transform() function. Eventually,

it converts the document into a coding vector whose length is the number of

indexes carrying the information about each word in the document.

The shape of the vector we obtained is (19871, 20300), which means that

there are 19,871 documents in training dataset, and there are 20,300 unique

words without stop words in the vocabulary of these documents.

Calculating IDF and TF-IDF Scores: After building corpus vocabulary and

a sparse matrix by CountVectorizer, TfidfTransformer was used to count the

IDF value and TF-IDF value of each word in the given corpus as well as a new

document. It should be noted that if some specific words do not appear in the

training corpus, their TF-IDF values can be 0.

Calculating Similarity Scores: Euclidean Normalisation is also applied in

the Scikit-learn library. For a new document, we only needed to calculate its TF-

IDF vector related to the entire corpus. By dot product with all other document

vectors, we could calculate the cosine distance between a new document and all
3https://scikit-learn.org/stable/
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documents in the corpus, so that we could sort similar documents for retrieval.

4.2.3 The Main Parameters of TF-IDF

Each model involves many parameters and understanding the meaning of

each parameter helped us optimise the model. Our TF-IDF model was mainly

affected by the following three parameters.

Max_df: The value of max_df is a given threshold that words will be ignored

if their frequency occurrence is higher than this value. For example, setting

max_df to 75% means that a word will be dropped if it appears in more than

75% of the documents during modelling, and such words are considered stop

words that contribute very little to the meaning of the document.

Ngram_range: This is the window range size that was set to study the

relationship between words in the window range. From the lower(min_n) to

the upper(max_n), all values of ’n’ will be used. The larger the ’n’ value range

is, the more computing time and storage space are required, but the resulting

quality may be improved. Therefore, we needed to consider the setting of this

parameter reasonably.

Input: In terms of the input passed to the model, we redesigned the training

dataset into three different forms: ’E-mail Subject’, ’E-mail Content’ and ’E-mail

Subject plus Content’. Based on preliminary experimental results, it made no

sense in practice to extract similar information using the subjects of the E-mails.

Therefore, we only selected the content of E-mail as the input of TF-IDF model

training.
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4.3 Doc2Vec Based Model

Figure 4.8 interprets the training workflow based on the Doc2Vec model. As

for data processing, it is similar to the process of TF-IDF. Hence, we demonstrated

it directly from the modelling section.

Figure 4.8: Doc2Vec Based Model
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4.3.1 Doc2Vec Based Modelling

Gensim4 is an open source Python library for automatically extracting se-

mantic topics from documents. It supports a variety of theme-model algorithms,

including TF-IDF, LSA, LDA, and Word2Vec. It also supports stream training

and provides API interfaces for common tasks such as similarity calculation and

information retrieval. Therefore, we chose the Gensim platform to train our

Doc2Vec model.

Tag Each E-mail: Before training the model, we needed to tag each doc-

ument (E-mail) in the corpus. To get the correlations between words in the

document, we embedded the document’s ID with the words in the document.

Building Vocabulary: In the Gensim library, the function Word2VecVocab

can create a vocabulary for the model. In addition to recording all unique words,

this object provides additional functionality such as creating a Huffman tree

(the more frequent the words, the closer they are to the roots of the tree), to

eliminate uncommon words.

Inferring Vector: After training the model, the infer_vector function can

infer vectors for new documents.

Calculating Similarity Scores: A built-in most_similar module in Gensim is

used to calculate the similarity of document vectors.

4.3.2 The Main Parameters of Doc2Vec

Among the numerous parameters, our experimental Doc2Vec model mainly

depended on the following five parameters.

Vector_size: This is the dimension of the eigenvector we specified, which

is determined by the size of the training corpus. Our training dataset contains

4https://radimrehurek.com/gensim/
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19,871 E-mails (not large), so we set the parameter values to 100, 150, and 200,

and the results of the comparison will be shown in the next chapter.

Dm: Dm is the choice of training mode. ’dm = 0’ means we chose PV-DBOW,

while ’dm = 1’ means a choice of PV-DM.

Hs: This is the choice of the classification algorithm. If the value is 1, the

Historical Softmax method is adopted, else if the value is 0 (the default value),

Negative Sampling method is used.

Window: This represents the window size of the maximum distance between

the current word and the predicted word in the sentence when we train the

model, that is, the context range that affects the prediction.

Epochs: Epochs are also called iterations. In theory, more iterations can

get better training results, but to some extent, more iterations may also lead to

over-fitting problems. The iteration value was matched to the size of the dataset

so that we could confirm the value within an optimal range.

The above parameters are the most critical factors affecting the results of the

Doc2Vec model training. We will evaluate the optimal parameters in the next

chapter.

4.4 GRU-Sent2Vec Hybrid Model

Figure 4.9 illustrates the training workflow for GRU-Sent2Vec hybrid model.

The design idea of this model is to combine the information generation model

with the information retrieval model, using both GRU and Sent2Vec technologies.

In this design, on the one hand, we expected to generate long-text reply E-mails,

on the other side, we considered that our training data set was too small for the

deep neural network. It is a novel attempt for an intelligent generated E-mail

system.
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As for selecting a suitable platform, frameworks for deep learning have

sprung up in universities and companies such as TensorFlow5, Caffe6, Theano7

and Keras8. Among these technologies, PyTorch9 is a simple, elegant and ef-

ficient framework. The design of PyTorch follows three levels of low-to-high

abstraction from tensor to variable (autograd) to nn.Module, which represents

high-dimensional arrays (tensor), auto-derivatives (variables), and neural net-

works (layers/modules). These three abstractions are closely related and can

be modified and manipulated simultaneously. Therefore, our design of the GRU

model used PyTorch as the implementation framework.

4.4.1 Data Processing for GRU-Sent2Vec Hybrid Model

We had to put more effort into the data processing used for the GRU-Sent2Vec

hybrid model training than the TF-IDF and Doc2Vec models because we intended

to input sentences as sequences instead of words. Before modelling, we needed

to separate each sentence in order to generate a sentence dictionary that was

related to the unique index, and then apply the Sent2Vec model to train the

sentence vectors, which would be used as an embedding layer of the GRU model.

Text Standardisation: In the initial data processing phase, we have done

much work on data cleansing. This step is to ensure the standardisation for the

next process, and the received and response E-mail dataset will be used as input

to train the model at the same time.

Sentence Tokenisation: Tokenising sentences is the basis for the next step

to establish matches with indexes and sentence vectors. We used three sentence
5https://www.tensorflow.org/
6https://caffe.berkeleyvision.org/
7http://deeplearning.net/software/theano/
8https://keras.io/
9https://pytorch.org/
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Figure 4.9: GRU-Sent2Vec Hybrid Model
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separators, ’. ? !’, as references to split documents into sentences. This is

the point of the previous step of standardisation, removing other symbols, and

ensuring that the last sentence of the document ends in ’.’. The function of

sent_tokenize()10 provided by NLTK can split the text into sentences.

Generating Sentence List: We created a list of all the sentences from the

two datasets. There is a total number of 232,948 sentences in 39,742 E-mails.

For these sentences, we built a sentence-list by removing duplicates. Each

sentence in this list is unique, making a total of 99,336 sentences.

4.4.2 Building Up Sent2Vec Model

The model of Sent2Vec is built to train the vector of each sentence. The

process and principles of training are similar to Doc2Vec whereas, the difference

is that the ID of the document is replaced with the ID of the sentence for training.

It references part of the workflow of Figure 4.8.

Before training the sentences’ vectors, we first defined three sentence-markers

and assigned a 0-2 index order. These three markers, PAD_token, SOS_token,

and EOS_token, were used for padding short documents and marking the

beginning and end of a document when training in the GRU sequence model.

Then we performed sentence vector training on these three markers with all the

sentences in the list together.

This Sent2Vec model was also applied in subsequent processes at the step of

information retrieval and matching.

10https://www.nltk.org/api/nltk.tokenize.html
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4.4.3 Mapping Sentences and Preparing Embedding Layers

Mapping sentences: Since there is no implicit mapping of a sentence se-

quence to a discrete numeric space, we need to create a mapping set by mapping

each unique sentence in the sentence list to its index value and vector.

The contents of the mapping set are as follows:

• sentences to indexes

• indexes to sentences

• sentences to vector

Pairing Dialogues: After a series of processing steps, such as splitting state-

ments and matching sets, we needed to re-establish the pairs of query and

response and their corresponding mapping set. We converted the documents

into tensors by converting sentences to their indexes and zero-padding. After

determining the maximum sentence length in a batch, the corresponding posi-

tions of other short sentences were filled with zeroes. Therefore, the shape of

the tensor was a matrix (batch_size, max_length).

Preparing the Embedding Layer: Using vectors of sentences (generated by

the Sent2Vec model) as a weight, we created a hidden embedding layer to train

along with the input data. This was done because we believed that the sentences’

vectors in an embedded hidden layer carry semantic association information

between sentences. A sample of the code is shown in appendix B.2.

4.4.4 Training Model

Encoding: After transforming the sentence index into a sentence embedding

vector, we mapped each sentence into a 150-dimensional feature space. We
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packed and unpacked padding using nn.utils.rnn.pack_padded_sequence and

nn.utils.rnn.pad_packed_sequence to pass the sequencing batch to the GRU

module and return the output and final hidden state.

Decoding and Adding Attention: The decoder uses the context vector and

internal hidden state to generate the next sentence in the sequence, which

continues to generate sentences until the output EOS_token, which indicates the

end of the document. To improve the decoder’s capability and prevent the loss

of valuable information, we added an attention layer to allow the decoder to

focus on certain parts of the input sequence.

Training procedure: In order to achieve better convergence, we used the

teacher forcing method in iterative training. Specifically, we used the current

target sentence as the next input to the decoder instead of the decoder’s current

guess. The benefit of doing this was to accelerate the convergence of the iterative

process, but a new problem was the instability of model training. We set the

learning rate at 0.0001 and the number of iterations at 4000 in this experiment.

4.4.5 Model Implementation

Considering the limitation of training data, we introduced the design thought

of combining information generation and information retrieval methods in the

result generation stage.

New Query Processing (with Sent2Vec): Unlike the previous two models,

instead of a simple normalisation process, we continued to adopt the Sent2Vec

model to match similar sentences in the sentence list of the original training

dataset. In the case of a small sample set, the intention was to ensure that the

results generated by the GRU model were always valid.

Greedy Search and Generating Response: In the prediction generation
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phase, we used a greedy search method11, that is, for each time series, we

selected the sentence with the maximum Softmax value from decoder_output. In

a single time-step series, this decoding method has high efficiency and excellent

performance.

4.5 Intelligent E-mail Client Implementation

In order to display the results and analyse the experimental effect intuitively,

we also designed a simple client for visualisation. Figure 4.10 illustrates the user

interface when a new incoming E-mail is opened.

Figure 4.10: Intelligent E-mail Client12

Users can select either to reply directly or to use and modify intelligent

suggestions. If the latter is chosen, by clicking the button on the robot in Figure

11https://pytorch.org/tutorials/beginner/chatbot_tutorial.html
12The image of the robot is adopted from the movie WALL-E
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Figure 4.11: Intelligent E-mail Client - Default Response Mode

Figure 4.12: Intelligent E-mail client - Doc2Vec Mode
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4.11 three suggestion responses from each of the three models are presented.

This intelligent E-mail client provides users with the functions to choose re-

commendations from each model. Figure 4.12 presents the top three suggestions

from model Doc2Vec.

4.6 Summary

In this chapter, we introduced the whole implementation process of this

experiment. First of all, the quality of experimental data is the decisive factor

affecting the experimental results. The processing of training data in the early

stage is the most important part before the establishment of the training models,

and the processing method is based on a full understanding of the original data.

Secondly, this chapter described the implementation process of the three models

and the influence of their main parameters on the models. Finally, a simple,

intelligent E-mail client with core functionality was designed and demonstrated.
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Evaluation and Discussion

In the previous chapter, we presented the design and implementation of the

TF-IDF, Doc2Vec and GRU-Sent2Vec hybrid models. The main purpose of this

chapter is to evaluate these three models and discuss the findings. In Section 5.1,

we use the method of Recall@k (Malheiros, Moraes, Trindade & Meira, 2012) to

optimise the parameters. Since the evaluation of language models has subjective

factors, in order to evaluate the performance of these three models, Section 5.2

introduces the methods of designing a test dataset and a human evaluation.

Then, Section 5.3 discusses the experimental results, including a comparison

of the results of the effects of the three models, as well as a comparison of the

results of the learning ability and subjective evaluation of the two models, TF-IDF

and Doc2Vec. Section 5.4 briefly summarises the chapter.

5.1 Parameter Tuning

We use the method of call@K to self-evaluate the models. In this section,

we only perform parameter tuning of the TF-IDF and Doc2Vec models. We do

not consider the GRU-Sent2Vec model because of limitations, which will be

85
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discussed later in this chapter. This process randomly selects 200 documents

from the training corpus as queries, and then carries out vector inference on

these documents and compares them with the vectors in the training corpus.

This self-evaluation process is based on the similarity level between the same

documents and the query.

We assume that the test dataset consisting of these 200 documents is some

new data, and then evaluate them based on the models’ response to them. The

expected result is that the same document in the training set will be extracted in

either the first or the first three positions for the 200 test queries. The formula is

expressed as Equation 5.1:

Recall rate@1 = Retrieved documents in top 1
200

Recall rate@3 = Retrieved documents in top 3
200

(5.1)

5.1.1 TF-IDF

We constructed a self-assessment of the TF-IDF model and found that the most

influential parameter for this model was N-gram size (Table 5.1). The higher the

value of N, the higher the accuracy (Recall rate@1). From the results, it seems

not to have had much impact on the recall rate of the top three. However, in the

meantime, the training time had an exponential increase.

After four rounds of training with different parameters, we also collected the

similarity scores between 200 documents and the most similar documents in the

training corpus (the majority are compared to themselves). As can be seen from

Figure 5.1, the similarity scores are slightly different.

Considering the range of our training dataset was not large, we ignored

the time consumption and selected Ngram = (1, 4) as the model parameter of

TF-IDF. The results are shown in Table 5.1.
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Table 5.1: Comparison of TF-IDF Parameters

TF-IDF model Ngram Training time
Retrieved numbers (200)

Recall rate@1 Recall rate@3
0 1 2

1 (1,1) 1.8910167s 173 12 5 86.5% 95%
2 (1,2) 5.3181312s 173 11 4 86.5% 94%
3 (1,3) 10.235551s 174 12 3 87% 94.5%
4 (1,4) 15.074302s 175 10 5 87.5% 95%

Figure 5.1: Test Results of TF-IDF Model

5.1.2 Doc2Vec

Compared with TF-IDF, the Doc2Vec model contains more parameters. As for

these parameters, eleven combinations were selected to conduct eleven rounds

of training for the model (M1 - M11). The results of the test are illustrated in

Table 5.2 and Figure 5.2.

After all steps of the test, we found that Vector-size 150, Window value 5, and

Epochs 1500, were most suitable for the training dataset. This indicated that the

Negative Sampling training method was generally superior to the Hierarchical

Softmax training method. In the same Negative Sampling training mode, M3

with Distributed Memory (DM) architecture had the highest top-3 recall rate,
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Table 5.2: Comparison of Doc2Vec Parameters

NO. Doc2Vec model Vector_size Windows Epochs Training time
Retrieved numbers (200)

Recall rate@1 Recall rate@3
0 1 2

1 NS+ DM 100 5 500 346.51621s 174 5 3 87% 91%
2 NS+ DM 100 5 1000 698.35794s 173 9 5 86.5% 93.5%
3 NS+ DM 100 5 1500 1013.3812s 173 11 5 86.5% 94.5%
4 NS+ DM 150 5 1500 1059.6635s 175 8 4 87.5% 93.5%
5 NS+ DM 200 5 1500 1019.1251s 176 7 2 88% 92.5%
6 NS+ DM 150 10 1500 1042.714s 175 9 3 87.5% 93.5%
7 NS+ DM 150 5 2000 1407.6521s 172 12 2 86% 93%
8 HS+DM 150 5 1500 1196.5312s 171 9 6 85.5% 93%
9 NS+DBOW 150 5 1500 850.749s 177 6 5 88.5% 94%

10 HS+DBOW 150 5 1500 1011.517s 174 10 4 87% 94%
11 HS +DBOW 150 10 1500 1048.288s 172 9 6 86% 93.5%

Figure 5.2: Test Results of Doc2Vec Model

and its top-1 recall rate performance was not bad, while M9 with Distributed

Bag of Words (DBOW) architecture had the highest accuracy (Recall rate@1). To

further confirm our parameter selection, we compared the similarity of the 200

documents tested by the two groups (Figure 5.3), and found that M9 showed a

more stable level than M3. Meanwhile, the training time of M9 exhibited strong

competitiveness.
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Figure 5.3: M3 VS M9 Results

5.2 Setup for Human Evaluation

Among the various methods for evaluating the effects of Natural Language

Generation (NLG), there are some methods for automatic evaluation, such

as NIST, BLEU, and ROUGE. Belz and Reiter (2006) believed that automated

evaluation methods had great potential after comparing various assessment

methods, but the best way to evaluate NLG Models is through human assessment.

Meanwhile, our training dataset contained non tagged information, and we could

not find a uniform standard or a unified model to evaluate these three models

simultaneously. Therefore, the best way to compare our three language models

was by using human evaluation.

5.2.1 Test Data Generation

Since there was not much similarity between E-mails in the dataset (Enron

E-mail Dataset), it was difficult to evaluate the functional performance and
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learning capabilities of the three models. In order to compare the effects of

these models, we designed the test data according to the training data. Five

E-mails were randomly selected as five independent topics from the received

E-mail sub-dataset, and then five similar E-mails were designed according to

each topic. After several rounds of training, we observed the responses of each

model to similar E-mails and their ability to learn new information.

For the test E-mails we designed, we followed the rules:

• Change the entity noun (such as time, place and name)

• Change the sentence order of the paragraph

• Add some information to the E-mail

• Delete some information from the E-mail

• Change the expression of the sentence

5.2.2 Measures

We used two criteria to evaluate the performance of three models:

1. In the first case, we compared the final best responses given by the three

models, respectively. In other words, we only selected the responses of the

top1 related E-mails extracted by Doc2Vec based and TF-IDF based models,

as well as the predicted response generated by the GRU-Sent2Vec hybrid

model, to compare the final implementation results of our experiment. A

sample is shown in appendix C.1.

2. In the second case, we only compared the two information retrieval mod-

els. After the first four rounds of training on new test E-mails, the fifth
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designed E-mail was entered into the two models as a query. The exper-

imental results of the two models may extract four similar E-mails with

different performance. We listed the top five similar E-mails extracted by

the two models with their corresponding similarity scores, and then five

participants from different academic fields chose the model which gave

the suggestion that matches the similarity most closely based on subjective

judgement. A sample is shown in appendix C.2.

5.3 Results and Discussion

In this section, we discuss the results in two layers. At the first layer, we

analyse and explain the last best suggestions of the three models given by the

participants. As for the second layer, because GRU, a generative model based

on deep neural network, has a strict limit on the amount of training data we

constructed a comparative analysis of these two information retrieval models

respectively from their learning ability of new information and the performance

based on individual subjective evaluation.

5.3.1 Comparison of the Three Models

Figure 5.4 shows an example taken from topic 1 of the experimental results

from the three models. As mentioned earlier, these three models use two

different methods. Therefore, in the first stage of human evaluation, we made

subjective selections on the final response suggestions, which were also the final

results of our experiment. We selected the topic 1 response from two information

retrieval models as their best response suggestions. Also, the one predictive

response generated by the GRU-Sent2Vec hybrid model was treated as the object
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of evaluation for this model.

Figure 5.4: Three Models Results1

After several rounds of training, the three models each suggested responses to

five new E-mails. The first round of the evaluation of the overall result is shown

in Figure 5.5. According to the subjective evaluation, five participants chose
1The image of the robot is adopted from the movie WALL-E
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relevant answers for each new E-mail, and this was a multiple-choice process.

The results show that TF-IDF and Doc2Vec, the two information retrieval models,

had better performance than the information generation model.

Figure 5.5: Human Evaluation Results

The GRU-Sent2Vec hybrid model is not ideal for several reasons. The main

reason is the quality of our training corpus. For deep neural networks, learning

relatively accurate feature rules first requires vast datasets. The total number of

sentences in our training dataset was 99,431, which is not sufficient. Second,

the average number of repeated sentences in the training dataset was only 2.3

(Figure 5.6), while the majority of sentences only appear once. Such extremely

low probability distribution of repeated sentences can hardly provide adequate

learning information for deep neural networks.

Although we considered this result at the beginning, the reason we experi-

mented with the GRU-Sent2Vec hybrid model was to try this novel idea in order
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Figure 5.6: Sentence Repeat Statistics

to verify whether the generated model could be implemented in a series of

sentences.

We expected that, given the right environment, the GRU-Sent2Vec hybrid

model could predict and generate a series of sentences as the output according

to the input sentences. Theoretically, this has potential value for future research.

Moreover, the optimal implementation would look like Figure 5.7.

Figure 5.7: Ideal GRU-Sent2Vec Hybrid Model
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5.3.2 Comparison of the Two Information Retrieval Models

1. Comparison of Learning Ability

First, we compared the learning ability of the Doc2Vec and TF-IDF Models.

Since our training dataset initially did not contain many similar E-mails, we

conducted five rounds of training on the models using five similar test E-mails

designed and generated for each topic in the previous section. If at the end of

each round of training, the model could always find the similar E-mails learned

in previous rounds from the database for new E-mails, it meant that the model

had the ability to learn new information. The specific process is as follows:

Round 1: We tested it by simply replacing the names of five randomly selected

E-mails from the original training dataset. Both models found the

five related original E-mails in the first most similar ranking.

Round 2: We put the first round of E-mails together with the responses of

corresponding designs into the training set, and then we modified the

five selected topic E-mails by changing the order of the sentences. In

the second round of testing, the two models found 10 related E-mails

in the first two most similar rankings including the original 5 E-mails

and the 5 E-mails put into the training set after the first round.

Round 3: We put the E-mails from the second round of E-mail modification

into the training set together with the replies from the corresponding

designs, and then we modified the 5 selected topic E-mails by adding

some information. The results of the third round of testing showed

that in the first 3 most similar rankings, TF-IDF found 14 related

E-mails while Doc2Vec found 15 related E-mails with the original 5
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E-mails and 10 E-mails put into the training set after the first two

rounds.

Round 4: We put the E-mails from the third round of E-mail modification

into the training set together with the replies from the corresponding

designs, and then we modified the 5 selected topic E-mails by deleting

some information. In the fourth round of tests, TF-IDF found 18

related E-mails in the first 5 most similar rankings, while Doc2Vec

found 19 related E-mails involving in the original 5 E-mails and 15

E-mails put into the training set after the first three rounds.

Round 5: We put the E-mails from the fourth round of design into the training

set together with the replies from the corresponding designs, and then

we modified the 5 selected topic E-mails by changing the expression

of some information. The results of the fifth round of testing showed

that in the first 4 most similar rankings, TF-IDF found 19 related

E-mails and Doc2Vec found 23 related E-mails with the original 5

E-mails and the 20 E-mails put into the training set after the first four

rounds.

After 5 rounds of training, the results of each round could reflect the models’

learning abilities. The Doc2Vec model presented a more stable learning ability,

especially in the fifth round. When the semantic expression was changed, it

presented a better information resolution ability than the TF-IDF model. It was

proven that Doc2Vec is capable of extracting semantic correlations between

words in an article. The results are shown in Figure 5.8.
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Figure 5.8: Learning Ability of TF-IDF and Doc2Vec

2. Comparison of Effect

After five rounds of training, five participants subjectively evaluated the

accuracy of the two models based on the information retrieval mechanism and

compared the similarity score. Figure 5.9 presents five new test E-mails on

behalf of the five topics. The top five E-mails with the highest similarity in each

topic were extracted from the training dataset by two models. Meanwhile, five

participants compared and selected the results extracted from the two models

under five topics, which means there are twenty-five results that should be

selected for each topic, which was a single selection process.

From the results of the selection data given by the five participants, we

concluded that the effect of the Doc2Vec model was significantly better than that

of the TF-IDF model from the perspective of subjective evaluation.
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Figure 5.9: Effect Comparison Between TF-IDF and Doc2Vec

5.4 Summary

In this chapter, we mainly implemented the evaluation process of three

models and discussed the related results. Firstly, we used the method of call@K

to evaluate the TF-IDF and Doc2Vec models and optimised their parameters.

Next, five participants subjectively evaluated the effects of the three models, and

the experimental results showed that the two models based on the information

retrieval were much better than the generative model. Thirdly, we compared the

learning ability and performance of the two information retrieval models. By

conducting self-assessment and human evaluation, the Doc2Vec based model

performed outstandingly. In the end, the overall evaluation results demonstrated

that Doc2Vec presented the most positive effect, but the GRU-Sent2Vec hybrid

model showed huge potential for future development.



Chapter 6

Conclusion

6.1 Conclusion

Over the years, E-mail overload has not been alleviated but has become

increasingly serious during the development of the information age. Therefore,

we proposed a novel method on mitigating the issue of E-mail overload and

applied three machine learning and deep learning algorithms to model the

E-mail dataset. The experimental results showed that this novel method had

potential, and we designed an application program with core functions for the

experiment.

This paper presents a novel intelligent E-mail response approach, software

applications and design solutions. This E-mail management system is based on

machine learning and deep learning technologies. By learning similar reply rules,

the three models trained in this project can conduct response predictions on

newly received E-mails and provide reference reply suggestions. The results of

the experiment have showed good performance in improving the effectiveness of

people who are required to handle the practical problems of using E-mail in daily

life and corporate business. The first thing to be emphasised is that we designed

99
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a novel GRU-Sent2Vec hybrid model that can be used to predict responses

based on sentence-level, which goes beyond the limits of word-level prediction.

Although the quality of the training corpus limits the effect, the results have been

informative and have the potential to guide further development for industrial

applications in the future.

As for the evaluation of the effects, it has a subjective component. We de-

signed a set of human evaluation questionnaires. The results of the questionnaire

survey show that this research project has significant application value. At the

same time, we obtained some improved conclusions and further design proposals

for the project, which are conducive to the promotion of the efficiency of solving

the practical work.

At the beginning of this project, we listed the main research question and

three sub-questions of this research, and our study successfully answered these

questions. We used the Enron E-mail dataset as the original data source. Based

on the review of related research papers, a process of extracting the trainable

E-mail set (SRQ 1) was designed. Combining analysis and research on a large

number of machine learning and deep learning algorithms, we finally decided

to adopt three methods that are simple: TF-IDF, Doc2Vec (which can mine

the relationship between words in a document), and the combination of the

production prediction algorithm, GRU (currently the most popular in the field of

NLP) and Sent2Vec, jointly realising our experiment (SRQ 2). The performance

effects, accuracy analysis, and evaluation were demonstrated. The results

discussion answered SRQ 3.

We filled a gap in the field of research to some extent. First, for research

teams (except for Gmail or Outlook technical teams), E-mail data for training

corpus resources is very limited and the best open source dataset we could use

is the Enron E-mail dataset. The data had to be processed and prepared to
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ensure the received E-mails were matched with the sent E-mails. Although the

processed dataset was still not perfect, the fruits of the research have reference

value for this industry. Secondly, the methods we adopted have not been used

in other studies (except for TF-IDF). Especially, in the designing of the hybrid

model, we transformed sentences into vectors and embedded them into the GRU

model to predict long-text content. This research demonstrated the feasibility

of the current method, which opens up possibilities for more research in the

future. We also hope that our research results can be translated into commercial

applications as soon as possible integrating a combination of research, education

and production.

6.2 Challenges and Limitations

As stated previously, the experimental models gave coherent and reasonable

responses after analysing newly received E-mails. However, there are still many

limitations and challenges in the process.

The first limitation is the training dataset. Unlike E-mail datasets from help

desk or customer service centres, which contain many similar inquiries from

customers, our experimental dataset has very little similarity between E-mails

because the E-mails were collected from Enron employees. Besides, there was no

marked data in the original training dataset, which made it extremely difficult

in the test and evaluation stage. To solve this challenge, this research adopted

self-evaluation by randomly selecting 200 samples from the training dataset as

marked data and human evaluation. More importantly, the small size of the data

samples limited the capabilities of the GRU.

The second limitation is the computing power of the hardware for achieving

machine learning or deep learning algorithms. For in the training model stage,
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especially in the training of GRU, the time cost of training was very high, and

machine failure issues also occurred. Therefore, due to the dual limitations

of data quality and hardware, the GRU-Sent2Vec hybrid model’s parameter

optimisation and self-evaluation were not implemented for this project.

6.3 Future Work

This experiment has made a breakthrough both in practical application and

theoretical innovation. However, there is still plenty of scope to push that further.

The first area for potential development is in terms of functional expansion.

In this experiment, we mainly focused on using various algorithms to solve the

efficiency problem at the E-mail reply stage. However, the efficiency of users’

reading information needs to be improved. There is a factor that in the receiving

phase, a practical and feasible method will be used with TF-IDF. It will help

people save time reading E-mails by highlighting the keywords extracted from

the received E-mails.

The second area for potential development is to improve the model algorithm

continuously. Jiwei et al. (2016) stated that a new embedding layer could be

trained with users’ information in the model training stage. In this way, this

intelligent E-mail management system will be able to identify the senders or

recipient’s information and make personalised answer prediction with more

sufficient data.

The last area for potential development is the improvement of computing

power. It is feasible that the experimental platforms could be transferred from

the computer to the cloud in order to accelerate model training and utilise cloud

services, for example, a Google Cloud designed Tensor Processing Unit (TPU) for

running cutting-edge machine learning models with AI services that can reach
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about 30 times the graphics processing unit (GPU) computing power1.

1https://cloud.google.com/tpu/
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