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Abstract: 

Spiking Neural Networks (SNN) are the third generation of artificial neural 

network (ANN). Like the brain’s neurons, they use spikes (pulses) to propagate 

information. Spike sequence learning has many applications for example in 

speech recognition and motor control. One of the main issues for sequence 

generation is learning. There are two main types of learning, unsupervised 

learning and supervised learning. Supervised learning, like Back Propagation 

(BP) is based on using a teacher signal to tune the connection weights to guide 

the network to produce a desired output for a specific input.  

In this work, two supervised sequence learning schemes will be investigated. 

The first scheme uses particle swarm optimization (PSO). Using PSO, the SNN 

consists of multiple layers of neurons connected by dynamic synapses to 

increase its computation power. Due to the limitation in scalability of PSO, the 

second algorithm, SPAN, will be investigated which is able to use spatial 

temporal data. SPAN uses a simpler architecture; the network consists of a 

single neuron with multiple synapses. Though it originally uses static synapses, 

the synapses will be replaced with dynamic synapses to examine the impacts, if 

any exist, on the network and on learning performance. 

A performance evaluation of the two methods, using different configuration for 

the parameters of the dynamic synapses and using different input data train, will 

be undertaken, as well as an evaluation of SPAN when the synapses are 

replaced with dynamic ones. 

The main research question is how the dynamic synapses affect the learning 

and performance of the two above learning schemes. The sequence learning 

algorithm with PSO proved more complicated to optimize several parameters 

than optimizing one parameter per synapse with SPAN. Learning multiple inputs 

using SPAN with dynamic synapses proved faster than using static synapses. 

Nonetheless, memorizing the sequences using SPAN with the dynamic 

synapses did not show any improvement. SPAN has been proven to be able to 

successfully learn and classify multiple sequence trains with a simpler model 

and with the fine tuning of one parameter per synapse. This is a very interesting 

area to work in, and further future work can be done to improve each system. 
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CHAPTER 1 

1. Introduction: 

Understanding and simulating the learning process occurring in the brain is 

currently a major research area and many interesting new directions have 

appeared recently. Especially exciting are the engineering applications that may 

developed on the basis of such brain-like information processing algorithms. 

The idea of the dissertation is to investigate recently presented learning 

algorithms for Spiking Neural Networks (SNN) regarding its performance when 

additional, more biological plausible components, i.e. dynamic synapses, are 

introduced into the training process.   

After the latest neurological studies, researchers developed the SNN and it is 

the most biologically plausible and accurate network to process neural 

information of all previous generations of  artificial neural networks (Paugam-

Moisy, 2006). Sequence learning with SNN can be implemented to solve 

complex real world problems and applications. It can be used, for example, in 

speech recognition, DNA sequences, and time series prediction (Sun & Giles, 

2001, Tsodyks, Pawelzik, & Markram, 1998). Though sequence events differ 

from one application to another, it is important to know the order of events and, 

in other tasks, the timing of the event is more crucial (Sichtig, 2007).  

In this dissertation, the main objective is to investigate supervised sequence 

generation learning with dynamic synapses. The dissertation starts with a 

literature review of the related work. This will cover related research that has 

used learning algorithms for spiking neural network with its applications. Then, 

the paper discusses the issues and limitations of SNN. After that, a spiking 

neuron model called Integrate and Fire is explained. There are several types of 

integrate and fire models model such as the Leaky Integrate and Fire model 

and the Izhikevich neuron model, and we explain why the former model was 

chosen. The chapter ends with reviewing and explaining dynamic synapses 

model, its formula and its main parameters. 
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Then, chapter three explains the learning scheme and algorithm used in the 

experiment for sequence learning, mainly PSO and with fitness function. PSO is 

used to tune three parameters of the dynamic synapses. Namely the recovery 

time, the facilitating time and the synaptic efficacy. This scheme learns the 

target train and generates an output train similar to the given target train. It 

continually compares the output with the target train in every iteration process, 

using the similarity measure neuron, and then modifies the parameter of the 

synapses by using PSO. The chapter then describes the experiment carried 

out, including the data, parameters, setup and architecture of the network. We 

experiment with this algorithm to assess the performance of the learning 

scheme. The last part of the experiment of this chapter deals with analysis of 

the results.  

 

In chapter four, SPAN is the second investigated sequence learning algorithm. 

Unlike with PSO, SPAN modifies only the synaptic weight of the network 

iteratively to produce a desired output train. It can receive multiple inputs and 

learn spike trains to generate an output as similar to the target train by adjusting 

the synaptic weights of the network after comparing the differences between the 

output and the target train when the spike trains are convolved with a kernel 

function. However, this original SPAN uses static synapses and we need to 

observe if there is any difference to performance or in computational power if 

static synapses are replaced with dynamic ones. 

 

In this SPAN chapter, there will be two different experiments. The first 

experiment’s aim is to evaluate the ability and performance of SPAN in learning 

multiple inputs patterns when using dynamic synapses and comparing it to 

SPAN using static synapses. This experiment will demonstrate the robustness 

of the method when dynamic synapses are used, which is important for real 

world applications. The second experiment’s purpose is also evaluating the 

ability and performance of SPAN to classify and memorize the trains with 

different classes when the synapses are replaced with dynamic synapses and 

comparing these results with SPAN using static synapses. This experiment 

demonstrates how many patterns a single neuron can learn when dynamic 

synapses are used. 
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The hypothesis is that since dynamic synapses are more biologically plausible 

than the static synapses, then the dynamic synapses will perform better in the 

experiments. 

Finally, the last chapter ends the dissertation with a conclusion and future 

directions. 
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CHAPTER 2 

2. Literature Review: SNN for Spike Sequence learning 

In this second chapter of the paper, related research papers in the area of 

sequence learning with spiking neural network will be reviewed first. Then, the 

mathematical models and the computational units from the neural systems, 

which are used in the experiments, are divided into sections and explained. 

 Related literature: 2.1

In machine learning there are several algorithm types for learning, classifying 

and clustering data:  supervised, unsupervised or semi-supervised learning. 

The supervised learning method generates the output when given a sample. In 

this case, we need an input value and a desired value to generate the output 

similar to the desired example. The unsupervised method discovers and finds 

hidden structure in unlabelled data. The semi-supervised learning method 

combines the labelled and the unlabelled structure to generate an appropriate 

function or outcome. The unsupervised method is widely investigated, but it is 

not appropriate for learning tasks that are to be used for a specific goal 

(Ponulak & Kasiński, 2010). We will not go into more detail about these other 

methods because they are out of scope of this dissertation. Thus, we will mainly 

discuss the supervised methods used with SNN and they are shown briefly in 

Table 1.  

 

Supervised learning algorithms for SNN have been proposed in different 

research papers over the last decade. For instance, Spike-Prob, Tempotron 

ReSuMe and Chronotron are supervised learning algorithms used with spiking 

neural networks. First on the list, Spike-Prob, presented by Bohte, Kok, & La 

Poutré, (2000), is a supervised learning method for SNN based on precise spike 

time encoding. It is tested on classification problems such as extended XOR 

classification problem and real-world benchmark problems, such as the Iris, 

Wisconsin Breast Cancer and Statlog Landsat datasets (Bohte, Kok, & La 

Poutré, 2000). This model configuration has a multi-layer feed forward network 

with an error back propagation algorithm. The Spike-Prob uses a “gradient 

descent approach” (Mohemmed, Schliebs, Matsuda, & Kasabov, 2011) which 
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adjusts the network synaptic weights to obtain a spike at the desired time. It 

assumes that each neuron is allowed to fire only once during a single simulation 

cycle Spikes fired at a specific time encode specific information. If a spike 

train has more than one spike, then Spike-Prob cannot be trained to 

generate the desired train of spikes (Mohemmed, Schliebs, Matsuda, Kasabov, 

2011). 

 

Tempotron is a neuron model proposed by Gütig & Sompolinsky (2006) that 

consists of a leaky integrate and fire neuron for classifying the input information 

received, including category information that is not encoded in spike counts. 

Tempotron also uses the dynamics of a gradient descent approach, and “poorly 

classify spike patterns that depends on the basis of temporal features that 

extend beyond a single integration time” (Gütig & Sompolinsky, 2006), limiting 

Tempotron to learn temporally localised data separated by long time periods. 

Thus, it is not capable of carrying out specific tasks that carry additional 

temporal data information, which makes it only suitable for binary classification 

problems (Gütig & Sompolinsky, 2006). Solving this requires more additional 

work on memory mechanisms or on slow synaptic dynamics and possibly 

having a multilayer architecture (Gütig & Sompolinsky, 2006).  

 

The Remote Supervised Method (ReSuMe) is a set of Hebbian-based 

supervised learning algorithms presented by Ponulak & Kasinski (2006). 

ReSuMe uses a function called learning window. This rule is used with spike 

time dependent plasticity (STDP) and with anti-STDP (Gerstner & Kistler, 2002). 

This learning window concept uses two rules, the presynaptic and reference 

spike time rule or pre-and postsynaptic spike times rule, to obtain the desired 

spike target train with very high precision (Ponulak & Kasinski, 2006). ReSuMe 

has been effective when used with liquid state machine networks. However, it 

only tunes one parameter, which is the synaptic weight.  

 

Another learning method was proposed by Florian (2010) and called 

Chronotron. Chronotron uses two versions of learning rules. By using a 

similarity measure and by optimizing the parameters of the neurons and the 

synaptic weights, they minimize the error difference between the target train 

and the actual train (Florian, 2010). The first version called I-learning, and it is 
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more biologically plausible but less efficient than the second version 

(Mohemmed, Schliebs, & Kasabov, 2011). The second version is E-learning, 

and uses the Victor-Purpura (VP) distance (Florian, 2010). The temporal data 

results for classification tasks were compared with ReSuMe and showed that 

Chronotron performed better (Mohemmed, Schliebs, & Kasabov, 2011).  

 

Evolutionary algorithms (EA) were also used for training SNN for classification 

(Belatreche, Maguire, & McGinnity, 2006). They were used to tune the dynamic 

synapses parameter for a single feed forward network. Similarly, Pavlidis, 

Tasoulis, Plagianakos, Nikiforidis, & Vrahatis (2005) and Jin, Wen, & Sendhoff 

(2007) used EA to tune the synaptic weight and their connections. However, the 

methods were used on static data only and were not used with temporal 

sequence data. 

 

Table 1 Related supervised learning algorithims for SNN to learn temporal sequence data 

Supervised 
Algorithm 

Approach 
used 

Parameters 
tuned 

Known Issues Possible solutions 

SpikeProb 
(S.M. Bohte et 

al., 2000) 

Multi-layer feed 
forward 

network and 
gradient 
descent 

approach. 

Synaptic 
weights. 

Cannot be 
trained if more 
than one spike 

exists in the 
spike train. 

--- 

Tempotron 
(Gütig & 

Sompolinsky, 
2006) 

A single neuron 
model and 
gradient 
descent 

approach. 

Synaptic 
weights. 

Spikes 
separated by 

long time 
periods are 

poorly 
classified. 

More additional work on 
the memory 

mechanisms or on the 
slow synaptic dynamics 
and possibly having a 
multilayer architecture. 

ReSuMe 
(Ponulak & 

Kasinski, 2006) 

Learning 
window + 

STDP + Anti 
STDP. 

Synaptic 
weight. 

--- --- 

Chronotron 
(Florian, 2010) 

A single neuron 
with a similarity 

measure. 

Neuron 
parameters + 

synaptic 
weights. 

--- --- 

 

 



15 
 

 Spiking neural networks (SNN): 2.2

SNN appeared in 1997 and became popular over the last fourteen years 

(Sichtig, 2007). SNN is considered to be the third generation of neural networks. 

Previous generations uses rate encoding for carrying information. Rate 

encoding carries information dependent on the frequency of the firing spikes. 

The rate of the action potential spikes increases if the stimulus of the neuron 

increases. While new neurophysiological studies showed that the precise time a 

neuron fires a spike carries further information (Sichtig, 2007). Combined with 

rate encoding, information is transferred by sending precise time sequenced 

spikes, which is called temporal encoding (Bohte, 2004). While previous 

generations of neural networks depended only on the rate of the spikes, having 

this new information SNN becomes more biologically plausible than previous 

generations (Sichtig, 2007). Figure 1 is an example of how rate encoding and 

temporal encoding fires spikes in 10 neurons. 

 

 

Figure 1 Rate encoding (A) where the frequency of the spikes are important and Temporal 
encoding (B) where the precise time of the spikes are important during an event. 

 

 

 

 

  

  A.  B. 
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Applications: 

There are several successful applications for spiking neural networks which 

Bohte & Kok (2005) mentioned in their paper. It was reported that 

SNN effectively implements a complex temporal filter when the neurons 

are randomly connected (Bohte & Kok, 2005). For example, with a decoder, it 

can classify a temporally extended input, like speech recognition and time-

series prediction (Sichtig, 2007). Learning and classification with SNN was also 

used in areas such as face recognition (Sichtig, 2007). Additionally, SNN can be 

used for robot control, vision and using scene segmentation for detecting 

criminal behaviour with surveillance cameras. There are also other learning 

applications, undertaken by previous generations of neural networks, was again 

implemented with spiking neural networks (Bohte & Kok, 2005; Sichtig, 2007). 

 

There are four general goals that previous generations of neural networks 

aimed at: The first goal is auto association, where the network is used to 

reproduce the most similar pattern to a given training set pattern by tuning the 

parameters of the network. The second goal is pattern association, where the 

network processes an input data then produces an output consistent with its 

mapping, which was learned from a training set of pairs of patterns. The third 

general goal is classification and the final goal is clustering, where the network 

clusters the sets of data into groups or classes by discovering the features of 

the data without having a training set. (Sichtig, 2007) 

 

Examples of applications that were undertaken by the traditional neural 

networks and were then solved with SNN were presented by Bohte & Kok 

(2005). SNN was reported as effective on the classification of Poisson spike 

train, and it was demonstrated on a temporal version of the classic XOR 

problem. It was reported that the XOR problem could be solved very easily in 

SNN without a hidden layer. 

 

Moreover, Bohte & Kok (2005) reported that SNN could be used for associative 

memory for brain modelling and data retrieval in the form of the Willshaw model. 

It was posited that neural associative memories may have practical advantages 

over localized storage. Furthermore, SNN can be used as a function 
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approximator. This might be seen as a classification problem. For example, 

SNN can interpolate between a set of data points, which approximates the 

function. It can be used with learning rules or algorithms to approximate the 

function. The researchers Bohte & Kok (2005) reported it was successfully used 

with semi-supervised and unsupervised datasets. Other advantages of having 

SNN with learning algorithms is it can use their inputs and project them into a 

high dimensional space to allow the readout function to be simple (Goodman & 

Ventura, 2006). Their readout function also has the ability to be memory less, 

meaning that with SNN, we depend on the network to remember and represent 

the past and current input simultaneously (Goodman & Ventura, 2006). 

 

Issues and limitations:  

Bohte & Kok in (2005) reported one issue with applications using spiking neural 

networks; they are “computationally more intensive than previous generations of 

neural networks”. However, they said that SNN reduces drastically the 

communication load between neurons and allows parallel implementations to be 

efficient. Sichtig (2007) also added some limitations of SNN. There is “limited 

empirical data and computational theory about computing time series in 

biological and artificial pulsed neural nets” (Sichtig, 2007). 

 

The reason SNN was chosen: 

The reasons why spiking neural network was chosen over previous generations 

was because, according to neurophysiological studies, SNN is conceptually 

state of the art, and represents the biological neural network more accurately 

than previous generations. In addition, SNN showed its effectiveness and 

accuracy in some experiments and applications with continuous data over the 

traditional neural networks (Sichtig, 2007). Traditional neural networks are most 

successful when processing static data (Sichtig, 2007). 

  



18 
 

 Integrate and fire neuron model: 2.3

Integrate and Fire (I & F) is one of the possible models of a spiking neuron. The 

other two are the Spike Response model and the Hodgkin-Huxley model 

(Paugam-Moisy, 2006). Integrate and fire model have several model types and 

they are based on an electric circuit, having a capacitor ( ) and a resistor ( ) 

(Paugam-Moisy & Bohte, 2009).The first model explained is the Leaky Integrate 

and Fire (LIF) neuron, which is a simplification of the Hodgkin-Huxley model. 

This model can be defined by the following equation: 

   
  

  
      ( ) (1) 

 

Where        is the time constant of the neuron membrane,    is the 

resistance of the membrane and  ( ) is the input current. The neuron generates 

a spike when the membrane voltage reaches a threshold value. A threshold 

value is reached when a sufficient number of spikes have occurred. After 

reaching the threshold, the potential voltage   drops to a value of        and 

stays at that level for a period of     , which is called the refractory period. All 

incoming spikes are ignored during the refractory period. In addition, the 

membrane voltage is resting at a value of       until the neuron activates again.  

 

Integrate and fire neuron models consider every spike as a uniform event 

defined only by the time it fires and neglects the shape of the action potentials 

or spike or pulse. Each neuron can simulate either an “integrator” or a 

“resonator” by changing the parameters but cannot be both at the same time as 

their properties are mutually exclusive (Paugam-Moisy, 2006). 

 

The second integrate and fire model is the Izhikevich neuron model. The 

authors Sichtig (2007) and Paugam-Moisy and Bohte (2009) reported that the 

two dimensional Izhikevich neuron model is balanced between the biophysical 

plausibility and versatility of the Hodgkin-Huxley type model and the 

computational efficiency or cost of the integrate and fire and resonate and fire 

type models. By using Bifurcation methodologies, the author of the model 

Izhikevich (2003) was able to reduce many Hodgkin-Huxley type models to a 
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two dimensional system. The Izhikevich neuron model is defined by the coupled 

equations: 

 
  

  
      (  )    ( )       ( )   ( ) (2) 

 
  

  
  (  ( )   ( )) (3) 

 

And after spike resetting:  if         then        and        

where   is the membrane potential of the neuron,   is the synaptic current,   is 

the time and   is the membrane recovery variable. While       and   are the 

four dimensionless parameters that can be tweaked for achieving the desired 

spike behaviour (Izhikevich, 2003). The spike behaviours are such as, fast 

spiking, regular spiking, resonator, chattering, intrinsically bursting, thalamo 

cortical and low threshold spiking. The parameter   represents the time scale of 

the recovery variable  , the smaller the value of   the slower the recovery. The 

parameter   is the sensitivity of the recovery variable   to the subthreshold 

fluctuations of the membrane potential. Great values of   leads   and   to 

stronger posibilites for subthreshold oscillations and low threshold spiking 

dynamics. The parameter   is the after spike reset value of the membrane 

potential caused by a fast high threshold. Finaly, the parameter   describes the 

after spike reset of the recovery variable caused by slow high threshold.  

 

The last two models are the Quadratic Integrate and Fire (QIF) model and the 

Theta Neuron model (Paugam-Moisy & Bohte, 2009). (There are also other 

existing spiking neuron models such as the gIF model, which is an intermediate 

model, but they will not be covered in this paper.) The QIF is simpler to 

understand and less complex than other models and it also realistically captures 

the behaviour of the biological neuron. The Hodgkin-Huxley models are the 

most realistic to a biological neuron, while the LIF is a simplification and does 

display many of the important properties of biological spiking neurons (Paugam-

Moisy & Bohte, 2009). However, the computational costs of these models are 

different. For example, the Hodgkin-Huxley model requires twelve thousand 

floating point operations (FLOP). The LIF model has five floating point 

operations and the Izhikevich model has thirteen floating point operations 



20 
 

(Paugam-Moisy & Bohte, 2009). For simplicity and cost effectiveness, the LIF 

model was chosen in our experiments over the other models. 

 

 Dynamic synapses: 2.4

The dynamic synapses’ strength relies on constantly changing its parameters 

according to the temporal pattern. Dynamic synapses have been successfully 

used in several applications such as speech recognition (Jim-Shih Liaw & 

Berger, 1997). They have been also used as computational model to behave 

like finite state machines, which are computer science models for computational 

time series, and have yielded good performances compared with other artificial 

networks that do not have any biological realism (Natschläger & Maass, 2002). 

 

Dynamic synapses “control how the pattern of amplitudes of post-synaptic 

responses changes with the temporal pattern of the pre-synaptic” (Mohemmed, 

Matsuda, Schliebs, Dhoble & Kasabov, 2011). Having this information, several 

phenomenological models have been proposed that behave similarly to the 

dynamics of biological synapses. One model proposed by Tsodyks et al. (1998) 

explains that the postsynaptic responses are generated by either facilitating or 

depressing. The characteristic of this model’s synapses is having a finite 

amount of resources, and the presynaptic spike activates a fraction of (   ), 

which is the utilization of the synaptic efficacy, when arriving at a time (   ) and 

then inactivating quickly with a time constant (    ), which is about of few 

milliseconds. After that, it recovers with a time constant (    ), which is about 1 

second. The model of Tsodyks et al.'s (1998) is defined by the equations: 

 
  

  
 

 

    
      (     ) (     ) (4) 

 
  

  
  

 

   
      (     ) (     ) (5) 

 
  

  
 

 

    
 

 

    
 (6) 

 

The Symbols     and   are the fractions of resources. Where   is for recovery 

state, y is for the active state and   is for the inactive state. Delta  ( ) is the 
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Dirac delta function. There are two major parameters for the model, the 

utilization of the synaptic efficacy    , which determines the dynamic of the 

synaptic response, and the absolute synaptic strength    , which is revealed 

only when all resources are activated (Tsodyks et al., 1998). 

 

However, the equations (4), (5) and (6) do not include a facilitating mechanism, 

which is important in synapses between pyramidal neurons and inhibitory 

interneurons (Tsodyks et al., 1998). Facilitation and depression are two synaptic 

plasticity processes, and according to each process, the parameter synaptic 

efficiency, or what is called the weight, changes dynamically with each pre-

synaptic spike. To add facilitation to the equations, the value of     is assumed 

not to be fixed and rather to be increased in each presynaptic spike by a certain 

amount (Tsodyks et al., 1998). The     value refers to   at the facilitating 

time (    ) and     is equal to    at the time of the first spike. The new 

equations are formed as the follows: 

 

 
  

  
 

 

    
     (     ) (7) 

 
  

  
  

 

   
     (     ) (8) 

 
  

  
 

 

    
 

 

    
 (9) 

 
  

  
  

 

    
    (   ) (     ) (10) 

 

Mohemmed, Matsuda, Schliebs, Dhoble & Kasabov (2011) mentioned that 

depressing and facilitating mechanisms are intricately interconnected. It is 

observed that stronger facilitation leads to higher values of  , which leads to 

stronger depression (Tsodyks et al., 1998). In other words, when firing at a low 

rate, the spike signals when depressing are different from the facilitating spike 

signals. However, if the firing rate increases, the depressant spike signals 

become more similar to the facilitating spike signals (Mohemmed, Matsuda, 

Schliebs, Dhoble & Kasabov, 2011). 
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As mentioned previously, the parameters of the dynamic synapses    ,      and 

     are the main characteristics of dynamic synapses and they can be tuned. In 

Figure 2, the membrane voltage of a post synaptic neuron receiving from the 

pre synaptic over a dynamic synapse is illustrated with different dynamic 

synapse configurations, while the vertical green lines represent the input spikes. 

These were simulated and illustrated using the NEST simulator by Gewaltig & 

Diesmann (2007). 

 

 

Figure 2 This is the membrane voltage of the post synaptic neuron after receiving spikes over 

dynamic synapses. Each plot has a different configuration of the parameters    ,      and      

(Mohemmed, Matsuda, Schliebs, Dhoble & Kasabov, 2011). 
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CHAPTER 3 

3. Optimizing SNN for Sequence learning using Particle 
Swarm Optimization (PSO): 

In this chapter, the general concept of PSO  and its history will be reviewed first. 

Then, the mathematical equations and the fitness function, which are used in 

the experiments, are divided into three sections and explained in more detail. 

After that, the experimental work is reviewed and the results are analysed. 

 General principles: 3.1

PSO uses a population of particles. Each particle has a position and a velocity 

in space, (which is why it is more appropriate to call them particles rather than 

calling points), and moves around in order to find the solution for the problem 

being solved (Chen & Yu, 2005). PSO is chosen because it is believed to be 

simple, effective, and versatile and emulates nature rather than trying to control 

it. Particle swarm optimization has a wide range of applications and it has 

proved simple and robust (Kennedy & Eberhart, 1995). In addition, Kennedy & 

Eberhart (1995) stated that the code for PSO is inexpensive and requires only 

basic computational operators as will be seen in this paper. There are two 

concept methodologies for particle swarm optimization. According to Kennedy & 

Ebhart (1995), the first methodology is related to artificial life in general, bird 

flocking, herd behaviour, fish schooling, and human behaviour. The second 

methodology reported has links to genetic algorithms and evolutionary 

programming.  

The development of particle swarm optimization was motivated by other 

scientists trying to simulate the social behaviour observed in nature and moving 

organisms (Kennedy & Ebhart, 1995). Specifically, when large numbers of birds 

synchronise and flock together, changing direction suddenly, scattering, 

regrouping and also social behaviour observed in human. Humans are more 

complex than animals. They adjust their physical movements and also their 

cognitive or experimental variables as well. Humans adapt to their social peers 

by adjusting their beliefs and attitude (Kennedy & Ebhart, 1995). The 

overweighting advantages of this behaviour suggest a hypothesis, which was 

fundamental in the development of particle swarm optimization. The hypothesis 
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the authors posited was “that social sharing of information among conspeciates 

offers an evolutionary advantage” (Kennedy & Ebhart, 1995). Thus the 

beginning of PSO algorithm history started with simulating this simple social 

environment and plotting the “graceful unpredictable” choreography of flock of 

birds. 

 

Kennedy & Ebhart (1995) described the precursors of the etiology of particle 

swarm optimization. One of the precursors is the multidimensional search. This 

algorithm is suitable for a social behaviour model which is a multidimensional 

and collision free. An experiment was performed by Kennedy & Ebhart (1995) 

on a three layer neural network for solving an XOR problem. In this experiment, 

the weights of the neural network were adjusted using PSO before they were 

trained and the results are reported to have been decent. 

 

PSO was also used to train neural networks for classification (Carvalho & 

Ludermir, 2006). For example, classifying the Fisher Iris set (Kennedy & Ebhart, 

1995) and, in the medical field, problems such as cancer, diabetes and heart 

conditions (Carvalho & Ludermir, 2006). Kennedy & Ebhart (1995) stated that 

PSO train neural networks as effectively as the error backpropagation method. 

Another application is optimizing a difficult function. An extremely nonlinear 

Schaffer f6 function was optimized when using PSO by finding the global 

optimum in each run (Carlisle & Dozier, 2001, Kennedy & Eberhart, 1995). PSO 

was reported as an effective method in terms of the number of evaluations 

required to reach a certain performance level similar to elementary genetic 

algorithms effectiveness (Kennedy & Eberhart, 1995). To explain PSO 

mathematically, PSO behaves as a “swarm of particles or agents that search for 

an optimum position or solution” (Mohemmed, Matsuda, Schliebs, Dhoble & 

Kasabov, 2011) and must have the following rules: 

     (   )        ( )        (     ( ))        (       ( )) (11) 

      (   )        ( )        (   ) (12) 

 

Within the range of [      ,      ] and [               ], the values of the 

position      and the velocity      are both randomly selected. The others    

and    are random numbers in the range of [0, 1] while    and    are two 
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constants, which control the influence of    and   . The symbol    is the best 

position chosen by the particle, which produces the best fitness value, and    is 

the best position chosen by all the particles. Finally, the last symbol   is the 

inertia weight of PSO. This inertia weight controls the impact of the previous 

velocity of the particle on its current one. (Mohemmed, Matsuda, Schliebs, 

Dhoble & Kasabov, 2011) 

 

Particle swarm optimization is highly dependent on random processes and uses 

the concept of fitness as an evolutionary computation (Kennedy & Eberhart, 

1995). PSO and genetic algorithms share similar conceptual operations. 

Specifically, the adjustment of the best positions of the particles in PSO made 

PSO conceptually similar to the adjustment of crossover utilization in genetic 

algorithms (Kennedy & Eberhart, 1995). 

In spiking neural networks with particle swarm optimization for sequence 

learning in our experiment, PSO is used to adjust the parameters of the 

dynamic synapses, which will in return generate the target spike sequence. The 

dynamic parameters of the spiking neural network’s synapses that will be 

adjusted with PSO are    ,      and     , which were explained in the previous 

section in equation (7), (8), (9) and (10). The next step is encoding these 

parameters. After that, a fitness function must be applied to measure the 

differences between the actual output sequence and the target spike sequence. 

(Mohemmed, Matsuda, Schliebs, Dhoble & Kasabov, 2011) 

 

 Fitness functions: 3.2

Fitness function means measuring the differences and computing the 

relationship between the given target sequence (spike train) and the output 

sequence. The similarity measures are important for classification, clustering or 

for any form of spike analysis (Paiva, Park, & Príncipe, 2009). In our experiment 

for example, the fitness function is used by PSO for optimizing the dynamic 

parameters of the spiking neuron network to generate an output similar to the 

desired target sequence. There are several prior studies and proposed fitness 

functions. 
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The researchers, Dauwels, Vialatte, Weber, & Cichocki (2009) and Paiva et al. 

(2009) investigated and mentioned several similarity measures in their research 

papers. These similarity measure methods can be categorised into two groups 

(Mohemmed, Matsuda, Schliebs, Dhoble & Kasabov, 2011). The first group 

consists of the binning base measures and the second group consists of the 

binless measures.  

 

Binning measures means dividing the sequence/spike train into bins and 

measuring its cross correlation to compute similarity. These following similarity 

measures are defined as binning base measures and were discussed in 

Dauwels et al.'s (2009) paper. For example, the Vector-Purpura distance metric, 

the van Rossum distance metric, the Schreiber et al. similarity measure, the 

Hunter-Milton similarity measure, event synchronization  by Quiroga, and the 

stochastic event synchrony measures (SES) by (Dauwels et al., 2009). 

Nevertheless, there is an issue with all binning measures. That is, they miss all 

the temporal structure taken in the spike train (van Rossum, 2001). Other 

difficulties associated with binning when using small bin sizes, the quantization 

of the spike times leads to boundary effects (Paiva et al., 2009). Small bin sizes 

also cause estimation problems, needing longer averaging windows in a 

stationary situation (Paiva et al., 2009). 

 

Several binless measures have been proposed to avoid the limitations and 

difficulties of binning measures (Paiva et al., 2009). For example, the Victor-

Purpura’s (VP) distance, the van Rossum’s distance, the correlation based 

measure,  the inter-spike interval (ISI) distance, the reliability measure, the 

metric by Houghton generalizing van Rossum’s distance and the metric 

generalizing the VP to simultaneously measure the distance between spike 

trains (Paiva et al., 2009). The VP distance defines the distance between spikes 

as the cost. It differentiates one spike from another by either the 

insertion/deletion of a spike or the shifting of the spike in time. It calculates the 

cost when one spike train transforms into another spike train. Nevertheless, it is 

difficult to determine the inserted/deleted spike if the two spike trains have an 

unequal number of spikes (van Rossum, 2001). 
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The van Rossum’s distance is one binless measure that takes the temporal 

structure of spike trains into account. This measure is closely related to the VP 

distance (Paiva et al., 2009). The van Rossum’s distance is defined by making 

the following measures. First, the spike trains are converted into continuous 

time signals. This is done by convolving each spike with an exponential 

function. Mathematically, the spike train is defined by this equation: 

  ( )   ∑ (  

 

  

   ) (13) 

 

Where     is the time of the arrival of the spike and       . When changing the 

function into an exponential function, it will be adding an exponential tail to all 

spikes. This following equation is the replacement exponential function: 

   ( )   ∑ (     ) 
 (     )

  

 

  

 (14) 

In the previous function (14), (  ) is the time constant of the exponential function 

and (H) is the Heaviside step function: 

  ( )    if      and   ( )    if     (15) 

Computing the distance between two spike trains is the next step. For example, 

if   ( ) and   ( ) are two spike trains, the distance is: 

   (       )   
 

  
 ∫ [  ( )     ( ) ]   

 

 

 (16) 

A proposed fitness measure by Mohemmed, Matsuda, Schliebs, Dhoble & 

Kasabov (2011) is a binless measure similar to the van Rossum’s distance and 

avoids the difficulties of VP measures. They exploit a feature of a LIF neuron. 

The neuron changes its membrane potential with every incoming spike signal, 

which shows continuous representation of a spike sequence. For that, they 

used the neuron to measure the similarity between two or many spike 

sequences. 

 

In Mohemmed, Matsuda, Schliebs, Dhoble & Kasabov's (2011) paper, two 

synapses were connected to the LIF neuron. One of the synapses is excitatory 

and the other will be inhibitory. Excitatory means it increases the probability of 

an actual potential occurring and it is more likely for the target cell to fire while 
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inhibitory means it is less probable for the target cell to fire. Each input spike 

sequence was connected to either one of the synapses. Then, the similarity was 

computed with the following integration function: 

     ∫ |  
 ( )     

 ( )|  
 

 

 (17) 

Where (  ( )) is the desired spike sequence and (  ( )) is the actual spike 

sequence. The (  
 ( )     

 ( )) is proportional to the membrane voltage of the 

similarity measure, where   represents the continuous version of the sequence. 

Finally, L represents the simulation time. (Mohemmed, Matsuda, Schliebs, 

Dhoble & Kasabov, 2011) 

 

When comparing spike sequences, the membrane time constant of the LIF 

neuron    should be set appropriately (Mohemmed, Matsuda, Schliebs, Dhoble 

& Kasabov, 2011), and a trial and error method was used to set    to have the 

best possible outcome. Mohemmed, Matsuda, Schliebs, Dhoble & Kasabov 

(2011) specified that the parameter    was the only parameter that could affect 

the similarity measure. 

 

 Experimental work: 3.3

The experiment in Mohemmed, Matsuda, Schliebs, Dhoble & Kasabov (2011) 

work will be reinvestigated to verify the results, and exploiting any further 

information or exposing any issue with the methods that were used.  

 

There is one main tool used in this research. All simulation experiments in this 

paper use NEST simulator (Gewaltig & Diesmann, 2007), which is written in 

Python programming language, for simulating the neuron networks. In Python, 

the Matplot library is used for drawing scientific plots and histograms. A 

description and further background of NEST and Matplot was taken from the 

Neural Simulation Technology (NEST) website and from the Matplotlib website. 
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3.3.1 The network architecture: 

The network architecture used with PSO consists of three layers. Figure 3 

below shows the approach used with a feed-forward network with a single 

hidden layer. The input neuron is connected to the hidden layer using the 

dynamic synapses. This hidden layer has a total of ten neurons, five neurons 

are inhibitory, and five neurons are excitatory. These neurons will be connected 

to an output neuron. Then, the output will be connected to the similarity 

measure neuron with inhibitory synapses. This division is done to provide 

biological plausibility which contain 80% inhibitory synapses and 20% excitatory 

synapses (Goodman & Ventura, 2006). 

 

Figure 3  The network architecture for training the spiking neural network re-drawn from 
Mohemmed, Matsuda, Schliebs, Dhoble & Kasabov (2011). 

 

The similarity measure between the output sequence and the target sequence, 

which is connected using excitatory synapses, are computed with LIF neuron as 

a fitness function to PSO. These inhibitory and excitatory synapses are static 

and have a fixed weight that will not change during the simulation. After 

optimizing the parameters, PSO feeds back to the dynamic synapses of the 

hidden layer. (Mohemmed, Matsuda, Schliebs, Dhoble & Kasabov, 2011) 
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3.3.2 The experimental setup: 

The configuration of the parameters of PSO and the LIF neuron in the 

simulation experiment are set as in the research of Mohemmed, Matsuda, 

Schliebs, Dhoble & Kasabov (2011). The Table 2 below shows the configuration 

values which are used in the experiment simulation. In Table 2, the Maxiter is 

the maximum iterative process or epoch that can be used and      is the 

resistor. The number of particles used is 20 particles. The rest of the 

parameters were explained in the previous chapter. 

Table 2 Parameter configration for PSO, Network and the SM neuron 

PSO 

       {0.1, 1.0, 1.0}        {0.9, 100.0, 120.0} 

       {-0.01, -10.0, -10.0}        {-0.01, -10.0, -10.0} 

No.Particles 20 Maxiter 50 

Network Neurons 

   10 ms       0 

   7mv     1 G  

       0 - - 

SM Neuron 

   15 ms   

 

As mentioned previously, the method will be similar to the simulation 

experiment done by Mohemmed, Matsuda, Schliebs, Dhoble & Kasabov (2011). 

Initially, we generated ten random settings for the dynamic synapses’ 

parameters   ,      and     . This is due to the fact that it is not possible with a 

single layer feed forward network to map the connection between the input 

sequence and the output sequence (Mohemmed, Matsuda, Schliebs, Dhoble & 

Kasabov, 2011). These ten randomly generated settings will generate ten 

random input sequences for each setting and will result in ten output 

sequences, therefore generating one hundred input and output sequence trains, 

and these trains will be used for performance evaluation. 

 

In each example, there will be an input sequence that will be trained to generate 

the target sequence. Each example will be repeated ten times and each run will 

have different initialization settings for the PSO and for the neurons’ 
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parameters. These settings are generated randomly for each run. When the 

simulation or the training starts with a random setting for the dynamic synapses’ 

parameters, PSO then is used to fine tune these parameters to generate the 

target sequences. The performance evaluation in this experiment is the ability of 

PSO to train the network so that it generates the target sequence. Having    

equal 15, computes SM for a value of 5.4 for each missing or extra spike 

difference, resulting in a value of one millisecond for each spike shift if SM is 

equal to 0.48 (Mohemmed, Matsuda, Schliebs, Dhoble & Kasabov, 2011). 

 

3.3.3 Results and analysis: 

First, the training result for the input train is shown in Figure 4. It shows the 

iteration number for one simulation and the SM value. The evolving output train 

is in red, which starts with only three spikes, reaching the target train in green. 

The SM value at the beginning is equal to 38.9, and, at the last iteration before 

reaching the target train, the SM value drops to 4.4, suggesting that the learning 

algorithm is able to train the network to produce the desired train. 

 

Figure 4 The output sequence while evolving to generate the target sequence (Mohemmed, 

Matsuda, Schliebs, Dhoble & Kasabov, 2011). 

To see the effectiveness of the network when training 1000 experiments, we 

draw a histogram of the SM of the 1000 experiment before and after training. 

Histogram A in figure 5 is represents the SM values before training the network. 

After training the network with PSO, the outcome is produced and is shown in 

Histogram B. Figure 5.B shows that more than 85% of the 1000 experiments 
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resulted in having a similarity measure value of less than five. This means that 

most of the results have a slight train shift when compared with the target train.  

The average value of SM for the 1000 experiment after training is 1.62, 

suggesting that the shift spike is approximately equivalent to 3.375 milliseconds. 

This experiment confirms the result of the experiment by Mohemmed, Matsuda, 

Schliebs, Dhoble & Kasabov (2011). In addition, it demonstrates the 

effectiveness of the method when used on the temporal data. However, this 

method requires several parameters tuning, which is a more difficult task than 

adjusting a single parameter. 

 

 

 

  

 

      A.  B. 

Figure 5 Histogram of the similarity measure before training (A) and after training the network  (B) 
(Mohemmed, Matsuda, Schliebs, Dhoble & Kasabov, 2011). 
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CHAPTER 4 

4. Sequence learning using Spike Pattern Association 
Neuron (SPAN) with dynamic synapses: 

In this chapter, SPAN concept will be explained first along with its mathematical 

equations. After that, the conducted experimental work is described and the 

results are analysed. 

  Sequence learning using SPAN: 4.1

Spatial temporal pattern recognition gained interest in spiking neural networking 

in several pieces of research. Goodman & Ventura (2006) studied and used 

SNN with a supervised method in learning and recognizing spatial temporal 

patterns as liquid state machines (LSM) for solving real world problems such as, 

stockpile surveillance signal alignment and spoken phoneme recognition.  

 

The researchers Mohemmed, Schliebs & Kasabov (2011) came up with a new 

supervised learning algorithm for spatial temporal information using one neuron 

and called it SPAN. This method is based on the Widrow-hoff or Delta rule 

(Mohemmed, Schliebs & Kasabov, 2011).The algorithm modifies the synaptic 

weights of the network iteratively to produce the desired output spike. It defines 

the error between the target train and the actual train by convolving each spike 

sequence with a kernel function (Mohemmed, Schliebs & Kasabov, 2011) . We 

will describe the synaptic and neural model first. Then the learning algorithm will 

be explained. 

 

SPAN uses also the LIF neuron model for simulating the spiking neural network. 

The LIF neuron model has a synaptic current ( ), which is modelled using an  -

kernel. This is defined as: 

  ( )  ∑    ∑ (    
( ))

  

 (18) 

  ( )     
      

  
    ( ) (19) 

 

Where     is the synaptic weight describing the connection strength between 

neuron   and its pre-synaptic neuron   (Mohemmed, Schliebs & Kasabov, 
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2011), and  ( ) is the Heaviside function, which was described in equation 

(15). The algorithm of the researchers, Mohemmed, Schliebs & Kasabov 

(2011), starts with a Widrow-Hoff rule for adjusting the weight of the synapse  . 

    
      (       ) (20) 

Where   is a real-value positive learning rate, and   ,    and      are the input 

train through the synapse  , the desired train and the actual network output 

respectively. The input spike sequences are convolved for the SNN similar to 

PSO. As for the    , it is obtained by integrating    
    to update the weight of 

the synapse  . 

       ∫   ( )(       ( ))    (21) 

The weights are updated in an iterative process called epochs ( ) and all the 

training samples are presented sequentially to the system for each epoch 

(Mohemmed, Schliebs & Kasabov, 2011). After accumulating the computed     

for each sample, the weights are updated to by using: 

   (   )    ( )      (22) 

 

While the Error ( ) is the area under the curve of the difference between the 

actual and the desired output   ( )       ( ): 

    ∫|  ( )       ( )|   (23) 

 Experimental work:  4.2

In this section, the experiments done by Mohemmed, Schliebs & Kasabov 

(2011) for training a neuron for learning a spike pattern will be redone with static 

synapses and then with dynamic synapses. The main objective of the 

experiment is to compare the performance and efficiency of SPAN with static 

synapses to that with dynamic synapses. Different configurations of the 

dynamic parameters will be considered in order to study their impact on the 

learning. There are two types of experiments conducted in this section. In the 

first experiment, SPAN learning algorithm will be used to train a single LIF 

neuron to map a random input spike pattern to a specific target spike train. 
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The second experiment in this section is to test the memory capacity of the 

neuron in recognizing and memorizing different numbers of different input 

patterns using dynamic synapses with SPAN. In this second part of the 

experiment, the procedure is also similar to that experiment done by 

Mohemmed, Schliebs & Kasabov (2011). However, the synapse is changed to a 

dynamic synapse. Then, the results will be compared with the results obtained 

by Mohemmed, Schliebs and Kasabov (2011), where static synapses are used, 

and will also be compared with research results using an algorithm called the 

Chronotron learning method (Florian, 2010). Additionally, the load factor 

imposed by the task on the neuron is calculated and compared. This load factor 

is defined as the ratio of the number of input patterns per synapse (
 

 
).  

 

Noting that Mohemmed, Schliebs & Kasabov (2011) reported in their 

experiment that increasing the number of synapses enables the neuron to 

recognize more patterns. The hypothesis in these following experiments is that, 

by using dynamic synapses we will obtain faster and better results than using 

static synapses, as dynamic synapses are more faithful to the biological 

synapse.  

4.2.1 The network architecture: 

The network structure of SPAN basically contains one neuron with   synapses. 

The architecture is able to receive spatiotemporal spike patterns. Each pattern 

has a number of spike trains equal to the number of synapses. The synapses 

are initially static, and then they are replaced by dynamic ones. The architecture 

is shown in Figure 6. 

 

Figure 6 The SPAN architecture with 400 input synapses (redrawn from Mohemmed, Schliebs & 
Kasabov (2011)). 

SPAN 

Input spike pattern 

Target  sequence 

Target  sequence 

400 

400 

400 

0 

0 

0 
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4.2.2 The experimental setup: 

There are several values for the parameters for the dynamic synapses  ,      

and      in this experiment. The values of the dynamic synapses’ parameters 

are shown in Table 3.  As each parameter has four values, 64 different cases 

can be produced for the three parameters. These combinations are shown in 

Figure 7 and all are used in the experiment.  

 

The configuration values for the rest of the experiment’s parameters are fixed 

for both the static synapses and dynamic synapses and are shown in Table 4. 

In Table 4, Dt is the time resolution, c_m is the capacitor, Max_w is the neuron 

maximum weight,    is the membrane time constant,      is the refractory 

period,      :iis the voltage where spikes rest,        is the voltage where spikes 

reset and V_th is the spike threshold. 

 

Table 3 The possible values for  ,      and       

            

0.25 200 50 

0.50 400 100 

0.75 800 200 

1.0 1200 400 

 

 

Figure 7 Each dot represents the setup value for the dynamic synapses parameters. 
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Table 4 The parameters’ configuration for the simulation and for the neuron 

Simulation 

Dt: 1.0 Seed: 1234 Accuracy th 0.0 Max epoch: 400 

Sim time: 400.0 ms Learning rate: 1.0 No jobs: 20   

Neuron 

  : 10 ms V_th: 0.0 mV      : 0 mV     : 3.0 ms 

c_m: 30pF i_e: 0.       : 0. Max_w: 10 

Input 

No spike: 5 No classes: 1 No pat class 1 No inputs 400 

Target train 

48.,55.,105.,115.,175.,205.,215.,249.,260.,270.,290.,325.,357.,370 

 

In the memory experiment, the maximum weight value is changed to a value of 

2.5 for comparison with the results previously obtained using the static 

synapses, which it was set based on experimental observation according to 

Mohemmed, Schliebs & Kasabov (2011). The maximum epoch is changed to 

five hundred and the number of classes for the randomly generated input 

pattern is five (c=5). The target spike train is also changed, it emits spikes at 

times 33, 66, 99, 132 and 165. The synaptic weights were initialized randomly 

according to a uniform distribution and have a maximum value of 2.5 pA, which 

is based on experimental observation (Mohemmed, Schliebs, et al., 2011). 

 

After explaining the setup configuration for our simulations, the experimental 

procedures are to follow. For the first experiment, initializing the synaptic weight 

is the first step. It is generated randomly between the range [0, 10pA] and 

assigned uniformly to all synapse. In addition, the five spikes’ input patterns are 

generated randomly. For each of the sixty four configurations for the dynamic 

and static synapses, the model runs one hundred experiments, and runs for a 

maximum of four hundred epochs. Therefore, there are six thousand and five 

hundred trails. The average results for each of the dynamic synapses’ 

configuration are plotted and the best result is used for comparison with the 

static synapses.  
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As for the memory capacity experiment, the best configuration resulting from 

the first experiment is used. Different values of input patterns (p) are generated 

randomly and assigned to the five different classes. The neuron is trained to fire 

a single spike at a specific time    
( )

, which is the time of either one of the target 

train spike times. According to Mohemmed, Schliebs & Kasabov (2011), the 

generated pattern is correctly classified if the corresponding output is within two 

milliseconds of the target train.  

 

Performance is evaluated by SPAN ability to train the network so it generates 

the target train with the lowest percentage of error and in the fastest time 

(Mohemmed, Schliebs & Kasabov, 2011). As for the memory experiment, 

performance is evaluated by having the highest load factor (Mohemmed, 

Schliebs & Kasabov, 2011). These will be explained in more detail in the 

following results and analysis section.  

 

4.2.3 Results and analysis: 

After running the experiments, the results are compared and analysed. In the 

learning multiple spikes experiment, Figure 8 shows the Error   versus the 

number of epochs for learning the spiking input train to match the target train. 

Figure 8.A is the result using the static synapses, while Figure 8.B shows the 

result of SPAN with sixty four configurations for the dynamic synapses. 

However, as visually identifying the configuration for each line in Figure 8.B is 

difficult, they need to be divided into groups. 
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Figure 8  The error vs. the number of epochs for learning a spiking train using SPAN, Diagram A is 

with static synapses and Diagram B is with dynamic synapses with diffrent configration setups. 

 

For a better visualization and analysis of the results obtained using the dynamic 

synapses, Figure 9 simply divide the results into four groups based on the 

configuration of the probability of the dynamic synapses. These groups are 

shown in Figure 9. Figure 9.A, Figure 9.B, Figure 9.C and Figure 9.D have the 

probability values of 1, 0.75, 0.5 and 0.25 respectively. 

 

 

A. 

 

B. 
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Figure 9  The SPAN result from the dynamic synapses is divided into four groups, the groups are 

divided according to the probability value u, (A): u = 1, (B): u = 0.75, (C): u = 0.5, (D): u = 0.25.  

 

It can be observed from Figure 9 that the group that has stabilized with the 

lowest error result is group D which has the probability of   = 0.25. This result is 

expected due to the mathematical function used. Next, the group was observed 

closely and the lowest results from the group and their configurations are 

selected and identified for the memory experiment. The configuration with the 

lowest error has the values of (                            ). These values 

are selected based on the process of viewing and eliminating the highest results 

in the plotted diagram in Figure 9.D even though the differences between the 

lowest results are insignificant.  

  

A.  B. 

 

C.  D. 
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Figure 10 The average and standard deviation of the of the resulting error vs. the number of 

epochs. (A) is SPAN with the static synapses and (B) is SPAN with dynamic synapses. 

 

In Figure 10, the result and its standard deviation is plotted. Figure 10.A shows 

the result using static synapses and Figure 10.B using dynamic synapses. 

Using the dynamic synapses in Figure 10.B showed that it reaches a stable 

result in approximately 50 epochs. On the other hand, it reaches to a stable 

result after 250 epochs with the static synapses. The diagram also illustrates in 

this case that the error rate value of SPAN with dynamic synapses is less than 

 
A. 

 
B. 
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that with static synapses, having an error result around 18 with dynamic 

synapses and around 50 with static synapses. Furthermore, the experiment 

shows fluctuation is more obvious with static synapses and is less so when 

using dynamic synapses. Thus, this selected optimal setting appears to have a 

strong decreasing effect on the synaptic weight. In other words, the best setting 

is the one that decreases the synaptic efficacies in the network the most. 

  

Although using dynamic synapses with SPAN indicates it could learn multiple 

input trains more than two times better than SPAN with static synapses, the 

loading factor in the memory test shows unexpectedly different results. 

 

The results of the second experiment, the memory experiment, are shown in 

Figure 11. The two plots in Figure 11 illustrate the average results of 25 trails. 

Figure 11.A is the result using static synapses while Figure 11.B is the result 

using dynamic synapses. Both plots report the success rate, which are the red 

curves, if the input pattern is correctly classified for the number of trails. 

Moreover, the plots reported the average number of epochs required to learn 

the correctly classified inputs and are shown in blue. 

 

The load factor  
 

 
  is created where the success rate is 90% or above, which is 

indicated by the diamond marker. After calculation, the load factor is equal to 

0.075 when using static synapses and is also equal to 0.075 when using 

dynamic synapses, suggesting there are no major differences between them. 

However, in Figure 11 A the result shows when using static synapses, SPAN 

still has a success rate of over 80% even when using 35 input patterns. When 

using dynamic synapses, the success rate dropped to around 50%. Meaning 

that, in this experiment, SPAN with static synapses is able to learn more input 

patterns than SPAN with the dynamic synapses. 
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Figure 11 The load factor results and the number of epochs required for the memory experiment 
for SPAN, diagram (A) with using static synapses and diagram (B) is with dynamic synapses. 

 

Moreover, the plots show that SPAN with static synapses used fewer epochs for 

obtaining the results. On the other hand, in the case of the dynamic synapses in 

this experiment, the plots showed that SPAN used more epochs. For example, 

in Figure 11, when using 30 input patterns, SPAN used an average of around 

70 epochs with the static synapses, and an average of around 160 epochs 

when using the dynamic synapses. In this case, it is more than double the 

epochs used. Therefore, SPAN with static synapses is faster in this experiment. 

 

 
A. 

 
B. 
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The results gained from the memory experiment showed that using dynamic 

synapses does not produce better results than using static synapses. This 

challenge the hypothesis that using dynamic synapses will lead to better results 

over static synapses. However, the load factor obtained is 0.075 for either type 

of synapse for this experiment, but the result is not higher than the result 

obtained by Chronotron done by Florian (2010) , which is 0.22. However, they 

are higher than the results gained with ReSuMe, which is between 0.02 and 

0.04 in the paper by Florian (2010). Furthermore, using the dynamic synapses 

with SPAN for this experiment, required more training epochs than when using 

static synapses. This means that it is requiring more resources for achieving the 

same result than when using static synapses. This might be the possibility of 

initializing a lower synaptic weight value for the static synapses in the memory 

experiment. Table 5 summarizes the main results obtained with SPAN. 

 
Table 5 Summury of the experiments’ main results with SPAN 

 

Learning multiple spike train 
experiment 

Memory experiment 

Average epochs 
required to reach 

saturation 

Last error   value 
at saturation 

Load 
factor 

Average 
epochs 

required to 
learn 30 input 

patterns 

SPAN with 
Static 

synapses 
  250 epochs   51 0.075  70 epochs 

SPAN with 
dynamic 

Synapses 
  50 epochs   20 0.075  160 epochs 

 

Even though the configuration of the dynamic synapses was changed three 

times to see if the memory experiment may produce a different outcome, the 

output results still conclude that using the dynamic synapses with SPAN does 

not report a better result than using static synapses. However, these new 

changes to the configuration did not demonstrate any significant difference than 

the configuration that was reported in this paper, thus, they were not included in 

the report.  
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There are also other variables that might change the scenario of the outcome. 

For example, using a different target train and using different classes may have 

other scenario outcomes. That is because, in the learning multiple spikes 

experiment, the SPAN with dynamic synapses showed a better result with a 

longer train sequence, and it may produce a similar outcome in the memory 

experiment. In addition, since the chosen optimal settings for the dynamic 

synapses decreased the synaptic weight, it is argued that by lowering the 

synaptic weight of the static synapses could results lower and better   values in 

SPAN in the first experiment. However, we repeated the first experiment  with 

two lower weights, we used weight 1 and 2.5 and there was no improvement . 

Then agin, additional experiments are needed. 

 

A possible issue with SPAN is that the dynamic synapses parameters were not 

optimized. The new hypothesis is, when using a method similar to PSO for 

optimizing the dynamic synapses parameters, the load factor might get 

improved in the memory experiment, and the optimization might also decrease 

the speed performance in learning multiple spike patterns, because of the 

additional step required. However, in Cronotron approach, speed performance 

was acceptable even though they optimized the dynamic synapses parameters 

and the synaptic weight. Still, this can only be confirmed by a further 

investigation and experiments.  
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CHAPTER 5 

5. Conclusion and future directions: 

 Conclusion: 5.1

In conclusion, the main objective has been achieved. The report started with a 

description of  SNN and its components such as integrate and fire neuron 

models, the dynamic synapses models, the binless fitness functions. Their 

advantages and possible disadvantages and limitations were identified. 

Moreover, the different supervised learning algorithm approaches that can be 

used with SNN such as PSO and SPAN were explained. After that, the 

experiments setup were described and the parameters tuning were defined. 

Then, comparisons of the results gained when training SNN with SPAN were 

presented and analysed.  

 

The results presented in this paper suggest that Spiking Neural Networks with 

dynamic synapses can successfully learn spatial temporal data and are able to 

memorize and classify spike trains as observed with SPAN, and were able to 

perform better than other algorithms, i.e. ReSuMe in the memory capacity 

result, but was far from the results obtained by Chronotron. Working with PSO 

showed that it is difficult to tune the dynamic synapses’ parameters even though 

it successfully trained the input train. 

Furthermore, considering the set of data used in the experiments, the results 

suggest that combining more biological plausible component like dynamic 

synapses with SPAN, it did not always achieve the best results, such as in the 

memory experiment, implying that it is better to work with static synapses and to 

keep tuning the weight per synapse. On the other hand, if memory capacity is 

not needed, then the results suggest that SPAN is faster and have lower   

values when using dynamic synapsis, but the right parameters values need to 

be set correctly. However, this one example is not enough and more 

experiments are needed with different data sets to confirm this conclusion.  
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 Future directions: 5.2

Even though PSO is inspired by natural behaviour, SPAN proved more 

interesting in this study. It is a much simpler model than the model using PSO. 

Furthermore, SPAN showed that it can classify sequence trains more 

successfully than other algorithms like ReSuMe, and experimenting further with 

SPAN in the future to improve the algorithm with dynamic synapses by tuning 

the neuron parameters and the synaptic weights to obtain the best result is an 

interesting challenge. Applying SPAN with dynamic synapses to solve real-

world datasets or to classify temporal data similar to the problem solved with 

liquid state machines algorithms is an exciting task to work on, such as working 

with video data or voice recognition data. Moreover, encoding these data and 

learning encoding schemes for discovering new knowledge will add to the 

learning experience and will be worth taking into consideration. In addition, a 

possible future direction worth exploring is researching other machine learning 

algorithms and combining them with SNN such as, evolving classification and 

fuzzy learning, which initially showed impressive results with data classification 

in my other previous research paper. Investigating the possibilities for 

implementing a hybrid model with SPAN to create a robust method and achieve 

efficient results and better performance is inspiring. Neuromorphic engineering 

is a new research field that might be a possible future research area. Building 

spiking neuron networks and learning models in a very large scale integration 

(VLSI) would open up more challenges and possibilities worth consideration.  
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