Stephen M. Taylor

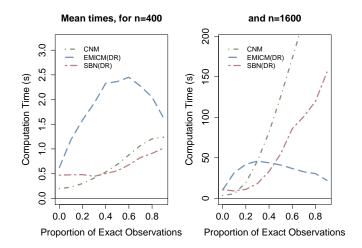
MSc Candidate
Department of Statistics, The University of Auckland
stay020@aucklanduni.ac.nz

NZ Mathematics and Statistics Postgraduate Conference 2008 20 November 2008

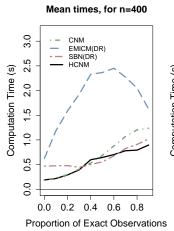
Research Aims

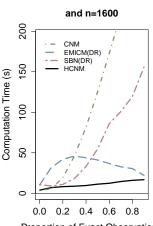
- Create a robust algorithm for solving the NPMLE problem
- One that is fastest in all circumstances.

Hierarchical Constrained Newton Method (HCNM)

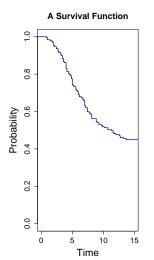


Introduction 00000000

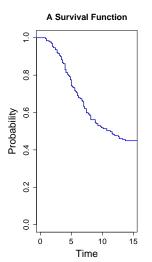




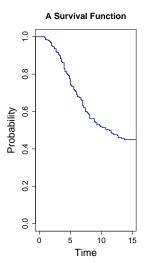
Time to event data



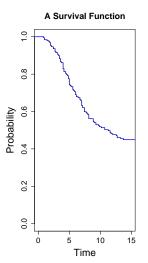
- Time to event data
- Want to model the distribution of times to 'failure'



- Time to event data
- Want to model the distribution of times to 'failure'
- Interested in the survival function, S(t) = P(T > t)



- Time to event data
- Want to model the distribution of times to 'failure'
- Interested in the survival function. S(t) = P(T > t)
- Example: Time to healing



Introduction

000000000

• Time of event may not be directly measurable

- Time of event may not be directly measurable
- Check periodically to see if it has occurred

- Time of event may not be directly measurable
- Check periodically to see if it has occurred
- Example: healing occurred some time between doctor visits

- Time of event may not be directly measurable
- Check periodically to see if it has occurred
- Example: healing occurred some time between doctor visits
- The event may never occur for some subjects

- Time of event may not be directly measurable
- Check periodically to see if it has occurred
- Example: healing occurred some time between doctor visits
- The event may never occur for some subjects
- Example: end of study or "lost to followup"

• Event times are not known exactly, only within intervals

- Event times are not known exactly, only within intervals
- Perhaps no event time is observed exactly

- Event times are not known exactly, only within intervals
- Perhaps no event time is observed exactly
- Interval censored: event occurred somewhere in $(t_L, t_R]$

- Event times are not known exactly, only within intervals
- Perhaps no event time is observed exactly
- Interval censored: event occurred somewhere in (t_L, t_R)
- Right censored: (t_L, ∞)

- Event times are not known exactly, only within intervals
- Perhaps no event time is observed exactly
- Interval censored: event occurred somewhere in (t_L, t_R)
- Right censored: (t_L, ∞)
- Left censored: $(0, t_R]$

- Event times are not known exactly, only within intervals
- Perhaps no event time is observed exactly
- Interval censored: event occurred somewhere in (t_L, t_R)
- Right censored: (t_L, ∞)
- Left censored: (0, t_R)
- Exact observation: event occurred at time t

- Event times are not known exactly, only within intervals
- Perhaps no event time is observed exactly
- Interval censored: event occurred somewhere in (t_L, t_R)
- Right censored: (t_L, ∞)
- Left censored: (0, t_R)
- Exact observation: event occurred at time t
- Call these intervals O_i for $i = 1, \ldots, n$

• Let the data speak for itself

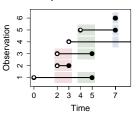
- Let the data speak for itself
- Don't make assumptions about the distribution

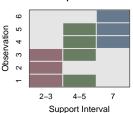
- Let the data speak for itself
- Don't make assumptions about the distribution
- Maximise the likelihood

- Let the data speak for itself
- Don't make assumptions about the distribution
- Maximise the likelihood
- Explore the data before choosing a parametric model

• Partition the positive real line

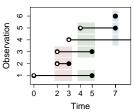
Example Censor Intervals

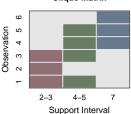




- Partition the positive real line
- All unique values of t_L and t_R

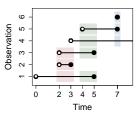
Example Censor Intervals

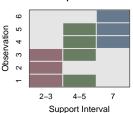




- Partition the positive real line
- All unique values of t_I and t_R
- Potential support intervals

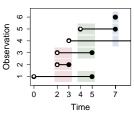
Example Censor Intervals

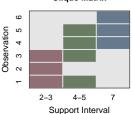




- Partition the positive real line
- All unique values of t_I and t_R
- Potential support intervals
- Only use maximal cliques

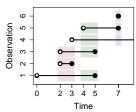
Example Censor Intervals

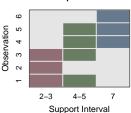




- Partition the positive real line
- All unique values of t_L and t_R
- Potential support intervals
- Only use maximal cliques
- Support set: I_j for $j = 1, \ldots, m$

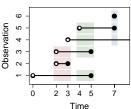
Example Censor Intervals

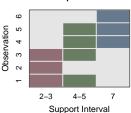




- Partition the positive real line
- All unique values of t_I and t_R
- Potential support intervals
- Only use maximal cliques
- Support set: I_i for $i = 1, \ldots, m$
- The clique matrix $A_{n\times m}$ gives δ_{ij} membership of each O_i in each I_i

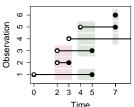
Example Censor Intervals

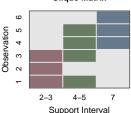




- Partition the positive real line
- All unique values of t_L and t_R
- Potential support intervals
- Only use maximal cliques
- Support set: I_j for j = 1, ..., m
- The clique matrix $A_{n \times m}$ gives δ_{ij} membership of each O_i in each I_i
- NPMLE assigns probability mass to each support interval

Example Censor Intervals





• Likelihood of an interval $(t_1, t_2]$ is $S(t_1) - S(t_2)$

- Likelihood of an interval $(t_1, t_2]$ is $S(t_1) S(t_2)$
- Assign probability p_i to support interval I_i

- Likelihood of an interval $(t_1, t_2]$ is $S(t_1) S(t_2)$
- Assign probability p_i to support interval I_i
- Probability of observation O_i using A and p

- Likelihood of an interval $(t_1, t_2]$ is $S(t_1) S(t_2)$
- Assign probability p_i to support interval I_i
- Probability of observation O_i using A and p
- Take logs and add them up

- Likelihood of an interval $(t_1, t_2]$ is $S(t_1) S(t_2)$
- Assign probability p_i to support interval I_i
- Probability of observation O_i using A and p
- Take logs and add them up
- Goal: find $\hat{\mathbf{p}} \in \mathbb{R}^m$ to maximise $\ell(\hat{\mathbf{p}})$

Likelihood Function for the NPMLE

- Likelihood of an interval $(t_1, t_2]$ is $S(t_1) S(t_2)$
- Assign probability p_j to support interval I_j
- Probability of observation O_i using A and \mathbf{p}
- Take logs and add them up
- Goal: find $\hat{\mathbf{p}} \in \mathbb{R}^m$ to maximise $\ell(\hat{\mathbf{p}})$
- Subject to: $\hat{\mathbf{p}} \geq \mathbf{0}$ and $\hat{\mathbf{p}}^T \mathbf{1} = 1$

• Randomised Clinical Trial, 368 participants

- Randomised Clinical Trial, 368 participants
- Clinical Trials Research Unit in Auckland

- Randomised Clinical Trial, 368 participants
- Clinical Trials Research Unit in Auckland
- Effect of Manuka Honey dressings for treatment of leg ulcers

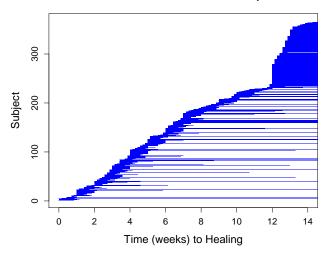
- Randomised Clinical Trial, 368 participants
- Clinical Trials Research Unit in Auckland
- Effect of Manuka Honey dressings for treatment of leg ulcers
- Participants assessed weekly and also at a 12-week follow-up

- Randomised Clinical Trial, 368 participants
- Clinical Trials Research Unit in Auckland
- Effect of Manuka Honey dressings for treatment of leg ulcers
- Participants assessed weekly and also at a 12-week follow-up
- Nurse changes dressing and assesses healing status

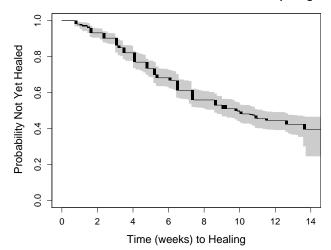
- Randomised Clinical Trial, 368 participants
- Clinical Trials Research Unit in Auckland
- Effect of Manuka Honey dressings for treatment of leg ulcers
- Participants assessed weekly and also at a 12-week follow-up
- Nurse changes dressing and assesses healing status
- Event times cannot be observed exactly

- Randomised Clinical Trial, 368 participants
- Clinical Trials Research Unit in Auckland
- Effect of Manuka Honey dressings for treatment of leg ulcers
- Participants assessed weekly and also at a 12-week follow-up
- Nurse changes dressing and assesses healing status
- Event times cannot be observed exactly
- Thanks to Andrew Jull and Varsha Parag of CTRU for providing the data

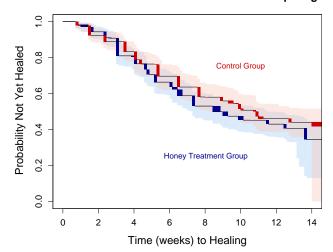
Censor Intervals for each Participant



NPMLE Survival Function with 95% Bootstrap ranges



NPMLE Survival Functions with 95% Bootstrap ranges



• The Icens package in R provides five algorithms:

• The Icens package in R provides five algorithms:

HCNM Algorithm •000000

• EM, ISDM, EMICM, VEM and PGM

- The Icens package in R provides five algorithms:
 - EM, ISDM, EMICM, VEM and PGM
- Subspace-based Newton method (Dümbgen et al. 2006)

HCNM Algorithm

•000000

- The Icens package in R provides five algorithms:
 - EM. ISDM. EMICM. VEM and PGM
- Subspace-based Newton method (Dümbgen et al. 2006)

HCNM Algorithm •000000

Wang (2008) introduced:

- The Icens package in R provides five algorithms:
 - EM. ISDM. EMICM. VEM and PGM
- Subspace-based Newton method (Dümbgen et al. 2006)

- Wang (2008) introduced:
 - Constrained Newton Method

- The Icens package in R provides five algorithms:
 - EM, ISDM, EMICM, VEM and PGM
- Subspace-based Newton method (Dümbgen et al. 2006)

- Wang (2008) introduced:
 - Constrained Newton Method
 - Dimension-reduced approach to improve any algorithm

Times to compute the NPMLE survival function for 100 Bootstrap samples of the HALT data using:

- EMICM, PGM and VEM from the Icens package
- Methods SBN(DR) and EMICM(DR) from Wang (2008)
- The new HCNM algorithm (and CNM)

	Time (s)
EMICM	113.03
PGM	791.00
VEM	610.42
SBN(DR)	14.34
EMICM(DR)	26.93
HCNM	9.41

HCNM Algorithm

0000000

Some are very slow and may fail to converge

Problems with Existing Algorithms

- Some are very slow and may fail to converge
- No algorithm outperforms the others in all situations

Problems with Existing Algorithms

- Some are very slow and may fail to converge
- No algorithm outperforms the others in all situations

HCNM Algorithm

Inefficent use of Hessian matrix or gradient

Problems with Existing Algorithms

- Some are very slow and may fail to converge
- No algorithm outperforms the others in all situations
- Inefficent use of Hessian matrix or gradient
- Best choice depends on size of dataset and proportion of exact observations

• Calculates gradient S of $\ell(\mathbf{p})$ at current estimate \mathbf{p}

HCNM Algorithm

000000

• Calculates gradient S of $\ell(\mathbf{p})$ at current estimate \mathbf{p}

HCNM Algorithm 000000

Makes use of mixture structure of solution

• Calculates gradient S of $\ell(\mathbf{p})$ at current estimate \mathbf{p}

- Makes use of mixture structure of solution
- Uses NNLS to find new estimate of p

• Calculates gradient S of $\ell(\mathbf{p})$ at current estimate \mathbf{p}

- Makes use of mixture structure of solution
- Uses NNLS to find new estimate of p
- Computation time of NNLS is of order $O(nm^2)$

• Calculates gradient S of $\ell(\mathbf{p})$ at current estimate \mathbf{p}

- Makes use of mixture structure of solution
- Uses NNLS to find new estimate of p
- Computation time of NNLS is of order $O(nm^2)$
- Very fast for fully censored datasets

• Calculates gradient S of $\ell(\mathbf{p})$ at current estimate \mathbf{p}

- Makes use of mixture structure of solution
- Uses NNLS to find new estimate of p
- Computation time of NNLS is of order $O(nm^2)$
- Very fast for fully censored datasets
- Can be slow in cases with many exact observations

HCNM Algorithm

000000

Hierarchical CNM

• Uses a divide and conquer approach

HCNM Algorithm 000000

Hierarchical CNM

- Uses a divide and conquer approach
- Breaks the support set up into blocks

- Uses a divide and conquer approach
- Breaks the support set up into blocks
- Adapts to the data to make efficient use of Hessian

- Uses a divide and conquer approach
- Breaks the support set up into blocks
- Adapts to the data to make efficient use of Hessian

HCNM Algorithm 0000000

Examines data to choose number/size of blocks

- Uses a divide and conquer approach
- Breaks the support set up into blocks
- Adapts to the data to make efficient use of Hessian

- Examines data to choose number/size of blocks
- Solves each block using NNLS

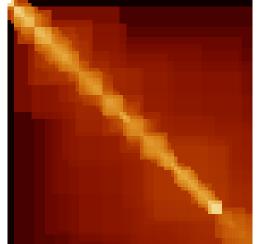
- Uses a divide and conquer approach
- Breaks the support set up into blocks
- Adapts to the data to make efficient use of Hessian
- Examines data to choose number/size of blocks
- Solves each block using NNLS
- Globally reallocates probability among blocks, calling itself recursively

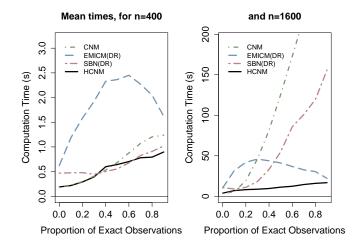
- Uses a divide and conquer approach
- Breaks the support set up into blocks
- Adapts to the data to make efficient use of Hessian
- Examines data to choose number/size of blocks
- Solves each block using NNLS
- Globally reallocates probability among blocks, calling itself recursively

HCNM Algorithm 0000000

Guaranteed convergence to the solution

Heatmap of HALT Hessian





• Where Interval Censoring is present in survival data, it can be allowed for in the analysis.

- The NPMLE Survival Function combined with Bootstrap methods can create an informative picture of survival progression in such cases.
- The HCNM algorithm provides a fast and robust solution to this problem.

Thanks to:

- My supervisor, Dr Yong Wang
- Andrew Jull and Varsha Parag of CTRU for providing the HALT data