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Abstract

The Semantic Web is an effort to interchange unstructured data over the Web into a

structured format that is processable not only by human beings but also computers. The

Semantic Web creates a distributed framework to publish, query, and reuse information.

The key backbones of Semantic Web are ontologies and annotations that provide

semantics for raw data known as RDF data.

Although there exist many Semantic Web applications, sophisticated analytical

infrastructures are still lacking, preventing users from extracting the semantics attached

to RDF data. Additionally, the Semantic Web data face with a wide range of data

quality issues due to the distributed nature of the Semantic Web. This thesis presents

three approaches based on the following purposes: (I) to express the semantics behind

discovered patterns, (II) to deal with a Semantic Web data quality issue, and (III) to

enrich knowledge in the Semantic Web ontologies.

The following contributions have been made in this thesis. Firstly, the thesis

shows the influence of relations and ontological knowledge in the process of mining

hidden patterns and proposes Semantic Web Association Rule Mining (SWARM), an

automated mining approach that attaches semantics to the discovered patterns. Secondly,

the thesis concentrates on a data quality issue in the Semantic Web field which indicates

incorrect assignments between instances and classes in the ontology. To this end, Class

Assignment Detector (CAD) approach has been designed to tackle the data quality

issue. Thirdly, the thesis enhances the process of ontology enrichment by generating

v



new classes by mining instance-level and schema-level knowledge. Since ontologies

are often designed before actual usage, Class Enricher (CEn) approach is developed to

extract new classes which are not defined in the ontologies. All the proposed approaches

have been tested over real datasets to validate their effectiveness.
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Chapter 1

Introduction

The Semantic Web (SW) promised the possibility of a machine and human under-

standable Web environment (Berners-Lee, Hendler & Lassila, 2001; Bizer, Heath &

Berners-Lee, 2011). The SW aims to convert the current Web (i.e., Web 2.0) data

expressed by unstructured and semi-structured formats into a Web of data. In this

regards, the SW data should be accessible via a standard format. Relationships among

data should also be available to connect resources from different datasets. To this end,

the SW data are usually structured in the triple format (subject, predicate, object) called

Resource Description Framework (RDF). In an RDF triple, a subject and an object are

resources and literals, while a predicate indicates a meaningful relationship between the

subject and object. The RDF data can also be published over Linked Open Data (LOD)

cloud in various formats such as RDFa, N-Triples, and Turtle.

In recent years, the number of large Knowledge Bases (KBs) available on the LOD

cloud is noticeably growing through developing the SW technologies such as RDF

Schema (RDF/S) and Web Ontology Language (OWL) standardization. One of the

main features of the SW is to provide a decentralized platform so that different KBs

can easily link to each other. In this respect, RDF-style KBs such as DBpedia (Auer et

al., 2007) and YAGO (Suchanek, Kasneci & Weikum, 2007) have a high contribution

1



Chapter 1. Introduction 2

of distributing SW data over the LOC cloud. These KBs contain two main levels, i.e.,

instance-level that contains raw RDF triples and schema-level (ontology) that provides

semantics for the triples.

The SW technologies enable data providers to create and publish their own RDF-

style KBs. Large KBs contain hundreds of millions of RDF triples that are managed by

the SW communities. Consequently, mining and learning from the SW data are very

challenging due to several reasons. Generally, these KBs usually contain a certain level

of noisy data because of the distributed nature of the SW. Besides that, the existing

SW data mining approaches do not usually take advantage of the semantic potential

provided by the schema-level knowledge.

This thesis presents mining and learning approaches for three main purposes: (I)

to show the importance of using relations and schema-level knowledge in the mining

process, (II) to tackle a SW data quality issue that indicates incorrect assignments

between instances and classes in the ontology, and (III) to enrich schema-level know-

ledge by discovering new classes. In this chapter, Section 1.1 briefly reviews the main

concepts in the context of the SW. Section 1.2 discusses major challenges in the SW.

The motivations used throughout the thesis are explained in Section 1.3. Section 1.4

explains the research questions and objectives of this study. The contributions, research

methodology, and thesis structure are given in sections 1.5-1.7, respectively.

1.1 Preliminaries

The SW technologies aim to represent data in a machine-understandable format to

integrate data from different resources. These technologies allow users to store data

which are not restricted by a particular schema (Shadbolt, Berners-Lee & Hall, 2006).

Figure 1.1 shows the SW stack, known as "layer cake" proposed by Tim Berners-Lee. In

the SW, every entity has a specific name identified by one Uniform Resource Identifier
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(URI). The eXtensible Markup Language (XML) is a format enables users to publish

structured Web documents. As shown in the figure, the RDF layer is placed on top of

the XML layer since RDF data can be expressed in a directed-labeled graph, while an

XML tree is an unlabelled and undirected graph. The RDF data model allows structured

and semi-structured data to be merged and distributed among various applications.

The RDF/S adds more semantics to RDF data by providing basic vocabularies. To

enrich RDF/S and describe more complex RDF statements, developers came up with

the idea of a powerful ontology language called OWL. The logic layer improves OWL

by providing more specific declarative knowledge that allows users to create logical

relations that can not be described by OWL. On top of the Logic layer, there exists

another layer called proof layer that is designed for validating RDF statements. Finally,

Trust layer is created to evaluate digital signatures (Horrocks & Patel-Schneider, 2003;

Antoniou & Van Harmelen, 2004).

Figure 1.1: The SW layer cake (Horrocks & Patel-Schneider, 2003)
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1.1.1 RDF data model

The RDF data model originating from the SW is a knowledge representation method

that enables free data exchange and formalisation of knowledge. The RDF is known

as a standard way to describe conceptual information available on the Web. The RDF

data is usually structured in a triple format, i.e., (subject, predicate, object), that can

be modelled as a directed-labeled graph. The model can be easily implemented and

navigated by its simple representation. The RDF data model also facilitates the process

of data merging from various KBs (Consortium et al., 2014).

1.1.2 RDF/S

RDF/S is a collection of classes with specific properties to enrich RDF triples by adding

semantics. The primary goal of RDF/S is to be used as a language to build ontological

structures by defining classes and properties. RDF/S presents classes along with domain

and range restrictions for properties. Additionally, it shows the hierarchies of classes

and properties by subsumption relationships (Decker et al., 2000; Broekstra, Kampman

& Van Harmelen, 2003).

1.1.3 OWL

OWL is a SW language used for creating and distributing ontologies over the LOD cloud

(Bao et al., 2009; Schneider, Carroll, Herman & Patel-Schneider, 2009). OWL provides

more rich and complex relationships for RDF triples as compared to RDF/S language. In

the context of the SW, ontologies are the foundations that build a network of information

with logical relations (Motik, Sattler & Studer, 2005; Goczyła, Grabowska, Waloszek

& Zawadzki, 2006; Alexander & Hausenblas, 2009).
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1.1.4 SPARQL

The SW requires a semantic query language to retrieve RDF data from divers RDF-style

KBs. SPARQL Protocol and RDF Query Language (SPARQL) is a standardized graph-

based language for querying and retrieving graph patterns in the SW. The SPARQL

facilitates different operations such as aggregation, negation, creating values using

expressions, sub-queries, and extensible value testing (Quilitz & Leser, 2008). It also

provides some capabilities such as editing, adding, and removing RDF triples as well

as updating, creating, and removing RDF graphs (Saleem, Ali, Hogan, Mehmood &

Ngomo, 2015).

1.1.5 LOD

The LOD is a method proposed by Tim Berners-Lee for publishing RDF-style KBs. The

LOD mainly concentrates on distributing structured data that are usually represented

in the RDF data format. The LOD method builds upon World Wide Web (WWW)

technologies, and it facilitates data from diverse resources to be linked and queried

(Freitas, Curry, Oliveira & O’Riain, 2012; Acosta et al., 2013; Schmachtenberg, Bizer

& Paulheim, 2014). The LOD represents a linked data graph among different KBs. The

tendency of publishing RDF data is to keep growing, and data providers estimated that

there exist about 1,2201 RDF-style KBs over the LOD cloud by June 2018.

Tim Berners-Lee defines four principles for sharing KBs over the LOD: (I) Data

providers should define Internationalized Resource Identifiers (IRIs) for identifying

things, (II) Data providers should use IRIs in the standard protocols, so that these things

can be referred to and dereferenced by users, (III) Data providers should publish data

in a standard format such as RDF data model, and (IV) Data providers are strongly

recommended to use links among sources for enhancing the process of data discovery.

1https://lod-cloud.net/
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1.2 Challenging research issues in the SW

The SW technologies allow users to create and distribute their own KBs. However,

the released KBs are very diverse in terms of formats, structure, and vocabulary. Such

diversities cause different issues that are briefly explained as follows.

• Integration and Interoperability: In the SW, ontologies facilitate the process

of knowledge sharing and reuse. Currently, the number of various ontological

structures that have modelled similar domains of knowledge is quickly grow-

ing. On this subject, an important issue is to develop a standardized mapping

mechanism to create a more unified ontological structure for sharing knowledge.

Since ontologies evolve over time, extending and updating existing ontologies is

another important issue in the SW field.

• Query search mechanism: RDF data can be represented as a directed-labeled

graph. SPARQL is a graph-matching query language designed for the SW data.

Although SPARQL facilitates the use of the SW data, it is not intelligent enough

for discovering complex patterns. To overcome this limitation, researchers usually

borrow data mining techniques to analyse the SW data. Accordingly, enhancing

the performance of SPARQL for discovering the most relevant answers is a hot

topic in the SW field.

• SW data mining techniques: Recently, researchers are targeting two demanding

research areas together: SW and data mining. The primary purpose of this line is

to extract hidden patterns from the SW by utilising data mining techniques. The

SW is a Web of data that describe relations (i.e., predicates) among resources. A

major difference of the SW with the Web 2.0 is that the SW relations are named

to express meaningful interactions among resources. Furthermore, the SW data

are conceptually enriched by knowledge at the schema-level. The effect of such
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potentials on the semantics of discovered patterns is not explicitly studied by

most existing SW data mining approaches.

• SW data quality: Ontologies are the backbone of the SW that are usually created

independently before actual data is populated. Subsequently, ontologies can be

incomplete and they often do not provide all aspects that are required for specific

domains of knowledge. Additionally, publishing the SW data over the LOD

cloud is maintained by a community of thousands of contributors. It is a very

time-consuming and error-prone process due to a large amount of data. Therefore,

the SW data suffer from various forms of quality issues.

It is important to mention that this thesis concentrates on some specific shortcomings

in the SW data mining techniques and the SW data quality which are described in the

following section.

1.3 Motivation

The following explains how particular issues in the SW data mining techniques and the

SW data quality motivated us to the topic of this thesis.

• Lack of semantic extraction: In the context of the SW data mining, different

approaches have been proposed to discover frequent patterns from the SW data.

Most existing approaches usually consider knowledge at the instance-level. More

precisely, the potential of schema-level knowledge is disregarded by these ap-

proaches. Ignoring knowledge at the schema-level can have negative impacts

on interpreting the patterns. For example, consider Thomas Aquinas ⇒ Plato,

Duns Scotus as a frequent pattern discovered by mining RDF triples. In DBpedia

ontology, Thomas Aquinas belongs to Saint class, while Plato and Duns Scotus

have been assigned to Philosopher class. Now the question is that whether the
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pattern express a group of saints or philosophers? In order to interpret the above

pattern, if we consider Thomas Aquinas, Plato and Duns Scotus as members of a

general class such as the Person class, we might reduce the semantics of pattern

since upper classes in the ontology share more general descriptions to compare

with lower classes that express more specific descriptions. Although, the pattern

shows an association between Thomas Aquinas, Plato, and Duns Scotus, the

relations (predicates) among entities (i.e., subjects and objects) are not explicitly

described. Based on these motivations, Chapter 3 of this thesis introduces an

approach that shows how to utilise instance-level and schema-level knowledge to

generate semantically-enriched patterns.

• Inconsistency: There exist various forms of the SW data quality issues such

as missing type properties (Paulheim & Bizer, 2013; Sleeman & Finin, 2013),

incorrect or incomplete statements (Lehmann, Gerber, Morsey & Ngomo, 2012;

Töpper, Knuth & Sack, 2012), invalid links to external resources (Halpin, Hayes,

McCusker, McGuinness & Thompson, 2010; Paulheim, 2014), missing predicates

(Lao & Cohen, 2010; Lao, Mitchell & Cohen, 2011), etc. However, the SW data

quality issues are not limited to the mentioned categories and they are very

diverse. Due to a large amount of RDF triples, there usually exists the possibility

of assigning instances to incorrect classes in the ontology. For example, the

DBpedia ontology defines a Royal class with two subclasses of BritishRoyalty

and PolishKing for the royalties. John I Albert, king of Poland, has been assigned

to BritishRoyalty class instead of PolishKing class in the DBpedia ontology.

According to this motivation, Chapter 4 of this thesis works on an approach to

tackle a SW data quality issue that is called Incorrect Class Assignment (ICA).

• Incompleteness: The SW adds semantics to the data by using ontological termin-

ologies (De Nicola, Missikoff & Navigli, 2009). Ontologies are usually developed



Chapter 1. Introduction 9

before data is published by data providers. So, they usually suffer from lack of

completeness since they have not covered all aspects of specific domains. Class

learning is one of the interesting topics in the area of ontology enrichment. In the

SW, the most existing approaches rely on Inductive Logic Programming (ILP)

techniques to learn new classes. Although the ILP is a helpful technique for devel-

oping logical disciplines, it usually requires counterexamples. To overcome the

limitation of counterexamples, Chapter 5 of this thesis introduces a non-logical

approach to extract new classes which are not defined in the ontology.

1.4 Research questions and objectives

The following describes the main research questions of the work to effectively address

the motivations explained in Section 1.3. Research objectives have been also described

corresponding to each question.

Research Question 1: How to automatically mine semantic association rules from

RDF triples by utilizing instance-level and schema-level knowledge?

• Objectives of Research Question 1:

– To develop an automated approach for discovering common behavioural

patterns from RDF triples.

– To highlight the importance of using relations and schema-level knowledge

for generating semantically-enriched rules.

Research Question 2: How to analyse the correctness and incorrectness of rela-

tionships between instances and classes in the ontology?

• Objectives of Research Question 2:

– To formally define a SW data quality problem called ICA.
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– To design and develop an approach that evaluates the status of instances that

are correctly or incorrectly assigned to the classes in the ontology.

Research Question 3: How to automatically enrich schema-level knowledge by

adding new classes which are not defined in the ontology?

• Objectives of Research Question 3:

– To develop a non-logical approach that discovers new classes through mining

instance-level and schema-level knowledge.

– To place the generated classes in the hierarchical structure of an ontology.

1.5 Contributions

This thesis provides several contributions based on the research questions and objectives.

The main contributions are described as follows:

• SWARM: Regarding to Research Question 1, an approach called Semantic Web

Association Rule Mining (SWARM) is proposed to reveal common behavioural

patterns among different types of entities. The behavioural patterns are associated

with knowledge at the instance-level and schema-level. More precisely, the

SWARM automatically mines semantic association rules by using knowledge

encoded at the instance-level and schema-level. This approach takes advantage of

relations and knowledge at the schema-level to generate semantically-enriched

rules. The results highlight the necessity of using schema-level knowledge for

interpreting rules. The SWARM also measures the quality of discovered rules by

using class information of entities at the schema-level.

• CAD: Regarding to Research Question 2, an approach called Class Assignment
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Detector (CAD) is proposed to tackle a SW data quality issue called ICA. This is-

sue indicates incorrect assignments between instances and classes in the ontology.

The CAD evaluates the correctness and incorrectness of relationships between

instances and classes.

• CEn: Regarding to Research Question 3, an approach called Class Enricher

(CEn) approach is proposed to mine knowledge at the instance-level and schema-

level to discover new classes which are not defined in the ontology. The CEn

enriches schema-level knowledge by discovering new classes. Additionally, the

CEn approach identifies suitable places for generated classes in the hierarchical

structure of the ontology.

1.6 Research methodology

The research methodology used in this thesis contains three main phases: Problem

identification, Solution design, and Evaluation. The thesis follows the design science

research methodology (Bichler, 2006; Rosemann & Vessey, 2008). Figure 1.2 depicts

the research methodology process used in the thesis. As represented in the figure,

the Problem identification phase is divided into two main steps: Identify the problem

statement and Research questions. This phase offers a solid and important foundation

for the further research process. In the Solution design phase, the design of study

has been proposed to answer the research questions. In the Evaluation phase, the

experiments are conducted, and the related techniques have been adopted into the

methods. The appropriate Evaluation criteria are selected to assess the results obtained

from the experiments. It is important to remind that the Literature review has been

continuously conducted in each phase.
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Figure 1.2: Research methodology

This thesis concentrates on three main research questions which are specifically

covered in Chapters 3, 4, and 5. Each chapter follows the research methodology

process shown in Figure 1.2. Several techniques are used at different stages throughout

the thesis. To answer Research Question 1 in Chapter 3, the SWARM approach is

proposed that adapts traditional association rule mining to RDF data. New quality

factors are developed to measure the importance of extracted rules by considering the

original concepts of rule factors in the traditional association rule mining. To answer

Research Question 2 covered in Chapter 4, the CAD approach is designed to evaluate

the correctness and incorrectness of relationships between instances and classes at

the schema-level. To this end, the key features of classes are extracted by utilising

information theory into RDF data. In this thesis, the CEn approach has also been

developed in Chapter 5 inspired by the results obtained by the CAD. The CEn approach

aims to satisfy the objectives of Research Question 3. It contains new algorithms to mine

instance-level data by utilizing schema-level knowledge to create new classes that are

not defined in the ontology. Several experiments have been conducted over real-world

datasets to show the effectiveness of the SWARM, CAD, and CEn approaches.
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1.7 Thesis structure

The remainder of the thesis is structured as follows:

Chapter 2 provides a literature review and background for this thesis. The chapter

categorizes recent SW data mining studies into three main groups. The result of

reviewing these studies reveal the main motivations for this thesis.

Chapter 3 concentrates on the objectives of Research Question 1. This chapter

introduces an automated approach called SWARM that mines semantic association

rules from the SW data. The chapter shows the necessity of using relations and schema-

level knowledge in the mining process. The proposed approach has been tested over

RDF-style datasets to demonstrate its effectiveness. The obtained results have been

compared with one of the latest approaches to reveal the semantics of discovered rules

by the SWARM.

Chapter 4 focuses on a SW data quality issue called ICA problem. The chapter

presents the CAD approach and shows how the approach deals with the ICA problem.

The chapter clearly explains how the CAD approach evaluates the correctness and

incorrectness of relationships between instances and classes in the ontology. The

experiments conducted over an RDF-style dataset shows the accuracy and effectiveness

of the approach.

Chapter 5 deals with the incompleteness issue of ontologies in the SW. Specifically,

this chapter introduces an approach called CEn to enrich ontologies by mining new

classes. The chapter shows how to automatically mine instance-level and schema-level

knowledge to generate new classes for an ontology. The effectiveness of this approach

has been demonstrated by running experiments over an RDF-style dataset.

Chapter 6 discusses how the research questions have been answered by considering

the objectives, summarises the contributions of the thesis and provides some interesting

research directions for future work.



Chapter 2

Literature Review

The SW is an effort to make knowledge on the Web accessible and processable through

its flexible architecture. Although the infrastructure of the SW gets rid of the rigidity of

relational databases, it creates new challenges for mining and discovering knowledge

needed for the users.

The aim of this chapter is to provide the related knowledge required to follow the

research questions and objectives described in Chapter 1. To this end, the chapter

presents a detailed review of research in mining and learning from the SW. Sections

2.1-2.3 classify the existing studies into three main categories including Frequent pattern

mining, SW data quality improvement, and ontology enrichment. Finally, Section 2.4

summarises the chapter and shows how motivations of this thesis are identified by the

limitations in the recent studies.

2.1 Frequent pattern mining

Over recent decades, there has been an increasing demand in developing data mining

methods for extracting frequent patterns from the SW data (Chomboon, Kaoungku,

Kerdprasop & Kerdprasop, 2014). In the context of the SW, most existing frequent

14
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pattern mining methods can be classified into three main categories, i.e., Frequent

subgraph mining, Logical rule mining, and Association rule mining.

2.1.1 Frequent subgraph mining

The concept of frequent subgraph mining focuses on discovering substructures that

frequently occur in the graph-structured datasets (Kuramochi & Karypis, 2001; Huan,

Wang & Prins, 2003; Chi, Muntz, Nijssen & Kok, 2005). This is an important topic

since data can be represented as a graph in various fields such as chemical molecules

and social networks.

Several studies have been conducted over the SW data since it can be expressed as

a directed labeled graph. Work by Ramakrishnan et al. (2005) proposed a subgraph

mining method to develop weighting mechanisms extracted from semantic links in the

SW graphs. This method evaluates the quality of extracted subgraphs by using path

ranking metrics. To improve the process of extracting subgraphs, Kasneci et al. (2009)

introduced MING algorithm that defines informativeness criteria to build a random

surfer model for ranking RDF query results based on their informativeness.

To speed up the query search results and reduce the volume of storage spaces, the

summarisation techniques are developed to generate smaller graphs. On this subject,

a study conducted by Basse et al. (2010) addressed the issue of extracting a compact

representation of RDF graphs. The method extended the gSpan algorithm proposed

by Yan et al. (2004) into a form of directed labeled graphs along with DFS (Depth-

First Search) code as a canonical representation of RDF graphs. Zhang et al. (2012)

proposed another method for mining link patterns in the LOD to enhance the scalability

level. In this study, before the mining process, a Typed Object Graph collects instances

for the sake of scalability. To compare with the above methods, DIVERSUM is

another summarisation method that achieves higher recall scores (Sydow, Pikuła &
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Schenkel, 2013). DIVERSUM concentrates on the diversification in the graphical entity

summarisation.

As explained in Chapter 1, SPARQL is a SW query language that aims to discover

proper subgraphs from the LOD cloud based on the users’ inquiries. Researchers

have been recently developing methods to optimize the results obtained by SPARQL

engines. HiBISCuS is a method that transforms SPARQL queries into directed labeled

hypergraphs (Saleem & Ngomo, 2014). HiBISCuS filters out irrelevant results by

considering the joins’ types in the queries. It is important to mention that the query

runtime of HiBISCuS outperforms DARQ (Quilitz & Leser, 2008), SPLENDID (Görlitz

& Staab, 2011), and FedX (Schwarte, Haase, Hose, Schenkel & Schmidt, 2011) methods.

Similarly to HiBISCuS, a query rewriting-based method utilizes the interconnection

topology between RDF systems to filter out irrelevant results (Peng, Zou, Özsu & Zhao,

2018). To improve the semantics of retrieved results, KAT used the context of each

input keyword (Wen, Jin & Yuan, 2018). The KAT is developed based on two indexing

mechanisms called keyword index and graph index. The keyword index uses RDF class

information to reduce keyword ambiguity, while the graph index is created to speed up

the graph mining process.

Although the above algorithms are interesting in the area of frequent subgraph

mining, they usually hide content associations in the SW graph. Because they are

concerned with frequent substructures. More precisely, these algorithms do not often

consider knowledge encoded at the schema-level for extracting semantically frequent

content in the SW graph. In contrast with the above algorithms, this thesis aims to not

only take instance-level data into account but also schema-level knowledge to discover

semantically-enriched patterns from the SW data.
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2.1.2 Logical rule mining

The ILP is an area of machine learning that employs logic programming as a formal

representation. The ILP usually requires counterexamples (Muggleton & De Raedt,

1994). The very first step in ILP-based methods is to provide a set of positive and

negative facts along with some background knowledge. On this line of research,

ALEPH is one of the well-known ILP-based systems that is implemented in the Prolog

(Muggleton, 1995). WARMR is another ILP-based system that mines patterns from

relational databases by using conjunctive queries (Dehaspe & Toivonen, 1999, 2001).

WARMER is an extended version of WARMR that uses a declarative language, and it

supports a broader range of conjunctive queries to mine frequent patterns from relational

databases (Goethals & Van den Bussche, 2002).

ILP is also a well-known technique for mining frequent patterns from the SW

data (d’Amato, Tettamanzi & Minh, 2016). JÓzefowska et al. (2010) developed an

algorithm to discover frequent patterns from the SW. Galárraga et al. (2013) proposed a

multi-threaded method called AMIE for mining Horn rules from RDF-style KBs. This

method concentrates on mining Horn rules among predicates such as motherOf (m,c) ∧

marriedTo(m,f )⇒ fatherOf (f,c). AMIE’s quality factors (i.e., support and confidence)

only consider knowledge at the instance-level and they remove the rdf:type properties

from the ontology. In order to reduce the number of generated Horn rules, the AMIE

mines closed rules, i.e., each of the variables in the predicates should have appeared at

least twice. For example, in the mentioned rule, the variable m has been shared between

motherOf and marriedTo twice. AMIE also introduced a new measure called Partial

Completeness Assumption (PCA). PCA is defined in this way that if a dataset contains

some triples on a subject s with a predicate p, then it knows all the possible triples of

s with the predicate p. Furthermore, a quality factor called the PCA confidence was

introduced in AMIE. As explained, PCA is restricted to a clear and complete ontological
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knowledge base which does not exist in many SW systems. Additionally, AMIE is a

multi-threaded method with high memory overheads. Galárraga et al. (2015) extended

AMIE to AMIE+ by using pruning and query rewriting techniques. Mining Horn rules

from the SW data has also been studied in (B. Yang, Yih, He, Gao & Deng, 2014).

EDMAR is another method that takes advantage from problem-aware genetic operators

to discover associations in the form of Semantic Web Rule Language (SWRL) rules

(Tran, d’Amato, Nguyen & Tettamanzi, 2017; Tran, d’Amato, Nguyen & Tettamanzi,

2018).

Although ILP is a useful method for developing logical disciplines by relying on the

reasoning and predefined statements, it is not sufficient for representing concepts that

need non-logical backbones. ILP usually requires counterexamples which is a limitation

of this method. In the SW, most existing ILP-based methods consider instance-level data

for evaluating the interestingness of frequent patterns by using quality factors (Lisi &

Esposito, 2005; L. A. Galárraga, Teflioudi et al., 2013; B. Yang et al., 2014; L. Galárraga

et al., 2015). These methods disregard knowledge encoded at the schema-level, i.e., by

removing rdf:type properties from the RDF-style datasets. Consider isCitizenOf (x,y)

⇒ livesIn(x,y) as a frequent pattern discovered by AMIE (L. A. Galárraga, Teflioudi

et al., 2013). The AMIE ignores rdf:type properties from the ontology for measuring

the quality of the result. While, instances that support the above pattern might belong

to different classes in the ontology. In the context of the SW data, it is not rational to

interpret discovered patterns by ignoring the knowledge embedded at the schema-level.

Using class information is an essential fact for adding another level of semantics to the

results. The above limitations motivate us to show how using schema-level knowledge

besides instance-level data can generate semantically-enriched patterns from the SW

data.
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2.1.3 Association rule mining

The concept of association rule mining was first introduced by Agrawal et al. (1993).

Let I = {i1, i2, ..., in} be a set of items and D = {t1, t2, ..., tm} be a set of transactions.

Each transaction contains a subset of items in I. An association rule represents a frequent

pattern of the occurrence of some items in the transactions. In addition, association

rules generally reveal behavioural patterns of some particular entities in the datasets

(Han, Pei & Yin, 2000; Han, Cheng, Xin & Yan, 2007). For example, in the traditional

shopping basket problem, the rule {butter, bread}⇒ {milk} shows a common behaviour

of customers. Namely, if a customer buys butter and bread together, she is likely to buy

milk as well.

Association rule mining is not only limited to tabular data. The concept of gener-

alized association rule was proposed to discuss how to mine frequent patterns from

taxonomies (Srikant & Agrawal, 1995). The purpose of this method is to extend itemsets

by considering all the ancestors of each item in a taxonomy and consequently mining

generalized association rules. The extracted rules show details at different granularities.

This method has the main drawback that is about transactions length overhead that

negatively impacts the results. Different optimization methods have been proposed to

improve this issue (Tsur et al., 1998; Wei & Chen, 1999; Chen, Wei & Kerre, 2000;

L. Yang, 2005). On this subject, Diff_ET and Diff_ET2 are two novel algorithms that

efficiently extract generalized association rules in the taxonomy (Tseng, Lin & Jeng,

2008).

Discovering frequent patterns has also been studied for assessing users’ behaviours

in the Web log files. Different methods are proposed to predict Web pages that a

user is likely to visit through analysing Web log files reviewed by the user (Géry &

Haddad, 2003). In this respect, the FS-Miner is an efficient system designed for mining

frequent sequences from Web log files (El-Sayed, Ruiz & Rundensteiner, 2004). The
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performance of FS-Miner shows that the system scales linearly that is suitable for

increasing the size of input data. Similar strategies also discussed in (Takama & Hattori,

2007; Singh, Kumar & Maurya, 2014; Raphaeli, Goldstein & Fink, 2017; Shanthi,

2017; Kaur & Aggarwal, 2018).

Traditional association rule mining has also been adapted to the SW data for discover-

ing frequent hidden patterns. Nebot and Berlanga (2012) proposed a rule mining method

for RDF-based medical data. In the proposed method, transactions are generated by

using mining patterns developed by SPARQL queries. This method semi-automatically

obtains the desired terminology for generating items and transactions for the association

rule mining process. This method relies heavily on the domain experts. Namely, users

should have background knowledge of the vocabularies used in the ontology. Mining

Configurations proposed by Abedjan and Naumann (2013a, 2014) is an automatic

method that performs based on the depth-first search using the FP-Growth algorithm

(Han et al., 2000) to automatically discover association rules from RDF data. Mining

Configurations improves the limitations in the (Nebot & Berlanga, 2012). This method

discovers dependencies between entities by using six different configurations. The

method claims that is useful in various use cases such as schema discovery, basket

analysis, clustering, range discovery, topical clustering, and schema matching. In this

method, any part of Subject-Predicate-Object (SPO) statement can be considered as a

context, which is used for grouping one of the two remaining parts of the statement as

the target of mining. Mining Configurations generates three forms of rules including

si ⇒ sj (mining subjects), pi ⇒ pj (mining predicates), and oi ⇒ oj (mining objects).

Note that the method generates association rules by mining instance-level data and it

does not consider the schema-level knowledge in its process. Additionally, the rule

quality factors (i.e., support and confidence) only consider entities at the instance-level.

SAG is another method that used SPARQL commands to mine and classify association

rules from the RDF data without considering schema-level knowledge (Tsay, Sukumar



Chapter 2. Literature Review 21

& Roberts, 2015).

Ignoring ontological knowledge can have negative impacts on interpreting the rules.

For example, Mining Configurations claims that this method can be used in the schema

discovery scenarios (Abedjan & Naumann, 2013a, 2014). In the Mining Configurations

method, an association rule like associatedBand, instrument ⇒ associtedMusicalArtist

shows a schema for musicians. Although this method detects some interesting asso-

ciations, in some cases, it is not able to express a certain schema for the rules. For

example, the schema of rule influencedBy⇒ influenced, birthPlace, deathPlace is not

recognizable by Mining Configurations method. Because the predicates in the above

rule are common among different classes in the ontology. For example, influencedBy

is a common predicate among Philosopher, Saint, and Writer classes in the DBpedia

ontology.

To overcome these limitations, this thesis aims to reveal the importance of utilizing

schema-level knowledge in the process of mining frequent patterns.

2.2 SW data quality improvement

Because of the distributed nature of the SW, RDF-style KBs usually contain noisy

and inconsistent data that create different problems known as SW data quality issues.

Different methods are proposed to tackle the SW data quality issues driven by the

diversity and complexity of KBs. The main purpose of these methods is to refine

and re-engineer the KBs. The following describes some SW data quality issues that

frequently occur in the popular RDF-style KBs such as (i) missing type properties, (ii)

incorrect or incomplete statements, (iii) incorrect links to external resources, and (iv)

missing predicates.
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2.2.1 Missing type properties

In the SW, a relationship between an instance and corresponding classes in the ontology

is provided by an rdf:type property. In other words, rdf:type property indicates a class

that an instance belongs to. In this respect, KBs usually suffer from missing rdf:type

properties since the process of distributing the SW data is controlled by users.

On this line of research, Tìpalo is an automatic algorithm for predicting missing type

properties in the DBpedia datasets by interpreting natural language description extracted

from Wikipedia abstracts (Gangemi et al., 2012). To exploit more potentials provided by

the SW technologies, a method proposed by Giovanni et al. (2012) takes advantage from

links within Wikipedia infoboxes to infer missing type properties. Work by Paulheim

and Bizer (2013) developed a heuristic type inference mechanism called SDType to

handle missing type properties. It is worth mentioning that the results obtained by the

SDType show that at most 63.7% of the SW data have complete type declarations in the

DBpedia and at most 53.3% in the YAGO. To enhance the performance of SDType, a

method called SLCN predicts missing rdf:type property in the RDF-style KBs (Melo,

Völker & Paulheim, 2017). Note that SLCN can perform and scale better to compare

with SDType method (Paulheim & Bizer, 2013). Sleeman and Finin (2013) proposed

a supervised machine learning algorithm to predict the missing type of instances by

mapping their attributes into a common attribute space. Kellou-Menouer and Kedad

(2015) also presented a clustering-based method to infer missing rdf:type properties

under incomplete RDF-style KBs. It is important to know that the reviewed studies

focus on predicting missing types for object property values in the SW data.

There also exists the possibility of missing types for datatype properties. Gunaratna

et al. (2016) proposed a method that identifies missing types for datatype property

values by semantic matching of terms to the class labels. For example, consider an

RDF triple (Barack Obama, shortDescription, ′′44 president of the United States′′
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^^xsd:string) from DBpedia. The method assigns the literal (′′44 president of the United

States′′ ^^xsd:string) to the President class by mining the semantic of literal.

2.2.2 Incorrect or incomplete statements

There is another SW data quality issue that refers to incorrect or incomplete object

values of RDF triples. Consider triple (Rodrigo Salinas, birthPlace, Puebla F.C.) shared

by DBpedia. The DBpedia provides an invalid object value for Rodrigo Salinas who is

a Mexican football player. Instead of sharing a city or a country name, the Puebla F.C.

stadium has been extracted from Wikipedia abstracts.

According to this issue, Defacto is a system built based on a lexical library of

properties that frequently checks DBpedia datasets to analyse the validity of RDF

triples (Lehmann et al., 2012). Research completed by Töpper et al. (2012) focused

on modifying existing errors occurred in the object values of RDF triples by exploiting

domain and range properties as well as class disjointness axioms. On this line of

research, an outlier detector method is proposed to identify wrong numerical object

values in the RDF-style KBs (Fleischhacker, Paulheim, Bryl, Völker & Bizer, 2014).

Debattista et al. (2015; 2016) proposed a distance-based clustering method to assess

the possibility of identifying incorrect RDF statements in the SW. To make existing

methods robust, Dongo et al. (2017) proposed a method that combines lexical analysis

and semantic analysis together to derive datatype property in four main steps: (I)

analysing existing range property, (II) analysing object lexical-space, (III) semantic

analysis of the predicate name, and (IV) generalizing of numeric datatypes.

In the SW, predicates are not only used for linking entities to other entities but also

to literals. Many datatype properties of RDF triples have not been entered in the KBs

due to a large amount of data. Rizzo et al. (2016) proposed a method that combines

predictive clustering trees and terminological regression trees to predict unknown values.
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The proposed method also adopts SWRL to represent extracted rules concerning with

numeric attributes.

2.2.3 Invalid links to external resources

By increasing the number of the SW data over the LOD cloud, faulty links to the external

KBs are inevitable. This particular problem occurs when the association between the

subjects and objects is inaccurate (Acosta et al., 2016). In the OWL terminology, an

instance linked by owl:sameAs property refers to the same real-world instance in another

knowledge base (Ding, Shinavier, Shangguan & McGuinness, 2010). Such instances

share the same facts across the LOD cloud.

A survey conducted by Halpin et al. (2010) assessed how accurate owl:sameAs

property is being used (and misused) over the LOD cloud. One of the most prominent

systems is called Silk that links entities through developing a heuristic method (Volz,

Bizer, Gaedke & Kobilarov, 2009). This method has been extended by using blocking

strategies (Isele, Jentzsch & Bizer, 2011) and genetic algorithms (Isele & Bizer, 2012).

To compare with Silk, LINDA is a distributed link discovery method based on Hadoop

algorithms which can be scaled for the very large datasets (Böhm, de Melo, Naumann

& Weikum, 2012). LiQuate is a tool that uses Bayesian Networks and rule-based

systems to evaluate the quality of links in the LOD cloud (Ruckhaus, Baldizán & Vidal,

2013). Similarly to LiQuate, Paulheim (2014) developed a method to discover faulty

links between datasets by using multi-dimensional outlier detection techniques. In

this regard, a metric-driven method improves the quality of link analysis by using

three measures including internal linking, external linking, and link-ability from other

resources (Yaghouti, Kahani & Behkamal, 2015). A method proposed by Spahiu et

al. (2016) evaluates the quality of owl:sameAs property and discovers similar links by

using similarity metrics.
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2.2.4 Missing predicates

Publishing the SW data is a very error-prone process due to a large amount of data.

Predicting missing properties (i.e., predicates) is another valuable research topic in the

SW field. Consider Barack Obama as a subject and Honolulu as an object of an RDF

triple. Here the question is that how to predict birthPlace property by mining existing

RDF data in the SW.

According to this quality issue, a path ranking algorithm extended the idea of

using random walks for predicting links in multi-relational knowledge graphs (Lao &

Cohen, 2010; Lao et al., 2011). Krompaß et al. (2015) proposed a type-constraints

based method to extract the semantic relationships among instances in a closed-world

assumption. It is worth mentioning that the method performs better than other methods

(Nickel, Tresp & Kriegel, 2011; Bordes, Usunier, Garcia-Duran, Weston & Yakhnenko,

2013; Dong et al., 2014). Last but not least, Cao et al. (2016) proposed a supervised

method to learn weights of meta paths to build a link prediction model for RDF-style

KBs.

As reviewed above, there exist different kinds of the SW data quality issues such as

missing type property, incorrect or incomplete statements, incorrect links to external

resources, and missing predicate. However, the SW data quality issues are more

challenging than our expectations. This thesis works on a SW data quality issue called

ICA. The motivation behind the ICA issue is inspired by observing some inconsistencies

between instances and classes in the DBpedia dataset. The ICA issue indicates incorrect

assignments between instances at the instance-level and classes in the ontology.
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2.3 Ontology enrichment

By developing the SW technologies for supporting the Web 2.0 infrastructure, the

number of KBs are also growing fast. An RDF-style knowledge base not only contains

instance-level/RDF triples but also schema-level/ontology. An ontology is normally

static since the vocabularies describing domains do not often change, while the instance-

level is very dynamic because it is continuously updated (Tulasi & Rao, 2014; Shah &

Jain, 2014; Dou, Wang & Liu, 2015). On the other side, ontologies can be incomplete

since they are usually created before using in the real-world scenarios. In this respect,

ontology enrichment is an interesting line of research that is mainly about automated or

semi-automated schema, class and property learning. The rest of this section reviews

most common opening studies in the area of ontology enrichment including (I) Schema

learning, (II) Property learning, and (III) Class learning.

2.3.1 Schema learning

An ontology presents the conceptualization of specific domains while the assertional

knowledge is usually provided by RDF triples for classes in the ontology. With the

explosive growing the SW data over the LOD cloud, the problem is that traversing large

ontologies consumes more time and space. In this respect, schema learning is a useful

mechanism to overcome this limitation. The main objective of schema learning studies

is to construct a more unified ontological structure by mapping different schemas to

each other.

To this intent, a hierarchical-based clustering method is developed based on a set

of measures to assess the similarity between metadata in the ontologies (Maedche &

Zacharias, 2002). Similarly to Maedche and Zacharias (2002), a method proposed by de

Mantaras and Saitia (2004) used clustering techniques by defining formal concepts and

context vectors to build taxonomies. To obtain a better level of feasibility in the process
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of schema mapping, a K-means clustering based method maps different ontological

structures to each other (Esposito, Fanizzi & d’Amato, 2007).

It is interesting to know that some methods have been developed to directly map

the schemas of databases to ontological structures. On this line of research, An and

Topaloglou (2008) proposed a specification for the validity of a semantic mapping

between the schemas of databases and ontologies. To improve the efficiency level,

Khattak et al. (2012) proposed another method that takes advantage from change history

to diminish the time needed for mapping among ontologies. Similar statistical methods

are also studied in the (Völker & Niepert, 2011; Dos Reis, Pruski & Reynaud-Delaître,

2015).

Since traversing ontological structures is a very time-consuming task, different

methods are focused on partitioning ontologies for the sake of scalability. Ahmed et al.

(2015) implemented a clustering-based method to partition OWL ontologies by using

semantic similarity measures. Similar partitioning methods are also studied to deal with

the memory consumption (Suh & Gaddam, 2011; Saruladha, Aghila & Sathiya, 2012).

One of the main tasks in the schema mapping process is to analyse the similarity

between classes. In this respect, CWCONS is a method that discovers equivalence

relation between classes (Yin, Gu & Hou, 2016). The motivation of CWCONS is to

categorise the nodes of different ontology trees into two groups including classification

nodes and the concept nodes. To make the results achieved by CWCONS robust, Gao et

al. (2017) studied how to obtain an optimal distance measure in the ontology mapping.

It is interesting to know that MAPSOM demonstrated how ontological descriptions

facilitate interoperability between a data model and new data sources in the process of

ontology mapping (Jirkovskỳ, Kadera & Rychtyckyj, 2017).

Although the above studies make some valuable progress in the field of ontology

mapping, it still suffers from several challenging issues, including heavy computational

overheads of ontology mapping and lacking automated methods to fully perform the
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mapping process.

2.3.2 Property learning

A property/predicate plays an essential role in representing an RDF triple. Because a

predicate expresses a meaningful relationship between entities. The following reviews

recent studies for mapping synonym properties between RDF-style KBs for ontology

enrichment.

In the SW, although property learning is one of the most crucial steps for enriching

KBs, little effort has been put forward. Many RDF-style KBs overlap with each other

not only in their instances but also classes and properties defined in the ontologies.

PARIS is an automatic alignment method that aims to align and interlink SW-based on-

tologies (Suchanek, Abiteboul & Senellart, 2011). PARIS aligns not only instances and

classes but also properties. The experiments show that PARIS is able to discover syn-

onym properties between YAGO and DBpedia such as y:isCitizanOf ⊆ dbp:nationality,

y:isMarriedTo ⊆ dbp:spouse, and dbp:award ⊆ y:hasWonPrize. There are also many

synonym facts in different RDF-style KBs such as (Washington, CapitalCityOf, U.S.)

and (D.C., IsCapitalOf, United States). Aligning such facts between two KBs have been

studied in (Parundekar, Knoblock & Ambite, 2010; L. A. Galárraga, Preda & Suchanek,

2013; Amarilli, Galárraga, Preda & Suchanek, 2014; L. Galárraga, Heitz, Murphy &

Suchanek, 2014). Mining synonym properties not only discovers groups of equivalent

relations but also helps recommender systems to suggest a wide range of predicates to

the SW data providers. A recommender system proposed by Abedjan and Naumann

(2013b) used association rules to extract synonym properties from the DBpedia ontology.

Then, the matched synonyms are exploited for the property development.

Although the results of such methods are applicable in the SW applications, the

foundation of these methods are not sophisticated enough to align multiple KBs (i.e.,
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more than two KBs) to discover synonym properties.

2.3.3 Class learning

A class/concept plays a fundamental role in the ontology enrichment. A class is an

abstract notion that contains a set of things with similar attributes. Since ontologies

usually suffer from lack of completeness, class learning helps to extract hidden concepts.

The following reviews how class learning methods assist ontologies to be completed in

the SW field.

In the SW technologies, Description Logic (DL) has been exploited as the foundation

of OWL (McGuinness, Van Harmelen et al., 2004; d’Amato, Fanizzi & Esposito, 2010).

It is necessary to mention that the concept of DL originates from ILP. In the OWL,

axioms are defined to express different relationships between classes. There exist various

semantics for representing relations among Classes (C) such as Subsumption (Ci,Cj),

Equivalence (Ci,Cj), Disjoint (Ci,Cj), etc. The Subsumption (Ci,Cj) shows that Ci

is a subclass of Cj; Equivalence (Ci,Cj) indicates that there exists a binary relation

between Ci and Cj that can express reflexive, symmetric, and transitive properties;

Disjoint (Ci,Cj) also shows that Ci and Cj are completely two different classes in the

ontology.

On this subject, Iannone et al. (2007) investigated solutions for the class induction

by a semi-automatic DL-based method. In comparison to Iannone et al. (2007), an auto-

mated method proposed by Bühmann et al. (2016) is a DL-Learner that encompassed

a set of algorithms for class learning by using a refinement operator. The refinement

operator contains two main operators including downward refinement operator to extract

a set of classes and upward refinement operator which extracts a set of general classes

for the input data. Fleischhacker et al., (2011) proposed a method to inductively learn

disjointness axioms. They discussed multiple strategies such as learning the correlation



Chapter 2. Literature Review 30

between two classes by using the number of common instantiations between pairs.

Since RDF-style KBs usually contain inconsistent data, Töpper et al. (2012) shows

the benefit of disjoint axioms for discovering inconsistencies. The authors proposed a

method to detect those class pairs that have similarity scores below a fixed threshold.

Such pairs are considered as disjoint classes. BelNet is a logical-based method that

specifically learns subsumption relationships from the schema-level by using DL and

Bayesian Network under the incomplete KBs (Zhu et al., 2013). There exist similar ILP-

based methods that are successfully applied in the practical applications to extract OWL

axiom expressions (Lehmann, 2009; Hellmann, Lehmann & Auer, 2009; Suchanek et

al., 2011; d’Amato, Bryl & Serafini, 2012; L. A. Galárraga, Preda & Suchanek, 2013;

D. Zhang, Yang, Wang, Wang & Zhao, 2016).

Since different schemas are connected by the SW technologies, a method proposed

by Bühmann and Lehmann (2013) discovered frequent axiom patterns in different

ontologies and transformed them into SPARQL query patterns. Then, the query patterns

are applied to other datasets to enrich them with new axioms. To enhance the process of

mining axioms from different ontologies, Li et al. (2015) suggested another method to

discover axioms by splitting the dataset into several blocks based on disjoint properties.

To the best of knowledge, the existing class learning methods are mainly based

on ILP techniques that usually work with a set of counterexamples. To overcome the

limitation of counterexamples, this thesis introduces a non-logical method that generates

new classes which are not defined in the ontology through mining instance-level and

schema-level knowledge.

2.4 Summary

This chapter provides a detailed view of recent learning and mining methods in the

SW field. The studies are sorted into three main categories including (I) Frequent
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pattern mining, (II) SW data quality improvement, and (III) Ontology enrichment. By

reviewing related work, several shortcomings and directions are identified as follows.

• In the process of discovering frequent patterns, the existing SW data mining meth-

ods usually do not take schema-level knowledge into account. In the proposed

methods, the extracted frequent patterns usually use knowledge at the instance-

level without considering this fact that instances might belong to different classes

at the schema-level. This thesis shows that the extracted patterns do not reveal

explicit semantics without utilizing schema-level knowledge.

• By explosive growing the SW data, various quality issues are also emerging since

the process of publishing data is managed by the SW communities. By detecting

inconsistencies between instances and classes in the DBpedia ontology, this thesis

deals with a SW data quality issue called ICA.

• While the number of RDF-style KBs is increasing, the enrichment of ontology

schemata remains as a challenge. In this line of study, class learning is a topic that

concentrates on extracting concepts from the SW data. In the SW, the existing

methods are usually developed by using ILP techniques are suitable for logical

scenarios with a set of counterexamples. To extract new classes and get rid of

counterexamples, this thesis concentrates on a non-logical approach for class

learning.

In the area of mining and learning from the SW data, several research gaps have

been identified from the literature review which are pointed above. The following

chapters specifically discuss challenges and propose approaches to deal with them.



Chapter 3

Mining Semantic Association Rules

From RDF Data

Although the SW adds semantics to RDF triples by providing ontological vocabularies,

this potential is not exploifted very well for expressing associations among triples.

Traditional association rule mining is a data mining method that has been adapted into

the SW for extracting frequent patterns. Most existing SW-based methods designed for

discovering association rules usually define quality factors (e.g., support and confidence)

by only considering instance-level data. In fact, these methods disregard knowledge

embedded at the schema-level. In this regard, the semantics behind discovered rules is

not explicitly interpretable when entities have different types at the schema-level.

Mining Configurations is a SW-based mining method for discovering association

rules (Abedjan & Naumann, 2013a). The method measures the quality of rules without

using ontological knowledge. More precisely, Mining Configurations disregards rdf:type

properties, and it just focuses on mining instance-level data. The studies conducted in

this chapter shows that Mining Configurations method is not able to provide explicit

semantics for association rules in the SW.

32
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This chapter introduces an effective rule mining approach called Semantic Web As-

sociation Rule Mining (SWARM) that automatically mines and generates semantically-

enriched rules from RDF data. Different with most existing studies, the SWARM

approach exploits rdf:type and rdfs:subClassOf properties defined in the ontology to

enrich association rules. The discovered rules reveal common behavioural patterns asso-

ciated with knowledge at both instance-level and schema-level. This chapter illustrates

the benefits of using relations and schema-level knowledge by comparing the results

with the Mining Configurations.

The rest of this chapter is structured as follows. Section 3.1 provides a motivating

example to show the importance of considering relations and schema-level knowledge

in the process of mining association rules. The SWARM’s framework, definitions,

and algorithms are presented in Section 3.2. Section 3.3 explains the experimental

setup and results. The extensibility of the SWARM is also discussed in Section 3.4.

Finally, Section 3.5 summarises the whole chapter and highlights the contributions of

the SWARM.

3.1 Motivation

The most important thing here is to provide a clear description of some instance-level

and schema-level knowledge in the discovered association rules. By considering RDF

triples in Table 3.1, an ideal way to represent semantics in an association rule is shown

as follows:

{Person}: (instrument, Guitar)⇒ (occupation, Songwriter)

The above rule shows that most of the time people who play a musical instrument

(e.g., guitar) are probably songwriters. Mining such regularities help us to achieve a

better understanding of the SW data. For example, we can find out that people with
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similar skills usually tend to join to a particular community; people often communicate

with those speaking the same language; people born in the same region usually tend

to collaborate with each other, and so on. The goal of the SWARM is to extract such

behavioural patterns from RDF-style KBs.

Table 3.1: Some RDF triples from the DBpedia dataset

Triples Subject Predicate Object
t1 John Lennon instrument Guitar
t2 John Lennon spouse Yoko Ono
t3 John Lennon occupation Songwriter
t4 Yoko Ono birthplace Tokyo
t5 George Harrison instrument Guitar
t6 George Harrison occupation Songwriter
t7 Jimmy Carter office President of the USA
t8 Jimmy Carter party Democratic
t9 Bill Clinton office President of the USA
t10 Bill Clinton party Democratic
t11 George W. Bush office President of the USA
t12 George W. Bush party Republic
t13 John Lennon rdf:type dbo:Person
t14 George Harrison rdf:type dbo:MusicalArtist
t15 George Harrison rdf:type dbo:Person
t16 Jimmy Carter rdf:type dbo:Person
t17 Bill Clinton rdf:type dbo:Person
t18 George W. Bush rdf:type dbo:Person
t19 Yoko Ono rdf:type dbo:Person

In order to boost and enrich the semantics of rules, the SWARM considers rdf:type

and rdfs:subClassOf properties at the schema-level. In the OWL vocabularies, rdf:type

is basically a property that ties an instance to a class in the ontology; rdfs:subClassOf is

also used to show that one class is a subclass of another class in the ontology. As seen

in Table 3.1, both John Lennon and George Harrison are guitarists and songwriters.

Consider Figure 3.1 as a small fragment of the DBpedia ontology (3.8). George

Harrison is an instance of Musical Artist class while John Lennon belongs to the Person

class. Regarding to the concept of hierarchy in the ontology, if the Musical Artist class

is a subclass of the Artist class and the Artist class is a subclass of the Person class,

then George Harrison belongs to the Person class as well. However, John Lennon is
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not indicated to be an instance of the Musical Artist class.

In the SW, it is not rational to interpret the discovered rules by ignoring knowledge

embedded at either the instance-level or the schema-level. Unfortunately, most existing

association rule mining methods for the SW data only focus on discovering frequent

patterns at the instance-level. Hence, the major motivation of the SWARM is to

overcome this drawback by using the instance-level and schema-level knowledge.

Figure 3.1: A fragment of the DBpedia ontology

3.2 The Semantic Web Association Rule Mining

(SWARM) approach

The overall framework of the SWARM is shown in Figure 3.2. It contains two major

modules: Pre-processing module and Mining module. RDF triples are automatically

processed by the Pre-processing module which contains two sub-modules: Semantic
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Item Generation and Common Behaviour Set Generation. The Mining module receives

Common Behaviour Sets to generate Semantic Association Rules. The SWARM

approach evaluates the quality of rules by using rdf:type and rdfs:subClassOf properties

in the ontology. The proposed rule quality factors not only considers knowledge at the

instance-level but also at the schema-level.

Figure 3.2: The SWARM framework

3.2.1 Pre-processing module

Traditional association rule mining algorithms are mainly suited for homogeneous

repositories, where items and transactions play significant roles in the mining process

(Han et al., 2000). However, most SW data are not transactional data, and there exist

no items or transactions. In this respect, we need to model such notions to discover

associations from the SW data.

As mentioned earlier, the assertion of an RDF triple, i.e., (subject, predicate, object)

indicates a meaningful relationship between a subject and an object provided by a

predicate. Namely, a triple can also be considered as the description of one particular

behaviour of entities. For example, if we consider the subject of t1, i.e., John Lennon,
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in Table 3.1 as an entity (i.e., instance), then the other two elements in the triple (i.e.,

instrument, Guitar) can be considered as a particular behaviour of John Lennon. Based

on this idea, the concept of Entity Behaviour is defined as follows.

Definition 3.3.1. (Entity Behaviour). Given an RDF triple ti, an Entity Behaviour

derived from ti is a 2-tuple, i.e., ebi = (ei, pai). ei is an Entity which can be either the

subject (s) or the object (o) of the triple. pai is the Pair of ebi. It indicates a behaviour

taken by ei. Corresponding with the content in ei, pai contains the combination of

predicate-object or predicate-subject, i.e., (p, o) or (p, s).

Based on Definition 3.3.1., the following defines the concepts of Semantic Item and

Common Behaviour Set to show how the SWARM extracts common behaviours among

entities.

Semantic Item Generation

As seen in Table 3.1, the subjects in the t1 and t5, i.e., John Lennon and George

Harrison, share a common activity, i.e., (instrument, Guitar). Namely, playing guitar

is a common behaviour taken by this group of entities, i.e., John Lennon and George

Harrison. In the SWARM approach, such combinations are known as Semantic Item.

Definition 3.3.2. (Semantic Item). A Semantic Item sij is a 2-tuple, i.e., sij =

(esj, paj). esj is an Element Set of sij . It contains a list of subjects or objects, i.e.,

{s1, s2, ..., sn} or {o1, o2, ..., on}. paj is a Pair of sij . Corresponding with the content

in esj , paj contains a combination of predicate-object or predicate-subject, i.e., (p, o)

or (p, s).

According to Definition 3.3.2., triples in a triple store can be converted to a set of

Semantic Items i.e., SI={si1, si2, ..., sin}.

In the RDF data model, any object from one triple can be a subject of another

triple. This feature has been considered in Definition 3.3.2. where an Element Set es

can contain a list of subjects or objects. It is necessary to mention that the SWARM
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approach has not considered an Element Set es as a list of predicates. Because, for each

particular Semantic Item, the predicate of each Pair (p, o) plays a significant role in

displaying the concept of a behaviour.

Semantic Items can be generated from triples by using Algorithm 3.1. The algorithm

takes all Triples as an input and then generates a set of Semantic Items SI as an output.

It extracts the Pair of each triple ti and stores it in pa′ (Lines 5-6). For each sii in SI

set, if pa′ is the same as sii’s pair, then the algorithm adds the subject of triple ti to

sii.es (Lines 7-10). When there is no existing Semantic Item that contains a particular

Pair, the algorithm creates a new Semantic Item si′i and adds it to SI (Lines 13-16).

The algorithm finally returns the updated SI in Line 20.

Algorithm 3.1: Semantic Item Generation
1: INPUT: Triples
2: OUTPUT: SI

3: SI ← ∅;
4: foundF lag ← false;
5: for each triple tj ∈ Triples do
6: pa′ ← the Pair of tj ;
7: for each sii ∈ SI do
8: if pa′ = sii. pa then
9: add the subject of tj to sii.es;

10: foundF lag ← true;
11: end if
12: end for
13: if foundFlag = false then
14: new Semantic Item si′i;
15: si′i ← tj ;
16: add si′i to SI;
17: end if
18: foundF lag ← false;
19: end for
20: return SI;

Example 1. Consider the triples shown in Table 3.1. Some of the Semantic Items

generated by Algorithm 3.1 have been shown in Table 3.2. For example, the Element

Set of si2 contains two entities John Lennon and George Harrison. The Pair of si2 is

(occupation, Songwriter). si2 indicates that (occupation, Songwriter) is a particular
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behaviour of John Lennon and George Harrison. A related point to consider is that in

this example, Semantic Items are generated by using the {s1, s2, ..., sn}(p, o) structure,

i.e., an Element Set es contains a list of subjects.

Table 3.2: Some examples of Semantic Items

Semantic Items
si1 {John Lennon, George Harrison}(instrument, Guitar)
si2 {John Lennon, George Harrison}(occupation, Song-

writer)
si3 {Jimmy Carter, Bill Clinton, George W. Bush}(office, Pres-

ident of the USA)
si4 {Jimmy Carter, Bill Clinton}(party, Democratic)

Common Behaviour Set Generation

As explained earlier, a Semantic Item shows a common behaviour (described in the

Pair) taken by a group of entities in the Element Set. In the following, a new concept

called Common Behaviour Set is defined to represent all common activities taken by

similar groups of entities in the Element Sets.

Definition 3.3.3. (Common Behaviour Set). A Common Behaviour Set cbs contains

a set of Semantic Items with similar Element Sets, i.e., cbs = {si1, si2, ..., sin} =

(ES,PA), where ES = {si1.es ∪ si2.es ∪ ... ∪ sin.es} and PA = {si1.pa ∪ si2.pa... ∪

sin.pa}. Items can be aggregated into the same cbs, if the similarity degree of their

Element Sets is greater than or equal to Similarity Threshold SimTh. The Similarity

Degree (SD) of Element Sets can be calculated by using Equation 3.1:

SD(esa, esb, ..., esm) =
∣esa ∩ esb ∩ ... ∩ esm∣
∣esa ∪ esb ∪ ... ∪ esm∣

(3.1)

According to Definition 3.3.3., a cbs is a set of Semantic Items aggregated based on

the similarity of entities in Element Sets. A cbs shows a group of common occurrence
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of some activities taken by entities in the Element Sets. Accordingly, Total Common

Behaviour Set TCBS = {cbs1, cbs2, ..., cbsn} contains all Common Behaviour Sets.

Algorithm 3.2: Total Common Behaviour Set Generation
1: INPUT: SI , SimTh
2: OUTPUT: TCBS

3: TCBS ← ∅;
4: foundF lag ← false;
5: for each sii ∈ SI do
6: for each cbsj ∈ TCBS do
7: seta ← ⋂

sii∈cbsj

sii.es;

8: setb ← ⋃
sii∈cbsj

sii.es;

9: SD ← ∣sii.es ∩ seta∣/∣sii.es ∪ setb∣;
10: if SD ≥ SimTh then
11: add sii to cbsj ;
12: foundF lag ← true;
13: end if
14: end for
15: if foundFlag =false then
16: new Common Behaviour Set cbs′j ;
17: cbs′j ← sii;
18: add cbs′j to TCBS;
19: end if
20: foundF lag ← false;
21: end for
22: return TCBS;

A TCBS can be generated by Algorithm 3.2. The algorithm firstly receives Se-

mantic Items SI={si1, si2, ..., sin} and Similarity Threshold SimTh as inputs and then

returns TCBS as an output. For each sii in SI , the algorithm computes SD of Element

Sets of sii and stores the result in SD (Lines 5-9). If SD is greater than or equal to

SimTh, then the algorithm adds sii to cbsj (Lines 10-12). If there is no existing Common

Behaviour Set with a similar Element Set, then the algorithm creates a new cbs′j and

adds it to TCBS (Lines 15-18). After all, the algorithm returns the updated TCBS in

Line 22.

Example 2. Table 3.3 shows the Common Behaviour Sets generated from Semantic

Items in Table 3.2. When SimTh equals to 50%, cbs1 and cbs2 can be generated from

si1, si2 and si3, si4 (refer to Table 3.2), respectively. For example, cbs2 shows that more



Chapter 3. Mining Semantic Association Rules From RDF Data 41

than 50% of entities in its Element Sets are common in two behaviours, i.e., (office,

President of the USA) and (party, Democratic).

Table 3.3: Common Behaviour Sets

Common Behaviour Sets

cbs1
{John Lennon, George Harrison}(instrument, Guitar)
{John Lennon, George Harrison}(occupation, Song-
writer)

cbs2
{Jimmy Carter, Bill Clinton, George W. Bush}(office, Pres-
ident of the USA)
{Jimmy Carter, Bill Clinton}(party, Democratic)

3.2.2 Mining module

The association rule mining fundamentally concentrates on extracting frequent co-

occurring associations among a collection of items in the transactions. In this regard,

there is a need to have a notion of frequency to generate Semantic Association Rules

from the SW data. As discussed before, each cbs is a unique set and reveals the

common occurrence of some activities taken by subjects or objects in the Element Sets.

Namely, it can be considered as a particular form of transaction. Under this motivation,

the following discusses how to generate Semantic Association Rules from Common

Behaviour Sets. In order to show the role of semantics in the generated rules, quality

rule factors (Support, Confidence, and Lift) are also defined by using the instance-level

and schema-level knowledge.

Semantic Association Rules Generation

Definition 3.3.4. (Semantic Association Rule). A Semantic Association Rule r is

composed by two parts: paant and pacon. paant is the Antecedent Pairs and pacon is

the Consequent Pairs. Given a cbsj , paant contains some of the Pairs of cbsj , i.e.,

{pa1, ..., pan}. pacon contains the remaining Pairs of cbsj , i.e., {pan+1, ..., pam}. Rule
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r holds a common Rule’s Element Set res which is the union of Element Sets in the

cbsj , i.e., {es1 ∪ ... ∪ esm}. Each Element Set esi is a set of instances, i.e., esi =

{ins1, ins2, ..., insk}. We indicate a rule r with the antecedent and consequent by the

implication below:

res: paantÔ⇒ pacon

where res is a common Rule’s Element Set containing ⋃
sii∈cbsj

sii.es, paant ∩pacon = ∅,

and paant, pacon ∈ cbsj .

Example 3. Table 3.4 shows two examples of rules generated from Common Beha-

viour Sets in Table 3.3. For example, rule r1 contains a common Rule’s Element Set res

generated by union of Element Sets in cbs1, i.e., {John Lennon, George Harrison}. The

antecedent and consequent of r1 share the Pairs (instrument, Guitar) and (occupation,

Songwriter), respectively. Note that the order of antecedents and consequents of rules

can be swapped.

Table 3.4: Some examples of Semantic Association Rules

Semantic Association Rules
r1 {John Lennon, George Harrison}: (instrument, Guitar)

⇒ (occupation, Songwriter)
r2 {Jimmy Carter, Bill Clinton, George W. Bush}: (office,

President of the USA)⇒ (party, Democratic)

Quality factors for rules

This chapter proposes three quality factors including Support, Confidence, and Lift that

have used knowledge not only at the instance-level but also at the schema-level. In

traditional association rule mining, transactions normally record the behaviours of one

type (i.e., one class) of actors, i.e., shopping customers. However, in the SW, instances

usually belong to different types or classes in the ontologies. In the SWARM, instances

in the Rule’s Element Sets also reflect this feature of the SW data.
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As represented in Figure 3.1, George Harrison belongs to the Musical Artist class

and John Lennon is an instance of Person class. Regarding to the concept of hierarchy

in the ontology, if the Musical Artist class is a subclass of Artist class and the Artist

class is a subclass of Person class, then the instances of Musical Artist class belong

to the Person class as well. However, John Lennon, as an instance of Person class,

does not belong to the Musical Artist class. It is an obvious challenge for interpreting

association rules in the context of the SW data, and it fundamentally depends on the

structure of an ontology. It does not make sense to measure the quality of rules by only

considering knowledge at the instance-level. This observation leads us to use rdf:type

and rdfs:subClassOf properties at the schema-level to measure the quality of rules.

Figure 3.3 depicts three possible hierarchical structures of an ontology. As shown

in Figure 3.3(a), if Class c1 is a subclass of Class c3 through a middle class, i,e., c2

(c1 ⊆ c3), then the instance Ia belongs to the Class c3 as well. However, in Figure 3.3(b),

Classes c1 and c5 are not in the same hierarchy (c1 /⊆ c5). In the ontology, classes on

the upper levels present more general descriptions to compare with lower level classes

which provide more specific descriptions. In this case, if classes are not in the same

hierarchy, we just consider the Lowest Level Class (LLC) for each member in a Rule’s

Element Set. For example, in Figure 3.3(b), c1 and c5 is the LLC for Ia and Ib. In

Figure 3.3(c), Ia and Ib belong to c2 when the SWARM considers the LLC, while Ic is

an instance of c9. Consider again members in the Rule’s Element Set r1 shown in Table

3.4. The LLC for both George Harrison and John Lennon is the Person class.

Definition 3.3.5. (Support). Consider a Semantic Association Rule r in the form of

res ∶ paantÔ⇒ pacon. The Support sup (r) can be calculated by using Equation 3.2:

sup(r) =
∣ ⋃
insj∈ci∧insj∈resk∧insj .paantk

ci∣

∣ ⋃
insj∈ci∧insj∈resk

ci∣
(3.2)

where insj ∈ ci is an instance of Class ci, insj ∈ resk is a member of Rule’s Element
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Set resk, and insj.paantk shows those instances that share paantk as the Pairs. In this

case, the numerator is the total number of instances of Class ci that shares paantk as the

Pairs. The denominator of the fraction is the total number of instances of Class ci.

Example 4. Regarding to three different schemas shown in Figure 3.3, the generated

rules for a, b, and c are ra={Ia, Ib}: paant ⇒ pacon, rb ={Ia, Ib}: paant ⇒ pacon, and

rc ={Ia, Ib, Ic}: paant ⇒ pacon, respectively. According to Equation 3.2, the Support

values are:

Figure 3.3: Different hierarchical structures of an ontology

sup(ra) = ∣c3 ∩ paant∣
∣c3∣

sup(rb) = ∣(c1∪c5) ∩ paant∣
∣c1∪c5∣

sup(rc) = ∣(c2∪c9) ∩ paant∣
∣c2∪c9∣

Example 5. The Support value of rule r1 presented in Table 3.4 can be calculated

by the following fraction.

sup(r1) = ∣Person ∩ instrument Guitar∣
∣Person∣

The numerator of the Support fraction indicates the total number of instances of

Person class that share (instrument, Guitar) as a Pair. As shown in Figure 3.1, there are

only two instances which share (instrument, Guitar) as a Pair. The denominator of the

fraction also shows the total number of instances of Person class which is six in this

example (sup=0.33).
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Definition 3.3.6. (Confidence). Consider the Semantic Association Rule r in the

form of res ∶ paant Ô⇒ pacon. The Confidence conf (r) can be computed by using

Equation 3.3:

conf(r) =
∣ ⋃
insj∈ci∧insj∈resk∧insj .paantk

∧insj .paconk

ci∣

∣ ⋃
insj∈ci∧insj∈resk∧insj .paantk

ci∣
(3.3)

where insj ∈ ci is an instance of Class ci, insj ∈ resk is a member of Rule’s Element Set

resk, and insj.paantk and insj.paconk
show those instances that share paantk and paconk

as the Pairs, respectively. In this case, the numerator is the total number of instances of

Class ci that shares paant and paconk
as the Pairs. The denominator is the total number

of instances of Class ci that share paantk as the Pairs.

Example 6. The numerator of the Confidence fraction in rule r1 shows the total

number of instances in the Person class that contains (instrument, Guitar) and (occupa-

tion, Songwriter) as the Pairs. The denominator of the fraction also is the total number

of instances that have been assigned to the Person class along with (instrument, Guitar)

as a Pair (conf =1.0). The rule shows that most of the time people who play Guitar, they

probably work as Songwriters.

conf(r1) = ∣Person ∩ instrument Guitar ∩ occupation Songwriter∣
∣Person ∩ instrument Guitar∣

Definition 3.3.7. (Lift). Consider the Semantic Association Rule r in the form of

res ∶ paantÔ⇒ pacon. lift (r) can be measured by using Equation 3.4:

lift(r) = a

b × c
(3.4)

where

a = ∣ ⋃
insj∈ci∧insj∈resk∧insj .paantk

∧insj .paconk

ci∣,

b = ∣ ⋃
insj∈ci∧insj∈resk∧insj .paantk

ci∣,
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c = ∣ ⋃
insj∈ci∧insj∈resk∧insj .paconk

ci∣

Lift is a quality factor for the deviation of a rule from the model of statistic inde-

pendency of the antecedent and consequent. The lift of an association rule measures the

interestingness of a rule. Namely, with the lift value, we can interpret the importance of

a rule. If a lift ratio is greater than 1, it indicates that the occurrence of the antecedent

has a positive effect on the occurrence of the consequent. If a lift value is smaller than

1, it indicates that the antecedent and the consequent appear less often together and the

occurrence of the antecedent has a negative effect on the occurrence of the consequent.

If a lift value is about 1, it indicates that the occurrence of the antecedent has almost no

effect on the occurrence of the consequent. Therefore, the larger the lift value, the more

significant the association.

3.3 Experiments and analysis

In order to prove the usefulness of the SWARM, three main experiments are designed as

follows. In the first experiment, the SWARM has been tested over the DrugBank dataset.

The ontological structure of DrugBank dataset is simple. Therefore, the DBpedia

dataset2 has been used in the second experiment. The DBpedia is a very comprehensive

triple store which provides a detailed ontology. The SWARM has been tested over

six different classes of DBpedia ontology. In the third experiment, the SWARM has

been compared with Mining Configurations (Abedjan & Naumann, 2013a, 2014) to

demonstrate its usefulness.

Note that in the following experiments, the SWARM mines Semantic Association

Rules by using the {s1, s2, ..., sn}(p, o) structure.

2https://wiki.dbpedia.org/services-resources/datasets/data-set-38/downloads-38
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3.3.1 Experiment 1: Semantic Association Rules from DrugBank

dataset

Experimental set-up. The DrugBank3 dataset is a Bioinformatics and Cheminform-

atics resource which contains drug data information4. It contains 19,693 subjects,

276,142 objects, and 119 distinct predicates. The total number of triples in this dataset

is 517,023.

Experimental results. The SWARM is tested over this dataset to check how

readable the generated rules are. Two examples of discovered rules have been shown in

Table 3.5. For example, Rule r1 shows that the approved drugs with defined tablet oral

dosage probably affect human and mammalian organisms.

Table 3.5: Examples of Semantic Association Rules from DrugBank (SimTh=80%)

Rule Association Rule sup. conf.
r1 {owl:Thing}: (dosageForm, tabletOral), (drugType,

Approved)⇒ (AffectedOrganism, Humans and other
mammals))

0.33 1.0

r2 {owl:Thing}: (goClassificationFunction, electron
transport (Transporter)), (goClassificationProcess,
oxidoreductase activity (Refractivity)) ⇒
(goClassificationProcess, generation of precursor
metabolites and energy)

0.3 1.0

Table 3.6 represents the average value of Support, Confidence, and Lift of the

generated rules by applying different Similarity thresholds. The total number of strong

Semantic Association Rules generated from this dataset has also been shown in Figure

3.4.

Figure 3.5 depicts the general hierarchical structure of the DrugBank dataset. As

seen, the granularity of DrugBank ontology 5 is limited and there is no specific hier-

archical structure for the instance-level data. Note that in the figure, Di, Si, Pi, and Om

3https://code.google.com/archive/p/fbench/
4https://www.drugbank.ca/documentation
5sadiframework.org/ontologies/LODD/drugbank.owl
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stand for Drug name, Subject, Predicate and Object, respectively. Regarding to this

simplicity, we selected another complex and comprehensive dataset called DBpedia for

testing the SWARM approach.

Table 3.6: The quality measures of generated rules form DrugBank dataset

Min. SimTh% Avg. sup. Avg. conf. Avg. lift

80 0.31 0.83 4.1

70 0.29 0.81 3.89

60 0.28 0.78 3.72

Figure 3.4: Number of strong rules with different minimum Similarity Threshold from
DrugBank dataset

Figure 3.5: DrugBank hierarchical structure
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3.3.2 Experiment 2: Semantic Association Rules from DBpedia

dataset

Experimental set-up. The DBpedia project has been known as one of the most famous

decentralized Linked Data efforts. Currently, the DBpedia project has released more

than twelve comprehensive versions of its datasets along with the DBpedia ontology

that is a very granular schema.

As a proof of concept, the SWARM has been tested over DBpedia (3.8). The

DBpedia datasets usually provide two main files for data miners including Ontology

Infobox Properties and Ontology Infobox Types. The Ontology Infobox Properties

shares instance-level data, while the Ontology Infobox Types contains triples in the

form of (subject, rdf:type, ClassName). ClassName declares the name of classes for

each subject in the DBpedia ontology. For example, Anton Drexler belongs to the

Politician, Person, and Agent classes in the ontology. In the following experiments,

Ontology Infobox Types has been filtered based on 6 classes including Person, Or-

ganization, Place, Work, Event, and Species. In the DBpedia ontology, each of the

above classes contains 26, 15, 10, 11, 9, and 3 main subclasses, respectively. Note

that each main subclass refers to the first generation of leaf nodes produced by the

respective class. Each subclass also treats as a class and may contain several subclasses.

All these relations have been considered for testing the SWARM approach. By using

triples filtered from Ontology Infobox Types, about 300,000 triples of Ontology Infobox

Properties have been extracted (about 50,000 triples for each particular class). Some

triples which share literal values (i.e., numbers and strings) have been removed from

the subset dataset. Literal values such as Birthdate information are less interesting in

the rule mining process. For each sample dataset, three separate experiments have been

conducted by applying 60%, 70%, and 80% minimum Similarity Thresholds SimTh.

The following results show that the SWARM can generate semantically-enriched rules
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from RDF data.

As a proof of concept, all members of Rule Element Sets are mentioned in the

following tables. Instances in the DBpedia can be found on the Wikipedia Website, as

DBpedia is a project aiming to exploit structured content from information created as

part of the Wikipedia project.

Experimental results. The following tables show some interesting rules along with

Support, Confidence and Lift values. Table 3.7 represents some Semantic Association

Rules of Person class generated by SimTh=60%. For example, Rule r1 shows that

Scientists who are known for Natural selection theory are probably awarded the Copley

and Royal Medals. Note that in this table, at least 60% of members of Element Sets

satisfy the rules. Rule r6 illustrates that Politicians who are residents of Amsterdam and

works in the Labour Party of the Netherlands are probably residents of the Netherlands.

Rule r11 shows that those Saints who are venerated in Lutheranism, which is a major

branch of Protestant Christianity, are more likely to be venerated in the Anglican

Communion. Rule r12 also indicates that people who were Kings of Macedon probably

had Ancient Greek religion.

Table 3.8 shows some rules generated by SimTh = 80%. Based on the DBpedia

ontology, there exist some inconsistent patterns. Rule r5 shows that some members

of British Royal family who were born in Ribeira Palace and whose parents are Luisa

of Guzman and John IV of Portugal, they have been probably buried in the Royal

Pantheon of the House of Braganza. Although the members of Rule’s Element Set

r5 satisfy the rule, none of them belongs to the British Royal family. More precisely,

they are members of the Portuguese Royal family. Rules r6 and r7 also suffer from

the same issue as r5 does. In the DBpedia ontology, all royalties belong to the British

Royalty and Polish King classes. The ontology does not define any other classes. Such

inconsistencies between ontology definitions and the underlying data cause ambiguous

interpretations. In the case of the DBpedia project, revising existing class definitions
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could be helpful to obtain a better understanding of data.

Some interesting Rules generated from Organization, Place, Work, and Event classes

have been shown in Tables 3.9-3.12. Table 3.13 shows some rules of the Species class

generated by SimTh = 80%. For example, Rule r2 says that Mammals of Balaenoptera

category probably belong to Rorqual family. Rule r3 of Table 3.10 is an interesting

reflection of structure (c) in Figure 3.3 when instances are not located in the same

hierarchy. The rule says that Mount Baker and Mount St. Helens are both volcanoes,

while Half Dome is a well-known rock surface.

Table 3.14 shows the average value of Support, Confidence, and Lift of the generated

rules with different Similarity Thresholds. Based on the results, the average support

of rules generated from the Species class is much higher than other classes. It is

directly related to the number of instances in this class. In the SWARM approach,

the denominator of support fraction contains the total number of instances of some

particular classes. The DBpedia ontology just defines three main subclasses for the

Species class including Archaea, Bacteria, and Eukaryote. As a matter of fact, the lower

number of instances causes a higher support value.

Figures 3.6-3.11 represent the number of strong Semantic Association Rules with

different minimum Similarity Thresholds. The SimTh has a direct effect on the number

of generated rules. Obviously, by increasing the SimTh, the number of generated rules

will be decreased.

The conducted experiments show that the generated rules tend to have a low support

rate. The intuition behind this result is that the denominator of support fraction usually

contains the total number of instances of some classes. The real-world RDF-style KBs

contain a huge number of instances that causes a low support rate generated by the

SWARM. The approach also generates a lot of rules with confidence 1.0. As seen in

the Figures 3.6-3.11, the number of rules with 0.9 < conf <= 1.0 has increased sharply.

The intuition behind this fact is because of filtering mechanism for generating common
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Behaviour sets.

Table 3.7: Examples of Semantic Association Rules discovered from Person class
(SimTh=60%)

Rule Rule’s Element Set Semantic Association Rule sup. conf. lift

r1 {Alfred Russel Wal-

lace, Charles Darwin,

Andrew Wiles, Robert

Bunsen}

{Scientist}: (knownFor, Natural selection)

⇒ (award, Copley Medal), (award, Royal

Medal)

0.01 1.0 4.06

r2 {Neil Peart, Alex

Lifeson, Ozzy

Osbourne , Buck

Dharma, Jim Mor-

rison, Eric Bloom,

Ice-T}

{Artist}: (genre, Heavy metal music) ⇒
(genre, Hard rock)

0.02 0.90 3.42

r3 {John Major, Tony

Blair, William Ewart

Gladstone}

{PrimeMinister}: (religion, Church of

England)⇒ (orderInOffice, Prime Min-

ister of the United Kingdom)

0.01 0.75 38.51

r4 {Frank D. White, Joe

Purcell}

{Governer}: (successor, Bill Clinton) ⇒
(orderInOffice, Governor of Arkansas)

(office, Arkansas Attorney General)

0.02 0.67 58.46

r5 {Mihail Savov,

Nikola Ivanov, Radko

Dimitriev, Ivan

Fichev}

{Person}: (battle, Battle of Pirot), (battle,

Battle of Kresna Gorge), (country, Bul-

garia)⇒ (militaryBranch, Bulgarian

Land Forces)

0.03 1.0 22.82

r6 {Lodewijk Asscher,

Eberhard van der

Laan}

{Politician}: (residence, Amsterdam),

(party, Labour Party (Netherlands)) ⇒
(residence, Netherlands)

0.04 1.0 10.26

r7 {William H. Rupertus,

Roy Geiger, Ray-

mond A. Spruance}

{Person}: (militaryBranch, United

States Marine Corps) ⇒ (award, Navy

Cross)

0.02 1.0 46.68
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r8 {Benjamin Disraeli,

William Ewart

Gladstone, Alexander

Mackenzie,John A.

Macdonald}

{PrimeMinister}: (orderInOffice,

Leader of the Opposition) ⇒ (monarch,

Queen Victoria)

0.02 0.75 37.01

r9 {Liam Fox, William

Hague, Oliver

Letwin}

{Person}: (office, Leader of the Conser-

vative Party)⇒ (office, Shadow Foreign

Secretary)

0.08 1.0 50.33

r10 {Wu Bangguo,

Wen Jiabao, Jia

Qinglin,Hu Jintao}

{Person}: (party, Communist Party of

China)⇒ (office, National People’s Con-

gress)

0.03 1.0 11.50

r11 {Augustine of Hippo,

Saint Titus, Bernard

of Clairvaux, Ath-

anasius of Alexan-

dria}

{Saint}: (veneratedIn, Lutheranism) ⇒
(veneratedIn, Anglican Communion)

0.04 0.87 24.28

r12 {Amyntas I of Mace-

don, Alcetas I of

Macedon, Alexander

I of Macedon, Alcetas

II of Macedon, Perdic-

cas II of Macedon}

{Person}: (title, King of Macedon) ⇒
(religion, Religion in ancient Greece)

0.02 1.0 41.07

Table 3.8: Examples of Semantic Association Rules discovered from Person class
(SimTh=80%)

Rule Rule’s Element Set Semantic Association Rule sup. conf. lift

r1 {Bill Gates, Mary

Maxwell Gates,

Adam West}

{Person}: (birthP lace, Seattle)⇒
(birthP lace, Washington (state))

0.02 0.91 17.77
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r2 {Torch (rapper),

Toni L, Christopher

Franke

{Artist}: (genre, German hip hop)

(associatedBand, Advanced Chemistry)

⇒ (hometown, Germany)

0.06 1.0 12.68

r3 {David Hume, John

Stuart Mill}

{Philosopher}: (influenced, Bertrand

Russell) ⇒ (philosophicalSchool, Utilit-

arianism)

0.1 0.67 11.7

r4 {Ivan Turgenev,

Guy de Maupassant,

Sheridan Le Fanu}

{Writer}: (influenced, Henry James) ⇒
(genre, Realism (arts))

0.09 0.87 5.08

r5 {Afonso VI of Por-

tugal, Peter II of Por-

tugal}

{BritishRoyalty}: (birthP lace, Ribeira

Palace), (parent, Luisa of Guzman),

(parent, John IV of Portugal) ⇒
(restingP lace, Royal Pantheon of the

House of Braganza)

0.04 1.0 4.92

r6 {Alfonso V of Aragon,

John II of Aragon}

{BritishRoyalty}: (parent, Ferdinand I of

Aragon), (birthP lace, Medina del Campo)

⇒ (parent, Eleanor of Alburquerque)

0.04 1.0 4.3

r7 {John I Albert,

Casimir IV Jagiel-

lon}

{BritishRoyalty}: (birthPlace, Kraków)

⇒ (restingP lace, Wawel Cathedral),

(deathP lace, Poland)

0.06 1.0 4.0

Table 3.9: Examples of Semantic Association Rules discovered from Organization class
(SimTh=80%)

Rule Rule’s Element Set Semantic Association Rule sup. conf. lift
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r1 {Communist Party of

China, Communist

Party of the Soviet

Union, Polish United

Workers’ Party,

Socialist Unity Party

of Germany}

{PoliticalParty}: (ideology, Marxism-

Leninism)⇒ (ideology, Communism)

0.02 0.83 13.83

r2 {University of Sud-

bury, University of

Waterloo, University

of Ottawa, York Uni-

versity}

{University}: (state, Ontario) ⇒
(affiliation, Council of Ontario

Universities)

0.11 1.0 4.8

r3 {Holden, Opel, Hum-

mer, Chevrolet, Ca-

dillac, Cadillac}

{Company}: (owner, General Motors)⇒
(owningCompany, General Motors)

0.03 1.0 8.7

r4 {YMCK, Dragon Ash,

Mr. Children, King

Giddra }

{Band}: (hometown, Japan) ⇒
(hometown, Tokyo)

0.15 0.62 6.33

r5 {Royal Australian

Air Force, Royal

Australian Navy,

Royal Air Force, Blue

Angels}

{MilitaryUnit}: (aircraftF ighter,

Boeing F/A-18E/F Super Hornet) ⇒
(garrison, Canberra)

0.09 1.0 8.06

Table 3.10: Examples of Semantic Association Rules discovered from Place class
(SimTh=80%)

Rule Rule’s Element Set Semantic Association Rule sup. conf. lift
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r1 {Liverpool, Coventry,

Manchester}

{City}: (governmentType, Metropolitan

borough)⇒ (isPartOf , North West Eng-

land)

0.15 0.67 7.95

r2 {Siderno, Locri, Reg-

gio Calabria}

{Settlement}: (region, Calabria) ⇒
(province, Province of Reggio Calabria)

0.02 1.0 3.5

r3 {Mount Baker,

Mount St. Helens,

Half Dome}

{Volcano ∪ Mountain}: (locatedInArea,

United States)⇒ (mountainRange, Cas-

cade Range)

0.12 0.67 8.24

r4 {Snowy Mountains,

Great Dividing

Range}

{Mountain}: (state, New South Wales)

⇒ (highestP lace, Mount Kosciuszko),

(state, Victoria (Australia))

0.04 0.85 4.07

r5 {Madeira River,

Amazon River

{River}: (timeZone, Time in Brazil) ⇒
(country, Brazil)

0.1 1.0 9.40

Table 3.11: Examples of Semantic Association Rules discovered from Work class
(SimTh=80%)

Rule Rule’s Element Set Semantic Association Rule sup. conf. lift

r1 {Choke (novel),

Survivor (Chuck

Palahniuk novel),

Catch-22}

{Book}: (literaryGenre, Black com-

edy)⇒ (author, Chuck Palahniuk)

0.16 0.67 6.34

r2 {Apache HTTP

Server, OpenOffice,

Xerces, Xalan}

{Software}: (developer, Apache Software

Foundation)⇒ (license, Apache License)

0.02 1.0 5.9
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r3 {Puzzle Bobble,

Bubble Bobble,

Space Invaders, Zero

Wing, Darius II

(video game)}

{VideoGame}: (developer, Taito Corpora-

tion)⇒ (publisher, Taito Corporation)

0.03 1.0 2.54

r4 {The Big Lebowski,

Miller’s Crossing}

{Film}: (director, Coen brothers) ⇒
(producer, Coen brothers)

0.24 0.85 7.31

r5 {Led Zeppelin II, Led

Zeppelin III, Led Zep-

pelin IV, Physical

Graffiti, Houses of the

Holy}

{Album}: (genre, Blue rock)⇒ (artist,

Led Zeppelin)

0.12 1.0 3.26

Table 3.12: Examples of Semantic Association Rules discovered from Event class
(SimTh=80%)

Rule Rule’s Element Set Semantic Association Rule sup. conf. lift

r1 {Irish Civil War, Irish

War of Independence,

Easter Rising}

{MilitaryConflict}: (place, Irish Free

State)⇒ (combatant, Irish National Army),

(combatant, Irish Republican Army)

0.07 1.0 13.80

r2 {Summerfest,

Bonnaroo Music

Festival}

{MusicFestival}: (genre, Americana (mu-

sic))⇒ (genre, Rhythm and blues), (genre,

Contemporary classical music )

0.04 1.0 3.3

r3 {Live Aid, 1966 FIFA

World Cup Final}

{Event}: (location, London)⇒ (location,

United Kingdom)

0.02 1.0 3.88
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Table 3.13: Examples of Semantic Association Rules discovered from Species class
(SimTh=80%)

Rule Rule’s Element Set Semantic Association Rule sup. conf. lift

r1 {Bacillus thuringien-

sis, Bacillus cereus,

Bacillus}

{Bacteria}: (genus, Bacillus)⇒ (family,

Bacillaceae)

0.2 1.0 21.65

r2 {Blue whale, Hump-

back whale, Fin

whale, Bryde’s

whale, Minke whale,

Antarctic minke

whale }

{Mammal}: (genus, Balaenoptera) ⇒
(family, Rorqual)

0.61 0.99 2.14

r3 {Western Grebe,

Clark’s Grebe,

Pacific Loon}

{Bird}: (genus, Aechmophorus) ⇒
(binomialAuthority, George Newbold

Lawrence)

0.33 1.0 3.74

r4 {Puffball, Geastrales,

Gymnosporangium,

Armillaria, Can-

tharellaceae,

Russulales, Chan-

terelle, Boletales,

Shiitake, Homobasi-

diomycetidae}

{Fungus}: (division, Basidiomycota) ⇒
(class, Agaricomycetes)

0.51 1.0 3.68

r5 {Rat snake,

Squamata,

Phymaturus, Lizard}

{Reptile}: (order, Lepidosauria),(class,

Diapsid)⇒ (class, Lepidosauromorpha)

0.52 0.96 21.67

r6 {Zebrafish, Koi, Cyp-

rinus, Acrossocheilus,

Cobitidae, Quillback,

Mahseer, Tanichthys}

{Fish}: (family, Cyprinidae) ⇒ (order,

Cypriniformes)

0.36 1.0 3.23
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r7 {Hallucigenia,

Aysheaia, Microdic-

tyon}

{Animal}: (order, Scleronychophora) ⇒
(class, Xenusiid)

0.09 1.0 15.07

r8 {Hellbender, Axolotl,

Toad, Tiger Salaman-

der, Palmate Newt}

{Amphibian}: (order, Salamander) ⇒
(class, Amphibian)

0.31 0.75 3.20

r9 {Branchiopoda,

Crayfish, Crustacean,

Portunus, Barnacle,

Krill, Zarigani, Asta-

cus, Mystacocarida,

Bylgia}

{Crustacean}: (phylum, Crustacean) ⇒
(class, Malacostraca)

0.33 0.75 3.0

r10 {Scorpion, Pseudo-

scorpion, Palpigradi,

Mygalomorphae,

Latrodectus, Ulo-

boridae, Ixodidae,

Kimura, Theridiidae,

Sicariidae, Opiliones,

Acari}

{Arachnid}: (class, Arachnid) ⇒ (order,

Spider)

0.63 0.72 3.9

r11 {Nanoarchaeum

equitans, Nanoar-

chaeota, Halobac-

teria}

{Archaea}: (class, Archaea)⇒ (domain,

Archaea)

0.50 1.0 2.0

r12 {Spirotrich, Hetero-

trich, Plagiopylida,

Hymenostome,

Apicomplexa,

Plasmodium, Dinofla-

gellate, Peniculid}

{Eukaryote}: (phylum, Ciliate) ⇒
(phylum, Alveolate)

0.35 1.0 4.18
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Table 3.14: The quality measures of generated rules form different classes of DBpedia
ontology

Class Min. SimTh % Avg. sup. Avg. conf. Avg. lift

Person 80 0.02 0.97 29.11

70 0.018 0.93 24.22

60 0.012 0.61 20.15

Organization 80 0.03 0.95 4.59

70 0.02 0.94 4.31

60 0.01 0.90 3.80

Place 80 0.037 0.97 9.70

70 0.031 0.95 8.8

60 0.013 0.89 7.74

Work 80 0.02 0.97 5.68

70 0.015 0.94 5.50

60 0.011 0.87 4.1

Event 80 0.029 0.97 3.38

70 0.023 0.93 3.05

60 0.01 0.91 2.59

Species 80 0.36 0.95 3.98

70 0.32 0.92 3.72

60 0.3 0.85 3.12
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Figure 3.6: Number of strong rules in
different minimum Similarity Thresholds
from Person class

Figure 3.7: Number of strong rules in
different minimum Similarity Thresholds
from Organization class

Figure 3.8: Number of strong rules in
different minimum Similarity Thresholds
from Place class

Figure 3.9: Number of strong rules in
different minimum Similarity Thresholds
from Work class

Figure 3.10: Number of strong rules in
different minimum Similarity Thresholds
from Event class

Figure 3.11: Number of strong rules in
different minimum Similarity Thresholds
from Species class
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3.3.3 Experiment 3: SWARM vs. Mining Configurations

In the following, the semantics of rules generated by the SWARM has been compared

with Mining Configurations (Abedjan & Naumann, 2013a, 2014) and the importance of

using relations and schema-level knowledge has been highlighted for interpreting rules.

Then, the SWARM and Mining Configurations are compared based on other quality

metrics. The SWARM, as well as Mining Configurations, generates association rules

from RDF-style KBs. The SWARM mines association rules by utilizing knowledge at

the instance-level and schema-level. However, the Mining Configurations method con-

siders only the instance-level data and it mines rule without considering the ontological

properties in the ontology. Note that Abedjan and Naumann (2013a) tested Mining

Configurations over the DBpedia dataset (3.6).

To provide a fair comparison, the Mining Configurations has been developed and

tested over the same sample dataset from DBpedia (3.8). We have carried out several

experiments using Mining Configurations on instances of the Person class. In these

experiments, the rdf:type and rdfs:subClassOf properties are disregarded from the

dataset. In other words, all instances are considered as members of the Person category.

The following demonstrates that the SWARM outperforms the Mining Configurations

by attaching more semantics to the rules.

Semantics of generated rules. Mining Configurations is developed by using the

concept of association rule mining. It performs a depth-first search using the FP-

Growth algorithm (Han et al., 2000) to discover frequent patterns from RDF data. The

configurations have been shown in Table 3.15.
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Table 3.15: Six configurations of context and target

Config. Context Target Use case
1 Subject Predicate Schema discovery
2 Subject Object Basket analysis
3 Predicate Subject Clustering
4 Predicate Object Range discovery
5 Object Subject Topical clustering
6 Object Predicate Schema matching

Abedjan and Naumann (2013a) claimed that mining subjects in the context of pre-

dicates results in the clustering of entities. For example, George Washington⇒Lyndon

B. Johnson can be classified as presidents since George Washington and Lyndon B.

Johnson are both presidents of the United States of America. Although Mining Con-

figurations helps to express some clusters, it does not guarantee that all entities in a

rule belong to the same class. The results of running Config. 3 on the sample dataset

shows that it is not possible to identify a precise cluster for entities without considering

the ontological properties in the ontology. Consider the following rule obtained by the

Mining Configurations:

Thomas Aquinas⇒ Plato, Duns Scotus

In order to interpret the above rule generated by Config. 3 shown in Table 3.15,

we can conclude that Thomas Aquinas, Plato and Duns Scotus are subjects that are

correlated by some common predicates. The information regarding such a correlation

has been kept hidden in the rule. It is interesting to attach predicates to express more

semantics in the rules. Apart from this limitation, Thomas Aquinas is a member of Saint

class, while Plato and Duns Scotus are instances of Philosopher class in the DBpedia

ontology. Here the question is that what does this cluster mean?
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Table 3.16: Semantic Association Rules generated by the SWARM (SimTh=80%)

Rule Rule’s Element Set Semantic Association Rule sup. conf. lift

r1 {Thomas Aqui-

nas, Duns Scotus,

Averroes}

{Saint ∪ Philosopher}: (influncedBy, Ar-

istotle)⇒ (influncedBy, Plato)

0.08 0.91 8.77

r2 {Friedrich Nietzsche,

Max Stirner, Roland

Barthes, Judith But-

ler}

{Philosopher}: (philosophicalSchool,

Post structuralism)⇒
(philosophicalSchool, Post modern-

ism)

0.1 0.75 43.5

In comparison with Mining Configurations, the SWARM represents the relationships

among Thomas Aquinas, Plato and Duns Scotus as shown in Table 3.16. Rule r1

demonstrates that a group of saints and philosophers who influenced by Aristotle are

probably influenced by Plato. In the Element Set of Rule 1, Thomas Aquinas belongs

to the Saint class, while Duns Scotus and Averroes are instances of Philosopher class.

Rule 2 also shows another interesting pattern related to 20th Century movements in the

philosophy and literary criticism. As seen, the SWARM not only considers knowledge

at the instance-level but the schema-level.

The mining results obtained by Config. 4 (Mining Objects) is very similar to Config.

3. However, this configuration still suffers from the same issue that Config. 3 does.

Similarly to the above explanation, the following rule achieved by Config. 4 indicates

the necessity of using rdf:type and rdfs:subClassOf properties.

Aristotle, Augustine of Hippo⇒ Anselm of Canterbury, gottfried wilhelm leibniz

In the above rule, Aristotle and gottfried wilhelm leibniz belong to the Philosopher

class, while Augustine of Hippo and Anselm of Canterbury have been assigned to the

Saint class in the DBpedia ontology.
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The mining results from Config. 2 and Config. 5 are also not enriched enough.

Abedjan and Naumann (2013a) mentioned that mining predicates in the context of

subjects (refer to Config. 1 in Table 3.15) could be used for the schema discovery.

For example, an association rule associatedBand, instrument⇒ associtedMusicalArtist

shows a schema for musicians. The results of mining association rules by Config. 1 on

our dataset shows that in some cases it is not possible to detect a certain schema for a

rule. Because predicates of a particular rule might be common among different classes

in the ontology. Consider the following rule discovered by Mining Configurations.

influencedBy⇒ influenced, birthPlace, deathPlace

The schema is not recognizable from the above rule. It is because influencedBy

is a common predicate among Philosopher, Saint, and Writer classes in the DBpedia

ontology. Config. 6 also mines predicates in the context of objects has the same issue as

Config. 1. Such inconsistencies have been solved in the SWARM by utilizing rdf:type

and rdfs:subClassOf properties.

Comparison of other quality metrics. Although the strategy of mining rules in

the SWARM differs from Mining Configurations, the results represented in Table 3.17

show that the SWARM obtains a higher average of confidence and lift values. Table

3.17 also shows that the average number of generated transactions by SWARM is much

higher than Mining Configurations.

Table 3.17: Mining Configurations vs. SWARM (0.6≤Min conf.≤0.8)

Approach Avg. sup. Avg. conf. Avg. lift Avg. ♯ Trans-

actions

Mining Configurations

(0.02≤Min Sup≤0.2)

0.21 0.49 3.44 376

SWARM (0.6≤SimTh≤0.8) 0.02 0.83 29.11 1137
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It is interesting to know that the average of support value obtained by Mining Con-

figurations is higher than the SWARM. The Mining configurations applies traditional

support measure to evaluate the quality of rules. In such a case, the support value of X

of Rule r:X⇒Y with respect to the number of transactions is defined as the proportion

of transactions which contains X. While, the SWARM approach considers rdf:type and

rdfs:subClassOf properties to compute the quality of rules. Thus, the result of using

these relations causes a lower support average in the SWARM.

3.4 Discussion

The following discusses the extensibility of the SWARM. It is worth mentioning that

the SWARM has the potential of using rdfs:subPropertyOf and rdf:Property which are

OWL properties. Similarly to the ontological hierarchy for entities, properties also have

their own hierarchy in the ontology. The ontological property rdfs:subPropertyOf is

an instance of rdf:Property that is used to define that one property is a sub-property of

another, i.e., rdfs:subPropertyOf behaves similarly to rdfs:subClassOf. Consider again

the Semantic Association Rule r6 in Table 3.7 which is shown as follows:

{Politician}: (residence, Amsterdam), (party, Labour Party (Netherlands))⇒

(residence, Netherlands)

In the DBpedia ontology, residence6 and party7 are sub-properties of hasLocation

and isMemberOf, respectively. Namely, hasLocation and isMemberOf properties are

super-properties of residence and party. Since rdfs:subPropertyOf property is transitive,

it is possible to replace residence or party with hasLocation or isMemberOf properties.

Therefore, the rule r6 can be transformed into the following form:
6http://dbpedia.org/ontology/residence
7http://dbpedia.org/ontology/party
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{Politician}: (hasLocation, Amsterdam), (isMemberOf , Labour Party

(Netherlands))⇒ (hasLocation, Netherlands)

Replacing rdfs:subPropertyOf properties with the corresponding super-properties

has a direct influence on generating rules with more general descriptions. Conversely,

replacing super-properties with sub-properties transform rules into more descriptive

patterns. However, this task needs special attention. In the DBpedia property hierarchy,

location is super-property of two sub-properties called locationCity and locationCountry.

Replacing the location with locationCity or LocationCountry without considering the

rdfs:range of objects may cause rules to transform in a wrong fashion. Because, the

rdfs:range of locationCity is City class while the rdfs:range of locationCountry is

Country class in the DBpedia ontology. To avoid such misinterpretations, considering

the rdfs:range of objects is essential. A related point to consider is that in the RDF

triple (subject, predicate, object), the rdfs:range of the predicate denotes the class type

of the object in the ontology.

As discussed above, ontological properties can be useful for mining hidden patterns

from the SW data. Powerful ontology languages such as OWL have been developed to

formulate complex semantics relations. Using ontological properties strongly depend

on the goal of research. Consider the functional property owl:FunctionalProperty on

the topic of reasoning in ontologies. This property defines just one particular value y

for each instance x. For example, a person is born in exactly one city, etc. If one of

these values is observed, then observable models can prevent other values from being

asserted.

3.5 Summary

The main contribution of this chapter is to reveal common behavioural patterns from

RDF data by considering instance-level and schema-level knowledge. The SWARM is a
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novel approach that attaches semantics to the rules by utilizing relations and knowledge

encoded at the schema-level. The approach can automatically mine Semantic Associ-

ation Rules from RDF-style KBs. The SWARM improves the Mining Configurations

(Abedjan & Naumann, 2013a) by considering the relations and schema-level know-

ledge in the ontology. The SWARM takes advantage of rdf:type and rdfs:subClassOf

properties to generate semantically-enriched rules. The chapter also explains how class

information of entities has been used to calculate Support, Confidence, and Lift values.

Hence, the qualified rules reveal common behavioural patterns among different types

of entities. The discovered rules can also be enriched by using other properties (e.g.,

rdfs:subPropertyOf and rdf:Property). Initial experiments conducted on RDF-style

KBs (DrugBank dataset and some classes of DBpedia dataset (3.8)) show the effect-

iveness of the SWARM. The results indicate that the SWARM outperforms the Mining

Configurations regarding the semantics of discovered rules. It is important to note that

the SWARM is applicable to any type of RDF-style KB.

Based on the results achieved by the SWARM, the SW data suffer from lack of

correctness and consistency between entities at the instance-level and classes in the

ontology (refer to Table 3.8). Such inconsistencies between ontological definitions and

underlying data cause vague interpretations. In this respect, Chapter 4 proposes an

approach to deal with such conflicts.

The work in this chapter has been published in (Barati, Bai & Liu, 2016, 2017).



Chapter 4

An Entropy-Based Class Assignment

Detection Approach For RDF Data

The SW technologies provide a flexible approach for publishing the SW data over the

LOD cloud. However, RDF-style KBs usually suffer from a considerable amount of

faulty facts which are known as SW data quality issues. Due to the complexity of

relationships, the SW data quality issues are continuously growing. In this respect,

revisiting the consistency between instance-level and schema-level can purify the KBs.

The experimental results in Chapter 3 revealed that there exist some inconsistent

patterns in the DBpedia dataset. Consider again Rule r7 in Table 3.8. The rule shows

that John I Albert, king of Poland, has been incorrectly assigned to the BritishRoyalty

class instead of the PolishKing class defined in the DBpedia ontology. Based on this

observation, this chapter focuses on a SW data quality issue called Incorrect Class

Assignment (ICA). The occurrence of this issue is inevitable since the process of

distributing the SW data is handled by users. Furthermore, this chapter introduces

an approach called Class Assignment Detector (CAD) to analyse the correctness and

incorrectness of relationships between instances and classes in the ontology.

The rest of this chapter is organized as follows. Section 4.1 provides a motivating

69
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example to formally define the ICA problem. Section 4.2 describes the details of the

CAD approach. The experimental results obtained by the CAD are explained in Section

4.3. Finally, Section 4.4 reviews the whole chapter along with contributions of the CAD

approach.

4.1 Motivation

Consider the following association rule obtained by the SWARM from DBpedia dataset

(3.8):

{John I Albert, Casimir IV Jagiellon}: {BritishRoyalty}: (birthPlace, Kraków)⇒

(restingPlace, Wawel Cathedral), (deathPlace, Poland)

The rule indicates that some members of British royal family, i.e., John I Albert

and Casimir IV Jagiellon, who were born in the Kraków buried and died in the Wawel

Cathedral and Poland, respectively. The DBpedia ontology defines a Royal class with

two subclasses of BritishRoyalty and PolishKing for all royalties. There exist some

instances that are incorrectly assigned to unrelated classes in the ontology. For example,

John I Albert, king of Poland, has been assigned to BritishRoyalty class instead of

PolishKing class defined in the DBpedia ontology. This example can be identified as an

incorrect assignment between an instance and the class in the ontology.

The above problem has been illustrated in Figure 4.1. Given an ontology with its

associated instances: all instances that have been correctly assigned to classes in the

ontology are called CA. The data quality issue can be defined as ICA problem where at

least one instance has been incorrectly assigned to class A instead of class B. Under

this motivation, this chapter proposes the CAD approach to tackle the ICA problem.
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Figure 4.1: Modelling the ICA problem

4.2 Class Assignment Detector (CAD) approach

The CAD framework contains two main modules: (I) Class Features Extraction module,

and (II) Instance-Class Relationship Analysis module. In the Class Features Extraction

module, features of classes in the existing ontology are extracted through analysing

instances. The output of the Class Features Extraction module is used in the Instance-

Class Relationship Analysis module to evaluate the correctness and incorrectness of

relationships between instances and the classes.

4.2.1 Class Features Extraction module

Generally, a class is a category of things having some common features that make those

things distinct from others. To detect the features of classes, the initial step is to analyse

RDF triples to discover their common features. The following explains the idea behind

mining common features from RDF triples. Then, the process of extracting features of

classes is described in details.

Identifying common features from RDF triples

As previously mentioned, the SW is built based on two main levels including instance-

level which takes RDF triples and schema-level/ontology which defines the semantics

for RDF triples. The assertion of an RDF triple, i.e., (subject, predicate, object), shows
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a meaningful relationship between a subject and an object prepared by a predicate. As

explained before, a triple can be considered as the description of one particular feature

of instances (i.e., subject and object).

Table 4.1: Some RDF triples from the DBpedia dataset

Triples Subject Predicate Object
t1 Queen Victoria birthPlace United Kingdom
t2 Queen Victoria spouse Albert, Prince Con-

sort
t3 Edward VII birthPlace United Kingdom
t4 Princess Beatrice of

the UK
birthPlace United Kingdom

t5 Princess Beatrice of
the UK

parent Queen Victoria

t6 Princess Louise,
Duchess of Argyll

birthPlace United Kingdom

t7 Princess Louise,
Duchess of Argyll

restingPlace United Kingdom

t8 United Kingdom leaderTitle ”Monarch”@en
t9 John I Albert birthPlace Poland
t10 John I Albert parent Casimir IV Jagiellon
t11 John I Albert deathPlace Poland
t12 Casimir III birthPlace Poland
t13 Casimir III predecessor Władysław I the El-

bow high
t14 Przemysł II birthPlace Poland
t15 Przemysł II successor Wenceslaus II of Bo-

hemia
t16 Sigismund I the Old birthPlace Poland
t17 Poland longName ”Republic of Poland

”@en
t18 Raul Solnado deathPlace Portugal
t19 Lucília do Carmo deathPlace Portugal
t20 Portugal longName ”Portuguese Repub-

lic”@en
t21 France leaderTitle ”President”@en
t22 Zeca Afonso deathPlace Portugal
t23 Florbela Espanca deathPlace Portugal

Consider Triple t18 (Raul Solnado, deathPlace, Portugal) shown in Table 4.1. If

we consider Raul Solnado as an instance, then the other two elements in the triple (i.e.,

deathPlace Portugal) can be identified as a particular feature of Raul Solnado. Now

consider Triple t22 (Zeca Afonso, deathplace, Portugal) in Table 4.1. The subjects in t18

and t22, i.e., Raul Solnado and Zeca Afonso, have a common feature, i.e., (deathPlace
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Portugal). In other words, being dead in the Portugal is the common feature taken by

Raul Solnado and Zeca Afonso. To analyse the common features shared by different

instances, we give the following definitions.

Definition 4.3.1. (Group Feature). Given RDF triples, a Group Feature gfi is a

2-tuple, i.e., gfi= (gi, fi). gi is a Group that contains a list of subjects or objects, i.e.,

{s1, s2, ..., sn} or {o1, o2, ..., on}. fi is a Feature of gi. Corresponding with the content

in gi, fi contains a combination of predicate-object or predicate-subject, i.e., (p, o) or

(p, s).

Definition 4.3.2. (Common Feature). Given a Group Feature gfi=(gi, fi), the

Feature fi is a Common Feature cf for gi, if the number of instances in the gi is greater

than or equal to Minimum Instance Number (MinIN).

According to Definition 4.3.2., triples in a triple store can have a set of Common

Features i.e., CFs = {cf1, cf2, ..., cfn}. Note that, we have not defined a Group g as a

list of predicates; because the predicate of each Feature indicates a particular role in

expressing the concept of a feature.

Example 1. For triples in Table 4.1, if MinIN = 4, the following three common

features can be identified by (birthPlace, United Kingdom) shared by {Queen Victoria,

Edward VII, Princess Louise, Princess Beatrice}, (birthPlace, Poland) shared by

{Casimir III, John I Albert, Sigismund I the Old, Przemysł II}, and (deathPlace, Portugal)

shared by {Raul Solando, Zeca Afonso, Florbela Espanca, Lucília do Carmo}.

Detecting features of classes

To tackle the ICA problem, CAD takes advantage of the information theory (Shannon,

1949) to analyse the uncertainty related to the correctness or incorrectness of relation-

ships between instances and classes. As explained, a Common Feature shows a common

behaviour of instances in a Group. The information gain allows us to measure which

common features are more certain to be used as key features of classes to distinguish
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their instances.

The following introduces a measure based on entropy that calculates the uncertainty

associated with the whole random space in the SW. Then, it explains how to compute

information gained by common features.

Definition 4.3.3. (Class Random Space Entropy). Given an ontology, the Class

Random Space S is a space built up from instances of different classes in the ontology.

The entropy of S can be calculated by Equation 4.1:

Entropy(S) = −
N

∑
i=1

p(ci) log2 p(ci) (4.1)

where N is the total number of classes in the ontology and p(ci) = ∣Insci ∣∣INS∣ is the probab-

ility of Class ci in S. ∣Insci ∣ is the total number of instances of Class ci. ∣INS∣ is the

total number of instances in S.

In the SW, an instance can belong to multiple classes in the ontology. This fact

increases the entropy (i.e., uncertainty) of Class Random Space measured by Equation

4.1, but it is obviously not a data quality issue. In this module, the target of CAD

approach is to find features of classes. However, belonging to multiple classes can

introduce extra uncertainty to the process of class features extraction. The following

shows how the CAD approach handles extra uncertainty occurred by instances with

multiple types.

In the information theory, more information can be obtained by a random space

with lower entropy, and vice versa. In this scenario, a Common Feature can be shared

by instances of different classes in the ontology. Therefore, the information gained from

a Common Feature depends on the types of instances in its Group. Fewer types cause

lower entropy and consequently more information gained by the Common Feature.

By relying on the fact, the concepts of Common Feature Space and Common Feature

Information are defined as follows.
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Definition 4.3.4. (Common Feature Space). Given a Common Feature cfk, RDF

triples and its corresponding ontology, a Common Feature Space Scfk is a space built up

from instances that share cfk. The Entropy of Scfk can be computed by Equation 4.2:

Entropy(Scfk) = −
mScfk

∑
i=1

p(cj.cfk) log2 p(cj.cfk) (4.2)

where

mScfk
= nct −∑(( ∑

nbsi.cfk

1

nsij
) −min( 1

nsij
)) (4.3)

mScfk
is the total number of classes in Scfk , nct is the number of belonging classes

of instances with cfk, nsij is the number of supporting instances with cfk of Class cj ,

nbsi.cfk is the number of belonging classes of an instance insi with cfk. p(cj.cfk) =
∣Inscj .cfk ∣
∣Inscfk ∣

is the probability of class cj in Scfk . ∣Inscj .cfk ∣ is the total number of instances

of class cj that share cfk. ∣Inscfk ∣ is the total number of instances that share cfk.

Definition 4.3.5. (Common Feature Information). Given a Class Random Space

S and a Common Feature cfk, the information gained from cfk is a normalized value

measured by Equation 4.4:

Gain(S, cfk) =
Entropy(S) − ∣Inscfk ∣∣INS∣ Entropy(Scfk)

Entropy(S) (4.4)

where Entropy(S)≠ 0 and 0≤ Gain(S, cfk) ≤1.

The Common Feature Space can be calculated by using Algorithm 4.1. The al-

gorithm receives classes (C), instances (Iset), features of instances (I.features), and

types of instances (I.types) as inputs. Then, it returns Entropy(Scfk) as an output. For

each instance insi that shares Common Feature cfk, the algorithm records its belonging

classes/types in bsi.cfk (Lines 3-5). Then, it extracts the maximum number of supporting

instances for classes in bsi.cfk and stores the value in minnsij
(Line 6). For each Class

cj in bsi.cfk , if the number of supporting instances with cfk of cj is lower than minnsij
,



Chapter 4. An Entropy-Based Class Assignment Detection Approach For RDF Data76

then the algorithm updates minnsij
and records cj as a Class of insi (cinsi) (Lines

7-10). It continues this process to find out the minimum number of nsij for insi and

reduces extra uncertainty introduced by multiple types of insi which is also reflected in

Equation 4.3. Then, the algorithm considers cinsi as a related class (i.e., class type) of

insi (Line 13). Finally, the algorithm measures Entropy(Scfk) by using related classes

in Line 16.

Algorithm 4.1: Common Feature Space Calculation
1: INPUT: C = {c1, ..., cj , ..., cn}, Iset = {ins1, ..., insi, ..., insn},

I.features = {ins1.features, ..., insi.features, ..., insn.features},
I.types = {ins1.types, ..., insi.types, ..., insn.types}, cfk

2: OUTPUT: Entropy(Scfk)
3: for each insi ∈ Iset do
4: if insi has cfk then
5: bsi.cfk ← belonging classes of insi ;
6: minnsij

← maximum of nsij among all Classes in bsi.cfk ;
7: for each cj ∈ bsi.cfk do
8: if nsij <minnsij

then
9: minnsij

← add nsij ;
10: cinsi ← add cj ;
11: end if
12: end for
13: related c← add cinsi ;
14: end if
15: end for
16: Entropy(Scfk)← calculate Entropy with related c;
17: return Entropy(Scfk);

Example 2. Table 4.2 lists the belonging classes of the triples in Table 4.1. Table

4.2 also shows the corresponding Class Random Space created by instance-level and

schema-level knowledge. In case that BritishRoyalty, PolishKing, Actor, MusicalArtist,

Poet, Singer, and Country classes contain 6, 6, 1, 1, 1, 1, and 4 instances, the total

number of instance-level data in this Class Random Space is equal to 20. Using Equation

4.1, the entropy of this Class Random Space equals to 2.36.
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Table 4.2: An example of a Class Random Space

Schema-level Instance-level data

BritishRoyalty Class

(rdf:type BritishRoyalty)

Queen Victoria, Edward VII, Princess Beatrice of UK,

Princess Louise Duchess of Argyll, Albert Prince Con-

sort, John I Albert

PolishKing Class

(rdf:type PolishKing)

Casimir III, Przemysł II, Casimir IV Jagiellon,

Władysław I the Elbow high, Wenceslaus II of Bohemia,

Sigismund I the Old

Country Class (rdf:type

Country)

United Kingdom, Poland, Portugal, France

Actor Class (rdf:type

Actor)

Raul Solando

MusicalArtist Class

(rdf:type MusicalArtist)

Zeca Afonso

Singer Class (rdf:type

Singer)

Lucília do Carmo

Poet Class (rdf:type

Poet)

Florbela Espanca

Example 3. The common features of (birthPlace, United Kingdom), (birthPlace,

Poland), and (deathPlace, Portugal) can create three common feature spaces. Table 4.3

shows the details of each Common Feature Space. For example, the Common Feature

Space created by (birthplace, United Kingdom) contains instances of BritishRoyalty

class. This Common Feature has been shared by 4 instances of BritishRoyalty class.

The entropy of Common Feature Space S(birthP lace, United Kingdom) shown in Table 4.3 is

equal to 0 since all instances belong to the same class. In this case, Gain (S, (birthPlace,

United Kingdom)) obtains maximum value that is equal to 1. This value indicates that
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there exists no uncertainty in the random space of (birthPlace, United Kingdom) since

all instances have the same type that is rdf:type BritishRoyalty. Since Common Feature

(birthPlace, Poland) is shared by 1 instance of BritishRoyalty class and 3 instances of

PolishKing class, the entropy of S(birthP lace, Poland) is equal to 0.807 and the value of

Gain (S, (birthPlace, Poland)) is about 0.93.

Table 4.3: Examples of common feature spaces

Common features Schema-level Instance-level data

(birthPlace, United Kingdom)
BritishRoyalty Queen Victoria, Edward VII,

Princess Beatrice of UK, Prin-

cess Louise Duchess of Argyll

(birthPlace, Poland)
BritishRoyalty John I Albert

PolishKing Casimir III, Przemysł II, Sigis-

mund I the Old

(deathPlace, Portugal)
Actor Raul Solnado

MusicalArtist Zeca Afonso

Singer Lucília do Carmo

Poet Florbela Espanca

On one side, a Common Feature can be shared by instances of different classes.

On the other side, instances might share more than one Common Feature. The CAD

has also evaluated the information gained from combinations of common features. For

example, in Figure 4.2, Common Feature cf1 is shared by instance insa with rdf:type

D, and insb, insi, insn with rdf:type A, and insj with rdf:type B. Common Feature cf2

is also shared by insb, insi, insn with rdf:type A, and insk with rdf:type C, and insm

with rdf:type E. The combination of (cf1,cf2) gains more information to compare with
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each cf1 and cf2. Because the Random Space of (cf1,cf2) contains lower entropy and

fewer types (i.e., types A and B) to compare with cf1 and cf2 that contain instances with

{rdf:type A, rdf:type B, rdf:type D} and {rdf:type A, rdf:type C, rdf:type E}, respectively.

Based on this motivation, the concept of Virtual Common Feature is defined as follows.

Figure 4.2: An example of a Virtual Common Feature

Definition 4.3.6. (Virtual Common Feature). A Virtual Common Feature vcf is a

combination of n (n ≥ 2) common features where the number of instances that share

vcf is greater than or equal to MinIN.

A Virtual Common Feature vcf shows that there exist a number of instances that

share more than one Common Feature. In this regard, the information gained from a

Virtual Common Feature can be computed by Equations 4.4. We just need to replace

∣Inscfk ∣ and Entropy (Scfk) with ∣Insvcfk ∣ and Entropy (V Svcfk). The ∣Insvcfk ∣ is the

total number of instances that share vcfk and Entropy (V Svcfk) is the Entropy of a

Virtual Common Feature Space.

Given a Common Feature cfk and a Virtual Common Feature vcfk, the more

information indicates lower entropy (i.e., lower uncertainty) in the random spaces

generated by cfk and vcfk. This fact reveals that most instances that have shared cfk

and vcfk have the same type. Based on this fact, the concept of Class Feature is defined

as follows.

Definition 4.3.7. (Class Feature). A Common Feature cfk or a Virtual Common

Feature vcfk is a Class Feature for Class ci, if the information gained by cfk or vcfk is
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greater than or equal to NormGain Thresholds (NGTh).

According to Definition 4.3.7., a class can have multiple class features including

common features and virtual common features with information gained greater than or

equal to NGTh, i.e., Class ci.features={cf1,cf2,...,cfk,...,vcfn,vcfn+1,...}, where cfk

or vcfn is a Class Feature for Class ci if instances that share cfk or vcfn are members

of Class ci.

4.2.2 Instance-Class Relationship Analysis module

If we take an instance with belonging types/classes and its features, the goal of Instance-

Class Relationship Analysis module is to evaluate the correctness (i.e., CA: if an

instance shares its class features) and incorrectness (i.e., ICA: if an instance does not

share its class features) of relationships between instances and classes in the existing

Knowledge Base (KB). To this end, Algorithm 4.2 is proposed in this module. In the

following, an Undecidable status is also considered for an instance when it is neither CA

nor ICA. The status of an instance is Undecidable when it has not shared any Common

Feature or the information gained by its common features or virtual common features is

lower than NGTh. Algorithm 4.2 also has the capability of receiving and analysing new

RDF instances as input data into the KB. In this respect, the algorithm takes advantage

of batch processing which is a method for storing data into groups to allow sequential

processing and reduce system overhead. In the algorithm, InstanceBatch refers to

instances sharing common features and virtual common features. If the number of

new instances in BatchCounter equals to the maximum allowed number of entries in

BatchMax, then the algorithm analyses InstanceBatch. Algorithm 4.2 receives MinIN,

NGTh, classes (C), features of classes (C.features), instances (Iset), features of instances

(I.features), and types of instances (I.types) as inputs. Then, it returns CA, ICA, and

Undecidable relationships of instances with the classes as outputs.



Chapter 4. An Entropy-Based Class Assignment Detection Approach For RDF Data81

Algorithm 4.2: Instance-Class Relationship Analysis
1: INPUT: MinIN, NGTh, C = {c1, ..., cj , ..., cn},

C.features = {c1.features, ..., cj .features, ..., cn.features},
Iset = {ins1, ..., insi, ..., insn},
I.features = {ins1.features, ..., insi.features, ..., insn.features},
I.types = {ins1.types, ..., insi.types, ..., insn.types}

2: OUTPUT: CA, ICA, Undecidable

3: for each insi ∈ Iset do
4: if insi has one Common Feature then
5: If insi is not new, adds it to Isetcf ;
6: If insi is new, adds it to InstanceBatch;
7: else if insi has no Common Feature then
8: Undecidable← insi is neither CA nor ICA;
9: else

10: Featureinsi ← Common Features of insi;
11: if Featureinsi ≥MinIN then
12: vcfinsi = Featureinsi ;
13: If insi is not new, adds it to Isetvcf ;
14: If insi is new, adds it to InstanceBatch;
15: else
16: If insi is not new, adds it to Isetcf ;
17: If insi is new, adds it to InstanceBatch;
18: end if
19: end if
20: end for
21: if (∣InstanceBatch∣ == BatchMax) then
22: Update Isetcf and Isetvcf with InstanceBatch;
23: end if
24: for each insi ∈ Isetcf do
25: if Information gained by each Common Feature of insi ≥ NGTh then
26: if Common Feature of insi ∈ {cj .features ∣ cj ∈ C} then
27: if (insi.types contains cj .type) then
28: CA← insi status ;
29: If insi is new, recalculate Entropy(S) and Gain(S,CommonFeature of insi);
30: else
31: ICA← add {insi, cj .type};
32: Recalculate Entropy(S) and Gain(S,CommonFeature of insi);
33: end if
34: break;
35: end if
36: else
37: Undecidable← insi is neither CA nor ICA;
38: end if
39: end for
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40: for each insi ∈ Isetvcf do
41: if Information gained by vcfinsi ≥ NGTh then
42: classType← Type vcfinsi ;
43: if (insi.types contains classType) then
44: CA← insi status;
45: If insi is new, recalculate Entropy(S) and Gain(S, vcfinsi);
46: else
47: ICA← add {insi, classType};
48: Recalculate Entropy(S) and Gain(S, vcfinsi);
49: end if
50: else
51: Undecidable← insi is neither CA nor ICA;
52: end if
53: end for
54: return CA, ICA, Undecidable;

For each instance insi that shares a Common Feature, if it exists in the dataset,

then the algorithm adds it to Isetcf (Lines 3-5). If insi has not shared any Common

Feature, then the status of insi is Undecidable (Lines 7-8). If insi shares multiple

common features, the algorithm stores all common features of insi in Featureinsi to

check the possibility of creating virtual common features (Line 10). If the number

of instances that have shared Featureinsi is greater than or equal to MinIN, then the

algorithm creates virtual common features vcfinsi and records them in Isetvcf (Lines

11-13). Otherwise, the algorithm records insi with common features in Isetcf (Line

16). If insi is a new instance for the KB, then the algorithm adds it to InstanceBatch

(Lines 14 and 17). If the algorithm starts batch processing, then Isetcf and Isetvcf will

be updated by InstanceBatch by considering common features and virtual common

features (Lines 21-22).

For each insi in Isetcf , if the information gained by each Common Feature of insi

is greater than or equal to NGTh, then the algorithm checks the Common Feature of

insi in the features of all classes (Lines 24-26). If the Common Feature of insi exists

in the features of Class cj , then the algorithm compares the types of insi with the type

of Class cj (Line 27). The status of insi is CA, if insi types contains in Class cj type

(Line 28). If insi types do not contain in Class cj type, then the algorithm considers
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ICA status for insi and assigns it to Class cj (Line 31). Since an instance with ICA

status has been added to Class cj , the algorithm recalculates the entropy of whole Class

Random Space and updates the information gained by Class Feature of cj that in fact, it

is the Common Feature shared by insi (Line 32). In case of adding a new instance that

has CA status, the algorithm measures Entropy(S) and the information gained by Class

Feature of cj (Line 29). Note that the status of insi is Undecidable if the information

gained by its common features is lower than NGTh (Line 37).

For each insi in Isetvcf , if the information gained by vcfinsi has exceeded NGTh,

then the algorithm extracts classType of instances that have shared vcfinsi (Lines 40-42).

If insi type is the same as extracted classType, then the status of insi is CA (Lines

43-44). Otherwise, insi has ICA status and the algorithm assigns it to classType (Line

47). The status of insi is Undecidable, if the information gained by vcfinsi does not

exceed NGTh (Line 51).

4.3 Experiments and analysis

The following has been structured based on two main experiments. The first experiment

aims to assess the capability of the CAD approach in discovering features of classes.

The second experiment has been designed to evaluate the accuracy of the CAD approach

in detecting the correctness and incorrectness of relationships between instances and

classes. Note that in the following experiments, the CAD mines common features by

using {s1, s2, ..., sn}(p,o) structure where (p,o) is a Common Feature for a Group of

subjects.
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4.3.1 Experiment 1: Class Feature extraction from DBpedia data-

set

Experimental set-up. The following experiments have been conducted over DBpedia

dataset (3.8). As explained in Chapter 3, DBpedia datasets usually provide two main

files including Ontology Infobox Properties that publishes RDF triples and Ontology

Infobox Types that provides schema-level knowledge for the triples. In the following

experiments, we filtered the Ontology Infobox Types based on 10 classes including

Hotel, Food, ArchitecturalStructure, Museum, Beverage, Event, Holiday, BritishRoyalty,

Person, and Writer. By using triples filtered from Ontology Infobox Types, about 4800

triples have been extracted from Ontology Infobox Properties for the experiments. Each

of classes including Food, Hotel, and Holiday approximately contain 750 instances.

ArchitecturalStructure, Museum, Beverage, Event, BritishRoyalty, Person, and Writer

classes also have about 350 instances for each one.

Experimental results. The goal of the first experiment is to test the ability of the

CAD in extracting features of classes by applying NormGain Thresholds NGTh≥ 0.85

and Minimum Instance Number MinIN≥ 15.

Table 4.4: Some details of Hotel, Food, Beverage, Holiday, and BritishRoyalty classes
(NGTh≥0.85, MinIN≥15)

Class class features Gain Instances

Hotel (location,UK) 0.88 {Draycott Hotel, 22 Jermyn Street, Bed-

ford Hotel (Brighton), Blakes Hotel, ...}

(loca-

tion,Laos)

0.87 {Amantaka, Lao Plaza Hotel, Royal

Dokmaideng Hotel, Settha Palace Hotel, ...}

Food (origin,India) 0.92 {Tilkut, Barfi, Chutneg, Kaju katli, Neer

dosa, Roti canai, Ramja, Samber, Angoori, Lu-

chi, Chomchom, Ariselu, Paneer, Putto, Rasam,

...}
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{(ori-

gin,Indonesia),

(ori-

gin,Malaysia)}

0.95 {Otak-otak, Coconut rice, Laksa, Mie

goreng, Ayam goreng, Asam pedas, ...}

(ori-

gin,Philippines)

0.91 {Taho, Sigsig, Asocena, batchoy, Baye

baye, Bibingka, Curacha, Gulaman, Sapin

Sapin, Tinola, Mechado, Kalamay, kaldereta,

Halo halo, ...}

Beverage (ori-

gin,Scotland)

0.93 {Barr Cola, Buchanan’s, Chivas Regal,

Cutty Sark Whisky, Irn Bru, John Dewar &

Sons, Johnnie Walker, Red Kola, Royal Salute

Whisky, Valadivar Vodka, ...}

(origin,Peru) 0.89 {Concordia beverage, Inca Kola, Isaac

Kola, Kola Inglesa, Kola Real, Triple Kola,

Pulp juice, Fruti Kola, Pilsen Callao, ...}

(origin,

Australia)

0.87 {Bombra Vodka, Mother(energy drink),

Count Cola, Cooranbong Vodka, Dot AU Vodka,

LA ICE Cola, Solo Australian Soft Drink,

Schweppes Cola, ...}

Holiday (country,

Hindu)

0.9 {Balipratipada, Nag Panchami, Ay-

udha Puja, Hanuman Jayanti, Akshaya Tritiya,

Chhath, Nuakhai, Ratha Saptami, Ganesh

Chaturthi, Prabodhini Ekadashi, Gadhimai

Festival, Krishna Janmashtami, Kumbh Mela,

Meha Shivaratri, Diwali, ...}

(country, Juda-

ism)

0.86 {Shavuot, Shemini Atzeret, Simchat

Torah, Sukkot, Rosh Hashanah, Hanukkah,

Purim, Birkat Hachama, Yom Kippur, ...}
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(country, USA) 0.85 {Blasphemy Day, Obama Day, Leif

Erikson Day, Malcolm X Day, Juneteenth,

Kwanzaa, Veterans Day, Super Saturday, ...}

British-

Royalty

(country,

United Kingdom)

0.91 {Edward, the Black Prince, Henry I

of England, Edward III of England, Harold

Godwinson, Kenneth MacAlpin, Anne Boleyn,

Edward the Confessor, Henry VII of England,

Mary, Princess Royal and Princess of Orange,

James II of England, Charles II of England,

Jane Seymour, ...}

Table 4.4 shows some features of Hotel, Food, Beverage, and BritishRoyalty classes

along with information gained by each Class Feature. The table also provides some

instances that have shared features of these classes. For example, (origin,India) is a

Class Feature in the Food class that has gained information greater than NGTh≥ 0.85. As

shown in Table 4.4, {(origin,Indonesia),(origin,Malaysia)} is an example of a Virtual

Common Feature identified as a Class Feature for the Food class. This Class Feature

reveals there exist some common food between Indonesia and Malaysia.

4.3.2 Experiment 2: Accuracy of CAD approach

Experimental set-up. The goal of the second experiment is to check the accuracy of

CAD approach in analysing the correctness and incorrectness of relationships between

instances and classes in the dataset. Generally, the accuracy of a system is a degree

of closeness between a measured value and a true value. In this scenario, a measured

value refers to the number of correctly assigned (i.e., CA) and incorrectly assigned

(i.e, ICA) instances detected by the CAD approach. While a true value indicates the

predefined number of CA and ICA instances of a class. To this end, 700 instances with

rdf:type Hotel are considered as a true value for CA instances. While, 50 hotel instances



Chapter 4. An Entropy-Based Class Assignment Detection Approach For RDF Data87

are intentionally and incorrectly considered as instances of Food class (i.e., they have

rdf:type Food). These 50 instances show a true value for ICA instances. To measure the

accuracy of CAD approach, two measurements called AccuracyCA and AccuracyICA

are defined as follows.

Definition 4.4.8. (AccuracyCA). Given a class, the accuracy of the CAD in detect-

ing correctly assigned instances can be computed by Equation 4.5:

AccuracyCA = ∣insCA ∩ INSCA∣
∣INSCA∣

(4.5)

where insCA is the number of correctly assigned instances detected by the CAD and

INSCA is a true value for the predefined number of CA instances in the class.

Definition 4.4.9. (AccuracyICA). Given a class, the accuracy of the CAD in

detecting incorrectly assigned instances can be measured by Equation 4.6:

AccuracyICA = ∣insICA ∩ INSICA∣
∣INSICA∣

(4.6)

where insICA is the number of incorrectly assigned instances detected by the CAD and

INSICA is a true value for the predefined number of ICA instances in the class.

Experimental results. According to the dataset and instances, Figure 4.3 shows

that the accuracy of CAD approach in detecting CA instances is positively grown by

increasing NGTh. As explained previously, a Common Feature or a Virtual Common

Feature is a Class Feature of Class ci, if the information gained by the Common Feature

or Virtual Common Feature is greater than or equal to NGTh. This fact indicates lower

entropy (i.e., higher certainty) in the random space generated by the Common Feature

or Virtual Common Feature. Based on Algorithm 4.2, the status of an instance is

Undecidable if the information gained by its common features and virtual common

features is lower than NGTh. Subsequently, Algorithm 4.2 disregards insi, if it has

an Undecidable status. Similarly to what explained above, Figure 4.4 also represents
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that the accuracy of the CAD in detecting ICA instances is raised by increasing NGTh.

Figures 4.5 and 4.6 show that the number of detected CA and ICA instances is grown

by increasing NGTh.

Figure 4.3: Accuracy of the CAD in de-
tecting CA instances in different NGTh

Figure 4.4: Accuracy of the CAD in de-
tecting ICA instances in different NGTh

Figure 4.5: Number of detected CA in-
stances in different NGTh

Figure 4.6: Number of detected ICA in-
stances in different NGTh

It is important to mention that Undecidable statuses directly impact on the accuracy

of CAD approach as shown in the above figures. Consider the process of analysing

common features in Algorithm 4.2. Given an instance insi, if the feature shared by

insi is not a Common Feature, then the status of insi is Undecidable. For example,

White House is an instance with the rdf:type Hotel that shares (location, Herm) as a

particular feature. More precisely, (location, Herm) is a single feature that is only shared

by White House. Based on the concept of Common Feature and MinIN thresholds,

(location, Herm) cannot be considered as a Common Feature since it is shared by only

one instance. Furthermore, if White House has been incorrectly assigned to the Food
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class, Algorithm 4.2 ignores White House as an ICA instance since (location, Herm) is

not a Common Feature. Accordingly, Algorithm 4.2 disregards some instances if the

features shared by them are not common features in the dataset.

It is also important to note that the impact of MinIN on the AccuracyCA and

AccuracyICA has been also tested in the experiments. However, the obtained results

were not significant as NGTh on the accuracy.

4.4 Summary

Due to the distributed architecture of the SW, the quality of data is under investigation.

This chapter concentrates on a SW data quality issue called ICA problem that indicates

incorrect assignments between instance-level data and classes in the ontology. This

chapter proposed an entropy-based method called CAD to deal with the ICA problem.

The CAD evaluates the correctness and incorrectness of relationships between instance-

level data and classes. The CAD has been tested over some classes of DBpedia dataset

(3.8). The conducted experiments show the effectiveness and accuracy of the CAD.

Additionally, the CAD is applicable to any kind of RDF-style KBs.

The work in this chapter has been published in (Barati, Bai & Liu, 2018).



Chapter 5

Automated New Classes Extraction

From RDF Data

Ontology enrichment is one of the most significant tasks in the process of engineering

and refining ontologies. An ontology has to go through a repetitive procedure of

purification during its development life cycle. Namely, ontologies require automatic

enrichments since they have not provided all requirements for users. In the SW, ontology

enrichment is a research topic that is studied from various angles such as schema

learning, relation learning, class learning, etc. Class learning is one of the most

demanding aspects in this field of study aimed to enrich ontologies by extracting new

classes. On this subject, most existing studies are built based on ILP techniques for

deriving new classes from SW data. As discussed earlier, ILP-based methods are

suitable for logical scenarios that usually require counterexamples.

To overcome with the limitation of counterexamples used in the ILP-based methods,

this chapter proposes a non-logical approach called Class Enricher (CEn) that automat-

ically extracts new classes with appropriate signatures through mining instance-level

and schema-level knowledge.

The rest of this chapter is structured as follows. Section 5.1 illustrates the motivation

90
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used throughout of chapter. The foundation of the CEn approach is clearly described in

Section 5.2. To check the ability of CEn approach in generating new classes, Section 5.3

discusses the experimental results. Finally, Section 5.4 summarises the whole chapter

and reviews the contributions of the CEn approach.

5.1 Motivation

Based on the discussion in Chapter 4, a Common Feature or a Virtual Common Feature

is a Class Feature if the information gained by the Common Feature or Virtual Common

Feature is greater than or equal to NormGain Thresholds (NGTh). Consequently,

Instance-Class Relationship Analysis Algorithm (Algorithm 4.2) in Chapter 4 evaluates

the correctness and incorrectness of relationships between instances and classes.

However, a Common Feature or a Virtual Common Feature with information lower

than NGTh can potentially be a signature for a new class; because the Common Fea-

ture or Virtual Common Feature indicates a behaviour that is frequently occurred by

instances. This idea has been used throughout this chapter for generating new classes.

Obviously, any instance with CA, ICA, or Undecidable status can share common fea-

tures or virtual common features with information lower than NGTh. Consider Figure

5.1 to clarify the idea by providing an example. In the figure, (genre, Pop), (influencedBy,

Picasso), (influencedBy, Shakespeare), and (subject, Travel writing) are features of

MusicalArtist, Painter, Poet, and Writer classes, respectively. Now, suppose that (like,

Pizza) is a Common Feature with information lower than NGTh. Although (like, Pizza)

is not eligible to be used as a Class Feature, it can be exploited as a signature for a new

class; because (like, Pizza) reveals a common behaviour among some instances of the

MusicalArtist, Painter, and Writer classes. By considering Figure 5.1, a new class with

the signature of (like, Pizza) contains 7 instances.
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Figure 5.1: An example of instances that share a Common Feature with information
lower than NGTh

Figure 5.2: A new class created by a Common Feature
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Figure 5.2 represents an example of a new class generated by a Common Feature

that is used as a signature of the class. Obviously, the number of instances in the new

classes should be greater than or equal to Minimum Instance Number (MinIN) that was

introduced in Chapter 4.

5.1.1 New class placement

Any class has a particular position in the hierarchical structure of an ontology. In our

scenario, a new generated Class ci is a subclass of a predefined Class cj in the ontology,

where cj is a lowest common class of all instances in ci. The reason behind this idea is

that instances of a subclass are members of its superclasses in the ontological structure.

Figure 5.3: An example of new class placement

Consider again Figure 5.1 to explain where to put the new class in the hierarchical

structure of an ontology. The new class with the signature of (like, pizza) is built by

five Undecidable, one CA, and one ICA instances. As shown in Figure 5.3, the People

class is the lowest common class for all instances in the new class. In the SW, instances
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can have multiple rdf:type properties. For example, there exists a pink Undecidable

instance in Figure 5.1 that is a member of Writer and Poet classes. For this Undecidable

instance with multiple types, the super class is People class. Accordingly, the new class

is a subclass of People class and its place is parallel with MusicalArtist, Painter, Poet,

and Writer classes in the hierarchical structure of the ontology. Figure 5.3 represents

instances of the New Class in the enriched schema. These instances not only inherit

the type of New Class that is rdfs:subClassOf People but also they share the types of

predefined classes in the ontology.

5.2 Class Enricher (CEn) approach

The goal of the CEn approach is to enrich schema-level knowledge by extracting new

classes which are not defined in the ontology. In this respect, the CEn approach contains

two main modules: (I) Information Gain Analysis module and (II) Class Creation

module. In general, the Information Gain Analysis module extracts instances that have

shared common features or virtual common features with information lower than NGTh.

Based on the results obtained by the Information Gain Analysis module, Class Creation

module generates new classes to enrich schema-level knowledge.

5.2.1 Information Gain Analysis module

In the following, the Information Gain Analysis Algorithm is proposed that receives

Knowledge Base (KB), NGTh, and instances (Iset) as inputs. Then, the algorithm

generates Insetcfs and Insetvcfs that contain instances with common features or virtual

common features with information lower than NGTh.

For each instance insi in Iset, Algorithm 5.1 checks if insi shares common features

or virtual common features with information lower than NGTh (Lines 3-4). If the
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condition in Line 4 is true, then the algorithm records common features and virtual

common features of insi in Insetcfs and Insetvcfs sets, respectively (Lines 5-11).

Algorithm 5.1: Information Gain Analysis
1: INPUT: KB,NGTh, Iset
2: OUTPUT: Insetcfs, Insetvcfs
3: for each insi ∈ Iset do
4: if insi has (common features ∥ virtual common features) && the information of each Common

Feature or each Virtual Common Feature is lower than NGTh then
5: if insi shares common features then
6: Insetcfs ← add {insi, common features};
7: end if
8: if insi shares virtual common features then
9: Insetvcfs ← add {insi, virtual common features};

10: end if
11: end if
12: end for
13: return Insetcfs, Insetvcfs;

5.2.2 Class Creation module

In this module, the Class Creation Algorithm is proposed to generate new classes by

using the outputs collected by Algorithm 5.1. In the following, Algorithm 5.2 receives

KB, Insetcfs, Insetvcfs, and MinIN as inputs and generates new classes as output.

Algorithm 5.2: Class Creation
1: INPUT: KB, Insetcfs, Insetvcfs, MinIN ;
2: OUTPUT: generatedClasses;

3: for each Common Feature or Virtual Common Feature of {insi ∣ insi ∈ (Insetcfs ∥ Insetvcfs)}
do

4: Create class with signature of Common Feature or Virtual Common Feature of insi;
5: class← add{insj ∣ insj ∈ (Insetcfs ∥ Insetvcfs)&& insj has Common Feature or Virtual

Common Feature of insi};
6: if ∣ class ∣ ≥MinIN then
7: Type← LCS({insj ∣ insj ∈ class});
8: generatedClasses← add{ class, Type};
9: end if

10: end for
11: return generatedClasses;

For each Common Feature or Virtual Common Feature of instance insi, Algorithm
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5.2 creates new classes with the proper signatures (Lines 3-4). The algorithm identifies

instances in the Insetcfs or Insetvcfs that have the same Common Feature or Virtual

Common Feature with insi and adds them to the new class (Line 5). If the number of

instances in the new class is greater than or equal to MinIN, then the algorithm locates

new class under the Lowest Common Superclass (LCS) in the hierarchical structure of

the ontology (Lines 6-7). The algorithm adds new classes to generatedClasses set in

Line 8.

Regarding to the output of Algorithm 5.2, it is important to mention that though a

new class will increase the overall entropy (i.e., uncertainty) of Class random Space as

the total number of classes increased, the new class will not impact on common feature

spaces. Hence, the entropies of common features do not need to be re-calculated (refer

to Definition 4.3.4).

5.3 Experiments and analysis

The goal of the following experiments is to check the effectiveness of CEn approach in

generating new classes which are not defined in the DBpedia ontology. It is important

to remind that in the following experiments, the CEn approach mines common features

by using {s1, s2, ..., sn}(p,o) structure.

5.3.1 Generating new classes for DBpedia ontology

Experimental set-up. The CEn approach has been tested over the dataset extracted

from DBpedia 3.8 used in Chapter 4. The RDF dataset contains about 4800 triples built

by 10 classes including Hotel, Food, ArchitecturalStructure, Museum, Beverage, Event,

Holiday, BritishRoyalty, Person, and Writer. The new classes have been generated by

considering NGTh<0.85 and MinIN≥15.
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Experimental results. Table 5.1 shows some new classes along with their instances

generated by the CEn approach. New classes have been assigned to suitable classes

in the DBpedia ontology as noted in the table. As shown in Table 5.1, the CEn

identifies Common Feature (deathPlace, Beijing) with information lower than NGTh

as a signature of new Class c2. This class contains some Chinese royalties, Chinese

writers and Chinese people who were died in Beijing. As mentioned before, DBpedia

ontology defines only two classes for royalties including BritishRoyalty and PolishKing.

Table 4.4 in Chapter 4 also lists the features of BritishRoyalty class. Here, in Class c2,

all Chinese emperors have rdf:type BritishRoyalty property. Obviously, this kind of

assignment does not make sense for human beings. In fact, this ambiguity is beacuse

of lack of defining proper classes in the DBpedia ontology. On this subject, the CEn

approach generates the new Class c2 and assigns it to the People class that is the lowest

common superclass class for all instances of c2 in the DBpedia ontology.

Table 5.1: Some new classes generated by the CEn approach (NGTh<0.85, MinIN≥15)

Class class signature NormGain Instances

c1:

rdf:type

People

(deathPlace,

Germany)

0.51 {Paul Heyse, Maria Anna Sophia

of Saxony, Theodor Fontane, Maximilian

I Joseph of Bavaria, Charles Theodore

Elector of Bavaria, Karl May, Charles

VII Holy Roman Emperor, Maximilian II

Emanuel Elector of Bavaria, Jean Paul,

Princess Henriette Adelaide of Savoy, Ger-

hart Hauptmann, Maximilian I Elector of

Bavaria, Friedrich Schiller, ...}
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c2

rdf:type

People

(deathPlace,

Beijing)

0.45 {Yongle Emperor, Mao Dun,

Zhengde Emperor, Guo Moruo , Wanli

Emperor, Chongzhen Emperor, Zhou

Zuoren, Taichang Emperor, Xuande

Emperor, Cao Xueqin, Longqing Emperor,

Hongxi Emperor, Jiajing Emperor, Ai Qing,

...}

c3

rdf:type

People

(deathPlace, Por-

tugal)

0.41 {Gil Vicente, John III of Portugal,

Almeida Garrett, Afonso III of Portugal,

Afonso I of Portugal, Camilo Castelo

Branco, John I of Portugal, Antero de

Quental, Manuel I of Portugal, Henry King

of Portugal, Afonso V of Portugal, Alexan-

dre Herculano, ...}

c4

rdf:type

Food

(origin,United

States)

0.6 {Chicken fried bacon, Crystal Pepsi,

Chili con carne, Coca-Cola Cherry, A&W

Root Beer, AMP Energy, Pepsi Blue,

Caffeine-Free Pepsi, A&W Cream Soda,

Crunk Energy Drink, Caffeine-Free Coca-

Cola, Cricket Cola, ...}

c5

rdf:type

Food

(origin,United

Kingdom)

0.43 {Yorkshire pudding, Coca-Cola

with Lemon, Spotted dick, Bedfordshire

clanger, Relentless (drink), Steak and kid-

ney pudding, Frijj, Treacle sponge pudding,

Bread and butter pudding, Sticky toffee pud-

ding, Qibla Cola, Suet pudding, Virgin Cola,

Queen of Puddings, ...}

Additionally, Table 4.4 lists features of the Food class and the Beverage class. Table

5.1 shows two new Classes c4 and c5 that collect popular food and beverage in the

United States and the United Kingdom, respectively. The CEn approach assigns these
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classes to Food class that is the lowest common superclass for instances of c4 and c5 in

the DBpedia ontology. More precisely, instances of c4 and c5 more likely indicate the

United States and United Kingdom popular Food.

5.4 Summary

Ontologies can be incomplete since they have a quite static nature and the terminological

axioms describing specific domains usually create before actual usage. A class is a

particular notion that is known as one of the fundamental components in the ontological

structures. Since OWL ontologies are developed by using DL languages, different

studies are also designed based on DL-based techniques to learn new classes from the

SW data to enrich ontologies. However, these methods usually need predefined logical

knowledge to extract classes from instances. This chapter introduces a non-logical

approach called CEn to creates new classes in the SW. The CEn approach automatically

mines instance-level data by considering knowledge encoded at the schema-level to

generate new classes that are not defined in the original ontology. This promised the

potential of automated knowledge generation from the SW data.



Chapter 6

Conclusions

This chapter summarises the outputs of this thesis in mining and learning from the

SW. I have highlighted the findings of this thesis in Section 6.1. The limitations of the

proposed methods and possible future work are also explained in Section 6.2.

6.1 Research contributions

The goal of the SW is to convert the unstructured data on the Web pages into structured

content. The SW provides tools to define a semantic layer on top of heterogeneous

resources. A semantic approach to data processing, such as the use of ontologies

and RDF-style KBs, has increasingly been integrated with the artificial intelligence

techniques. These techniques improve the traditional approaches of information re-

trieval and data management and they result in more efficient and scalable information

processing and easier human-machine interaction. In the SW, RDF-style KBs contain

millions of triples that face with new challenges. Ontologies provide semantics for the

RDF data, but the potential behind them have not effectively penetrated in the mining

process. Furthermore, the KBs usually face with incompleteness and incorrectness

issues due to the distributed nature of the SW.

100
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In this thesis, the following three research questions have been identified and defined:

1. How to automatically mine semantic association rules from RDF triples by

utilizing instance-level and schema-level knowledge?

2. How to analyse the correctness and incorrectness of relationships between in-

stances and classes in the ontology?

3. How to automatically enrich schema-level knowledge by adding new classes

which are not defined in the ontology?

Regarding to Research Question 1, I proposed the SWARM approach in Chapter

3. SWARM can automatically mine semantic association rules from different types

of entities. SWARM has used instance-level data and schema-level knowledge for

generating semantically-enriched rules. Regarding to Research Question 2, the CAD

approach was proposed in Chapter 4 to assess the correctness and incorrectness of

relationships between instances and classes in ontologies. To satisfy the objectives of

Research Questions 3, the CEn approach was proposed in Chapter 5 to automatically

enrich schema-level knowledge by identifying new classes which are not defined in the

ontology.

This research contributes to the field in the following ways:

• It shows the importance of utilising schema-level knowledge for attaching

semantics to the discovered patterns: The studies done in this thesis illustrates

that ignoring ontological relations between instances and classes causes ambigu-

ous interpretations. To mitigate this problem, this thesis proposes the SWARM

that is a mining approach which reveals behavioural patterns from the SW data.

The SWARM approach generates semantically-enriched association rules by

exploiting schema-level potential beside of instance-level data. More precisely,

it uses rdf:type and rdfs:SubClassOf properties to mine semantically-enriched
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rules. These properties have been used to extract class information of instances

to measure rule quality factors. It is the main reason that makes the SWARM

different from other mining methods which focus on discovering association rules

in the SW. The experimental results indicate that the SWARM outperforms the

existing methods by attaching more semantics to the discovered rules.

• It tackles a SW data quality issue to improve the incorrectness and incon-

sistencies in the RDF-style KBs: This thesis concentrates on a SW data quality

issue called ICA that represents incorrect assignments between instances at the

instance-level and classes in the ontology. This thesis proposes an approach called

CAD to deal with the ICA problem. The CAD approach evaluates the correctness

and incorrectness of relationships between instances and classes. In the CAD

approach, the concept of traditional information theory has been borrowed and

adapted to the SW data to extract features of classes in the ontology.

• It boosts the process of ontology enrichment by discovering new classes:

Since ILP-based methods are suitable for logical applications and usually work

with counterexamples, this thesis proposes an approach called CEn that groups

instances with common attributes into specific classes to enrich ontologies. The

CEn is a non-logical approach that discovers new classes without counterexamples

and pre-defined logical knowledge. The CEn approach mines instance-level data

by considering knowledge encoded at schema-level to create new classes which

are not defined in the ontology. Additionally, the CEn approach puts generated

classes in suitable places in the hierarchical structure of an ontology.
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6.2 Future directions

The following discusses some possible improvements for the proposed methods and

also further directions for future studies.

Firstly, the SWARM concentrates on mining semantic association rules from a

single ontological structure such as DBpedia ontology. In the SW, RDF-style KBs are

connected to each other. For example, DBpedia datasets not only provides information

about its ontological structure but also about other structures such as YAGO. In the

DBpedia datasets, most instances have been assigned to the YAGO ontology. For

example, "Black Swan" is assigned to only two classes in the DBpedia ontology, while

it is a member of more than thirty different classes in the YAGO ontology. It could

be interesting to develop an approach to mine semantic association rules by using

multiple structures in the SW. Another important direction for developing SWARM

approach is to use other semantic properties encoded at the schema-level to generate

semantically-enriched rules. The time complexity of the SWARM algorithm belongs

to the O(n2) class (including the time for generating the Semantic Items, Common

Behaviour Sets, and Semantic Association Rules). In the future, it could be beneficial

to improve the execution time of SWARM to deal with larger datasets.

Secondly, the CAD approach evaluates the correctness and incorrectness of rdf:type

properties used between instances and classes. By considering an ontological struc-

ture, a future direction is to define features for super-classes by extracting the fea-

tures of subclasses. To get a better understanding of the direction, consider a su-

perclass along with its subclasses. By identifying the features of a superclass, it

is possible to modify the rdf:type property of an instance if it has been incorrectly

assigned to the subclass instead of the superclass. Equally interesting, another dir-

ection for future work is to use Natural Language Processing (NLP) techniques on

features to find out more similar behaviours taken by instances. For example, consider
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group features gf1=(like, cheese){s1, s2, ..., sn}, gf2=(hate, cheese){s1, s2, ..., sn}, and

gf3=(love, cheese){s1, s2, ..., sn}. By employing NLP techniques on the features, it is

possible to discover more interesting behavioural patterns since "like" and "love" are

synonyms while "hate" is opposite of them.

Thirdly, the CEn approach generates new classes which are not defined in an

ontology. An interesting future direction is to develop an intelligent approach to extract

subclasses from new discovered classes. For this purpose, we need to formally define the

principles for generating subclasses in the context of the SW. It could also be interesting

to run CEn approach on larger RDF-style datasets to get a better understanding of its

performance.

Besides specific improvements explained above, the future work could also involve

in the domain and range enrichment. Given an RDF triple, i.e., (subject, predicate,

object), the domain of a predicate states the class type of a subject while the range

of a predicate indicates the class type of an object. Sometimes the domain and range

properties determined in the ontology do not provide enough semantics for instance-level

data. In the DBpedia datasets, the domains of many predicates defined on owl:Thing

class that is a root class. For example, DBpedia ontology defined Domain:owl:Thing and

Range:Agent for foundedBy8 as a predicate. According to this knowledge encoded in

the ontology, we can interpret that anything can be founded by an Agent. More precisely,

any subclass of owl:Thing class could be considered as a domain for foundedBy. It

is obvious that defining owl:Thing as a domain is too generic for foundedBy. It is

also worth to know that this issue is not limited to the domain properties. Consider

Category9, authority10, and builder11 as predicates defined in the DBpedia ontology.

The domain and range properties of these predicates are defined on owl:Thing class that

8http://dbpedia.org/ontology/foundedBy
9http://dbpedia.org/page/Category

10http://dbpedia.org/ontology/authority
11http://dbpedia.org/ontology/builder
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reflects a super general concept. As seen, it is another quality issue that can be studied

as a future direction for refining ontologies in the SW.
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Appendix A

Glossary

SW Semantic Web

RDF Resource Description Framework

LOD Linked Open Data

XML eXtensible Markup Language

Turtle Terse RDF Triple Language

OWL Web Ontology Language

YAGO Yet Another Great Ontology

KBs Knowledge Bases

RDF/S Resource Description Framework Schema

URI Uniform Resource Identifier

SPARQL SPARQL Protocol and RDF Query Language

ILP Inductive Programming Language

SWRL Semantic Web Rule Language

DFS Depth-First Search

SWARM Semantic Web Association Rule Mining

SI Semantic Items
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LLC Lowest Level Class

TCBS Total Common Behaviour Set

SD Similarity Degree

SimTh Similarity Thresholds

ICA Incorrect Class Assignment

CAD Class Assignment Detector

MinIN Minimum Instance Number

NGTh NormGain Thresholds

CA Correctly Assigned

ICA Incorrectly Assigned

Un Undecidable

CEn Class Enricher

NLP Natural Language Processing
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