
Temporal Sequence Learning in Spiking Neural

Networks

Belal Mandurah

MCIS

2011

2

Temporal Sequence Learning in Spiking Neural

Networks

Belal Mandurah

A dissertation submitted to

Auckland University of Technology

in partial fulfilment of the requirements for the degree of

Master of Computer and Information Science (MCIS)

2011

School of Computing and Mathematical Sciences

Faculty of Design and Creative Technologies

Knowledge Engineering and Discovery Research Institute

(KEDRI)

Supervisor: Dr. Ammar Mohemmed

3

Table of Contents

CHAPTER 1 .. 9

1. Introduction: .. 9

CHAPTER 2 .. 12

2. Literature Review: SNN for Spike Sequence learning 12

 Related literature: ... 12 2.1

 Spiking neural networks (SNN):.. 15 2.2

 Integrate and fire neuron model:... 18 2.3

 Dynamic synapses: .. 20 2.4

CHAPTER 3 .. 23

3. Optimizing SNN for Sequence learning using Particle Swarm Optimization

(PSO): ... 23

 General principles: ... 23 3.1

 Fitness functions: ... 25 3.2

 Experimental work: ... 28 3.3

3.3.1 The network architecture: .. 29

3.3.2 The experimental setup: .. 30

3.3.3 Results and analysis: ... 31

CHAPTER 4 .. 33

4. Sequence learning using Spike Pattern Association Neuron (SPAN) with

dynamic synapses: .. 33

 Sequence learning using SPAN: .. 33 4.1

 Experimental work: ... 34 4.2

4.2.1 The network architecture: .. 35

4.2.2 The experimental setup: .. 36

4.2.3 Results and analysis: ... 38

CHAPTER 5 .. 46

5. Conclusion and future directions: .. 46

 Conclusion: .. 46 5.1

 Future directions: ... 47 5.2

References: ... 48

4

Table of Figures:

FIGURE 1 RATE ENCODING WHERE THE FREQUENCY OF THE SPIKES ARE IMPORTANT

AND TEMPORAL ENCODING WHERE THE PRECISE TIME OF THE SPIKES ARE

IMPORTANT DURING AN EVENT.. 15

FIGURE 2 THIS IS THE MEMBRANE VOLTAGE OF THE POST SYNAPTIC NEURON AFTER

RECEIVING SPIKES OVER DYNAMIC SYNAPSES. EACH PLOT HAS A DIFFERENT

CONFIGURATION OF THE PARAMETERS , AND 22

FIGURE 3 THE NETWORK ARCHITECTURE FOR TRAINING THE SPIKING NEURAL

NETWORK. ... 29

FIGURE 4 THE OUTPUT SEQUENCE WHILE EVOLVING TO GENERATE THE TARGET

SEQUENCE. ... 31

FIGURE 5 HISTOGRAM OF THE SIMILARITY MEASURE BEFORE TRAINING (A) AND

AFTER TRAINING THE NETWORK (B). .. 32

FIGURE 6 THE SPAN ARCHITECTURE WITH 400 INPUT SYNAPSES 35

FIGURE 7 EACH DOT REPRESENTS THE SETUP VALUE FOR THE DYNAMIC SYNAPSES

PARAMETERS. ... 36

FIGURE 8 THE ERROR VS. THE NUMBER OF EPOCHS FOR LEARNING A SPIKING TRAIN

USING SPAN, DIAGRAM A IS WITH STATIC SYNAPSES AND DIAGRAM B IS WITH

DYNAMIC SYNAPSES WITH DIFFRENT CONFIGRATION SETUPS. 39

FIGURE 9 THE SPAN RESULT FROM THE DYNAMIC SYNAPSES IS DIVIDED INTO FOUR

GROUPS, THE GROUPS ARE DIVIDED ACCORDING TO THE PROBABILITY VALUE U,

(A): U = 1, (B): U = 0.75, (C): U = 0.5, (D): U = 0.25. .. 40

FIGURE 10 THE AVERAGE AND STANDARD DEVIATION OF THE OF THE RESULTING

ERROR VS. THE NUMBER OF EPOCHS. (A) IS SPAN WITH THE STATIC SYNAPSES

AND (B) IS SPAN WITH DYNAMIC SYNAPSES. ... 41

FIGURE 11 THE LOAD FACTOR RESULTS AND THE NUMBER OF EPOCHS REQUIRED

FOR THE MEMORY EXPERIMENT FOR SPAN, DIAGRAM (A) WITH USING STATIC

SYNAPSES AND DIAGRAM (B) IS WITH DYNAMIC SYNAPSES. 43

5

Table of Tables:

TABLE 1 RELATED SUPERVISED LEARNING ALGORITHIMS FOR SNN TO LEARN

TEMPORAL SEQUENCE DATA ... 14

TABLE 2 PARAMETER CONFIGRATION FOR PSO, NETWORK AND THE SM NEURON 30

TABLE 3 THE POSSIBLE VALUES FOR , AND ... 36

TABLE 4 THE PARAMETERS’ CONFIGURATION FOR THE SIMULATION AND FOR THE

NEURON ... 37

TABLE 5 SUMMURY OF THE EXPERIMENTS’ MAIN RESULTS WITH SPAN 44

6

Attestation of Authorship:

I hereby declare that this submission is my own work and that, to the best of my

knowledge and belief, it contains no material previously published or written by

another person (except where explicitly defined in the acknowledgments), nor

material which to a substantial extent has been submitted for award of any other

degree or diploma of a university or other institution of higher learning.

7

Acknowledgments:

I received great assistance from my supervisor Dr. Ammar Mohemmed. He

provided me with the main code used in the experiments and helped me with

adjusting the code. He also provided me with related research sources papers

to guide me in this dissertation. I have learned greatly with him and I can’t thank

him enough for what he did for me. I also would like to acknowledge the great

job of Ms. Catriona Carruthers in proofreading this dissertation.

8

Abstract:

Spiking Neural Networks (SNN) are the third generation of artificial neural

network (ANN). Like the brain’s neurons, they use spikes (pulses) to propagate

information. Spike sequence learning has many applications for example in

speech recognition and motor control. One of the main issues for sequence

generation is learning. There are two main types of learning, unsupervised

learning and supervised learning. Supervised learning, like Back Propagation

(BP) is based on using a teacher signal to tune the connection weights to guide

the network to produce a desired output for a specific input.

In this work, two supervised sequence learning schemes will be investigated.

The first scheme uses particle swarm optimization (PSO). Using PSO, the SNN

consists of multiple layers of neurons connected by dynamic synapses to

increase its computation power. Due to the limitation in scalability of PSO, the

second algorithm, SPAN, will be investigated which is able to use spatial

temporal data. SPAN uses a simpler architecture; the network consists of a

single neuron with multiple synapses. Though it originally uses static synapses,

the synapses will be replaced with dynamic synapses to examine the impacts, if

any exist, on the network and on learning performance.

A performance evaluation of the two methods, using different configuration for

the parameters of the dynamic synapses and using different input data train, will

be undertaken, as well as an evaluation of SPAN when the synapses are

replaced with dynamic ones.

The main research question is how the dynamic synapses affect the learning

and performance of the two above learning schemes. The sequence learning

algorithm with PSO proved more complicated to optimize several parameters

than optimizing one parameter per synapse with SPAN. Learning multiple inputs

using SPAN with dynamic synapses proved faster than using static synapses.

Nonetheless, memorizing the sequences using SPAN with the dynamic

synapses did not show any improvement. SPAN has been proven to be able to

successfully learn and classify multiple sequence trains with a simpler model

and with the fine tuning of one parameter per synapse. This is a very interesting

area to work in, and further future work can be done to improve each system.

9

CHAPTER 1

1. Introduction:

Understanding and simulating the learning process occurring in the brain is

currently a major research area and many interesting new directions have

appeared recently. Especially exciting are the engineering applications that may

developed on the basis of such brain-like information processing algorithms.

The idea of the dissertation is to investigate recently presented learning

algorithms for Spiking Neural Networks (SNN) regarding its performance when

additional, more biological plausible components, i.e. dynamic synapses, are

introduced into the training process.

After the latest neurological studies, researchers developed the SNN and it is

the most biologically plausible and accurate network to process neural

information of all previous generations of artificial neural networks (Paugam-

Moisy, 2006). Sequence learning with SNN can be implemented to solve

complex real world problems and applications. It can be used, for example, in

speech recognition, DNA sequences, and time series prediction (Sun & Giles,

2001, Tsodyks, Pawelzik, & Markram, 1998). Though sequence events differ

from one application to another, it is important to know the order of events and,

in other tasks, the timing of the event is more crucial (Sichtig, 2007).

In this dissertation, the main objective is to investigate supervised sequence

generation learning with dynamic synapses. The dissertation starts with a

literature review of the related work. This will cover related research that has

used learning algorithms for spiking neural network with its applications. Then,

the paper discusses the issues and limitations of SNN. After that, a spiking

neuron model called Integrate and Fire is explained. There are several types of

integrate and fire models model such as the Leaky Integrate and Fire model

and the Izhikevich neuron model, and we explain why the former model was

chosen. The chapter ends with reviewing and explaining dynamic synapses

model, its formula and its main parameters.

10

Then, chapter three explains the learning scheme and algorithm used in the

experiment for sequence learning, mainly PSO and with fitness function. PSO is

used to tune three parameters of the dynamic synapses. Namely the recovery

time, the facilitating time and the synaptic efficacy. This scheme learns the

target train and generates an output train similar to the given target train. It

continually compares the output with the target train in every iteration process,

using the similarity measure neuron, and then modifies the parameter of the

synapses by using PSO. The chapter then describes the experiment carried

out, including the data, parameters, setup and architecture of the network. We

experiment with this algorithm to assess the performance of the learning

scheme. The last part of the experiment of this chapter deals with analysis of

the results.

In chapter four, SPAN is the second investigated sequence learning algorithm.

Unlike with PSO, SPAN modifies only the synaptic weight of the network

iteratively to produce a desired output train. It can receive multiple inputs and

learn spike trains to generate an output as similar to the target train by adjusting

the synaptic weights of the network after comparing the differences between the

output and the target train when the spike trains are convolved with a kernel

function. However, this original SPAN uses static synapses and we need to

observe if there is any difference to performance or in computational power if

static synapses are replaced with dynamic ones.

In this SPAN chapter, there will be two different experiments. The first

experiment’s aim is to evaluate the ability and performance of SPAN in learning

multiple inputs patterns when using dynamic synapses and comparing it to

SPAN using static synapses. This experiment will demonstrate the robustness

of the method when dynamic synapses are used, which is important for real

world applications. The second experiment’s purpose is also evaluating the

ability and performance of SPAN to classify and memorize the trains with

different classes when the synapses are replaced with dynamic synapses and

comparing these results with SPAN using static synapses. This experiment

demonstrates how many patterns a single neuron can learn when dynamic

synapses are used.

11

The hypothesis is that since dynamic synapses are more biologically plausible

than the static synapses, then the dynamic synapses will perform better in the

experiments.

Finally, the last chapter ends the dissertation with a conclusion and future

directions.

12

CHAPTER 2

2. Literature Review: SNN for Spike Sequence learning

In this second chapter of the paper, related research papers in the area of

sequence learning with spiking neural network will be reviewed first. Then, the

mathematical models and the computational units from the neural systems,

which are used in the experiments, are divided into sections and explained.

 Related literature: 2.1

In machine learning there are several algorithm types for learning, classifying

and clustering data: supervised, unsupervised or semi-supervised learning.

The supervised learning method generates the output when given a sample. In

this case, we need an input value and a desired value to generate the output

similar to the desired example. The unsupervised method discovers and finds

hidden structure in unlabelled data. The semi-supervised learning method

combines the labelled and the unlabelled structure to generate an appropriate

function or outcome. The unsupervised method is widely investigated, but it is

not appropriate for learning tasks that are to be used for a specific goal

(Ponulak & Kasiński, 2010). We will not go into more detail about these other

methods because they are out of scope of this dissertation. Thus, we will mainly

discuss the supervised methods used with SNN and they are shown briefly in

Table 1.

Supervised learning algorithms for SNN have been proposed in different

research papers over the last decade. For instance, Spike-Prob, Tempotron

ReSuMe and Chronotron are supervised learning algorithms used with spiking

neural networks. First on the list, Spike-Prob, presented by Bohte, Kok, & La

Poutré, (2000), is a supervised learning method for SNN based on precise spike

time encoding. It is tested on classification problems such as extended XOR

classification problem and real-world benchmark problems, such as the Iris,

Wisconsin Breast Cancer and Statlog Landsat datasets (Bohte, Kok, & La

Poutré, 2000). This model configuration has a multi-layer feed forward network

with an error back propagation algorithm. The Spike-Prob uses a “gradient

descent approach” (Mohemmed, Schliebs, Matsuda, & Kasabov, 2011) which

13

adjusts the network synaptic weights to obtain a spike at the desired time. It

assumes that each neuron is allowed to fire only once during a single simulation

cycle Spikes fired at a specific time encode specific information. If a spike

train has more than one spike, then Spike-Prob cannot be trained to

generate the desired train of spikes (Mohemmed, Schliebs, Matsuda, Kasabov,

2011).

Tempotron is a neuron model proposed by Gütig & Sompolinsky (2006) that

consists of a leaky integrate and fire neuron for classifying the input information

received, including category information that is not encoded in spike counts.

Tempotron also uses the dynamics of a gradient descent approach, and “poorly

classify spike patterns that depends on the basis of temporal features that

extend beyond a single integration time” (Gütig & Sompolinsky, 2006), limiting

Tempotron to learn temporally localised data separated by long time periods.

Thus, it is not capable of carrying out specific tasks that carry additional

temporal data information, which makes it only suitable for binary classification

problems (Gütig & Sompolinsky, 2006). Solving this requires more additional

work on memory mechanisms or on slow synaptic dynamics and possibly

having a multilayer architecture (Gütig & Sompolinsky, 2006).

The Remote Supervised Method (ReSuMe) is a set of Hebbian-based

supervised learning algorithms presented by Ponulak & Kasinski (2006).

ReSuMe uses a function called learning window. This rule is used with spike

time dependent plasticity (STDP) and with anti-STDP (Gerstner & Kistler, 2002).

This learning window concept uses two rules, the presynaptic and reference

spike time rule or pre-and postsynaptic spike times rule, to obtain the desired

spike target train with very high precision (Ponulak & Kasinski, 2006). ReSuMe

has been effective when used with liquid state machine networks. However, it

only tunes one parameter, which is the synaptic weight.

Another learning method was proposed by Florian (2010) and called

Chronotron. Chronotron uses two versions of learning rules. By using a

similarity measure and by optimizing the parameters of the neurons and the

synaptic weights, they minimize the error difference between the target train

and the actual train (Florian, 2010). The first version called I-learning, and it is

14

more biologically plausible but less efficient than the second version

(Mohemmed, Schliebs, & Kasabov, 2011). The second version is E-learning,

and uses the Victor-Purpura (VP) distance (Florian, 2010). The temporal data

results for classification tasks were compared with ReSuMe and showed that

Chronotron performed better (Mohemmed, Schliebs, & Kasabov, 2011).

Evolutionary algorithms (EA) were also used for training SNN for classification

(Belatreche, Maguire, & McGinnity, 2006). They were used to tune the dynamic

synapses parameter for a single feed forward network. Similarly, Pavlidis,

Tasoulis, Plagianakos, Nikiforidis, & Vrahatis (2005) and Jin, Wen, & Sendhoff

(2007) used EA to tune the synaptic weight and their connections. However, the

methods were used on static data only and were not used with temporal

sequence data.

Table 1 Related supervised learning algorithims for SNN to learn temporal sequence data

Supervised
Algorithm

Approach
used

Parameters
tuned

Known Issues Possible solutions

SpikeProb
(S.M. Bohte et

al., 2000)

Multi-layer feed
forward

network and
gradient
descent

approach.

Synaptic
weights.

Cannot be
trained if more
than one spike

exists in the
spike train.

Tempotron
(Gütig &

Sompolinsky,
2006)

A single neuron
model and
gradient
descent

approach.

Synaptic
weights.

Spikes
separated by

long time
periods are

poorly
classified.

More additional work on
the memory

mechanisms or on the
slow synaptic dynamics
and possibly having a
multilayer architecture.

ReSuMe
(Ponulak &

Kasinski, 2006)

Learning
window +

STDP + Anti
STDP.

Synaptic
weight.

--- ---

Chronotron
(Florian, 2010)

A single neuron
with a similarity

measure.

Neuron
parameters +

synaptic
weights.

--- ---

15

 Spiking neural networks (SNN): 2.2

SNN appeared in 1997 and became popular over the last fourteen years

(Sichtig, 2007). SNN is considered to be the third generation of neural networks.

Previous generations uses rate encoding for carrying information. Rate

encoding carries information dependent on the frequency of the firing spikes.

The rate of the action potential spikes increases if the stimulus of the neuron

increases. While new neurophysiological studies showed that the precise time a

neuron fires a spike carries further information (Sichtig, 2007). Combined with

rate encoding, information is transferred by sending precise time sequenced

spikes, which is called temporal encoding (Bohte, 2004). While previous

generations of neural networks depended only on the rate of the spikes, having

this new information SNN becomes more biologically plausible than previous

generations (Sichtig, 2007). Figure 1 is an example of how rate encoding and

temporal encoding fires spikes in 10 neurons.

Figure 1 Rate encoding (A) where the frequency of the spikes are important and Temporal
encoding (B) where the precise time of the spikes are important during an event.

 A. B.

16

Applications:

There are several successful applications for spiking neural networks which

Bohte & Kok (2005) mentioned in their paper. It was reported that

SNN effectively implements a complex temporal filter when the neurons

are randomly connected (Bohte & Kok, 2005). For example, with a decoder, it

can classify a temporally extended input, like speech recognition and time-

series prediction (Sichtig, 2007). Learning and classification with SNN was also

used in areas such as face recognition (Sichtig, 2007). Additionally, SNN can be

used for robot control, vision and using scene segmentation for detecting

criminal behaviour with surveillance cameras. There are also other learning

applications, undertaken by previous generations of neural networks, was again

implemented with spiking neural networks (Bohte & Kok, 2005; Sichtig, 2007).

There are four general goals that previous generations of neural networks

aimed at: The first goal is auto association, where the network is used to

reproduce the most similar pattern to a given training set pattern by tuning the

parameters of the network. The second goal is pattern association, where the

network processes an input data then produces an output consistent with its

mapping, which was learned from a training set of pairs of patterns. The third

general goal is classification and the final goal is clustering, where the network

clusters the sets of data into groups or classes by discovering the features of

the data without having a training set. (Sichtig, 2007)

Examples of applications that were undertaken by the traditional neural

networks and were then solved with SNN were presented by Bohte & Kok

(2005). SNN was reported as effective on the classification of Poisson spike

train, and it was demonstrated on a temporal version of the classic XOR

problem. It was reported that the XOR problem could be solved very easily in

SNN without a hidden layer.

Moreover, Bohte & Kok (2005) reported that SNN could be used for associative

memory for brain modelling and data retrieval in the form of the Willshaw model.

It was posited that neural associative memories may have practical advantages

over localized storage. Furthermore, SNN can be used as a function

17

approximator. This might be seen as a classification problem. For example,

SNN can interpolate between a set of data points, which approximates the

function. It can be used with learning rules or algorithms to approximate the

function. The researchers Bohte & Kok (2005) reported it was successfully used

with semi-supervised and unsupervised datasets. Other advantages of having

SNN with learning algorithms is it can use their inputs and project them into a

high dimensional space to allow the readout function to be simple (Goodman &

Ventura, 2006). Their readout function also has the ability to be memory less,

meaning that with SNN, we depend on the network to remember and represent

the past and current input simultaneously (Goodman & Ventura, 2006).

Issues and limitations:

Bohte & Kok in (2005) reported one issue with applications using spiking neural

networks; they are “computationally more intensive than previous generations of

neural networks”. However, they said that SNN reduces drastically the

communication load between neurons and allows parallel implementations to be

efficient. Sichtig (2007) also added some limitations of SNN. There is “limited

empirical data and computational theory about computing time series in

biological and artificial pulsed neural nets” (Sichtig, 2007).

The reason SNN was chosen:

The reasons why spiking neural network was chosen over previous generations

was because, according to neurophysiological studies, SNN is conceptually

state of the art, and represents the biological neural network more accurately

than previous generations. In addition, SNN showed its effectiveness and

accuracy in some experiments and applications with continuous data over the

traditional neural networks (Sichtig, 2007). Traditional neural networks are most

successful when processing static data (Sichtig, 2007).

18

 Integrate and fire neuron model: 2.3

Integrate and Fire (I & F) is one of the possible models of a spiking neuron. The

other two are the Spike Response model and the Hodgkin-Huxley model

(Paugam-Moisy, 2006). Integrate and fire model have several model types and

they are based on an electric circuit, having a capacitor () and a resistor ()

(Paugam-Moisy & Bohte, 2009).The first model explained is the Leaky Integrate

and Fire (LIF) neuron, which is a simplification of the Hodgkin-Huxley model.

This model can be defined by the following equation:

 () (1)

Where is the time constant of the neuron membrane, is the

resistance of the membrane and () is the input current. The neuron generates

a spike when the membrane voltage reaches a threshold value. A threshold

value is reached when a sufficient number of spikes have occurred. After

reaching the threshold, the potential voltage drops to a value of and

stays at that level for a period of , which is called the refractory period. All

incoming spikes are ignored during the refractory period. In addition, the

membrane voltage is resting at a value of until the neuron activates again.

Integrate and fire neuron models consider every spike as a uniform event

defined only by the time it fires and neglects the shape of the action potentials

or spike or pulse. Each neuron can simulate either an “integrator” or a

“resonator” by changing the parameters but cannot be both at the same time as

their properties are mutually exclusive (Paugam-Moisy, 2006).

The second integrate and fire model is the Izhikevich neuron model. The

authors Sichtig (2007) and Paugam-Moisy and Bohte (2009) reported that the

two dimensional Izhikevich neuron model is balanced between the biophysical

plausibility and versatility of the Hodgkin-Huxley type model and the

computational efficiency or cost of the integrate and fire and resonate and fire

type models. By using Bifurcation methodologies, the author of the model

Izhikevich (2003) was able to reduce many Hodgkin-Huxley type models to a

19

two dimensional system. The Izhikevich neuron model is defined by the coupled

equations:

 () () () () (2)

 (() ()) (3)

And after spike resetting: if then and

where is the membrane potential of the neuron, is the synaptic current, is

the time and is the membrane recovery variable. While and are the

four dimensionless parameters that can be tweaked for achieving the desired

spike behaviour (Izhikevich, 2003). The spike behaviours are such as, fast

spiking, regular spiking, resonator, chattering, intrinsically bursting, thalamo

cortical and low threshold spiking. The parameter represents the time scale of

the recovery variable , the smaller the value of the slower the recovery. The

parameter is the sensitivity of the recovery variable to the subthreshold

fluctuations of the membrane potential. Great values of leads and to

stronger posibilites for subthreshold oscillations and low threshold spiking

dynamics. The parameter is the after spike reset value of the membrane

potential caused by a fast high threshold. Finaly, the parameter describes the

after spike reset of the recovery variable caused by slow high threshold.

The last two models are the Quadratic Integrate and Fire (QIF) model and the

Theta Neuron model (Paugam-Moisy & Bohte, 2009). (There are also other

existing spiking neuron models such as the gIF model, which is an intermediate

model, but they will not be covered in this paper.) The QIF is simpler to

understand and less complex than other models and it also realistically captures

the behaviour of the biological neuron. The Hodgkin-Huxley models are the

most realistic to a biological neuron, while the LIF is a simplification and does

display many of the important properties of biological spiking neurons (Paugam-

Moisy & Bohte, 2009). However, the computational costs of these models are

different. For example, the Hodgkin-Huxley model requires twelve thousand

floating point operations (FLOP). The LIF model has five floating point

operations and the Izhikevich model has thirteen floating point operations

20

(Paugam-Moisy & Bohte, 2009). For simplicity and cost effectiveness, the LIF

model was chosen in our experiments over the other models.

 Dynamic synapses: 2.4

The dynamic synapses’ strength relies on constantly changing its parameters

according to the temporal pattern. Dynamic synapses have been successfully

used in several applications such as speech recognition (Jim-Shih Liaw &

Berger, 1997). They have been also used as computational model to behave

like finite state machines, which are computer science models for computational

time series, and have yielded good performances compared with other artificial

networks that do not have any biological realism (Natschläger & Maass, 2002).

Dynamic synapses “control how the pattern of amplitudes of post-synaptic

responses changes with the temporal pattern of the pre-synaptic” (Mohemmed,

Matsuda, Schliebs, Dhoble & Kasabov, 2011). Having this information, several

phenomenological models have been proposed that behave similarly to the

dynamics of biological synapses. One model proposed by Tsodyks et al. (1998)

explains that the postsynaptic responses are generated by either facilitating or

depressing. The characteristic of this model’s synapses is having a finite

amount of resources, and the presynaptic spike activates a fraction of (),

which is the utilization of the synaptic efficacy, when arriving at a time () and

then inactivating quickly with a time constant (), which is about of few

milliseconds. After that, it recovers with a time constant (), which is about 1

second. The model of Tsodyks et al.'s (1998) is defined by the equations:

 () () (4)

 () () (5)

 (6)

The Symbols and are the fractions of resources. Where is for recovery

state, y is for the active state and is for the inactive state. Delta () is the

21

Dirac delta function. There are two major parameters for the model, the

utilization of the synaptic efficacy , which determines the dynamic of the

synaptic response, and the absolute synaptic strength , which is revealed

only when all resources are activated (Tsodyks et al., 1998).

However, the equations (4), (5) and (6) do not include a facilitating mechanism,

which is important in synapses between pyramidal neurons and inhibitory

interneurons (Tsodyks et al., 1998). Facilitation and depression are two synaptic

plasticity processes, and according to each process, the parameter synaptic

efficiency, or what is called the weight, changes dynamically with each pre-

synaptic spike. To add facilitation to the equations, the value of is assumed

not to be fixed and rather to be increased in each presynaptic spike by a certain

amount (Tsodyks et al., 1998). The value refers to at the facilitating

time () and is equal to at the time of the first spike. The new

equations are formed as the follows:

 () (7)

 () (8)

 (9)

 () () (10)

Mohemmed, Matsuda, Schliebs, Dhoble & Kasabov (2011) mentioned that

depressing and facilitating mechanisms are intricately interconnected. It is

observed that stronger facilitation leads to higher values of , which leads to

stronger depression (Tsodyks et al., 1998). In other words, when firing at a low

rate, the spike signals when depressing are different from the facilitating spike

signals. However, if the firing rate increases, the depressant spike signals

become more similar to the facilitating spike signals (Mohemmed, Matsuda,

Schliebs, Dhoble & Kasabov, 2011).

22

As mentioned previously, the parameters of the dynamic synapses , and

 are the main characteristics of dynamic synapses and they can be tuned. In

Figure 2, the membrane voltage of a post synaptic neuron receiving from the

pre synaptic over a dynamic synapse is illustrated with different dynamic

synapse configurations, while the vertical green lines represent the input spikes.

These were simulated and illustrated using the NEST simulator by Gewaltig &

Diesmann (2007).

Figure 2 This is the membrane voltage of the post synaptic neuron after receiving spikes over

dynamic synapses. Each plot has a different configuration of the parameters , and

(Mohemmed, Matsuda, Schliebs, Dhoble & Kasabov, 2011).

23

CHAPTER 3

3. Optimizing SNN for Sequence learning using Particle
Swarm Optimization (PSO):

In this chapter, the general concept of PSO and its history will be reviewed first.

Then, the mathematical equations and the fitness function, which are used in

the experiments, are divided into three sections and explained in more detail.

After that, the experimental work is reviewed and the results are analysed.

 General principles: 3.1

PSO uses a population of particles. Each particle has a position and a velocity

in space, (which is why it is more appropriate to call them particles rather than

calling points), and moves around in order to find the solution for the problem

being solved (Chen & Yu, 2005). PSO is chosen because it is believed to be

simple, effective, and versatile and emulates nature rather than trying to control

it. Particle swarm optimization has a wide range of applications and it has

proved simple and robust (Kennedy & Eberhart, 1995). In addition, Kennedy &

Eberhart (1995) stated that the code for PSO is inexpensive and requires only

basic computational operators as will be seen in this paper. There are two

concept methodologies for particle swarm optimization. According to Kennedy &

Ebhart (1995), the first methodology is related to artificial life in general, bird

flocking, herd behaviour, fish schooling, and human behaviour. The second

methodology reported has links to genetic algorithms and evolutionary

programming.

The development of particle swarm optimization was motivated by other

scientists trying to simulate the social behaviour observed in nature and moving

organisms (Kennedy & Ebhart, 1995). Specifically, when large numbers of birds

synchronise and flock together, changing direction suddenly, scattering,

regrouping and also social behaviour observed in human. Humans are more

complex than animals. They adjust their physical movements and also their

cognitive or experimental variables as well. Humans adapt to their social peers

by adjusting their beliefs and attitude (Kennedy & Ebhart, 1995). The

overweighting advantages of this behaviour suggest a hypothesis, which was

fundamental in the development of particle swarm optimization. The hypothesis

24

the authors posited was “that social sharing of information among conspeciates

offers an evolutionary advantage” (Kennedy & Ebhart, 1995). Thus the

beginning of PSO algorithm history started with simulating this simple social

environment and plotting the “graceful unpredictable” choreography of flock of

birds.

Kennedy & Ebhart (1995) described the precursors of the etiology of particle

swarm optimization. One of the precursors is the multidimensional search. This

algorithm is suitable for a social behaviour model which is a multidimensional

and collision free. An experiment was performed by Kennedy & Ebhart (1995)

on a three layer neural network for solving an XOR problem. In this experiment,

the weights of the neural network were adjusted using PSO before they were

trained and the results are reported to have been decent.

PSO was also used to train neural networks for classification (Carvalho &

Ludermir, 2006). For example, classifying the Fisher Iris set (Kennedy & Ebhart,

1995) and, in the medical field, problems such as cancer, diabetes and heart

conditions (Carvalho & Ludermir, 2006). Kennedy & Ebhart (1995) stated that

PSO train neural networks as effectively as the error backpropagation method.

Another application is optimizing a difficult function. An extremely nonlinear

Schaffer f6 function was optimized when using PSO by finding the global

optimum in each run (Carlisle & Dozier, 2001, Kennedy & Eberhart, 1995). PSO

was reported as an effective method in terms of the number of evaluations

required to reach a certain performance level similar to elementary genetic

algorithms effectiveness (Kennedy & Eberhart, 1995). To explain PSO

mathematically, PSO behaves as a “swarm of particles or agents that search for

an optimum position or solution” (Mohemmed, Matsuda, Schliebs, Dhoble &

Kasabov, 2011) and must have the following rules:

 () () (()) (()) (11)

 () () () (12)

Within the range of [,] and [], the values of the

position and the velocity are both randomly selected. The others

and are random numbers in the range of [0, 1] while and are two

25

constants, which control the influence of and . The symbol is the best

position chosen by the particle, which produces the best fitness value, and is

the best position chosen by all the particles. Finally, the last symbol is the

inertia weight of PSO. This inertia weight controls the impact of the previous

velocity of the particle on its current one. (Mohemmed, Matsuda, Schliebs,

Dhoble & Kasabov, 2011)

Particle swarm optimization is highly dependent on random processes and uses

the concept of fitness as an evolutionary computation (Kennedy & Eberhart,

1995). PSO and genetic algorithms share similar conceptual operations.

Specifically, the adjustment of the best positions of the particles in PSO made

PSO conceptually similar to the adjustment of crossover utilization in genetic

algorithms (Kennedy & Eberhart, 1995).

In spiking neural networks with particle swarm optimization for sequence

learning in our experiment, PSO is used to adjust the parameters of the

dynamic synapses, which will in return generate the target spike sequence. The

dynamic parameters of the spiking neural network’s synapses that will be

adjusted with PSO are , and , which were explained in the previous

section in equation (7), (8), (9) and (10). The next step is encoding these

parameters. After that, a fitness function must be applied to measure the

differences between the actual output sequence and the target spike sequence.

(Mohemmed, Matsuda, Schliebs, Dhoble & Kasabov, 2011)

 Fitness functions: 3.2

Fitness function means measuring the differences and computing the

relationship between the given target sequence (spike train) and the output

sequence. The similarity measures are important for classification, clustering or

for any form of spike analysis (Paiva, Park, & Príncipe, 2009). In our experiment

for example, the fitness function is used by PSO for optimizing the dynamic

parameters of the spiking neuron network to generate an output similar to the

desired target sequence. There are several prior studies and proposed fitness

functions.

26

The researchers, Dauwels, Vialatte, Weber, & Cichocki (2009) and Paiva et al.

(2009) investigated and mentioned several similarity measures in their research

papers. These similarity measure methods can be categorised into two groups

(Mohemmed, Matsuda, Schliebs, Dhoble & Kasabov, 2011). The first group

consists of the binning base measures and the second group consists of the

binless measures.

Binning measures means dividing the sequence/spike train into bins and

measuring its cross correlation to compute similarity. These following similarity

measures are defined as binning base measures and were discussed in

Dauwels et al.'s (2009) paper. For example, the Vector-Purpura distance metric,

the van Rossum distance metric, the Schreiber et al. similarity measure, the

Hunter-Milton similarity measure, event synchronization by Quiroga, and the

stochastic event synchrony measures (SES) by (Dauwels et al., 2009).

Nevertheless, there is an issue with all binning measures. That is, they miss all

the temporal structure taken in the spike train (van Rossum, 2001). Other

difficulties associated with binning when using small bin sizes, the quantization

of the spike times leads to boundary effects (Paiva et al., 2009). Small bin sizes

also cause estimation problems, needing longer averaging windows in a

stationary situation (Paiva et al., 2009).

Several binless measures have been proposed to avoid the limitations and

difficulties of binning measures (Paiva et al., 2009). For example, the Victor-

Purpura’s (VP) distance, the van Rossum’s distance, the correlation based

measure, the inter-spike interval (ISI) distance, the reliability measure, the

metric by Houghton generalizing van Rossum’s distance and the metric

generalizing the VP to simultaneously measure the distance between spike

trains (Paiva et al., 2009). The VP distance defines the distance between spikes

as the cost. It differentiates one spike from another by either the

insertion/deletion of a spike or the shifting of the spike in time. It calculates the

cost when one spike train transforms into another spike train. Nevertheless, it is

difficult to determine the inserted/deleted spike if the two spike trains have an

unequal number of spikes (van Rossum, 2001).

27

The van Rossum’s distance is one binless measure that takes the temporal

structure of spike trains into account. This measure is closely related to the VP

distance (Paiva et al., 2009). The van Rossum’s distance is defined by making

the following measures. First, the spike trains are converted into continuous

time signals. This is done by convolving each spike with an exponential

function. Mathematically, the spike train is defined by this equation:

 () ∑ (

) (13)

Where is the time of the arrival of the spike and . When changing the

function into an exponential function, it will be adding an exponential tail to all

spikes. This following equation is the replacement exponential function:

 () ∑ ()
 ()

 (14)

In the previous function (14), () is the time constant of the exponential function

and (H) is the Heaviside step function:

 () if and () if (15)

Computing the distance between two spike trains is the next step. For example,

if () and () are two spike trains, the distance is:

 ()

 ∫ [() ()]

 (16)

A proposed fitness measure by Mohemmed, Matsuda, Schliebs, Dhoble &

Kasabov (2011) is a binless measure similar to the van Rossum’s distance and

avoids the difficulties of VP measures. They exploit a feature of a LIF neuron.

The neuron changes its membrane potential with every incoming spike signal,

which shows continuous representation of a spike sequence. For that, they

used the neuron to measure the similarity between two or many spike

sequences.

In Mohemmed, Matsuda, Schliebs, Dhoble & Kasabov's (2011) paper, two

synapses were connected to the LIF neuron. One of the synapses is excitatory

and the other will be inhibitory. Excitatory means it increases the probability of

an actual potential occurring and it is more likely for the target cell to fire while

28

inhibitory means it is less probable for the target cell to fire. Each input spike

sequence was connected to either one of the synapses. Then, the similarity was

computed with the following integration function:

 ∫ |
 ()

 ()|

 (17)

Where (()) is the desired spike sequence and (()) is the actual spike

sequence. The (
 ()

 ()) is proportional to the membrane voltage of the

similarity measure, where represents the continuous version of the sequence.

Finally, L represents the simulation time. (Mohemmed, Matsuda, Schliebs,

Dhoble & Kasabov, 2011)

When comparing spike sequences, the membrane time constant of the LIF

neuron should be set appropriately (Mohemmed, Matsuda, Schliebs, Dhoble

& Kasabov, 2011), and a trial and error method was used to set to have the

best possible outcome. Mohemmed, Matsuda, Schliebs, Dhoble & Kasabov

(2011) specified that the parameter was the only parameter that could affect

the similarity measure.

 Experimental work: 3.3

The experiment in Mohemmed, Matsuda, Schliebs, Dhoble & Kasabov (2011)

work will be reinvestigated to verify the results, and exploiting any further

information or exposing any issue with the methods that were used.

There is one main tool used in this research. All simulation experiments in this

paper use NEST simulator (Gewaltig & Diesmann, 2007), which is written in

Python programming language, for simulating the neuron networks. In Python,

the Matplot library is used for drawing scientific plots and histograms. A

description and further background of NEST and Matplot was taken from the

Neural Simulation Technology (NEST) website and from the Matplotlib website.

29

3.3.1 The network architecture:

The network architecture used with PSO consists of three layers. Figure 3

below shows the approach used with a feed-forward network with a single

hidden layer. The input neuron is connected to the hidden layer using the

dynamic synapses. This hidden layer has a total of ten neurons, five neurons

are inhibitory, and five neurons are excitatory. These neurons will be connected

to an output neuron. Then, the output will be connected to the similarity

measure neuron with inhibitory synapses. This division is done to provide

biological plausibility which contain 80% inhibitory synapses and 20% excitatory

synapses (Goodman & Ventura, 2006).

Figure 3 The network architecture for training the spiking neural network re-drawn from
Mohemmed, Matsuda, Schliebs, Dhoble & Kasabov (2011).

The similarity measure between the output sequence and the target sequence,

which is connected using excitatory synapses, are computed with LIF neuron as

a fitness function to PSO. These inhibitory and excitatory synapses are static

and have a fixed weight that will not change during the simulation. After

optimizing the parameters, PSO feeds back to the dynamic synapses of the

hidden layer. (Mohemmed, Matsuda, Schliebs, Dhoble & Kasabov, 2011)

30

3.3.2 The experimental setup:

The configuration of the parameters of PSO and the LIF neuron in the

simulation experiment are set as in the research of Mohemmed, Matsuda,

Schliebs, Dhoble & Kasabov (2011). The Table 2 below shows the configuration

values which are used in the experiment simulation. In Table 2, the Maxiter is

the maximum iterative process or epoch that can be used and is the

resistor. The number of particles used is 20 particles. The rest of the

parameters were explained in the previous chapter.

Table 2 Parameter configration for PSO, Network and the SM neuron

PSO

 {0.1, 1.0, 1.0} {0.9, 100.0, 120.0}

 {-0.01, -10.0, -10.0} {-0.01, -10.0, -10.0}

No.Particles 20 Maxiter 50

Network Neurons

 10 ms 0

 7mv 1 G

 0 - -

SM Neuron

 15 ms

As mentioned previously, the method will be similar to the simulation

experiment done by Mohemmed, Matsuda, Schliebs, Dhoble & Kasabov (2011).

Initially, we generated ten random settings for the dynamic synapses’

parameters , and . This is due to the fact that it is not possible with a

single layer feed forward network to map the connection between the input

sequence and the output sequence (Mohemmed, Matsuda, Schliebs, Dhoble &

Kasabov, 2011). These ten randomly generated settings will generate ten

random input sequences for each setting and will result in ten output

sequences, therefore generating one hundred input and output sequence trains,

and these trains will be used for performance evaluation.

In each example, there will be an input sequence that will be trained to generate

the target sequence. Each example will be repeated ten times and each run will

have different initialization settings for the PSO and for the neurons’

31

parameters. These settings are generated randomly for each run. When the

simulation or the training starts with a random setting for the dynamic synapses’

parameters, PSO then is used to fine tune these parameters to generate the

target sequences. The performance evaluation in this experiment is the ability of

PSO to train the network so that it generates the target sequence. Having

equal 15, computes SM for a value of 5.4 for each missing or extra spike

difference, resulting in a value of one millisecond for each spike shift if SM is

equal to 0.48 (Mohemmed, Matsuda, Schliebs, Dhoble & Kasabov, 2011).

3.3.3 Results and analysis:

First, the training result for the input train is shown in Figure 4. It shows the

iteration number for one simulation and the SM value. The evolving output train

is in red, which starts with only three spikes, reaching the target train in green.

The SM value at the beginning is equal to 38.9, and, at the last iteration before

reaching the target train, the SM value drops to 4.4, suggesting that the learning

algorithm is able to train the network to produce the desired train.

Figure 4 The output sequence while evolving to generate the target sequence (Mohemmed,

Matsuda, Schliebs, Dhoble & Kasabov, 2011).

To see the effectiveness of the network when training 1000 experiments, we

draw a histogram of the SM of the 1000 experiment before and after training.

Histogram A in figure 5 is represents the SM values before training the network.

After training the network with PSO, the outcome is produced and is shown in

Histogram B. Figure 5.B shows that more than 85% of the 1000 experiments

32

resulted in having a similarity measure value of less than five. This means that

most of the results have a slight train shift when compared with the target train.

The average value of SM for the 1000 experiment after training is 1.62,

suggesting that the shift spike is approximately equivalent to 3.375 milliseconds.

This experiment confirms the result of the experiment by Mohemmed, Matsuda,

Schliebs, Dhoble & Kasabov (2011). In addition, it demonstrates the

effectiveness of the method when used on the temporal data. However, this

method requires several parameters tuning, which is a more difficult task than

adjusting a single parameter.

 A. B.

Figure 5 Histogram of the similarity measure before training (A) and after training the network (B)
(Mohemmed, Matsuda, Schliebs, Dhoble & Kasabov, 2011).

33

CHAPTER 4

4. Sequence learning using Spike Pattern Association
Neuron (SPAN) with dynamic synapses:

In this chapter, SPAN concept will be explained first along with its mathematical

equations. After that, the conducted experimental work is described and the

results are analysed.

 Sequence learning using SPAN: 4.1

Spatial temporal pattern recognition gained interest in spiking neural networking

in several pieces of research. Goodman & Ventura (2006) studied and used

SNN with a supervised method in learning and recognizing spatial temporal

patterns as liquid state machines (LSM) for solving real world problems such as,

stockpile surveillance signal alignment and spoken phoneme recognition.

The researchers Mohemmed, Schliebs & Kasabov (2011) came up with a new

supervised learning algorithm for spatial temporal information using one neuron

and called it SPAN. This method is based on the Widrow-hoff or Delta rule

(Mohemmed, Schliebs & Kasabov, 2011).The algorithm modifies the synaptic

weights of the network iteratively to produce the desired output spike. It defines

the error between the target train and the actual train by convolving each spike

sequence with a kernel function (Mohemmed, Schliebs & Kasabov, 2011) . We

will describe the synaptic and neural model first. Then the learning algorithm will

be explained.

SPAN uses also the LIF neuron model for simulating the spiking neural network.

The LIF neuron model has a synaptic current (), which is modelled using an -

kernel. This is defined as:

 () ∑ ∑ (
())

 (18)

 ()

 () (19)

Where is the synaptic weight describing the connection strength between

neuron and its pre-synaptic neuron (Mohemmed, Schliebs & Kasabov,

34

2011), and () is the Heaviside function, which was described in equation

(15). The algorithm of the researchers, Mohemmed, Schliebs & Kasabov

(2011), starts with a Widrow-Hoff rule for adjusting the weight of the synapse .

 () (20)

Where is a real-value positive learning rate, and , and are the input

train through the synapse , the desired train and the actual network output

respectively. The input spike sequences are convolved for the SNN similar to

PSO. As for the , it is obtained by integrating
 to update the weight of

the synapse .

 ∫ ()(()) (21)

The weights are updated in an iterative process called epochs () and all the

training samples are presented sequentially to the system for each epoch

(Mohemmed, Schliebs & Kasabov, 2011). After accumulating the computed

for each sample, the weights are updated to by using:

 () () (22)

While the Error () is the area under the curve of the difference between the

actual and the desired output () ():

 ∫| () ()| (23)

 Experimental work: 4.2

In this section, the experiments done by Mohemmed, Schliebs & Kasabov

(2011) for training a neuron for learning a spike pattern will be redone with static

synapses and then with dynamic synapses. The main objective of the

experiment is to compare the performance and efficiency of SPAN with static

synapses to that with dynamic synapses. Different configurations of the

dynamic parameters will be considered in order to study their impact on the

learning. There are two types of experiments conducted in this section. In the

first experiment, SPAN learning algorithm will be used to train a single LIF

neuron to map a random input spike pattern to a specific target spike train.

35

The second experiment in this section is to test the memory capacity of the

neuron in recognizing and memorizing different numbers of different input

patterns using dynamic synapses with SPAN. In this second part of the

experiment, the procedure is also similar to that experiment done by

Mohemmed, Schliebs & Kasabov (2011). However, the synapse is changed to a

dynamic synapse. Then, the results will be compared with the results obtained

by Mohemmed, Schliebs and Kasabov (2011), where static synapses are used,

and will also be compared with research results using an algorithm called the

Chronotron learning method (Florian, 2010). Additionally, the load factor

imposed by the task on the neuron is calculated and compared. This load factor

is defined as the ratio of the number of input patterns per synapse (

).

Noting that Mohemmed, Schliebs & Kasabov (2011) reported in their

experiment that increasing the number of synapses enables the neuron to

recognize more patterns. The hypothesis in these following experiments is that,

by using dynamic synapses we will obtain faster and better results than using

static synapses, as dynamic synapses are more faithful to the biological

synapse.

4.2.1 The network architecture:

The network structure of SPAN basically contains one neuron with synapses.

The architecture is able to receive spatiotemporal spike patterns. Each pattern

has a number of spike trains equal to the number of synapses. The synapses

are initially static, and then they are replaced by dynamic ones. The architecture

is shown in Figure 6.

Figure 6 The SPAN architecture with 400 input synapses (redrawn from Mohemmed, Schliebs &
Kasabov (2011)).

SPAN

Input spike pattern

Target sequence

Target sequence

400

400

400

0

0

0

36

4.2.2 The experimental setup:

There are several values for the parameters for the dynamic synapses ,

and in this experiment. The values of the dynamic synapses’ parameters

are shown in Table 3. As each parameter has four values, 64 different cases

can be produced for the three parameters. These combinations are shown in

Figure 7 and all are used in the experiment.

The configuration values for the rest of the experiment’s parameters are fixed

for both the static synapses and dynamic synapses and are shown in Table 4.

In Table 4, Dt is the time resolution, c_m is the capacitor, Max_w is the neuron

maximum weight, is the membrane time constant, is the refractory

period, :iis the voltage where spikes rest, is the voltage where spikes

reset and V_th is the spike threshold.

Table 3 The possible values for , and

0.25 200 50

0.50 400 100

0.75 800 200

1.0 1200 400

Figure 7 Each dot represents the setup value for the dynamic synapses parameters.

37

Table 4 The parameters’ configuration for the simulation and for the neuron

Simulation

Dt: 1.0 Seed: 1234 Accuracy th 0.0 Max epoch: 400

Sim time: 400.0 ms Learning rate: 1.0 No jobs: 20

Neuron

 : 10 ms V_th: 0.0 mV : 0 mV : 3.0 ms

c_m: 30pF i_e: 0. : 0. Max_w: 10

Input

No spike: 5 No classes: 1 No pat class 1 No inputs 400

Target train

48.,55.,105.,115.,175.,205.,215.,249.,260.,270.,290.,325.,357.,370

In the memory experiment, the maximum weight value is changed to a value of

2.5 for comparison with the results previously obtained using the static

synapses, which it was set based on experimental observation according to

Mohemmed, Schliebs & Kasabov (2011). The maximum epoch is changed to

five hundred and the number of classes for the randomly generated input

pattern is five (c=5). The target spike train is also changed, it emits spikes at

times 33, 66, 99, 132 and 165. The synaptic weights were initialized randomly

according to a uniform distribution and have a maximum value of 2.5 pA, which

is based on experimental observation (Mohemmed, Schliebs, et al., 2011).

After explaining the setup configuration for our simulations, the experimental

procedures are to follow. For the first experiment, initializing the synaptic weight

is the first step. It is generated randomly between the range [0, 10pA] and

assigned uniformly to all synapse. In addition, the five spikes’ input patterns are

generated randomly. For each of the sixty four configurations for the dynamic

and static synapses, the model runs one hundred experiments, and runs for a

maximum of four hundred epochs. Therefore, there are six thousand and five

hundred trails. The average results for each of the dynamic synapses’

configuration are plotted and the best result is used for comparison with the

static synapses.

38

As for the memory capacity experiment, the best configuration resulting from

the first experiment is used. Different values of input patterns (p) are generated

randomly and assigned to the five different classes. The neuron is trained to fire

a single spike at a specific time
()

, which is the time of either one of the target

train spike times. According to Mohemmed, Schliebs & Kasabov (2011), the

generated pattern is correctly classified if the corresponding output is within two

milliseconds of the target train.

Performance is evaluated by SPAN ability to train the network so it generates

the target train with the lowest percentage of error and in the fastest time

(Mohemmed, Schliebs & Kasabov, 2011). As for the memory experiment,

performance is evaluated by having the highest load factor (Mohemmed,

Schliebs & Kasabov, 2011). These will be explained in more detail in the

following results and analysis section.

4.2.3 Results and analysis:

After running the experiments, the results are compared and analysed. In the

learning multiple spikes experiment, Figure 8 shows the Error versus the

number of epochs for learning the spiking input train to match the target train.

Figure 8.A is the result using the static synapses, while Figure 8.B shows the

result of SPAN with sixty four configurations for the dynamic synapses.

However, as visually identifying the configuration for each line in Figure 8.B is

difficult, they need to be divided into groups.

39

Figure 8 The error vs. the number of epochs for learning a spiking train using SPAN, Diagram A is

with static synapses and Diagram B is with dynamic synapses with diffrent configration setups.

For a better visualization and analysis of the results obtained using the dynamic

synapses, Figure 9 simply divide the results into four groups based on the

configuration of the probability of the dynamic synapses. These groups are

shown in Figure 9. Figure 9.A, Figure 9.B, Figure 9.C and Figure 9.D have the

probability values of 1, 0.75, 0.5 and 0.25 respectively.

A.

B.

40

Figure 9 The SPAN result from the dynamic synapses is divided into four groups, the groups are

divided according to the probability value u, (A): u = 1, (B): u = 0.75, (C): u = 0.5, (D): u = 0.25.

It can be observed from Figure 9 that the group that has stabilized with the

lowest error result is group D which has the probability of = 0.25. This result is

expected due to the mathematical function used. Next, the group was observed

closely and the lowest results from the group and their configurations are

selected and identified for the memory experiment. The configuration with the

lowest error has the values of (). These values

are selected based on the process of viewing and eliminating the highest results

in the plotted diagram in Figure 9.D even though the differences between the

lowest results are insignificant.

A. B.

C. D.

41

Figure 10 The average and standard deviation of the of the resulting error vs. the number of

epochs. (A) is SPAN with the static synapses and (B) is SPAN with dynamic synapses.

In Figure 10, the result and its standard deviation is plotted. Figure 10.A shows

the result using static synapses and Figure 10.B using dynamic synapses.

Using the dynamic synapses in Figure 10.B showed that it reaches a stable

result in approximately 50 epochs. On the other hand, it reaches to a stable

result after 250 epochs with the static synapses. The diagram also illustrates in

this case that the error rate value of SPAN with dynamic synapses is less than

A.

B.

42

that with static synapses, having an error result around 18 with dynamic

synapses and around 50 with static synapses. Furthermore, the experiment

shows fluctuation is more obvious with static synapses and is less so when

using dynamic synapses. Thus, this selected optimal setting appears to have a

strong decreasing effect on the synaptic weight. In other words, the best setting

is the one that decreases the synaptic efficacies in the network the most.

Although using dynamic synapses with SPAN indicates it could learn multiple

input trains more than two times better than SPAN with static synapses, the

loading factor in the memory test shows unexpectedly different results.

The results of the second experiment, the memory experiment, are shown in

Figure 11. The two plots in Figure 11 illustrate the average results of 25 trails.

Figure 11.A is the result using static synapses while Figure 11.B is the result

using dynamic synapses. Both plots report the success rate, which are the red

curves, if the input pattern is correctly classified for the number of trails.

Moreover, the plots reported the average number of epochs required to learn

the correctly classified inputs and are shown in blue.

The load factor

 is created where the success rate is 90% or above, which is

indicated by the diamond marker. After calculation, the load factor is equal to

0.075 when using static synapses and is also equal to 0.075 when using

dynamic synapses, suggesting there are no major differences between them.

However, in Figure 11 A the result shows when using static synapses, SPAN

still has a success rate of over 80% even when using 35 input patterns. When

using dynamic synapses, the success rate dropped to around 50%. Meaning

that, in this experiment, SPAN with static synapses is able to learn more input

patterns than SPAN with the dynamic synapses.

43

Figure 11 The load factor results and the number of epochs required for the memory experiment
for SPAN, diagram (A) with using static synapses and diagram (B) is with dynamic synapses.

Moreover, the plots show that SPAN with static synapses used fewer epochs for

obtaining the results. On the other hand, in the case of the dynamic synapses in

this experiment, the plots showed that SPAN used more epochs. For example,

in Figure 11, when using 30 input patterns, SPAN used an average of around

70 epochs with the static synapses, and an average of around 160 epochs

when using the dynamic synapses. In this case, it is more than double the

epochs used. Therefore, SPAN with static synapses is faster in this experiment.

A.

B.

44

The results gained from the memory experiment showed that using dynamic

synapses does not produce better results than using static synapses. This

challenge the hypothesis that using dynamic synapses will lead to better results

over static synapses. However, the load factor obtained is 0.075 for either type

of synapse for this experiment, but the result is not higher than the result

obtained by Chronotron done by Florian (2010) , which is 0.22. However, they

are higher than the results gained with ReSuMe, which is between 0.02 and

0.04 in the paper by Florian (2010). Furthermore, using the dynamic synapses

with SPAN for this experiment, required more training epochs than when using

static synapses. This means that it is requiring more resources for achieving the

same result than when using static synapses. This might be the possibility of

initializing a lower synaptic weight value for the static synapses in the memory

experiment. Table 5 summarizes the main results obtained with SPAN.

Table 5 Summury of the experiments’ main results with SPAN

Learning multiple spike train
experiment

Memory experiment

Average epochs
required to reach

saturation

Last error value
at saturation

Load
factor

Average
epochs

required to
learn 30 input

patterns

SPAN with
Static

synapses
 250 epochs 51 0.075 70 epochs

SPAN with
dynamic

Synapses
 50 epochs 20 0.075 160 epochs

Even though the configuration of the dynamic synapses was changed three

times to see if the memory experiment may produce a different outcome, the

output results still conclude that using the dynamic synapses with SPAN does

not report a better result than using static synapses. However, these new

changes to the configuration did not demonstrate any significant difference than

the configuration that was reported in this paper, thus, they were not included in

the report.

45

There are also other variables that might change the scenario of the outcome.

For example, using a different target train and using different classes may have

other scenario outcomes. That is because, in the learning multiple spikes

experiment, the SPAN with dynamic synapses showed a better result with a

longer train sequence, and it may produce a similar outcome in the memory

experiment. In addition, since the chosen optimal settings for the dynamic

synapses decreased the synaptic weight, it is argued that by lowering the

synaptic weight of the static synapses could results lower and better values in

SPAN in the first experiment. However, we repeated the first experiment with

two lower weights, we used weight 1 and 2.5 and there was no improvement .

Then agin, additional experiments are needed.

A possible issue with SPAN is that the dynamic synapses parameters were not

optimized. The new hypothesis is, when using a method similar to PSO for

optimizing the dynamic synapses parameters, the load factor might get

improved in the memory experiment, and the optimization might also decrease

the speed performance in learning multiple spike patterns, because of the

additional step required. However, in Cronotron approach, speed performance

was acceptable even though they optimized the dynamic synapses parameters

and the synaptic weight. Still, this can only be confirmed by a further

investigation and experiments.

46

CHAPTER 5

5. Conclusion and future directions:

 Conclusion: 5.1

In conclusion, the main objective has been achieved. The report started with a

description of SNN and its components such as integrate and fire neuron

models, the dynamic synapses models, the binless fitness functions. Their

advantages and possible disadvantages and limitations were identified.

Moreover, the different supervised learning algorithm approaches that can be

used with SNN such as PSO and SPAN were explained. After that, the

experiments setup were described and the parameters tuning were defined.

Then, comparisons of the results gained when training SNN with SPAN were

presented and analysed.

The results presented in this paper suggest that Spiking Neural Networks with

dynamic synapses can successfully learn spatial temporal data and are able to

memorize and classify spike trains as observed with SPAN, and were able to

perform better than other algorithms, i.e. ReSuMe in the memory capacity

result, but was far from the results obtained by Chronotron. Working with PSO

showed that it is difficult to tune the dynamic synapses’ parameters even though

it successfully trained the input train.

Furthermore, considering the set of data used in the experiments, the results

suggest that combining more biological plausible component like dynamic

synapses with SPAN, it did not always achieve the best results, such as in the

memory experiment, implying that it is better to work with static synapses and to

keep tuning the weight per synapse. On the other hand, if memory capacity is

not needed, then the results suggest that SPAN is faster and have lower

values when using dynamic synapsis, but the right parameters values need to

be set correctly. However, this one example is not enough and more

experiments are needed with different data sets to confirm this conclusion.

47

 Future directions: 5.2

Even though PSO is inspired by natural behaviour, SPAN proved more

interesting in this study. It is a much simpler model than the model using PSO.

Furthermore, SPAN showed that it can classify sequence trains more

successfully than other algorithms like ReSuMe, and experimenting further with

SPAN in the future to improve the algorithm with dynamic synapses by tuning

the neuron parameters and the synaptic weights to obtain the best result is an

interesting challenge. Applying SPAN with dynamic synapses to solve real-

world datasets or to classify temporal data similar to the problem solved with

liquid state machines algorithms is an exciting task to work on, such as working

with video data or voice recognition data. Moreover, encoding these data and

learning encoding schemes for discovering new knowledge will add to the

learning experience and will be worth taking into consideration. In addition, a

possible future direction worth exploring is researching other machine learning

algorithms and combining them with SNN such as, evolving classification and

fuzzy learning, which initially showed impressive results with data classification

in my other previous research paper. Investigating the possibilities for

implementing a hybrid model with SPAN to create a robust method and achieve

efficient results and better performance is inspiring. Neuromorphic engineering

is a new research field that might be a possible future research area. Building

spiking neuron networks and learning models in a very large scale integration

(VLSI) would open up more challenges and possibilities worth consideration.

48

References:

Belatreche, A., Maguire, L. P., & McGinnity, M. (2006). Advances in Design and

Application of Spiking Neural Networks. Soft Computing, 11(3), 239–248.

Bohte, S., & Kok, J. (2005). Applications of spiking neural networks. Information

Processing Letters, 95(6), 519–520.

Bohte, S.M., Kok, J. N., & La Poutré, H. (2000). SpikeProp: backpropagation for

networks of spiking neurons. Proceedings of the Twelfth Belgium-

Netherlands Artificial Intelligence Conference (BNAIC) (p. 321).

Bohte, Sander M. (2004). The Evidence for Neural Information Processing with

Precise Spike-times: A Survey. NATURAL COMPUTING, 3, 2004.

Carlisle, A., & Dozier, G. (2001). An off-the-shelf PSO. Proceedings of the

workshop on particle swarm optimization (Vol. 1, pp. 1–6).

Carvalho, M., & Ludermir, T. B. (2006). Particle Swarm Optimization of Feed-

Forward Neural Networks with Weight Decay (p. 5). Presented at the

Sixth International Conference on Hybrid Intelligent Systems, 2006. HIS

’06, IEEE.

Chen, G., & Yu, J. (2005). Particle Swarm Optimization Neural Network and Its

Application in Soft-Sensing Modeling. In L. Wang, K. Chen, & Y. S. Ong

(Eds.), Advances in Natural Computation (Vol. 3611, pp. 610-617).

Berlin, Heidelberg: Springer.

Dauwels, J., Vialatte, F., Weber, T., & Cichocki, A. (2009). On Similarity

Measures for Spike Trains. In M. Köppen, N. Kasabov, & G. Coghill

(Eds.), Advances in Neuro-Information Processing (Vol. 5506, pp. 177–

185). Berlin, Heidelberg: Springer.

Florian, R. V. (2010). The chronotron: a neuron that learns to fire temporally-

precise spike patterns. Retrieved from

49

http://precedings.nature.com/documents/5190/version/1/files/npre201051

90-1.pdf

Gerstner, W., & Kistler, W. (2002). Spiking Neuron Models: Single Neurons,

Populations, Plasticity. Cambridge University Press.

Gewaltig, M.-O., & Diesmann, M. (2007). NEST (NEural Simulation Tool).

Scholarpedia, 2(4), 1430. doi:10.4249/scholarpedia.1430

Goodman, E., & Ventura, D. (2006). Spatiotemporal Pattern Recognition via

Liquid State Machines. International Joint Conference on Neural

Networks, 2006. IJCNN ’06 (pp. 3848–3853). Presented at the

International Joint Conference on Neural Networks, 2006. IJCNN ’06,

IEEE.

Gütig, R., & Sompolinsky, H. (2006). The tempotron: a neuron that learns spike

timing-based decisions. Nature Neuroscience, 9(3), 420–428.

Izhikevich, E. M. (2003). Simple model of spiking neurons. IEEE Transactions

on Neural Networks, 14(6), 1569– 1572.

Jim-Shih Liaw, & Berger, T. W. (1997). Computing with dynamic synapses: a

case study of speech recognition. Neural Networks,1997., International

Conference on (Vol. 1, pp. 350–355 vol.1). Presented at International

Conference on the Neural Networks,1997. IEEE.

Jin, Y., Wen, R., & Sendhoff, B. (2007). Evolutionary multi-objective

optimization of spiking neural networks. Proceedings of the 17th

international conference on Artificial neural networks, ICANN’07 (pp.

370–379). Berlin, Heidelberg: Springer.

Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. Neural

Networks, 1995. Proceedings., IEEE International Conference on (Vol. 4,

50

pp. 1942–1948 vol.4). Presented at IEEE International Conference on

Neural Networks, 1995. Proceedings.

Mohammed, A., Schliebs, S., & Kasabov, N. (2011). SPAN: A Neuron for

Precise-Time Spike Pattern Association. In B. -L. Lu, L. Zhang, & J.

Kwok (Eds.), Neural Information Processing (Vol. 7063, pp. 718-725).

Berlin, Heidelberg: Springer.

Mohemmed, A., Matsuda, S., Dhoble, K., & Kasabov, N. (2011). Optimization of

Spiking Neural Network with Dynamic Synapses for Spike Sequence

Generation using PSO. The 2011 International Joint Conference on

Neural Networks (IJCNN) (pp.2969-2974). Presented at the 2011

international Joint Conference on Neural Networks (IJCNN), IEEE.

Mohemmed, A., Schliebs, S., Matsuda, S., & Kasabov, N. (2011). Method for

Training a Spiking Neuron to Associate Input-Output Spike Trains. In L.

Iliadis & C. Jayne (Eds.), Engineering Applications of Neural Networks

(Vol. 363, pp. 219–228). Berlin, Heidelberg: Springer.

Natschläger, T., & Maass, W. (2002). Spiking neurons and the induction of finite

state machines. Theoretical Computer Science, 287(1), 251–265.

Paiva, A. R. C., Park, I., & Príncipe, J. C. (2009). A comparison of binless spike

train measures. Neural Computing and Applications, 19(3), 405–419.

Paugam-Moisy, H. (2006). Spiking neuron networks: a survey. Rapport

Technique RR-11, IDIAP, Martigny, Switzerland.

Paugam-Moisy, H., & Bohte, S. M. (2009). Computing with spiking neuron

networks. Handbook of Natural Computing, 40p. Heidelberg: Springer.

Pavlidis, N. G., Tasoulis, O. K., Plagianakos, V. P., Nikiforidis, G., & Vrahatis,

M. N. (2005). Spiking neural network training using evolutionary

algorithms. International Joint Conference on Neural Networks, 2005.

51

IJCNN ’05 (Vol. 4, pp. 2190–2194 vol. 4). Presented at the International

Joint Conference on Neural Networks, 2005. IJCNN ’05. Montreal,

Canada.

Ponulak, F., & Kasinski, A. (2006). ReSuMe learning method for Spiking Neural

Networks dedicated to neuroprostheses control. In Proc. of EPFL

LATSIS Symposium 2006, Dynamical principles for neuroscience and

intelligent biomimetic devices, (pp. 119–120).

Ponulak, F., & Kasiński, A. (2010). Supervised learning in spiking neural

networks with resume: Sequence learning, classification, and spike

shifting. Neural computation, 22(2), 467–510.

Sichtig, H. (2007). Building Smart Machines by Utilizing Spiking Neural

Networks; Current Perspectives. Computational Intelligence and

Bioinformatics and Computational Biology, 2007. CIBCB ’07. IEEE

Symposium on (pp. 346–350). Presented at the Symposium on

Computational Intelligence and Bioinformatics and Computational

Biology, 2007. CIBCB ’07. IEEE.

Sun, R., & Giles, C. L. (2001). Sequence learning: from recognition and

prediction to sequential decision making. Intelligent Systems, IEEE,

16(4), 67–70.

Tsodyks, M., Pawelzik, K., & Markram, H. (1998). Neural Networks with

Dynamic Synapses. Neural Computation, 10(4), 821–835.

van Rossum, M. C. W. (2001). A Novel Spike Distance. Neural Computation,

13(4), 751–763.

