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Abstract 

The digital forensic community relies on a small number of complex tools to 

analyse digital evidence. These digital forensic tools have greatly improved the 

accuracy and efficiency of investigations. However, the reliance on tools may be a 

weakness that can be exploited to prevent or disrupt investigations. Counter-

measures to digital forensic techniques, known as anti-forensics, have typically 

been focussed on techniques to hide or prevent the creation of evidence. The 

concern of the author is that anti-forensic techniques may soon be focussed on 

exploiting software bugs in digital forensic tools. The tools used by the digital 

forensic community are complex with many different functions, which may 

contain software bugs. The risk of such software bugs is that digital forensic 

investigations could be compromised. This research evaluates the potential anti-

forensic risk and implications of software bugs in digital forensic tools. 

This research first presents a literature review of areas of digital forensics 

related to anti-forensic risk such as anti-forensic techniques, tool testing 

methodologies and legal issues. This research then develops a suitable 

methodology to identify software bugs in digital forensic tools with potential anti-

forensic risk. The methodology consists of six test cases designed to test various 

function areas of digital forensic tools for the presence of software bugs. Each test 

case has associated with it a number of reference sets to be used as input, which 

contain deliberately malformed data created through the process of file fuzzing. 

Acceptance spectrums ranging from “critically unacceptable” to “exceeds 

expectations” were developed to evaluate the anti-forensic risk caused by the 

identified software bugs. 

The research was successful in identifying a number of software bugs, the 

majority of which resulted in the digital forensic tools crashing. The software 

bugs identified were evaluated for anti-forensic risk and four test cases were 

determined to pose an unacceptable anti-forensic risk. Two test cases were 

determined to exceed expectations due to no software bugs being identified. 

The conclusion of the research is that software bugs in complex function 

areas of digital forensic tools pose an unacceptable anti-forensic risk. No critically 

unacceptable risks could be identified by this research. There is potential for 

further research into the anti-forensic implications of such software bugs.  
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Chapter One 

 

INTRODUCTION 
 

1.0   BACKGROUND 

Law enforcement agencies in the United States began working together in 

dedicated units to combat computer-related crimes in the late 1980’s (Casey, 2011, 

p. 10).  However the early pioneers of digital forensics did not have any dedicated 

forensic tools and often investigations were performed as live analysis using the 

suspect device to view evidence. As the field of digital forensics evolved, 

specialised tools were developed to assist with digital forensic investigations. The 

early digital forensic tools were the first attempts at safe and efficient collection of 

evidence. Once the evidence was collected, the analysis phase was still very much 

a tedious manual task. As the volume and types of evidence encountered by 

digital forensic practitioners increased, it became more apparent that manual 

forensic analysis was inefficient and impractical. More advanced forensic tools 

soon appeared that performed and automated complex analysis tasks. 

 Advanced digital forensic tools such as EnCase Forensic (“EnCase”) and 

Forensic Toolkit (FTK) have become a de facto standard in the digital forensics 

community. A tool such as EnCase is accepted and relied upon by digital forensic 

practitioners and courtrooms around the world. Digital forensic practitioners 

commonly rely on tools to perform complex forensic analysis processes. The 

reliance on digital forensic tools has resulted in a situation where a digital forensic 

practitioner only requires a minimal level of knowledge about how a tool works to 

analyse digital evidence. To ensure the integrity of evidence produced by tools, 

organisations such as the National Institute of Standards and Technology (NIST) 

have performed testing of many of the common function areas of tools such as 

acquisition and keyword searching. However, some in the forensic community 

such as Sommer (2010) are concerned that digital forensic tools are not being held 

to the same standards as other forensic sciences. Others, such as Carrier (2002), 

advocate the use of open source digital forensic tools to allow for greater scrutiny 

of how digital forensic tools work. 
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 The widespread adoption and use of fingerprinting techniques by law 

enforcement agencies compelled criminals to develop counter-measures such as 

wearing gloves. Similarly, in digital forensics, a number of counter-measures to 

prevent or disrupt forensic analysis have been developed and are commonly 

referred to as anti-forensics. A suspect who knows their computer is about to be 

seized and copied for forensic analysis might use a wiping program to destroy 

evidence or hide evidence in an encrypted container. Simple anti-forensic 

techniques such as wiping a drive are not uncommon in digital forensic 

investigations. The use of more complex anti-forensic techniques, such as creating 

counterfeit evidence has been discussed by researchers such as Harris (2006). 

Carrier (2002) acknowledges that complex anti-forensic techniques could be used 

but suggests that anti-forensic techniques would not completely prevent an 

investigation.  

 Currently the digital forensic community depends on a small set of 

partially-tested tools from a handful of vendors. The tools being used have had 

some function areas tested and verified by organisations such as NIST but for 

most function areas, the vendor is relied on to have performed sufficient testing. 

Researchers such as Rogers (2005, p. 9) suggest that dependence on a small 

number of tools is making the forensic community vulnerable to anti-forensic risk. 

A software bug that could exist in EnCase or FTK has the potential to affect a 

large portion of the digital forensic community. If the software bug presents a 

vulnerability that creates an anti-forensic risk then there is the possibility of wide 

spread disruption of digital forensic investigations. 

 The aim of this research is to investigate the extent that software bugs in 

digital forensic tools make digital forensic tools vulnerable to anti-forensic risk. 

The research presents a number of test cases where deliberately malformed data is 

input into a digital forensic tool in an attempt to locate software bugs. The 

software bugs identified are then analysed and a discussion of the associated anti-

forensic risk is presented. The purpose of the research is to provide a practical 

demonstration of software bug identification in digital forensic tools and the 

associated anti-forensic risk. The research question to be addressed by the 

research is: 

 

What is the anti-forensic risk caused by software bugs in digital forensic tools? 
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1.1        MOTIVATION 

A literature review reveals a number of examples of flaws in digital forensic tools 

as well as examples of demonstrated tool-related anti-forensic risks. The risks 

range from Ayers’ (2009) discovery of several flaws in the way EnCase handles 

dates and times to Neckar and Ose (2010, pp. 27-34) who demonstrated a code 

execution vulnerability that affected both EnCase and FTK. The digital forensic 

community is aware that digital forensic tools have had issues in the past but the 

consequences have been minimal. When each issue has been identified what 

results is usually a minor discussion by members of the digital forensic 

community and a vendor response to minimise concern. At this stage the author 

has found no documented evidence of any software bug in a digital forensic tool 

resulting in a severe anti-forensic risk that has been exploited maliciously to 

prevent or disrupt an investigation. 

When the forensic community were alerted to the code execution 

vulnerability in EnCase by McCash (2010) it was met with a small response 

suggesting the digital forensic community may be complacent and unconcerned 

with regards to anti-forensic risk. Complacency is perhaps justified in that even if 

a severe anti-forensic risk could be proven to exist in a digital forensic tool there 

would likely be little impact on the day-to-day work of a digital forensic 

practitioner.  

The concern of the author is that in the near future anti-forensic techniques 

and exploitation of software bugs will present a much more credible and serious 

threat than currently. It is not uncommon for creators of malicious software to use 

sophisticated counter-measures against anti-malware software and reverse 

engineering tools. Similarly it is not difficult to envisage a criminal organisation 

or state sponsored organisation using sophisticated anti-forensic techniques to 

prevent or disrupt the use of digital forensic tools. Digital forensic practitioners 

are used to with dealing with a suspect who tries to wipe their hard drive when the 

police knock on their door. However, digital forensic practitioners are not 

prepared to deal with a well-resourced organisation that can perform their own 

research and development of anti-forensic techniques. 

The motivation for conducting this research is to provide a better 

understanding of the anti-forensic risks associated with software bugs in digital 
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forensic tools. Previous research from the digital forensic field has largely focused 

on theoretical discussions of potential anti-forensic risk and potential counter-

measures. This research aims to provide a more practical demonstration of 

software bugs in digital forensic tools and a discussion of observable anti-forensic 

risk. The author believes that practical experimentation and testing is needed to 

provide some tangible evidence and insight regarding the extent of anti-forensic 

risk in digital forensic tools. There are two primary benefits of practical testing as 

related to anti-forensic risk. Firstly, the digital forensic community is able to 

identify and counter anti-forensic risk before someone does so maliciously. 

Secondly, digital forensic practitioners and courtrooms can gain a greater level of 

confidence in the tools used even if no anti-forensic risk is identified.  

1.2       STRUCTURE OF THESIS 

The thesis consists of six chapters: Chapter One “Introduction”, Chapter Two 

“Literature Review”, Chapter Three “Research Methodology”, Chapter Four 

“Research Findings”, Chapter Five “Discussion” and Chapter Six “Conclusion”. 

 Chapter Two presents a review of literature in areas of digital forensics 

relevant to anti-forensic risk. Areas reviewed by Chapter Two include the history 

of digital forensic tools, anti-forensic techniques and risks, evidential and legal 

issues and tool-testing methodologies. Chapter Two also presents a case study of 

anti-forensic risks associated with the digital forensic tool EnCase. Chapter Two 

is split into five main Sections: Digital Forensic Tools, Anti-Forensic Risk, 

EnCase Case Study, Evidential Implications and Tool Risk Evaluation. The 

literature reviewed by Chapter Two provides context and background for the 

research presented in this thesis, and provides an overview of the current state of 

research into the field of anti-forensic risk. 

 Chapter Three builds on the literature reviewed in Chapter Two to develop 

a methodology for testing digital forensic tools for software bugs and the 

associated anti-forensic risk. Chapter Three begins by first reviewing five similar 

studies in areas including currently used tool testing methodologies and 

alternative tool testing methodologies. The review of similar studies is then 

followed by a review of the problem areas identified in the literature. A research 

question and sub-questions are then derived from this review. A series of 
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hypotheses for the research question are also developed which will be tested 

following the collection of field findings. Chapter Three then presents a research 

methodology consisting of four phases, specifying how the field testing is to be 

conducted. Data requirements for the collection, processing and analysis of the 

data from the field testing are also specified. Finally, limitations of the research 

are presented before the chapter is concluded. 

 The methodology defined by Chapter Three is then used to conduct field 

testing, the results of which are presented in Chapter Four. Chapter Four begins 

by discussing changes to the research methodology. The first three phases of the 

research methodology are then reported on. The first three phases include 

components of the methodology such as function mapping, test cases and 

reference sets. The fourth phase of the research, being the analysis phase, is then 

discussed. The analysis phase presents an analysis of the data collected by the first 

three phases of the research. Finally Chapter Four presents a summary of the field 

findings which includes various visual representations of the results. 

 Chapter Five provides an in-depth discussion of the field findings from 

Chapter Four. Chapter Five begins by answering the research question and sub-

questions that were derived in Chapter Three. The hypotheses for the research 

question are then tested against the field findings. Chapter Five then presents a 

discussion of several areas of the field findings. The discussion is split into four 

areas; testing methodology, evaluating anti-forensic risk, anti-forensic 

implications and counter-measures and evidential implications. The purpose of the 

discussion is to discuss the implications of the field findings as well as their 

significance in the context of digital forensics. Finally Chapter Five recommends 

possible areas for further research based on this discussion before concluding the 

chapter. 

 Chapter Six provides a final conclusion to the research. Firstly, a summary 

of the research findings are presented, followed by the answers to the research 

question and sub-questions. Limitations of the research are then discussed and a 

summary of the recommendations for further research is presented. 

 Three Appendices at the end of the thesis provide supplementary 

information. The appendices include test cases, reference sets and the source code 

for the file fuzzer tool developed during the research. 
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Chapter Two 

 

LITERATURE REVIEW 
 

2.0       INTRODUCTION 

The increased use of electronic media in recent decades has led to the creation of 

an increasing amount of digital information being created, transferred and stored. 

Electronic information now pervades every aspect of our society and consequently 

the digital world also has high criminal usage. Electronic crimes have been 

steadily increasing in number for years and may continue to do so. Also 

increasing is the number of regular crimes that now contain an electronic 

component. One positive side effect of the increasingly electronic nature of crimes 

is that there is also an increased amount of digital evidence that can be used to 

prosecute criminals (Casey, 2011, p. 5). 

Digital evidence is playing an increasingly important role in the courtroom 

and to accommodate this increase the digital forensics community have developed 

standardised methods to collect varied and changing forms of evidence. The 

development of standardised methods was essential to ensure the reliability, 

completeness, accuracy, and verifiability of digital evidence (Brown & Kenneally, 

2005).  

However, the improvement of methods to collect and analyse digital 

evidence has also resulted in increasingly sophisticated techniques being used to 

commit electronic crime. A natural outcome of the evolution of electronic crime is 

the use of techniques to prevent or subvert the creation, storage and analysis of 

digital evidence. In the forensics community, techniques designed to interfere 

with creation, storage and analysis of evidence are known as anti-forensics. This 

thesis is to focus on the rise of digital anti-forensic techniques and Chapter Two 

presents a review of relevant literature. 

The literature reviewed in this chapter will provide context and 

background for the research presented in this thesis. Literature on a range of areas 

relating to anti-forensics will be reviewed. Firstly the history of digital forensic 

tools is presented in Section 2.1. Section 2.1 helps to identify the developments 

that have led to the creation of forensics and anti-forensics. Section 2.2 reviews 
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the current research that has been done regarding the anti-forensic risk posed to 

digital forensics, providing an overview and explanation of the types of anti-

forensic risk. In Section 2.3 a case study of past and present anti-forensic risk to 

Guidance Software’s EnCase Forensic is presented. Section 2.3 serves as a 

practical example of anti-forensic risk detailed in Section 2.2. Literature 

concerning the legal implications of anti-forensic risk is reviewed in Section 2.4. 

Section 2.4 translates the technical implications revealed in Sections 2.2 and 2.3 

into implications for digital evidence in the court room. Section 2.5 provides a 

review of methods to evaluate anti-forensic risk to digital forensic tools. Section 

2.5 examines possible techniques to mitigate anti-forensic risk and counteract the 

implications discussed in Sections 2.2 and 2.4. Finally Section 2.6 presents a 

summary of problems and issues raised by the literature review and Section 2.7 

provides a conclusion. 

2.1       DIGITAL FORENSIC TOOLS  

Section 2.1 provides an overview of how the digital forensics community has 

arrived at the current situation of extensively using and relying on digital forensic 

tools. A brief introduction to digital forensics and digital forensic tools is provided 

first. The introduction is followed by a discussion of the acceptance of and 

reliance on digital forensic tools.  

2.1.1    The Origins Of Digital Forensics 

During the late 1970s and early 1980s computer forensics as a field was in its 

infancy. Charters (2009) describes an “ad-hoc phase” in digital forensics; the field 

lacked clear processes, procedures, tools and an organised community. The first 

digital forensic analysts were often law enforcement personal that had some 

experience using computers. There were no established procedures for how to 

acquire digital evidence.  

The digital forensic community as it exists today originated with law 

enforcement agencies in the United States during the late 1980’s who began 

working together and forming dedicated units to combat computer-related crimes 

(Casey, 2011, p. 10). The digital forensic community created standardised 

methods for undertaking a digital forensic investigation. The standardised 
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methods were used by dedicated digital forensic investigators who had been 

trained in undertaking an investigation. Importantly, the digital forensic 

community also began the development and testing of standardised digital 

forensic tools. 

2.1.2    The Development Of Digital Forensic Tools 

In the early era of digital forensics, the amount and type of digital evidence that 

were examined were small in comparison with the scale and variety seen in 

investigations today. There were no dedicated forensic tools and often 

investigations were performed as live analysis using the suspect device to view 

evidence. The lack of dedicated forensic tools was less than desirable because 

investigators could potentially be altering evidence inadvertently. The nature of 

digital evidence leaves it open to being altered or destroyed accidently during 

collection (Casey, 2011, p. 26). When using the right tools, it is possible to make 

an exact copy of digital evidence and also determine if digital evidence has been 

altered (Casey, 2011, p. 26). 

During the early 1990s a number of dedicated tools were created such as 

SafeBack and IMDUMP that were able to forensically acquire a bit for bit copy (a 

“forensic image”) of hard drives without altering any evidence. More advanced 

tools like EnCase and FTK soon appeared on the market that could not only image 

a hard drive but also perform complex analysis tasks on forensic images.  

Tools like EnCase and FTK represented a turning point in how digital 

forensic investigations were conducted.  Prior to the development of advanced 

tools, analysis was a very tedious manual process. For example, in order to 

recover files an investigator was required to have a good understanding of the 

underlying file system and then manually locate and recover the file using a hex 

editor. Manual processes were adequate for examining small amounts of data such 

as a few files on a floppy disk, but as soon as investigators began encountering 

large volumes of data, the need for task automation became obvious. The strength 

of tools like EnCase and FTK is their ability to automate large, complicated tasks. 

Using advanced tools, it is easy to perform tasks such as recovering all deleted 

files from a hard drive.  
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2.1.3    Acceptability Of Digital Forensic Tools 

Digital forensic tools like EnCase and FTK are universally accepted by legal 

systems around the world. A common line of questioning of an expert witness 

starts by asking what tool they used and if the tool is accepted as a suitable or high 

quality tool by the forensic industry. The acceptability of a common tool like 

EnCase is rarely questioned any further in the court room. The universal 

acceptance of digital forensic tools in the court room likely exists due to a lack of 

technical understanding by the legal community and the general public. An expert 

witness can usually assume their use of EnCase of FTK will not be challenged to 

any significant degree. However, some in the forensic community such as 

Sommer (2010) are concerned that many digital forensic tools have not been 

tested and proven in the same way as has been done in other forensic sciences. 

2.1.4    Reliance On Digital Forensic Tools 

Prior to the development of digital forensic tools an investigator would manually 

analyse all of the evidence at file system level. The increasing size and complexity 

of digital evidence means that a time-consuming manual analysis is not the 

preferred approach. Digital forensic practitioners commonly rely on tools to 

perform complex forensic analysis processes for them. The complexity of digital 

evidence coupled with the ease with which tools can perform analysis has resulted 

in a situation where many practitioners have only a minimal level of knowledge 

about how a tool gets its results. 

 The danger of this reliance on tools is that the ability to analyse and 

produce valid evidence is now dependent on a small number of vendors 

maintaining their tools. Reliance on tools can place investigators in a dangerous 

position where they cannot be sure if the tool is reliable or they may know the tool 

is not reliable but the vendor will not fix the issue. Carrier (2002) has advocated 

the use of open source forensic tools to help mitigate some of the risk of relying 

on tools. 

 An example of the danger of this reliance can be demonstrated by flaws 

discovered in EnCase’s handling of times and dates. Several flaws were 

discovered that likely resulted in expert witnesses presenting incorrect dates and 

times as evidence in court (Ayers, 2009). The danger of flaws such as that 
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discovered by Ayers (2009) is that they affect a large portion of digital evidence 

presented in court because of the reliance on EnCase. 

2.2  ANTI-FORENSIC RISK 

This Section describes how the digital forensics community has approached the 

topic of anti-forensic risk in the past. Firstly types of anti-forensic risk will be 

discussed, then an analysis of the risk factors that allow anti-forensic techniques 

to succeed and potential mitigation strategies will be presented. 

In the last decade many researchers have attempted to define, understand 

and combat the problem of anti-forensic risk. The researchers all approached the 

topic from a different point of view and with different motives and goals. The 

varying approaches have resulted in differing opinions about what “anti-forensics” 

actually is. Harris (2006, p. S45) attempted to unify research about anti-forensics 

into an appropriate definition and considers anti-forensics to be “any attempts to 

compromise the availability or usefulness of evidence to the forensics process”. 

Rogers (2005, p. 3) offers a similar definition, defining anti-forensics as “attempts 

to negatively affect the existence, amount and/or quality of evidence from a crime 

scene, or make the analysis and examination of evidence difficult or impossible to 

conduct.” For the purposes of Chapter Two, the definition provided by Harris’ 

will be used when referring to anti-forensics. 

2.2.1    Types Of Anti-Forensic Risk 

The differing definitions of “anti-forensics” resulted in different classifications for 

the various types of anti-forensic risk that exist. Similar to the unified definition, 

Harris (2006, p. S45) also created a unified list of the types of anti-forensics 

consisting of four types of anti-forensic risk that will be described below. 

2.2.1.1      Destroying evidence 

The first type of risk, destroying evidence, encompasses any process which 

destroys evidence or makes the evidence unusable from an investigative point of 

view (Harris, 2006, pp. S45-S46). An example of evidence destruction would be 

wiping a hard drive with zeros or blanking all timestamps on files. Simple 

approaches to destroying evidence like wiping are a common type of anti-forensic 

risk encountered by digital forensic practitioners; a suspect realises they might be 
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investigated and then frantically tries to destroy all evidence. On many storage 

devices and file systems, simply deleting a file is not sufficient to destroy 

evidence so overwriting techniques must be used. Garfinkel (2007, p. 2) states 

there are three basic modes of operation for overwriting; overwrite the entire 

media, overwrite individual files or attempt to overwrite already deleted files by 

writing to the free space on the media. Harris (2006, p. S46) notes that the tools or 

processes used to destroy evidence often create new evidence trails. There have 

been research studies conducted into the tendency of evidence destruction tools to 

either leave behind evidence or not fully destroy evidence. An example of trails 

left behind by anti-forensic tools is a study investigating the effectiveness of 

erasure tools that showed anti-forensic tools does not sufficiently destroy some 

evidence (Chiang, Triton, & Woodward, 2010). Another study showed that 

similar anti-forensic tools not only did not sufficiently destroy evidence but also 

left unique signatures behind that could be used to identify the tool used (Geiger, 

2005). 

2.2.1.2      Hiding evidence 

Hiding evidence is the process of making evidence less visible to the investigative 

process. The evidence still exists and is not altered, it is just made harder to find. 

Examples of hiding evidence include changing a document’s file extension from 

*.docx to *.jpeg, or placing a document into a password protected zip container. 

Simple techniques for hiding evidence are a common type of anti-forensic risk 

often seen in investigations and are usually easily thwarted. There are some more 

advanced techniques for hiding evidence that are well known and understood in 

the forensic community such as the use of host protected areas (HPA) and drive 

configuration overlays (DCO) on hard drives. Data stored in the HPA or DCO is 

not visible to the basic input/output system (BIOS) or operating system but can be 

extracted using specialised tools (Garfinkel, 2007, p. 4). Due to the numerous 

possible locations and methods of hiding digital evidence more advanced types of 

evidence hiding can be very effective. However, even if the hidden evidence 

cannot be found, the possibility that evidence may have been hidden coupled with 

the presence of hiding tools has been presented as evidence itself (McCullagh , 

2005). 
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Harris (2006, p. S45) states that some attacks on forensic tools and 

processes could also be considered an evidence trail obfuscation technique. The 

ability to attack tools to hide evidence trails results in some overlap between anti-

forensic techniques in the counterfeiting evidence (Section 2.2.1.4) and hiding 

evidence categories. An example of an overlap could be an attack against EnCase 

defect #38041. Defect #38041 prevents keywords from being found in a search 

when they break across a line due to the text style being used (Bunting, 2010).  

2.2.1.3      Eliminating evidence sources 

The third type of risk; eliminating evidence sources, is the process of preventing 

the creation of evidence. Harris (2006, p. S46) notes that if no evidence is created 

then there is no need to try to destroy or hide the evidence. An example might be 

an employee who is trying to smuggle sensitive documents out of his company. 

The employee could connect a USB drive and copy the documents to it; however, 

connecting the device might leave evidence in locations like the Windows registry 

that records that a device was connected. Instead, the employee might opt to 

photograph the documents on his screen with their smartphone thus preventing 

evidence from being created. Another example of eliminating evidence sources is 

the use of live CDs or virtual machines; these tools allow anyone to use a 

computer while containing and minimising the amount of forensically useful 

information that is left behind (Garfinkel, 2007, p. 5). Harris (2006, p. S46) 

mentions that in cases where there are little or no evidence trails, the lack of an 

evidence source could be important evidence in and of itself. An example is a 

hacker who exploits a system and avoids using techniques that could be noticed 

and recorded by an intrusion detection system. The fact that the hacker knew what 

techniques to avoid using may suggest a level of skill which could help narrow 

down the potential list of suspects. 

2.2.1.4      Counterfeiting evidence 

The final type of risk is “counterfeiting evidence” which is described as creating 

fake evidence that appears to be something else; often with the intention of 

invalidating actual evidence or misleading the investigator (Harris, 2006, p. S46). 

Importantly Harris (2006, p. S46) includes evidence designed to attack 

weaknesses in tools and processes under the counterfeiting evidence category. 
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The classification of issues with tools as counterfeiting evidence is a deviation 

from earlier work where attacks against tools and processes are in a separate 

category of their own (Rogers, 2005). A simple example of counterfeiting 

evidence is the editing of timestamps to make it appear as if a document was 

created earlier than it was. An example of an attack against a tool is deliberately 

creating a document with a character set that is not searchable by a particular tool. 

An expert witness may be unable to explain why the document was not found by a 

keyword search. Attacks on tools create doubt about the tool and the processes 

used by the expert witness and may discredit actual evidence that has been found. 

An advanced example of counterfeiting evidence is manipulating a JPEG image 

and using sophisticated techniques to hide the history of the modified image 

(Stamm, Tjoa, Lin, & Liu, 2010). 

 Harris’s (2006, p. S46) definition and classification of counterfeiting 

evidence is acceptable for the most part. However, the use of the term “counterfeit” 

implies that false evidence has been created and is being represented as something 

it is not. Evidence does not necessarily have to be faked, created or 

misrepresented in order to pose a threat to tools and processes. The category could 

possibly be renamed “misleading evidence” meaning any evidence that could 

adversely affect the investigation.  

2.2.2    Anti-Forensic Risk Factors 

Harris (2006, p. S46) suggests that anti-forensic techniques rely on weaknesses 

within digital forensics in order to succeed. Harris identified three key problem 

areas that are exploited by anti-forensics; human factors, dependency on tools and 

processes and physical and logical limitations of the investigation. 

2.2.2.1      Human risk 

The first anti-forensic risk factor, the human factor, refers to how an investigator 

behaves when encountering an anti-forensic technique being used against them. 

Harris (2006, pp. S46-S47) includes aspects such as the alertness of the 

investigator and the investigator’s training and experience as aspects of the human 

factor. The “alertness” aspect of the investigator could be expanded to encompass 

the current mental state or well-being of the investigator. It is not uncommon for 

an investigator to work all night imaging a computer only to get the evidence back 
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to the lab and be instructed that analysis needs to begin immediately. Less than 

perfect working conditions for the investigator lend themselves to a situation 

where the investigator is not operating at 100% of their mental ability; they are 

tired and stressed and could easily miss something obvious that a fresh mind 

would not miss. Rogers (2005, p. 12) notes that attacks on processes and tools 

(discussed in more detail in Sections 2.2.2.2 and 2.2.2.3) can be subtle and the 

more automated an examination is the more likely it is to be attacked; an 

investigator who is not very alert could miss subtle anti-forensic risks. The 

training aspect is also important as training can help an investigator identify an 

anti-forensic attack as well as provide some idea of how to mitigate the risk to the 

forensic process. For example, commercial anti-forensic tools often leave behind 

tell-tale signs (Geiger, 2005, p. 9); if an investigator is not familiar with which 

signs to look for they could overlook the use of an anti-forensic tool. 

Harris (2006, p. S47) stresses the importance of the experience factor, 

stating that an investigator relies on his experience to inform his intuition.  

Investigators continually rely on their past experience to modify the way they 

investigate. For example, if an investigator had previously encountered a case of a 

suspect deliberately modifying MRU (Most Recently Used) lists in the Windows 

registry, they would be more likely to look for the technique being used in future 

cases. 

Harris (2006, p. S46) also notes that an investigator who is naturally 

inquisitive is more likely to follow unusual or interesting challenges in an 

investigation. The importance of an inquisitive nature is that the more inquisitive 

an investigator is, the less likely they are to miss an anti-forensic technique being 

used.  

 The discussion by Harris (2006, pp. S46-S47) regarding the way an 

investigator approaches an investigation demonstrates ways in which the evidence 

can guide the behaviour of an investigator. Someone who is about to be 

investigated may be able to deliberately create evidence that guides an 

investigator away from the evidence of value. The manipulating of people to take 

some specific action in their lives is known as social engineering (Hadnagy, 2010, 

p. 10). A possible social engineering attack could be to create a PDF file that 

looks like a critical piece of evidence. The PDF file could contain a malicious 

payload that exploits vulnerabilities in Adobe Reader. Creating a malicious PDF 
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file containing an exploit is simple and does not require technical knowledge 

when using tools like the Social Engineering Toolkit (Kennedy, 2012). The 

investigator comes across the file and gets frustrated by the inability of the built-in 

viewer of their digital forensic tool to view the PDF file. They then export and 

open the PDF file and the payload is triggered compromising the investigator’s 

computer. Social engineering techniques would be very effective against digital 

forensic investigators for a number of reasons. Firstly, as Harris (2006, p. S46) 

noted, most investigators are naturally inquisitive; investigators are trying to find 

evidence and will be curious about anything suspicious that catches their eye. 

Secondly the computers used for investigation are typically segregated from 

external networks and the internet. Computers in a digital forensic lab are not 

patched or updated as regularly as internet connected computers; investigation 

computers could contain vulnerable software and outdated anti-virus definition 

files. Finally, because investigators have their investigation computers isolated, 

they tend to see them as somewhat immune to security threats. Typically 

investigators have anti-virus installed but they do not consider the security of their 

computers to be under any serious threat. The complacency of investigators could 

result in investigators readily viewing files from a suspect computer using 

external viewers on their investigation computers. An investigator might be 

hesitant to launch an executable file from a suspect computer but would be less 

hesitant to open a PDF file. 

Harris’s (2006, p. S47) first strategy for mitigating human risk factors is to 

allow investigators more time to investigate cases that involve anti-forensics. In 

an ideal world all investigators would like more time to investigate all of their 

cases regardless of anti-forensics. However time and cost pressures often dictate 

how long an investigator has to spend on a case rather than the complexity of the 

case itself. Whitteker (2008, p. 15) notes that time and money are “two of the 

biggest limiting factors affecting a forensic investigator”. Investigators may need 

to put pressure on the people responsible for determining the time spent on 

investigations such as managers, clients, judges and lawyers; there is a need to 

educate people about anti-forensics and why it may make the investigation take 

longer. Harris’s (2006, p. S47) second strategy for mitigating human risks is to 

ensure that investigators are undergoing continuous digital forensic education as 

well as being involved in research. The involvement in training and research 
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would result in increasing the knowledge and experience of the investigator which 

should help to mitigate human risk. An example of knowledge helping to mitigate 

human risk is being aware that non-executable files such as PDFs can exploit 

vulnerabilities in their associated viewer. Rogers (2005, p. 15) agrees that 

investigators need better education and training and also suggests that if 

investigators were more knowledgeable about their tools and the underlying 

processes they would be more likely to identify an anti-forensic risk (Ibid. p. 13). 

2.2.2.2      Tool risk 

Digital forensic investigators typically rely on one or two tools to conduct their 

investigation. The reliance on a small number of tools is partly because of the 

requirement in the community to have standardised tools that can be tested and 

confirmed to produce reliable results. The small size of the digital forensic 

community and the barriers to entry for new software vendors also contributes to 

the lack of diversity in forensic software. The dependency on a few tools from a 

handful of vendors is good from the point of view of having a set of proven tools 

but has also made the community vulnerable (Rogers, 2005, p. 9). Garfinkel (2007) 

split tool risk types into three categories: failure to validate data, denial of service 

attacks and fragile heuristics.  

The first category specified by Garfinkel (2007, p. 81) refers to the risk of 

tools not properly validating input data before performing a process with that data. 

A common example of a technique that exploits software that fails to validate 

input data is the buffer overflow attack. A buffer overflow occurs when a program 

is writing data to a buffer in memory but overruns the buffers boundary and 

overwrites the adjacent memory area. The result of buffer overflow is that the 

program may exhibit erratic behaviour including crashes and memory access 

errors. In cases where the data being written to memory is under the control of the 

user it may be possible for the user to control what code is currently being 

executed and to execute their own arbitrary code. Many investigators have 

probably experienced an unexpected crash or erratic behaviour when using a 

digital forensic tool; the crash is likely due to a software bug in the tool that does 

not properly validate input data. One of the main reasons for the existence of 

software bugs in digital forensic tools is complexity. Digital forensic tools must 

be able to acquire data from multiple types of device and then analyse, search and 
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display thousands of different data formats.  A typical software package like 

Microsoft Word only needs to handle about 20 file formats, whereas in 

comparison a forensic tool needs to be able to handle hundreds of file formats. 

 Denial of service attacks in the context of tools refers to the ability of an 

attacker to exhaust an available resource like memory and CPU time (Garfinkel, 

2007, p. 81). Once the resource has been exhausted then the service provided by 

the tool is denied; the service in the context of digital forensic tools being the 

specific forensic analysis task being performed. An example of a denial of service 

attack against digital forensic tools is one commonly referred to as “42.zip”. 

42.zip is a small zip file that is 42KB in size; however 42.zip contains multiple 

levels of recursively nested zip files inside itself which, when fully extracted, 

contain 4.5PB of data (Brinkmann, 2008). Similar malicious compound files were 

originally used to take down email servers by exploiting the fact that the anti-virus 

systems on email servers would attempt to extract the zip file and scan its contents 

(Leyden, 2001). Digital forensic tools also have the ability to extract compound 

files and, in some cases, extraction is a prerequisite to performing certain analysis 

tasks. “42.zip” could be used to attack functionality such as the file mounter 

Enscript, available in EnCase 6. The file mounter Enscript recursively searches 

through the file system in evidence files and mounts compound files such as zip 

files. The mounting process consists of extracting the contents of the compound 

file and storing it within the EnCase case file so that further processes can be run 

on its contents (i.e. keyword searching). If the mounting process was to encounter 

42.zip then the system would keep extracting until it ran out of resources such as 

hard drive space and memory.  

 The final type of risk specified by Garfinkel (2007, pp. 81-82) is fragile 

heuristics which refers to the processes used by digital forensic tools to determine 

the type or structure of a data object. Essentially, digital forensic tools often have 

to make educated guesses about what type of data they are processing or how data 

is structured. For example, when EnCase conducts a file signature analysis it first 

examines the file extension and file header and then performs a comparison with a 

list of known signatures (Bunting, 2008, p. 352). The risk of relying on heuristic 

processes is that they can be easily circumvented by tools such as Transmogrify in 

order to hide files (Liu, 2008). There is also the risk of a denial of service attack 

or file hiding technique being possible through the creation of large numbers of 
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false positives. For example, an attacker could create a large number of text files 

that start with “PK”. Because text files have no header, a file signature analysis in 

EnCase will report the text files as zip files (Bunting, 2008, p. 358).  The large 

number of false positives could prevent functionalities such as the file mounter 

Enscript from working effectively or could divert the investigator’s attention from 

legitimate zip files containing relevant evidence. 

 Harris (2006, p. S47) states that tool related risks can be mitigated through 

two main approaches; firstly using multiple tools and secondly encouraging 

software vendors to make better tools. The use of multiple tools is a simple 

solution, however, the cost in time and money of purchasing tools, training and 

performing the same work twice prohibits many investigators from being able to 

use multiple tools. The monetary cost factor can be reduced by the use of open 

source forensic tools which have come a long way in terms of functionality and 

usability in recent years. Open source tools also have the benefit of any bugs that 

pose an anti-forensic risk being able to be fixed without vendor involvement. The 

use of multiple tools also greatly helps mitigate the risk of improperly validated 

data. However there are only a limited number of ways for digital forensic tools to 

perform a task which results in tools sharing common methods and techniques; 

the end result being multiple tools that are vulnerable to the same denial of service 

and fragile heuristic attacks. There is currently no documentation or suggestion in 

the community regarding what to do when multiple tools are unable to produce 

accurate results (Slay & Beckett, 2007, p. 2). A better alternative to mitigating 

tool risks is to make better and more effective tools. Garfinkel (2007, p. 82) 

agrees that many anti-forensic techniques can be overcome by improving and 

fixing bugs in existing digital forensic tools. To get better tools investigators need 

to place pressure on venders to put more emphasis on fixing bugs in their tools 

and improving the intelligence behind the processes in their tools. Denial of 

service attacks such as the use of 42.zip should be intelligently detected and 

handled by tools. The heuristic systems behind processes like file signature 

analysis should be improved; for example, tools could look beyond the header and 

footer of a file and try to identify known file structures within the file in order to 

identify its type. Investigators could also use various tool evaluation and 

validation techniques to help identify and mitigate anti-forensic risk associated 
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with tools. Tool evaluation and validation techniques will be examined in more 

detail in Section 2.5. 

2.2.2.3      Process risk 

In the same way as the digital forensics community has standardised tools the 

community has also developed a standard set of processes for conducting 

investigations. Standard processes help create consistency and quality across 

investigations which typically results in better quality evidence being found. It is 

common for investigators to have a set process for acquiring a hard drive or a set 

list of processes they perform using a digital forensic tool regardless of the 

specifics of the particular case at hand. Rogers (2005, p. 9) suggests we may 

become a “victim of our own success” in standardising forensic processes. Rogers 

(2005, p. 9) also suggests that there is an assumption that many investigators are 

“tool monkeys who do not understand what is happening under the hood”; the 

implication of that being that many investigators blindly follow the same process 

every time. Many process risks can be viewed as an extension of the human risks 

discussed in Section 2.2.2.1.  

 Because the processes an investigator follows are somewhat predictable an 

attacker can form a good idea of where to target an anti-forensic attack. A simple 

example of a targeted attack is if an attacker knows that examining INFO2 files is 

part of an investigator’s process, they may take steps to remove or sanitise 

evidence stored in INFO2 files. A more advanced example would be combining a 

process risk with a tool risk from Section 2.2.2.2; the attacker could instead create 

a malformed INFO2 that causes the investigator’s forensic tool to crash. Process 

risks can also be combined with the environmental risks discussed in Section 

2.2.2.4; for example, if an attacker knows the investigator’s process requires him 

to perform a full physical acquisition of all hard drives then the attacker could 

purchase many large hard drives, which would significantly delay the 

investigation. If investigators’ processes are not flexible, or they do not 

understand the underlying reasons for certain processes, they will be vulnerable to 

process risks that could greatly increase the cost and time taken to complete an 

investigation. 
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2.2.2.4      Environmental risk 

Environmental risks are the physical and logical limitations encountered by the 

investigator caused by investigation environment. Environmental risks are often 

unexpected and difficult to overcome for an investigator, due to their lack of 

control over environmental risks.  

 A physical environmental risk that Harris (2006, p. S48) refers to is the 

ability of investigators to be able to investigate the latest hardware/software as 

well being able to investigate antiquated hardware/software. One such example is 

the micro SATA connector that has become widespread due to the increased 

popularity of 1.8” hard drives in small form factor notebooks. When the micro 

SATA connector first appeared many investigators lacked the appropriate 

adaptors to perform an acquisition of the hard drive directly. The lack of suitable 

adaptors makes it harder for the investigator to acquire an image and a 

workaround such as a boot disk is necessary. Initially, a micro SATA connector 

might not be apparent as an anti-forensic technique. However when referring back 

to the definition of anti-forensics provided in Section 2.2 it becomes apparent the 

micro SATA connector does have an impact on the availability of evidence. The 

impact on availability of evidence can be quantified in the time that the 

investigator wastes disassembling the laptop, finding out that he does not have the 

necessary equipment and then having to devise and implement a workaround. 

Although forensic imaging kits now typically come with micro SATA adaptors 

the point is that if the investigator does not keep up with the latest technology they 

are putting themselves at risk.  

As Harris (2006, p. S48) suggested, the technology risk also applies in the 

opposite direction; a suspect might use technology that is so old or exotic that the 

investigator does not have the equipment or expertise to handle it. For example, it 

is unlikely that many investigators have a 5¼ inch floppy drive in their imaging 

kits. The cost and practicality of having equipment to image every type of exotic 

hardware means an investigator would never have all of the appropriate 

equipment to handle this scenario. However, the fact that investigators would not 

typically have appropriate equipment exemplifies the effectiveness of exotic 

storage media as an anti-forensic attack. A suspect who believes they are going to 

be investigated could deliberately store evidence across many different types of 
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storage media. The investigator who tries to image the suspect’s digital storage 

media could discover the following: 8 and 5¼ inch floppies, IBM 3590, SLR and 

StorageTek T9940 backup tapes and Minidiscs. The typical investigator would 

struggle to identify the various types of storage even before considering how to 

perform imaging and analysis. The result of the suspect possessing varied types of 

storage media is the cost of the investigation in money and time significantly 

increasing. The final outcome is likely to be that the investigator has less time to 

perform the analysis and is subsequently less likely to find evidence against the 

suspect. 

One physical environmental factor that is always increasing is the size of 

storage mediums and the volume of data stored on them. In the forensic 

community some such as Garfinkel (2010) have predicted that investigators will 

no longer be able to create a full forensic image due to the increasing size of 

storage devices. The idea that imaging everything will end is based on the fact 

that storage devices (magnetic hard drives in particular) have rapidly been 

increasing in volume while not making much improvement in terms of access 

speeds. The outcome of the development of large hard drives is that investigators 

are taking longer to image a typical hard drive. It can be argued that increasingly 

large hard drives will have a significant effect on standard forensic techniques. 

There is the possibility of an excessive number of large hard drives being used to 

deliberately slow down an investigation. For example, a suspect could buy ten 

large hard drives and fill them with benign content. The suspect could also 

deliberately buy cheaper “green” models that have slower speeds than typical hard 

drives. The investigator now has to image ten large hard drives and because they 

are full of content he cannot gain much benefit from the use of compression. 

Similar to the previous example, the suspect possessing an unexpected quantity of 

storage media can greatly impact an investigation in terms of money and time. 

Logical environmental factors include issues like knowing how to interpret 

various types of data structure or being able to process large amounts of data. One 

example is the difficulty that Carrier (2005, p. 274) had in trying to figure out the 

NTFS file system. There is no officially published specification on the low level 

data structures in NTFS, which means no one, other than Microsoft can know if 

their implementation or understanding of the data structures is correct. The reason 

the lack of a complete specification is an issue for investigators is that a malicious 
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user only needs to understand a single aspect of NTFS that may allow an anti-

forensic attack; whereas an investigator needs to understand the entire 

specification in order to know all possible attack vectors (Harris, 2006, p. S48). 

Another example that Harris (2006, p. S48) gives, is the difficulty that forensic 

software has in processing large volumes of data. If the investigator manages to 

image the ten large hard drives referred to in the earlier example he now has to 

input all of the data into their digital forensic tool and perform an analysis on it. 

The current analysis approach used by tools is not suited to processing large 

amounts of evidence (Garfinkel, 2010, p. S68; Richard III & Roussev, 2006, p. 78) 

which will cause a significant increase in the amount of analysis time required. 

Similar to the physical limitation, the logical limitation could have an impact on 

the time and cost of an investigation. The anti-forensic technique of forcing lots of 

data into a digital forensic tool is only of limited effectiveness; tools are getting 

better and computer hardware is always getting faster. To make the technique 

effective the suspect would have to use large volumes of specific data that looks 

like authentic evidence. For example a suspect could generate 1TB of Internet 

history which would require a large amount of computational expense to analyse. 

The full 1TB of Internet history would have to be analysed to ensure any 

legitimate evidence has not been missed. 

Harris (2006, p. S48) notes that investigators will always have to deal with 

physical and logical limitations and investigators can never make them go away 

completely. It is likely there will always be an on-going arms race between the 

ability to create evidence and the ability to process and interpret evidence. Harris 

(2006, p. S48) suggests that many logical limitations could be mitigated by the 

use of different approaches to forensic tools such as statistical analysis, mass 

indexing of data and improving search algorithms. Garfinkel (2010, p. S70) has 

also encouraged the use of alternative analysis approaches to overcome logical 

and physical limitations. Richard and Roussev (2006, p. 80) agree that alternative 

analysis approaches are needed but also suggest increasing the performance of 

existing analysis techniques. Harris (2006, p. S48) also mentions that there should 

be improved cooperation from vendors when it comes to understanding how their 

proprietary technology works. 
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2.3  REVIEW OF ANTI-FORENSIC RISK IN ENCASE 

The EnCase software package created by Guidance Software has become one of 

the de facto standard tools used in digital forensic investigations. Guidance 

Software has only one major commercial competitor being Forensic Toolkit (FTK) 

created by AccessData. A number of smaller competitors in niche areas also exist, 

however, they do not usually compete directly with EnCase. The limited 

information regarding sales statistics makes it difficult to determine who the 

market leader is, however, Guidance Software is typically assumed to hold the 

majority of the market share. Due to the market dominance, EnCase has been a 

logical target for researchers looking to demonstrate anti-forensic risks. In Section 

2.3 the anti-forensic risks that have been demonstrated to be present in EnCase 

will be investigated.  

 While Section 2.3 focuses on EnCase many of the issues discussed could 

also be applied to other commercial tools such as FTK as well as open source 

tools like The Sleuth Kit (TSK). As stated in Section 2.2.2.2 there is only a 

limited number of ways a forensic tool can perform an analysis task; the end result 

being that many forensic tools use very similar techniques to undertake analysis. 

The similarity in analysis techniques means that often an attack against one tool 

will also succeed with another. 

2.3.1    Newsham, Palmer, Stamos & Burns - iSEC Partners Inc. 

One significant piece of research was done not by forensic researchers but by IT 

security researchers. In 2007, several employees of iSEC Partners Inc. conducted 

tests against digital forensic tools in an attempt to locate software bugs. To 

discover software bugs the iSEC Partners team used two techniques, fuzzing of 

data formats and manual targeted manipulation of data formats (Newsham, 

Palmer, Stamos, & Burns, 2007).  

2.3.1.1      Fuzzing 

Fuzzing is the process of providing intentionally invalid data to an application to 

attempt to trigger an error or fault condition of some kind (Sutton, Greene, & 

Amini, 2007, p. 22). The iSEC Partners team used fuzzing to create malformed 

data structures through methods such as randomly replacing single bytes 
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(Newsham, et al, 2007, p. 4). Two data structures were targeted for testing; 

individual files and file system structures. Individual files were targeted in an 

attempt to locate issues with EnCase’s built-in file viewers (Ibid, p. 5). File 

systems and entire disk images were also targeted in an attempt to locate issues 

with the techniques used to analyse file systems (Ibid, p. 5). The fuzzing 

techniques used are discussed in more detail in Section 3.1.5. 

2.3.1.2      Targeted manipulation 

In contrast to the blind nature of fuzzing, the iSEC Partners team also performed 

deliberate malformation of data structures (Newsham, et al, 2007, p. 5). Targeted 

manipulation involves having detailed knowledge about the inner workings of a 

data structure and then malforming data in certain locations with a specific aim. 

Examples of manual manipulation performed by the iSEC Partners team include 

malforming data structures inside JPEG files and creating malformed file systems 

with unusual data structures such as directory loops (Newsham, et al, 2007, p. 5).. 

The targeted manipulation techniques used are discussed in more detail in Section 

3.1.5. 

2.3.1.3     Anti-forensic risk identified 

The iSEC Partners team were successful in discovering a number of software bugs 

that resulted in unusual behaviour from EnCase including evidence acquisition 

being prevented, crashing while searching or displaying evidence, as well as 

evidence not being displayed (Newsham, et al, 2007, pp. 9-21). Exploiting 

software bugs would be classified under the anti-forensic risk category of 

counterfeiting evidence, as they are considered to be denial of service attacks that 

block analysis and frustrate the analyst (Ibid, p. 3). Importantly, the iSEC Partners 

team did not find any software bugs that could result in code execution which 

would have resulted in a much more severe anti-forensic risk (Ibid, p. 2). The 

iSEC Partners team found similar software bugs in the open source forensic 

software The Sleuth Kit (Ibid, pp. 5-9). 

2.3.1.4      Response from Guidance Software 

The response to the discovered software bugs from Larry Gill of Guidance 

Software was defensive and challenged the significance of the issues discovered 

(Gill, 2007). Gill (2007) noted that the integrity of the evidence collection and 
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authentication process had not been compromised. Gill (2007) pointed out several 

workarounds for the various issues identified and also mentioned that experienced 

investigators should know how to work around the issues identified. 

Gill (2007) makes many comments about how unlikely it is that someone 

being investigated would exploit any of the software bugs discovered. As noted 

by the iSEC Partners team, forensic tools are often used to examine evidence from 

people suspected of computer crimes as well as computer systems that have been 

compromised by an attacker (Newsham, et al, 2007, p. 27). The implication being 

that digital evidence is often under direct control of someone who has the ability 

and motivation to leverage anti-forensic risks in an attempt to disrupt any 

investigation. 

2.3.2    Metasploit Anti-Forensics Project 

The Metasploit anti-forensics project is commonly cited in research into anti-

forensic risk. The project was most active around 2005-2006 with its main 

contributor, Vinnie Lau, producing various anti-forensic research and tools. The 

project now seems to be inactive with the anti-forensic tools merged into the main 

Metasploit package and the home page no longer existent. The Metasploit anti-

forensics project’s home page as at 2008 can still be viewed in the Wayback 

Machine (Liu, 2008). The Metasploit anti-forensic project created three anti-

forensic tools known as TimeStomp, Slacker and Transmogrify; all of which were 

claimed as firsts in the world of anti-forensic tools (Liu, 2008). 

2.3.2.1     Timestomp 

Timestomp is a tool that allows for the easy modification of all four file 

timestamps on NTFS file systems (Liu, 2008). The four timestamps are 

commonly known as MACE values; modified, accessed, created, and entry 

modified timestamps respectively. Timestamps are important in an investigation 

for several reasons. Firstly, timestamps help identify when an event happened and, 

secondly, multiple events can be put on a timeline to help profile someone’s 

activities (Foster & Liu, 2005, p. 4). Finally, if an investigator identifies a file of 

interest they are likely to look for files with a similar timestamp (Ibid, 2005).  

Importantly, Timestomp only modifies what is known as the standard 

information attribute (SIA) for each file’s master file table (MFT) record, but 
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timestamp information is also available in the filename (FN) attribute (Foster & 

Liu, 2005, p. 7). 

The effect of Timestomp on tools like EnCase is that an investigator can 

no longer trust any of the timestamps in the file system to be correct. The effect of 

the inability to rely on timestamps is that any sort of temporal analysis in an 

investigation is now more difficult. To counter the lack of file timestamps an 

investigator can look for other temporal information such as access logs (Piper, 

Davis, & Shenoi, 2006, p. 81). 

2.3.2.2     Slacker 

In many file systems, including NTFS, all files are allocated blocks of storage of a 

certain size regardless of the file’s actual size. For example, a 400 byte file might 

get stored in a 512 byte block leaving 112 bytes of storage unused. The left over 

space is what is commonly known as slack space. Slacker provides the capability 

to insert files inside slack space on NTFS file systems (Liu, 2008). 

 The result of the use of Slacker is that someone can easily hide evidence 

within the slack space of other files. Evidence in slack space is much harder to 

identify using tools like EnCase. Although many forensic tools have the capability 

to search slack space, the difficulty is in knowing which files have had their slack 

space used for hiding other files (Piper, Davis, & Shenoi, 2006, p. 86). 

2.3.2.3     Transmogrify 

Transmogrify is a tool that can defeat file signature analysis method used by 

EnCase (Liu, 2008). Forensic tools like EnCase need to be able to identify file 

types in order to efficiently process evidence; for example, an investigator may 

want to run a keyword search over PDF files only. As mentioned in Section 

2.2.2.2 EnCase conducts a file signature analysis by examining the file extension 

and file header and comparing the file’s signature to a list of known signatures 

(Bunting, 2008, p. 352). The file header consists of the first few bytes of the file 

and is commonly referred to as the magic number. Liu shows the example of 

starting a text file with “MZ” which EnCase file signature analysis will identify as 

an executable file (Foster & Liu, 2005, pp. 12-13). 

 The consequence of Transmogrify is that investigators can no longer rely 

on the file signature analysis performed by EnCase as completely accurate. 
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Investigators may have to spend longer on an investigation or manually analyse 

files in an attempt to determine what type they are. 

2.3.2.4      Response from Guidance Software 

Guidance Software had a more receptive response to the Metasploit anti-forensics 

project than to the research done by the iSEC Partners team. Liu was invited to the 

CEIC conference hosted by Guidance Software in 2006 to talk about anti-

forensics and the tools he had developed (Liu & Stach, 2006).  

Brian Karney, the Director of Product Strategies at Guidance Software, 

has been quoted as saying “We think it’s a good thing. Computer forensics is an 

evolving field and there will always be people finding new ways to complicate 

processes. We’ll always have communities doing research to bypass traditional 

methods” (Hilley, 2007, p. 14). Karney also made mention of Timestomp simply 

being an extension of techniques that have been used for years such as adjusting 

the time on a computers clock (Ibid, p. 14). Karney notes that Guidance Software 

are attempting to build counter-measures to anti-forensic tools such as looking at 

the FN attribute to defeat tools like Timestomp (Ibid, p. 14). Also of note is that 

Karney mentions that anti-forensic tools are discussed during training on EnCase 

(Ibid, p. 14). 

The Metasploit anti-forensic research may have been better received by 

Guidance Software because it targeted general weaknesses in common forensic 

analysis techniques as opposed to being solely targeted at EnCase. Guidance 

Software is not at fault if EnCase cannot somehow show the original timestamps 

after the use of Timestomp. In contrast, the research done by the iSEC Partners 

team pointed to specific issues that exist because of software bugs within EnCase. 

2.3.3    Neckar & Ose - Neohapsis Labs  

At the Chicago hacker conference THOTCON in 2010, Chris Neckar and Greg 

Ose of Neohapsis Labs gave a presentation on anti-forensic techniques for 

malware to avoid analysis; at the end of the presentation they demonstrated an 

arbitrary code execution vulnerability that was present in EnCase and FTK 

(Neckar & Ose, 2010, pp. 27-34). The vulnerability was found by fuzzing 

different file formats supported by the shared components used by EnCase and 

FTK (McCash, 2010). 
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2.3.3.1      Arbitrary code execution vulnerability 

The vulnerability was in an external module known as Oracle Outside In that 

triggered when a malicious file was viewed inside EnCase or FTK (McCash, 

2010). Oracle Outside In is an external component that is used by software to read, 

interpret and view hundreds of file formats (Oracle, 2012). The vulnerability 

appears to be similar to several previous vulnerabilities in Oracle Outside In, such 

as a buffer overflow caused by a malformed Excel file. (Verisign iDefense 

Security, 2009).  

 Forensic software like EnCase and FTK has to be able to support countless 

different file formats and it is understandable that they would rely on external 

components to provide file format support. The Oracle Outside In components are 

used in a wide range of software and vulnerabilities in the software affect all 

software that uses it, not just EnCase and FTK. 

2.3.3.2      Response from Guidance Software 

McCash (2010a) posted to the Guidance Software support forums soon after the 

presentation asking if a fix for the vulnerability was being worked on and also if 

Guidance Software had plans to search for similar vulnerabilities internally. 

Stockdale (2010), the Product Manager for EnCase, replied stating that he 

believed the vulnerability was the same as an already reported vulnerability in 

Oracle Outside In and that EnCase had been using a patched version of Oracle 

Outside In in EnCase versions 6.15 and higher. Stockdale’s assertion was 

questioned by McCash (2010a) who confirmed with Neckar and Ose that the 

vulnerability was different and existed in EnCase version 6.16. Stockdale (2010) 

then replied saying that he will follow up with Oracle regarding the vulnerability. 

Neckar (2010) replied on the forum to confirm the vulnerable version as 

specifically 6.16.1.4. He also mentioned that he had already been in contact with 

support at Oracle. 

2.3.3.3      Response from the forensic community 

McCash led the community response with his post on the Guidance Software 

support forums and his blog post to the SANS Computer Forensic and Incident 

Response Blog. McCash (2010a) noted that while the vulnerability discovered 

was particularly concerning, what was more concerning was the possibility of 
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further vulnerabilities in EnCase. McCash (2010a) gives the theoretical example 

of there being code execution vulnerability in a file system parser which would 

result in a malicious payload being executed as soon as a forensic image is loaded 

into EnCase. Stewart (2010) responded and suggested the incident was “more a 

cause of alarm for examiners” than for the vendors and noted that examiners 

should be aware of the complexity of the tools they are using and the data they are 

analysing. 

 McCash (2010) gave several suggestions as to what the forensic 

community should do in response to the issue. Firstly he suggested that the 

forensic community apply pressure on Guidance Software and AccessData to then 

apply pressure on their shared vendor Oracle. Secondly McCash (2010) proposed 

that someone needs to start undertaking fuzzing tests against forensic software 

because of its niche nature. As support for his argument McCash cites a 

presentation given by Paul Craig of Security-Assessment.com at Kiwicon in 2009. 

Craig (2009) performed mass fuzzing against another niche software industry, the 

scientific research community and discovered a large number of vulnerabilities. 

McCash (2010) also recommends that forensic examination procedures and 

configurations are adjusted to account for the possibility that the analysis process 

may result in arbitrary code execution compromising the analysing computer. 

 McCash (2010) offers a list of suggestions to provide mitigation against 

anti-forensic risks including vulnerabilities in forensic tools. Amongst his 

suggestions are running a host intrusion protection system (IPS) and using 

operating system protections such as data execution prevention (DEP) and address 

space layout randomisation (ASLR). McCash (2010) suggests regularly patching 

forensic analysis workstations and monitoring logs on workstations for anomalies. 

Stewart (2010) suggests that the technical fixes proposed “may be riskier than 

leaving a particular vulnerability open”. He suggested that EnCase users can 

prevent vulnerability by opting to not install Oracle Outside In at the expense of a 

lack of functionality. McCash (2010) offers two suggestions which are typically 

part of forensic procedures; firstly workstations should only be used to work on 

one case at a time and be reimaged afterwards, secondly all results should be 

verified on isolated and different forensic platforms.  
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2.3.4    Miscellaneous Research 

Most of the significant research demonstrating anti-forensic risks associated with 

EnCase have been covered in the previous Sections. However, there is some 

minor and less-known research that has been conducted in the area of anti-

forensic risk that will be examined in the following Sections. 

2.3.4.1      Compression bombs 

A compression bomb is a file which expands massively when its contents are 

uncompressed or extracted. In Section 2.2.2.2 the example of 42.zip was given; a 

file that is 42KB in size but once extracted, expands to 4.5PB (Brinkmann, 2008). 

Compression bombs are an ancient technique in the computing world for 

maliciously crashing applications and systems. Because of the age of the 

technique and ease with which compression bombs can be created it could be 

expected that there would be many cases of people either encountering or testing 

them with EnCase. However there is little literature on how EnCase responds to 

compression bombs.  

 Piper, Davis & Shenoi (2006, pp. 81-82) did some testing using EnCase 

4.15 with the results showing that EnCase freezes after getting deep enough into a 

compression bomb. The authors showed that compression bombs are a viable 

denial of service attack against EnCase. However, compression bombs by 

themselves and in their traditional format probably do not pose a significant anti-

forensic risk to EnCase.  

2.3.4.2      The Grugq 

The Grugq is a well-known anti-forensic and security researcher who has 

presented on a wide range of anti-forensic techniques. He is most well-known for 

his presentation at Black Hat USA 2005 where he explained in detail a number of 

techniques for modifying file systems to achieve anti-forensic goals (Grugq, 

2005). The techniques are similar to those later used by the iSEC Partners team 

where they showed malformed file systems pose an anti-forensic risk to EnCase 

(Newsham, et al, 2007, pp. 10-19). The Grugq often makes reference to anti-

forensic issues with tools like EnCase or mentions that he is talking to vendors 

about anti-forensic issues. However The Grugq, has never publically 

demonstrated anti-forensic risks present in EnCase. The research from The Grugq 
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is significant because it is relevant to EnCase even if The Grugq has never 

demonstrated it to be so.  

2.3.4.3      Adonis 

A simple anti-forensic technique to hide deleted files from EnCase was 

demonstrated by Adonis (2007). The technique involves removing the string 

“FILE0” from a file’s MFT record. After making the change, EnCase is no longer 

able to see the deleted file. The technique demonstrated is very simple and easily 

detectable if the investigator knows what to look for. Adonis (2007) notes that 

there is not enough innovation in the area of anti-forensics and his simple 

technique proves that anti-forensic attacks do not need to be complicated.  

Adonis’s technique is innovative because of its simplicity; it is a simple but novel 

technique that anyone could have devised.  The significance of the Adonis 

technique is in demonstrating that that significant anti-forensic risk can come 

from simple techniques. 

2.4  EVIDENTIAL IMPLICATIONS 

The previous Sections have shown there is always some amount of anti-forensic 

risk involved with digital forensic investigations. Evidence could be altered or 

destroyed which would result in courts having to make legal decisions based on 

an incomplete or inaccurate representation of the actual evidence. However, it can 

be debated how anti-forensic risks and in particular software bugs in forensic 

software will actually affect the evidential value of digital evidence. There is very 

little research, opinion or legal precedent regarding how anti-forensic risk will 

impact on digital evidence. Carrier (2002, p. 1) notes that “To date, there have 

been few legal challenges to digital evidence, but as the field matures this will 

likely change”. Section 2.4 will examine some of the possible implications and 

legal challenges of anti-forensic risks on digital evidence. 

2.4.1    Digital Evidence 

Digital evidence is defined by the National Institute of Justice (2008, p. ix) as 

“information and data of value to an investigation that is stored on, received, or 

transmitted by an electronic device”. Digital evidence can be considered to be 

anything digital that might be of use in an investigation. The fact that the evidence 
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is digital does not change its nature significantly as compared to normal, physical 

evidence. 

Similar to any other kind of evidence, digital evidence has a number of 

characteristics and requirements that must be met for its acceptance in the court 

room. In US courts, the Daubert Standard and Rule 702 of the Federal Rules of 

Evidence are two significant guides in deciding whether evidence produced by an 

expert witness is acceptable or not. The Daubert Standard has a list of five 

recommended guidelines for determining the acceptability of evidence from an 

expert witness: 

 Testability – Can the theory or technique used by tested? Can the theory or 

technique be refuted or falsified? 

 Peer review – Has the theory or technique been subject to peer review or 

publication? 

 Error rate – What is the known or potential error rate for the technique 

used? 

 Standards and controls – Do any standards or controls exist relating to the 

technique used? How well are the standards or controls maintained? 

 Accepted by scientific community – Does the relevant scientific or 

industry community generally accept the technique used? 

Rule 702 of the Federal Rules of Evidence helped to transform the Daubert 

Guidelines into law and it specifies three requirements for the admissibility of 

evidence from an expert witness: 

 The testimony is based upon sufficient facts or data,  

 The testimony is the product of reliable principles and methods  

 The witness has applied the principles and methods reliably to the facts of 

the case. 

For anti-forensic risk to invalidate or lessen the reputability of evidence it would 

be necessary to demonstrate how the risks apply to the above requirements. 

2.4.2    Authenticity 

The iSEC Partners team enlisted the help of law expert Chris Ridder to help 

understand the evidentiary implications of the issues they had discovered. Ridder 

(2007, p. 4) states that evidence may only be used in a court if it is authentic and, 
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once it is found to be authentic, the relevance of the evidence can be considered in 

the context of the case. In order for evidence to be considered authentic the 

evidence presented (e.g. the forensic image) must be shown to be the same as that 

original exhibit that was collected (e.g. the suspect’s hard drive). Authenticity is 

typically proven by the use of extensive chain of custody documentation that 

shows how unlikely it is that the evidence has been tampered with (Ridder, 2007, 

pp. 4-5). Ridder (2007, p. 5) states that currently the prevailing view is that 

evidence obtained from forensic images satisfies the authenticity requirement (i.e. 

it is the same as the original exhibit).  

 However, Ridder (2007, p. 9) notes that a forensic image could be found to 

be inauthentic due to vulnerabilities and the possibility that the forensic images 

have been altered. Ridder (2007, p. 9) concludes that if forensic tools can be 

shown to produce inaccurate results they will be vulnerable to being challenged in 

a court room. Notably, Ridder (2007, p. 8) also mentions that the authenticity of 

core concepts in digital forensics such evidence hash values could be challenged if 

risks like code execution vulnerabilities can be shown to be present in forensic 

software.  

 Ridder’s (2007, p. 9) final conclusion is that there is a low risk of digital 

evidence being excluded from a court room because of anti-forensic risk 

associated with digital forensic tools. In order to provide a significant challenge to 

their authenticity there would need to be a significant number of serious issues 

identified in forensic tools. 

2.4.3    Reliability Of Digital Forensic Tools 

Anti-forensic risk may have wide reaching implications in how courts evaluate the 

reliability of forensic tools. Current forensic tool testing is extensive but focuses 

on proving that the tool actually performs the processes it claims to and produces 

valid and accurate results (Ridder, 2007, p. 8). Current testing does not look for 

software bugs that could result in security vulnerabilities (Ridder, 2007, p. 8). 

Ridder (2007, pp. 8-9) notes the lack of security testing will probably not result in 

evidence being excluded; however testing would provide greater assurance to the 

legal community about the reliability of forensic software.  
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In the case of the iSEC Partners research, Guidance Software claimed that 

an experienced examiner would know how to detect and work around the anti-

forensic risks identified (Gill, 2007). In order to verify whether an examiner is 

experienced, courts will often rely on the examiner following industry standard 

practices or having industry certifications. Because vulnerabilities in forensic 

software may not be detectable by the examiner Ridder (2007, p. 8) suggests that 

certification standards for examiners are not a suitable defence against anti-

forensic risk. The alternative proposed is that courts must look at the security 

standards for the forensic tools themselves; strict industry wide security standards 

for forensic tools would help the tools being seen as reliable (Ridder, 2007, p. 8). 

Ayers (2009) discovered several flaws in EnCases handling of times and 

dates that likely resulted in expert witnesses presenting incorrect dates and times 

as evidence in court. Ayers (2009) also noted that a process such as altering a 

timestamp from UTC to a local time zone should be considered “computations” or 

“assumptions”; the implication being that an investigator cannot present the 

altered timestamp as being original evidence. Explicitly identifying which 

evidence is the result of a computation or assumption allows these computations 

and assumptions to be challenged and tested. Ayers (2009) wondered whether 

software vendors should be forced to alert the forensic community to the flaws 

that affect the reliability of forensic tools. 

A reasonable challenge could potentially be made against the Daubert 

standards and controls guideline as it applies to forensic tools. In comparison to 

other scientific fields, there are few standards or regulations regarding the use of 

tools in a digital forensic investigation. The closest the forensic community 

currently has to standards regarding tools is some digital forensic labs having 

become ISO/IEC 17025 accredited.  

2.4.4    Reverse Trojan Horse Defence 

The “Trojan horse defence” refers to a suspect accused of performing an action on 

their computer claiming they are innocent and that a Trojan or some other 

malicious software performed the action. The defence tactic was successful the 

first few times it was used, likely due to jurors being unsettled and confused by 

complex technology they did not understand. The juror confusion in regard to 
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complex technology can result in jurors finding reasonable doubt when there 

should be none (Brenner, Carrier, & Henninger, 2005). 

 A possible legal tactic is to reverse the Trojan horse reasoning and apply it 

to malicious data (not necessarily single files or executable files) interfering with 

forensic tools. The investigator could claim that something from the suspect’s 

computer resulted in a forensic tool not behaving as it should. For example, 

imagine there is a malformed jpeg file from a suspect’s machine that causes a 

crash when viewed with forensic software. The crash could be harmless or it 

could be a deliberate and targeted anti-forensic attack by the suspect. It would be 

difficult to determine whether or not it is or is not an anti-forensic attack. A 

sophisticated enough attack could plant an undetectable rootkit on the 

investigator’s computer without showing signs such as crashing the forensic tool. 

It would be difficult to prove any sufficiently sophisticated attack had not 

occurred. 

A court would likely dismiss claims that a suspect was using sophisticated 

anti-forensic techniques without convincing evidence to back it up. Consider a 

world where sophisticated anti-forensic attacks are the norm and expected. In the 

same way the defence can suggest there was a Trojan present on the suspect’s 

computer, the prosecution might be suggest the suspect is deliberately using 

advanced anti-forensic techniques. As with the Trojan defence, the prosecution do 

not necessarily need to provide conclusive evidence or prove that their claims of 

anti-forensic techniques being used are correct; they just need to create reasonable 

doubt. For example, it is common for forensic investigators to note the presence 

of wiping tools in their reports regardless of whether there is proof that the wiping 

tool was used. Evidence of the presence of anti-forensic tools can often strengthen 

a case against a suspect.  

2.5  TOOL RISK EVALUATION 

As previously mentioned in Section 2.4.2 Ridder (2007, p. 8) stated that the 

current testing done in the forensic community is inadequate to find security 

vulnerabilities in forensic software. The same belief is also shared by the iSEC 

Partners Team who note that current testing focuses on countering data hiding 
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techniques and ensuring accurate reproduction of the evidence (Newsham, Palmer, 

Stamos, & Burns, 2007, p. 1).  

 The focus of testing in the industry can be demonstrated by asking a 

forensic investigator whether their write blocker has been tested to block write 

attempts or if their forensic tool can detect whether there is an HPA or DCO 

present on the drive. The investigator will be able to give an affirmative answer, 

point to a wide range of testing done by others, and in many cases, they will have 

also done testing themselves. If the investigator is then then asked if their forensic 

software is likely to be free of software bugs that could cause security 

vulnerabilities they will not be able to give a conclusive answer. Some 

investigators might readily give an affirmative answer as some in the forensic 

community do not like to consider forensic software containing security-related 

software bugs. However, due to the lack of testing, it is difficult to conclude 

whether forensic software is secure or insecure. 

 To counter anti-forensic risk (particularly software bugs resulting in 

vulnerabilities) the forensic community needs an adequate way to test for and 

evaluate anti-forensic risk. Section 2.5 will examine some of the existing testing 

and evaluation methods available and how appropriate they are for evaluating 

anti-forensic risk. 

2.5.1    Computer Forensics Tool Testing Program 

The most well-known testing in the forensic community has been undertaken by 

the Computer Forensics Tool Testing Program (CFTT) at NIST. The CFTT has 

created a specific methodology for testing forensic tools known as the “General 

Test Methodology for Computer Forensic Tools”.  

2.5.1.1      Methodology 

The CFTT methodology has the goal of providing assurance to law enforcement 

personnel that forensic tools can be used for the purposes of a computer forensic 

investigation (National Institute of Standards and Technology, 2001, p. 1). The 

CFTT methodology consists of first establishing categories of forensic 

requirements and then populating the categories with specific technical or 

functional requirements (National Institute of Standards and Technology, 2001, 

pp. 1-2). Once requirements are written, test assertions can be written that 
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describe what a tool needs to be able to do to meet a requirement; the requirement 

is then translated into a specific test case for a tool to test the assertion (National 

Institute of Standards and Technology, 2001, p. 2). There are detailed guidelines 

around the method used for testing that are based primarily on ISO/IEC 17025 

and ISO/IEC 13210 (National Institute of Standards and Technology, 2001, pp. 2-

3). However there are not any significant limits placed on exactly how an 

assertion is tested as long as the method can be shown to be suitable for its 

intended use (National Institute of Standards and Technology, 2001, p. 3). A more 

detailed review of the CFTT methodology is provided in Section 3.1.1. 

2.5.1.2      Usefulness for evaluating anti-forensic risk 

The General Test Methodology for Computer Forensic Tools could be adapted to 

evaluate the likelihood of anti-forensic risk being present in tools. The adaptation 

would involve defining requirements such as a specific component of a tool being 

free of severe security vulnerabilities. However, there may be some difficulty in 

agreeing on how to determine if a tool has meet the requirement and which 

method is to be used for testing. There is a requirement that the outcome of the 

testing be measurable in some useful way; it is difficult to quantify something 

such as how likely a tool is to contain software bugs. The methodology used by 

the CFTT is better suited to more quantifiable testing, where it is easier to 

determine if the requirements have been met. However, it would not be infeasible 

to create new anti-forensic risk requirements in the General Test Methodology for 

Computer Forensic Tools. 

2.5.2    Scientific Working Group On Digital Evidence 

The Scientific Working Group on Digital Evidence (SWGDE) has created a 

similar document to the CFTT known as the Recommended Guidelines for 

Validation Testing. Unlike the CFTT’s methodology, which is designed for use by 

testing professionals, the SWGDE guidelines have been created for use by any 

organisation that performs digital forensic examinations (Scientific Working 

Group on Digital Evidence, 2009).  
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2.5.2.1      Methodology 

The SWGDE guidelines give advice on how to evaluate “if a tool, technique or 

procedure functions correctly and as intended” (Scientific Working Group on 

Digital Evidence, 2009, p. 2). The SWGDE guidelines define simple test plans 

that consist of four main elements; purpose and scope, requirements, methodology 

and expected results. Within the four elements there are not the strict ISO backed 

requirements of CFTT methodology; everything is simple and easy for anyone to 

understand. A more detailed review of the SWGDE guidelines is provided in 

Section 3.1.2. 

2.5.2.2      Usefulness for evaluating anti-forensic risk 

Similar to the CFTT methodology, the SWDGE guidelines could also be adapted 

for use in evaluation of anti-forensic risk. While the CFTT methodology is more 

rigorous, the SWDGE guidelines provide a simplicity and flexibility that would be 

needed when evaluating anti-forensic risks. The only issue to overcome with the 

SWDGE guidelines is that it is primarily aimed at testing functionality and the 

expected results are typically either pass or fail. Giving definitive results when 

evaluating anti-forensic risk is not always possible and could encourage testing 

only that which is easily testable rather than that which is significant. 

2.5.3    Digital Forensics Tool Testing Images 

Carrier (2010) has created a number of sample forensic images to test 

functionality in digital forensic tools in an attempt to provide tests that could be 

easily conducted by the public. 

2.5.3.1      Methodology 

The sample forensic images are designed to test small and simple test cases and 

are publically available on the Digital Forensics Tool Testing Images website. The 

images can be downloaded and tested by anyone in their forensic tool of choice. 

Carrier details the expected results and also encourages testers to report their 

results. 
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2.5.3.2      Usefulness for evaluating anti-forensic risk 

Carrier’s (2010) approach could be adapted to providing test images for 

evaluating anti-forensic risk in digital forensic tools. For example, a sample image 

could be created that contains an NFTS partition with a heavily malformed MFT 

table or an image could be created that contained thousands of malformed JPEG 

files. Carrier’s (2010) approach is limited by the fact that it is difficult to provide 

images that cover the wide range of test cases necessary to evaluate anti-forensic 

risk. It is likely infeasible to provide test images on a large enough scale to do 

significant testing for anti-forensic risk. A better approach may be to make images 

that, for example, contain a few dozen JPEG files all of which are malformed in a 

way that is known to have resulted in crashes in other software that parses JPEG 

files. 

2.5.4    Software Security Testing 

Software security testing is a well-established and complex field that has testing 

techniques that may be practical for detecting anti-forensic risk. The anti-forensic 

risks identified earlier by the iSEC Partners team (Newsham, Palmer, Stamos, & 

Burns, 2007, p. 1) were found using the technique of fuzzing. The code execution 

vulnerability discovered by Neckar and Ose was also found using fuzzing 

(McCash, 2010). Section 2.5.4 will examine security testing techniques and their 

possible application in testing for anti-forensic risk. 

2.5.4.1      Static analysis 

Static analysis refers to either the source code or the disassembled binary of an 

application being examined but not executed (Klein, 2011, p. 4). Static analysis is 

essentially the process of looking at the code for the software and trying to find 

bugs. Static analysis approaches vary and can include going through the code line 

by line, identifying and following the flow of user influenced input or simply 

looking for the use of typically unsafe code functions (Klein, 2011, pp. 4-5). 

Static analysis only requires the ability to understand source code (if available) or 

the disassembled machine code. Static analysis is easy in that it does not require 

extensive setup time or familiarity with a wide range of tools. The difficulty of 

static analysis lies in having the knowledge and ability to understand the source 
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code and identify bugs. Static analysis is also a very manual and time consuming 

process. 

2.5.4.2      Dynamic analysis 

In contrast to static analysis, dynamic analysis involves the execution of an 

application and subsequent analysis of the running machine code of the 

application’s behaviour. The benefit of dynamic analysis is that the Section of 

code currently being executed can be examined on its own without concern for 

other pieces of code that may not get run and may not be relevant to whatever 

function is currently being executed. Dynamic analysis makes it easy to perform a 

certain function in an application (e.g. opening a file) and then to analyse the 

resulting flow of code of execution. Typical dynamic analysis techniques involve 

executing software in a controlled environment where a debugger can be attached 

to allow for monitoring and control of code execution.  

 A dynamic analysis technique that was discussed earlier is fuzzing where 

invalid data is provided to software in an attempt to trigger an error or fault 

condition of some kind (Sutton, Greene, & Amini, 2007, p. 22). Fuzzing is similar 

to traditional boundary value analysis where the boundaries between good input 

data and bad input data are tested. The advantage of fuzzing over boundary value 

analysis is that it can detect bad input data that is not at the boundaries of expected 

good input data (Sutton, Greene, & Amini, 2007, p. 22). Fuzzing is useful when 

dealing with a complex application where it may be difficult to determine where 

and how user-provided input is used by the application (Klein, 2011, p. 5). Many 

of the issues discovered by fuzzing may not be security critical; however they 

often provide clues on where to start looking for critical faults (Klein, 2011, p. 5). 

2.5.4.3      Source code availability 

When performing either static or dynamic analysis it is preferable to have the 

software’s source code available. The original source code improves the quality of 

testing because it makes it easier to review the source code and tailor tests to the 

specific design and flow of the software (Carrier, 2002, p. 5). Carrier (2002, p. 5) 

notes that even if a tool is not open source it would be beneficial if vendors 

published details about the design and implementation of the functionality of their 

software.  
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2.5.4.4      Usefulness for evaluating anti-forensic risk 

Software security testing is the most useful method available for locating software 

bugs that could present anti-forensic risk. Software security testing methods have 

been proven to be successful in locating anti-forensic risk. One shortcoming of 

software security testing techniques is that they require a certain level of expertise 

in programming and software security. The level of skill required to undertake 

software security testing effectively is not likely to be not present in the wider 

forensic community. In contrast, the function-based testing of the CFTT and 

SWGDE methodologies is easily understood and able to be replicated by any 

digital forensic practitioner. In order for software security testing to be useful in 

evaluating anti-forensic risk the forensic community may need to rely on outside 

security experts like iSEC Partners to perform testing. A possible alternative may 

be to try to simplify and automate software security testing to make it accessible 

to the wider forensic community. 

2.6  PROBLEMS AND ISSUES 

The literature reviewed has raised a number of key problems and issues. A 

summary of these problems and issues are presented below. 

2.6.1    Complexity Of Digital Forensic Tools 

One of the primary reasons that anti-forensic risk exists is the complexity of 

digital forensic tools. This complexity is linked to investigations becoming larger 

and more complicated. Investigations regularly contain many different types of 

device and require analysis specific to hundreds of unique data formats. To 

accommodate the scale and variety of evidence, tools like EnCase and FTK have 

also become larger and more complex. Forensic tools must be able to acquire data 

from many types of device and then analyse, search and display thousands of 

different data formats.  An earlier comparison was made between forensic tools 

and a typical software package like Microsoft Word, that needs to handle only a 

limited number of file formats. 

 The complexity of forensic tools leads to the possibility of software bugs 

that potentially pose an anti-forensic risk. The potential for anti-forensic risk was 

demonstrated by Neckar and Ose (2010, pp. 27-34) who demonstrated a code 
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execution vulnerability in Oracle Outside In that worked on both EnCase and FTK. 

The iSEC Partners team did not find any code execution vulnerabilities but they 

demonstrated that the complexity of forensic software has created a wide attack 

surface where software bugs could be found (Newsham, Palmer, Stamos, & Burns, 

2007). 

2.6.2    Approach To Tool Testing 

The current approach to testing digital forensic tools is not well suited to testing 

for anti-forensic risk. Some of the functionality based testing like that done by 

NIST might coincidentally find software bugs leading to anti-forensic risk. 

However functionality based testing is not specifically looking for anti-forensic 

risk. 

 The software security testing done by iSEC Partners is a promising 

alternative. However software security testing requires a certain level of expertise 

that is not typically present in the forensic community. A forensic investigator 

repeatedly acquires forensic images using the tools and therefore it is easy for him 

or her to understand how to perform testing of the acquisition functionality. In 

contrast, a typical forensic investigator would find it difficult to attach a debugger 

to their tool and look search for software bugs. 

2.6.3    Lack Of Research And Testing 

There is a significant lack of research and testing for anti-forensic risk, especially 

regarding risk associated with software bugs. The forensics community has 

published a small number of papers on the issue. However the existing research 

mostly deals with defining and describing the problem of anti-forensics. There is 

very little practical research and testing with regards to identifying anti-forensic 

risk and assessing its severity.  

As mentioned in Section 2.6.2 there is not currently any established 

methodologies specifically tailored to testing tools for anti-forensic risk. There are 

the few well known examples of researchers in the security industry exposing 

anti-forensic risk in tools; however there has not been a significant amount of 

testing. There is also the issue that, while the security industry can test forensic 
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tools for software bugs, they may not have the knowledge and expertise to assess 

the severity of the anti-forensic risk associated with the software bugs. 

2.6.4    Attitude Towards Anti-Forensic Risk 

The issue of anti-forensic risk typically polarises the digital forensic community. 

On the one hand there is the view that anti-forensics is a critical threat that will 

cause the end of traditional digital forensic investigations. On the other hand there 

is the view that anti-forensics is only a theoretical risk and will never pose a 

significant threat. The first view cannot be proven to be true because of the lack 

evidence to demonstrate a significant anti-forensic risk. However the same lack of 

evidence also means the second view is equally unproven. 

Currently it is difficult to determine how severe the issue of anti-forensic 

risk is. It will be necessary to engage the forensic community in the process of 

testing and assessing anti-forensic risk. In order to gain support and resources 

from the wider forensic community the focus of anti-forensic research and testing 

may need to change from simply breaking forensic tools and showing that risks 

exist. The forensic community is likely more interested in developing testing 

methodologies and mitigation strategies. 

2.7  CONCLUSION 

Chapter Two has investigated and reviewed the current state of anti-forensic risk. 

An overview of the types and causes of anti-forensic risk has been developed. 

Chapter Two examined a wide range of anti-forensic risks and the resulting 

implications. A detailed case study of EnCase specific anti-forensic risk was 

presented. The case study reviewed a number of anti-forensic risks that other 

researchers have identified in EnCase. The purpose of the case study was to show 

the feasibility and possible implications of tool related anti-forensic risk. The case 

study was following by a review of the possible legal implications of anti-forensic 

risk. Finally a comprehensive review of possible methods for testing and 

evaluating anti-forensic risk was presented. 

The current state of tool-related anti-forensic risk is that a number of 

threats have been shown to exist. However the current risks discovered have 

mostly been relativity minor with very few severe risks identified. The current 



 

 44 

risks have gone mostly unnoticed and have not caused any significant disruption 

to forensic investigations. It is difficult to determine if the risks previously 

identified are indicative of an endemic problem with digital forensic tools. It is not 

possible to conclude that anti-forensic risks posed to tools are a significant issue. 

However it is also not possible to conclude that digital forensic tools are largely 

safe from anti-forensic risk. More testing is required before a proper 

determination can be made. 

The testing methodologies currently used by the forensic community are 

inadequate for testing and evaluating anti-forensic risk in tools. The community 

needs to develop and adopt new ways to test tools and then perform tests on a 

wide scale. The testing would be beneficial regardless of whether anti-forensic 

risks are discovered or not. If risks are identified then the forensic community can 

respond accordingly. If risks are not identified then the forensic community now 

has evidence for the safety of their tools; the lack of risk would also help reassure 

the legal community who rely on digital forensic investigators to produce valid 

evidence. 
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Chapter Three 

 

RESEARCH METHODOLOGY 

 

3.0  INTRODUCTION 

Chapter Two critically reviewed literature from a range of areas relating to anti-

forensic techniques and risks. The literature review investigated the extent of anti-

forensic risk and the weaknesses in current digital forensic tool testing techniques. 

The most significant anti-forensic risks were shown to be the result of software 

bugs in digital forensic tools. In Chapter Three a research methodology will be 

constructed that will be used to investigate the possibility of testing for software 

bugs that may cause anti-forensic risk in digital forensic tools. Chapter Three will 

build upon Chapter Two to present a suitable methodology for research. 

 Firstly, a review of similar studies is presented in Section 3.1. The analysis 

of similar studies will help to derive best practices for developing the research 

methodology. Processes and techniques that are shown to work effectively will be 

adopted by the research methodology. Research questions derived from Section 

2.6 are presented in Section 3.2.2 with the associated hypotheses presented in 

Section 3.2.3. A breakdown of the research phases is described in Section 3.2.4 

and is followed by the data map displayed in Section 3.2.5. Data requirements are 

defined in Section 3.3 and limitations of the research are discussed in Section 3.4. 

Chapter Two is then concluded in Section 3.5. 

3.1   REVIEW OF SIMILAR STUDIES 

In this section five similar studies are critically reviewed and analysed. Section 

3.1 will examine how other researchers have defined their research and 

implemented their methodologies. The five studies have been selected on the basis 

of their relevance to testing forensic tools and the reputation of the sources.  

Sections 3.1.1 and 3.1.2 examine the CFTT and SWGDE methodologies in 

depth. The CFTT and SWGDE methodologies are two well-established and 

accepted methodologies for testing forensic tools. In Section 3.1.3 Wilsdon and 

Slay (2006) propose an alternative approach to testing based on black box testing 

methodologies. Wilsdon and Slay (2006) have attempted to simplify the 
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established methodologies for wide spread use by the digital forensic community. 

Guo, Slay and Beckett (2009) build on the work of Wilsdon & Slay (2006) in 

Section 3.1.4 and propose a function oriented approach to testing forensic tools. 

Guo, Slay and Beckett (2009) propose a process-mapping technique to identify 

the functions of tools that require testing. In Section 3.1.5 the fuzzing 

methodology used by Newsham et al (2007) to software bugs is examined in 

detail. Fuzzing was successfully used by Newsham et al (2007) to discover a 

number of software bugs that had associated anti-forensic risk. 

3.1.1 CFTT General Test Methodology For Computer Forensic Tools 

The CFTT from the NIST program and their methodology for testing computer 

forensic tools were discussed earlier in Section 2.5.1. In this Section their 

methodology will be more critically examined for processes and techniques that 

can be adopted. The CFTT program is a joint program started by NIST that 

involves other US organisations including the National Institute of Justice (NIJ). 

The General Test Methodology for Computer Forensic Tools is one of many 

initiatives started by the CFTT at NIST to support the testing of tools. This 

methodology has the goal of providing assurance to law enforcement personnel 

that forensic tools can be used for the purposes of a computer forensics 

investigation (National Institute of Standards and Technology, 2001, p. 1). The 

General Test Methodology for Computer Forensic Tools builds upon various 

international standards including ISO/IEC 17025 which helps to provide 

assurance regarding the scientific rigor and merit of the NIST methodology. 

  The NIST approach to testing tools begins with establishing categories of 

forensic requirement. The forensic requirement categories are functions of 

forensic tools that have been determined and grouped by expert users. Grouping 

functions is done to make it easier to identify a smaller set of requirements that 

are shared by similar functions. The next step in the methodology is to specify the 

set of requirements that are required to be met by a forensic tool in one of the 

previously defined categories. Similar to the creation of requirements categories 

the requirements specifications are first created by expert users; although the final 

set of agreed requirements is decided based on a consensus from the forensic 

community. An example of a category of forensic requirement could be string 

searching. This category would then be populated with requirement specifications 
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the forensic tool needs in order to be able to search using one or more character 

sets. 

 Once the requirements have been specified the NIST methodology then 

establishes test assertions and test cases for each requirement. A test assertion is 

defined as “a statement of behaviour, action, or condition that can be tested or 

measured” by NIST (2001, p. 2). A test assertion translates a requirement into 

something that can be tested. An assertion for the previous multiple character set 

searching requirement would be that the tool returns search results from UTF-8 

formatted files. This assertion is then applied and tested through one or more test 

cases. A test case is defined as “what is to be tested or one instance of what is to 

be tested” by NIST (2001, p. 2). To test the above assertion of regarding a UTF-8 

file a test case could be set up consisting of a sample UTF-8 file, with a known 

keyword present inside the file. The test case would then search the sample file 

for the known keyword using the forensic tool and determine whether the correct 

result is returned. 

 The test cases and assertions specify what exactly is to be tested. The 

NIST approach next requires definition of the method used to conduct testing of 

the test cases. The test method is defined by NIST (2001, p. 2) as “a combination 

of the software used for testing and the procedures for completing the testing”. 

The test method is the software, environment and procedures that ensure the test 

results are valid and repeatable. The NIST methodology has adapted the ISO/IEC 

17025 required documentation for non-standard test methods into 16 specific 

documentation requirements for forensic tool testing methods. These 16 

requirements include expected requirements like recording the apparatus used, the 

software version used and environmental conditions. There is also the requirement 

to adequately document exactly how the test is to be conducted as well as 

requirements to identify the expected outcomes and present a strategy for data 

analysis. The ISO/IEC 17025 standard (1999) requires that any non-standard 

testing method is suitably validated; for this reason the NIST approach includes 

publically releasing all details of testing to be judged by the forensic community 

(National Institute of Standards and Technology, 2001, pp. 2-3). 

 The NIST methodology also includes specific testing result reporting 

requirements. Again these requirements are based on ISO/IEC 17025 and require 

that test results are “reported accurately, clearly, unambiguously and objectively” 
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(ISO/IEC 17025 Standard, 1999). Essentially the goal of the reporting 

requirements is to ensure that anyone is able to easily interpret, understand and 

reproduce the test. 

3.1.2 SWGDE Recommended Guidelines For Validation Testing 

The SWGDE guidelines were briefly discussed earlier in Section 2.5.2, the 

SWGDE methodology will be discussed here in more detail. The SWGDE (2009, 

p. 2) guidelines are designed to determine “if a tool, technique or procedure 

functions correctly and as intended”. The targeted audience for the SWGDE (2009, 

p. 2) guidelines is specified as “All organizations performing digital forensic 

examinations”. The SWGDE guidelines are designed to be a practical guide for 

the typical forensic analyst who wants to validate their tools without dealing with 

the complexity of the CFTT requirements. 

 The first step in the SWGDE guidelines is the creation of a test plan. This 

test plan begins with details such as scope, requirements and methodology. Little 

guidance is given about how the requirements and methodology should be defined 

which allows much greater flexibility than the CFTT approach. The test plan 

should then specify test scenarios that are assigned to each requirement. These test 

scenarios contain details of the testing environment, testing procedures and 

expected results. Again there is little guidance given regarding how these test 

scenarios should be defined. Finally, the test plan should include details regarding 

the test data that will be used in the test scenario; if an existing reference set 

cannot be used then the process to create a new reference set should be 

documented. 

 The next step in the SWGDE guidelines is to perform the test scenarios 

and create a test report containing the results. The SWGDE guidelines suggest 

that the tester use equipment which is known to be in a good condition. It is also 

suggested that equipment has a known configuration which matches the typical 

configuration the tester would use when performing an actual forensic analysis. 

The SWGDE guidelines have a process for dealing with anomalies which consists 

of identifying the cause of the anomaly, verifying the cause of the anomaly and 

finally adjusting the test scenario, if possible, and re-testing. 

 The test report should document each individual test scenario as well as 

noting the pass or fail status for each requirement. Any re-tests or anomalies 
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should be documented including initial tests that may have been invalidated by an 

anomaly. The SWGDE guidelines suggest the creation of a summary report which 

includes an overview of the pass or fail status of the tool or procedure being tested 

and an overview of the test scenarios. This summary report should also contain 

recommendations and discussion from the tester. Finally the test report should 

document all differences between actual results and the expected results so a 

determination on validation can be made. 

 None of the documentation and testing required by the SWGDE guidelines 

has a set format and they can be adjusted as necessary. The SWGDE guidelines 

include several samples of documents such as test plans and test scenario reports; 

however these are only samples and do not need to be rigorously followed. 

3.1.3 Validating Forensic Software Utilising Black Box Testing Techniques 

Wilsdon and Slay (2006, p. 3) acknowledge that the CFTT and SWGDE 

methodologies are “extremely comprehensive and scientifically sound”; however 

they also note that these existing testing methodologies are failing to satisfy the 

demands of the industry. Wilsdon and Slay (2006, p. 3) make  the assumption that 

the current lack of tool evaluation is likely due to a lack of skill, experience, time 

and finance. It can be inferred from Wilsdon and Slay that the CFTT and SWGDE 

methodologies are not suitable for meeting the testing requirements of most 

forensic laboratories. The authors propose a streamlined methodology similar to 

that of the CFTT and SWGDE that “addresses shortcomings of other frameworks 

and extends their capabilities” (Ibid, p. 9). 

 Wilsdon and Slay (2006) propose a six step evaluation process for forensic 

tools. The first step is to acquire the software to be tested and accurately identify it. 

This identification is done through the process of creating a signature using 

techniques such as MD5 hashing. The goal of the signature is to prevent any other 

versions of the software being thought to have been tested. The next step is to 

identify the functions of the software; Wilsdon and Slay (2006, p. 7) identify 

functions as “some component of the software which delivers a result when 

executed”. These functions can be identified by reading the software’s 

documentation, using the software and making inquiries of vendors and the digital 

forensic community. The identified functions must be clearly documented, 

including any dependencies between functions.  
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Test cases can then be created and mapped to the functions. All of these 

test cases are to be based on black box testing techniques as Wilsdon and Slay 

(2006, p. 7) assume the software being tested is closed-source and proprietary. 

Reference sets should be created and used as inputs for the test cases. These 

reference sets must be designed to test specific functions in isolation and all 

should test the actual operation of the software in a typical environment. These 

reference sets can be used to test multiple functions and can also be shared among 

organisations. The sharing of reference sets would allow other organisations to 

peer review them and determine if they are suitable for testing the function in real 

world environments. The test cases and reference sets are focussed on testing a 

specific function but should also test the software and environment as a whole; 

this is a departure from the isolated and contained approach of the CFTT and 

SWGDE methodologies. 

The next step is to develop a result acceptance spectrum based on the 

methodology proposed by ISO 14598.1-2000. The result acceptance spectrum is 

used to assess the results of the test against the expected outcomes. The results for 

each test would fall into one of four groups specified by ISO 14598.1-2000; 

exceeds requirements, target range, minimally acceptable and unacceptable. 

Wilsdon and Slay (2006, pp. 7-8) note that these groups may differ between 

environments; for example a military environment may have a different definition 

of unacceptable to a civilian environment. If a function does not fall into the 

acceptance range, any dependent functions should also be considered to have 

failed. This is to eliminate situations where a function passes a test in isolation but 

actually produces invalid results because it is dependent on a function that has 

failed. 

Once the test cases and result acceptance spectrum have been defined, 

execution of testing can begin. All testing is to be documented according to ISO 

17025-2005 and AS 4006-1992 requirements which is similar to the CFTT 

methodology. The results from the testing are to be assessed against the result 

acceptance spectrum and all functions that fall into the acceptance range are to be 

classified as passed. It is possible for a function to be considered as having passed 

evaluation even if it does not pass every test case. The idea behind the creation of 

reference sets is that some of the reference sets are designed to test the limitations 

of the software. For example, if a reference set contained ZIP files that were 
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modified outside of the official specification, it would be considered unacceptable 

if the software was not able to expand them; however the function of expanding 

ZIP files can be considered to have passed if many other test cases fell into the 

acceptable range.  

The final phase is to release the testing results to the forensic community. 

Public release allows the community to peer review the method used and benefit 

from the testing results. Wilsdon and Slay (2006, p. 8) note that once software has 

been tested and evaluated it does not mean that the software cannot be retested in 

the future. Importantly any future versions of software or patches do not inherit 

the evaluation of the tested version. Wilsdon and Slay (2006, p. 8) suggest that 

vendors would be more likely to release updates less frequently but to a higher 

standard, if the community relied on their evaluation methodology. 

The methodology proposed by Wilsdon and Slay (2006) is essentially the 

CFTT and SWGDE methodologies adapted for use by members of the wider 

forensic community who do not have the resources of NIST or large forensic 

laboratories. The idea of a large set of community-shared reference sets could be 

considered an expansion of the test images created by Brian Carrier that were 

discussed in Section 2.5.3. A key benefit of the idea of multiple laboratories 

testing reference sets is the ability for software to be tested in a wide range of real 

world environments; this is something that is not easily accomplished by 

organisations such as NIST or the software vendors. 

3.1.4 Functionality Oriented Validation And Verification 

Guo, Slay and Beckett (2009) have proposed a functionality-oriented approach to 

validation and verification of the functionality in digital forensic tools derived 

from earlier work done by Slay and Beckett (2007). This functionality-oriented 

approach consists of  splitting digital forensic analysis into several categories and 

then further splitting these categories into sub-categories and components through 

“process mapping” (Guo, Slay, & Beckett, 2009, p. 2). One of the reasons for 

developing this new methodology is that Guo, Slay and Beckett (2009, p. 4) 

believe current methodologies like that used by the CFTT are too vague and broad; 

they do not offer any conclusive way to determine which functions need to be 

tested.  
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 The functionality-oriented methodology begins by creating a systematic 

and scientific description of the digital forensic discipline. Fundamental processes 

in an investigation are specified such as identification of evidence and then 

specific processes such as keyword searching are mapped under the fundamental 

process. For each of the mapped functions a set of requirements are specified; an 

example given for keyword searching is the requirement to find a keyword in 

deleted files. From these requirements a reference set and test case can be 

developed to test and evaluate the requirement. This reference set can be shared 

with the community to allow for peer review. Where this functionality-oriented 

approach differs from the earlier work done by Wilsdon and Slay (2006) is the 

mapping of processes in the digital forensic discipline. This mapping allows the 

entire discipline to be mapped in terms of processes that can have expected results 

and the reference sets associated with them. If the proposed methodology could be 

realised, it would allow for the testing of any tool by simply determining the 

appropriate function and using the available reference sets to test against the 

expected results. 

 The functionality-oriented methodology has currently been applied to the 

searching functionality by Guo, Slay and Beckett (2009) and later to the forensic 

copying functionality by Guo and Slay (2010). These two examples of applying 

the methodology demonstrate that it is feasible to implement the methodology. 

However, if the methodology is to reach its full potential, it will need wide spread 

acceptance and adoption by the community. The process mapping of the entire 

discipline alone will be time-consuming and complex. 

3.1.5 Breaking Forensics Software: Weaknesses In Critical Evidence 

Collection 

The research done by Newsham, Palmer, Stamos and Burns (2007) of iSEC 

Partners Inc. was discussed earlier in Section 2.3.1. In this Section their testing 

methodology will be examined in greater detail. The iSEC Partners Inc. research 

represents an outsider’s approach to testing forensic tools by IT security 

researchers. The forensic community is typically testing tools to determine if a 

certain functionality works; the iSEC Partners team argue that software security 

should also be a concern as well as functionality (Newsham, Palmer, Stamos, & 

Burns, 2007, p. 1). The iSEC Partners team conducted testing against forensic 
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tools and discovered a number of security-related software bugs. To conduct 

testing two techniques were used; fuzzing of data formats and manual targeted 

manipulation of data formats (Newsham, et al, 2007, p. 5). 

 The first of these techniques known as fuzzing was briefly covered in 

Sections 2.3.1.1 and 2.5.4.2. Fuzzing is providing invalid data to software in an 

attempt to trigger an error or fault condition of some kind (Sutton, Greene, & 

Amini, 2007, p. 22). The iSEC Partner’s team used fuzzing against a number of 

data formats and input the resulting invalid data into forensic tools. In its simplest 

form, fuzzing can consist of simply randomly replacing bytes in a data structure; 

at its most advanced it requires manipulating specific byte locations with 

knowledge of the properties of a data structure. The approach to fuzzing used by 

iSEC Partners was rather simple but not entirely blind and random. A set of 

mutations were used that are designed to exploit typical programming mistakes 

commonly found in software. An example of one of these mutations is replacing a 

sequence of NUL bytes with random values of the same length. Fuzzing was 

performed on a number of file formats such as JPEG images and PDF documents 

with the goal of detecting problems with the built-in file viewers in forensic tools. 

Fuzzing was also performed on the file system structure in an attempt to reveal 

issues with the methods used by forensic tools to interpret file systems. 

 The second technique used was manual targeted manipulated of data 

formats; this was briefly discussed in Section 2.3.1.2. Targeted manipulation is 

the process of modifying specific portions of a data structure guided by a detailed 

knowledge of the data structure. Targeted manipulation attempts to trigger the 

same errors and fault conditions that fuzzing does; however it is generally slower, 

more complex, but with a higher success rate. The iSEC Partners team performed 

targeted manipulation of file formats such as JPEG files where they modified data 

structures related to memory management. Many file system structures were also 

manipulated manually including creating malformed MBR partition tables and 

unusual file system structures like directory loops and deeply nested directories. 

 The techniques used by iSEC Partners were successful in uncovering a 

number of software bugs in forensic tools. It is unlikely that many of these 

software bugs would have been detected by traditional function based testing 

approaches to testing forensic tools; this is because function based testing usually 

tests input data that has not been malformed. 



 

 54 

3.2   RESEARCH DESIGN 

The research design will describe and define the approach that has been selected 

for this thesis. A range of literature has been reviewed and their methodologies 

have been analysed. Appropriate techniques from the literature will be adapted 

into the research methodology. 

 The five studies reviewed in Section 3.1 are discussed in Section 3.2.1 and 

their implications for the research design are described. Research questions 

derived from the literature are defined in Section 3.2.2 and the associated 

hypotheses are described in Section 3.2.3. The four phases of the proposed 

research methodology are described in Section 3.2.4. Finally a data map is 

presented in Section 3.2.5. 

3.2.1 Review Of Similar Studies 

Five similar studies have been reviewed in Section 3.1. The first two reviewed; 

the CFTT and SWGDE methodologies represent the status quo in testing forensic 

tools. The CFTT and SWGDE methodologies are tried and tested approaches to 

testing and evaluating forensic tools. These approaches can be summarised as 

identifying a function the forensic tool should perform and then rigorously 

validating that function. 

However, as pointed out by Wilsdon and Slay (2006, p. 3), the CFTT and 

SWGDE methodologies have failed to satisfy the testing demands of the forensic 

community. Wilsdon and Slay (2006) do not propose any radical change to what 

is tested; testing requirements are identified in much the same way as in the CFTT 

and SWGDE methodologies. The authors focus on how testing should be 

conducted and propose a simplified and streamlined methodology for testing that 

allows for and encourages widespread testing by the community. The approach 

suggested by Wilsdon and Slay (2006) uses reference sets and community 

involvement to greatly increase the scale of testing being performed. 

Guo, Slay and Beckett (2009, p. 4) later stated that they believe current 

testing methodologies are too vague and broad. They suggested that current 

methodologies do not offer any conclusive way to determine what functions need 

to be tested. Methodologies like the CFTT and SWGDE approaches are targeted 

at whatever functions are deemed to be important; no attempt is made to figure 
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out what should be tested. A consequence of the CFTT and SWGDE approaches 

is a large focus on functions like disk imaging while functions such as built-in 

document viewers remain untested. Guo, Slay and Beckett (2009) propose a 

process-mapping methodology that would allow for the mapping of all functions 

of forensic tools. Process-mapping would assist in revealing functions and areas 

of forensic tools where little or no testing has been performed. 

The current methodologies used by the CFTT and SWDGE along with 

changes proposed by other researchers are well suited to validating functions of 

forensic tools. However, Newsham et al (2007, p. 1) argue that more security-

focused testing of forensic tools is required. Current methodologies focus on 

testing enough use cases to ensure that a function can be validated as working. 

Security testing requires that enough use cases are tested to conclude the function 

does not pose a security risk regardless of whether the function works or not. 

Newsham et al (2007) demonstrated the use of fuzzing to successfully locate a 

number of security-related issues with forensic tools. Fuzzing an easy to 

understand and perform in comparison to more complicated security testing, such 

as disassembling executable files and analysing assembly code. 

The main implication of the reviewed literature is that the current testing 

methodologies like the CFTT and SWGDE are not suitable for community-based 

testing or security-related testing. The simplified approach suggested by Wilsdon 

and Slay (2006) could greatly increase the amount of testing done by the forensic 

community. In particular, the use of reference sets would make testing digital 

forensic tools much more practical. The function mapping proposed by Guo, Slay 

and Beckett (2009) could assist in identifying tool areas that have not been 

adequately tested; these areas are prime candidates for software bugs. Finally, the 

fuzzing methodology used by Newsham et al (2007) represents a novel technique 

for testing for security-related software bugs. Fuzzing has been widely used for 

software testing; however it has not been used in a significant way for testing 

digital forensic tools. 

3.2.2 Research Questions 

The literature review in Chapter Two and, in particular, the problems and issues 

identified in Section 2.6 provide a basis for establishing the research question of 

the thesis. Section 2.3 showed that tools such as EnCase contain some software 
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bugs that present an anti-forensic risk. Section 2.6.1 argues one reason for these 

software bugs is the complexity of forensic software; however, Section 2.6.4 notes 

that not enough testing has been done to conclusively determine the scale and 

scope of the anti-forensic risk. The research question for the thesis is thus: 

 

 What is the anti-forensic risk caused by software bugs in digital forensic 

tools? 

 

In order to sufficiently answer the research question, a number of sub-questions 

need to be developed. As noted in Sections 2.6.2 and 2.6.3 a key issue in 

determining the extent of anti-forensic risk caused by software bugs is the 

approaches currently used for tool testing as well as the lack of testing being 

performed. Section 2.6.4 also suggested that more involvement from the forensic 

community will be needed to make any significant progress in testing for and 

eliminating anti-forensic risk. Several sub-questions can be derived from the 

research question as well as the issues discussed in Section 2.6: 

 

 Sub-question 1: What testing approaches are appropriate to test for the 

presence of software bugs in digital forensic tools? 

 Sub-question 2: What test cases and reference sets can be developed to 

promote and assist the forensic community in testing for and evaluating software 

bugs associated with anti-forensic risk? 

 Sub-question 3: How can software bugs in digital forensic tools be ranked 

and evaluated in terms of severity and anti-forensic risk? 

 Sub-question 4: What are the risks caused by the presence of software 

bugs in digital forensic tools? 

 

3.2.3 Hypotheses 

The hypotheses for the anti-forensic risk caused by software bugs in digital 

forensic tools are as follows: 

H1: No software bugs are detected. 

H2: Software bugs are detected but they do not present an anti-forensic 

risk. 
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H3: Software bugs are detected that present a minor anti-forensic risk. 

H4: Software bugs are detected that present a critical anti-forensic risk. 

 

The difference between a minor and critical anti-forensic risk is that a critical anti-

forensic risk has the potential to compromise the evidence or the security of the 

examiners machine. In contrast, a minor anti-forensic risk only prevents or 

disrupts the analysis of evidence. 

3.2.4 Research Phases 

The proposed research is loosely adapted from the black box testing techniques 

developed by Wilsdon and Slay (2006) and consists of four phases (Figure 3.1). 

The first phase consists of mapping functions using a similar approach to the 

method developed by Guo, Slay and Beckett (2009). Function mapping will assist 

in identifying a number of areas in digital forensic tools that have not been 

extensively tested. The research done by Newsham et al (2007) will also be used 

to help inform the decision regarding which areas of digital forensic tools are to 

be tested. Once areas have been targeted for testing, specific requirements for 

testing can be created. The testing requirements specify which criteria need to be 

met for the test to be considered a pass. The test requirements focus on two key 

criteria; functions completing accurately and the handling of malformed input data. 

The second phase focuses on setting up and preparing test cases. The test 

cases are derived from the testing requirements identified in Phase 1. The test 

requirements specified in Phase 1 will be high level and may not be directly 

testable; the test cases are designed to translate the requirements into something 

practical and testable. Associated with the test cases will be a number of reference 

sets containing malformed data. The reference sets will be created using 

malformation techniques adopted in Newsham et al (2007). Also associated with 

the test cases are acceptance spectrums adapted from those proposed by Guo, Slay 

and Beckett (2009). The acceptance spectrums allow a range of possible results 

for each test case that extends beyond the simple pass or fail mechanic of 

traditional forensic tool testing. 

 The third phase consists of performing the tests described by Phase 2. The 

tests and results are to be extensively documented. The results are then analysed 

and interpreted in Phase 4. Finally, the results and reference sets are to be 
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publically released as proposed by Guo, Slay and Beckett (2009). The public 

release will allow the forensic community to benefit from the research as well as 

use the reference sets to both peer review the results and conduct testing in 

differing environments. 

 

Function 
Mapping

Testing 
Requirements

Develop Test 
Cases

Develop 
Reference Sets

Perform Tests Analyse Results

Phase 1 Phase 2 Phase 3 Phase 4

Document 
Results

Develop 
Acceptance 
Spectrum

Release Results 
& Reference 

Sets

 

Figure 3.1: Research phases 

Figure 3.1 shows visually how the tasks are divided between each research phase. 

Also shown are the predecessor relationships between tasks; for example, testing 

requirements must be completed before test cases can be developed. 

3.2.5 Data Map 

A data map is presented in Figure 3.2 that shows the data relationships between 

the components of the research methodology. The research question is first related 

to the research phases described in Section 3.2.4. The research phases are then 

related to the data collection and analysis requirements that are discussed in 

Section 3.3. The data collection is then related to the hypotheses.
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Figure 3.2: Data map 
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Sub-question 4:
What are the risks caused by the 
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Hypothesis 1:
No software bugs are detected.

Hypothesis 2:
Software bugs are detected but 

they do not present an anti-
forensic risk.

Hypothesis 3:
Software bugs are detected that 

present a minor anti-forensic 
risk.

Hypothesis 4:
Software bugs are detected that 

present a critical anti-forensic 
risk.
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3.3  DATA REQUIREMENTS 

Information will be collected in Phase 1 and Phase 2 that will allow for the 

development of function maps, testing requirements, test cases, test acceptance 

spectrums and reference sets. A series of tests will be conducted in Phase 3 based 

on the information collected in Phase 1 and 2. Data will be collected during the 

testing in Phase 3 which will be analysed and interpreted in Phase 4. The analysis 

will provide evidence for the testing of the hypotheses discussed in Section 3.2.3.  

3.3.1    Data Collection 

The various data collection methods used by the research are described in the 

following Sections. The data collection methods are presented in their logical 

order as shown on the data map in Figure 3.2. Firstly the function mapping 

technique is described in Section 3.3.1.1. Function mapping allows for the 

definition of the testing requirements described in Section 3.3.1.2 which then 

allows for the development of test cases as detailed in Section 3.3.1.3. Reference 

sets are then explained in Section 3.3.1.4. The testing methodology is described in 

Section 3.3.1.5 which links to the acceptance spectrums explained in Section 

3.3.1.6. 

3.3.1.1    Function mapping 

Prior to constructing specific testing requirements, a function map is created. The 

function map allows for the mapping of functions and sub-functions of digital 

forensic tools. The function mapping process will be adapted from Guo, Slay and 

Beckett (2009). There are two goals of the function mapping process; firstly to 

identify which functions are possible candidates for testing and secondly to 

identify which function areas have already been extensively tested. 

 A number of function areas will be identified based on information from 

previous literature. The function area will then be mapped into individual 

functions and sub-functions. For example, the function area of compound 

containers could have function areas mapped underneath it such as file containers 

and compressed archives. File containers could then be further mapped into 

specific sub-functions such as Portable Document Format (PDF) files whereas the 
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compressed archives function area would have sub-functions such as a ZIP 

archive mapped underneath it. The ZIP archive can be mapped deeper with sub-

functions such as handling nested archives and password protected archives. 

 Once the function areas have been appropriately mapped, it will be 

possible to overlay information concerning previous research and testing. For 

example CFTT testing has extensively tested write blocking related functions 

without finding any major issues; which makes this function area less suitable for 

testing for software bugs. In contrast, Newsham et al (2007) performed testing of 

MBR tables and discovered a number of issues; the implication being that MBR 

tables and related data structures such as GPT may be suitable for testing. 

3.3.1.2    Testing requirements 

Testing requirements will be derived from the function mapping process discussed 

in Section 3.3.1.1. The requirements will translate the functions into something 

that is tangible and testable. The current methodologies in use such as the CFTT 

methodology focus on completeness and accuracy of function. The requirements 

used by this research will primarily focus on anti-forensic risk, security and 

exception handling requirements. The implication being that this research is not 

concerned if a function fails to work as expected, provided there are no risks 

associated with the failure. For example, a document viewing function may fail to 

open a document; however the failure may not necessarily pose an anti-forensic 

risk. In contrast, if the failure to open the document results in the tool crashing 

and corrupting evidence files then there is a clear anti-forensic risk present. 

3.3.1.3      Test cases 

The testing requirements defined in Section 3.3.1.2 will be developed into full test 

cases. Each test case will relate to one or more testing requirements. The test 

requirements define what is to be tested whereas the test cases will describe how 

the test requirements are to be tested. The primary purpose of the test case is to 

describe step-by-step how the test is to be performed so that the results of testing 

can be reproduced. The test cases will specify details such as environmental 

variables like hardware and software configuration. The test cases will also 

specify which reference sets are to be used as input for each test. 
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3.3.1.4      Reference sets 

A number of reference sets will be created as input for each test case. The 

reference sets will contain a set of malformed files designed to test a specific 

function or function area. Benign files will be collected and then have 

malformations applied to create reference sets. The primary malformation 

technique used will be file fuzzing; although manual targeted manipulation will 

also be considered where appropriate. Reference sets will be created using fuzzing 

at various malformation levels to investigate how digital forensic tools handle 

different levels of malformed input. 

3.3.1.5      Testing methodology 

Each test case will describe a number of functions that need to meet certain 

requirements. These test cases will be performed by using a number of reference 

sets as inputs. The testing methodology will consist of an automated process of 

reference sets being used as input for various functions. The output of this 

automated testing process will be a pass/fail result; with a pass result indicating 

that nothing unexpected happened. The fail results will then be manually tested 

and described in terms of an acceptance spectrum discussed in Section 3.3.1.6. 

3.3.1.6      Acceptance spectrums 

Acceptance spectrums adapted from Slay and Beckett (2007) will be used to 

determine the results of each test case. The acceptance spectrums contain a range 

of possible outcomes for each test case beyond a simple pass or fail result. The 

default acceptance spectrum to be used is mapped to the hypotheses discussed in 

Section 3.2.3 and is presented below. 
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Table 3.1: Default acceptance spectrum 

Result Acceptance 

Spectrum 

Mapped Hypothesis 

Pass Exceeds expectations H1: No software bugs are detected. 

Pass Meets expectations H2: Software bugs are detected but they do not 

present an anti-forensic risk. 

Fail Unacceptable H3: Software bugs are detected that present a 

minor anti-forensic risk. 

Fail Critically unacceptable H4: Software bugs are detected that present a 

critical anti-forensic risk. 

 

If necessary the default acceptance spectrum will be modified to make it 

more suitable for individual test cases. For example certain function areas may 

require that additional result ranges are defined to provide a more granular testing 

result. 

3.3.2 Data Processing 

The results of the testing will primarily be in the form of a test case and its 

associated result on the acceptance spectrum. There may be additional material, 

such as screenshots of error messages and test notes, depending on the particular 

test case. The results will be summarised into a table at the conclusion of each test 

case; the table will contain a reference to the test case, list reference sets used, test 

results and analysis of the results. Once all of the tests have been completed the 

results will be compiled into a spreadsheet to allow for data analysis. 
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3.3.3 Data Analysis 

Analysis of the data will focus on interpreting the test results and determining the 

significance of the anti-forensic risks associated with any software bugs identified. 

The main variables of interest are the following: 

 Function type; 

 Input malformation level; 

 Number of software bugs detected and; 

 Severity of anti-forensic risks associated with software bugs. 

3.3.3.1       Descriptive statistics 

Descriptive statistics will be generated for each function and function area tested. 

This will allow for the interpretation of the results for each function area as well 

as the ability to make statistical comparisons between function areas. The 

acceptance spectrums will allow a level of granularity in the results that will allow 

problem areas to be identified. 

3.3.3.2       Software bug analysis 

Any severe or unusual software bugs will be analysed in depth through manual 

experimentation and analysis. This analysis will primarily consist of examining 

the minimum conditions needed to trigger the software bug by using different 

types and levels of malformed input which will be used to try and isolate the root 

cause of the software bug. If the root cause of the software bug can be identified 

then further analysis will be performed on discovering the possible consequences 

of the software bug.  

3.4  LIMITATIONS OF THE RESEARCH 

The proposed research aims to investigate the anti-forensic risks associated with 

software bugs in digital forensic tools. However, the research has a number of 

limitations. The main limitation is that the research is not able to do widespread 

testing across all function areas of all digital forensic tools. It is not feasible to 

conduct testing on a scale that would fully test all digital forensic tools; therefore 

a subset of functions will be targeted in a selected number of digital forensic tools. 
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 The software and hardware in the testing environment is also a significant 

limitation. The testing proposed by the research will be conducted in a single 

stable environment. However, digital forensic tools are used in a wide range of 

environments. The effects of environmental variables may confound the input 

variables resulting in falsely attributing results to a certain reference set. For 

example, there may be certain test cases that fail in the testing environment that 

are not reproducible in other environments; similarly the testing environment may 

hide software bugs that are present in other environments.  

The nature of software bugs also means that even with a stable testing 

environment, there may be certain test results that are difficult to reproduce. The 

difficulty in reproducing results could be caused by the complexity of the 

conditions required for the occurrence of the software bug. 

The above limitations must be considered when interpreting the results of 

the research. The implication of testing a small number of function areas in a 

limited number of tools is that the results may not provide an accurate 

representation of all function areas over all digital forensic tools. For example, the 

field testing may not identify any software bugs in the tested function areas; 

however the result should not be extrapolated as evidence that all function areas 

are free of software bugs. The implication of difficult-to-reproduce software bugs 

is that a software bug identified by the research may not be reproducible by other 

researchers, or, conversely, that other researchers may identify software bugs 

where this research has identified none. The identified limitations of the research 

methodology used provide possible directions for further research in the area of 

the anti-forensic implications of software bugs in digital forensic tools. 

3.5  CONCLUSION 

The literature reviewed in Chapter Two and the similar studies reviewed in 

Section 3.1 revealed weaknesses in the established methodologies to test digital 

forensic tools. Current methodologies are not well suited for testing for security-

related software bugs that may have associated anti-forensic risk. The current 

methodologies are also unsuitable for community-based testing outside of 

organisations with the resources to undertake formal testing. A need for an 

alternative approach to testing has become apparent. 
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The research methodology developed in Chapter Three has been designed 

to address the weaknesses in current testing methodologies. Research questions 

and hypotheses were first defined in Sections 3.2.2 and 3.2.3 and the proposed 

research phases were described in Section 3.2.4. The research phases included 

several elements of alternative methodologies that have been adapted from the 

similar studies reviewed in Section 3.1. These elements from alternative 

methodologies have been selected to counter existing weaknesses and create a 

suitable methodology for testing for software bugs and identifying associated anti-

forensic risk. Data collection techniques such as function mapping, reference sets, 

acceptance spectrums and fuzzing have all been adapted from similar studies as 

described in detail in Section 3.3.1. Data processing and analysis techniques were 

then described in Sections 3.3.2 and 3.3.3. Finally limitations of the research were 

explored in Section 3.4. 

 The research methodology described in Chapter Three will guide the 

execution of testing of digital forensic tools. Chapter Four will present the 

findings of the testing as set out by the research methodology. 
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Chapter Four 

 

RESEARCH FINDINGS 

 

4.0 INTRODUCTION 

The literature review in Chapter Two presented a wide range of anti-forensic risks 

currently faced by digital forensic tools; the most severe of these anti-forensic 

risks was shown to be related to software bugs. The literature review then 

revealed the lack of appropriate testing methodologies for identifying these anti-

forensic risks. Chapter Three first reviewed a number of similar studies and then 

identified a number of research questions regarding the issue of software bugs 

causing anti-forensic risk in digital forensic tools. The research questions were 

then developed into a methodology for testing and identifying software bugs as 

related to anti-forensic risk. 

 Research and testing has been conducted as per the methodology described 

in Chapter Three. The purpose of Chapter Four is to report and summarise the 

findings of the field work that has been performed. The results from the field 

work will be reported and analysed to provide a foundation for discussion in 

Chapter Five. The findings from Chapter Four are intended to provide an insight 

into the types of issues that are present in digital forensic tools that may present an 

anti-forensic risk. 

 Chapter Four is split into four main Sections. Section 4.1 will describe the 

changes made to the methodology specified in Chapter Three. Section 4.2 will 

present a full report of the findings from the field work. Section 4.2 covers the 

first three phases of the methodology as described by Chapter Three. Section 4.3 

covers the last phase of the methodology being the analysis stage. The next 

section, 4.4, summarises the research findings and analysis as graphs and tables. A 

conclusion of Chapter Four is then presented in Section 4.5. 
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4.1  CHANGES TO SPECIFIED METHODOLOGY 

The testing went through the four phases as described in Chapter Three. Most of 

the testing was conducted according to the test methodology described in Chapter 

Three. However, a number of changes were necessary to progress with the data 

collection and analysis. Changes to the tools and functions to be tested are 

discussed in Section 4.1.1. 

4.1.1    Tools And Functions To Be Tested  

As discussed in Section 3.4 it is not feasible to conduct wide range testing of 

many function areas across many different digital forensic tools within the time 

restrictions of this thesis. Therefore the testing has been focussed on one forensic 

tool being EnCase Forensic and the subset of function areas included as part of the 

Evidence Processor functionality. EnCase Forensic has been chosen as it is one of 

the leading digital forensic tools available and is widely used by investigators. 

The Evidence Processor functionality of EnCase Forensic is new to version 7 of 

the software and combines a number of functions from version 6 in one place. The 

functions included in the Evidence Processor are focussed on automated pre-

processing tasks that an investigator would typically complete before starting the 

more manual phases of an investigation.  

4.2 FIELD FINDINGS 

The field work was carried out in four phases. The first phase discussed in 

Sections 4.2.1 and 4.2.2 involved mapping a function area of a forensic tool and 

then translating this function map into test requirements. The second phase 

focussed on preparing for testing which involved creating reference sets and test 

cases. The test cases that have been created are summarised in Section 4.2.3 and 

the associated reference sets are summarised in Section 4.2.4. A description of the 

testing environment is also presented in Section 4.2.5. The third phase of field 

work was the execution of the test cases; the results of which are presented in 

Section 4.2.6. The final phase of the field work will be discussed in Section 4.3. 
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4.2.1    Function Mapping 

The “Evidence Processor” functionality of EnCase Forensic has been mapped and 

a function map is presented in Figure 4.1. The purpose of the function map is to 

identify a number of sub-functions that are likely candidates for testing for 

software bugs. The function map also identifies various forms of input for each 

sub-function that is used to inform the creation of reference sets. 

The sub-functions identified appear in black in Figure 4.1. Each sub-

function then has either a specific function input in red or a function input 

category in yellow mapped to it. A specific function input refers to where the 

exact type of input is known and can be specified. A function input category 

refers to instances where the exact type of input is not known, there are numerous 

types of input or where further mapping a category would not be useful to the 

research. For instance, the Protected File Analysis sub-function has a function 

input category mapped to it as the inputs come from a third party program that 

was not able to be accessed during this research. In contrast, the System Info 

Parser sub-function was mapped to a function input category as it was difficult to 

identify and confirm the specific input types used by the sub-function. 

From the function map in Figure 4.1, it is easy to identify clusters of inputs 

that might be suitable for testing. For instance, the Expand Compound Files and 

Find Email sub-functions both contain a variety of input types.  
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Figure 4.1: EnCase Evidence Processor function map 
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Table 4.1: Evidence Processor sub-functions selected for testing 

Sub-Function Selected Reason 

Recover Folders No Likely to be extensively tested 

File Signature Analysis No Too simplistic (reads byte patterns) 

Protected File Analysis No Requires third party software 

Thumbnail Creation Yes Processes complex data structures 

Hash Analysis No Too simplistic (mathematical function) 

Expand Compound Files Yes Processes complex data structures 

Find Email Yes Processes complex data structures 

Find Internet Artifacts Yes Processes complex data structures 

Search For Keywords No Too simplistic (reads text) 

Index Text And Metadata No Too simplistic (reads text) 

System Info Parser No Unable to easily identify input 

IM Parser No Too simplistic (reads byte patterns) 

File Carver No Too simplistic (reads byte patterns) 

Windows Event Log Parser Yes Processes complex data structures 

Windows Artifact Parser Yes Processes complex data structures 

Unix Login No Too simplistic (reads text) 

Linux Syslog Parser No Too simplistic (reads text) 

 

In most cases sub-functions were rejected for testing because the sub-

functions were deemed to be too simplistic. For example, the File Signature 

Analysis sub-function is too simplistic because it consists of reading a small 

number of bytes from a file to try and identify a file’s signature. In contrast, the 

Expand Compound Files sub-function was selected for testing as it involves the 

processing of complex data structures to extract items stored inside compound 
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files. Generally sub-functions were selected where EnCase did some sort of 

processing with the input. 

4.2.2    Test Requirements 

Test requirements were generated based on the sub-functions selected in Section 

4.2.1. A listing of the test requirements is presented in Table 4.2. The test 

requirements are used as the basis for creating the test cases described in Section 

4.2.3. 

Table 4.2: Test requirements 

Requirement ID Description 

EC.EP.01 The “Thumbnail Creation” sub-function shall be able to 

handle malformed images without generating an error 

condition 

EC.EP.02 The “Find Email” sub-function shall be able to handle 

malformed email files without generating an error condition 

EC.EP.03 The “Expand Compound Files” sub-function shall be able to 

handle malformed compound files without generating an error 

condition 

EC.EP.04 The “Find Internet Artifacts” sub-function shall be able to 

handle malformed internet artifacts without generating an 

error condition 

EC.EP.05 The “Windows Artifact Parser” sub-function shall be able to 

handle malformed Windows artifacts without generating an 

error condition 

EC.EP.06 The “Windows Event Log Parser” sub-function shall be able 

to handle malformed Windows event logs without generating 

an error condition 

4.2.3    Test Cases 

Six test cases have been created that are mapped to the test requirements 

described in Section 4.2.2. A summary of the test cases is presented below in 

Table 4.3. Note that the full test cases are presented in Appendix B. 
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Table 4.3: Summary of test cases 

Test Case Requirement Reference Sets 

TC.01 EC.EP.01 RS-IMAGE-01 

TC.02 EC.EP.02 RS-EMAIL-01, RS-EMAIL-02, RS-EMAIL-03,  

RS-EMAIL-04 

TC.03 EC.EP.03 RS-CONTAINER-01, RS-CONTAINER-02,  

RS-CONTAINER-03, RS-CONTAINER-04,  

RS-CONTAINER-05 

TC.04 EC.EP.04 RS-INTERNET-01, RS-INTERNET-02,  

RS-INTERNET-03, RS-INTERNET-04,  

RS-INTERNET-05 

TC.05 EC.EP.05 RS-WINDOWS-01, RS-WINDOWS-02 

TC.06 EC.EP.06 RS-LOG-01, RS-LOG-02 

4.2.4    Reference Set Creation 

Reference sets have been created to assist with the testing process. The reference 

sets consist of a number of malformed files that have been created using a fuzzing 

process. Section 4.2.4.1 will discuss the details of the fuzzing process and Section 

4.2.4.2 will present a summary of the reference sets that have been created. 

4.2.4.1      File fuzzer 

A simple file fuzzer was created for the purpose of generating reference sets. A 

simplified overview of the internal processes of the file fuzzer is presented in 

Figure 4.2. The C# source code for the file fuzzer is available in Appendix D. 
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Figure 4.2: File fuzzer internal processes 
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The file fuzzer takes five inputs as shown in orange in Figure 4.2. The 

input file, output path, fuzzing percentage and number of files to generate are 

required inputs; however the manual seed is an optional input. The file fuzzer uses 

a seeded random number generator to decide which byte to replace in a file. This 

seeded random number generator can be provided with a manual seed from the 

user which will result in the same bytes being replaced each time that seed is used. 

If a manual seed is not provided then a random seed is generated using a secure 

random number generator.  

The file fuzzer uses the seeded random number generator to randomly 

replace the specified percentage of bytes. Upon completion a malformed file is 

then output. The process is repeated until the specified number of files is 

generated. 

4.2.4.2      Reference set summary 

A number of reference sets have been created by first identifying a benign input 

file for a sub-function. A reference set is then generated by creating a number of 

malformed files based on the input file. The benign files were either taken from an 

existing image of forensic corpora or by manually creating benign files. The 

details of the origins of the benign files used are presented in the full details for 

each reference set. 

The reference sets all contain various numbers of files at five specific 

malformation percentages being 0.1%, 0.2%, 0.5%, 1% and 2%. A range of 

malformation percentages was chosen to generate a wide range of possible 

malformations in the reference sets. One file type may generate an error condition 

at a malformation percentage of 0.1%; however another file type may only 

generate an error condition at a malformation percentage of 2%. 

A summary of the reference sets created in presented below in Table 4.4. 

In Table 4.4 each reference set is listed by ID and a brief description of the 

contents is provided. The full details for each reference set are presented in 

Appendix A. The full details include information such as the origins of benign 

files and the number of malformed files generated at each malformation 

percentage. 
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Table 4.4: Summary of reference sets 

Reference Set ID Contents 

RS-IMAGE-01 Malformed BMP, GIF, JEPG and PNG images 

RS-EMAIL-01 

 

Malformed PST email containers 

RS-EMAIL-02 

 

Malformed NSF email containers 

RS-EMAIL-03 

 

Malformed MBOX email containers 

RS-EMAIL-04 

 

Malformed DBX email containers 

RS-CONTAINER-01 

 

Malformed ZIP file containers 

RS-CONTAINER-02 

 

Malformed GZIP file containers 

RS-CONTAINER-03 

 

Malformed TAR file containers 

RS-CONTAINER-04 

 

Malformed RAR file containers 

RS-CONTAINER-05 

 

Malformed BZIP2 file containers 

RS-INTERNET-01 

 

Malformed Firefox history/bookmark databases 

RS-INTERNET-02 

 

Malformed Internet Explorer history databases 

RS-INTERNET-03 

 

Malformed Opera history databases 

RS-INTERNET-04 

 

Malformed Safari history databases 

RS-INTERNET-05 

 

Malformed Chrome history databases 

RS-WINDOWS-01 Malformed Windows Link files 

RS-WINDOWS-02 Malformed Windows Recycle Bin (INFO2) records 

RS-LOG-01 Malformed Windows Legacy Event Logs 

RS-LOG-02 Malformed Windows Event Logs 

 

From Table 4.4 it can be seen that the reference set RS-IMAGE-01 is the 

only reference set that contains more than one type of file. RS-IMAGE-01 was the 

first reference set created and processing took a long time to complete. The long 
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processing time could cause complications when it comes to reproducing issues 

discovered. Subsequent reference sets were therefore split up into smaller sets. 

4.2.5    Testing Environment 

A stable testing environment was set up to help address the limitations discussed 

in Chapter Three where issues with the testing environment can confound issues 

with the software being tested. The complete hardware specifications for the 

testing workstation are shown in Table 4.5. All of the software installed on the 

testing workstation is listed in Table 4.6. 

Table 4.5: Testing workstation – hardware specifications 

Component Model 

Case Silverstone SG08 

Power Supply Silverstone 80 PLUS Bronze Certified 600W 

Motherboard GIGABYTE GA-H61N-USB3 (BIOS Version F8) 

CPU Intel Core i7-3770 (3.4 GHz, 3.9 GHz Turbo) 

RAM 8GB G.SKILL F3-10666CL9D-8GBXL 

(1333MHz) 
Primary Drive 40 GB Intel 320 Series SSD  

Testing Drive (Type 1) 120 GB Intel 520 Series SSD 

Testing Drive (Type 2) 2 TB Western Digital Caviar Black HDD 

(WD2002FAEX) 
Welland eSATA Dock EZStor ME-601J 

CodeMeter USB Dongle CMStick v1.16 (EnCase license protection) 

 

All testing drives were sanitised prior to use through either a secure erase 

in the case of an SSD (Type 1) or an EnCase wipe in the case of a hard drive 

(Type 2). Type 2 drives were primarily used for storage of reference sets and only 

for testing in limited cases where the testing required more storage space than 

could be provided by Type 1 drives. All testing drives were all connected to the 

testing workstation using the Welland eSATA dock through an eSATA 

connection. 
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Table 4.6: Testing workstation – installed software 

Software Description/Purpose 

Windows 7 Enterprise (64-bit) Operating system 

Various Drivers Chipset, audio, video, storage etc. 

Intel SSD Toolbox 3.03 Secure erasing SSD drives 

LogMeIn 4.1.0.2450 Remote monitoring of testing 

EnCase Forensic 7.04.00.85 (64-bit) Target digital forensic tool for testing 

CodeMeter for Windows 4.30.482.502 EnCase license protection 

A 64-bit operating system and the 64-bit version of EnCase Forensic were 

selected as the use of 64-bit systems is now commonplace. One limitation of using 

a 64-bit operating system and software is that a lot of software testing and 

debugging methodology and tools are geared towards a 32-bit environment. 

4.2.6    Field Findings 

Field findings from the test cases that have been conducted are presented below. 

Results are presented individually for each of the six test cases. The results for 

each test case include an overview of the test case, a table summarising the results 

and an explanation of the results. Note that a journal of the testing process was 

also kept and is available in Appendix C. 

4.2.6.1      TC.01: thumbnail creation 

Test case TC.01 involved testing the “Thumbnail Creation” feature of EnCase’s 

Evidence Processor. This feature creates thumbnails of all images on a suspect 

device to allow for the quick previewing and browsing of images. A summary of 

the results for each reference set associated with TC.01 is presented below in 

Table 4.7. 

Table 4.7: TC.01 result summary 

Requirement 

Set Used 

Reference Set Tested Result 

EC.EP.01 RS-IMAGE-01 No issues 

 



 

 79 

EnCase was able to successfully process the reference set RS-IMAGE-01 

without any indication of software bugs or other issues. 

4.2.6.2      TC.02: find email 

Test case TC.02 involved testing the “Find Email” feature of EnCase’s Evidence 

Processor. This feature identifies and parses email artifacts from a suspect device 

and presents them in a readable and searchable format. A summary of the results 

for each reference set associated with TC.02 is presented below in Table 4.8. 

Table 4.8: TC.02 result summary 

Requirement 

Set Used 

Reference Set Tested Result 

EC.EP.02 RS-EMAIL-01 Crash 

EC.EP.02 RS-EMAIL-02 Crash 

EC.EP.02 RS-EMAIL-03 No issues 

EC.EP.02 RS-EMAIL-04 Large cache files 

 

When attempting to process either reference set RS-EMAIL-01 or RS-

EMAIL-02 EnCase would crash within minutes of the starting of processing. 

Windows would then present the error message shown in Figure 4.3 to indicate 

that EnCase had stopped working. These reference sets were retested to ensure 

that the result was repeatable. 

 
Figure 4.3: TC.02 Windows error message 

 

When processing the RS-EMAIL-04 reference set, EnCase generated a 

large amount of files in the evidence cache folder. Testing was abandoned after 

EnCase filled a 2TB drive with cache files. The “Find Email” function in EnCase 

generates logical evidence files of any email artifacts it finds and stores these in 
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the evidence cache folder. However, in this case, the size of these logical evidence 

files was unusually large in contrast to the 3 GB size of the entire reference set. 

4.2.6.3      TC.03: expand compound files 

Test case TC.03 involved testing the “Expand Compound Files” feature of 

EnCase’s Evidence Processor. This feature identifies and expands compound files 

from a suspect device to allow for searching through child items inside compound 

files. A summary of the results for each reference set associated with TC.03 is 

presented below in Table 4.9. 

Table 4.9: TC.03 result summary 

Requirement 

Set Used 

Reference Set Tested Result 

EC.EP.03 RS-CONTAINER-01 Unexpected exit 

EC.EP.03 RS-CONTAINER-02 Crash 

EC.EP.03 RS-CONTAINER-03 No issues 

EC.EP.03 RS-CONTAINER-04 Crash 

EC.EP.03 RS-CONTAINER-05 Crash 

 

While nearing the end of processing the reference set RS-CONTAINER-

01, EnCase unexpectedly exited without any error message from EnCase or from 

Windows to indicate EnCase had crashed. A similar result was seen while nearing 

the end of processing the reference set RS-CONTAINER-02, however, this time, 

a Windows error message was shown to indicate that EnCase had crashed. 

When attempting to process either reference set RS-EMAIL-01 or RS-

EMAIL-02, EnCase would crash within minutes of the starting of processing. 

This is similar to the results seen in TC.02. These reference sets were retested to 

ensure that the result was repeatable. 

4.2.6.4      TC.04: find internet artifacts 

Test case TC.04 involved testing the “Find Internet Artifacts” feature of EnCase’s 

Evidence Processor. This feature identifies and parses internet artifacts and 

presents them in a readable and searchable format. A summary of the results for 

each reference set associated with TC.04 is presented below in Table 4.10. 
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Table 4.10: TC.04 result summary 

Requirement 

Set Used 

Reference Set Tested Result 

EC.EP.04 RS-INTERNET-01 Crash 

EC.EP.04 RS-INTERNET-02 No issues 

EC.EP.04 RS-INTERNET-03 No issues 

EC.EP.04 RS-INTERNET-04 Crash 

EC.EP.04 RS-INTERNET-05 No issues 

While attempting to process either reference set RS-INTERNET-01 or RS-

INTERNET-04 EnCase would crash and a Windows error message would be 

presented. This is similar to the crashes seen in previous test cases.  The 

processing of RS-INTERNET-03 was unusually quick and no internet artifacts 

were identified by EnCase. This is possibly due to the fuzzing process malforming 

the original internet artifact to the point where it is no longer recognisable as a 

valid internet artifact. 

4.2.6.5      TC.05: Windows artifact parser 

Test case TC.05 involved testing the “Windows Artifact Parser” feature of 

EnCase’s Evidence Processor. This feature identifies and parses various Windows 

artifacts and presents them in a readable and searchable format. A summary of the 

results for each reference set associated with TC.05 is presented below in Table 

4.11. 

Table 4.11: TC.05 result summary 

Requirement 

Set Used 

Reference Set Tested Result 

EC.EP.05 RS-WINDOWS-01 No issues 

EC.EP.05 RS-WINDOWS-02 No issues 

 

EnCase was able to successfully process both reference set RS-

WINDOWS-01 and RS-WINDOWS-02 without any issues. 

4.2.6.6      TC.06: Windows event log parser 

Test case TC.06 involved testing the “Windows Event Log Parser” feature of 

EnCase’s Evidence Processor. This feature creates, identifies and parses Windows 
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event logs and presents them in a searchable format. A summary of the results for 

each reference set associated with TC.06 is presented below in Table 4.12. 

Table 4.12: TC.06 Result Summary 

Requirement 

Set Used 

Reference Set Tested Result 

EC.EP.06 RS-LOG-01 No issues 

EC.EP.06 RS-LOG-02 Internal error 

 

Soon after the starting of processing for reference set RS-LOG-02, EnCase 

generates an internal error as shown in Figure 4.4. EnCase appears functional after 

this error has occurred but does not allow the Evidence Processor to be restarted 

as EnCase considers the Evidence Processor to still be running as shown in Figure 

4.5. This reference set was retested to ensure that the result is repeatable. 

 

Figure 4.4: TC.06 EnCase internal error 

 

 

 

Figure 4.5: TC.06 EnCase Evidence Processor error message 
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4.3   RESEARCH ANALYSIS 

The field findings have been reported in Section 4.2. Section 4.3 will summarise 

and interpret the field findings. Firstly an analysis of the issues identified is 

presented in Section 4.3.1. The analysis of issues will investigate the risks 

associated with the issues identified to better understand the significance of each 

type of issue. Acceptance spectrum determinations are then presented in Section 

4.3.2. The acceptance spectrum determinations build upon the analysis of issues to 

make a determination on the results for each of the six test cases. 

4.3.1    Analysis Of Issues 

Throughout the testing conducted there were four distinct types of issue with 

EnCase that have been identified. The four types of issue are crashing, unexpected 

exit, internal error and the creation of large cache files. These four types of issues 

are described in the following sub-Sections. 

4.3.1.1 Crashing 

The most common type of issue seen was a complete crash of EnCase resulting in 

the Windows operating system presenting an error message as shown in Figure 

4.3. The error message indicates that the operating system has detected a fatal 

exception that has occurred in the EnCase executable. Windows performs a 

memory dump of the application’s memory and then ends the executable. 

 A crash has the potential to be a significant issue for an application and 

could result in risks such as code execution which could lead to compromising the 

system and evidence. Further analysis of each of the individual crashes would be 

needed to understand the severity and possible implications. 

4.3.1.2    Unexpected exit 

In test case TC.03, while processing reference set RS-CONTAINER-01 EnCase 

exited unexpectedly without an error message appearing from either EnCase or 

Windows. The lack of an error message is possibly an indication that EnCase has 

attempted to gracefully handle an exception but had to end the executable. 

 Further research would be needed to determine if the unexpected exit is 

the result of graceful exception handling by EnCase. It is possible that similar 
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risks to the crashes discussed in Section 4.3.1.1 could result from an unexpected 

exit. 

4.3.1.3    Internal error 

An EnCase internal error message occurred during test case TC.06 while 

processing reference set RS-LOG-02 as shown in figure 4.4. An internal error 

message is an indication that EnCase has encountered an exception and has been 

able to handle it gracefully without needing to end the executable. In this 

particular case EnCase remained in a working state with reduced functionality. 

 An internal error does not present any of the severe risks associated with a 

crash. The main risk of the internal error seen in TC.06 is that a large amount of 

evidence processing may need to be repeated. 

4.3.1.4    Creation of large cache files 

Testing was abandoned during test case TC.02 while processing reference set RS-

EMAIL-04 due to the creation of unusually large cache files. When processing 

container formats, EnCase stores any processed child items into logical evidence 

files stored in the case cache folder. In the case of RS-EMAIL-04, the logical 

evidence files being created were exceptionally large. The issue seen with RS-

EMAIL-04 is likely due to the manipulation of internal data structures in a DBX 

file by the fuzzing process. Further research would be needed to identify the exact 

data structures being manipulated and to test the extent to which these 

manipulations can disrupt processing. 

 The main risk of the creation of large cache files is that an investigator will 

run out of room to store the cache files. The end result would be that the evidence 

processing may need to be cancelled and repeated. 

4.3.2 Acceptance Spectrum Determinations 

Upon analysis of the issues identified it is now possible to determine the 

appropriate acceptance spectrum result for each test case as discussed in Section 

3.3.1.6. The determination for each test case is presented in the following sub-

Sections. 
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4.3.2.1 TC.01: thumbnail creation 

No software bugs or error conditions were detected during the TC.01 test case and 

no anti-forensic risks were identified. Therefore it can be determined that TC.01 

has achieved a pass result with an acceptance spectrum determination of; exceeds 

expectations. 

4.3.2.2 TC.02: find email 

Two instances of crashes and one instance of the creation of large cache files were 

detecting during the TC.02 test case. The software bugs detected present a minor 

anti-forensic risk which could prevent or disrupt the analysis of evidence. As 

discussed in Section 4.3.1.1 further research would be needed to determine if a 

crash could compromise the system or evidence and present a critical anti-forensic 

risk. Therefore it can be determined that TC.02 has achieved a fail result with an 

acceptance spectrum determination of; unacceptable.  

4.3.2.3 TC.03: expand compound files 

Three instances of crashes and one instance of an expected exit were detected 

during the TC.04 test case. The software bugs detected present a minor anti-

forensic risk which could prevent or disrupt the analysis of evidence. As discussed 

in Section 4.3.1.1 further research would be needed to determine if a crash could 

compromise the system or evidence and present a critical anti-forensic risk. 

Therefore it can be determined that TC.03 has achieved a fail result with an 

acceptance spectrum determination of; unacceptable.  

4.3.2.4 TC.04: find internet artifacts 

Two instances of crashes were detecting during the TC.04 test case. The software 

bugs detected present a minor anti-forensic risk which could prevent or disrupt the 

analysis of evidence. As discussed in Section 4.3.1.1 further research would be 

needed to determine if a crash could compromise the system or evidence and 

present a critical anti-forensic risk. Therefore it can be determined that TC.04 has 

achieved a fail result with an acceptance spectrum determination of; unacceptable.  

4.3.2.5 TC.05: Windows artifact parser 

No software bugs or error conditions were detected during the TC.05 test case and 

no anti-forensic risks were identified. Therefore it can be determined that TC.05 



 

 86 

has achieved a pass result with an acceptance spectrum determination of exceeds 

expectations 

4.3.2.6 TC.06: Windows event log parser 

One instance of an internal error was detected during the TC.06 test case. The 

software bug detected presents a minor anti-forensic risk which could prevent or 

disrupt the analysis of evidence. Therefore it can be determined that TC.06 has 

achieved a fail result with an acceptance spectrum determination of unacceptable. 

4.4   PRESENTATION OF FINDINGS 

A summary of the field findings from Section 4.2 and the analysis from Section 

4.3 is presented in graphical form to assist the reader in understanding and 

visualising the findings. 

 Figure 4.6 summarises the results of each reference set that was tested and 

the types of issues identified. The types of issues identified are represented by the 

horizontal axis and the number of reference sets experiencing the issue is 

represented by the vertical axis. 

 

Figure 4.6: Summary of types of issues 

 

From Figure 4.6, it is apparent that crashes were the most common type of 

issue identified. The other types of issues that were identified were much less 

common. Figure 4.6 also shows that even though there were a higher number of 

0

1

2

3

4

5

6

7

8

9

10

No Issues Crash Large cache files Unexpected exit Internal error

N
u

m
b

e
r 

o
f 

in
st

an
ce

s 
o

f 
is

su
e

s 

Issues Identified 



 

 87 

crashes identified there was an even higher number of reference sets that 

experienced no issues at all. 

Figure 4.7 provides an overview of the types of issues identified in each 

test case. Each individual test case is represented by the vertical axis with the 

issues identified in each test case depicted by different colours on the bars. The 

occurrence of each issue is represented on a percentage scale by the horizontal 

axis. 

 

Figure 4.7: Summary of test case results 

 

With the results broken down by test case and type of issue in Figure 4.7, 

it becomes apparent that the crashes experienced are clustered in three test cases; 

TC.02, TC.03 and TC.04. The three test cases that experienced crashes deal with 

complex data structures such as email containers. In contrast, the three test cases 

that did not experience crashes deal with simpler data structures such as images 

and logs. Figure 4.7 also shows that no single test case was a complete failure 

with at least some reference sets experiencing no issues in each test case. 

Acceptance spectrum determinations for each test case were made in 

Section 4.2.3. Table 4.13 presents a summary of the acceptance spectrum 

determinations for each test case. Each test case is listed along with the associated 

pass/fail result and the acceptance spectrum determination. 
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Table 4.13: Summary of acceptance spectrum determinations 

Test Case Result Acceptance Spectrum 

TC.01 Pass Exceeds expectations 

TC.02 Fail Unacceptable 

TC.03 Fail Unacceptable 

TC.04 Fail Unacceptable 

TC.05 Pass Exceeds expectations 

TC.06 Fail Unacceptable 

Table 4.13 shows that two thirds of the test cases have resulted in an 

unacceptable acceptance spectrum determination and one third of the test cases 

have resulted in an exceeds expectation determination. 

4.5   CONCLUSION 

Chapter Four has reported on the variations to the methodology, field findings, 

analysis and presented a visual representation of the field findings. Some 

variations to the methodology described in Chapter Three were expected and were 

reported in Section 4.1. Section 4.2 then reported on the results from the field 

testing as well as the various data collected. The results from each of the six test 

cases were reported which included the reporting of a number of issues. Section 

4.3 presented an analysis of the issues identified and also a determination of the 

acceptance spectrum results for each test case. Finally Section 4.4 summarised the 

field findings and presented them in a visual form. 

The next chapter, Chapter Five, will discuss the field findings reported in 

Chapter Four. Chapter Five will present a detailed discussion of the anti-forensic 

implications and possible counter measures for the issues identified in the field 

findings. Chapter Five will also perform hypothesis testing and answer the 

research questions as set out in Chapter Three. 
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Chapter Five 

 

DISCUSSION 

 

5.0 INTRODUCTION 

Field testing has been conducted according to the methodology described in 

Chapter Three. The results of the field testing are reported and presented visually 

in Chapter Four. Chapter Five presents a comprehensive discussion of the findings 

from Chapter Four to evaluate the relevance and significance of the field testing. 

The discussion in Chapter Five is intended to provide context for the results of the 

field testing in the discipline of digital forensics. 

 The research question concerns the anti-forensic implications arising from 

the presence of software bugs in digital forensic tools. Chapter Five discusses the 

field findings in relation to the research question. Chapter Five also provides an 

in-depth discussion of the field findings including discussions on the anti-forensic 

implications of the field findings and the effectiveness of the testing methodology 

used. 

 Chapter Five is split into four main Sections. Section 5.1 answers the 

research question and sub-questions developed in Section 3.2.2. The field results 

from Chapter Four are used to formulate an answer to the research question and 

sub-questions. The four hypotheses defined in Section 3.2.3 are also tested and 

discussed to determine the validity of each hypothesis. Section 5.2 presents a 

discussion of the research findings across a range of topics to provide context for 

the research findings in the wider discipline of digital forensics. Section 5.3 builds 

on the discussion of the research findings and presents recommendations for areas 

of further research. Section 5.4 then provides a conclusion of the discussion. 

5.1   RESEARCH QUESTIONS AND HYPOTHESES 

Section 3.2 presented the research question, sub-questions and associated 

hypotheses that are derived from the literature reviewed in Chapter Two. The 

research question and sub-questions will be reviewed to determine if the field 

findings from Chapter Four successfully answer the research question. A review 

of the research question is presented in Section 5.1.1 and a review of the sub-
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questions in Section 5.1.2. The hypotheses from Section 3.2 will then be tested 

and reviewed in Section 5.1.3. 

5.1.1 Research Question 

The research question for this research was derived and presented in Section 3.2.2. 

The research question is: What is the anti-forensic risk caused by software bugs in 

digital forensic tools? The purpose of the research question was to better 

understand the severity of anti-forensic risk related to software bugs as the 

literature reviewed in Chapter Two did not provide a sufficient answer. 

 Chapter Two reviewed literature related to anti-forensic risks in digital 

forensic tools and an understanding of typical anti-forensic risk and testing 

methodologies was achieved.  Chapter Three developed a methodology to answer 

the research question. Using this methodology, six test cases were set up and 

executed with the results reported in Chapter Four. 

 Section 4.4 presented a summary and visual representation of the results of 

the six test cases and also included a summary of the acceptance spectrum 

determinations for each test case. The answer to the research question can be 

investigated by reviewing the results in Section 4.4. Table 4.13 showed that two 

thirds of the test cases resulted in an “unacceptable” determination and one third 

of the test cases resulted in an “exceeds expectations” determination. None of the 

test cases resulted in a “meets expectations” or a “critically unacceptable” 

determination. 

5.1.2 Sub-Questions 

Four associated sub-questions outlined in Section 3.2.2 were developed to assist 

in answering the research question. The first sub-question is: What testing 

approaches are appropriate to test for the presence of software bugs in digital 

forensic tools? The methodology described in Chapter Three and used during the 

field testing for this research focussed on creating a number of reference sets 

containing malformed data which were then processed using digital forensic tools. 

The malformed data was created through a process known as file fuzzing. Figure 

4.6 and Figure 4.7 shows the methodology used by the research was successful in 

identifying 10 different software bugs. 
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 The second sub-question is: What test cases and reference sets can be 

developed to promote and assist the forensic community in testing for and 

evaluating software bugs associated with anti-forensic risk? The test cases and 

reference sets created during the research were successfully used to identify 

software bugs associated with anti-forensic risks. The tests cases and reference 

sets themselves, as well as the processes used to create them, can be used as a 

template by the forensic community to conduct further testing. 

 The third sub-question is: How can software bugs in digital forensic tools 

be ranked and evaluated in terms of severity and anti-forensic risk? Acceptance 

spectrums adapted from previous studies were used by the research to evaluate the 

severity of anti-forensic risks. Acceptance spectrums provide increased 

granularity over a simple pass/fail result which is necessary to give a better 

indication of the severity of anti-forensic risk. The research analysis presented in 

Section 4.3 also demonstrates the importance of investigating and discussing the 

actual impact of software bugs. While a software bug that causes a crash could 

potentially present a critically unacceptable anti-forensic risk, it is not appropriate 

to label it as such without further analysis and corresponding evidence. 

 The fourth sub-question is: What are the risks caused by the presence of 

software bugs in digital forensic tools? The research analysis presented in Section 

4.3 shows that the research identified four distinct types of software bugs with 

associated anti-forensic risk. From the analysis performed, it is apparent that 

software bugs in digital forensic tools present a number of risks with the most 

prevalent being the risk of disrupting or preventing an investigation from taking 

place. The software bugs identified could potentially pose a more severe risk, such 

as allowing for the hiding of evidence or other, more covert methods of subverting 

an investigation. However it is important to note that the research has only 

determined this is a possible risk, not an observed risk.  

5.1.3 Hypotheses Testing 

Four hypotheses were developed for the research question and presented in 

Section 3.2.3. The four hypotheses will be checked against the field findings. 

Tables 5.1 – 5.4 present the four hypotheses with associated arguments for and 

against. 
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H1: No software bugs are detected. 

Table 5.1: H1 testing 

For Against 

Two test cases had an acceptance 

spectrum determination of “Exceeds 

expectations” which maps to H1 

Ten software bugs were detected across 

four test cases 

Conclusion: Reject 

 

H2: Software bugs are detected but they do not present an anti-forensic risk. 

Table 5.2: H2 testing 

For Against 

Ten software bugs were detected across 

four test cases 

The software bugs detected do present 

an anti-forensic risk 

 No test cases had an acceptance 

spectrum determination of “Meets 

Expectations” which maps to H2 

Conclusion: Reject 
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H3: Software bugs are detected that present a minor anti-forensic risk. 

Table 5.3: H3 testing 

For Against 

Ten software bugs were detected across 

four test cases 

 

Four test cases had an acceptance 

spectrum determination of 

“Unacceptable” which maps to H3 

 

Conclusion: Accept 

 

H4: Software bugs are detected that present a critical anti-forensic risk. 

Table 5.4: H4 testing 

For Against 

Ten software bugs were detected across 

four test cases 

No software bugs were detected that 

present a critical anti-forensic risk 

 No test cases had an acceptance 

spectrum determination of “Critically 

Unacceptable” which maps to H4 

Conclusion: Reject 

 

The results indicate that H1 is not correct even though two test cases were 

determined to be mapped to H1. The fact that ten software bugs were detected 

falsifies H1. H2 is not correct as the software bugs that were detected do in fact 

present an anti-forensic risk. H3 is correct as the four test cases where software 

bugs were detected were all determined to present a minor anti-forensic risk. H4 is 

not correct as no software bugs were determined to present a critical anti-forensic 
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risk. However further research is needed to fully investigate the possibility of 

critical anti-forensic risks existing. 

5.2  DISCUSSION OF RESEARCH FINDINGS 

This Section discusses the research findings presented in Chapter Four and relates 

the findings to the literature reviewed in Chapter Two. Firstly a discussion of the 

testing methodology used by the research is presented in Section 5.2.1. The 

testing methodology used is compared and discussed in relation to the issues 

identified with existing methodologies by the literature review. Section 5.2.2 

discusses the challenges involved in evaluating anti-forensic risk and the 

effectiveness of the strategy used by the research. Section 5.2.3 presents a critical 

review of the anti-forensic implications of the field findings as they relate to a 

practitioner undertaking an investigation. Finally Section 5.2.4 discusses how the 

anti-forensic risks identified could have legal implications for digital evidence. 

5.2.1 Testing Methodology 

Section 2.5 of Chapter Three reviewed a number of approaches for evaluating 

anti-forensic risk in digital forensic tools. Established methodologies such as the 

CFTT methodology and the SWGDE guidelines were investigated and revealed to 

be unsuitable for identifying and investigating software bugs related to anti-

forensic risk. The iSEC Partners team noted that current testing focuses on 

countering data hiding techniques and ensuring accurate reproduction of evidence 

(Newsham, Palmer, Stamos, & Burns, 2007). The focus of current testing 

methodologies is not focussed on or suitable for testing for software bugs and 

related anti-forensic risks.  

The literature review investigated testing methodologies used for software 

security testing in Section 2.5.4. There is a range of software security testing 

methodologies that are well established and proven to achieve results. However 

one issue with many software security testing methodologies is that they require a 

high level of technical expertise and knowledge in niche areas. It is unusual to 

find a digital forensic practitioner who also has the skill set to undertake proper 

software security testing. Unfortunately the niche nature of digital forensics also 

means it is difficult to find software security testing experts who have access to 

digital forensic tools and enough experience in digital forensics to understand the 
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implications of any issues they find. One particular software security technique, 

fuzzing was identified by the literature review as being potentially suitable due to 

its simplicity and ability to get results easily. 

The literature review also investigated the digital forensic tool testing 

images released by Carrier (2010). The images released by Carrier are a great 

example of how the digital forensic community can test tools together effectively. 

The images provided by Carrier each test a number of simple and easy to 

understand functions that can be tested by anyone with a reasonable level of 

proficiency in digital forensics. Carrier’s images focus on testing functionality 

much like the CFTT methodology and are therefore not very suitable when it 

comes to testing for software bugs related to anti-forensic risk. However, Carrier’s 

images demonstrate that simplicity and community involvement can be successful 

in achieving a wider range of testing than that done by a dedicated testing 

organisation such as NIST. 

The literature review revealed two main issues with current testing in the 

field of digital forensics as it relates to anti-forensic risk. Firstly, current testing 

almost exclusively focuses on testing the functionality of tools. Functionality is 

important for ensuring that evidence produced is accurate. However, functionality 

testing alone misses potential software bugs in digital forensic tools that could be 

pose anti-forensic risk. The second issue revealed by the literature review is a lack 

of practical testing and research regarding anti-forensic risk. Most anti-forensic 

research discusses theoretical risks and implications without actually doing any 

significant testing. 

A number of similar studies were reviewed in Chapter Three and 

summarised in 3.2.1. The review of similar studies revealed how other researchers 

had attempted to improve digital forensic tool testing. Wilsdon and Slay (2006) 

noted that current methodologies do not satisfy the needs of the digital forensic 

community and suggested the need for a more simplified and streamlined 

methodology. Key elements of the approach suggested by Wilsdon and Slay 

(2006) include the use of reference sets and wider community involvement. Guo, 

Slay and Beckett (2009) pointed out that current testing methodologies are 

targeted at functions that have been decided to be important and that many areas 

of digital forensic tools are being left untested. The authors developed a process 

mapping technique to approach tool testing in a more systematic way. Newsham 
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et al (2007) argued that digital forensic tool testing needs to be more security 

focused. Current methodologies focus on testing enough use cases to ensure a 

function can be validated as working. Security testing requires that enough use 

cases are tested to conclude the function does not pose a security risk regardless of 

whether the function works or not. To prove their point, Newsham et al (2007) 

demonstrated the use of fuzzing and identified a number of security related 

software bugs in digital forensic tools. 

Chapter Three used the implications of the literature review and similar 

studies to create an appropriate methodology for testing for software bugs and 

related anti-forensic risk. The first challenge of the methodology was deciding 

where to target the testing. The process mapping technique developed by Guo, 

Slay and Beckett (2009) was adapted for use in mapping the inputs of functions in 

digital forensic tools. The inputs of functions could then be judged based on their 

suitability for testing. One of the main goals while creating the methodology was 

to create something that was simple and easy for the digital forensic community to 

replicate. Because of the need for simplicity fuzzing was chosen as the main 

method of testing for software bugs. A custom fuzzer was created that was able to 

generate a number of reference sets containing malformed data that could then be 

input into specific functions of digital forensic tools in an attempt to locate 

software bugs. The malformed reference sets adapted the idea of a wider range of 

reference sets as proposed by researchers such as and Wilsdon and Slay (2006). 

The malformed reference sets are designed to be the basis of widespread 

community testing in a way similar to that of the images created by Carrier (2010). 

The difference between Carrier’s images and the malformed reference sets is that 

the focus is on identifying software bugs, not on testing functionality. 

The testing methodology that was developed was then successfully used to 

identify a number of software bugs in a digital forensic tool. The field findings in 

Chapter Four show that the malformed files in the reference sets caused various 

crashes, errors and other issues to occur in EnCase Forensic. The most common 

type of issue identified was that the reference set would cause EnCase Forensic to 

crash. However, other issues such as causing EnCase Forensic to produce large 

cache files and causing internal errors were also identified. The field findings 

from Chapter Four demonstrate that the testing methodology works and can be 

used to successfully identify software bugs in digital forensic tools. The testing 
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methodology presents a possible alternative to traditional function-based testing 

of digital forensic tools. Importantly, the testing methodology is simple to 

understand and has been proven to be successful in identifying software bugs. 

5.2.2 Evaluating Anti-Forensic Risk 

Section 2.3 of the literature review in Chapter Two investigated the range 

of different types of anti-forensic risk that exist as well as the various factors that 

contribute to this risk. Section 2.4 then reviewed past and existing anti-forensic 

risks related to EnCase Forensic. The literature review revealed that anti-forensic 

risk is caused by a wide range of factors and comes in various levels of severity. 

A key issue in developing the testing methodology was determining some way of 

determining the type and severity of anti-forensic risk associated with any 

software bugs identified. As shown by the field findings in Chapter Four software 

bugs were identified in EnCase Forensic. However, a significant challenge is 

determining what the actual anti-forensic implications of these software bugs are. 

The literature review showed that traditional digital forensic tool testing 

focused on testing functionality and presenting a pass/fail result. The review of 

similar studies in Chapter Three revealed that Slay and Beckett (2007) had 

developed the concept of acceptance spectrums for providing increased 

granularity in determining the outcome of testing results. The acceptance 

spectrum concept was adopted into the testing methodology used. Section 4.3.2 

shows how acceptance spectrums were applied to the test cases to determine the 

severity of anti-forensic risk. The acceptance spectrums informed the hypothesis 

testing done in Section 5.1.3. The use of acceptance spectrums ensures that anti-

forensic risks are not incorrectly judged to be harmless or critical due to there 

being no middle ground. Hypothesis testing revealed that the majority of the test 

cases performed were determined to be unacceptable. Essentially, the software 

bugs detected have been determined to fall in the middle of the acceptance 

spectrum and present a minor anti-forensic risk. The result is good from the point 

of view that the software bugs have not been incorrectly labelled as harmless or 

critical. However, the result is ultimately unsatisfying in determining the actual 

anti-forensic implications. The acceptance spectrum result does nothing to inform 

investigators on whether they should be concerned about a particular software bug. 
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For example, one of the bugs could be analysed further and developed into a code 

execution vulnerability while the rest of the bugs could remain minor risks. The 

problem with using scales like acceptance spectrums is that it can only represent a 

risk’s severity based on what is known about the risk. The acceptance spectrum 

does not take into account the possible risks that could exist. When evaluating 

anti-forensic risks, examiners should not necessarily take a result at face value. 

Care should be taken to understand if a risk has been accurately represented or 

whether further analysis could determine whether the risk has been under or over 

stated. 

5.2.3 Anti-Forensic Implications And Counter Measures 

The previous section discussed the issues in evaluating anti-forensic risk. The 

acceptance spectrum determinations in Section 4.3.2 and the hypothesis testing 

done in Section 5.1.3 reveal the majority of test cases align with hypothesis H3. 

Hypothesis H3 states that the software bugs detected present a minor anti-forensic 

risk. However, the acceptance spectrums and hypothesis testing only present a 

very high level overview of the actual anti-forensic implications of the software 

bugs identified. Section 4.3.1 provided a summary of the four types of issues that 

were identified and the possible anti-forensic implications. 

The most prevalent issue identified was seven instances of crashing where 

EnCase suffered some sort of fatal error that it could not recover from. Two 

instances of similar issues, internal errors and exiting unexpectedly, were also 

identified, where EnCase handled the errors more gracefully. Section 4.3.1.1 

mentioned that the crashes identified could potentially be developed into code 

execution vulnerabilities. A code execution vulnerability would present a severe 

anti-forensic risk; however, the risk is merely hypothetical at this stage and would 

require further investigation. While it is true that a crash is usually a first step 

towards to developing a code execution vulnerability, many crashes are mostly 

harmless. The demonstrable implication of the crashes identified, is that the 

Evidence Processor in EnCase is going to stop in the middle of processing. The 

typical use of the Evidence Processor is to get a large amount of automated pre-

processing out of the way before conducting a manual analysis. For example, an 

investigator would use the Evidence Processor to expand all the compound files 
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from an exhibit before running a keyword search. Section 4.2.6.3 shows that 

multiple software bugs resulting in a crash have been identified in the “Expand 

Compound Files” feature of the Evidence Processor.  

A suspect, knowing they are about to be investigated, and knowing the 

basics of the forensic process, might deliberately plant several malformed 

compound files on their computer. An investigator could spend a considerable 

amount of time running the Evidence Processor only to encounter a deliberately 

malformed compound file that causes EnCase to crash. The investigator has now 

lost a significant amount of processing time and has been prevented from using 

the Evidence Processor functionality to automatically expand compound files. If 

the investigator was to try using the Evidence Processor again they would 

encounter another crash and lose even more time.  

At this stage the investigator is forced to take counter measures to handle 

the malformed compound files. The simplest option would be to manually expand 

the compound files one by one so that less work is lost if a malformed compound 

file is encountered. Another approach is to use the debugging features of the 

software and work with the software vendor to identify and fix the software bug. 

As an immediate solution, the software vendor could possibly assist in identifying 

the problem files so that they can be isolated. A third option is to use an 

alternative tool to perform the analysis on the exhibit with the hope that different 

tools will have different software bugs. 

By analysing the crash scenario presented in the previous paragraphs we 

can identify a number of different types of risk factors present. The most obvious 

risk factor is tool risk that was first discussed in Section 2.2.2.2. The crashes are 

due to what Garfinkel (2007) calls a failure to validate data. The digital forensic 

tool has failed to validate the data it is processing from the compound file and this 

has resulted in a fatal error occurring. There is also an element of process risk as 

discussed in Section 2.2.2.3. Rogers (2005) warns that reliance on standardised 

processes makes it easier to target anti-forensic attacks. Expanding compound 

files is going to be part of many people’s forensic process and therefore it 

becomes a promising function to target with an anti-forensic attack. A number of 

counter measures were presented to the above scenario; however these counter 

measures are dependent on human risk factors such as those discussed in Section 

2.2.2.1. If an investigator is inexperienced, they are going to be less successful at 
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coming up with and executing a counter measure. An investigator who had not 

encountered similar issues before might simply keep rerunning the Evidence 

Processor and expect it to work the second time. 

The software bugs identified that caused a crash, unexpected exit or 

internal error present an anti-forensic risk that is easily identifiable by an 

investigator. When EnCase crashes in the middle of running the Evidence 

Processor it is obvious that something has gone wrong and some action needs be 

taken to remedy the situation. There was one software bug identified that is not as 

obvious. Section 4.2.6.2 shows a bug with the “Find Email” function of the 

Evidence Processor in EnCase that results in the creation of large cache files. The 

“Find Email” function parses email container files and extracts the individual 

emails out to logical evidence files to allow further analysis. A software bug was 

identified with the processing of DBX email containers which resulted in 

unusually large logical evidence files being created. In the test case the reference 

set of 3GB of DBX email containers expanded to full a 1.8TB drives before the 

process was cancelled after 24 hours of processing time.  

If such files were to be encountered in actual investigation, there would be 

no indication of what had happened until they run out of available hard drive 

space. The anti-forensic implications are similar to a crash in that the investigator 

loses a significant amount of time. However the loss of time is potentially much 

larger as the investigator is not immediately notified that something has gone 

wrong. The investigator must also spend additional time diagnosing the issue to 

figure out that EnCase has created large cache files and cleaning up the mess. The 

investigator can use similar counter measures to those used to counter a crash, 

however, there may be problems identifying the exact issue. The software bug 

does not cause EnCase to crash and the Evidence Processor is able to somewhat 

successfully parse the DBX files. The creation of large cache files is tool risk and 

falls into the category of denial of service attacks as defined by Garfinkel (2007) 

and discussed in Section 2.2.2.2. The investigator is being prevented from using 

the resource of hard drive space in a subtle manner without the issue becoming 

immediately apparent. 

The primary anti-forensic implication of the software bugs identified is 

that investigators could lose a significant amount of time on an investigation. The 

software bugs identified do not currently pose a significant threat to evidential 
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integrity or the security of examiner computers. Although there may be potential 

for more severe anti-forensic risk, the only demonstrable risk is that of disrupting 

or preventing investigations from occurring. There are viable counter measures 

available to the anti-forensic risks identified; however, these may be expensive in 

terms of examination time and the cost of additional resources and tools. 

5.2.4 Evidential Implications 

The literature reviewed in Chapter Two examined some of the evidential 

challenges and implications associated with anti-forensic risk. Carrier (2002, p. 1) 

notes that “To date, there have been few legal challenges to digital evidence, but 

as the field matures this will likely change”.  There has been little challenge to 

digital evidence with even less attention to challenges associated with anti-

forensic risk. There are several ways that anti-forensic risks could impact on the 

evidential value of digital evidence. 

 The most immediately apparent way to challenge digital evidence using 

anti-forensic risk is to use the core concepts of evidence and expert witness 

testimony. Section 2.4.1 reviewed the nature of digital evidence and its 

requirements for acceptance in the courtroom. In US courts, the Daubert Standard 

and Rule 702 of the Federal Rules of Evidence are two of the main guidelines for 

deciding whether evidence can be accepted or not. The Daubert Standard has a list 

of five recommended guidelines when determining the acceptability of evidence 

from an expert witness: 

 Testability – Can the theory or technique used by tested? Can the theory or 

technique be refuted or falsified? 

 Peer review – Has the theory or technique been subject to peer review or 

publication? 

 Error rate – What is the known or potential error rate for the technique 

used? 

 Standards and controls – Do any standards or controls exist relating to the 

technique used? How well are the standards or controls maintained? 

 Accepted by scientific community – Does the relevant scientific or 

industry community generally accept the technique used? 



 

 102 

All of the guidelines refer to the theory or technique being used. In terms 

of digital evidence, this could be, for example, the technique used to manipulate a 

data structure such as the Windows registry to extract useful evidence. Even a 

serious anti-forensic risk such as arbitrary code execution would not necessarily 

invalidate the actual technique being used. It is possible that an anti-forensic risk 

could use a software bug that also demonstrated a fundamental issue with the 

technique. In many cases it is likely that anti-forensic risks are related to issues 

which could affect guidelines such as the testability and the error rates of 

techniques. However it is important to note that the anti-forensic risks themselves 

do not necessarily challenge these guidelines. If a large number of software bugs 

with related anti-forensic risk were exposed in a digital forensic tool the legal 

focus would be on the software bugs and not the anti-forensic risk. The software 

bugs identified and discussed in Chapter Four could potentially be related to 

issues with the underlying techniques used to collect digital evidence. For 

example, the software bug discussed in Section 4.2.6.2 relates to the processing of 

DBX files. The software bug likely exists due to a flawed understanding of the 

DBX data structure or a flawed implementation of a technique to process the 

DBX data structure. The flaws in the technique could potentially impact on the 

accuracy of the technique being used and therefore pose a challenge to the 

Daubert guidelines. However, the anti-forensic risk of creating large cache files 

associated with the software bug does not necessarily challenge any of the 

Daubert guidelines itself. 

A key concept in digital forensics is authenticity, which was first discussed 

in Section 2.4.2. Digital forensic investigators have well established methods to 

ensure that evidence they collect can be proven to be authentic. In order for 

evidence to be considered authentic the evidence presented (e.g. the forensic 

image) must be shown to be the same as that original exhibit that was collected 

(e.g. the suspect’s hard drive). Authenticity is typically proven by the use of 

extensive chain of custody documentation that shows how unlikely it is that the 

evidence has been tampered with (Ridder, 2007, pp. 4-5). The consensus amongst 

digital forensic investigators and law expects such as Ridder (2007, p. 5) is that 

evidence obtained from forensic images satisfies the authenticity requirement. 

However, in his follow-up paper to the anti-forensic risks demonstrated by 

Newsham et al (2007) Ridder (2007, p. 9) comments that forensic images could 
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be found to be inauthentic due to vulnerabilities and the possibility that the 

forensic images have been altered. Ridder (2007, p. 8) also mentions that the 

authenticity of core concepts in digital forensics such evidence hash values could 

be challenged if risks like code execution vulnerabilities can be shown to be 

present in forensic software. A code execution vulnerability could potentially 

allow someone to compromise the investigators system which would allow them 

to alter evidence or at least alter what is presented to the investigator. Section 

4.3.1 presented an overview of the types of issues identified and the anti-forensic 

implications of these issues were discussed further in Section 5.2.3. The software 

bugs identified do not have any demonstrable anti-forensic risks associated with 

them as severe as code execution vulnerabilities. The anti-forensic implications of 

the software bugs identified are limited to disrupting the investigation process and 

do not pose a challenge to the concept of evidence authenticity. 

Section 2.4.3 discussed the concept of reliability of digital forensic tools. 

The digital forensic community has put a lot of effort into ensuring the reliability 

of digital forensic tools including testing by organisations such as NIST. Ridder 

(2007, pp. 8-9) notes that current tool testing is extensive, performs the processes 

it claims to and produces valid and accurate results. However, current testing does 

not look for software bugs that could result in security vulnerabilities. Ayers 

(2009) discovered several flaws in EnCases handling of times and dates. 

Newsham et al (2007) demonstrated a number of software bugs with associated 

anti-forensic risks. When presented with challenges to tool reliability such as 

those discovered by Ayers (2009) and Newsham et al (2007) the typical response 

from vendors is that a properly-trained and certified investigator should be able to 

work around the issue. However, anti-forensic risks may not always be 

immediately apparent to the investigator to allow them to find a workaround. 

Ridder (2007, p. 8) agrees and notes that vulnerabilities in forensic software may 

not be detectable by the examiner and also suggests that certification standards for 

examiners are not a sufficient defence against anti-forensic risk. Section 5.2.3 

discussed the anti-forensic implications of the software bugs identified and 

included an anti-forensic risk involving the creation of large cache files that is not 

immediately apparent to the investigator. An investigator is not always able to 

determine if an anti-forensic risk has occurred and neither are they always able to 

determine how severe that risk is. Many of the software bugs identified resulted in 
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a crash which could be an indication of a minor fault or it could be an indication 

of a code execution vulnerability being exploited by an anti-forensic attack. 

Essentially end users of digital forensic tools are limited in how accurately they 

can judge the reliability of the tools they use. Vendors need to be more transparent 

and vigilant in their response to issues that could affect the reliability of their 

products. Ridder (2007, p. 8) has proposed the use of strict industry wide security 

standards for digital forensic tools and Ayers (2009) has suggested vendors should 

be forced to alert the forensic community about flaws that affect the reliability of 

forensic tools. 

Section 2.4.4 discussed the hypothetical situation of an investigator using 

the possibility of anti-forensic risk to create reasonable doubt about a suspect. As 

noted by Brenner, Carrier, and Henninger, (2005) the confusing of jurors with 

complex technology can result in jurors finding reasonable doubt when there 

should be none. Unfortunately the biggest evidential implication of anti-forensic 

risk is not going to come from tangible and credible challenges to evidence 

guidelines, authenticity or reliability of tools. There is the possibility that in a 

legal dispute both sides may attempt to use fear and misunderstanding to 

exaggerate the severity of an anti-forensic risk. A precedent for this kind of legal 

strategy was seen in the case of Kevin Mitnick where a judge was convinced 

Mitnick could start a nuclear war by whistling into a payphone (Mills, 2008). It is 

not difficult to see how similar misunderstandings could arise regarding the ability 

of a suspect to interfere with a forensic examination. The software bugs identified 

by this research do have some demonstrated anti-forensic risk as well as the 

potential for severe anti-forensic risk that cannot yet be demonstrated. However it 

is important that when investigating such anti-forensic risk, researchers do not 

overstate or exaggerate the actual implications. If anti-forensic risk becomes a 

topic of debate in the court room the focus should be the actual demonstrable 

implications of any issues with digital forensic tools and not hypothetical risks. 

5.3  RECOMMENDATIONS FOR FURTHER RESEARCH 

The testing and field findings have been successful in answering the research 

questions. However, the discussion of the findings shows that there are still many 
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related areas of research that could be investigated. Various areas for further 

research are discussed in the following Sections. 

5.3.1 Alternative Testing Methodologies 

Section 2.5 reviewed existing testing methodologies used in the digital forensic 

community and revealed a number of weaknesses present in existing 

methodologies. Current testing focuses on function-based testing of a limited 

subset of functions in digital forensic tools. Function-based testing is good from 

the point of view of ensuring that digital forensic tools are producing reliable and 

accurate evidence. Function-based testing is also somewhat successful in 

countering traditional anti-forensic risks such as data hiding. However, function-

based testing is inadequate for testing which is not necessarily dependent on a 

function working as expected, such as testing for security issues related to 

software bugs. The digital forensic community should continue to use existing 

testing methodologies such as the CFTT methodology and the SWGDE guidelines. 

However, there is also the need to develop alternative methodologies to fill in the 

gaps in the traditional testing methodologies. This research successfully used an 

alternative methodology composed of techniques such as fuzzing and the use of 

function mapping and acceptance spectrums. But it is important to note that 

alternative testing techniques are still in their infancy and need to be developed 

and formalised further. 

5.3.2 Targeted Fuzzing 

The technique of fuzzing was used by the research to successfully identify a 

number of software bugs with associated anti-forensic risk. Fuzzing was used in a 

blind manner to randomly change bytes within a file. With understanding of the 

underlying data structure of a file, it is possible to intelligently target specific 

areas of a file with specific changes. Targeted intelligent fuzzing could greatly 

improve the efficiency of fuzzing compared to blindly changing bytes. Using 

fuzzing in a more sophisticated manner has been done by the security community 

for some time now and these techniques could be adopted and adapted by the 

digital forensic community. The only prerequisite knowledge for being able to 

target fuzzing is to know how a specific data structure works in order to determine 
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what data is and is not expected by tools interpreting the data. Fortunately digital 

forensic practitioners already have in depth knowledge about many data structures. 

For example, a digital forensic practitioner is likely to have a good knowledge 

about data structures such as partition tables and file systems. Combining the 

existing knowledge of the digital forensic community with targeted fuzzing could 

allow for the testing of areas of digital forensic tools not possible with traditional 

testing techniques. 

5.3.3 In Depth Analysis Of Software Bugs 

A number of software bugs have been identified by the research as presenting an 

anti-forensic risk. However, further analysis is required to determine the nature of 

the bugs and the extent of the anti-forensic risk. There are also many other 

software bugs reported in digital forensic tools where little investigation has been 

performed to determine associated anti-forensic risk. Further research involving 

in-depth analysis of software bugs in digital forensic tools is required. However, 

detailed knowledge of areas such as reverse engineering, debugging and security 

vulnerabilities is required to perform further analysis of software bugs. There are 

a large number of research possibilities in this area for someone with the right 

skills. 

5.3.4 Community Testing Framework 

Carrier (2010) has created a number of sample images and distributed them to the 

community with the hope that the digital forensic community can use them to 

perform testing without relying on vendors or organisations such as NIST. Carrier 

provides a sample image and details the expected results from testing. Anyone 

from the community is able to use Carrier’s resources, perform testing and then 

return the results to Carrier. The advantage of community-based testing, such as 

that implemented by Carrier, is that it allows for the testing of tools across a wide 

range of environments which is something that is difficult for a single 

organisation to do. A community-based testing framework should be set up in a 

similar manner to that implemented by Carrier. The first challenge in 

implementing community testing is getting the resources to develop and maintain 

the framework. Authoritative members of the digital forensic community 
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including academic researchers, practitioners, testing organisations and vendors 

would need to come together in order to support a community testing framework. 

The framework needs to allow for the easy distribution of singular test units to the 

digital forensic community. Research is needed to determine how to structure and 

standardise test units and how to best distribute them. Another challenge is in 

determining how to receive testing results back and evaluate the results. A 

community testing framework would be a large undertaking but would provide an 

invaluable resource to the digital forensic community. 

5.3.5 Automated Reference Set Creation 

Creation of testing materials including input data, test requirements, test 

methodology and expected outcomes all takes a considerable amount of effort and 

time. The research used fuzzing in order to simplify the creation of reference sets 

containing large numbers of malformed files. Although techniques such as 

fuzzing help with the creation of input data there is a need for improved 

techniques for automating the creation of reference sets as a whole. Wilsdon and 

Slay (2006) proposed that an automated tool be created that could that could 

dynamically create a disk image with content designed to test specific 

functionalities of a tool as selected by the user. The automated tool would output a 

disk image as well as a report with test cases detailing which functions the 

reference sets test. Importantly Wilsdon and Slay (2006) also suggest that the tool 

produces a unique identifier for each reference set. The importance of the unique 

identifier is that it allows the community to distribute and refer to the identifier 

rather than the reference set which may be large in size. Ideally an automated 

reference set generator would be integrated into a community testing framework 

as discussed in Section 5.3.4. There are many challenges involved with the 

creation of an automated tool, the most significant of which is developing 

algorithms to dynamically create input data. 

5.3.6 Automated Testing 

Currently most testing of digital forensic tools is done in a largely manual manner. 

A tester will manually input some data into a tool and perform a function and then 

observe the results. It is possible that much of the testing of digital forensic tools 
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can be automated. The software engineering community has spent decades 

developing techniques to automate testing of software which can likely be adapted 

and used by the digital forensic community. A major challenge in automating 

testing of digital forensic tools is that the majority of tools are proprietary black 

boxes that are not intended to be used in an entirely automated manner. There are 

some exceptions such as the open source Sleuth Kit, where traditional white box 

testing techniques such a unit testing can be used for validation. Some digital 

forensic tools such as EnCase provide some ability for automation through 

internal scripting using EnScript. Where tools do not allow for scripting, it is 

likely possible to automate testing using external tools such as AutoIt. Research is 

needed to develop automation techniques to speed up the testing process and 

remove the requirement for manual interaction. For example, if a tester is testing 

to see whether a specific tool can correctly identify all the partitions in a disk 

image, there is no reason why this task cannot be fully automated. An automated 

script could be created to load the disk image into the tool and interpret the results 

returned from the tool. If automated testing could be coupled with automatic 

reference set generation, as discussed in Section 5.3.5, there is the possibility for 

an entirely automated end-to-end testing process. However there are significant 

issues to overcome in reaching this goal, including the requirement to develop and 

validate automated testing frameworks for each function of each tool. Another 

significant challenge is maintaining the automated testing frameworks. With every 

update to a tool there may be the need to update and revalidate the automated 

testing framework. 

5.4  CONCLUSION 

A comprehensive understanding of the field findings from Chapter Four has been 

formed through discussion in Chapter Five. This chapter places the field findings 

into context by discussing the relevance of the field findings to the wider 

discipline and associated literature. The discussion of the field findings has 

critically reviewed the testing and anti-forensic risk evaluation methodologies 

used. The relative success of the methodology used and its associated strengths 

and weaknesses were examined. The anti-forensic implications of the software 

bugs reported in the field findings were discussed and a thorough understanding 
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was established. The evidential implications of the field findings were also 

explored. 

 The research question and sub-questions were answered in Sections 5.1.1 

and 5.1.2 based on the field findings from Chapter Four. The four hypotheses 

were then tested in Section 5.1.3 by developing arguments for and against each 

hypothesis. The hypothesis testing revealed that H1, H2 and H4 are not correct 

while H3 was shown to be correct. 

 The discussion of the field findings also revealed that many areas relating 

to software bugs and associated anti-forensic risk require further research and 

investigation. Based on the discussion of the field findings, a number of 

recommendations for areas of further research were explored. The 

recommendations focused on methods to improve the testing of digital forensic 

tools as they apply to anti-forensic risk. 

 Chapter Six summarises and concludes the research project. The research 

findings from Chapter Four and the significant issues from Chapter Five will be 

summarised. The limitations of the research will also be outlined and discussed. 

Finally, the discussion of recommended areas for further research will be 

summarised to provide a link to further research. 
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Chapter Six 

 

CONCLUSION 

 

6.0 INTRODUCTION 

The research has evaluated a digital forensic tool for the presence of software 

bugs and any associated anti-forensic risk. A literature review and a review of 

similar studies formed the basis for the development of a methodology for testing 

for software bugs with associated anti-forensic risk. The methodology was then 

used to perform field testing of a digital forensic tool. The subsequent results and 

discussion of the field testing reveal the presence of software bugs that do pose an 

anti-forensic risk. 

The literature review in Chapter Two identified the importance of research 

into the area of software bugs and related anti-forensic risk. Digital forensic 

practitioners typically rely on a small number of large and complex software 

packages to perform forensic analysis. Digital forensic tools are relied on to 

provide evidence relating to serious issues and are universally accepted by court 

rooms around the world. The literature examined the various types of anti-forensic 

risk and presented a case study of past risks that have been shown to exist in 

forensic tools such as EnCase. The literature review also examined current testing 

techniques and revealed that current testing of digital forensic tools fails to 

address the presence of potential anti-forensic risk. The potential consequence of a 

software bug that poses an anti-forensic risk may be a malicious person being able 

to hide or alter evidence or disrupt or prevent an investigation 

Chapter Six will present a final conclusion to the research. The field 

testing results and discussion from Chapters Four and Five are summarised in 

Section 6.1. The answer to the research question is then summarised and 

concluded in Section 6.2. Limitations of the field testing and research are 

discussed in Section 6.3. Recommendations for further research based on the 

discussion in Section 5.3 are summarised in Section 6.4. Finally Section 6.5 

provides a final conclusion to the thesis. 
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6.1  SUMMARY OF RESEARCH FINDINGS 

The field testing consisted of first performing function mapping of the digital 

forensic tool EnCase to identify function areas that would be suitable for testing 

for software bugs with associated anti-forensic risk. Using the function map, six 

function areas were identified as being suitable. Six test cases were developed 

based on the chosen function area. Each test case had a number of malformed 

reference sets associated with it to be used as input in the field testing. The result 

for each test case was determined with use of acceptance spectrum determinations. 

 During the field testing, four distinct types of issues were observed. The 

four types of issues were crashing, unexpected exit, internal error and the creation 

of large cache files. The most common issue observed was a complete crash of 

EnCase resulting in the Windows operating system presenting an error message. 

The error message indicates that the operating system has detected a fatal 

exception occurring in the EnCase executable. A crash has the potential to be a 

significant issue for an application and could result in risks such as code execution 

which could lead to compromising the system and the evidence. One instance of 

an unexpected exit was observed where EnCase exited unexpectedly without an 

error message appearing from either EnCase or Windows. The lack of an error 

message is possibly an indication that EnCase has attempted to gracefully handle 

an exception but had to end the executable. One instance of an internal error in 

EnCase was observed. An internal error message is an indication that EnCase has 

encountered an exception and has been able to handle it gracefully without 

needing to end the executable. In this particular case, EnCase remained in a 

working state with reduced functionality. Testing was also abandoned in one 

instance due to the creation of unusually large cache files. EnCase produces cache 

normally under a number of circumstances but in this particular case, the cache 

files were unusually and unexpectedly large. 

 The four issues observed were present across four of the six test cases. The 

four test cases with issues were determined to have an acceptance spectrum result 

of “unacceptable”. Crashes were observed in three of the four test cases with 

issues; however, further research is needed to determine the extent of the anti-

forensic risk present. Crashes have the potential to present critically unacceptable 

anti-forensic risk; however, the research has not confirmed the presence of such 
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risks. Two out of the six test cases were determined to have an “exceeds 

expectations” acceptance spectrum determination as no software bugs or error 

conditions were observed during testing. 

6.2   ANSWER TO THE RESEARCH QUESTION 

A research question and four sub-questions were derived from the reviewed 

literature to guide the research. The research question is: What is the anti-forensic 

risk caused by software bugs in digital forensic tools? The purpose of the research 

question was to better understand the severity of anti-forensic risk related to 

software bugs. A methodology was established to answer the research question 

that included six test cases. Four out of those six test cases resulted in an 

acceptance spectrum determination of “unacceptable”, while two resulted in an 

“exceeds expectations” acceptance spectrum determination. No test cases could be 

demonstrated to be “critically unacceptable” despite the observation of a large 

number of crashes. From initial analysis of the test case results, it is possible to 

conclude that the anti-forensic risk caused by software bugs in digital forensic 

tools is unacceptable. However, it is important to note the six test cases were 

deliberately targeted at function areas that were more likely to contain software 

bugs with associated anti-forensic risk. A more accurate answer to the research 

question is that software bugs in complex function areas of digital forensic tools 

pose an unacceptable anti-forensic risk. 

 Four associated sub-questions were developed to assist in answering the 

research question. The first sub-question is: What testing approaches are 

appropriate to test for the presence of software bugs in digital forensic tools? The 

methodology described in Chapter Three focussed on creating a number of 

reference sets containing malformed data which were then processed using digital 

forensic tools. The malformed data was created through a process known as file 

fuzzing. Figure 4.6 and Figure 4.7 shows the methodology used by the research 

was successful in identifying ten different software bugs. The answer to the sub-

question is that file fuzzing and large reference sets are appropriate for testing for 

software bugs in digital forensic tools. Importantly, the answer does not mean that 

other approaches to software testing are ineffective. 

 The second sub-question is: What test cases and reference sets can be 

developed to promote and assist the forensic community in testing for and 
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evaluating software bugs associated with anti-forensic risk? The test cases and 

reference sets created during the research were successfully used to identify 

software bugs associated with anti-forensic risks. The answer to the sub-question 

is that it is relatively simple to create test cases and associated reference sets that 

could be used by the forensic community for testing. The test cases and reference 

sets used by the research can serve as examples or templates for use by the 

forensic community to conduct further testing. 

 The third sub-question is: How can software bugs in digital forensic tools 

be ranked and evaluated in terms of severity and anti-forensic risk? Acceptance 

spectrums used by the research provide increased granularity over a simple 

pass/fail result that is necessary to give a better indication of the severity of anti-

forensic risks. The research analysis presented in Section 4.3 and the discussion of 

evaluating anti-forensic risk in Section 5.2.2 also demonstrate the importance of 

investigating and discussing the actual impact of software bugs. The answer to the 

sub-question is that a spectrum-based ranking system is better than a simple 

pass/fail system. However no ranking or evaluation methodology can produce 

accurate results without being coupled with in-depth analysis and discussion. 

 The fourth sub-question is: What are the risks caused by the presence of 

software bugs in digital forensic tools? The research analysis presented in Section 

4.3 shows that the research identified four distinct types of software bugs with 

associated anti-forensic risk. Section 5.2.3 discussed the anti-forensic implications 

of the software bugs in depth and presented a number of possible scenarios where 

there is a risk of disrupting or preventing an investigation from taking place. The 

possible existence of more severe risks has been discussed, including hiding of 

evidence or other more covert methods of subverting an investigation. However, it 

is important to note that the research has not demonstrated or proven the existence 

of any severe anti-forensic risks. The answer to the sub-question is therefore that 

the risks caused by the presence of software bugs in digital forensic tools are that 

an investigation may be disrupted or prevented. 
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6.3   LIMITATIONS OF RESEARCH 

A number of limitations of the research were first discussed in Section 3.4. The 

main limitation of the research is that it does not perform widespread testing 

across all function areas of all digital forensic tools. It was not feasible to conduct 

testing on a scale that would fully test all digital forensic tools. A subset of 

function areas from one digital forensic tool likely to contain software bugs was 

deliberately targeted. The narrow scope of testing performed by the research 

should be taken into consideration when attempting to generalise the results of the 

research across all function areas of all digital forensic tools. 

 A second limitation of the research was the software and hardware in the 

testing environment. The field testing has been conducted in a single stable 

environment. However digital forensic tools are used in a wide range of 

environments. The implication of the use of a single environment is that there may 

be software bugs identified in the testing environment that cannot be reproduced 

in other environments. Similarly the testing environment may hide software bugs 

that are can be observed in other environments. 

 The initial discussion of limitations in Section 3.4 also discussed the 

possibility of software bugs that could not be reproduced even within a single 

stable environment. Software bugs can require complex conditions to trigger them, 

which can be difficult to reproduce. During the research there was no difficulty 

encountered in reproducing any of the software bugs observed. 

 During evaluation and discussion of the anti-forensic implications of the 

software bugs identified it also became apparent that there are limitations in the 

ability of the research to evaluate the severity of the associated anti-forensic risks. 

The field testing and subsequent discussion was successful in identifying a 

number of software bugs and demonstrating the presence of unacceptable anti-

forensic risk. However, the research is not able to conclusively determine the 

presence or absence of any critically unacceptable anti-forensic risks. 
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6.4   FURTHER RESEARCH 

Recommendations of areas for further research were discussed in depth in Section 

5.3. The primary recommendation for further research is to focus on alternative 

testing methodologies. There is the need to develop alternative methodologies to 

fill in the gaps in traditional testing methodologies. This research used an 

alternative methodology composed of techniques such as fuzzing and the use of 

function mapping and acceptance spectrums. However such alternative testing 

techniques are still in their infancy and need to be developed and formalised 

further. 

 The research successfully used the technique of file fuzzing to successfully 

identify a number of software bugs. However, the technique of file fuzzing was 

used in a blind manner to randomly change bytes within a file. File fuzzing can be 

combined with an understanding of the underlying data structure of a file to 

intelligently target specific areas of a file with specific changes. Further research 

could focus on methods to improve the efficiency of file fuzzing as it relates to the 

testing of digital forensic tools. 

 The possibility of the software bugs that were identified posing a critically 

unacceptable anti-forensic risk has been discussed many times throughout the 

research. Further research could include in depth technical analysis of the 

software bugs identified to better understand the extent of the associated anti-

forensic risk. 

Community involvement in testing digital forensic tools could greatly 

increase the scope and quantity of testing performed. A community-based testing 

framework could be established to help facilitate widespread testing. Further 

research could focus on how to structure and standardise test cases, how to 

distribute test cases and how to authoritatively determine the accuracy of results. 

Creation of reference sets to test specific tool function areas takes time to 

create. The research used fuzzing in order to simplify the creation of reference 

sets containing large numbers of malformed files. Further research could focus on 

the creation of tools to automatically create a reference set to test specific 

functionalities of a tool as selected by the user. The automated reference set 

created could incorporate targeted fuzzing techniques and also be linked to a 

community testing framework. 
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Currently, most testing of digital forensic tools is done in a largely manual 

manner. The software engineering community has spent decades developing 

techniques to automate testing of software which can likely be adapted and used 

by the digital forensic community. However, a major challenge in automating 

testing of digital forensic tools is that the majority of tools are proprietary black 

boxes that are not intended to be used in an entirely automated manner. Further 

research could focus on methods to automate the testing of digital forensic tools. 

6.5   CONCLUSION 

The research has focused on determining the anti-forensic risks associated with 

software bugs in digital forensic tools. The literature review in Chapter Two 

examined a wide range of areas relating to anti-forensic risks. Chapter Three built 

on the literature reviewed to create a suitable methodology for testing for software 

bugs and related anti-forensic risk. Field testing was performed based on the 

methodology with the results presented in Chapter Four and subsequently 

discussed in depth in Chapter Five. The field testing was successful in identifying 

a number of software bugs with associated anti-forensic risk. The major finding of 

the research is that complex function areas of one digital forensic tool contain 

software bugs that pose an unacceptable anti-forensic risk. 

Chapter Six has concluded the thesis by providing a final summary and 

discussion of the research. A summary of the field findings from Chapter Four 

was presented in Section 6.1. The research question and sub-questions were 

answered in Section 6.2. Limitations of the research were discussed in Section 6.3 

and areas for further research were summarised in Section 6.4. 

 The findings presented by the research provide a practical demonstration 

of the identification of software bugs in digital forensic tools that pose an anti-

forensic risk. The research is significant in that it provides tangible evidence of 

the risks of software bugs in digital forensic tools which provides an incentive for 

further research. The information provided by the research could be valuable for 

other researchers interested in anti-forensic risks as well as those interested in 

alternative testing methodologies for anti-forensic tools. 
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Appendix A – Reference Sets 

Reference Set ID:  

RS-IMAGE-01 

Description:  

A set of malformed images generated by fuzzing the images from the GovDocs1 

dataset (http://digitalcorpora.org/corpora/files). 

Original Files: 

File MD5 Source 

020877.bmp 849a4918b8303bcc1db9f0ce0de23fe4 GovDocs1 

020879.bmp 733e3cd6373535c076e4c10aa4012ef0 GovDocs1 

020881.gif 4d74c4c46fda204997fa2f27127bcf33 GovDocs1 

020882.gif 4affcc6fa64ce714d7423bffb8e9333b GovDocs1 

020264.jpg 5be169056d2124490fd8eadc0ffa49ea GovDocs1 

020878.jpg a9acd7740c26cff6f22f2f99fcbf1ae3 GovDocs1 

020714.png 2be5473c03735cb47b226f564eb835e9 GovDocs1 

020718.png bceb965d15d30d68fb33b25a02197986 GovDocs1 

 

Reference Set Contents: 

Original File  Fuzzing Percentage Number Of Files 

020877.bmp 

0.1 2000 

0.2 2000 

0.5 2000 

1 2000 

2 2000 

020879.bmp 

0.1 2000 

0.2 2000 

0.5 2000 

1 2000 

2 2000 

020881.gif 

0.1 2000 

0.2 2000 

0.5 2000 
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Original File  Fuzzing Percentage Number Of Files 

1 2000 

2 2000 

020882.gif 

0.1 2000 

0.2 2000 

0.5 2000 

1 2000 

2 2000 

020264.jpg 

0.1 2000 

0.2 2000 

0.5 2000 

1 2000 

2 2000 

020878.jpg 

0.1 2000 

0.2 2000 

0.5 2000 

1 2000 

2 2000 

020714.png 

0.1 2000 

0.2 2000 

0.5 2000 

1 2000 

2 2000 

020718.png 

0.1 2000 

0.2 2000 

0.5 2000 

1 2000 

2 2000 
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Reference Set ID:  

RS-EMAIL-01 

Description:  

A set of malformed PST files created by fuzzing. The original PST file contains 

20 emails from the Enron dataset and was created using Nuix 3.6.7. 

Original Files: 

File MD5 Source 

Export.pst c03a22a6a75a03cbcdce42ca0509c4ea Created 

 

Reference Set Contents: 

Original File Fuzzing Percentage Number Of Files 

Export.pst 0.1 2000 

0.2 2000 

0.5 2000 

1 2000 

2 2000 

 

Reference Set ID:  

RS-EMAIL-02 

Description:  

A set of malformed NSF files created by fuzzing. The original NSF file contains 

20 emails from the Enron dataset and was created using Nuix 3.6.7. 

Original Files: 

File MD5 Source 

Export.nsf 7fb90dd4d05e781c81ceeafe84e4f1b0 Created 

 

Reference Set Contents: 

Original File Fuzzing Percentage Number Of Files 

Export.nsf 0.1 500 

0.2 500 

0.5 500 

1 500 

2 500 
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Reference Set ID:  

RS-EMAIL-03 

Description: 

 A set of malformed MBOX files created by fuzzing. The original MBOX file 

contains 20 emails from the Enron dataset and was created using Nuix 3.6.7. 

Original Files: 

File MD5 Source 

Export.mbox b58564cc242522afdb49709681b1f5f1 Created 

 

Reference Set Contents: 

Original File Fuzzing Percentage Number Of Files 

Export.mbox 0.1 2000 

0.2 2000 

0.5 2000 

1 2000 

2 2000 

 

Reference Set ID:  

RS-EMAIL-04 

Description:  

A set of malformed DBX files created by fuzzing. The original file is from the 

“Hacking Case” reference image provided by CFReDS 

(http://www.cfreds.nist.gov/Hacking_Case.html) and is located in the 

“C:\Documents and Settings\Mr. Evil\Local Settings\Application 

Data\Identities\{EF086998-1115-4ECD-9B13-

9ADC067B4929}\Microsoft\Outlook Express\” directory. 

Original Files: 

File MD5 Source 

Inbox.dbx 69b8fbb96823671d01c3aba467647114 CFReDS 

Hacking 

Case 
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Reference Set Contents: 

Original File Fuzzing Percentage Number Of Files 

Inbox.dbx 0.1 5000 

0.2 5000 

0.5 5000 

1 5000 

2 5000 

 

Reference Set ID:  

RS-CONTAINER-01 

Description:  

A set of malformed ZIP files created by fuzzing. The original file is from 

“Container Files” reference image provided by CFReDS 

(http://www.cfreds.nist.gov/SearchingContainerFiles.html). 

Original Files: 

File MD5 Source 

archive-zip.zip 43aad4c41c53f654ad30095144485669 CFReDS 

Container 

Files 

 

Reference Set Contents: 

Original File Fuzzing Percentage Number Of Files 

archive-zip.zip 0.1 5000 

0.2 5000 

0.5 5000 

1 5000 

2 5000 
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Reference Set ID:  

RS-CONTAINER-02 

Description:  

A set of malformed GZIP files created by fuzzing. The original file is from 

“Container Files” reference image provided by CFReDS 

(http://www.cfreds.nist.gov/SearchingContainerFiles.html). 

Original Files: 

File MD5 Source 

archive-tar_gzip.tar.gz f764c4ad8a6857385f5d8e20f065be50 CFReDS 

Container 

Files 

 

Reference Set Contents: 

Original File Fuzzing Percentage Number Of Files 

archive-tar_gzip.tar.gz 0.1 5000 

0.2 5000 

0.5 5000 

1 5000 

2 5000 

 

Reference Set ID: 

 RS-CONTAINER-03 

Description: 

 A set of malformed TAR files created by fuzzing. The original file is from 

“Container Files” reference image provided by CFReDS 

(http://www.cfreds.nist.gov/SearchingContainerFiles.html). 

Original Files: 

File MD5 Source 

archive-tar.tar 39de76427db926fbfb2ff1333283831b CFReDS 

Container 

Files 
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Reference Set Contents: 

Original File Fuzzing Percentage Number Of Files 

archive-tar.tar 0.1 1000 

0.2 1000 

0.5 1000 

1 1000 

2 1000 

 

Reference Set ID:  

RS-CONTAINER-04 

Description: 

 A set of malformed RAR files created by fuzzing. The original file is from 

“Container Files” reference image provided by CFReDS 

(http://www.cfreds.nist.gov/SearchingContainerFiles.html). 

Original Files: 

File MD5 Source 

archive-rar.rar acd6267de4960a0a1534da859476d2f8 CFReDS 

Container 

Files 

 

Reference Set Contents: 

Original File Fuzzing Percentage Number Of Files 

archive-rar.rar 0.1 5000 

0.2 5000 

0.5 5000 

1 5000 

2 5000 
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Reference Set ID:  

RS-CONTAINER-05 

Description: 

A set of malformed BZIP2 files created by fuzzing. The original file is from 

“Container Files” reference image provided by CFReDS 

(http://www.cfreds.nist.gov/SearchingContainerFiles.html). 

Original Files: 

File MD5 Source 

archive-tar_bzip2.tar.bz2 9ee38808d2065f9fa997e63392f49f6b CFReDS 

Container 

Files 

 

Reference Set Contents: 

Original File Fuzzing Percentage Number Of Files 

archive-tar_bzip2.tar.bz2 0.1 5000 

0.2 5000 

0.5 5000 

1 5000 

2 5000 

 

Reference Set ID: 

RS-INTERNET-01 

Description:  

A set of malformed Firefox history/bookmark files. The original file is from the 

nps-2009-domexusers disk image (available at 

http://digitalcorpora.org/corpora/disk-images) and is located in the 

“C:\Documents and Settings\domex2\Application 

Data\Mozilla\Firefox\Profiles\n2utfxqg.default\” directory. 

Original Files: 

File MD5 Source 

places.sqlite 045e8c52126d673ab5405294e9173e96 nps-2009-

domexusers 
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Reference Set Contents: 

Original File Fuzzing Percentage Number Of Files 

places.sqlite 0.1 5000 

0.2 5000 

0.5 5000 

1 5000 

2 5000 

 

Reference Set ID: 

RS-INTERNET-02 

Description:  

A set of malformed Internet Explorer history files. The original file is from the 

“Hacking Case” reference image provided by CFReDS 

(http://www.cfreds.nist.gov/Hacking_Case.html) and is located in the 

“C:\Documents and Settings\Mr. Evil\Local 

Settings\History\History.IE5\MSHist012004081620040823\” directory. 

Original Files: 

File MD5 Source 

index.dat d022289cd71993a723744c3683be7ba1 CFReDS 

Hacking 

Case 

 

Reference Set Contents: 

Original File Fuzzing Percentage Number Of Files 

index.dat 0.1 5000 

0.2 5000 

0.5 5000 

1 5000 

2 5000 
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Reference Set ID:  

RS-INTERNET-03 

Description:  

A set of malformed Opera history files. The original file was created by installing 

Opera and then visiting a number of websites. 

Original Files: 

File MD5 Source 

global_history.dat d32909ad79c71b73779a1572686644e5 Created 

 

Reference Set Contents: 

Original File Fuzzing Percentage Number Of Files 

global_history.dat 0.1 5000 

0.2 5000 

0.5 5000 

1 5000 

2 5000 

 

Reference Set ID:  

RS-INTERNET-04 

Description:  

A set of malformed Safari history files. The original file was created by installing 

Safari and then visiting a number of websites. 

Original Files: 

File MD5 Source 

History.plist cc15fdaa420831476a01669a81f3a2e4 Created 

 

Reference Set Contents: 

Original File Fuzzing Percentage Number Of Files 

History.plist 0.1 5000 

0.2 5000 

0.5 5000 

1 5000 

2 5000 
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Reference Set ID:  

RS-INTERNET-05 

Description: A set of malformed Chrome history files. The original file was 

created by installing Chrome and then visiting a number of websites. 

Original Files: 

File MD5 Source 

History 96d1bdb7e2bd42a3f6cd3e458271b6b5 Created 

 

Reference Set Contents: 

Original File Fuzzing 

Percentage 

Number Of Files 

History 0.1 5000 

0.2 5000 

0.5 5000 

1 5000 

2 5000 

 

Reference Set ID: 

RS-WINDOWS-01 

Description: 

A set of malformed Windows link files. The original file is from the “Hacking 

Case” reference image provided by CFReDS 

(http://www.cfreds.nist.gov/Hacking_Case.html) and is located in the 

“C:\Documents and Settings\All Users\Start Menu\Programs\” directory. 

Original Files: 

File MD5 Source 

Windows Messenger.lnk 883fcd088fb230b9811ccacb96b7d1f7 CFReDS 

Hacking 

Case 
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Reference Set Contents: 

Original File Fuzzing 

Percentage 

Number Of Files 

Windows Messenger.lnk 0.1 5000 

0.2 5000 

0.5 5000 

1 5000 

2 5000 

 

Reference Set ID: 

RS-WINDOWS-02 

Description: 

A set of malformed Windows INFO2 files. The original file is from the “Hacking 

Case” reference image provided by CFReDS 

(http://www.cfreds.nist.gov/Hacking_Case.html) and is located in the 

“C:\RECYCLER\S-1-5-21-2000478354-688789844-1708537768-1003\INFO2” 

directory. 

Original Files: 

File MD5 Source 

INFO2 feb4b138086193c9efd98877c93b1a2d CFReDS 

Hacking 

Case 

 

Reference Set Contents: 

Original File Fuzzing Percentage Number Of Files 

INFO2 0.1 5000 

0.2 5000 

0.5 5000 

1 5000 

2 5000 
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Reference Set ID: 

RS-LOG-01 

Description: 

A set of malformed Windows legacy event log files. The original file is from the 

“Hacking Case” reference image provided by CFReDS 

(http://www.cfreds.nist.gov/Hacking_Case.html) and is located in the 

“C:\WINDOWS\system32\config\” directory. 

Original Files: 

File MD5 Source 

SysEvent.Evt 99c704081bf7fc942695adb80e983f01 CFReDS 

Hacking 

Case 

 

Reference Set Contents: 

Original File Fuzzing Percentage Number Of Files 

SysEvent.Evt 0.1 5000 

0.2 5000 

0.5 5000 

1 5000 

2 5000 

 

Reference Set ID: 

RS-LOG-02 

Description: 

A set of malformed Windows event log files. This event log was taken from the 

test computer which was running Windows 7 Enterprise (64-bit). 

Original Files: 

File MD5 Source 

Microsoft-Windows-

NetworkProfile-

Operational.evtx 

6ed2c8bc7705d7bbb15dc7bcfbbe4369 Created 
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Reference Set Contents: 

Original File Fuzzing Percentage Number Of Files 

Microsoft-Windows-

NetworkProfile-

Operational.evtx 

0.1 5000 

0.2 5000 

0.5 5000 

1 5000 

2 5000 
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Appendix B – Test Cases 

Test Case ID: 

TC.01 

Requirements Tested: 

EC.EP.01 

Reference Sets Used: 

RS-IMAGE-01 (JPG, PNG, BMP & GIF) 

Methodology: 

1. Each reference set is individually loaded onto a blank hard drive 

2. A new EnCase case file is created 

3. The hard drive containing the reference set is added to the case 

4. Evidence Processor is started with only the “Thumbnail Creation” function 

selected 

Results: 

 EnCase successfully processed RS-IMAGE-01 without showing any 

indications of software bugs. 

Acceptance Spectrum Determination: 

Pass – Exceeds Expectations 

 

Test Case ID:  

TC.02 

Requirements Tested:  

EC.EP.02 

Reference Sets Used:  

RS-EMAIL-01 (PST) 

RS-EMAIL-02 (NSF) 

RS-EMAIL-03 (MBOX) 

RS-EMAIL-04 (DBX) 

Methodology: 

1. Each reference set is individually loaded onto a blank hard drive 

2. A new EnCase case file is created 

3. The hard drive containing the reference set is added to the case 
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4. Evidence Processor is started with only the “Find Email” function selected 

and only the specific email format used by the reference set selected (e.g. 

PST). The “Search for Additional Lost or Deleted Items” option is also 

selected. 

Results: 

 RS-EMAIL-01 caused EnCase to crash with an error message within 

minutes of starting processing; this result is repeatable. 

 RS-EMAIL-02 caused EnCase to crash with an error message within 

minutes of starting processing; this result is repeatable. 

 EnCase successfully processed RS-EMAIL-03 without showing any 

indication of software bugs. 

 Processing of RS-EMAIL-04 was abandoned after 24 hours at 

approximately 75% completion as EnCase had filled a 2TB drive with 

logical evidence files in the case cache folder. (3GB of DBX files 

expanding to 1.8TB). 

Acceptance Spectrum Determination: 

Fail – Unacceptable 

Further research needed to determine if bugs pose a critical anti-forensic risk. 

 

Test Case ID:  

TC.03 

Requirements Tested:  

EC.EP.03 

Reference Sets Used:  

RS-CONTAINER-01 (ZIP) 

RS-CONTAINER-02 (GZIP) 

RS-CONTAINER-03 (TAR) 

RS-CONTAINER-04 (RAR) 

RS-CONTAINER-05 (BZIP2) 

Methodology: 

1. Each reference set is individually loaded onto a blank hard drive 

2. A new EnCase case file is created 

3. The hard drive containing the reference set is added to the case 
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4. Evidence Processor is started with only the “Expand Compound Files” 

function selected. 

Results: 

 RS-CONTAINER-01 caused EnCase to exit unexpectedly without any 

error messages during the “Processing Artifacts” stage after approximately 

18 hours of processing. This result has not been tested to see if it is 

repeatable. 

 RS-CONTAINER-02 caused EnCase to crash with an error message at the 

end of “Processing Artifacts” stage after approximately 2 days of 

processing. This result has not been tested to see if it is repeatable. 

 EnCase successfully processed RS-CONTAINER-03 without showing any 

indication of software bugs.  

 RS-CONTAINER-04 caused EnCase to crash with an error message 

within minutes of the starting of processing; this result is repeatable. 

 RS-CONTAINER-05 caused EnCase to crash with an error message 

within minutes of the starting of processing; this result is repeatable. 

Acceptance Spectrum Determination: 

Fail – Unacceptable 

Further research needed to determine if bugs pose a critical anti-forensic risk. 

 

Test Case ID:  

TC.04 

Requirements Tested:  

EC.EP.04 

Reference Sets Used:  

RS-INTERNET-01 (Firefox) 

RS-INTERNET-02 (Internet Explorer) 

RS-INTERNET-03 (Opera) 

RS-INTERNET-04 (Safari) 

RS-INTERNET-05 (Chrome) 

Methodology: 

 Each reference set is individually loaded onto a blank hard drive 

 A new EnCase case file is created 



 

 142 

 The hard drive containing the reference set is added to the case 

 Evidence Processor is started with only the “Find internet artifacts” 

function selected. The “Search unallocated space for internet artifacts” 

option is unselected. 

Results: 

 RS-INTERNET-01 caused EnCase to crash with an error message within 

minutes of the starting of processing; this result is repeatable. 

 EnCase successfully processed RS-INTERNET-02 without showing any 

indication of software bugs.  

 EnCase successfully processed RS-INTERNET-03 without showing any 

indication of software bugs. The processing was very fast and no results 

were returned which may mean EnCase could not recognise any files as 

valid internet artifacts. 

 RS-INTERNET-04 caused EnCase to crash with an error message within 

minutes of the starting of processing; this result is repeatable. 

 EnCase successfully processed RS-INTERNET-05 without showing any 

indication of software bugs. 

Acceptance Spectrum Determination: 

Fail – Unacceptable 

Further research needed to determine if bugs pose a critical anti-forensic risk. 

 

Test Case ID:  

TC.05 

Requirements Tested:  

EC.EP.05 

Reference Sets Used:  

RS-WINDOWS-01 (LNK) 

RS-WINDOWS-02 (INFO2) 

Methodology: 

 Each reference set is individually loaded onto a blank hard drive 

 A new EnCase case file is created 

 The hard drive containing the reference set is added to the case 
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 Evidence Processor is started with only the “Windows Artifact Parser” 

function selected and only the option for the specific artifact being 

searched for selected (e.g. LNK files). The “Search Unallocated” option is 

not selected. 

Results: 

 EnCase successfully processed RS-WINDOWS-01 without showing any 

indication of software bugs. 

 EnCase successfully processed RS-WINDOWS-02 without showing any 

indication of software bugs. 

Acceptance Spectrum Determination: 

Pass – Exceeds Expectations 

 

Test Case ID:  

TC.06 

Requirements Tested: 

EC.EP.06 

Reference Sets Used: 

RS-LOG-01 (EVT) 

RS-LOG-02 (EVTX) 

Methodology: 

 Each reference set is individually loaded onto a blank hard drive 

 A new EnCase case file is created 

 The hard drive containing the reference set is added to the case 

 Evidence Processor is started with only the “Windows Event Log Parser” 

function selected. No event conditions are set. 

Results: 

 EnCase successfully processed RS-LOG-01 without showing any 

indications of software bugs. 

 EnCase generates an “internal error” within a minute of the starting of 

processing RS-LOG-02. This result is repeatable. 

Acceptance Spectrum Determination: 

Pass – Meets expectations 

The software bug detected did not result in EnCase crashing.
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Appendix C – Test Journal 

Date Action Result/Notes 

10/05/2012 Created file fuzzer in C# and tested fuzzing Fuzzer worked as expected 

24/05/2012 Built PC for testing Bios needed to be flashed to F8 version to support CPU model 

26/05/2012 

  

  

  

  

Started function mapping of Encase 7.04 Evidence Processor Function mapping should focus on mapping "inputs" instead of 

trying to fully map all functions 

Created sample set of 10,000 fuzzed jpeg images at 0.1% 

fuzzing 

Fuzzer took less than a minute to create sample set 

(approximately 9 GB in size) 

Input jpeg sample set into Evidence Processor and selected 

thumbnail generation only 

Encase took approximately 4 minutes to process the sample set 

Created sample set of 10,000 fuzzed zip archives at 0.1% 

fuzzing 

Fuzzer took approximately 1 minute to create sample set 

(approximately 16 GB in size) 

Input zip sample set into Evidence Processor and selected 

expand compound files only 

First attempt failed; note to ensure that evidence cache is 

located on volume with sufficient free space. 

Second attempt successful; Encase took approximately 140 

minutes to process the sample set, 9907/10000 files made it to 

the "processing Artifiacts" stage. 

3/06/2012 

  

  

  

Continued function mapping of Encase 7.04 Evidence 

Processor 

Mostly successful, a number of areas are difficult to map 

entirely 

Started creating test requirements and test cases   

Created reference Set RS-IMAGE-01 References sets should be able to be distributed as the original 

files + a script to generate a fuzzed set 

Interestingly Windows Security Essentials detected 4 of the 

fuzzed files as containing a JPEG exploit 

Started running test case TC.01   

6/06/2012 Finished running test case TC.01 Pass result - took 2 days 12 hours to process the set 
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Date Action Result/Notes 

8/06/2012 

  

  

  

Created reference sets RS-EMAIL-01 to RS-EMAIL-03   

Started and finished running test case TC.02 - reference Set 

RS-EMAIL-01 

EnCase crashed after approximately 1 minute of processing. 

Repeated test and got the same result. 

Started and finished running test case TC.02 - reference Set 

RS-EMAIL-02 

EnCase crashed after approximately 1 minute of processing. 

Repeated test and got the same result. 

Started and finished running test case TC.02 - reference Set 

RS-EMAIL-03 

Pass result - took 2 hours 40 minutes to process the set. Note 

that EnCase does not recognise items if the file signature 

portion of the file has been fuzzed. 

12/06/2012 

  

  

Created reference set RS-EMAIL-04   

Started running test case TC.02 - reference Set RS-EMAIL-

04 

Filled up SSD that was being used for cache (120 GB), 

restarted with 2TB drive as cache. Possibly some issue 

resulting in very large L01s from malformed DBX files 

Created reference sets RS-CONTAINER-01 to RS-

CONTAINER-05 

  

13/06/2012 

  

Finished running test case TC.02 - reference Set RS-EMAIL-

04 

Abandoned after 24 hours, filled up 2TB drive with logical 

evidence files in cache. Possible issue with processing DBX 

files that leads to incorrectly sized extracts. 

Started running test case TC.03 - reference Set RS-

CONTAINER-01 

  

14/06/2012 

  

  

Finished running test case TC.03 - reference Set RS-

CONTAINER-01 

EnCase exited unexpectedly (no error messages) in the 

"Processing Artifacts" stage after approximately 18 hours 

Started running test case TC.03 - reference Set RS-

CONTAINER-02 

  

Created reference sets RS-INTERNET-01 to RS-

INTERNET-05 
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Date Action Result/Notes 

16/06/2012 

Finished running test case TC.03 - reference Set RS-

CONTAINER-02 

EnCase crashed at the end of the "Processing Artifiacts" stage 

after 2 days of processing. Possibly related to issue seen with 

RS-CONTAINER-01; however there was a definite crash with 

an error message this time. Computer froze up when attempting 

to close the error message and exit EnCase. 

18/06/2012 

  

  

  

  

  

  

  

Started and finished running test case TC.03 - reference Set 

RS-CONTAINER-03 

EnCase processed the reference set without any issues 

Started and finished running test case TC.03 - reference Set 

RS-CONTAINER-04 

EnCase crashed after approximately 1 minute of processing. 

Started and finished running test case TC.03 - reference Set 

RS-CONTAINER-05 

EnCase crashed after approximately 1 minute of processing. 

Started and finished running test case TC.04 - reference Set 

RS-INTERNET-01 

EnCase crashed after approximately 1 minute of processing. 

Started and finished running test case TC.04 - reference Set 

RS-INTERNET-02 

EnCase processed the reference set without any issues 

Started and finished running test case TC.04 - reference Set 

RS-INTERNET-03 

EnCase processed the reference set without any issues. Note 

that processing was very quick and no results were returned. 

Possibly something in the data structure that indicates if the file 

is corrupt. 

Started and finished running test case TC.04 - reference Set 

RS-INTERNET-04 

EnCase crashed after approximately 1 minute of processing. 

Started and finished running test case TC.04 - reference Set 

RS-INTERNET-05 

EnCase processed the reference set without any issues 

23/06/2012 

  

  

Started and finished running test case TC.05 - reference Set 

RS-WINDOWS-01 

EnCase processed the reference set without any issues 

Started and finished running test case TC.05 - reference Set 

RS-WINDOWS-02 

EnCase processed the reference set without any issues 

Started running test case TC.06 - reference Set RS-LOG-01   
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Date Action Result/Notes 

26/06/2012 

  

Finished running test case TC.06 - reference Set RS-LOG-01 EnCase processed the reference set without any issues 

Started and finished running test case TC.06 - reference Set 

RS-LOG-02 

EnCase generates an "internal error" soon after starting 

processing which results in the Case Processor stopping. This 

error prevents the Case Processor from being restarted. 

28/06/2012 
Reran test case TC.06 - reference Set RS-LOG-02 Results are repeatable with 42 seconds from the starting of 

processing to error. 
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Appendix D – File Fuzzer Source Code 

The C# source code for the file fuzzer used to create the reference sets is 

presented below. The source code was compiled using Visual Studio 2010 with a 

target framework of .NET Framework 4 Client Profile. 
 
using System; 
using System.Collections.Generic; 
using System.Linq; 
using System.Text; 
using System.IO; 
using System.Security.Cryptography; 
 
namespace Fuzzer 
{ 
    class Program 
    { 
        static void Main(string[] args) 
        { 
            /* Arguments: 
             * 0 - Input File 
             * 1 - Output Folder 
             * 2 - Number of files to generate 
             * 3 - Fuzzing percentage 
             * 4 - Fuzzing Seed (optional) 
             */ 
 
            string inputFile = null; 
            string outputFolder = null; 
            int numberToGenerate = 0; 
            double fuzzingPercentage = 0; 
            int? fuzzingSeed = null; 
 
            if (args.Count() >= 4) 
            { 
                inputFile = args[0]; 
                outputFolder = args[1]; 
                numberToGenerate = Convert.ToInt32(args[2]); 
                fuzzingPercentage = Convert.ToDouble(args[3]); 
                if (args.Count() == 5) 
                { 
                    fuzzingSeed = Convert.ToInt32(args[4]); 
                } 
            } 
            else 
            { 
                tsWriteLine("ERROR: Invalid Arguements"); 
                Environment.Exit(-1); 
            } 
 
            byte[] inputFileBytes = null; 
 
             
            // Read input file 
            try 
            { 
                tsWriteLine("Opening " + inputFile); 
                inputFileBytes = File.ReadAllBytes(inputFile); 
                tsWriteLine("Total Bytes: " + inputFileBytes.Length); 
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                tsWriteLine("First Byte: " + 
inputFileBytes[0].ToString("X2")); 
                tsWriteLine("Last Byte: " + 
inputFileBytes[inputFileBytes.Length - 1].ToString("X2")); 
            } 
            catch (System.IO.DirectoryNotFoundException ex) 
            { 
                tsWriteLine("ERROR: Directory Not Found"); 
                tsWriteLine(ex.Message); 
                Environment.Exit(-1); 
            } 
            catch (System.IO.FileNotFoundException ex) 
            { 
                tsWriteLine("ERROR: File Not Found"); 
                tsWriteLine(ex.Message); 
                Environment.Exit(-1); 
            } 
            catch (System.UnauthorizedAccessException ex) 
            { 
                tsWriteLine("ERROR: File Access Exception"); 
                tsWriteLine(ex.Message); 
                Environment.Exit(-1); 
            } 
            catch (System.IO.IOException ex) 
            { 
                tsWriteLine("ERROR: File IO Exception"); 
                tsWriteLine(ex.Message); 
                Environment.Exit(-1); 
            } 
            catch (Exception ex) 
            { 
                tsWriteLine(ex.Message); 
                Environment.Exit(-1); 
            } 
 
 
            // Check if output path exists, if not create it 
            try 
            { 
                if (!Directory.Exists(outputFolder)) 
                { 
                    Directory.CreateDirectory(outputFolder); 
                    tsWriteLine("Creating folder: " + outputFolder); 
                } 
            } 
            catch (Exception ex) 
            { 
                tsWriteLine(ex.Message); 
                Environment.Exit(-1); 
            } 
            tsWriteLine("Output Folder: " + outputFolder); 
 
            // Get output file number padding length 
            string outputFilePaddingLength = "D" + 
numberToGenerate.ToString().Length.ToString(); 
            // Get input file extension 
            string inputFileExtension = Path.GetExtension(inputFile); 
            // Get number of bytes to fuzz 
            int numberBytesToFuzz = (int)((fuzzingPercentage / 100) * 
inputFileBytes.Length); 
            tsWriteLine(numberBytesToFuzz.ToString() + " bytes (" + 
fuzzingPercentage.ToString() + "%) will be fuzzed"); 



 

 150 

 
            tsWriteLine("Generating files..."); 
 
            // Generate fuzzed files 
            int updateCounter = 0; 
            for (int i = 0; i < numberToGenerate; i++) 
            { 
                int randomSeed = 0; 
                // Check for manually specified fuzzing seed 
                if (fuzzingSeed == null) 
                {    
                    // Generate a new random seed 
                    RNGCryptoServiceProvider seedGenerator = new 
RNGCryptoServiceProvider(); 
                    byte[] randomBytes = new byte[4]; 
                    seedGenerator.GetBytes(randomBytes); 
                    randomSeed = BitConverter.ToInt32(randomBytes, 0); 
                } 
                else 
                { 
                    // Use the specified seed 
                    randomSeed = fuzzingSeed.Value; 
                } 
 
                // Set the output file path 
                string outputPath = outputFolder + @"\" + (i + 
1).ToString(outputFilePaddingLength) + " (" + randomSeed + ")" + 
inputFileExtension; 
 
                // Output a fuzzed file 
                WriteFuzzedFile(inputFileBytes, outputPath, 
numberBytesToFuzz, randomSeed); 
 
                // Output a status update every 100 files 
                updateCounter++; 
                if (updateCounter == 100) 
                { 
                    tsWriteLine((i + 1) + " of " + numberToGenerate + " 
generated..."); 
                    updateCounter = 0; 
                } 
            } 
 
            tsWriteLine("Finished"); 
        } 
 
        // Prefixes the output line with a timestamp 
        static void tsWriteLine(string text) 
        { 
            Console.WriteLine("[" + DateTime.Now.ToString("HH:mm:ss") + "] 
" + text); 
        } 
 
        static void WriteFuzzedFile(byte[] inputFile, string outputFile, 
int bytesToFuzz, int randomSeed) 
        { 
            // Create a clone of the existing byte array so the original 
data is not modified 
            byte[] fuzzByteArray = (byte[])inputFile.Clone(); 
 
            // Set up random number generator for fuzzing bytes 
            Random rng = new Random(randomSeed); 
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            for (int i = 0; i < bytesToFuzz; i++) 
            { 
                // Randomly select a byte from the file 
                int byteToFuzz = rng.Next(0, fuzzByteArray.Length); 
                // Generate a random byte 
                byte[] randomByte = new byte[1]; 
                rng.NextBytes(randomByte); 
                // Replace the byte in the file 
                fuzzByteArray[byteToFuzz] = randomByte[0]; 
            } 
 
            // Output the file 
            try 
            { 
                File.WriteAllBytes(outputFile, fuzzByteArray); 
            } 
            catch (Exception ex) 
            { 
                tsWriteLine(ex.Message); 
            } 
        } 
    } 
} 
 

 

 


