
A STUDY OF BIREFRINGENT

SCINTILLATION TOWARDS THE

MILLISECOND PULSAR J0437-4715

A THESIS SUBMITTED TO AUCKLAND UNIVERSITY OF TECHNOLOGY

IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE (RESEARCH)

Supervisor

Dr. Willem van Straten

2021

By

Afiq Abdul Hamid

School of Engineering, Computer and Mathematical Sciences



Abstract

Pulsars are highly magnetized rapidly rotating neutron stars that emit streams of en-

ergetic charged particles along their magnetic axes. They are observable in the radio

spectrum when their emission sweeps across the line of sight of radio telescopes. Pulsars

are useful tools for testing theories of relativistic gravity and as probes of the mag-

netoionic plasma contained within the galactic interstellar medium (ISM). The latter

motivation is given focus in this thesis with the aim of contributing towards current

understanding of the nature of diffuse astrophysical plasmas on small scales.

This thesis presents a study of birefringent multipath propagation effects along the

line of sight to the nearby millisecond pulsar PSR J0437-4715 with the objective of

probing for small scale variations of interstellar magnetic fields within the Local Bubble

of the ISM. We analyze more than 60 hours of calibrated data observed from MeerKAT

radio observatory to observe the phenomena of differential scintillation of orthogonal

senses of circularly polarized emission from the pulsar, owing to birefringence in the

thin scattering screens of magnetoionic plasma that causes scintillation. The derived

limits on the magnitude of differential scintillation are used to constrain the amplitude

of spatial variations of magnetic fields on scales of less than 1 x 1011 cm within the

scattering region.
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Our approach is mainly twofold; we first create dynamic spectra of left and right

circular polarization intensities using the psrflux program of the PSRCHIVE pulsar data

analysis software. We then search for manifestations of significant differential phase

effects caused by birefringent scintillation by computing the difference between the

dynamic spectra, the secondary spectrum, and the secondary cross spectrum. Through

our analysis, we have found a signal where phase varies slowly at low Doppler shifts

and low spatial frequencies from the imaginary part of the secondary cross spectrum,

however, the stochastic nature of the signal along the parabola lead us to believe that

the signal phase is dominated by the jitter noise intrinsic to the pulsar. We conclude by

calculating 3σ upper limit constraints on the amplitude of magnetic field fluctuations

from the variance of differential phase measured from the normalization of phase from

the secondary cross spectrum. Our constraints provide insights on the sensitivities of

the MeerKAT L-band receiver towards detecting magnetic field fluctuations on small

turbulent scales from birefringent scintillation.
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Chapter 1

Introduction

1.1 Introduction

In 1968, a remarkable discovery was made on the fields of the Mullard Radio Astro-

nomy Observatory in Cambridge of the United Kingdom. Using the Interplanetary

Scintillation Array, two radio astronomers; Jocelyn Bell Burnell and Anthony Hewish

happened across a repeating radio signal with a period of 1.33 seconds (Hewish et al.,

1968). There had been many proposals for possible origins of the mysterious signal

such as pulsating white dwarves and extraterrestrials beacons. Baade and Zwicky

(1934) had proposed that compact stars composed primarily of neutrons having the

average density of nuclear matter existed. The discovery of the of the Crab Pulsar and

its accompanying supernova remnant (SNR) a year later led to the acceptance of the

association of the pulsating radio source and the rapidly rotating neutron star model

(Staelin and Reifenstein, 1968), as well as the association of supernovae (the explosive

deaths of massive stars) with the existence of pulsars, a type of stellar remnant that are

left behind in the wake of supernovae.

12
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1.2 The Nature of Pulsars

Pulsars are highly magnetized rotating neutron stars (NS) that emit beams of radio

emission along a magnetic axis. When the rotational axis is misaligned with their

magnetic axis the beams sweep out a cone like pattern, making the pulsar observable

with radio telescopes as a periodic lighthouse effect when the beams sweep across

the telescope line of sight (LoS; Gold 1968). Pulsars are remarkable astrophysical

laboratories because they are host to many extreme conditions irreplicable on Earth.

Pulsars are extremely dense objects comprised of degenerate matter held together

by quantum mechanical forces. If the mass of the progenitor star is between 8 – 25 M⊙

the star will explode as a supernova upon depletion of main sequence nuclear fuel to

leave behind an ultra compact core (Stahler and Palla, 2004). The compact core will

exist in this state so long as its mass is greater than 1.4 M⊙ (Chandrasekhar, 1931) and

no greater than the range of 2 - 2.5 M⊙. If this core were to somehow be injected with

additional mass beyond this range it will experience further collapse into a stellar mass

black hole (Oppenheimer and Volkoff, 1939). The range of 2 - 2.5 M⊙ is dependent on

the NS equation of state (EoS) that relates the NS pressure to its density.

The pulsar phenomenon is a product of the asymmetrical supernova explosions that

occur upon stellar collapse. The magnetic fields in massive stars produce a core in

solid-body rotation with fields of 1012 G. Upon stellar collapse angular momentum is

conserved and the core receives a kick that imparts upon it a space velocity of 100 -

1000 km s-1. The kick also influences the birth spin of the ejected core with a greater

kick producing a higher spin frequency (Spruit and Phinney, 1998; Burrows, 1998).

Kick velocity contributes to NS spin period as a factor:

PNS = 0.07
200 km s-1

v

0.5

sin (α)

3

fΩ

s (1.1)

where v is velocity, fΩ is angular rotation frequency, and α is the angle between spin
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and magnetic axes. Radio pulsars are born with PNS in the range of 0.05–0.5 seconds.

Since the magnetic field of the progenitor is conserved, a co-rotating plasma filled

magnetosphere is produced. A light cylinder encloses the NS beyond which would

imply plasma co-rotating at superluminal velocities which is a physical impossibility.

This creates gaps in the magnetosphere, where coherent radio emission is produced

from electron-positron pair plasma (Sturrock, 1971). Fig. 1.1 is a model of a pulsar.

Fig. 1.1: Model of a pulsar according to Goldreich and Julian (1969). There is still
no consensus on the emission mechanism that results in the production of the beams
of coherent radio emission originating near the magnetic polar caps. The polar caps
are created because the co-rotating magnetic field cannot exceed the speed of light
as bounded by the light cylinder radius resulting in open field lines. Interestingly, a
study by Main and van Kerkwijk (2021) has sought to resolve the emission region by
observing giant pulses of the Crab pulsar and utilising a magnification effect provided
by the Crab nebula to improve the spatial resolution of the emission region on the order
of the size of the light cylinder. Figure sourced from Lorimer and Kramer (2004).
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1.2.1 Formation and Evolution

Pulsars can exist as a variety of unique types characterised by their rotational period (P )

and the rate at which their rotational period decays, a dimesnionless quantity known

as spin-down (Ṗ ). A population of pulsars can be mapped by these parameters onto

a P − Ṗ diagram as seen in Fig. 1.2. Newly born pulsars begin their existence just

above the center of the diagram. Younger pulsars and magnetars can be associated

with the SNRs of their birth. NS birth kicks can quickly eject the pulsar from the SNR

(Lai, 2001). However, the measurement of pulsar distance (D), proper motion (µ) and

characteristic age (τ age) can be used to trace the pulsar back to the cluster of hot OB stars

of their origin (Hoogerwerf et al., 2001). As rotational energy is spent over hundreds of

millions of years, the pulsar moves towards the lower right corner of the diagram where

the accelartion of particles is reduced due to a drop in unipolar potential (Zhang, 2003).

Pulsars eventually tend towards existence as a radio quiet NS. This process is thought

to depend on the EoS (Zhou et al., 2017).

It is possible for pulsars to avoid the fate of becoming a quiescent NS. Through an act

of stellar vampirism, a binary NS with a main sequence companion can accrete matter

and angular momentum from its companion and become spun up again (Bhattacharya

and van den Heuvel, 1991). A millisecond pulsar (MSP) is the result of recycling an

older NS that has accreted matter from a binary companion by mass transfer. MSPs

possess short spin periods (P < 20 ms), very low spin-down (Ṗ < 10-20), and large

characteristic ages (τ age > 108 yr). The accretion process is thought to dampen the NS

magnetic field (BMSP < 109 G) (Bisnovatyi-Kogan and Komberg, 1974). MSPs are

located on the lower left corner of the P-Ṗ diagram. One such example of an MSP is

J0437-4715 that exists in a 5.7 day orbit with a low-mass helium white dwarf companion

(Johnston et al., 1993). PSR J0437-4715 is the nearest MSP to Earth (D = 156 ± 0.24

pc) (Reardon et al., 2015) and is the astronomical target of interest of this research.
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Fig. 1.2: Pulsar P − Ṗ diagram from Surnis (2017). The P − Ṗ diagram is colloquially
likened to a Hertzsprung–Russell diagram for characterizing of the evolution of NS.
Newly born radio pulsars occupy the center of the diagram (0.05 < P < 0.5, 5.5×10-15 <
Ṗ < 10-12) and mostly retain their associations with a SNR. A small population of young,
highly energetic pulsars called magnetars with extreme magnetic field strengths (B ≥

1014 G) occupy the upper-right region of the diagram (2 < P < 10, 10-10 < Ṗ < 5.5×10-14)
while recycled MSPs of small P and Ṗ (0.0015 < P < 0.006, 10-21 < Ṗ < 10-21) occupy
the lower-left of the diagram. The diagonal lines measure constant characteristic age
(τage ∝

P
Ṗ
), constant magnetic field strength (B ∝

√

PṖ ), and spin-down luminosity

(Ė ∝ Ṗ
P 3 ). The pulsar death line is the constant line of spin-down luminosity Ė = 1037

erg s-1 where the coherent radio emission terminates.
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1.2.2 Emission Characteristics

Pulse Profile

Consider again the periodic lighthouse effect of pulsars observed when their magnetic

axis sweeps across the observer LoS. This sweeping phenomena can be characterised

by the mean pulse profile of flux density as a function of pulsar rotational phase. Pulsar

pulse profiles typically consist of an off-pulse noise region and an on-pulse region that

rises above the noise. The individual pulses of most pulsars are intrinsically weak,

needing to be incoherently summed over hundreds or even thousands of periods to

resolve an average profile statistically stable in time with fewer stochastic variations

except for phenomena such as mode changing and jitter (Helfand et al., 1975; Jenet et al.,

1998). Longer integration times produce more stable pulse profiles with quantifiably

higher signal to noise ratio (S/N). It is common to make sub-folds of smaller time

duration known as sub-integrations to study phenomena that vary on shorter time scales.

Flux Density

It is important to distinguish between the apparent brightness and intrinsic intensity

(Iν) of an astronomical object. Intrinsic intensity (also known as spectral brightness) is

independent of the distance of the source from the observer and is defined as the power

per unit area per unit solid angle at frequency ν (Condon and Ransom, 2016). Pulsars

are observed as point sources with spectral flux density (Fν) in units of Jansky (1 Jy =

10-26 W m-2 Hz-1) calculated as the integral of Iν over the solid angle of the detector

receiver (dΩ).

Fν = ∫
source

Iν(θ, φ)dΩ (1.2)
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The flux spectral density of many but not all pulsars fits the power law:

Fν = ν
−α (1.3)

where the spectral index α ∼ 1.6 ± 0.1 is typical for most MSPs which is flatter than

normal radio pulsars for which the mean spectral index is 1.9 ± 0.2 above 1.4 GHz

(Kramer et al., 1999). Most pulsars have steep spectra with α varying between 1 and 3

above 1 GHz. Some pulsars exhibit a cutoff at high frequencies and a spectral turnover

at low frequencies. Pulsars are are most affected by scattering (section 1.4.3) at low

frequencies. Fig. 1.3 shows the flux density spectra of a sample of MSPs.

Fig. 1.3: Spectral flux density of MSPs by Maron et al. (2004) (squares at 8.35 GHz)
where the 100 MHz data were taken from Kuzmin and Losovsky (2001) (diamonds)
and the 300 MHz to 4.85 GHz data were taken from Kramer et al. (1999) (circles).
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Polarization

Pulsars are elliptically polarized radio sources characterised with a mix of (40 - 100) %

linear polarization and a small amount of circular polarization (CP; Gould and Lyne

1998). The source of linear polarization is tied to their emission mechanism and is a

result of curvature radiation in the magnetosphere where two propagation modes abound;

an ordinary mode (O) ducted along magnetic field lines, and an extraordinary mode

(X) propagating in straight ray paths (McKinnon, 1997). Assuming the observation of

a single mode at a time, the position angle (PA) of linear polarization will appear to

rotate resulting in an S-shaped curve of PA versus phase. The rotating vector model was

developed to explain smooth PA swings (Radhakrishnan and Cooke, 1969). However,

sharp orthogonal PA jumps are observed in many pulsars and may be evidence of

switching between O and X modes (Karastergiou, 2009). A comparison of a smooth PA

swing versus orthogonal jump for two pulsars is visualized in Fig. 1.4.

Fig. 1.4: Plots of pulsar PA versus pulse longitude of PSR J0835-4510 (left) and PSR
J0837-4135 (right) studied by Karastergiou and Johnston (2006) at 1.375 GHz (black
lines) and 3.1 GHz (red lines) demonstrating a smooth polarization PA swing versus a
sharp orthogonal jump. This disparity highlights a difference between current models
and observation and represents a forefront of inquiry within pulsar astronomy.



Chapter 1. Introduction 20

1.3 Scientific Application of Pulsars

Pulsars can be used as test masses to probe for deviations from the theory of general

relativity (GR) in the strong field regime (Kramer et al., 2004). The discovery of the first

binary NS known as B1913+16 (Hulse and Taylor, 1975) allowed for the measurement

of post-Keplerian (PK) parameters, general relativistic corrections to the basic Keplerian

orbital model. The precession of periastron (ω̇) and orbital period derivative (Ṗb) of

B1913+16 were measured at 4.22 deg yr-1 and (-2.403±0.22) ×10-13. The measurement

of Ṗb as an orbital decay effect provided the first indirect evidence of the existence

gravitational waves.

The discovery of the first and only double-pulsar binary comprising of the MSP

J0737−3039A (P=22 ms) and the radio pulsar J0737−3039B (P=2.77 s) was made

in 2003 (Burgay et al., 2003). The nearly edge-on orbital inclination (i=88) allowed

for the measurement of gravitational redshift (γ) and Shapiro delay range and shape

(r,s). Gravitational redshift is a time dilation effect whereby the spin frequency of

J0737-3039A appears to slow as it approaches J0737-3039B and vice versa. Shapiro

delay is a geometric delay caused by an extended path length as a result of increased

space time curvature near massive objects. Delay shape is dependent on inclination

(s ≡ sin (i)) while range is proportional to mass (r ≡ Gm2

c3 ) and is maximum at s =

1 (Pössel, 2019). At least 2 PK parameters are needed to measure the NS mass. A

total of 5 PK parameters were measured (ω̇, Ṗb, γ, r, s). By inserting the measured

PK parameters into functions linking the two masses it is possible to constrain the

allowed masses of the binary NS as the mass functions will intersect at a single point

representing the actual masses of the NS binary (Lyne, 2006). Fig. 1.5 shows examples

of mass constraints on the double pulsar J0737-3039 and the double NS J1913+1102.

J1913+1102 is remarkable for its low orbital eccentricity (e = 0.09) implying a predicted

coalescence in 470 million years from gravitational wave emission (Ferdman et al.,
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2020).

Fig. 1.5: Mass-mass diagram for the double PSR J0737-3039 A/B (left) (Lyne, 2006)
and double NS J1913+1102 (right) (Ferdman et al., 2020). For J0737-3039 since both
orbital sizes (aA and aB) are measurable from Kepler’s third law, the mass ratio of the
system can be acquired as: R = aB sin (i)/aA sin (i)= mA/mB = 1.069. The allowed
mass areas are represented by regions lying between the two pairs of lines. The masses
of J0737-3039A and PSR J0737-3039B are constrained as 1.337 ± 0.005 and 1.250 ±
0.005 respectively. The measurement of three (or more) PK parameters allows one (or
more) tests of GR. For PSR J1913+1102 three PK parameters were measured (ω̇, Ṗ b,
γ). The shaded red line of the inset is a 3σ confidence region for the mass measurement
of J1913+1102 setting the pulsar mass as 1.62±0.03 M⊙ and the companion NS mass as
1.27 ± 0.03 M⊙. The mass ratio of J1913+1102 is 0.78 ± 0.03 making it an asymmetric
binary representing less than 30% of the population of all binary NS.
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Gravitational waves (GWs) were first proposed by Albert Einstein in GR as propagat-

ing distortions of space time originally thought to be too faint to detect, created by the

asymmetrical acceleration of mass (Einstein, 1916). This preconception was overturned

with the detection of kilohertz frequency GWs from GW150914 by the Advanced Light

Interferometer Gravitational Wave Observatory (aLIGO) in September of 2015. The

signal originated from the coalescence of a stellar mass black hole binary of 36 and

29 M⊙ (Abbott et al., 2016). Several more detections; GW151012 and GW151226

followed afterwards (Abbott et al., 2019; Abbott et al., 2016).

The incoherent superposition of multiple GW sources known as the Gravitational

Wave Background (GWB) produces an amplitude strain spectrum:

PGWB(f) =
h2

12π2

f

f1yr

2α−3

(1.4)

Where h is the GWB amplitude for a normalized frequency at 1
1yr and the index

α ≈ −2
3 sets the power-law slope. Pulsar Timing Arrays (PTA) provide a unique

complimentary laboratory for GW detection at frequency ranges of 10-9 - 10-7 Hz.

PTAs utilize the timing stability of MSPs to construct galactic scale interferometric

baselines (Foster and Backer, 1990). PTAs work by measuring spatial correlations,

C(ξ), between multiple Earth-pulsar baselines separated by a sky angle ξ. The shape of

the timing correlations sought by PTAs follows the characteristic Hellings and Downs

curve (Hellings and Downs, 1983; Jenet and Romano, 2015) which forms a U shaped

dip, the analytic form of the curve is given by:

C(ξ) =
1

2
−

1

4
(

1 − cos ξ

2
) +

3

2
(

1 − cos ξ

2
) ln(

1 − cos ξ

2
) (1.5)

An isotropic stochastic GWB predicted by GR is expected to induce maximum anticor-

relations (C(ξ) < -0.15) for the arrival times of pulses between pulsars with maximum

angular separation ξ ≈ 90°and a maximum correlation (C(ξ) > 0.25) for pulsars separated
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by small ξ across the sky.

High precision pulsar timing is employed along each PTA baseline. The fundamental

datum of precision pulsar timing is the time of arrival (ToA) measurement converted to

the reference frame of the solar-system barycenter (SSB) expressed as a sum of multiple

inertial reference frame, dispersive, classic and relativistic, and binary (for NS binaries)

delay corrections (Tiburzi, 2018). TEMPO2 software (Edwards et al., 2006) provides

the current standard of TOA calculation expressed as:

ToAssb = ToAtopo + tclk −
D

f 2
+∆R⊙ +∆E⊙ +∆S⊙ +∆Binary (1.6)

where ToAtopo is the topocentric arrival time. tclk converts the observatory clock refer-

ence time to a global time standard. The third term is a result of observing within a

finite frequency range. ∆R⊙, ∆E⊙, and ∆S⊙ are the Roemer delay, the Einstein delay,

and the Shapiro delay. ∆Binary are needed if the pulsar has a binary companion. It is

expanded to also include ∆B
R, ∆B

E , ∆B
S and an abberation term ∆B

A. Revisiting the third

of eq. 1.6 which incorporates the dispersive delay caused by interstellar electrons as the

most important in the context of this work and can be expanded as:

D =
e2

2πmec
DM (1.7)

where e and me are the charge and the mass of an electron, and c is the speed of light.

DM is a measure of interstellar dispersion caused by free electrons along the LoS. DM

variations over time complicate the process of pulsar timing by introducing correlated

noise in the low frequency bins of pulsar timing residuals (You et al., 2007). Due to

the non-stationarity of the ISM, DM is continuously corrected for on an epoch basis.

Accurate modelling of interstellar DM structures is therefore important for pulsar timing

of which enable the tests of GR discussed in this section.

Other than tests of GR in in the strong field, pulsars can also be used to correct local
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terrestrial time standards and as navigation beacons for interplanetary spacecraft via

pulsar timing (Manchester, 2017). The former is necessary due to seasonal time dilation

effects from the Earth’s elliptical orbit (Becker et al., 2018) and has been explored

through the development of the Ensemble Pulsar Scale (EPS; Hobbs et al. 2012). The

latter has been studied by analyzing pulsar ToAs and triangulating for the observatory

position via algorithms demonstrated by Deng et al. (2013).

The propagation of pulsar emission through the interstellar medium (ISM) provides

an invaluable way to probe its structure and behaviour at different scales. Although

this phenomena offers unique astrophysical insight into the nature of the ISM, it is an

inherent source of noise towards the precision timing of pulsars via dispersive delays

and low level scattering noise. It is noted by studies of the variability of scattering delay

that it is necessary to reduce the impact of delay noise to levels below 1 µs to achieve a

target precision of 100 ns (Hemberger and Stinebring, 2006; Hemberger and Stinebring,

2008). This section will henceforth focus on studying pulsars as unique probes of the

scattering structures of the ISM via methods that can be used to map their interstellar

delays.

The ISM is a broad term used to refer to all of the matter and energy between the

stars. It is modelled as a multi-phase medium. The 4 commonly recognized phases are:

the hot (T ~106 K) ionised medium (HIM) of plasma generated from interconnected

stellar-wind bubbles , a warm (T ~104 K) ionised medium (WIM) of partially ionised

gas filling most of the rest of the volume of the galactic disc , the Cold Neutral Medium

(CNM) comprised of small clouds of cool (T < 300 K) neutral atomic gas, and cold

(T ~10-20 K) dense molecular cloud complexes (McKee and Ostriker, 1977). The

propagation of pulsar emission is most sensitive to the ionised component of the ISM

populated with average thermal electron densities of ne ≈ 0.1 cm-3 (Yao et al., 2017)

henceforth referred to as the IISM.
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1.4 ISM Propagation Effects on Pulsar Emission

Propagation effects of the IISM on pulsar emission can be thought of as originating from

two different conditions. One from a homogeneous component described by a slowly

changing average electron density namely dispersion and Faraday rotation, and one

originating from an inhomogeneous turbulent component characterized by fluctuating

electron density, namely; scattering and scintillation.

1.4.1 Dispersion

Interstellar dispersion is caused by intervening thermal electrons along the LoS to the

pulsar. Since the degree of ionization in the interstellar medium is non-zero all over,

even outside the WIM regions, heavier elements like carbon with relatively loosely

bound outer electrons also contribute to a population of free thermal electrons through

ionization that are distinct from the ultra-relativistic electrons responsible for the galactic

synchrotron background (Bhattacharya, 2003).

From the theory of cold collisionless plasma, unmagnetized thermal electrons

interact with propagating radio waves to produce an oscillating plasma current with a

dielectric constant ε, expressed as:

ε = 1 −
ω2
p

ω2
(1.8)

where ωp is plasma frequency and ω is observing frequency. The plasma has an

index of refraction µ expressed as:

µ =
√
ε =

√

1 −
ω2
p

ω2
(1.9)

The group velocity (vg = cµ) of propagating radio waves is dependent on radio

frequency with ωp ≪ ω for typical values of ne ≈ 0.1 cm-3 yielding:
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vg = c(1 −
ω2
p

2ω2
) (1.10)

The time for radio pulsar emission to travel from pulsar to the observer (tprop) is

the integral ∫
obs

psr ( 1
vg
)dl. Since pulsar observations are always carried out over a finite

frequency bandwidth, the time delay between a higher (νH) and lower (νL) frequencies

is the difference in tprop between frequencies (∆t = tprop,νL - tprop,νH ). Expanding for the

integral in tprop,νL and tprop,νH yields:

∆t =
e2

2πmec
∫

obs

pulsar
ne dl (ν

−

L2 − ν−H2) (1.11)

where e2

2πmec
(generalised as a K) is familiar because it is part of the ToAssb dispersive

term (D) in eq. 1.7 and has a magnitude of 4.15 ms. The integral of ne along the LoS

is known as Dispersion Measure (DM) and represents the integrated column density

of free electrons in units of pc cm-3. DMs are initially obtained as trial estimates from

pulsar surveys and are further refined by re-observing with more widely separated

frequency limits. Known DMs for non-globular cluster MSPs are between 2.65 pc cm-3

(J0437-4715) and 420 pc cm-3 (J1748-3009) (Ferrara, 2021) with possible MSPs having

even higher DMs awaiting to be discovered. It is useful to rearrange eq. 1.11 as:

DM =
1

K

∆t

(ν−L2 − ν−H2)
(1.12)

An interesting application of DM arises from its use as a distance proxy to pulsars

in place of an independently measured distance from stellar parallax. Conversely, with

a well known DM and distance, ⟨ne⟩ along the LoS can be inferred with the ratio

⟨ne⟩ =
DM
D . Modelling of ⟨ne⟩ along a multitude of LoS produces a three-dimensional

model of the Galaxy incorporating structures such as the disk, bulge and halo (Cordes,

2004; Yao et al., 2017) where local structures such as the Gum Nebula, Galactic Loop I
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and the Local Bubble are also incorporated.

Observations of an extremely bright, narrow, and highly polarized transient pulsar-

like burst of emission with a DM of 375 pc cm-3 originating from high galactic latitudes

(b = -41.2°) in 2007 led to the discovery of fast radio bursts (FRB; Lorimer et al. 2007).

Being extragalactic in origin, the DM of FRBs can reveal insights on the contents of the

intergalactic medium (IGM). The extremely tenuous filamentary gas between galaxies

known as the warm–hot IGM may contain unaccounted for baryonic matter necessary

for the completeness of standard cosmological models (Macquart, 2018).

1.4.2 Faraday Rotation

Faraday rotation is a propagation effect arising from magnetized astrophysical plasma.

Since the IISM contains a non zero magnetic field (B) electrons will also undergo either

clockwise or counter clockwise gyration around the centre of motion from the force

ev ×B∥ alongside the oscillations prescribed by dispersive effects. For a magnetic field

parallel to direction of propagation, right circularly polarised (RCP) emission has lower

ε versus left circularly polarized emission (LCP) causing RCP to lead LCP. Likewise,

for an anti-parallel magnetic field LCP has lower ε causing LCP to lead RCP. Think of

magnetic fields as multi-lane highways for interstellar radio wave propagation. There is

a fast lane for RCP for some alignments and a fast lane for LCP in others.

Naturally, the differences in permittivity results in two different indices of refraction.

The physical characteristic of a medium having multiple indices of refraction is known

as birefringence. The index of refraction from eq. 1.9 can be subtly altered:

µ =
√
ε =

¿
Á
ÁÀ1 −

ω2
p

ω(ω ± ωB cos θ)
(1.13)

µ ⋍ 1 −
ω2
p

2ω2
±

ω3
p

2ω2ωB cos(θ)
(1.14)
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where ωB is the angular cyclotron frequency and θ is the angle between the direction of

propagation and magnetic field vector. Propagation through magnetoionic media results

in a phase differential ∆φRL between LCP and RCP that induces a net change in the

position angle of linear polarization angle ψ:

∆ψ =
∆φRL

2
=
w

2c ∫
dl
ω2
pωB cos(θ)

ω3
(1.15)

∆ψ = λ2 e3

8π2ε0m2
ec

3 ∫

obs

pulsar
dl neB∥ (1.16)

where ε0 is the permittivity of free space. The coefficient to the square of observing

wavelength (λ2) is the Rotation Measure (RM) such that ∆ψ = λ2RM. Since λ is

squared, the effect of Faraday rotation is strongest at longer wavelengths with the

ionosphere acting as a major source of variability (RM variations of the ionosphere is

of order unity) that needs to be corrected for in low frequency observations (Porayko,

2020). Similar to dispersion, the fractional term is regarded as a weighted constant

K. From the integral, RM is sensitive to the parallel component of the IISM magnetic

field (B∥). As a convention, orientation of B∥ towards the observer is positive while an

anti-parallel orientation is negative. In summary, RM =K ∫
obs

pulsar dl neB∥ rad m-2 and K

= 0.81 rad m-2 cm3 µG pc-1s. The average parallel component of magnetic field strength

along the LoS, ⟨B∥⟩, can be derived by taking the ratio of RM and DM (Sobey, 2014).

⟨B∥⟩ = 1.232
RM
DM

µG (1.17)

The galactic distribution of pulsars and their intrinsic linear polarization make RM

a useful way of performing three-dimensional tomographic mapping of magnetic field

structures of the Milky Way Galaxy. Several powerful methods of harnessing RM to

measure ⟨B∥⟩ exist such as Stokes QU-fitting, polarization angle measuement, and
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RM-synthesis (Sobey, 2014). However, the approach outlined by eq. 1.17 works

largely if magnetic field and electron densities are uncorrelated. Anticorrelations

between magnetic field and plasma density due to pressure equilibrium may lead to an

underestimation of ⟨B∥⟩ while positive correlations from isotropic small scale fields

may lead to overestimates (Beck et al., 2003). The challenge of measuring interstellar

magnetic fields therefore comes with the caveat that they depend on interdependent

quantities that must be disentangled in order to study their true nature. Such a limitation

establishes a need for methods to map out interstellar magnetic fields at various scales.

Galactic Magnetic Field

The Universe is magnetized with the Milky Way being no exception. Interstellar

magnetic fields exist on a broad range of spatial scales from ordered large scales to

small turbulent scales. Cosmic magnetism is thought to arise via seed field amplification

through magnetic induction from turbulent dynamos. A theory of primordial origins

also exists in competition to this (Subramanian, 2019). Radio astronomy has been

instrumental in enhancing our understanding of cosmic magnetism by providing several

means of measuring interstellar magnetic fields. Synchrotron emission from cosmic ray

electrons, Zeeman splitting of radio radio spectral lines, and Faraday rotation exemplify

such methods (Beck and Wielebinski, 2013).

The Galactic magnetic field (GMF) is thought to consist of a large-scale regular

component, ⟨B⟩ and a small scale random field, b. The total magnetic field is the

sum of the two; Btot = ⟨B⟩ + b (Beck et al., 2003). The diffuse GMF is responsible

for providing pressure balance against gravity within the ISM, enabling cosmic ray

transport, and facilitating star formation by dampening angular momentum during

protostellar cloud collapse (Beck, 2007). Small scale turbulent fields play a crucial

role in the amplification of seed fields which maintains the large scale field. From the

induction equation:
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δB

δt
= ∇× (V ×B) + η∇2B (1.18)

where V is fluid velocity and η is plasma resistivity. If V is zero, the field will

decay due to η. While if η approaches zero, magnetic flux within the moving fluid

is preserved independent of time (Subramanian, 2018). Turbulence is therefore an

essential component of maintaining and regulating the GMF.

Surveys of the RM sky have revealed an antisymmetric azimuthal large scale field

structure in the Galactic halo and a bisymmetric structure in the plane of the Galactic

disk. The bisymmetric structure is comprised of a counter-clockwise field in the spiral

arms and a clockwise field in the interam regions with field reversals at arm-interam

boundaries (Han et al., 2018). Field strengths increase with smaller galactocentric

radius with ⟨B⟩~2 µG in the solar neighbourhood (RGC=8 kpc) and ⟨B⟩~4 µG near the

Galactic center (RGC=3 kpc) (Han et al., 2003; Han et al., 2006).

Faraday rotation has also been used to study the small-scale random fields of the

GMF. Two approaches have been made to obtain its energy spectrum statistics. One

approach considers the RM structure function of pulsars and extragalactic radio sources

yielding the summed fluctuation of B and ne (Han, 2017). A structure function measures

the amount of fluctuations of a quantity as a function of scale for an angular position

θ and a separation δθ (Haverkorn et al., 2008). At scales of 0.01 to 100 pc the spatial

spectrum of magnetic energy fluctuations (δβz) follows a power law with index α ≈

-3.1 ± 0.6 (Simonetti et al., 1984). Separating fluctuations in B and ne yields a model

of 3D turbulence up to scales of 4 pc and 2D turbulence between 4 - 80 pc with 1 µG

amplitude of turbulent fields for outer scales of 4 pc (Minter and Spangler, 1996).

The use of structure functions to study RM variability requires caution as statistical

routines such as least squares minimization used to fit observations to structure functions

assume statistical independence and Gaussianity. Since this may not be true in reality it
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may lead to the underestimation of uncertainties within the model parameters (Porayko,

2020). Once thought to be immune to irregular sampling, structure functions are also

troubled by gaps which can induce artefacts (Emmanoulopoulos et al., 2010). Analysis

of covariance may prove to be more robust towards detecting RM variations.

Another approach observes pulsar RM and DM over different distance scales to

obtain the spatial energy distributions of interstellar magnetic fields (Ohno and Shibata,

1993). By looking at pulsar pairs in close sky position with similar DM but different RM,

irregular field strengths of 4-6 µG at scales of 10 - 100 pc can be measured. Han et al.

(2004) measured a wavenumber spectrum of magnetic energy of EB(k) = Ckk−0.37±0.1

on scales of 15 to 0.5 kpc with an rms field of 6 µG. Interstellar magnetic fields may

be stronger at smaller scales and may be strongest at the scales of energy injection

by supernovae (Han et al., 2006). Since turbulence exists on all scales, random fields

cannot be satisfactorily described by a singe scale length. Little is currently known

about the spectrum of small scale magnetic field turbulence at scales < 1 pc.

Birefringence

The properties of interstellar magnetic fields can be probed by studying the phenomena

of birefringence. As previously mentioned, the bulk effect of birefringence is Faraday

rotation, however, there also exists a subtle group delay and differential phase between

simultaneously emitted ordinary (O) and extraordinary (X) waves of the same frequency

with the natural mode of radio wave propagation through interstellar plasma being

circular polarization (Macquart and Melrose, 2000a). A study of millisecond solar

radio spikes at 2.81-2.89 GHz observationally verified this effect (Fleishman et al.,

2002). Fig. 1.6 shows an example of the observed effect between LCP and RCP spectra.

Birefringence through the application of plasma lensing was also used to constrain

the spatial variations of magnetic fields at the interface of the ionised outflows of the

companion of the Black Widow Pulsar B1957+20 (Li et al., 2019).
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Fig. 1.6: Example of differential LCP and RCP spectra as a result of birefringence in
solar plasma observed by Fleishman et al. (2002). The phenomena was observed at
2.85 GHz with 8 ms time resolution and 10 MHz frequency resolution. The magnetic
field at the source (B ≈ 290 G) and the source size (400 km) were derived as a result.

Such cases are for exceptional conditions. As a general case, radio waves propagat-

ing through IISM environments with sufficiently large RM can be split into separate

components of circular polarization with arrival time differences between components

scaling with radio frequency and RM as tdRM ∝ (RM)ν−3 (Suresh and Cordes, 2019).

tdRM is known as birefringent delay (Cordes, 2002) and is part of a number of integrated

LoS propagation delays:

td =
e2

2πmec
∫ ds ne
ν2 ± e3

2π(mec)2
∫ ds neB∥

ν3 + 3e4

8π2m2
ec
∫ ds n

2
e

ν4

= 4.15 ms DM
v2 ± 28.6 ps RM

v3 + 0.25 ps EM
v4

(1.19)

where the contribution from DM outweighs RM and EM except at low frequencies

where RM and EM (Emission Measure) dominate. EM is the square of ne integrated

over the plasma volume in units of pc cm−6. The repeating FRB 121102 has been show

to have an exceptionally high RM imparted by its local magnetoionic environment

(Hilmarsson et al., 2021). For J0437-4715 with an RM of 1.5(2) rad m-2 (Sobey, 2014),

tdRM effects on precision pulsar timing is currently beyond observable limits.
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Birefringence in interstellar scintillation can be studied to map variations of IISM

magnetic fields on scales of ≪ 1 pc (Simonetti et al., 1984). Scintillation is further

explored in section 1.4.4, where differences between scintillation patterns may emerge

for significant phase differences along the LoS. Birefringent scintillation is sensitive

to spatial variations of magnetoionic media δβz, on the order of the Fresnel scale rF ,

which is dependent on the relative distnaces to the pulsar and scattering media. rF is

defined analytically in section 1.4.3.

Applying the derivations of Lee and Jokipii (1975b) for scalar wave field scintilla-

tions under the conditions of small angle scattering (θscatt ≪ 1) on equations (A1) and

(A2) in the appendix of Simonetti et al. (1984) that describe an electric field with LCP

and RCP components uR,L , we arrive at the parabolic wave equation:

2ikR,L
δuR,L
dz

+∇2
�
uR,L + (∇e ±∇β)uR,L = 0 (1.20)

where ∇e =
−4πe2

mc2 δne and ∇β =
4πe3

ωm2c3 δβz. Substituting the moment function Γm,n from

Lee (1974) into eq. 1.20 to find the propagation equation Γ1,1, and utilizing Lee and

Jokipii (1975a) to find the solution of Γ1,1, we arrive at the product of two terms; Γδβ

and Γrest. Γδβ describes the effect of variations of Faraday structures within the medium.

For probable interstellar values of ne and β the diffractive (ΓD) and refractive (ΓR)

terms that make up Γrest are unity and Γrest can be ignored. We are left with the ensemble

average of two fields ⟨uR(r)u∗L(r)⟩ = Γδβ , which can be expressed as:

Γδβ = ΓRL = exp(−⟨∆φ2
δβ⟩) (1.21)

where ∆φδβ = φR − φL is the differential phase between uR and uL due to fluctuations

in δβz. ΓRL is a correlation coefficient that decays with greater variance of δφδβ and can

also be understood by representing the fields as phasors; ⟨uRu∗L⟩ = ⟨aLaR exp[i∆φδβ]⟩

of which the only significant effects are phase differences in the strong scattering limit.
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Using a normalized cross covariance coefficent Γ̂RL(δν) =
CCVRL(δν)

[ACVL(δν)ACVR(δν)]
1/2

where CCV and ACV are cross-covariances and autocovariances of RCP and LCP as

an estimator for ΓRL at δν = 0, Simonetti et al. (1984) estimated the magnetoionic

spatial fluctuations as δβz ≤ 3.6 µG cm-3 towards PSR 1737+13 with z = 1.8 kpc,

ν = 430 MHz, and spatial scale rF ≈ 6 × 1011 cm. δβz is a composite term where

δβz = neδBz +Bzδne which requires further information of δne. A summary of δBz

upper limits for a spatially uniform medium (δne = 0) and different possible values of

⟨ne⟩ towards PSR 1737+13 are presented in Table 1.1.

⟨ne⟩ model ⟨ne⟩ (cm-3) δBz amplitude (µG)
(Yao et al., 2017) 0.01 360
(Hemberger and Stinebring, 2008) 0.03 120
(McKee and Ostriker, 1977) 0.2 18

Table 1.1: Upper bounds on small scale variations of interstellar magnetic fields δBz

towards PSR 1737+13 from birefringent scintillation for different model values of ⟨ne⟩.
Simonetti et al. (1984) only considers ⟨ne⟩ for the last 2 rows, however, we apply the
Yao et al. (2017) model value for an additional perspective on how δBz change with ne.

The lack of knowledge of the correlations between δne and δBz hinders the in-

terpretation of δβz. The estimate of δβz improves with lower observing frequencies

and more distant pulsars. Further mathematical formalism for CP induced by random

refractions in a birefringent medium are presented in Macquart and Melrose (2000a,b).

The reviews discuss the concept of a Faraday wedge; a gradient in RM structure that

results in the lateral displacement of rippled wave fronts of opposite CP producing in a

spatial offset of scintillation patterns received by the observer.

This work attempts to reexamine the effects of birefringent scintillation. By utilising

MeerKAT radio observatory, we attempt to characterise differential phase, ∆φδβ , using

a scintillometric technique known as the secondary cross spectrum. We also attempt to

reevaluate the measurement of δβz on small scales using a normalization of the phase

of the secondary cross spectrum by quantifying the variance of ∆φδβ . The phenomena

of scattering which gives rise to scintillation is explored in the next section.
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1.4.3 Scattering

Far from being static, the IISM is turbulent throughout a range of astrophysical length

scales. Turbulent structure within the IISM is modelled on a Kolmogorov power law

spectrum colloquially known as "The Big Power Law in the sky" where energy cascades

over many orders of spatial wavenumber (Armstrong et al., 1995):

Pne(k) = Cnek
−β (1.22)

where Cne is the strength of the scattering, k is wavenumber, and β is the spectral

index. For a Kolmogorov spectrum, β = 11
3 . Energy is injected at the outer scale of lo =

1
ko

≈ 1018 m and dissipated at the inner scale li = 1
ki
≈ 108 m. The turbulence spectra

was further extended using the Wisconcin Hα mapper (WHAM) to further verify the

steepness of the power law at scales of 1017 m (Chepurnov and Lazarian, 2010). The

Kolmogorov turbulence spectrum tends to flatten at larger scales with the saturation

scale varying dramatically across the Galaxy. For example, lo ≈ 10 pc in the spiral arms

where trubulence is driven by stellar winds and outflows and lo ≈ 100 pc in the interim

regions where turbulence is driven by supernovae (Haverkorn et al., 2008).

As pulsar emission travels through the IISM it is scattered along multiple paths

by a turbulent spectrum of inhomogenieties that imparts wrinkles and deformities

upon an originally coherent and in-phase wavefront. Phase varies along the wavefront

as different wave components experience different geometric delays depending on

the configuration of the pulsar, the observer, and the scattering medium. Scattering

manifests as several observable effects namely; pulse broadening (pulses appear wider

than their intrinsic profile), angular broadening (image seeing variations that can range

from < 1 mas to 1 arcsec at 1 GHz with a frequency dependence of ν−2), and image

wandering on longer time scales due to refractive effects. Cordes (2002) presents a

more exhaustive list of the observeable effects of scattering.
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As a result of multipath propagation through the IISM, the intrinsic pulse is effect-

ively convolved with a decaying exponential pulse broadening function:

PBF(t) = e(−t/τs) (1.23)

The scattering time parameter τs has a frequency dependence of τs ∝ ν -α. The

spectral index α can be derived in terms of the Kolmogorov spectral index β where

α = 2β
β−2 yielding a frequency dependence of τs ∝ ν -4.4 (Lewandowski et al., 2013).

τs ∝ ν -4 for models of isotropic scattering (Geyer, 2017). The frequency dependence

of τs means pulsars are more difficult to time at lower frequencies due to greater scatter

broadening effect. Pulsars are usually timed at frequencies > 1 GHz but as timing

precision improves, steps must be taken to compensate for scattering at low frequencies.

A first-order correction of scattering delays in the time domain can be carried out by

simply subtracting τs from TOAs. More advanced techniques such as cyclic spectro-

scopy (CS) can also be employed (Dolch et al., 2021). CS aims to deconvolve the

effects of scattering by modelling the pulsar signal as a cyclostationary process where

its noise statistics is amplitude modulated by a periodic envelope. CS allows for the

retrieval of electric field phase induced by the propagation of intrinsic pulses through

the IISM. The current limitations of CS are its computational requirements, limited

bandwidth, and the global optimum solution not being guaranteed (Walker et al., 2013).

Since the early days of pulsar observations, scattering has been modelled to originate

from deflections by a thin phase-changing screen midway between Earth and the pulsar

(Scheuer, 1968). The screen is regarded as extremely thin relative to the total LoS. Fig.

1.7 (left) illustrates multipath propagation as an effect of random irregularities within

the IISM and its effect on the received pulse profile and Fig. 1.7 (right) is a geometric

representation of scattering by a thin phase-changing screen resulting in a distribution

of scattered rays observed as arriving from a spectrum of multiple different angles.
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Fig. 1.7: (left) Pulse broadening by turbulent clumps in the IISM results in pulse profiles
detected with an exponential tail that is broader at lower frequencies (Lorimer, 2008).
(right) Scattering by a small forward angle α at the screen produces an extra path length
and a part of the signal arriving from a scattered angle θd that can be can be expressed
in terms of the forward scattering angle; θd = α Ds

D where Ds is the distance from pulsar
to the screen and D is the total distance. The dimensionless ratio s is used in place
of Ds

D to denote the fractional distance of the screen from the pulsar. Since D is in
practice very large (kpc), a small angle approximation can be taken for α and θd and
following additional steps yields a total path length of d = (Ds − sDs)

α2

2 for a scattered
ray arriving from θd. Image source and full derivation available in Geyer (2017).

For a thin screen with varying refractive indices at transverse locations (x, y) on the

screen, an incident two-dimensional wavefront Ψ with initial unitary amplitude will

acquire a phase perturbation φ(x, y). The amplitude upon upon crossing the screen is

exp [iφ(x, y)] and the amplitude at coordinate (X,Y) in the observer plane is described

by the Fresnel-Kirchhoff integral (Narayan, 1992):

Ψ(X,Y ) =
e
−iπ
2

2πr2
F
∬ exp(iφ(x, y) + i

(x −X)2 + (y − Y )2

2r2
F

) dxdy (1.24)

where rF =

√

λ (Ds
D

) (D −Ds) is the Fresnel scale that represents a transverse length

that sets the limit between refractive and diffractive scattering for an observing wavelength

λ and distance to the scattering screen from Earth, (D−Ds). The phase changes φ(x, y)

are position dependent, implying the existence of points where phase remains stable.
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Rickett (1990) defines a field coherence scale (s0) that is a transverse scale for which

phase changes do not overcome the limit of 1 radian and result in fluctuations that

decorrelate over a finite frequency bandwidth (∆νd). For pulsars, the diffractive scale

is nearly equal to the field coherence scale (sd ≈ s0). rF characterizes the size of

an observable coherent patch on an unrippled wavefront for purely geometric phase

differences while sd describes the size of ripples (Macquart and Melrose, 2000a). Weak

scattering occurs when rF ≪ sd and strong scattering happens when rF ≫ sd. The

scattering strength is, u = rF
sd

. Table 1.2 compares the two scattering regimes.

Description Weak Scattering Strong Scattering
Scattering strength (u) u < 1 u > 1
Flux Variability mild rapid
Phase perturbations within rF
(Dφ(rF ))

Dφ(rF ) < 1 Dφ(rF ) > 1

Appearance of coherent patch Single tilted concave or
convex

Many patches of size sd

with an envelope of sr

∆νd wide narrow

Table 1.2: Comparison of weak versus strong scattering regimes and their characteristics.
Analysis of scattering regimes are derived from Reardon (2018), Macquart and Melrose
(2000a), and Moutzouri (2018).

Pulsars are commonly observed in the regime of strong scattering with fast variations

at frequencies ν > 1 GHz where the screen is populated with many coherent patches

of size sd1 centered on points of stationary phase contained within a scattering disk

envelope of size sr. The size of sr scales with respect to rF and sd as sr=
r2F
sd

. Interference

between coherent patches and focusing and defocusing of ray bundles across the

scattering disk causes observed intensity variations. The latter effect causes variations

on the order of weeks from tr =
sr
vpsr

while the former will cause variations on timescales

of td = sd
vpsr

≈ 102 s for vpsr ≥ 100 kms−1. The cumulative observable from both of these

effects is scintillation.
1The diffractive coherence scale set by sd also gives the width of angular broadened image of the

pulsar via the angular expression θd = λ
2πsd

.
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The local bubble

The solar system is embedded inside an elongated cavity within the local ISM called the

Local Bubble notable for being deficient in neutral hydrogen gas having been cleared

out by supernova shock-fronts in previous epochs (Cox and Reynolds, 1987). The

boundaries of the Local Bubble cavity play a role in the scattering of nearby pulsars of

distance (D ≤ 1 kpc). Studies of pulsar emission scattering puts the boundaries of the

cavity (and putative thin scattering screen) at 80 - 120 pc distant from Earth (Bhat et al.,

2000).

Observations at νobs = 327 MHz over νBW = 9 MHz encountered 2 orders of mag-

nitude fluctuations of scattering strength amplitude (C2
ne) of the Kolmogorov power

spectrum within this region ranging from; -4.8 < log ⟨C
2

ne⟩ < −3.1 where C
2

ne is the

line of sight average of C2
ne (Bhat et al., 1998). The scattering model is indicative of

non-uniform but organized distribution of material within the intervening scattering

screen. A three component model where the solar system is encased by an ellipsoidal

shell of enhanced scattering extending away from the Galactic plane by 270 − 330 pc

radii perpendicular to the plane and 60 − 75 pc along the plane can be invoked.

With its close proximity, the MSP J0437-4715 (galactic coordinates: l = 253.39, b =

−41.96) (Ferrara, 2021), the boundaries of the Local Bubble play an important role in

the scattering of its emission. Scintillometric studies of J0437-4715 easily probe and

measure the nature of astrophysical turbulence within this region of space and provides

a means of constraining the distance to it.
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1.4.4 Scintillation

Ever since their discovery pulsars appeared to scintillate. Scintillation, known colloqui-

ally as "twinkling" is the fluctuation of intensity over time. Stellar brightness appears to

fluctuate in optical light due to scattering by atmospheric turbulence while the received

electric field intensity of pulsars fluctuates because of turbulence of the magnetoionic

plasma within the scattering screen. The intensity fluctuations can be traced to the

superposition of distorted wave fronts produced as a consequence of scattering. The

phenomena of scintillation as a result of plasma turbulence is illustrated in Fig. 1.8.

Since the position of the observer, the IISM, and the pulsar are non-stationary they

posses transverse velocities with respect to the local standard of rest. All together the

velocity of this three component system is an effective velocity Veff that is expressed as

a summation of the transverse velocities of the PSR, the observer, and the IISM:

Veff(s) = (1 − s)Vpsr� + sVobs� − VIISM� (1.25)

where s = Ds
D . Of the three, the velocity of the pulsar dominates at several hundred

km s-1. The rate at which the LoS to the pulsar samples a pattern of spatial intensity

variations as detected by the superposition of scattered wave fronts is equal to the ratio:

VLoS =
Veff
s . VLoS is equivalent to the velocity of interstellar scintillation VISS.

VISS =
sd
τd

(1.26)

where sd is the diffractive coherence scale and τd is the timescale of diffractive scintilla-

tion. In comparison to VLoS , VISS can be determined from observational data. sd can be

estimated from knowledge of the decorrelation bandwidth, ∆νd as sd ∝
√

∆νdD
ν . ∆νd is

inversely proportional to scattering time τs through the uncertainty relation:
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δφ = 2π∆νdτs ∼ 1 (1.27)

that sets the condition of a maximum phase difference of ~1 radian between interfering

waves (Rickett, 1977). ∆νd and τd quantify the size of the patches of intensity maxima

(hence estimating the strength of scattering) within the interference pattern (Wang

et al., 2005). A two-dimensional autocovariance function (ACF) is used to acquire ∆νd

and τdwhere the half-width at half maximum of the ACF in frequency is ∆νd and the

half-width at 1
e in time is τd (Cordes and Rickett, 1998).

Fig. 1.8: Schematic illustration of scintillation. For a pulsar at distance D, a thin screen
located at distance Ds from the pulsar causes dispersion and scattering of coherent and
in phase radio emission. The main observable from scintillation is the sampling of an
interference pattern at the observatory. VE , Vpsr, and VIISM are the transverse velocities
of the observatory, pulsar, and IISM (represented with arbitrary directions in the figure).
VLoS is the velocity of the line of sight as it travels through the interference pattern.
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Dynamic spectra are the primary observable of pulsar scintillation which represent

fluctuations of intensity as a function of frequency and time. Dynamic spectra can be

qualitatively described as being comprised of undulating patterns of bright patches of

intensity maxima known as scintles interspersed with dark patches of intensity minima.

Because of the frequency dependence of scattering scintles at low frequency have wider

bandwidths and experience slower modulations versus scintles at higher frequency.

The distribution and structure of scintles across the interference pattern may appear

arbitrarily complex and stochastic at first glance, however, an underlying pattern exists

that can be discovered via their frequency domain analysis.

The study of pulsar scintillation provides invaluable complementary analysis towards

pulsar astronomy in ways aside from probing the strength of turbulence within the

scattering screen. Since the velocity of scintillation measured by VISS is sensitive to

transverse motion, long term modelling of scintillation allows for the constraining of the

parallel and perpendicular components of Vpsr� from which the astrometric properties

of the pulsar inaccessible to timing (which excels at modelling radial motion) can be

measured (Reardon et al., 2020). Therefore long term modelling of pulsar scintillation

contributes towards reducing error in the precision tests of GR discussed in section 1.3.

Interstellar scintillations would allow for the initial detection of artificial radio

signals from extra terrestrial intelligences (ETI), while making repeat detection more

difficult. Scintillation would result in intermittancy of artificial narrowband signals from

ETI sources of d > 100 pc at frequencies ~1 GHz (Cordes, Lazio, and Sagan, 1997).

Such a phenomenon should be considered for the commensal detection strategies aimed

at detecting radio signals from ETI sources by massive radio telescope arrays like the

Square Kilometre Array (SKA)(Siemion et al., 2014).
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Secondary Spectrum

As dynamic spectra improved in quality drifting and repeating fringes began to be

observed. These drifting fringe patterns were thought to originate from multiple imaging

of the pulsar (Cordes and Wolszczan, 1986; Rickett et al., 1997). The two-dimensional

Fourier transform of dynamic spectra yielded discrete organized features as a result of

the fringing appearing as parabolic arcs that were identified as a high-Q phenomenon

by Stinebring et al. (2001). Although puzzling at the time of discovery, the parabola

have since been explained in the context of wave diffraction theory to originate from

interference between scattered images extending beyond the rms scattering angle.

Parabolic arcs in the secondary spectrum are a product of anisotropic scattering at a thin

screen localized between Earth and the pulsar. A complete formalism for the theory of

parabolic arcs in the secondary spectrum are found in Walker et al. (2004) and Cordes

et al. (2006). A summarised derivation is provided here.

A radio wave propagating from a point like source to an observer at distance D

encountering a phase changing screen at distance Ds is observed with an electric field

amplitude as sum over the screen:

u(r) =
1

2πir2
F
∫ d2xexp(iΦ) (1.28)

where x and r are positions on the screen and observer plane. The phase Φ is known:

Φ = φ(x) +
(x − sr)2

2r2
F

(1.29)

rF is the Fresnel scale and s = Ds
D . In the regime of strong scattering, the integrand

exp (iΦ) of eq, 1,28 oscillates rapidly except near a set of discrete points of stationary

phase (Gwinn et al., 1998). The integral can therefore be approximated by a sum of

points where phase is stationary (∇Φ = 0) and satisfy the condition:
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∇φ +
(x − sr)

r2
F

= 0 (1.30)

Each point will contribute to the electric field integral as ui(r) =
√
µi exp (iΦi)

where µi is a magnification due to phase curvature and Φi is the phase for each path.

The dynamic spectra is the squared summed intensity of the electric field:

S(ν, t) = uu∗ = ∣
N

∑
i=1

ui∣
2 =

N

∑
i,j=1

√
µiµj cos Φij (1.31)

The secondary spectrum is the power spectrum of eq. 1.31

P (fν , ft) = ∣S̃(fν , ft)∣
2 =

N

∑
i,j=1

µiµjδ(ft − ft,ij)δ(fν − fν,ij) (1.32)

where the tilde denotes the two-dimensional Fourier transform and fν and ft are Fourier

conjugates of frequency and time. fν,ij and ft,ij are stationary phase points. A pair

of scattered waves arriving from different directions through small angles θ1 and θ2

will have a delay due to a difference in geometric path lengths; fν ∝ θ2
2 − θ

2
1. Their

observed frequencies vary due to the motion of the pulsar, the medium, and the Earth;

ft ∝ Veff(θ1 − θ2) (Cordes et al., 2006; Safutdinov et al., 2017):

fν = τ =
D(1 − s)

2cs
(θ2

2 − θ
2
1) (1.33)

ft = fD =
fobs

cs
Veff(θ2 − θ1) (1.34)

ft is also interpreted as the differential Doppler shift (fD) of the pulsar emission

between scattered ray paths and the unscattered LoS image. A visual depiction of

Doppler shifted scattered ray paths can be seen in Fig. 1.9. Each Fourier component of

P (fν , ft) therefore corresponds to a Doppler shifted sinusoidal fringe pattern summed

for all pairs of components of a spectrum of scattered angles θ matched to τ and fD.
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Fig. 1.9: Visualization of parabolic arc Doppler shift of scattered waves. ft can
be interpreted as the rate of fringes sampled from S(ν, t) caused by the motion of
the observer through space. ft is also related to spatial wavenumber (k) such that
ft = k ⋅ Veff

2π where k = kθ and k = 2π
λ . Two scattered waves are differentially Doppler

shifted depending on the difference of the angle of arrival θ (Cordes et al., 2006). Image
source: (Li, 2020)

When one wave is unscattered (θ1 = 0) fν and ft have the parabolic relationship:

fν = ηf
2
t (1.35)

η is the curvature of the parabola that has a frequency dependence of ν-2 (Hill et al.,

2003). η is modelled on several terms,

η =
cDs(1 − s)

2ν2V 2
eff cos2 (φ)

(1.36)

where ν is observing frequency, Veff is the effective velocity (eq. 1.25) and φ is the angle

between Veff and the screen. Aside from observing frequency, η is dependent on the
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distance to the screen, and effective velocity along the direction of scattering. Long term

modeling of Veff components from curvature variation has allowed for the accurate fitting

and constraining of the three dimensional orbital parameters of inclination (i = 137 ±

0.3°) and longitude of the ascending node (Ω = 206 ± 0.4°) of J0437-4715 (Reardon

et al., 2020). The parabola can also contain variable substructure and asymmetries that

evolve over time. Bi−weekly monitoring of PSR J0613−0200 using the Large European

Array for Pulsars shows clumps of scattered power moving from negative to positive

fD with delays extending above τ > 200 ns and detectable to 5 µs (Main et al., 2020).

Analysis of secondary spectra has revealed useful insights on turbulent IISM struc-

tures such as sub AU (≈ 0.2 AU) clumps of 0.1 mas angular size within the thin scattering

region (Dscreen = 0.46 ± 0.08 kpc) towards PSR 0834+06 (D = 0.64 ± 0.08 kpc) (Hill

et al., 2005). The structures appear to be comprised of overdense collections of thermal

electrons (ne ≥ 103 cm-3). Brisken et al. (2010) extended this analysis with very long

baseline interferometry (VLBI) and the secondary cross spectrum:

C(fν , ft) = Ṽ (fν , ft,b)Ṽ (−fν ,−ft,b) (1.37)

where Ṽ is the Fourier transform of dynamic cross spectrum visibilities between in-

terferometric baselines b. C(fν , ft) is a complex-valued spectrum of amplitude and

interferometric phase which neatly encodes the positions of scattering points θ projected

parallel to b and allowing for the astrometric mapping of θ (Fig. 1.10). This seminal

work discovered highly elongated (16 AU long, 0.5 AU wide) structures. Two compet-

ing models were considered for how such structures are confined by ordered magnetic

fields. One where a set of parallel filaments (sheets) is controlled by a magnetic field

orthogonal to the axis of scattering and extending over the length of the image and an-

other where magnetic fields parallel to knots of filamentary plasma 0.05 AU in diameter

contribute to anisotropic turbulence.
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Fig. 1.10: (top) Amplitude in log scale (left) and phase in degrees (right) of the secondary
cross spectrum of PSR B0834+06 from Brisken et al. (2010). Astrometrically mapped
points of scattered brightness (bottom) from samples along the main parabola. Most of
the points lie on an elongated distribution near the diagonal line while for the τ = 1 ms,
fD = -40mHz feature is offset and the RA < 0 mas position is favoured.

1.5 Known Unknowns of Pulsar Scintillometry

Up until now a picture of pulsar scattering has been painted where scattering is confined

to a thin screen of infinite transverse located at some distance along the LoS. Structure

within the screen is modelled on a Kolmogorov power law spectrum; Pne(k) = Cnek
-β

with spectral index β = 11
3 and scattering time τs ∝ ν −α and α ≈ 4.4 (Rickett, 1990).

However, there has been a litany of recent evidence that present deviations from this

this idea. Evidence for flatter scaling of α < 4 has been found through observations of
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pulsars at lower frequencies (Lewandowski et al., 2013; Geyer et al., 2017; Kirsten et al.,

2019). Low DM pulsars may be covered by scattering from Kolmogorov turbulence,

while those with high DM at low Galactic latitudes undergo enhanced scattering where

the corresponding density spectrum has a spectral index of β ≈ 2.6 caused by supersonic

turbulence (Xu and Zhang, 2017). Instances where α values larger than expected have

also been detected (Tuntsov et al., 2013). Such anomalous scattering can be explained

by compact filamentary structures within the IISM.

A summary by Gupta (2001) points out several arguments against the Kolmogorov

model where enhanced modulations of νd and τ d and persistent drift slopes of dynamic

spectra require ⟨α⟩ > 11
3 or large (1012 - 1013 m) inner scale of energy dissipation.

Beyond the phenomena of parabolic arcs in secondary spectra, the most substantial

evidence against the Kolmogorov picture are Extreme Scattering Events (ESEs).

ESEs detected in quasar flux monitoring programs (Fiedler et al., 1987) and towards

pulsars (Cognard and Lestrade, 1997; Kerr et al., 2018) are short lived transient events

whereby overdense clumps (103 cm-3) of interstellar plasma crossing the LoS cause

observable caustic microlensing effects and intraday variability of radio light curves.

Isotropic Kolmogorov turbulence is unlikely to produce such over densities.

ESEs imply a truncated screen of non-infinite transverse to the LoS. Some possible

explanation for the cause of ESEs are scattering by the magnetotails of self gravitating

gas clouds (Walker, 2007), circumsteller ionisation bubbles of hot OB stars (Walker

et al., 2017), and the penetration of positively charged quark nuggets into a dense

interstellar hydrogen cloud producing ionization trails of enhanced electron density

(Perez-Garcia et al., 2013). Physical models for the cause of pulsar scintillation arcs

from anisotropic scattering are presented in Gwinn (2019) (parallel strips of phase-

changing material) and Pen and Levin (2014) (grazing refraction off corrugated plasma

sheets closely aligned with the LoS). Magnetic field confinement are an essential

component for the viability of these theories.
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1.6 Thesis outline

This thesis attempts to reexamine the phenomena of birefringent scintillation studied in

Simonetti et al. (1984) and its implications towards measuring small-scale variations in

the GMF of which very little is currently known. By leveraging the wide bandwidth and

sensitivity of MeerKAT, new scintilllation analysis software, and alternate analytical

approaches, we attempt to characterise differential phase from birefringent refractions

from the scattering screen towards the MSP J0437-4715 chosen for its brightness in flux,

wide scintillation bandwidth, and the cadence of which the pulsar has been observed

by MeerKAT. The data used for this work are part of the MeerTime Key Science

Program (Bailes et al., 2016) that seeks to use MeerKAT as an SKA pathfinder to

perform radio pulsar timing studies of relativistic binary pulsars, MSPs, and globular

cluster pulsars. Our analysis is conducted on the OzStar supercomputer platform of

Swinburne University where the data is hosted (Hurley, 2020). The first step of our

study requires the modification of the psrflux program that is part of the PSRCHIVE

suite of pulsar data analysis software (Hotan et al., 2004) to produce dynamic spectra of

LCP and RCP intensities. After cleaning and calibrating the data, the dynamic spectra

are then analyzed using the Scintillation Tools (Scintools) software (Reardon, 2020).

On top of computing the difference between LCP and RCP dynamic spectra and the

secondary spectrum of the difference, we also compute the complex valued secondary

cross spectrum to observe LCP and RCP differential phase variations in greater detail.

In comparison with Brisken et al. (2010), our secondary cross spectra are not between

the Fourier transform of dynamic cross spectra baseline visibilites but between LCP and

RCP secondary spectra. We conduct data reduction to sample secondary spectra along

their parabola to study the signal characteristics. We conclude by computing upper

limits for the amplitude of magnetic field spatial fluctuations on small scales from by

the variance of the differential phase.
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Methodology

2.1 Introduction

This chapter describes the instrumentation, scintillation data, and analysis techniques

used in the study of birefringent scintillation towards the millisecond pulsar J0437-4715.

Section 2.2 details our end to end hardware and software instrumentation. Hardware

such as MeerKAT radio observatory is characterised by its sensitivity and software

such as psrflux and Scintools are described by their processes and features. Section 2.3

describes the characteristics of the data artefacts obtained from scintillation observables

(dynamic spectra and secondary spectra) that are studied in this work. We explore their

resolutions and the preprocessing steps involved in their creation. Section 2.4 describes

the analytical steps applied to the scintillation data in order to detect evidence of the

effect of differential phase from birefringent scintillation. A summary of the research

procedure is presented at the end.

50
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2.2 Instrumentation

2.2.1 MeerKAT Radio Observatory

The 64-dish MeerKAT radio telescope of the South African Radio Astronomical Obser-

vatory (SARAO MeerKAT) is an SKA pathfinder and precursor interferometric array

used as a combined tied-array for pulsar astronomy. Each dish is an offset Gregorian

design of 13.5 m nominal diameter. The minimum baseline is 29 m and the maximum

baseline is 8 km (Jonas et al., 2016). The gain of an individual dish (G0) can be calcu-

lated as G0 =
AHeff

2k , where A is collecting area, Heff is efficiency, and k is Boltzmann’s

constant. For a dish efficiency of ⟨Heff⟩~0.76, the individual antenna gain is, G0 = 0.042

K Jy-1. When combined coherently, the array has a total gain Gtot = 64G0 = 2.8 K Jy-1

(Bailes et al., 2016). This is nearly 4 times that of the Parkes 64 m single dish radio

telescope (GParkes = 0.8 K Jy-1) (Hobbs et al., 2020). Radio sensitivity (SAoT) can also be

defined in terms of effective collecting area (Aeff) per unit receiver temperature (Tsys)

(Ransom, 2017):

SAoT =
Aeff

Tsys
(2.1)

where a larger collecting area and lower system temperature is better because a larger

area collects more radio waves and Tsys is the sum of the temperatures from all unwanted

sources such as ground radiation received through the sidelobes, atmospheric emission

and feed loss. Two-stage Gifford-McMahon (G-M) cryogenic coolers in the receiver are

used to reduce Tsys (Jonas et al., 2016). MeerKAT has a large collecting Aeff of 7500 m2

and a low system temperature of T sys ~18K at 1400 MHz. SAoT is therefore 416.67 m2

K-1, far surpassing its original design target sensitivity of 220 m2 K-1. Other southern

hemisphere radio telescopes are on average less than 70 m2 K-1 (Bailes et al., 2016).
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The system equivalent flux density (SEFD) of MeerKAT can be calculated by taking

the ratio of Tsys to Gtot. SEFD is the flux density of a radio source that would generate

the same amount of power per unit bandwidth that we are able to see at the output of

the system (Wrobel and Walker, 1999) where a smaller SEFD is better. MeerKAT has

an SEFD ~7 Jy. For comparison the 100 m Green Bank Telescope at 1.4 GHz, has T sys

~20 K, Gtot= 2 K Jy-1, and SEFD ~10 Jy (Bolli et al., 2019; Ransom, 2017). From the

comparison of these metrics we can infer that MeerKAT is a highly sensitive platform

for use in the study of faint radio sources such as pulsars. No other southern hemisphere

radio telescope, save for the Parkes Radio Telescope with its Ultra-Wideband (UWB)

receiver, ν = (704 - 4032) MHz, offers near comparable performance (Hobbs et al.,

2020; Bailes et al., 2020).

Observations of J0437-4715 were made using the wideband coarse (4K) tied-array

mode with the L-band receiver at observing frequency ν = 1284 MHz, and upper and

lower band cutoff frequencies of νH = 1712 MHz and νL = 856 MHz. The time on

source was at least 11 hours per day for 6 days from MJD 58843 to MJD 58848. The

data were archived as part of the MeerTime Key Science Program (Bailes et al., 2016).

A total of 67 hours of raw data were recorded. Table 2.1 presents a description of the 6

day observing run. The raw data required further cleaning and calibration.

Obs. date Obs. start Obs. end Duration (hours) Calibrated data (hours)

2019-12-26 16:00:00 03:00:00 11 11
2019-12-27 15:00:00 02:00:00 11 11
2019-12-28 14:00:00 02:00:00 12 8
2019-12-29 15:00:00 02:00:00 11 11
2019-12-30 15:00:00 02:00:00 11 11
2019-12-31 15:00:00 02:00:00 11 11

Table 2.1: MeerKAT observation epochs and integration times made on the source
PSR J0437-4715 for the data analyzed in this work. The duration of the observation
determines the lengths of dynamic spectra we are able to process. The calibrated data
column refers to the lengths of calibrated data made available for analysis using the
methods in section 2.4.



Chapter 2. Methodology 53

2.2.2 Data Calibration

Data calibration was necessary to reduce the corruption of Stokes V from differential

phase between orthogonal (horizontal and vertical) linear receptors. The interferometric

array calibration process is carried out in two stages by a series of imaging type

observations during which corrections to individual antenna data streams are tied to

a reference antenna. The first stage, delay calibration uses an automated pipeline to

calculate a number of calibration products (K, B, G, KCROSS, BCROSS_SKY) after

applying predefined complex gain values to the F-engine channeliser and observing

the bright calibrator PKS J1934-6342 with noise diodes turned on. BCROSS_SKY is

the cross polarization phase. This process is carried out twice to verify the accuracy of

the products. The second stage, phase up follows the same two track process as delay

calibration, re-deriving the products and applying finer differential corrections to K and

KCROSS. All of the calibration products are then applied as complex-valued F-engine

corrections for each antenna. The final F-engine data stream is sent to the B-engine

beamformer to be coherently summed as a single tied array beam data stream processed

by the backend. The full calibration procedure is described in Serylak et al. (2021).

Calibrated data were obtained from the MEERPIPE data analysis and reduction

pipeline (Parthasarathy, 2020). The order of MEERPIPE data processing steps are:

1. Combine 8 second sub-integrations of an observation epoch using psradd.

2. Calibrate by applying calibration solutions using the pac routine of PSRCHIVE.

3. Excise RFI using MeerGuard (Reardon, 2019), a modification of COASTGUARD

that makes use of the RCVRSTD, SURGICAL, BANDWAGON, and HOTBINS

algorithms (Lazarus et al., 2016).

4. Decimate into separate data products of differing numbers of frequency channels

and sub-integrations specified by a master configuration file.
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5. Generate TOAs by cross correlating the sub-banded observations with a frequency

integrated template profile in the Fourier domain.

Due to time and memory constraints the pipeline was halted after step 2. The

resulting calibrated data were produced as 3 sub-integrations of 3-4 hours for each

observing day. A total of 64 hours of calibrated data were made available. A 4 hour

sub-integration on 2019-12-28 UTC: 18:00:00 failed to be further processed with

psrflux (section 2.2.4) due to a FITSIO error. Fig. 2.1 shows that the calibration

solution produced an integrated pulse profile that conforms with a stable pulse profile

of J0437-4715 from Bailes et al. (2020). Calibrated data produced dynamic spectra

with apparently deeper intensity modulations and are chosen over raw data for further

analysis and presentation of results in Chapter 3 and 4.

Fig. 2.1: Comparison of calibrated J0437-4715 pulse profiles as a function of pulse phase
for a 4 hour sub-integration of the data on 2019-12-29 (left) and published MeerKAT
profile from Bailes et al. (2020) (right). The total intensity, linear polarisation, and
circular polarisation are plotted in black, red and blue, respectively. The position angle
of linearly polarized flux is plotted in the top panel. The calibrated data were excised of
RFI prior to frequency and time integration.
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2.2.3 RFI Mitigation

Two types of RFI were observed in the recorded dynamic spectra; quasi-stationary

narrowband interference and impulsive broadband bursts (Kerr et al., 2018). Two

different approaches were initially taken to mitigate RFI depending on their type.

Quasi-stationary RFI appear as horizontal stripes across time in dynamic spectra.

Based on the sample bandpass flux density plots in Fig. 2.2, quasi-stationary RFI are

located in three regions of frequency; 940 < ν < 950 MHz, 1525 < ν < 1650 MHz,

and 1090 < ν < 1280 MHz, designated as regions A, B, and C. A sample of channels

from each region are selected by observation of dynamic spectra and are blanked for all

dynamic spectra by setting their intensity values to 0 across time. Appendix D lists all

blanked frequency channels from each region. Of the total 4096 channels, 64 channels

are blanked in this manner. Excessive channel blanking eventually degrades the overall

quality of dynamic spectra and produces artefacts in the secondary spectrum. Two

bursts saturating the entirety of the L-band lasting for 6 < t < 10 minutes are observed

in 2019-12-27 and 2019-12-30 are also manually blanked.

Fig. 2.2: MeerKAT L-band receiver bandpass (856–1712 MHz). Persistent RFI regions
are marked by the characters A, B, and C. The band edges are affected by roll-off.
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Impulsive RFI usually occur at higher frequencies (ν > 1100 MHz). Within 64 hours

of calibrated data, a total of 44 RFI transients were seen. Each burst was ≈ 20 MHz

wide in ν and 600 seconds wide in t. Initially, transient bursts were mitigated with the

CLFD software package for RFI mitigation (Morello et al., 2018). CLFD uses Tukey’s

rule to detect outliers (Tukey, 1977). A profile is flagged as RFI if either its standard

deviation, peak to peak difference, or amplitude of the second DFT bin falls out of the

interval; [ Q1 − qR,Q3 + qR] where Q1 is the 25th percentile of the distribution, Q3

is the 75th percentile of the distribution, and R = (Q3 −Q1) is the interquartile range.

q is a free parameter that can be mapped to a rejection probability if the data follow

a normal distribution. Following Morello et al. (2018), q = 2.0 was selected. From

observations post RFI mitigation, CLFD was successful at mitigating all transient RFI.

However, it was noticed that CLFD produced a large number of data points flagged

as false positives in the low frequency bins of dynamic spectra, forcing the band edges

to be cropped and reducing the effective bandwidth. An alternate solution for impulsive

RFI was developed whereby a rectangular bounding box of height 37.6 MHz and width

672 seconds were drawn on the dynamic spectra and all points within the box are

blanked. All blanked data points are refilled with linear interpolation. Fig. 2.3 shows

the effect of the final RFI mitigation solution on calibrated data.
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Fig. 2.3: Demonstration of the effect of the removal of quasi-stationary and impulsive
RFI with channel blanking and bounding boxes on dynamic spectra from calibrated data.
Presented are dynamic spectra prior to RFI mitigation (top) where a series of impulsive
burts can be seen at ν = 1200 MHz and t = 160 minutes and post RFI mitigation
(bottom). The final RFI mitigation solution although carried out completely manually
by observation was able to improve the quality of the data. Low frequency quasi-
stationary RFI remains at ν < 936 MHz and represents room for further improvement.

2.2.4 psrflux

Polarimetry is capable of revealing a wealth of information on the emission process and

propagation of electromagnetic radiation from astrophysical sources in greater detail.

The polarization of a radio wave is defined by the motion of its electric field vector E

as a function of time within a plane that is perpendicular to the direction of propagation

(Robishaw and Heiles, 2018). An electric field with transverse E field components in x

and y can be written as:
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E(z, t) = (Exx̂ +Eyŷ)e
i(2πνt−kz) (2.2)

where z and t denote distance (which can be positive or negative depending on direction)

and time. ν is ordinary frequency and k is waveumber. Ey andEx are orthogonal electric

field vectors with magnitudes and phases. A 2 × 1 Jones vector E0 can be used to

describe the E field components as:

E0 =
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⎢
⎢
⎢
⎢
⎢
⎢
⎣

Ex

Ey

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

E0xeiφx

E0yeiφy

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(2.3)

The tip of the electric field vector traces out an ellipse known as the polarization

ellipse with a major axis oriented at an angle Ψ:

tan 2Ψ =
2E0xE0y cos (φy − φx)

E2
0x −E

2
0y

(2.4)

The polarization ellipse, however, cannot account for many true states of polarization

encountered. Astronomical radio signals are comprised of a superposition of statistically

independent polarized states. For partially polarized sources such as pulsars the Stokes

parameters I , Q, U , and V are used (Stokes, 1851). I is the total intensity and can be

expressed as an incoherent sum of the flux densities of any two orthogonal polarizations.

Q and U describe linear polarization where (Q > 0) is horizontal, (Q < 0) is vertical,

(U > 0) is oriented +45°and (U < 0) is -45°. V describes right (V > 0) and left (V < 0)

circular polarizations (Hamaker and Bregman, 1996). Snik (2009) defines the Stokes
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vector as:
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(2.5)

where the first vector is in terms of ensemble averages of the correlations of orthogonal

E field components of the Jones vector and the second vector is in terms of flux

measurements through polarizers at different angles where I is the intensity regardless

of polarization. Eq. 2.5 is consistent with the IAU/IEEE convention outlined in Hamaker

and Bregman (1996) which differs in comparison to the PSR/IEEE convention outlined

by van Straten et al. (2010) where Stokes V is positive for LCP and negative for RCP.

LCP and RCP intensities in terms of Stokes parameters are:

IR =
1

2
(I + V ) (2.6)

IL =
1

2
(I − V ) (2.7)

Dynamic spectra of LCP and RCP are created by modifying the psrflux program1 of

PSRCHIVE (van Straten et al., 2012) to incorporate eq. 2.6 and eq. 2.7. by subtracting

or adding pulse profiles of Stokes I with Stokes V before dividing by 2 and integrating

under the on-pulse region for each frequency and for all sub-integrations:

SR(ν, t) = ∑
φ∈φon

1

2
[Iprofile(ν, φ, t) + Vprofile(ν, φ, t)] (2.8)

SL(ν, t) = ∑
φ∈φon

1

2
[Iprofile(ν, φ, t) − Vprofile(ν, φ, t)] (2.9)

1The modified program can be found here: https://github.com/coderXmachina2/
psrflux_birefringence

https://github.com/coderXmachina2/psrflux_birefringence
https://github.com/coderXmachina2/psrflux_birefringence
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2.2.5 Scintools

Scintools (SCINtillation TOOLS) is a Python package for the analysis and simulation

of pulsar scintillation (Reardon, 2020). Scintools can be used to process dynamic

spectra, compute secondary spectra and autocovariances, measure scintillation arcs,

simulate dynamic spectra, and model pulsar transverse velocities through scintillation

arc curvature or diffractive scintillation bandwidths and timescales.

Scintools works by defining a Dynspec class object and several built-in methods.

Dynspec classes are initialised with dynamic spectra produced from psrflux. Some of

the core class methods of Scintools utilised in this work are:

• load_file()

Loads dynamic spectra and initialises the Dynspec object with a psrflux .ds file.

• plot_dyn()

Plot the dynamic spectrum as a function of frequency and time. If the lamsteps

argument is given, S(ν, t) is re-sampled and plotted as S(λ, t). The plotted

dynamic spectrum is clipped to a maximum of Smedian + 5σ.

• calc_sspec()

Calculates secondary spectra with the preprocessing steps outlined in Section

2.3.2. If lamsteps argument is given, preprocessing will be carried out on S(λ, t)

producing P (fλ, ft). Pre-whitening and post-darkening and windowing type and

fraction can be changed with input arguments.

• plot_sspec()

Plots the secondary spectrum. If lamsteps argument is given, P (fλ, ft) is plotted.

The range of fλ and ft plotted can be adjusted with input arguments. The plotted

secondary spectrum is clipped to a minimum of Pmedian.
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• fit_arc()

Fits for the parabolic arc curvature for the secondary spectrum following the

steps outlined in section 2.3.2. The reference frequency is 1284 MHz, and the

maximumm delay is 0.22 µs. Once arc curvature has been fit the secondary

spectrum can be replotted with the fit curvature overlaid.

• get_scint_params()

Calculates diffractive scintllation parameters from the autocovariance function

(ACF) of the dynamic spectrum. A one dimensional cut through the center of

the ACF is used to find ∆νd and τd. This method also supports an analytical

approximation with phase gradient approach following Rickett et al. (2014). The

values presented in Table 2.2 are calculated using the one dimensional cut method.

Other important Scintools methods are default_processing() used to remove band

edges affected by filter roll-off and zap() for RFI mitigation. We incorporate the

bounding box RFI blanking steps discussed in section 2.2.3 into zap(). The norm_sspec()

method re-samples the secondary spectrum in ft by adjusting the sampling of each row

with linear interpolation to calculate the "normalized" secondary spectrum, P (fλ,
ft
farc

),

where parabola are transformed into vertical lines of power with reference to the primary

arc curvature η at ft
farc

= ± 1. Secondary vertical lines at ft
farc

= β correspond to a second

arc with curvature ηβ =
η
β2 . The normalized secondary spectrum is a novel way to

search for multiple forward arcs in the secondary spectrum and analyze their power

distributions (Reardon et al., 2020). Scintools also has the capability to append dynamic

spectra in time and fill any gaps between observations with linear interpolation.
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We also added our own methods for computing secondary cross spectra and sampling

along the parabola of the secondary spectrum2.

• calc_sspec_conjugate()

Calculates the Fourier transform conjugate S̃∗(fλ, ft), incorporating the early

preprocessing steps. The tilde denotes the two-dimensional Fourier transform.

• calc_cross_sspec()

Multiplies two secondary spectra to produce secondary cross spectraCRL∗(fλ, ft)

or CLR∗(fλ, ft). Further elaborated in section 2.3.2. Takes either the real or

imaginary part depending on input argument. Completes image preprocessing

from the calc_sspec_conjugate() method with a final post-darkening.

• arc_sampling()

Samples the secondary spectrum values along parabolic arcs for a known input

curvature keeping the ft axis the same.

• calc_norm_cross_corr_coeff()

Computes the normalization of secondary cross spectra to place upper limits on

turbulent magnetic field strengths reported on in the conclusion (section 4.1.3).

Takes either the real part or imaginary of the normalized secondary cross spectra

depending on input argument.

2The modified Dynspec class can for this work be found here: https://github.
com/coderXmachina2/MSc_birefringence_Scintools_Dynspec_class/blob/
master/x/y/dynspec.py

https://github.com/coderXmachina2/MSc_birefringence_Scintools_Dynspec_class/blob/master/x/y/dynspec.py
https://github.com/coderXmachina2/MSc_birefringence_Scintools_Dynspec_class/blob/master/x/y/dynspec.py
https://github.com/coderXmachina2/MSc_birefringence_Scintools_Dynspec_class/blob/master/x/y/dynspec.py
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Arc Sampling

To study signal structure along the parabola of the secondary spectrum, data reduction

code was written to sample the arc power distribution as a function of Doppler shift. For

a known curvature η, secondary spectra are sampled along the parabola for a range of

−ft to ft bounded by fλ, max calculated from τdel, max of the arc fitting process in section

2.3.2. The resulting linearised series maps the logarithmic arc power of the parabola to

the linear ft axis of the secondary spectrum. The sampled arc can be thought of as a two

sided triangular function where logarithmic power steadily increases as ∣ft∣ → 0. Fig.

2.4 shows an example secondary spectrum P (fλ, ft) and the corresponding sampled

arc Parc(ft) from the secondary spectrum. A noteworthy feature of the sampled arc is

the dip in power near ft = 0 caused by the pre-whitening and post-darkening process to

reduce signal leakage (Coles et al., 2011). This region is smoothed over with a median

filter in further analysis.

Fig. 2.4: Secondary spectrum P (fλ, ft) (left) and sampled power along the parabola
Parc(ft) (right). The red dashed lines of P (fλ, ft) represent the curvature fit of the
parabola from which the values of Parc(ft) are taken. No form of interpolation is applied
to acquire the sampled signal on the right.
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2.3 Scintillation Observables

Scintillation produces a spatial interference pattern of intensity variations sampled at

the radio telescope receiver from which the effects of IISM turbulence can be observed.

The observables from scintillation are dynamic spectra and their secondary spectra.

2.3.1 Dynamic Spectra

Dynamic spectra (shortend as dynspec where appropriate) are the primary data of pulsar

scintillation studies. It is therefore crucial for this work that we have access to the

highest possible quality of dynamic spectra. The key parameters to consider are the

frequency and time resolutions. Total bandwidth and integration time are also important

as long-term fringing can contribute to S/N in the secondary spectrum.

Dynamic spectra are formed by summing over the on-pulse portions of several

pulse periods for each channel output by a spectrometer (Cordes et al., 2006). The

pulse profile values to be summed are contained within the folded pulsar archives of

PSRCHIVE sub-integrations (van Straten et al., 2012). Each sub-integration is a data

cube of frequency, phase, and polarization. To create dynamic spectra of variable length,

sub-integrations are appended. For our initial approach with raw uncalibrated data,

dynamic spectra are formed in lengths of t = 1 hour comprising of 450 sub-integrations.

Time resolution is obtained at ∆t = 8 seconds per sub-integration. Frequency

resolution is the total bandwidth (νBW) divided by the total number of channels (Nch)

where νBW = 856 MHz and Nch = 4096. Frequency resolution is therefore 208.98 kHz

per channel. A dynamic spectrum of t = 1 hour is therefore represented by a 4096 ×

450 pixel map of intensities as a function of frequency versus time with the smallest

division of frequency 208.98 kHz wide and the smallest division of time 8 seconds wide.

A sample of dynamic spectra of total intensity, SI(ν, t), plotted with native PSRCHIVE

pgplot tools is shown in Fig. 2.5.
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Fig. 2.5: Sample of dynamic spectra plotted by PSRCHIVE (Hotan et al., 2004). The
black pixels are data that have been corrupted by RFI and/or receiver instrumentation
problems.

From Fig. 2.5, scintillation phenomena and drifting criss-cross fringing that enable

the parabolic arc phenomenon in the secondary spectrum can be observed. The fre-

quency dependence of scattering is verified with scintles appearing much wider at lower

frequency. RFI are also present in the dynamic spectra. Between the regions corrupted

by RFI are the relatively pristine sub-bands of 1300 < ν < 1520 MHz, 950 < ν < 1160

MHz, and ν < 940 MHz where we expect to acquire the most useful spectral content.

A more comprehensive characterization of the L-band radio frequency spectrum of

MeerKAT studied in this work is provided in Bailes et al. (2020).
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Regime of Scintillation

J0437-4715 is a well studied MSP in many measures beyond its timing and astrometry

(van Straten et al., 2001; Reardon et al., 2020). Due to its timing stability, J0437-4715

is a high priority target for both Parkes and International PTA projects (Hobbs et al.,

2010). Studies have also been done to measure its scintillation parameters and regime

of scattering (Smirnova et al., 2006). From the uncertainty relation eq. 1.27, the pulsar

has a wide ∆νd and short τs. For a low dispersion measure (DM = 2.64 pc cm-3),

the short τs is expected. The MSP is noted for having a broad and narrow scale of

scintillation (Gwinn et al., 2006). It is often observed in the regime of weak scattering

where ∆νd > νobs for νobs above a transition frequency of 1 GHz. For νobs < 1 GHz

and ∆νd < νobs the pulsar is observed in the regime of strong scattering typical of most

pulsars (Reardon, 2018). We can attempt to verify these properties by taking the ACF

of the dynamic spectra using Scintools to calculate ∆νd and τd from which we can

calculate scattering strength, (u =
√

νobs
∆νd

). The results are presented in Table 2.2. ∆νd

and τd are calculated from SR(ν, t) and SL(ν, t) and averaged.

Obs. date t (hours) ∆νd (MHz) τd (s) u

2019-12-26 11 97.31 ± 1 862.33 ± 7 3.63
2019-12-27 11 107.73 ± 1 1047.14 ± 13 3.45

2019-12-28 14:00:00 4 97.34 ± 1 964.11 ± 15 3.63
2019-12-28 22:00:00 4 119.26 ± 1 919.67 ± 13 3.28

2019-12-29 11 121 ± 1 2067.31 ± 23 3.24
2019-12-30 11 105 ± 1 1200.52 ± 16 3.49
2019-12-31 11 84 ± 1 852.50 ± 9 3.90

Table 2.2: Scintillation parameters of the MSP J0437-4715 for all observed epochs. The
scattering parameter puts the pulsar in the regime of strong scattering even though νobs

is greater than 1 GHz. This runs contrary to what was previously mentioned, however,
Reardon (2018) also states that stable measurement of∆νd and τd for J0437-4715 is
difficult due to an insufficient number of scintles and changing scattering strengths. Our
interpretation is that scintillation from a mix of strong and weak scattering is captured.
It is noted that even during scintillation minima that the dynspecs do not approach
intensities of 0 meaning there is weak scintillation occurring within the spectra
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2.3.2 Secondary Spectra

Pulsar secondary spectra (shortened as SSpec where appropriate) are formed by taking

the two-dimensional Fourier transform of dynamic spectra to reveal parabolic arcs as

a function of conjugate frequency (fν) and conjugate time (f t). Power distributions

of secondary spectra are typically studied on a logarithmic scale to improve visual

dynamic range (Stinebring et al., 2001; Hill et al., 2003).

The Nyquist sampling frequencies that describe the highest conjugate frequencies

that can be encoded at a given sampling rate without aliasing can be calculated as;

fν(Nyquist) = Nch
2νBW

= 2.39 µs and ft(Nyquist) = 1
2∆t = 62 mHz (Cordes et al., 2006).

These values set the outer most bounds of the fν and ft axes of the secondary spectrum.

The resolutions of the fν and ft axes are ∆fν =
1
νBW

and ∆ft =
1
tobs

. Table 2.3 shows the

smallest divisions of fν and ft for varying lengths of νBW and tobs.

nsubint tobs (hrs) νBW (MHz) ∆fν (µs) ∆ft(mHz) Fig. 2.6

450 1 856 0.001 0.28 (a)
4950 11 244 0.004 0.02 (b)
450 1 244 0.004 0.28 (c)

4950 11 856 0.001 0.02 (d)

Table 2.3: Resolutions of secondary spectrum fν and ft axes. Lengths of one hour are
considered as the smallest division of S(ν, t) as per our initial approach and lengths of
11 hours represent the longest continuous S(ν, t) recorded within a day of observation.
A low frequency portion νBW = 1

4(856) MHz was considered because of the frequency
dependence of scattering that may produce different results with further processing.
Longer tobs across the full νBW yield the finest fν and ft resolutions. A sample of
secondary spectra for each configuration are presented in Fig. 2.6.

Several preprocessing steps are performed to create secondary spectra. The pre-

processing steps are built upon prior scintillation studies and digital signal processing

practices to reduce signal leakage and maximize S/N. Further description of the prepro-

cessing steps are found in section 2.1 of Reardon et al. (2020). The preprocessing steps

are taken in the order as follows:
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1. Default preprocessing. Remove band edges affected by bandpass filter roll-off

to improve dynamic range. Refill NaNs and zeroes with linear interpolation. Gain

variations in frequency are corrected using a bandpass filter and variations in time

are corrected using a Savitsky-Golay filter.

2. λ-step sampling. Re-sample and resize dynamic spectra uniformly in λ-steps

using cubic interpolation onto a grid with λ-step size equal to the difference in

the lowest two frequency channels to sharpen arc features. Sampling in λ-steps

removes the frequency dependence of arc curvature (Fallows et al., 2014).

3. Windowing. Apply a hamming window on outer 10 % of each dynamic spectrum

to reduce sidelobe response. Unwanted signals in these bins contribute to power

along the vertical and horizontal axes of the secondary spectrum.

4. Normalization. Subtract the mean flux from each pixel of S(λ, t) to center the

image. This sets the mean of the dynamic spectrum to zero.

5. Pre-whitening. Pre-whiten using first-difference method in the time domain

to minimize spectral leakage. Bright scintles leak as low frequency power in

the secondary spectrum (Kerr et al., 2018). For an input dynspec x(k), the pre-

whitening filter is expressed as y(k) = x(k) − x(k − 1) for an output y(k) where

k is λ and t. This step is executed by convolving S(λ, t) with the array ( 1 −1
−1 1 )

resulting in multiplication; x̃(f)H(f) in the frequency domain. The tilde denotes

the Fourier transform, H(f) = 2 sin(πfδ), and δ is the sample interval. Pre-

whitening multiplies the secondary power spectrum with ∣H(f)∣2 = (2 sin (fδ))2

where f corresponds to both fλ and ft. (Coles et al., 2011).
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6. Fourier transform. Apply the two-dimensional fast Fourier transform (FFT).

The FFT output is resized as 2(⌈log2(λrows)⌉+1) for fλ and 2(⌈log2(tcols)⌉+1) for ft axes.

For νBW = 856 MHz and tobs = 11 hours, a λ-step sampled dynspec of 2049 λrows

× 5104 tcols will produce an SSpec of 8192 fλrows× 16384 ftcols.

7. Square law detection. Take the real part of the multiplication of the secondary

spectrum with its conjugate P (fλ, ft) = Re(S̃I S̃∗I ).

8. FFT Shift. Shift the zero frequency component to the center of the spectrum.

This step forms a mirrored parabola with positive and negative fλ.

9. Crop spectrum. The conjugate spectrum is Hermitian (point symmetric). For

any real valued S(λ, t), the Fourier transform S̃(fλ, ft) = S̃∗(−fλ,−ft). We can

discard the bottom plane without losing any information. The dimensions of the

SSpec from step 6 will become 4096 fλ,rows× 16384 ft,cols.

10. Postdarkening. The reverse process of pre-whitening. The power spectrum is

divided by ∣H(f)∣2 (Coles et al., 2011; Kerr et al., 2018).

11. Log Scale. Take 10 times the logarithm of the secondary spectrum to improve

visual dynamic range, useful if the power spectrum is log-normally distributed.

The general form of the secondary spectrum is expressed as:

PII∗(fλ, ft) = 10 log10(∣S̃I(fλ, ft)∣
2) (2.10)

where S is the mean subtracted and windowed dynamic spectrum and the tilde is the

two-dimensional FFT. I refers to a secondary spectrum of total intensity. This subscript

notation can be extended for circular polarization where PLL∗(fλ, ft) and PRR∗(fλ, ft)

are secondary spectra formed from SL(ν, t) and SR(ν, t). Fig. 2.6 shows a sample of

PRR∗(fλ, ft) produced by the preprocessing steps on calibrated MeerKAT data.
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Fig. 2.6: Sample of secondary spectra generated from dynspec of varying ν and t. SSpec
(b) and (c) are for ν = 232 MHz. SSpec (a) and (d) are for ν = 856 MHz. SSpec (a) and
(c) are for t = 1 hour and SSpec (b) and (d) are for t = 11 hour. The vertical lines are a
result of RFI that are constant with time, but vary with frequency in the dynspec.

The main feature from Fig. 2.6 is an upwards parabola known as a forward arc. The

primary forward arcs in the case of our J0437-4715 data correspond mostly to scattering

mapped onto spatial frequencies of the range 0 < fλ < 5000 m-1 (τ ≈ 1.68 µs) and the

domain -10 < ft < 10 mHz. When sampled in λ-steps, power decays rapidly off the thin

parabola. Within the primary arc is a secondary arc of higher curvature while outside

the primary arc is a diffuse band of power where other forward arcs may exist. An

unexpected feature is a diffuse arc of extremely low curvature at fλ < 500 m-1 obscured

by RFI. The low curvature arc is thought to originate from scattering by the bow-shock

of J0437-4715 at Ds ≈ 9000 AU (Fruchter, 1995; Rangelov et al., 2016).
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Arc Curvature Fit

Arc curvature, η, can be fit using Scintools and is modelled on the steps taken by

Bhat et al. (2016) in their analysis of scintillation arcs from low frequency Murchison

Widefield Array (MWA) and Parkes observations of J0437-4715. For a set of trial

curvatures {ηi}, power along the parabola is parametrized as a function of curvature.

Summing along linearly-interpolated pixels neighboring ft,i = ±
√

fλ
ηi

for each fλ in

P (fλ, ft) and dividing by twice the number of rows (N ) in P (fλ, ft), the mean power

of the arc as a function of curvature can be computed:

Parc(η) =
1

2N

N

∑
i=1

P (ηf 2
t,i, ft,i) (2.11)

The sum performed along the parabola is cropped at a certain maximum delay

τdel, max so as to not incorporate delays beyond which little power is detectable and to

prevent the mean power from being averaged down by noise. From Reardon (2018)

τdel, max can be calculated as:

τdel, max = 0.22(
1284 MHz

f
)2µs (2.12)

where the L-band center frequency of 1284 MHz is used as reference. Since we often

work in λ-steps; fλ, max = 538.35(23 cm
c/λ

) m-1. Summing is avoided at low-frequency

regions near the origin to minimize errors from the bright core. The curvature is found

via a three-point smoothing window on Parc(η) and finding the maximum. Fig. 2.7

shows an example of the arc curvature fitting process where the vertical axis is the

mean arc power and the horizontal axis is trial curvature. A detailed description of the

fitting procedure and derivation of the measurement uncertainty can be found in section

4.3.1 of Reardon (2018). Curvature uncertainties vary between 0.7 and 1.5 m-1 mHz-2.

Longer time integrations and better RFI mitigation can reduce the uncertainties.
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From Fig. 2.7 we can see that different trial curvatures correspond to different mean

power. The curvature of the primary forward arc is found from the largest peak of

Parc(η). Any secondary or tertiary forward arcs can are fit from adjacent peaks of power.

At least two forward arcs are expected for J0437-4715 (Reardon et al., 2020). The

scattering screen distances are Dη1 = 124 ± 3 pc and Dη2 = 89.8 ± 0.4 pc from Earth to

the pulsar with Dη1 coinciding with the outer boundary of the ellipsoidal shell of the

local bubble and the Dη2 coinciding with the inner boundary as per the 3 component

model of the local ISM proposed by Bhat et al. (1998). In some studies, up to 8 forward

arcs can be detected towards J0437-4715 (D. Reardon, private communication). This

study focuses on analyzing the power distributions from the arc of the scattering screen

at Dη1 because of its higher S/N. The arc from the screen at Dη2 is visible but faint

in our 23 cm MeerKAT observations. A list of all curvature fits for calibrated and

uncalibrated data for different integration lengths is included in Appendix B. All arc

curvatures are in units of m-1 mHz-2 and the maximum uncertainty is 1.5.

Utilizing the arc curvature fitting technique and fitting for η of secondary spectra

from dynamic spectra of t = 1 hour for all hours of observation and plotting η throughout

the entire six days of which the pulsar is observed yields the periodic sinusoidal pattern

of curvature variation seen in Fig. 2.8. The oscillation of curvature coincides with

modulation by the orbital period of J0437-4715 (Pb = 5.75 days). This is due to the

dependence of η on the changing velocity of the pulsar projected onto the plane of the

scattering screen. Long term monitoring of scintillation arcs to measure the velocity

components of pulsars may be superior to the traditional method of observing variations

of the diffractive scintillation timescale as scintillation arc curvatures are independent

of the strength of turbulence within the IISM (Reardon et al., 2020).
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Fig. 2.7: Mean power as a function of trial curvatures. The tallest peak corresponds to
the primary forward arc, η1 = 63.89 (green vertical left). Other forward arcs appear as
adjacent spikes of power, η2 = 110.47 (green vertical right). The sample fit is from an
SSpec derived from the ν = 856 MHz and t = 11 hour calibrated dynspec of 2019-12-27.

Fig. 2.8: Variations of arc curvature for all observed epochs. The vertical dashed lines
represent UTC = 00:00:00. The spike on 2019-12-27 is due to RFI. Arc curvature was
measured from raw data and the average of ηL and ηR were taken. The gaps represent
durations where the pulsar was not observed. A full orbital period is nearly resolved.
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2.4 Analysis

This section looks at the analysis steps applied on the scintillation observables to look

for evidence of the effect of birefringence.

2.4.1 Differential Spectra

Dynamic Spectra

A preliminary test for birefringent scintillation can be performed by subtracting RCP

and LCP dynamic spectra to see if sufficient differences between φR and φL (∆φRL)

produces a pattern of scintillation in the differential dynamic spectra, Sdiff(ν, t):

Sdiff(ν, t) = SR(ν, t) − SL(ν, t) (2.13)

where the difference is taken between each point of intensity. This was previously

attempted by Brisken et al. (2010) towards PSR B0834+06 where no detectable signal

significant at the 0.1 % level was found with dynamic spectra of frequency and time

resolutions of ∆ν = 244 Hz and ∆t = 6.25 s over bandwidths and integration lengths of

νBW = 8 MHz, and tobs = 6500 seconds. The resolutions in the Fourier domain were ∆τ

= 0.125 µs and ∆ft = 0.15 mHz observable to a maximum of τ = 2.05 ms and ft ± 80

mHz. The observations were made with low frequency VLBI (ν = 327 MHz). These

results underline the small value nature of ∆φRL.

Differential Faraday rotation from turbulent interstellar magnetic fields (Macquart

and Melrose, 2000b) would result in a subtle displacement of of RCP and LCP spectra.

Supposing that the displacement is significant and ∆φRL is large, SR(ν, t) and SL(ν, t)

could be qualitatively different with bright scintles in one spectra corresponding to a

dimmer scintle in the other. However, we will most likely observe SR(ν, t) and SL(ν, t)

as qualitatively similar with any quantifiable significance requiring statistical tests.
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We can state a null and an alternate hypothesis as a result of ∆φRL:

H0 : SR(ν, t) and SL(ν, t) are statistically identical (highly correlated).

H1 : SR(ν, t) and SL(ν, t) are different.

For display purposes in Chapter 3, a 3σ filter is applied to Sdiff(ν, t). However,

no filter is applied to compute the secondary spectrum of Sdiff(ν, t) in order to better

preserve the signal. We can quantify a significance between LCP and RCP with:

% = 2
SR(ν, t) − SL(ν, t)

SR(ν, t) + SL(ν, t)
(2.14)

where values closer to 0 represents more similarity and a values farther from 0 implies

a greater difference. Eq. 2.14 is taken for each pixel and not averaged for Sdiff(ν, t).

Secondary Spectra

The secondary spectrum can be used to look for evidence of birefringence. Separate

secondary spectra of RCP and LCP are first created and observed. If the effects of

∆φRL are strong, the two parabola may appear to have different power distributions.

Curvature is expected to remain unchanged between for PLL∗ and PRR∗ of the same

epoch. However, as per their dynamic spectra, PLL∗ and PRR∗ are likely to appear very

similar and the only differences are detectable quantitatively. Two approaches come to

mind when trying to investigate the effect of ∆φRL in the secondary spectrum:

Pdiff(fλ, ft) = 10 log(∣S̃RR∗(fλ, ft)∣
2) − 10 log(∣S̃LL∗(fλ, ft)∣

2) (2.15)

PSdiff(fλ, ft) = 10 log(∣S̃diff(fλ, ft)∣
2) (2.16)

where Pdiff is the difference between each pixel of two detected spectra and PSdiff is
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the squared magnitude of the FFT of Sdiff(ν, t). Eq. 2.15 is akin to a ratio of detected

powers as Pdiff(fλ, ft) = 10 log( ∣S̃RR∗(fλ,ft)∣
2

∣S̃LL∗(fλ,ft)∣
2 ). Since two signals of different phase can

have the same power Pdiff(fλ, ft) tells us nothing about ∆φRL. In eq. 2.16 the detected

power is from Re( ̃(SR − SL) ̃(SR − SL)
∗

) = L2 −R2 − 2Re(RL∗). If the powers of L

and R are similar then the first two terms cancel out making the detected power the

real part of a cross correlation between R and L i.e. -2Re(RL∗). However, if ∆φRL

is small, cos (∆φRL) = 1 − (∆φRL)
2

2 upon detection of RL∗ making the effect of ∆φRL

more difficult to detect. We require an approach that works under the condition of small

values of ∆φRL. The secondary cross spectra is one such approach.

2.4.2 Secondary Cross Spectra

Secondary cross spectrum are complex-valued functions produced by cross correlating

the secondary spectrum of one circular polarization with the secondary spectrum of the

orthogonal sense of circular polarization. An example can be defined as:

CRL∗(fλ, ft) = S̃R(fλ, ft)S̃
∗

L(fλ, ft) (2.17)

where S̃R is the FFT of an RCP dynamic spectrum and S̃∗L is the conjugate of the FFT

of an LCP dynamic spectrum. The result is a complex-valued spectrum which encodes

an amplitude in the real part and a phase in the imaginary part when φ≪ 1. We can use

this attribute of the secondary cross spectrum to study variations of ∆φRL. All of the

secondary spectrum preprocessing steps discussed in section 2.3.2 are used to compute

CRL∗(fλ, ft). After much experimentation, the best results were arrived at using the

process outlined in Fig. 2.9. The final result of the secondary cross spectrum is either

PRe(RL∗)(fλ, ft) for the amplitude or PIm(RL∗)(fλ, ft) for the weighted phase spectrum

upon taking the complex argument, absolute value, and normalization to the log scale:
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Fig. 2.9: Process of computation of secondary cross spectrum between LCP and
RCP. The example displayed is for CRL∗(fλ, ft). Likewise, CLR∗(fλ, ft) can also be
computed by multiplying S̃∗R(fλ, ft) with S̃L(fλ, ft).

PRL∗(fλ, ft) = 10 log (∣arg(S̃R(fλ, ft)S̃∗L(fλ, ft))∣) (2.18)

Cross Spectra Analysis

The phase from the imaginary part of the secondary cross spectrum is a principle part

of our analysis as the most stringent method of observing the effects of birefringent

scintillation. From Simonetti et al. (1984), variance of ∆φRL (also referred to as

∆φδβ) as a result of decorrelation of RCP and LCP spectra is measurable through the

exponential decay of the cross-covariance coefficient ΓRL:

ΓRL = exp(−⟨∆φ2
δβ⟩) (2.19)

where greater variance of ∆φδβ implies greater decorrelation between RCP and LCP

spectra. This effect can also be understood as the second moment phasor sum:

⟨uRu
∗

L⟩ = ⟨aLaR exp [i(∆φδβ)]⟩ (2.20)
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where aL and aR are amplitudes and ∆φδβ = ∆φRL = φR−φL. The phase component of

the cross correlated CRL∗ can be used to examine the variations of ∆φδβ as a function of

fλ and ft along the parabola. If ∆φδβ is small and sin (∆φδβ) ≈ ∆φδβ from the phasor

sum, the imaginary part of CRL∗ as a direct linear relation to ∆φδβ is more sensitive to

small phase variations than the Sdiff(ν, t) and PSdiff(fλ, ft).

The arc sampling method presented in section 2.2.5 is employed. ∆φδβ is expected

to vary continuously, smoothly, and significantly along the parabola. As seen in Fig. 1.10

from Brisken et al. (2010) the phase of the secondary cross spectrum is a parabola with

a mean of zero and a distribution of roughly equal positive and negative values. If ∆φδβ

is positive valued in RL∗, it is negative valued in LR∗ and vice versa. Since negative

values are undefined upon taking their logarithm, we study the structural variations

of ∆φδβ along the parabola separately from both PIm(LR∗)(fλ, ft) and PIm(RL∗)(fλ, ft)

without taking the absolute value. Structure from birefringent scintillation is marked

by how these values are organised in the distribution of either their signal run lengths

and/or their relative power along the parabola. We record for purposes of analysis the

longest sampled continuous signal runs along the parabola, the average power of the

sampled signal run, and their locations on the ft axis after taking the logarithm for the

spectrum.
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2.4.3 Implementation

In summary, the design of our research is as follows.

1. Acquire MeerKAT data.

2. Create LCP and RCP dynamic spectra with psrflux.

3. Maximise the quality of dynamic spectra with RFI mitigation and calibration.

4. Use Scintools to perform each of the analysis techniques detailed in section 2.4

on all of the RFI mitigated and calibrated MeerKAT data.

5. Interpret the results from the analysis techniques.
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Results

This chapter presents the results of our analysis techniques to support our study of

birefringent scintillation towards the millisecond pulsar J0437-4715. Section 3.1 exam-

ines differential spectra, where section 3.1.1 presents SL(ν, t), SR(ν, t), and Sdiff(ν, t)

dynamic spectra. Section 3.1.2 presents PLL∗(fλ, ft), PRR∗(fλ, ft), PSdiff(fλ, ft) sec-

ondary spectra, and Parc(ft) of PSdiff(fλ, ft) at the curvature of where we most likely

expect a signal to appear. Section 3.2 presents the real and imaginary parts of the

power spectrum of CRL∗(fλ, ft) as well as a sampling along the primary forward arc

of PIm(RL∗)(fλ, ft) and PIm(LR∗)(fλ, ft). Also included is a tabulation of the longest

signal runs sampled along the arcs of PIm(RL∗)(fλ, ft) and PIm(LR∗)(fλ, ft) where phase

varies continuously enough along the arc to be considered as possible variations of

∆φLR as a result of birefringence. Observations of 2019-12-26 and 2019-12-27 include

the cross spectrum phase. We also compute an average power by summing along the

signal run and dividing by the length of the sampled signal run. We compute the width

of the signal run in units of ft mHz along the arc. We then classify the signal runs using

the midpoint between the first and last sampled ft into different regions of the arc where

∣ft∣ > 7 is within the stochastic noise field, 5 < ∣ft∣ < 7 is the outer arc, and −5 < ∣ft∣ < 5

is the inner arc. The sampled signals can be further statistically analyzed for structure.

80
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3.1 Differential Spectra

3.1.1 Dynamic Spectra

2019-12-26

Fig. 3.1: Dynamic spectra of LCP (SL(ν, t)), RCP (SR(ν, t)), and their difference
spectrum (Sdiff(ν, t))
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2019-12-27

Fig. 3.2: As in Fig. 3.1
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2019-12-28

Fig. 3.3: As in Fig. 3.1. The middle gap filled with linear interpolation is due to a
sub-integration that failed further processing with psrflux due of FITSIO error.
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2019-12-29

Fig. 3.4: As in Fig. 3.1. The apparent discontinuity of the spectrum at t = 480 minutes
is a result of differential phase calibration error.
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2019-12-30

Fig. 3.5: As in Fig. 3.1
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2019-12-31

Fig. 3.6: As in Fig. 3.1
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3.1.2 Secondary Spectra

2019-12-26

Fig. 3.7: Secondary spectrum of LCP and RCP PLL∗(fλ, ft) and PRR∗(fλ, ft)

Fig. 3.8: Secondary spectrum of difference spectrum PSdiff(fλ, ft), and Pη = 66.6(f t)
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2019-12-27

Fig. 3.9: As in Fig. 3.7

Fig. 3.10: As in Fig. 3.8 with η = 63.7
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2019-12-28

Fig. 3.11: As in Fig. 3.7

Fig. 3.12: As in Fig. 3.8 with η = 54.25
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2019-12-29

Fig. 3.13: As in Fig. 3.7

Fig. 3.14: As in Fig. 3.8 with η = 48.0
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2019-12-30

Fig. 3.15: As in Fig. 3.7

Fig. 3.16: As in Fig. 3.8 with η = 51.75
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2019-12-31

Fig. 3.17: As in Fig. 3.7

Fig. 3.18: As in Fig. 3.8 with η = 59.3
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3.2 Secondary Cross Spectra

2019-12-26

Fig. 3.19: PRe(RL∗)(fλ, ft) and PIm(RL∗)(fλ, ft)

Fig. 3.20: Parc(LR∗)(ft) and Parc(RL∗)(ft)
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Fig. 3.21: Phase of RL∗ Cross Spectra from observations of 2019-12-26. The phase
has been restricted between -0.15 and 0.15 to improve dynamic range.
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Run
length

Average
power

ft span
(mHz)

ft center
(mHz)

Classification

8 34.56 0.0534 -9.3422 High fλ and ∣ft∣, arc
within noise field

8 35.61 0.0534 -6.7329 Outer arc negative ft
8 36.51 0.0534 -5.6725 Outer arc negative ft
8 47.61 0.0534 -2.1935 Inner arc negative ft
8 34.77 0.0534 -6.8932 Outer arc negative ft
9 50.61 0.0610 -2.8915 Inner arc negative ft
9 44.14 0.0610 2.8915 Inner arc positive ft
10 31.26 0.0687 -8.8997 High fλ and ft, arc is in

the noise field
11 43.62 0.0763 3.2120 Inner arc positive ft
13 52.6 0.0916 -1.9455 Inner arc negative ft

Table 3.1: Analysis of 10 longest signal runs from Parc(f t) of PIm(RL∗)(fλ, ft) secondary
cross spectrum. The run length is the number samples that make up the signal run length
along the parabola. The average power is the sum of the amplitudes of the samples
divided by the run length. The ft span is the absolute value of the difference between
the first ft and last ft of the sample. The ft center is the midpoint between the first
ft and last ft of the sample localised on the ft axis and the classification refers to a
segmentation of the parabola as defined by the introduction of Chapter 3.

Run
length

Average
power

ft span
(mHz)

ft center
(mHz)

Classification

8 34.85 0.0534 9.0446 High fλ and ∣ft∣, arc
within noise field

8 67.94 0.0534 0.6447 Inner arc positive ft
9 41.98 0.0610 3.3646 Inner arc positive ft
10 51.75 0.0687 -1.8578 Inner arc negative ft
10 65.82 0.0687 -0.7057 Inner arc negative ft
11 49.72 0.0764 2.7847 Inner arc positive ft
11 73.5 0.0764 0.4196 Inner arc positive ft
15 45.07 0.1068 3.891 Inner arc positive ft
20 84.16 0.145 0.2785 Inner arc positive ft
27 65.39 0.1984 -0.2213 Inner arc negative ft

Table 3.2: Analysis of 10 longest signal runs from Parc(f t) of PIm(LR∗)(fλ, ft) secondary
cross spectrum. Table column definitions are similar to Table 3.1
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2019-12-27

Fig. 3.22: As in Fig. 3.19

Fig. 3.23: As in Fig. 3.20
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Fig. 3.24: Phase of RL∗ Cross Spectra from observations of 2019-12-27. The phase
has been restricted between -0.15 and 0.15 to improve dynamic range.
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Run
length

Average
power

ft span
(mHz)

ft center
(mHz)

Classification

8 -52.78 0.0534 -0.0191 Noise within central
blanked region.

8 42.99 0.0534 6.2828 Outer arc positive ft
9 35.98 0.0610 -5.4245 Outer arc negative ft
9 45.61 0.0610 2.8076 Inner arc positive ft
10 34.99 0.0687 -8.3199 High fλ and ∣ft∣, arc

within noise field
10 77.05 0.0687 -0.3624 Inner arc negative ft
10 74.34 0.0687 0.4311 Inner arc positive ft
11 58.2 0.0763 0.9155 Inner arc positive ft
11 58.85 0.0763 -1.2894 Inner arc negative ft
15 53.9 0.1068 -1.709 Inner arc negative ft

Table 3.3: Analysis of 10 longest signal runs from Parc(f t) of PIm(RL∗)(fλ, ft) secondary
cross spectrum. Table column definitions are similar to Table 3.1.

Run
length

Average
power

ft span
(mHz)

ft center
(mHz)

Classification

8 58.47 0.0534 1.5907 Inner arc positive ft
8 46.57 0.0534 -2.636 Inner arc negative ft
9 36.93 0.0610 -4.7684 Inner arc negative ft
9 38.58 0.0610 8.1863 High fλ and ∣ft∣, arc

within noise field
9 57.71 0.0610 1.3962 Inner arc positive ft
10 35.58 0.0687 -7.6561 High fλ and ∣ft∣, arc

within noise field
15 50.48 0.1068 -1.9836 Inner arc negative ft
17 54.74 0.1221 1.7624 Inner arc positive ft
20 82.49 0.145 0.2174 Inner arc positive ft
23 88.22 0.1678 -0.2365 Inner arc negative ft

Table 3.4: Analysis of 10 longest signal runs from Parc(f t) of PIm(LR∗)(fλ, ft) secondary
cross spectrum. Table column definitions are similar to Table 3.1.
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2019-12-28

Fig. 3.25: As in Fig. 3.19

Fig. 3.26: As in Fig. 3.20
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Run
length

Average
power

ft span
(mHz)

ft center
(mHz)

Classification

8 34.09 0.0534 8.8387 High fλ and ft, arc is in
the noise field

8 47.8 0.0534 -3.2845 Inner arc negative ft
8 34.68 0.0534 -7.5035 High fλ and ∣ft∣, arc

within noise field
8 35.24 0.0534 9.2964 High fλ and ∣ft∣, arc

within noise field
8 33.08 0.0534 7.5645 High fλ and ∣ft∣, arc

within noise field
8 47.67 0.0534 3.1395 Inner arc positive ft
9 62.16 0.0610 -1.2054 Inner arc negative ft
10 30.38 0.0687 -6.9847 High fλ and ∣ft∣, arc

within noise field
10 62.02 0.0687 0.7973 Inner arc positive ft
11 60.29 0.0839 1.2169 Inner arc positive ft

Table 3.5: Analysis of 10 longest signal runs from Parc(f t) of PIm(RL∗)(fλ, ft) secondary
cross spectrum. Table column definitions are similar to Table 3.1.

Run
length

Average
power

ft span
(mHz)

ft center
(mHz)

Classification

7 -45.18 0.0458 -0.0763 Noise within central
blanked region.

7 48.94 0.0458 3.7155 Inner arc positive ft
7 34.66 0.0458 -10.2158 High fλ and ∣ft∣, arc

within noise field
7 86.08 0.0458 0.2823 Inner arc positive ft
8 80.84 0.0534 -0.3166 Inner arc negative ft
8 40.49 0.0534 -4.6043 Inner arc negative ft
8 32.01 0.0534 -9.3498 High fλ and ∣ft∣, arc

within noise field
9 48.32 0.061 -3.1357 Inner arc negative ft
10 38.99 0.0687 4.9171 Inner arc positive ft
11 93.67 0.0763 -0.206 Inner arc negative ft

Table 3.6: Analysis of 10 longest signal runs from Parc(f t) of PIm(LR∗)(fλ, ft) secondary
cross spectrum. Table column definitions are similar to Table 3.1.
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2019-12-29

Fig. 3.27: As in Fig. 3.19

Fig. 3.28: As in Fig. 3.20
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Run
length

Average
power

ft span
(mHz)

ft center
(mHz)

Classification

7 62.83 0.0458 -1.9455 Inner arc negative ft
7 73.16 0.0458 -1.6022 Inner arc negative ft
8 42.94 0.0534 8.6937 High fλ and ∣ft∣, arc

within noise field
9 80.59 0.061 -1.0529 Inner arc negative ft
10 90.45 0.0687 -0.6676 Inner arc negative ft
10 54.72 0.0687 3.1548 Inner arc positive ft
10 33.26 0.0687 10.3645 High fλ and ∣ft∣, arc

within noise field
10 59.97 0.0687 -2.5291 Inner arc negative ft
13 93.32 0.0916 0.5493 Inner arc positive ft
24 91.29 0.1755 -0.5302 Inner arc negative ft

Table 3.7: Analysis of 10 longest signal runs from Parc(f t) of PIm(RL∗)(fλ, ft) secondary
cross spectrum. Table column definitions are similar to Table 3.1.

Run
length

Average
power

ft span
(mHz)

ft center
(mHz)

Classification

8 57.1 0.0534 -3.994 Inner arc negative ft
8 42.12 0.0534 -8.2359 High fλ and ∣ft∣, arc

within noise field
9 53.47 0.0610 -4.1428 Inner arc negative ft
9 41.72 0.0610 -8.1558 High fλ and ∣ft∣, arc

within noise field
9 80.3 0.0610 0.8087 Inner arc positive ft
9 38.14 0.0610 7.6294 High fλ and ∣ft∣, arc

within noise field
9 109.22 0.0610 -0.2899 Inner arc negative ft
10 92.96 0.0687 0.4158 Inner arc positive ft
10 52.4 0.0687 4.7722 Inner arc positive ft
13 105.79 0.0916 0.2594 Inner arc positive ft

Table 3.8: Analysis of 10 longest signal runs from Parc(f t) of PIm(LR∗)(fλ, ft) secondary
cross spectrum. Table column definitions are similar to Table 3.1.
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2019-12-30

Fig. 3.29: As in Fig. 3.19

Fig. 3.30: As in Fig. 3.20
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Signal
length

Average
power

ft span
(mHz)

ft center
(mHz)

Classification

8 80.45 0.0534 -0.309 Inner arc negative ft
8 45.95 0.0534 -2.6512 Inner arc negative ft
8 55.24 0.0534 2.0561 Inner arc positive ft
8 42.70 0.0534 5.8784 Outer arc positive ft
9 38.11 0.0610 7.4081 High fλ and ∣ft∣, arc

within noise field
9 52.96 0.0610 2.7161 Inner arc positive ft
9 67.98 0.0610 -1.0605 Inner arc negative ft
9 41.46 0.0610 -6.0425 Outer arc negative ft
10 58.4 0.0687 -1.7433 Inner arc negative ft
13 50.49 0.0916 3.7842 Inner arc positive ft

Table 3.9: Analysis of 10 longest signal runs from Parc(f t) of PIm(RL∗)(fλ, ft) secondary
cross spectrum. Table column definitions are similar to Table 3.1.

Signal
length

Average
power

ft span
(mHz)

ft center
(mHz)

Classification

7 38.46 0.0458 -8.6441 High fλ and ∣ft∣, arc
within noise field

7 32.77 0.0458 9.3155 High fλ and ∣ft∣, arc
within noise field

7 48.07 0.0458 -3.3875 Inner arc negative ft
8 45.15 0.0534 -3.7117 Inner arc negative ft
8 42.69 0.0534 -4.7569 Inner arc negative ft
8 39.44 0.0534 -8.2741 High fλ and ∣ft∣, arc

within noise field
9 35.35 0.0610 10.0174 High fλ and ∣ft∣, arc

within noise field
9 66.05 0.0610 0.6256 Inner arc positive ft
9 78.73 0.0610 0.3815 Inner arc positive ft
11 37.1 0.0763 -8.0872 High fλ and ∣ft∣, arc

within noise field

Table 3.10: Analysis of 10 longest signal runs from Parc(f t) of PIm(LR∗)(fλ, ft) secondary
cross spectrum. Table column definitions are similar to Table 3.1.
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2019-12-31

Fig. 3.31: As in Fig. 3.19

Fig. 3.32: As in Fig. 3.20
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Run
length

Average
power

ft span
(mHz)

ft center
(mHz)

Classification

9 37.02 0.061 8.5068 High fλ and ∣ft∣, arc
within noise field

10 63.84 0.0687 1.2398 Inner arc positive ft
10 83.63 0.0687 0.2632 Inner arc positive ft
10 69.41 0.0687 -1.0185 Inner arc negative ft
11 56.64 0.0763 2.4261 Inner arc positive ft
11 59.49 0.0763 -1.3275 Inner arc negative ft
12 54.21 0.0839 2.3308 Inner arc positive ft
12 65.14 0.0839 1.4839 Inner arc positive ft
12 69.69 0.0839 0.8736 Inner arc positive ft
20 71.48 0.145 -0.5913 Inner arc negative ft

Table 3.11: Analysis of 10 longest signal runs from Parc(f t) of PIm(RL∗)(fλ, ft) secondary
cross spectrum. Table column definitions are similar to Table 3.1.

RUn
length

Average
power

ft span
(mHz)

ft center
(mHz)

Classification

8 49.19 0.0534 4.5662 Inner arc positive ft
9 46.46 0.0610 -5.9662 Outer arc negative ft
9 62.22 0.0610 -1.5411 Inner arc negative ft
9 38.07 0.0610 -8.0948 High fλ and ∣ft∣, arc

within noise field
10 70.42 0.0687 -0.9422 Inner arc negative ft
10 35.85 0.0687 9.7313 High fλ and ∣ft∣, arc

within noise field
10 60.89 0.0687 1.7357 Inner arc positive ft
11 54.09 0.0763 -2.1744 Inner arc negative ft
12 60.03 0.0839 1.873 Inner arc positive ft
13 70.91 0.0916 0.7782 Inner arc positive ft

Table 3.12: Analysis of 10 longest signal runs from Parc(f t) of PIm(LR∗)(fλ, ft) secondary
cross spectrum. Table column definitions are similar to Table 3.1.
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Conclusion

In this chapter we interpret and provide commentary on the results and the quality of the

data presented in Chapter 3 for each method of analysis aimed at observing the evidence

of the effects of birefringent scintillation. We comment on the feasibility of resolving

the structure of ∆φLR from the secondary cross spectrum phase. Using a correlation

coefficient derived from the normalization of the secondary cross spectrum phase, we

set 3σ upper limits on the strengths of magnetic field fluctuations on small scales. We

comment on the physical implications of the magnetic field strength estimates in terms

of the configuration of electron densities within the scattering environment. The chapter

concludes by considering possible avenues and enhancements that can be considered

for future work on the study of birefringent scintillation.

107
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4.1 Summary

4.1.1 Difference Spectra

Dynamic Spectra

A visual inspection of Sdiff(ν, t) reveals very little obvious scintillating structure. The

only observable structure are diffuse vertical bands that coincide in time with the bright

scintles of the original SR(ν, t) and SL(ν, t). Some of the diffuse bands appear to

dissipate at low frequency possibly indicating modest broadband structure; however, no

familiar fringing patterns or drifting maxima and minima across frequency and time are

qualitatively visible in Sdiff(ν, t).

We quantify the statistical properties of Sdiff(ν, t) in Table 4.1. From the table we

can see that the mean of Sdiff(ν, t) is close to zero. The median verifies this result being

even closer to zero. A mean of zero shows little systematic offset between SR(ν, t)

and SL(ν, t) as a result of poor polarimetric calibration. The standard deviation of all

Sdiff(ν, t) indicate that the mean of the data is consistent with 0 for all observation days

as they are bounded within the error. These characteristics are consistent for all six

days except for 2019-12-29 having a higher mean and standard deviation most likely

as a result of polarimetric calibration error. We calculate the percentage of difference

between SR(ν, t) and SL(ν, t) with equation 2.14 from which we quantify no detectable

signal above the 0.01 % level in any of the difference spectra, except for 2019-12-29,

where the significance rises to 0.2 %, in the last dynspec sub-integration.

The fluctuations of intensity seen in the last sub-integration of 2019-12-29 beginning

at t = 480 minutes is most likely a result of differential phase calibration error. This

conclusion is arrived at due to the sharp transitional nature of the effect. The apparent

scintillating effect caused by the instrumental calibration error highlights the importance

of accurate polarimetric calibration.
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Obs. Date Mean Median Standard deviation
2019-12-26 0.00027 0.00017 0.00240
2019-12-27 0.00043 0.00023 0.00281
2019-12-28 0.00035 0.00018 0.00252
2019-12-29 0.01209 0.00057 0.09717
2019-12-30 -0.00033 -0.00008 0.00432
2019-12-31 -0.00039 -0.00014 0.00367

Table 4.1: Noise statistics of differential dynamic spectrum, Sdiff(ν, t).

From the the visualization of Sdiff(ν, t) we can observe variations of gain in the

frequency domain marked by sharp spectral transitions between sub-integrations at t

= 240 minutes and t = 480 minutes. 2019-12-28 and 2019-12-29 observations aside

(due to instrumental calibration and FITSIO errors), this is most noticeable in the

observations made on 2019-12-30 and 2019-12-31. Noting that MeerKAT was phased

only once at the start of observations made on 2019-12-26 and 2019-12-27, and that

the array was rephased every two hours on 2019-12-30 and 2019-12-31, we conclude

that the observed gain variations are most likely caused by the array phasing and beam

forming processes. The array phasing process could have also been the source of the

errors encountered on the 2019-12-28 and 2019-12-29 observations. We are able to

establish a qualitative hierarchy not based on an objective metric of the calibrated data

analyzed in this work with calibrated spectra of 2019-12-26 and 2019-12-27 being the

most reliable, the data of 2019-12-30 and 2019-12-31 being less reliable, and the data of

2019-12-28 and 2019-12-29 of the least reliable quality for dynspecs of integrations of

t ≥ 11 hours. Alternatively, performing analysis on the shorter, 3-hour sub-integrations

of 2019-12-30 and 2019-12-31 may surmount the issues of frequency gain variations

but limit the resolution of their secondary spectra.
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Differential Secondary Spectra

Visual inspection of PSdiff(fλ, ft), reveals an empty field of noise except on 2019-12-29

where a parabolic arc is seen. Diagonally aligned signal artefacts reminiscent of Fig.

3 (c) of Cordes et al. (2006) are present in most of the spectra. The diagonal artefacts

are a possible result of λ-step sampling of the dynspec. Sampling PSdiff(fλ, ft) with the

average curvature fit of PLL∗ and PRR∗ reveals a mostly flat distribution of power of the

order of the noise floor except near the origin where residual power from pre-whitening

and post-darkening exist. RFI also contributes power at low fλ seen as vertical stripes

in the secondary spectrum. Fitting a spline through the sampled PSdiff(ft) data with the

regions near ft = 0 filtered should reveal a flat horizontal linear relationship across ft

compared to inclined and triangular line fit for PLL∗(ft) and PRR∗(ft).

4.1.2 Cross Spectra Evaluation

We are able to successfully resolve ∆φδβ where ∆φδβ = φR − φL, as a function of fλ

and ft from PIm(RL∗) as shown in Fig. 3.19 - Fig. 3.29. Qualitatively, PIm(RL∗) reveals

visible parabolic arcs. However, the arcs appear fainter and more diffuse than their

PRe(RL∗), PRR∗ , and PLL∗ counterparts. The strongest arc is seen in 2019-12-29 again

due to phase calibration error. Most of the PIm(RL∗) parabola are upper bounded by fλ ≈

3000 m-1 where the parabola dissipate. This corresponds to a delay of τ ≈ 1.035 µs.

For ∆φδβ from birefringence, a smoothly varying continuous signal is expected.

Sampling PIm(RL∗) along its parabola, it is seen that ∆φδβ varies quickly in the outer

regions of the sampled arc with phase variations slowing down as ∣ft∣ → 0, as the

location of most sampled signal runs fall within the inner arc region of -5 < ∣ft∣ < 5

mHz (seen in Tables 3.1 - 3.12). The location of a signal run is defined as the midpoint

between the first and last sample of the signal on the ft axis. 81 out of 120 of the

longest signal runs are bounded within this region. However, we comment a word of
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caution as the inner arc cutoff of ft = 5 mHz (corresponding to delays τ ≈ 0.42µs) is

arbitrarily chosen. The predominantly stochastic variations of ∆φδβ lead us to conclude

that the phase variations originate from the self-noise intrinsic to PSR J0437-4715.

In the limit of a strong source, noise in synthesis images of an interferometer can be

dominated by noise fluctuations of the source power (Kulkarni, 1989). As the flux

desnisty of J0437-4715 approaches and exceeds the low SEFD of MeerKAT, self-noise

(dominated by the pulse jitter noise of the pulsar) correlated over the wide bandwidth

of the spectra is significant and sets a fundamental limit for observations (Osłowski

et al., 2011). Characterization of the distribution of noise in the presence of signal in

the high S/N regime for the cross power spectrum of a scintillating source is provided

in Gwinn et al. (2012) which provides a template for further study. The measured ∆φδβ

signal is dominated by jitter and is difficult to distinguish from the intrinsic jitter noise

of the pulsar. In regards to this, the wide bandwidth and the high gain of the L-band

of MeerKAT works against us. Longer integration times may surmount this problem.

We propose as a follow up to examine the cross spectra of all six days of separately

appended SL(ν, t) and SR(ν, t) with the gaps filled with linear interpolation. From

the apparent phase variations, we can conclude that ∆φδβ is very small such that it is

smaller than the jitter noise limit intrinsic to the emission of J0437-4715. Because of

this we fail to reject the null hypothesis posed in section 2.4 and conclude that SR(ν, t)

and SL(ν, t) are highly correlated for all observations unaffected by calibration error.

Large signal power at ft < 0.5 mHz near the origin are visually identified in the arc

sampled phase of the secondary cross spectrum. We attribute these lump like features

(seen in Fig. 3.20 - 3.30) adjacent to the regions affected by pre-whitening and post-

darkening as the effect of ringing from the FFT. Although our original expectation for

∆φδβ to vary smoothly within the range −5 < ft < 5 mHz was somewhat verified, a

significant smoothly varying signal at such low ft could also be interpreted as having

originated from scattering by large scale structures.



Chapter 4. Conclusion 112

4.1.3 Upper Limits on Turbulent Magnetic Fields

The standard deviation of the spatial fluctuations of the magnetoionic field δβz, in units

of µG cm-3 as a function of the transverse Fresnel scale rF , can be calculated from

equation (33) of Simonetti et al. (1984):

⟨δβ2
z(rF )⟩

1/2 ≈ 157[1 − Γ̂RL]
1/2(

ν

430 MHz
)2(

D

1 kpc
)−

1/2(
rF

1011 cm
)−

1/2µG cm−3 (4.1)

δβz is a spatially fluctuating component of the birefringent medium owing to fluctuations

in both free electron density and the projection of small scale magnetic fields along the

line of sight; δβz = neδBz +Bzδne. For eq. 4.1, ν = 1284 MHz for the L-band center

frequency of MeerKAT and D = 0.154 kpc for PSR J0437-4715. rF can be calculated

as rF =

√

λ (Ds
D

) (D −Ds) = 4.2× 1010 cm for λ = 23 cm, D = 154 pc, and Ds = 32 pc.

Authors such as Smirnova et al. (2006) have also quoted rF values of 2 × 1010 cm and

1 × 1011 cm towards J0437-4715. Γ̂RL is a correlation coefficient that decays with the

variance of differential phase.

Γ̂RL = 1 − ⟨∆φ2
δβ⟩ (4.2)

We can calculate ⟨∆φ2
δβ⟩ from the dataset by taking a normalization of the the

secondary cross spectrum phase.

⟨∆φ2
δβ⟩ = var

⎡
⎢
⎢
⎢
⎢
⎣

S̃Im(RL∗)
√
S̃LL∗S̃RR∗

⎤
⎥
⎥
⎥
⎥
⎦

(4.3)

where ⟨∆φ2
δβ⟩ is measured from the parabola of the normalized secondary cross spec-

trum phase. S̃Im(RL∗) is the imaginary part of the secondary cross spectrum, and S̃LL∗

and S̃RR∗ are LCP and RCP secondary spectra. Sampling along the parabola recovers a

positive and negative valued signal with a mean approaching zero as shown in Fig. 4.1.
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A smaller ⟨∆φ2
δβ⟩ allows us to place more stringent limits on ⟨δβ2

z(rF )⟩
1/2 spatial fluctu-

ations. All preprocessing steps are employed except pre-whitening and post-darkening

and computing the logarithm of S̃Im(RL∗), S̃RR∗ , and S̃LL∗ .

Fig. 4.1: Result of sampling the normalized secondary cross spectrum phase along
the parabolic arc. The result varies between -1 and 1 with a mean approaching 0.
The variance ⟨∆φ2

δβ⟩ is smaller as ∣ft∣→ 0 and larger when moving away from 0. We
compute ⟨∆φ2

δβ⟩ for different ranges of ft within the inner arc and and the outer arc with
the limit of 5 mHz. The limit of 5 mHz is arbitrary and can affect the final estimate of
⟨δβ2

z ⟩
1/2. Including more samples in the estimate of ⟨∆φ2

δβ⟩ helps to reduce uncertainty.
This can be done by averaging the samples and taking ⟨∆φ2

δβ⟩ for longer intervals.

Tables C.1, C.2, and C.3 in Appendix C show the upper limits of δβz by inserting

⟨∆φ2
δβ⟩ from different ranges of ft where the normalised phase varies quickly (outer

arc) and slowly (inner arc) and for −ft and ft into eq. 4.2 and applying the resulting

Γ̂RL to eq. 4.1. Due to subtraction, we are effectively left with standard deviation of

∆φδβ as the second term of eq. 4.1 which is multiplied by 3 for 3σ confidence.
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From the tables of Appendix C the best upper limits of spatial fluctuations of the

magnetoionic field within the scattering region probed by the primary forward arc

are derived from the data of 2019-12-26, 2019-12-27, and 2019-12-28. There is an

order of magnitude of difference between upper limits of ⟨δβ2
z ⟩

1/2 for ⟨∆φ2
δβ⟩ taken

from the inner arc versus the outer arc. The upper limits derived from 2019-12-26

and 2019-12-27 verifies our original assumption of the quality of the data from those

epochs. The limits derived for 2019-12-28 are a surprise because of the missing 4

hour sub-integration in the interim filled in with linear interpolation for the observation.

However, this result indicates the viability of further studies to estimate ⟨δβ2
z ⟩

1/2 from

data of shorter integration lengths. The weakest upper limits of ⟨δβ2
z ⟩

1/2 in the scattering

region are from 2019-12-29 where ⟨∆φ2
δβ⟩ along the entire arc is large originating from

instrumental calibration error. Summing and averaging the samples of normalized phase

for all observations unaffected by calibration error produces an upper limit of δβz ≤ 305

µG cm-3 for ⟨∆φδβ⟩ = 0.01749 measured from an arc region of -5 < ft < 5 mHz. We set

the upper limit of δβz fluctuations interpreted in the next section as δβz ≤ 302 µG cm-3.

The estimate for δβz made by Simonetti et al. (1984) only accounts for spatial

fluctuations in either ne or Bz to avoid separating δβz into contributions from δne and

δBz because such separations requires additional information about their correlations.

For a spatially uniform medium with unchanging electron density in the scattering

screen, ⟨ne⟩ = DM
D =

2.64 pc cm-3

154 pc = 0.017 cm-3 and the upper limit of small scale magnetic

field fluctuations along the LoS is ⟨δB2
z(1 × 1011 cm)⟩1/2 ≤ 17.7 mG. If the same δβz

occur in a spatially uniform medium with ⟨ne⟩ = 0.2 and filling factor f ~ 0.1 - 0.2

(McKee and Ostriker, 1977), the upper limit is ⟨δB2
z(1×1011 cm)⟩1/2 ≤ 1.6 mG. Likewise,

with knowledge of δβz and a probable value for uniformBz on small scales asBz ≈ 4µG

(Han, 2017), we can place upper limits on the fluctuations of ne as ⟨δn2
e(1×1011 cm)⟩1/2

≤ 75.5 cm-3 which is less than two orders of magnitude of an observed over-density

(ne ≥ 100 cm-3) within the IISM (Hill et al., 2005).
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Based on present literature of interstellar magnetic fields such as Beck (2007), Beck

and Wielebinski (2013), and the original work of Simonetti et al. (1984), our computed

upper limits of magnetic field variations are uninformative as the expected constraints

on the amplitude of interstellar magnetic fields on turbulent scales should be on the

order of a few µG not tens of mG! However, if we use the same Γ̂RL from calculating

the upper limit of 302 µG cm-3 and assume the same observing conditions of Simonetti

et al. (1984) with the constants (ν = 430 MHz, D = 1.8 kpc, and rF = 6 × 1011 cm),

we acquire an upper limit of spatial fluctuations of ⟨δβ2
z(6 × 1011 cm)⟩1/2 ≤ 2.42 µG

cm-3 which is lower than the original work’s base constraint of δβz ≤ 3.6 µG cm-3 at

3σ. Making the same assumptions as the previous paragraph but for a spatially uniform

medium of ⟨ne⟩ = 0.03 cm-3 , ⟨ne⟩ = 0.2 cm-3, and a uniform magnetic field ofBz ≈ 4µG

we would observe δBz ≤ 70.6 and 10.5 µG, and δne ≤ 0.6 cm-3 within the scattering

region towards PSR 1737+13. These values are more reasonable. Distance to the pulsar

and observing frequency therefore play an important role in determining the upper limit

and should be considered in future studies. The distance to the scattering screen also

impacts the upper limit by the way of the Fresnel scale with a scattering screen closer

to the pulsar putting more stringent limits on δβz. Observations of more pulsars along

a multitude of LoS will allow us to improve measurements of fine scale turbulence as

we would gain further information regarding the spatial correlations between δne and

δBz thus allowing for the refinement of δβz upper limits. Such studies could follow in

the practice of Ohno and Shibata (1993) by observing pulsars pairs with small angular

separation with similar DMs and different RMs.
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4.2 Future Works

We now discuss what areas could have been improved upon in this work. From the

perspective of current instrumentation, the RFI mitigation scheme could be improved

upon. Solutions like MeerGuard (Reardon, 2019) may yield better quality dynamic

spectra and secondary spectra. Fine tuning the q parameter of CLFD to find a threshold

that optimally mitigates RFI bursts without zapping the low frequency bins of the

dynamic spectrum can also be considered.

The currently employed arc sampling method to view power distribution along the

parabola was developed ad hoc from scratch. We presently sample the raw values of

P (fλ, ft) along a parabola of a known η. This is neither the only way nor may it be the

best way of studying the power distribution of the secondary spectrum. The normalized

secondary spectrum P (fλ,
ft
farc

), as derived in Reardon et al. (2020) is created by re-

sampling the secondary spectrum in ft with the sampling of each row adjusted with

linear interpolation provides an alternative approach to study the arc power distribution.

Each arc is transformed into vertical lines of power with the primary arc located at

ft
farc

= ftn = ±1. The ftn axis is the fractional distance from the ft = 0 axis to the

arc at farc for a given fλ. Averaging the normalised spectrum in fλ with appropriate

weighting produces the Doppler profile Dt(ftn), that is useful for analyzing anisotropy

and characterising how power falls off from the primary arc. Averaging the normalised

spectrum in Doppler obtains the delay profile Dλ(fλ), that follows the phase spectrum

in weak scintillation where the secondary spectrum can be written in terms of the spatial

spectrum of phase shifts the waves experience when traversing the scattering region.

We have computed an example of these 3 products with the absolute value of the phase

of the secondary cross spectrum, P∣Im(RL∗)∣(fλ, ft), for the data of 2019-12-27 and

are displayed in Fig. 4.2, however, we leave for future work their interpretation and

application on the remaining data.
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Fig. 4.2: The normalized secondary cross spectrum P∣Im(RL∗)∣(fλ, ftn) (left). The Dop-
pler profile Dt(ftn) (center) gives the strength of scintillation and visualizes anisotropy.
The Delay profile Dλ(fλ) (right) follows a power law scaling with the exponent α2 − 1

where α is the spectral exponent of turbulence. The Delay profile is scaled by f
1/2

λ

and plotted versus f
1/2

λ . These approaches can provide further insight into the power
distribution of the secondary cross spectrum and the nature of ∆φδβ variations, however,
more work needs to be done in adjusting their compatibility with a non-logarithmic and
non-absolute form of the secondary cross spectrum.

The phase of the secondary cross spectrum from Brisken et al. (2010) is not visual-

ized on a logarithmic scale which works best when noise is log-normally distributed

(Reardon, 2018). For display purposes, the phase is smoothed over with a 3 pixel in ft

and 5 pixel in τ averaging of the complex product prior to taking the real or imaginary

part. The phase spectrum is therefore ∆φδβ(τ, ft) = arg(⟨CRL∗(τ, ft)⟩), where the

angle brackets denote a 3 × 5 averaging that weights the complex product before taking

the argument. The size of the averaging window needs to be adjusted for the spatial

frequency domain if we persist in analyzing the secondary spectrum in fλ.

The data we have acquired represent signal runs of when the phase of either RL∗ or

LR∗ is positive valued along the parabola. A runs test of independence (Croarkin, 2013)

can be used to verify whether the sequence of signal runs along the parabola is random

or whether there is organised structure. The runs test statistic is Z =
R−µR
σR

where R is

the observed number of signal runs, µR = n1n2

n1+n2
+ 1 is the mean, σ2

R =
(µR−1)(µR−2)

(n1+n2)−1 is

the variance of runs, and n1 and n2 are the number of instances where the phase of LR∗

or RL∗ is positive. For a large sample size and a significance of 5%, a critical value of
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∣Z ∣ > 1.96 indicates non-randomness and structure within the signal runs. We propose

carrying out the runs test separately for the inner and outer regions of the arc.

Reaching out for more novel instrumentation, cyclic spectroscopy can be used to

form the cyclic dynamic cross spectrum and secondary cross spectrum (Walker et al.,

2013). The cyclic spectrum is the complex product of the lower sideband of the pulsar

baseband signal with the complex conjugate of the upper sideband:

SE(ν, ak) = ⟨E(ν +
ak
2
)E∗(ν −

ak
2
)⟩ (4.4)

where ν is radio frequency and ak is modulation frequency. The cyclic spectrum

encapsulates phase information from IISM scattering as part of a filtered response H(ν)

where we can expect to study δφδβ:

SE(ν, ak) = ⟨H(ν +
ak
2
)H∗(ν −

ak
2
)⟩Sx(ν, ak) (4.5)

Sx(ν, ak) is the FFT of the intrinsic pulse unaffected by propagation effects. The cyclic

spectrum is calculated across narrow bandwidths where there is little assumed change of

the pulse profiles of Sx(ν, ak) with frequency. Eq. 4.5 shows that H(ν) can in principle

be separated from Sx, however, the separation is non-trivial because of degeneracies

within the cyclic spectrum model. Generating the cyclic spectrum can be done with

software such as DSPSR (van Straten and Bailes, 2011).

As mentioned by Simonetti et al. (1984), better limits can be measured with lower

frequencies and more distant pulsars. Lower frequencies are accessible with the UHF-

band of MeerKAT (νBW = 544, MHz and νobs = 816 MHz) (Bailes et al., 2020) or other

radio telescopes, such as the MWA (νBW = 30 MHz, and νobs = 192 MHz) (Bhat et al.,

2016; Tingay et al., 2013), and LOFAR (Stappers et al., 2007). Other pulsars can be

considered for observation however, the distance should be kept within 1 - 2 kpc to

maintain the Local Bubble as the scattering screen.
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Appendix A

Glossary

ACF Autocovariance Function

CP Circular Polarization

DM Dispersion Measure

Dynspec Dynamic Spectra

EoS Equation of State

FFT Fast Fourier Transform

GMF Galactic Magnetic Field

GR General Relativity

GW Gravitational Wave

IISM Ionised Interstellar Medium

ISM Interstellar Medium

L/LCP Left Circularly Polarized

LoS Laser Interferometer Gravitational Wave Observatory

MSP Millisecond Pulsar

MWA Murchison Widefield Array

NS Neutron Star

O Ordinary
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PK Post-Keplerian

NS Neutron Star

PSR Pulsar

PA Position Angle

R/RCP Right Circularly Polarized

RM Rotation Measure

RFI Radio Frequency Interfernece

SKA Square Kilometer Array

SNR Supernova Remnant

S/N Signal to Noise Ratio

SSpec Secondary Spectra

TOA Time of Arrival

X Extraordinary



Appendix B

Arc Curvatures

B.1 Uncalibrated Data

B.1.1 Combined Integrations

Epoch Integration Length LCP RCP
26-12-2019 11 66.2 66.1
27-12-2019 11 65.6 65.6
28-12-2019 12 54.5 54.5
29-12-2019 11 48.1 48.1
30-12-2019 11 51.2 51.5
31-12-2019 11 59 59

Table B.1: Arc curvatures for day length integrations across the full L band of MeerKAT.

Epoch Integration Length LCP RCP
26-12-2019 11 65.8 65.8
27-12-2019 11 64.9 64.8
28-12-2019 12 53.9 53.9
29-12-2019 11 48.2 48.2
30-12-2019 11 51.0 51.1
31-12-2019 11 60.9 60.9

Table B.2: Arc curvatures for day length integrations across the low frequency portion
of the L band of MeerKAT (856 < f < 1100) MHz.
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B.1.2 Sub-integrations

Epoch Duration LCP FB RCP FB LCP LF RCP LF

26-12-2019

16:00:00-17:00:00 65.5 65.5 65.0 65.0
17:00:00-18:00:00 64.9 65 64.7 64.7
18:00:00-19:00:00 66.0 66.0 65.6 65.6
19:00:00-20:00:00 67.1 67.2 66.5 66.5
20:00:00-21:00:00 66.8 66.7 65.4 65.5
21:00:00-22:00:00 65.2 65.2 65.2 65.2
22:00:00-23:00:00 66.6 66.6 66.3 66.3
23:00:00-00:00:00 66.4 66.4 65.6 65.5
00:00:00-01:00:00 66.7 66.7 66.0 66.0
01:00:00-02:00:00 67.2 67.2 65.8 65.8
02:00:00-03:00:00 76.3 75.2 70.2 71.9

27-12-2019

15:00:00-16:00:00 66.1 66.1 65.4 65.3
16:00:00-17:00:00 66.9 66.9 65.9 65.9
17:00:00-18:00:00 66.1 66.1 65.0 65.0
18:00:00-19:00:00 65.7 65.8 64.1 64.1
19:00:00-20:00:00 65.2 65.2 64.7 64.6
20:00:00-21:00:00 64.3 64.4 64.0 63.9
21:00:00-22:00:00 63.9 63.9 63.5 63.5
22:00:00-23:00:00 63.6 63.6 63.1 63.1
23:00:00-00:00:00 63.8 63.7 63.0 63.0
00:00:00-01:00:00 63.0 63.0 62.8 62.8
01:00:00-02:00:00 62.8 62.7 62.3 62.4

28-12-2019

14:00:00-15:00:00 56.9 56.9 56.8 57.0
15:00:00-16:00:00 56.0 56.0 56.0 56.0
16:00:00-17:00:00 55.4 55.4 55.4 55.4
17:00:00-18:00:00 54.9 54.9 54.8 54.8
18:00:00-19:00:00 54.6 54.8 54.5 54.5
19:00:00-20:00:00 53.9 53.9 54.1 54.1
20:00:00-21:00:00 53.3 53.2 53.5 53.5
21:00:00-22:00:00 53.2 53.2 53.2 53.2
22:00:00-23:00:00 52.8 52.8 52.8 52.8
23:00:00-00:00:00 52.9 52.9 53.0 53.0
00:00:00-01:00:00 52.2 52.2 52.2 52.2
01:00:00-02:00:00 51.7 51.7 51.6 51.6

Table B.3: Arc curvatures for 26-12-2019 to 28-12-2019. FB indicates the full L-band.
LF indicates a low frequency portion of the L- band (856 < f < 1100 MHz)
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Epoch Duration LCP FB RCP FB LCP LF RCP LF

29-12-2019

15:00:00-16:00:00 48.7 48.7 48.5 48.5
16:00:00-17:00:00 48.7 48.6 48.8 48.7
17:00:00-18:00:00 48.7 48.8 48.5 48.6
18:00:00-19:00:00 48.0 48.0 48.1 48.1
19:00:00-20:00:00 48.5 48.5 48.5 48.5
20:00:00-21:00:00 48.1 48.1 48.3 48.3
21:00:00-22:00:00 47.8 47.8 47.8 47.8
22:00:00-23:00:00 47.9 47.9 48.1 48.1
23:00:00-00:00:00 47.8 47.9 47.9 47.9
00:00:00-01:00:00 48.0 47.9 48.1 48.0
01:00:00-02:00:00 48.3 48.3 48.1 48.1

30-12-2019

15:00:00-16:00:00 50.9 50.9 49.9 49.8
16:00:00-17:00:00 50.6 50.5 50.2 50.2
17:00:00-18:00:00 50.6 50.6 50.0 50.0
18:00:00-19:00:00 50.1 50.1 49.6 49.7
19:00:00-20:00:00 50.7 50.7 50.5 50.4
20:00:00-21:00:00 51.2 51.2 50.4 50.4
21:00:00-22:00:00 51.8 51.5 51.4 51.3
22:00:00-23:00:00 51.6 51.6 51.6 51.6
23:00:00-00:00:00 51.5 51.5 51.8 51.8
00:00:00-01:00:00 52.0 51.9 51.5 51.5
01:00:00-02:00:00 52.1 52.1 52.7 52.7

31-12-2019

15:00:00-16:00:00 57.5 57.5 57.8 57.8
16:00:00-17:00:00 57.5 57.4 57.7 57.7
17:00:00-18:00:00 57.8 57.9 50.0 50.0
18:00:00-19:00:00 57.9 58.0 49.6 49.7
19:00:00-20:00:00 58.6 58.6 50.5 50.4
20:00:00-21:00:00 59.1 59.2 50.4 50.4
21:00:00-22:00:00 59.5 59.5 51.4 51.3
22:00:00-23:00:00 59.5 59.5 51.6 51.6
23:00:00-00:00:00 60.2 60.2 51.8 51.8
00:00:00-01:00:00 60.4 60.2 52.5 52.5
01:00:00-02:00:00 60.6 60.6 52.7 52.7

Table B.4: Arc curvatures for 2019-12-29 to 2019-12-31.FB indicates the full L-band.
LF indicates a low frequency portion of the L- band (856 < f < 1100 MHz)
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B.2 Calibrated Data

B.2.1 Combined Integrations

Epoch Integration Length LCP RCP
26-12-2019 11 66.6 66.6
27-12-2019 11 63.7 63.7
28-12-2019 8 54.2 54.3
29-12-2019 11 48.0 48.0
30-12-2019 11 51.7 51.8
31-12-2019 11 59.3 59.3

Table B.5: Arc curvatures for 11 hour integrations across the full L-band.

Epoch Integration Length LCP RCP
26-12-2019 11 65.5 66.1
27-12-2019 11 64.1 64.2
28-12-2019 8 54.1 54.6
29-12-2019 11 48.1 48.1
30-12-2019 11 51.2 51.2
31-12-2019 11 61.1 60.8

Table B.6: Arc curvatures for 11 hour integrations across the low frequency portion of
the L-band (856 < f < 1100 MHz).
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B.2.2 Sub-integrations

Epoch Duration LCP FB RCP FB LCP LF RCP LF

26-12-2019

16:00:00-20:00:00 66.4 66.4 66.0 66.0
20:00:00—:00:00 66.1 66.1 65.4 65.5
00:00:00-03:00:00 67.8 68.0 67.1 67.1

27-12-2019

15:00:00-19:00:00 64.4 64.4 64.4 64.4
19:00:00-23:00:00 63.6 63.6 64.0 64.0
23:00:00-02:00:00 62.4 62.4 62.0 62.0

28-12-2019

14:00:00-18:00:00 58.4 58.4 55.6 55.6
18:00:00-22:00:00 NA NA NA NA
22:00:00-02:00:00 53.1 53.1 52.3 52.4

29-12-2019

15:00:00-19:00:00 48.3 48.3 48.3 48.3
19:00:00-23:00:00 48.6 48.6 48.2 48.2
23:00:00-02:00:00 48.3 48.3 49.2 49.2

30-12-2019

15:00:00-19:00:00 51.1 51.1 50.7.0 50.7
19:00:00-23:00:00 51.3 51.3 51.5 51.6
23:00:00-02:00:00 51.6 51.5 53.2 53.3

31-12-2019

15:00:00-19:00:00 57.6 57.6 59.8 58.7
19:00:00-23:00:00 60.3 60.3 54.6 54.6
23:00:00-02:00:00 60.3 60.3 62.6 65.1

Table B.7: Arc curvatures for 26-12-2019 to 31-12-2019.FB indicates the full L-band.
LF indicates a low frequency portion of the L- band (856 < f < 1100 MHz).
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Magnetoionic Field Estimates

C.1 Upper Limits of Magnetoionic Field Fluctuations

-5 < ft < 0 0 < ft < 5
Obs. Epoch ⟨∆φ2

δβ⟩
1/2 ⟨δβ2

z ⟩
1/2 ⟨∆φ2

δβ⟩
1/2 ⟨δβ2

z ⟩
1/2

2019-12-26 0.021 345 0.031 509
2019-12-27 0.016 262 0.017 279
2019-12-28 0.037 607 0.019 312
2019-12-29 0.106 1864 0.117 1922
2019-12-30 0.068 1117 0.029 476
2019-12-31 0.033 542 0.046 755

Table C.1: Upper limits of small scale magnetoionic spatial fluctuations, ⟨δβ2
z ⟩

1/2 (inner
arc small ft sample), estimated from Γ̂RL and ν, D, and rF for all observations.

ft < -5 ft > 5
Obs. Epoch ⟨∆φ2

δβ⟩
1/2 ⟨δβ2

z ⟩
1/2 ⟨∆φ2

δβ⟩
1/2 ⟨δβ2

z ⟩
1/2

2019-12-26 0.115 1889 0.120 1971
2019-12-27 0.095 1561 0.080 1314
2019-12-28 0.100 1643 0.104 1708
2019-12-29 0.148 2431 0.139 2284
2019-12-30 0.162 2661 0.133 2185
2019-12-31 0.138 2267 0.118 1938

Table C.2: Upper limits of small scale magnetoionic spatial fluctuations, ⟨δβ2
z ⟩

1/2 (outer
arc small ft sample), estimated from Γ̂RL and ν, D, and rF for all observations.
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-5 < ft < 5 ∣ft∣ > 5
Obs. Epoch ⟨∆φ2

δβ⟩
1/2 ⟨δβ2

z ⟩
1/2 ⟨∆φ2

δβ⟩
1/2 ⟨δβ2

z ⟩
1/2

2019-12-26 0.029 476 0.117 1922
2019-12-27 0.017 279 0.087 1429
2019-12-28 0.031 509 0.102 1676
2019-12-29 0.122 2004 0.143 2439
2019-12-30 0.054 887 0.149 2448
2019-12-31 0.047 772 0.126 2070

Table C.3: Upper limits of small scale magnetoionic spatial fluctuations, ⟨δβ2
z ⟩

1/2 (inner
and outer arc large ft sample), estimated from Γ̂RL and ν, D, and rF for all observations.
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RFI Blanking

D.1 Manual RFI Blanking

Nchan Frequency (MHz) Region

1119 1089.85 C
1120 1090.06 C
1121 1090.27 C
1122 1090.48 C
1520 1090.69 C
1123 1173.65 C
1524 1174.49 C
1526 1174.91 C
1528 1175.33 C
1530 1175.75 C
1532 1176.16 C
1534 1176.58 C
1536 1177.00 C
1538 1177.42 C

Table D.1: Manually blanked channels at 1.0 - 1.1 GHz
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Nchan Frequency (MHz) Region

1671 1205.63 C
1673 1206.88 C
1675 1227.37 C
1679 1246.17 C
1777 1246.17 C
1867 1246.17 C
1970 1267.70 C
1972 1268.11 C
1974 1268.54 C
1978 1269.37 C
1980 1269.79 C
2021 1278.36 C

Table D.2: Manually blanked channels at 1.2 GHz

Nchan Frequency (MHz) Region

3244 1533.95 B
3245 1534.15 B
3249 1534.99 B
3368 1559.86 B
3369 1560.07 B
3510 1589.53 B
3567 1601.45 B
3568 1601.66 B
3569 1601.86 B
3949 1681.28 B
3952 1681.91 B
3954 1682.23 B
3955 1682.53 B
3956 1682.74 B
3957 1682.95 B
3958 1683.16 B
3960 1683.58 B
3976 1686.92 B
3977 1687.12 B

Table D.3: Manually blanked channels at 1.5 - 1.6 GHz
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Nchan Frequency (MHz) Region

383 936.04 A
384 936.25 A
385 936.46 A
386 936.67 A
387 936.88 A
388 937.09 A
390 937.50 A
392 937.92 A
394 938.34 A
396 938.76 A
398 939.18 A
399 939.38 A
400 939.59 A
401 939.80 A
402 940.01 A
403 940.22 A
404 940.43 A
405 940.64 A
408 941.27 A
410 941.68 A
412 942.10 A
414 942.52 A
416 942.94 A

Table D.4: Manually blanked channels at 940 MHz
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