
 

Ahmad 

Residential Household Electrical Appliance Management Using Model 

Predictive Control of a Grid Connected Photovoltaic-Battery System 

  
A. Ahmad1, T. N. Anderson1, A. K. Swain2, T. T. Lie1, J. Currie1 and W. Holmes3 

  
1Auckland University of Technology, Auckland, 1010, New Zealand 

2The University of Auckland, Auckland, 1023, New Zealand  

3Unitec Institute of Technology, Auckland, 1142, New Zealand 

E-mail: aahmad@aut.ac.nz 

  

Abstract 

Grid-connected photovoltaic (PV) based power generation technology is being pushed to the 

forefront as a viable alternative source of renewable energy, particularly in small-scale domestic 

applications. Due to the variable nature of solar energy, PV usually works well with battery 

storage to provide continuous and stable energy. However, by incorporating storage with such 

systems there is a need to develop controllers that allow the owners to maximize the benefit of 

such systems and so require sophisticated control strategies.  

In this work a multiple-input multiple-output (MIMO) state space model of a PV array, load 

energy demand, battery bank and utility grid was used to develop a model predictive control 

setup for a grid connected photovoltaic-battery power generation system. Artificial neural 

network (ANN) based energy demand prediction was used as the output measured disturbance 

for the MPC. Switched constraints were used for the MIMO state space model to mimic the 

dynamic behavior of the storage system. Simulation results show that the proposed MPC would 

activate non-critical electrical appliances usage at periods when excess PV energy was available 

from the PV array. Further, it would also allocate energy to the battery storage when this was 

available, and, when load energy demand was more than the PV array produced would 

deactivate non-critical appliances and use battery energy if necessary.  

1. Introduction 

The employment of passive technologies such as building insulation or more energy efficient 

appliances for heating and cooling offer a path towards the energy efficient operation of 

buildings. Another approach is to improve building automation by using advanced control 

concepts (Laustsen, 2008). Current control systems in buildings employ rule-based approaches 

combined with proportional–integral–derivative (PID) controllers. A shortcoming of these PID 

controllers is that they operate on a feedback arrangement and are prone to calibration errors 

and cannot handle unpredicted time delays. Moreover, they cannot handle nonlinearities in the 

control process and operate only for the predetermined time horizons.  

Typically building dynamics are slow and the building is subject to intermittent disturbances 

that gives rise to a constrained control problem. In many modern buildings the goal is to use 

on-site generations systems such as photovoltaics (PV) and battery storage systems, but still 

maintain a connection to the utility grid. To be able to make use of the energy generated and 

stored by such systems a controller that incorporates weather and energy demand predictions 

would be desirable. However, in order to best utilize the on-site generation, it is also necessary 



 

to make appropriate use of the thermal storage capacity of a building, electrical appliances and 

energy dispatch strategies. As such, the concept of Model Predictive Control (MPC) provides 

an ideal framework to tackle this problem (Oldewurtel, et al., 2012). 

In this respect, control of large-scale solar energy systems has received some attention and most 

researchers have considered energy management and demand response for large-scale 

integration of renewable energy at the utility side (Moura and de-Almeida, 2010 and Huang, et 

al., 2012). Also, uncertainties within forecast errors of renewable energy and load energy 

demand have been studied for large-scale integration of renewable energy (Makarov, et al., 

2011), but uncertainties at the demand side are not well evaluated. Further, most of the related 

optimal scheduling methods cannot handle complicated cases when hybrid systems experience 

external disturbances, and only a few closed-loop control methods have been designed (Palma, 

et al., 2013) and (Zervas, et al., 2008). However, there is lack of work in consideration on the 

optimal planning and control of small-scale grid-tied PV systems with battery storage, such as 

those used in residential houses. Therefore, there is a need to model the behavior of such power 

systems to comprehensively study the optimal schedule, with demand side management, and to 

analyze the uncertainty and robustness for an MPC system. 

2. Methodology 

The basic premise of MPC is to predict future behavior using a system model, given 

measurements or estimates of the current state of the system and a hypothetical future input 

trajectory. In this framework future inputs are characterized by a finite number of degrees of 

freedom that are used to optimize a cost function depending on the predictions. Only the first 

control input of the optimal control sequence is implemented, and, to introduce feedback into 

this strategy, the process is repeated at the next time instant using newly available information 

on the system state. This repetition is instrumental in reducing the gap between the predicted 

and the actual system response (in closed-loop operation). It also provides a certain degree of 

inherent robustness to the uncertainty that can arise from imperfect knowledge or unknown 

variations in the model parameters (referred to as multiplicative uncertainty), as well as to 

model uncertainty in the form of disturbances appearing additively in the system dynamics 

(Kouvaritakis and Cannon, 2015).  

As such, in this work an MPC system was examined in which an Artificial Neural Network 

(ANN) based load energy demand prediction (Ahmad and Anderson, 2014) was used as a 

disturbance for a closed-loop MPC. Figure 1 shows the overall structure of the photovoltaic-

battery-grid (PBG) system. Broadly speaking the MPC utilises energy consumption as a 

measured disturbance, while output from the PV array and the load data for a residential house 

were used as reference signals for the adaptive switched MPC.  

In developing the MPC a multiple-input multiple-output (MIMO) state-space model was 

developed to mimic the dynamic behavior of the system, and switched constraints were used to 

simplify the MPC design. Additionally, the AC loads for the household are divided into critical 

and non-critical loads, as shown in Figure 1. When predicted consumption was greater than 

generation, non-critical loads were switched off and turned back on when excess electricity was 

available from the PV array. 

 



 

Energy Demand 

Prediction using ANN

LoadTair

RH

P

Ws

Wd

Ra

HD

DW

Energy Consumption 

NON-CRITICAL LOADS
Washing Machine

Dish Washer
Dryer

CRITICAL LOADS
Lighting

PowerPoints
Cooking Range

Heat Pump

Hot Water Cylinder

Model Predictive Control 

with

MIMO State-Space Model

PV Array Battery Bank Utility Grid  

Figure 1. Structure of the photovoltaic-battery-grid system for a residential house with 

ANN prediction 

2.1. Model Predictive Control Design 

Model predictive control systems are designed based on a mathematical model of the plant. In 

this work, a MIMO state-space model was used and was evaluated with the system disturbance 

being the load energy demand. The linear state-space model can be deduced from the 

photovoltaic-battery-grid system model shown in Figure 1, such that the control input, at any 

time (𝑡), is given by Equation (1) 

𝑢(𝑡) ≜ [𝑃𝑃𝑉𝐿(𝑡), 𝑃𝑃𝑉𝐵(𝑡), 𝑃𝐵(𝑡), 𝑃𝐺(𝑡)]
𝑇 (1) 

where 𝑃𝐵(𝑡) and 𝑃𝐺(𝑡) are the energy drawn from the battery bank and the energy delivered to 

the grid respectively, and 𝑃𝑃𝑉𝐿(𝑡) and 𝑃𝑃𝑉𝐵(𝑡) are the energy from the PV array to the load, 

and to the battery bank respectively.  

Now, in an ideal situation all the energy generated by the PV system would be consumed by 

the household, though in reality this is not always possible. As such, for the system in this study, 

it was assumed that electricity generated by the PV array would be used to satisfy demand and 

charge the battery bank with priorities of 80% and 20% respectively. In doing this it is assumed 



 

that when demand is satisfied, and the battery is fully charged, excess electricity is exported to 

the grid. Hence the PV array is subject to the following constraints: 

0 ≤ 𝑃𝑃𝑉𝐿(𝑡) ≤ 𝑃𝑃𝑉𝐿
𝑚𝑎𝑥 

0 ≤ 𝑃𝑃𝑉𝐵(𝑡) ≤ 𝑃𝑃𝑉𝐵
𝑚𝑎𝑥 

0 ≤ 𝑃𝑃𝑉𝐿(𝑡) + 𝑃𝑃𝑉𝐵(𝑡) ≤ 𝑃𝑃𝑉(𝑡) 

where 𝑃𝑃𝑉𝐿
𝑚𝑎𝑥 and 𝑃𝑃𝑉𝐵

𝑚𝑎𝑥 are the maximum amount of electricity that can be delivered to the load 

and battery bank respectively, during one hour.  

Considering the battery storage system further, the charging and discharging equations for the 

proposed battery bank are given by Equations (2) and (3).  

𝑉𝑏𝑎𝑡𝑡 = 𝐸0 − 𝑅 × 𝑖 − 𝐾
𝑄

𝑖𝑡 − 0.1𝑄
 𝑖∗ − 𝐾

𝑄

𝑄 − 𝑖𝑡
𝑖𝑡 + 𝐸𝑥𝑝(𝑡)     (2) 

𝑉𝑏𝑎𝑡𝑡 = 𝐸0 − 𝑅 × 𝑖 − 𝐾
𝑄

𝑄 − 𝑖𝑡
(𝑖𝑡 + 𝑖∗) + 𝐸𝑥𝑝(𝑡)        (3) 

where 𝐸0 is the battery constant voltage (𝑉), 𝐸𝑥𝑝(𝑡) is the exponential zone dynamics (𝑉), 𝐾 

is the polarization constant (𝐴ℎ−1), 𝑖∗ is the low frequency current dynamics (𝐴), 𝑖 is the 

battery current (𝐴), 𝑖𝑡 is the extracted capacity (𝐴ℎ) and 𝑄 is the maximum battery capacity 

(𝐴ℎ).  

Furthermore, the state-of-charge (SOC) of the battery can be calculated using Equation (4). 

𝑆𝑂𝐶 = 100 (1 −
1

𝑄
∫ 𝑖(𝑡)𝑑𝑡
𝑡

0

)       (4) 

Now with respect to controlling the operation of the battery storage system, the charging and 

discharging model of the battery for the MPC computation is given by Equation (5) 

𝑆(𝑡 + 1) = 𝑆(𝑡) + 𝜂𝑐𝑃𝑃𝑉𝐵(𝑡) − 𝜂𝑑𝑃𝐵(𝑡)         (5) 

where 𝑆(𝑡) is the SOC at sampling time 𝑡 and 𝑆(𝑡 + 1) is the SOC at the next hour, 𝑃𝑃𝑉𝐵 and 

𝑃𝐵 are the charging and discharging energies respectively, and 𝜂𝑐 and 𝜂𝑑 are charging and 

discharging efficiencies (in saying this, 𝜂𝑐 and 𝜂𝑑 are uncertain constant parameters, that are 

estimated online in the MPC design). Furthermore, in Equation (5), the current SOC (𝑆(𝑡)) can 

be expressed by referring to the initial SOC (𝑆(0)) of a day as shown in Equation (6). 

𝑆(𝑡) = 𝑆(0) + 𝜂𝑐 ∑ 𝑃𝑃𝑉𝐵(𝑡)

𝑡+𝑁𝑐−1

𝑡=0

− 𝜂𝑑 ∑ 𝑃𝐵(𝑡)

𝑡+𝑁𝑐−1

𝑡=0

              (6) 

Obviously the SOC of the battery is subject to several constraints including, the maximum 

allowable charge limit and the minimum allowable discharge limit, referred to as the depth of 

discharge (DOD). Therefore, the lower and upper bounds of SOC are subject to the following 

constraint 

𝑆𝑚𝑖𝑛 ≤ 𝑆(𝑡) ≤ 𝑆𝑚𝑎𝑥 

where 𝑆𝑚𝑖𝑛 and 𝑆𝑚𝑎𝑥 are the minimum and maximum allowable SOC of the battery bank 

respectively. The lower bound of SOC (𝑆𝑚𝑖𝑛) can be expressed in terms of the DOD (D) 

𝑆𝑚𝑖𝑛 = (1 − 𝐷)𝑆𝑚𝑎𝑥 



 

Given that the batteries are charged only during day time, when PV energy is available, and 

mainly discharged during night time, simultaneous charging and discharging is avoided using 

Equation (7) as an additional constraint. 

𝑃𝑃𝑉𝐵(𝑡)𝑃𝐵(𝑡) = 0            (7) 

Hence, when PV production exceeds the total demand of the household, the battery bank is set 

in charging mode. When the demand of the house exceeds PV production, the battery bank is 

set in discharging mode. Zhou et. al (2015) used a battery bank that was charged by the grid 

during off-peak times and discharged during peak time when electricity prices were high. 

However, in this work excessive charging and discharging of the battery bank was avoided to 

extend battery life.  

Now, as mentioned previously, electricity from the grid is used only as a last resort by the MPC, 

as the main objective of the controller is to minimize grid imports and maximize the usage of 

the PV array by shifting non-critical loads to periods when excess PV electricity is available. 

In doing this the grid electricity 𝑃𝐺  is bidirectional and is used to cover the imbalance when the 

energy provided by the PV and battery are not sufficient to meet the demand. Positive values 

of 𝑃𝐺  represent grid imports and negative values of 𝑃𝑔 represent grid exports.  

On this basis the demand of the household at any given time should satisfy the condition set out 

in Equation (8): 

𝑃𝑃𝑉𝐿(𝑡) + 𝑃𝐵(𝑡) + 𝑃𝐺(𝑡) ≥ 𝑃𝐿(𝑡)                  (8) 

Where 𝑃𝐿(𝑡) represents the household demand at any given hour.  

As such, when implementing the MPC, the system state 𝑥(𝑡) and the augmented output 𝑦(𝑡) 
are given by Equations (9) and (10). 

𝑥(𝑡) ≜ [𝑆(𝑡), 𝑦(𝑡 − 1)]𝑇            (9) 

𝑦(𝑡) = 𝑤1𝑃𝑃𝑉𝐿(𝑡) + 𝑤1𝑃𝐵(𝑡) + 𝑤2𝑃𝑃𝑉𝐿(𝑡) + 𝑤2𝑃𝑃𝑉𝐵(𝑡)           (10) 

where 𝑆(𝑡) is the state-of-charge (SOC) of the battery bank and 𝑤1 and 𝑤2 are the positive 

weight coefficients.  

The linear state-space model is given by Equation (11) 

{
𝑥(𝑡 + 1) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡)

𝑦(𝑡) = 𝐶𝑥(𝑡) + 𝐷(𝑡)
                 (11) 

where A, B, C and D are the linear state-space system matrices of which 𝐷(𝑡) is the ANN based 

demand prediction used as the measured output disturbance matrix. 

Now, the MPC was developed for closed-loop control in which the objective function of the 

PV-battery-grid system model was optimized over a prediction horizon. In saying this the 

objective function 𝐽 is given by Equation (12) 

min 𝐽(𝑡) = 𝑚𝑖𝑛 ∑ [𝑤1𝑃𝑃𝑉𝐿(𝑡) + 𝑤1𝑃𝐵(𝑡) + 𝑤2𝑃𝑃𝑉𝐿(𝑡) + 𝑤2𝑃𝑃𝑉𝐵(𝑡)]

𝑘+𝑁𝑝−1

𝑡=𝑘

                 (12) 

where 𝑁𝑝 is hours over the prediction horizon.  



 

In doing this, the MPC is undertaking what amounts to an optimal dispatching problem, hence 

it is modelled into a control problem and solved by using the MIMO state-space model. Where 

the constraints on the MPC are expressed by Equation (13) 

{
 
 
 

 
 
 

0 ≤ 𝑃𝑃𝑉𝐿(𝑡) ≤ 𝑃𝑃𝑉𝐿
𝑚𝑎𝑥

0 ≤ 𝑃𝑃𝑉𝐵(𝑡) ≤ 𝑃𝑃𝑉𝐵
𝑚𝑎𝑥

0 ≤ 𝑃𝐵(𝑡) ≤ 𝑃𝐵
𝑚𝑎𝑥

𝑆𝑚𝑖𝑛 ≤ 𝑆(𝑡) ≤ 𝑆𝑚𝑎𝑥

𝑃𝑃𝑉𝐿(𝑡) + 𝑃𝑃𝑉𝐵(𝑡) ≤ 𝑃𝑃𝑉(𝑡)

𝑃𝑃𝑉𝐿(𝑡) + 𝑃𝑃𝑉𝐵(𝑡) + 𝑃𝐵(𝑡) = 𝑃𝐿(𝑡)

𝑆(0) ≤ 𝑆(𝑁)

                 (13) 

where 𝑁 is hours over the overall scheduling period.  

In summary, a MIMO MPC is developed for the photovoltaic-battery-grid system of Figure 1. 

MPC is utilized to solve the control problem at each sampling period. An optimal control 

problem over the prediction horizon is repeatedly solved (𝑡 = 0, . . . . , 𝑁 − 𝑁𝑝) with the linear 

state-space Equation (11), the objective function (12) and the constraints (13). The optimization 

variable is the power distribution sequence at each sampling period. At the 𝑡𝑡ℎ sample, an 

optimal solution [𝑈(𝑡), 𝑈(𝑡 + 1),… . 𝑈(𝑡 + 𝑁𝑝 − 1]
𝑇 can be obtained after solving the optimal 

problem. Only the first part of the solution, i.e., 𝑈(𝑡), is used in the current period and 

subsequently, at each instant 𝑡 is set to 𝑡 + 1 and the system states, inputs and outputs are 

updated. 

3. Results 

In order to examine the behaviour of the MPC a simulation of a photovoltaic-battery-grid 

system was undertaken using a week’s measurements of PV array production and energy 

demand taken from a real house, as shown in Figure 2.  

 

Figure 2. PV array production and energy demand of the house 
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Figure 3 shows how the MPC would behave for this particular week, as such, whenever the PV 

array production is less than the demand, usage of the non-critical loads is deferred until periods 

when excess PV energy is available. By doing so, grid imports are reduced and PV energy is 

utilized within the house, also exporting locally generated energy to the grid is discouraged. As 

such, it can be seen in that non-critical loads in the house would be used mainly during the day, 

when energy is available from the PV array.  

Figure 3. Switching behaviour of the MPC (On=1, Off=0) 

Exploring this further, Figure 4 shows how energy would be moved to and from the battery 

bank. As such, excess energy is used to charge the battery bank during the day-time and energy 

is supplied by the battery to loads during periods when the PV array alone cannot satisfy load 

energy demand (where for the proposed MPC with online estimation, initial values of the 

estimated parameters are given by �̂�𝑐(0) = 1.0 and �̂�𝑑(0) = 1.0). Further, it can be seen that 

during the last three days energy demand is high and PV production is lower than the previous 

days, therefore, more PV energy is assigned to satisfy demand and less PV energy is available 

to charge the battery bank.  

Finally, the performance of the proposed MPC was tested by analysing how closely the output 

of the controller followed the reference signal. In Figure 5 it can be seen that the MPC is 

attempting to minimize the difference between the controller output signal and the reference 

signal. This is equivalent to maximizing the usage of the PV array energy and consequently 

helping reduce grid imports.  
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Figure 4. Energy flow from the PV array to battery and battery to satisfy load 

 

Figure 5. Reference signal vs controller output signal 

4. Conclusion 

In this work artificial neural network based energy consumption was used as an output 

disturbance for the development of an adaptive model predictive control system, to plan in 

advance for periods of high energy demand in a residential house. Using this, a switched MPC 

strategy was developed for energy dispatching of the photovoltaic-battery-grid system. The 

model predictive controller was found to be capable of operating non-critical loads when excess 

PV energy was available and also to dispatching energy to and from the battery storage system. 
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