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Abstract

This thesis is an exploratory and seminal work aimed to select and test avail-
able calibration algorithms for efficiency, usability and most importantly, accuracy
of multiple camera and lens configurations in the context of DAS (Driving Assis-
tance Systems). The camera and lens configurations considered were basically fixed
stereo setups with normal and fish-eye lenses combined with low and high camera
sensor resolutions. The stereo camera setup used for calibration and experiments
were similar to those used during DAS experiments.

The selected calibration algorithms were four: OpenCV calibration, Bouguet,
Mei and Scaramuzza algorithms. The OpenCV calibration was selected and tested
for normal lens while Bouguet, Mei and Sacaramuzza algorithms were selected for
fish-eye lens.

The methodologies selected and used for testing and comparing calibrations
were backprojection error and row misalignment error as well as direct compari-
son of calibration parameters whenever applicable.

The calibration experiment results showed that OpenCV calibration is a suit-
able and accurate calibration algorithm for normal lens in the context of DAS. Sim-
ilarly,Bouguet’s fish-eye calibration toolbox seems to be the most appropriate in
terms of accuracy and robustness in the context of DAS according these calibrations
experiments. Mei’s algorithm was second and Scaramuzza was third mostly due to
inaccuracy and difficulty to use.

Finally, this research contributed to the utilization of multiple camera calibration
in DAS systems as well as to the evaluation and recommendations for best camera
configurations for different purposes and environment conditions.

Keywords: Driver assistance, stereo analysis, multiple cameras, calibration, eval-
uation.
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Chapter 1

Introduction

This introductory chapter discusses this exploratory and seminal work in the research area
of the calibration of optical systems in the context of vision-driver assistance. Firstly, it
provides an overview of Vision-Based Driver Assistance and its importance in modern world
followed by an introduction to the .enpeda.. project researching in the area of Vision-Based
Driver Assistance. Finally, it presents multiple camera systems utilized in the .enpeda..
project and in driving assistance systems in general.

1.1 Vision-Based Driver Assistance

It has been reported in 2003 that the impact of traffic accidents and related conse-
quent congestion is very significant with over 100,000 deaths and almost 500,000
injuries as a direct result of over 600,000 traffic related accidents in the People’s Re-
public of China alone or direct costs of around 3.4 billion U$S in the United States
[32]. There is a projection that deaths and injuries related to road traffic accidents
will increase by about 65% in the next 20 years if the current trend continues [22].
Traffic accidents are in general the result of the interaction or combination of
these factors: (i) human behavior, (ii) vehicle’s capabilities, and (iii) road infrastruc-
ture [19]. Firstly, changing human behavior intends to deal with improving driver’s
behavior such as slowing down or driving safely by keeping enough distance and
so on. Secondly, road infrastructure intends to design safer and better roads, road
signals and so on. Finally, vehicle’s capabilities intend to add or improve the safety
and driving capabilities of moving vehicles. Improving vehicle capabilities are the
best and easiest candidate for changes and extensive research has been done result-
ing in many safety features becoming standard car features over the years such as:
seat belts, Anti-lock Braking Systems or Electronic Stability Control among others.
The research in the area of Driving Assistance Systems (DAS) is very interesting
and active in the context of improving vehicle capabilities such as [24], [14] and
[28] among many others. DAS can be visualized as a driver assistance system that
works intuitively and unobtrusively but also overridable by the human driver [8].
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DAS functions could be multiple and varied such as: lane keeping assistant, vi-
sion enhancement, adaptive cruise control, forward and intersection collision avoid-
ance among others. Current DAS utilize active systems such as LIDAR (Light Detec-
tion and Ranging), radar or passive systems such as optical stereo systems. Active
systems are accurate but also have limitations such as being sensitive to poor visibil-
ity or problems with hilly roads in the case of LIDAR or being blind to traffic signals
or road markings in case of radar.

Thus, computer vision based on optical systems is a good option in term of costs
(cost of related equipment such as cameras) and capabilities as for example dis-
tinguish road markings and characteristics. Stereo optical systems can determine
object distances by triangulation but it is still not robust or discriminative enough
to detect different road objects. Optical systems are affected negatively by adverse
weather and road conditions but research results have shown that stereo optical sys-
tems produces good results and has a lot of potential as the DAS choice of sensors in
the future despite its current limitations. There is intense ongoing research in DAS
by research groups all over the world such as the .enpeda.. project in New Zealand
which is introduced next.

1.2 The .enpeda.. Project

The .enpeda.. project (environment perception and driver) was started in 2007 by
Reinhard Klette and focuses on the research of DAS and related algorithms. The
.enpeda.. project group is based at the Tamaki Campus of The University of Auckland
and focuses specifically on the area of computer vision which aims to understand or
model a 3D environment from multiple image sequences. These image sequences
are either recorded or captured live by ‘normal’ cameras with normal or wide angle
optics.

The project also involves multimedia imaging by addressing “...visualization of
3D environments, using recorded stereo sequences or computer graphics for syn-
thesizing 3D scenes or geometry, and human-machine interaction to some extent”
[21]. In general, the practical application involves having cameras installed in any
vehicle such as a passenger car, wheelchair, forklift among others where the driv-
ing is supported or assisted by a computer vision system that analyzes the video
sequences from the cameras [21].

The .enpeda..’s test vehicle or ego-vehicle (vehicle with cameras to capture stereo
sequences) named HAKA1 (acronym for High Awareness Kinematic Vehicle num-
ber 1), see Fig. 1.1, was facilitated by the partnership with Daimler AG. HAKA1
provides a fully road worthy car as a mobile platform for simulating a passenger
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car in all driving conditions where such video analysis systems and algorithms can
be tested and research conducted. The image data collected with HAKA 1 have been
used in several research such as [16] and [15] among others.

HAKALI can be fitted with an onboard computer for some online graphic pro-
cessing such as lane detection for example, but more importantly, HAKA1 can be
fitted with multiple cameras internally and externally as well as a GPS sensor and
motion sensors such as IMU (inertial measurement unit) in addition to car’s factory-
installed yaw rate and speed sensors. The setup of stereo cameras is particularly
interesting and important for DAS applications and it will be explained next.

F'r[_r}t'.‘t"-!

_enpeda

Figure 1.1: HAKA1 mounted with two fish-eye cameras circled and LIDAR rectan-
gled.
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1.3 Multiple Camera Systems

Computer vision utilizes cameras in the context of DAS to recognize and understand
the surroundings. Nevertheless, the choice and suitability of a particular configura-
tion depends obviously on the application that is intended such as parking, collision
avoidance, lane departure, and so on. There are many options and configurations
possible for setting up the cameras such as the number of cameras, the type of lenses
or optics, fixed or moving rigs, overlapping field of view among others. It is very
important and useful to be able to extract the depth or 3D data and thus those setups
that allows depth will be considered here.

The depth or 3D data can be extracted using available depth cues . In general,
there are several depth cues such as:

1. Binocular disparity (difference in images projected into one and another cam-
era for example).

2. Perspective (convergence of parallel lines).
3. Size (object images get smaller when farther away).
4. Relative motion (object images move slower when farther away).

They are all useful and intuitive for humans but no so easy to implement for
computer vision systems except for the binocular disparity which is only possible
with binocular or stereo vision. Binocular disparity is the difference in image local-
ization between both projections due to the different position of cameras or eyes. In
simple terms, the left eye sees the same object slightly shifted (more pronouncedly
the closer the object) to the left in comparison to the right eye, and vice versa. The
distance or depth can be determined by simple triangulation.

A monocular vision or single camera is the simplest setup but also useful for lane
detection for example. However, for many applications a multicamera setup is more
appropriate since 3D information is needed. A stereo camera is the minimum mul-
ticamera configuration setup that allows to extract depth or 3D data by means of
binocular disparity and triangulation. In general, there are also several ways of set-
ting up a stereo system:

1. Single camera with a single lens shifted by translation or rotation (taking one
image at one position and the second image shifted).

2. Single camera multiple lens (one camera uses a prism or similar optics to take
two images from two separated lenses simultaneously such as the Mars Polar
Lander stereo imager).
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3. Multiple camera (different camera taking images with their own lenses).

For DAS purposes, the multiple camera is the preferred setup in terms of cost and
application requirements. A single camera shifting is not useful since the images can
not be synchronized when the camera is moving, and considering the relative low
cost of cameras nowadays, it does not justify the complexity of the optics necessary
in the single camera with multiple lens setup. Furthermore, the multiple camera
setup can be varied such as fixed rigs or active rigs such as PTU (pan and tilt unit).
PTU has advantages over a fixed rig but also extra cost and more complex to build
and calibrate. On the other hand, fixed rig of stereo cameras have proven robust
enough and able to provide useful data for DAS applications in general, and they
will be the subject of this thesis.

The fixed stereo rig setup can be further varied depending on the choice of optics.
Normal lenses are available and used, but fisheye or wide angle lenses have shown
to be a good alternative for many applications such as intersection assistance or
panoramic view.

The benefits of fisheye lenses are relatively low costs while providing a large
field of view (FOV typically around 180°) with a single camera from one point of
view at a single moment. Therefore, a stereo fisheye lens camera system can be used
efficiently and quite accurately to cover a large field of view for 3D information [1].
Furthermore, experiments with stereo fisheye lenses in DAS vehicles have shown
that it has the best calibration stability in comparison to other systems as well as
better use of the image area [9].

Regardless of the optics used (normal, fisheye or catadioptrics), the stereo images
must be synchronized (images taken a the same time) since the cameras could be
moving rather fast (cameras are mounted on moving cars in the DAS context) as
well as calibrated so the images can be rectified and processed easily to facilitate the
search for stereo correspondence typically.

Rectification means in simple terms correcting the distortions caused by the op-
tics (radial distortion mostly) and setup (misalignment, rotation among others). For-
mally, epipolar rectification is a geometric transformation of a pair of images resulting
in every point in the scene being projected in the same row in both images.

1.4 Methodology

The testing and comparison of the selected algorithms can be done using two simple
and straightforward methods: backprojection error and row misalignment error of
rectified stereo images. These two methods provides a measure of the accuracy and
robustness of the selected four calibration algorithms for normal and fish-eye lens.



8 1. Introduction

Firstly, two different camera setups using the inside mounting for normal lens
and the outside mounting for fish-eye lens are to be used for calibrating stereo cam-
eras using the applicable calibration algorithms. Once the calibration is completed,
the calibration parameters are to be compared and analyzed using the two method-
ologies outlined above.

Specifically, the OpenCV experiments setup in the DAS context with two differ-
ent camera configurations and pixel resolutions using high quality optics (as normal
lens) for the pinhole camera model. Additionally, the calibrated focal length param-
eter can be used to compare against the lens manufacturer’s specification values
for further confirmation of accuracy.The fish-eye lens calibration methods are tested
next using high quality fish-eye optics and high pixel resolution cameras.

The backprojection error in pixel units can be compared directly for the same
camera and lens configurations as well as the row misalignment error for which the
stereo images are to be undistorted linearly and rectified using the calibration data.

Multiple sets of calibration images will be taken for the same camera and lens
configuration to compare and analyze the robustness of the algorithms. The cali-
bration results of the different sets of calibration images can be analyzed for conver-
gence and error from the calibration data.

Finally, the ease of use and suitability of the calibration algorithms, the processes
and steps needed to run the different calibration toolboxes while calibrating the
experiment calibration images are noted and discussed at the end.

1.5 Organization of this Thesis

Calibration is an important and necessary step for stereo image rectification and the
subject of this thesis. Some selected available calibration tools and methods will be
compared and analyzed for robustness, accuracy and applicability in the context of
DAS applications, and specifically the HAKA1 platform.

Chapter 2 presents a survey underlying the theory of calibration and rectification
along with a comparison of recent methods for multiple camera systems. Chapter 3
presents the actual workflow of the calibration methods used for HAKA1. Chapter 4
addresses the methods used to check the accuracy of the calibration. Chapter 5
presents the results of the calibration using different cameras and optics available in
HAKAI. Summary and conclusion follow in Conclusions 6.



Chapter 2

Basics for Multiple Camera Systems

This chapter explains the different issues to be dealt with when installing and using multiple
cameras on an ego-vehicle, such as HAKA1. Firstly, the issues that arises when installing
cameras in general, and camera synchronization issues mounted on fast moving platforms
(HAKA1) will be discussed. Finally, it provides an overview of popular calibration methods
from the literature for normal and fish eye cameras.

2.1 Camera Installation

The concept of 6D analysis or vision is of relevance to DAS. 6D vision refers to the
analysis of both stereo and motion to bring a consistent scene interpretation as well
as extraction of objects from surroundings. Thus, in the context DAS and consid-
ering the relevance of 6D, we will need to consider not only the setup of multiple
cameras but also the vehicle’s movement factor as well.

Cameras are essential components of DAS by capturing the images needed to
understand or at least be aware of the vehicle’s surroundings while in motion. Thus
the proper and stable camera installation is an important factor in 6D analysis as
well. Namely, an improper and unstable installation of cameras might negate all the
benefits of having high quality optics and camera sensors or even worse, render the
images useless because of ‘ghosts images’ (unwanted and unintended reflections),
obstructed views (e.g. rain) for example (see Figure 2.1).

There are available active camera systems which are cameras mounted on a mo-
torized device that allows the camera to pan and tilt. Active camera systems have
the benefit of allowing to cover a greater area of view than a camera with fixed
orientation without sacrificing image resolution. Nevertheless, active systems are
far more complicated and outside the scope of the .enpeda.. project or this thesis so
only conventional fixed orientation camera configuration would be considered here.
Due to the research nature of the .enpeda.. project there is an additional challenge in
the setup of the cameras by requiring that the camera installation in HAKA1 to be
flexible (non-fixed or permanent) but also stable.
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Figure 2.1: Left: rain. Right: dashboard reflected on the windshield.

The limited research regarding camera installation (see [9] for an example) points
out that there are limited locations where stereo cameras can be mounted. Fur-
thermore, the ideal locations of the cameras varies depending on the applications
(intersection assistance, pedestrian detection, panoramic view and so forth). Nev-
ertheless, it is obvious that few locations and orientations are possible in practice
for installing the stereo camera since the cameras will be used in all weather and
road conditions such as sunny, rainy, snowing, paved and unpaved roads and so
forth. Additionally, it also has to be used at cruising speeds as well as in intersec-
tions which requires a good unobstructed field of view. As an example of limited
options for installation is the front view (looking at the road ahead) applications
which leaves the area behind the windscreen and inside the wipe clean area as the
only viable option.

In short, the camera installation must be robust and stable over time but also
practical enough so regular maintenance or mounting and dismounting of cameras
or lenses can be done easily as the routine part of the research work. Thus the major
factors that need to be considered for a camera setup in HAKAL are that:

1. It allows a practical installation and maintenance of multiple cameras.
2. Itis robust and stable over time and over all road conditions.
3. It provides a solution for different weather conditions or different FOV lenses.

A popular and easy installation solution for stereo cameras is a metal bar (which
holds the stereo cameras) mounted to the windshield with suction cups (see Fig-
ure 2.2).
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Figure 2.2: Stereo cameras attached with suction pads to windshield.

The benefits of using suction pads are that: (i) It can be installed inside the cabin
behind a wipe clean area of the windscreen and (ii)) it is practical and easy to mount
and dismount the whole camera setup. However, using the suction pads mounting
has the very serious drawback of instability and limitations in the number of cam-
eras. The setup is unstable due to the use of suction pads made of rubber which ab-
sorbs vibrations but also sudden roll or tilt movements of the car which are needed
to be recorded. Also using suction pads limits the number of cameras that can be
mounted simultaneously.

Finally, only interior (inside cabin) camera installation have been considered so
far but also outside cabin or external installation are interesting and needed for cer-
tain applications such as panoramic view. There is not much research regarding
this issue but in general similar requirements and constraints applies. Nevertheless,
there is one difference with respect to inside camera installation which is the lack
of a wipe clean windscreen to shield and provide a rain-free view. Usually cam-
eras are mounted directly on roof racks which is not the best location for research
purposes since it does not provide unobstructed views or allow for a practical and
stable mounting of multiple cameras.

2.2 Camera Synchronization

Camera synchronization is an important factor for 6D vision and DAS in general since
multiple cameras are used (at least two). Cameras record still images at a given
frame rate to capture motion or moving objects. Hence multiple cameras in motion
capturing moving images need to be synchronized in order to capture the image
them at the same point in time. Synchronization is the equivalent of triggering the
opening and closing of the shutter in different cameras simultaneously to ensure the
cameras are taking the photo at the same time(or very closely to each other).
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As mentioned earlier, synchronization is a very important factor in 6D vision and
specifically because of the motion and speeds involved in typical DAS scenarios.
And as a result, the displacement of objects is considerable from one shot to the next,
so even delays of fractions of seconds in the synchronization can affect greatly. For
example, a stereo sequence shot in the motorway where the ego-vehicle is traveling
around 80 km/h would mean that even a small time lag between the left camera
with respect to the right results in a difference of several meters in traveled distance.

Figure 2.3: Stereo images taken by non-synchronized cameras.

In terms of image rows, the images of objects that should be in the same row in
both cameras could be displaced several pixel rows from one camera to the other
thus making difficult if not impossible the search of corresponding points along
epipolar lines. Note in Figure 2.3 an example of non-synchronized stereo cameras
where the white car in the left image is several rows up with respect to the right
image.

There are two solutions available to synchronize multiple cameras: (i) Software
synchronization (typically works for cameras sharing same Firewire bus but some
manufacturers provide for cameras across different firewire buses). (ii) Hardware
synchronization or by external trigger (more precise but also more cumbersome). It
requires a square pulse generator for example that "triggers’ or signals to the camera
to capture an image. It is also more accurate since it users its own clock unlike the
software synchronization which depends on the PC operating system.

2.3 Calibration Methods for Pinhole-Type Cameras

As we all know, cameras takes images or 2D representations of real 3D objects pro-
jected in the image plane (which is typically the CCD or CMOS image sensors).
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Hence a camera model is created to represent and to understand the geometrical
and physical properties of a given camera. The most simple camera model is the
pinhole camera model which uses a perspective projection and the details can be found
in the literature such as Hartley and Zisserman’s Multiple View Geometry book [12]
or Klette, Schliins and Koschan’s Computer Vision book [18].

The pinhole model has however its limitations and assumptions which are not
always true but the pinhole model is a good approximation of real normal cameras
and is applicable in most cases. As mentioned earlier, each camera model has its
own characteristic geometrical and physical properties or parameters such as focal
length, principal point and so forth. The process of finding out those parameters in
a given camera model is called calibration. Calibration has been studied and used in
fields such as photogrammetry for a long time. Photogrammetry is basically extract-
ing or calculating the 2D or 3D information from photographs (used extensively in
aerial photo reconnaissance for example).

There are in general three type or methods of calibration that can be identified:

1. Test-range or photogrammetric calibration by correspondence of 3D objects and
their 2D image feature points as in a planar checkerboard (see Figure 2.4 for
examples of planar and 3D calibration objects ).

2. Non-metric calibration by using geometric invariants such as parallel lines, plumb
lines, vanishing points among others.

3. Self calibration by matching corresponding features from a sequence of images
and using only the constraints of the camera model parameters.

Needless to say that no calibration method or technique is perfect and always ap-
plicable as all having its advantages and limitations. The issues and limitations
generally found in calibration methods are as follows:

1. Requirement for a precise calibration objects with control points whose coor-
dinates are precisely known such as 2D or 3D checkerboards for example.

2. Not extracting all parameters (partial calibration).
3. Noise and error sensitive.
4. Not fully automatic requiring user intervention or complex procedures.

Calibration considered so far has been limited to pinhole cameras but obviously
it is also possible to calibrate fish eye cameras as well. The fundamental differ-
ence between the pinhole camera and fish eye camera is in the fact that the latter
has higher radial distortion. Fish eye lenses in general have significantly more lens
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Figure 2.4: Left: planar checkerboard. Center: planar circular. Right: 3D circular.

distortion compared to normal lenses used in pinhole cameras. Distortion refers to
any deviation in trajectory of the ray from the ideal model which are results of the
lens design by the manufacturer or imperfections during manufacturing or assem-
bly. The most evident distortion is the radial distortion such as barrel or pincushion
which is a radially symmetric distortion around the center of the image. Also there
is tangential distortion or asymmetric distortion which is less noticeable in high qual-
ity lenses. In general, radial distortion is the most prevalent type of distortion and
noticeable even in pinhole cameras in general.

The main difference between the pinhole cameras and fish eye cameras is the
tremendous radial distortion characteristic of fish eye lenses and as a result, they
also have typically a large FOV. The difference in the magnitude of the distortion is
the reason that fish eye lens cameras are so different from pinhole cameras and can-
not be approximated with the perspective projection as done fairly well with pinhole
cameras. Thus fish eye lenses need a different projection model and consequently a
different calibration method or technique than pinhole cameras.

We will consider two examples of photogrammetry calibration using a calibra-
tion grid such as the DLT calibration method and Zhang’s method [31]. Both meth-
ods are applicable to pinhole cameras and their main differences are the simplicity
of DLT’s method (in part due to the fact of being one of the earliest) dealing mostly
with linear equations and disregarding the lens distortions (as it is presented here).
On the other hand, Zhang’s method is more recent and yields more robust and ac-
curate results (including up to the fourth order radial distortion) while simpler and
easier in gathering or collecting the calibration data. The DLT method will be de-
scribed next to give an overview of a calibration method for pinhole cameras.
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2.4 DLT’s Basic Calibration Method

A basic calibration but well known method by direct linear transform or DLT which
was developed in 1971 by Aziz and Karara [2] and gives a good overview of the
calibration process for the pinhole model. The calibration process starts by taking
several pictures of a calibration object such as the checkerboard rig at different poses
or attitudes covering the FOV, as much as possible. The next step is to determine the
image coordinates of all calibration points either manually or by image analysis.

Let us define the 3D point X = (X,Y, Z)” in world coordinates projected into
the image point # = (z,y, —f)7 (using the convention of image plane behind the
focal point). We obtain the following transformations:

T —Cy L T9 T3 X +t,
y—cy | =\ ra 75 716 Y +t, (2.1)
-f T7 TR T9 Z+t,

where the principal point is = (¢;, ¢, 0) and 2 = £Xe and y = L=
The image points in camera coordinates X and Y, are obtamed from the homog-
raphy of X to X, translated and rotated afterwards as follows:

Xe=R(X+T) with T =(tyt,,t.)" = (—Xo, ~ Yo, —Zo)T (2.2)

R is the matrix representing R, R,,, R. which are the rotations to the X,Y, Z axis
respectively.

We obtain two linear equations expressed in terms of (x — ¢;) and (y — ¢, ) from
Equation (2.1) as follows:

I —c :7f Tl(X X0)+7"2(Y7Y0)+’]"3(Z7Z0)
‘ r7(X = Xo) +1s(Y — Yo) +19(Z — Zo)
Yy = — 7“4(X X0)+T5(Y—Y0)+T6(Z—ZO) 23)
Y r7(X — Xo) +18(Y — Yo) +19(Z — Zy) '
Equation (2.3) can be rewritten as:
Ly
XY Z10 000 —2X -2y —a2Z L2_:c(24)
0 0 00 XY Z 1 —yX —yy —yz E_y '
Ly
To solve the eleven unknown parameters L1, Lo, ..., Li1, more than six calibration

points (X,Y,Z) and their respective image points are needed to solve the Equa-
tion (2.4) Since six calibration points give us an overdetermined system of twelve
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linear equations. In general, about 100 points are needed in practice for stability of
the solution.

The transformation parameters L; ... L;; which contain the intrinsic and extrin-
sic parameters can be calculated using the pseudo-inverse matrix of the overdeter-
mined system of equations as follows:

The principal point (¢, ¢,) by:

_ LiLo+ LoLyio+ L3l
Ly’ + Li® + Lit?

. LsLg + Le¢L1o + L7L11
Y Lo® + L1o® + L1y

The effective focal length f = (f, + f,)/2 by:

L3+ L3+ 13
(Lo® + L1o” + L11%)?
L2+ L2+ L2
(L92 + Lio® + [/112)2

fm2 = _Ci +

2 2
f Yy = _Cy +
Regarding the extrinsic parameters, the rotation angles in R,, R, R are calcu-
lated in two steps:

1. The unknown coefficients in matrix R are calculated using the equations:
Ly — L3, Ls — L7, Lo — Ly1.

2. The individual yaw, tilt and roll angles are calculated from the coefficients
ri,i =1,...,9 of the matrix R calculated previously.

Finally, the projection center (X, Yy, Zy) is calculated from Equation (2.3) which
gives a system of two equations with three variables.

Xo

(“l az “3) Yo :<g> 2.5)
as as Qag ZO
The solution for a;, for i = 1,...,6, and A, B is as follows is by taking two

calibration points and their respective projected image points:

a1 = (ce —x)r7 — fr

as = (cp — x)rg — fro

az = (cp — x)rg — fra
( )
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as = (¢y —y)rs — frs
ag = (Cy*y)rs)*f?“fs
A=Xa1+Yas+ Zaz and B = Xay4+Yas+ Zag (2.6)

Finally, the parameters in Equation (2.1) can be found by solving all previous
equations. The DLT method described here does not consider any distortion but a
more refined camera model with distortion can be included as well. For the sake
of simplicity, the distortion has not been included here though. The next section
describes a better and more sophisticated calibration method that includes radial
distortion as well.

2.5 Zhang’s Planar Calibration

Zhang's method [31] uses at least two images of a planar checkerboard for exam-
ple in different orientations by moving either the camera or the checkerboard with
the advantage the movement could be arbitrary. Again Zhang estimates the initial
parameters using a closed-form solution. Next, a non-linear optimization using the
maximum likelihood estimation is performed.

The calibration steps can be summarized as follows:

1. Take several images of the checkerboard (in different orientations) and extract
the control or feature points from the images.

2. Estimate the intrinsic and extrinsic camera parameters using the closed-form
solution.

3. Estimate radial distortion coefficient by solving least-squares.

4. Refine parameters by using optimization tools.

Given the feature or control points as M= [ X, Y Z 1 ]T and their image

. ~ T . . .
pointsasm = | z, y, 1] ,the image formation can be expressed in homoge-
neous normalized coordinates as follows:

s a Y Cy
m=A[R T|M with A=| 0 B8 ¢ 2.7)
00 1

where A is the camera intrinsic matrix with v being the skew of image sensors,
(¢s, cy) the principal point coordinates, o and (3 are the scaling factors in X and Y’
axes respectively. R and T are respectively the rotation and translation parameters
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of the world coordinate system with respect to the camera coordinate system. In
particular, the world coordinate system can be set to Z = 0 for all points by setting
the model plane on Z = 0.

Let us denote r; as the i*" column element of the rotation parameter R and T
the translation vector and s an arbitrary scale factor, then Equation (2.7) can be ex-
pressed as follows:

X
x v X
sm=A |y :A[rl ro r3 T] 0 :A[rl ro T} Y (2.8)
1 1
1

Thus, a feature point M and its image point m is related by a homography H
which is defined up to a scale factor A (for simplicity assuming here there is no
distortion) as in the following equation:

sm=HM with H=)A[r, r, T ] (2.9)

The homography H = [ hy h, h; | can be computed by a non-linear opti-
mization method such as the Levenberg-Marquardt algorithm which minimizes the
Euclidean backprojection error (feature or control points projected into the image
plane). Taking advantage that r; and ry are orthonormal, we obtain the following
Equation (2.11) as two basic constraints on the intrinsic parameters using the nota-
tion A-T = (A-1)T = (AT)~ L

hi"A"TA  hy =0 (2.10)
hi"A"TA 'h; =h,’A"TA 'h, (2.11)

In other words, the homography H is a 3 x 3 matrix with eight-degrees of free-
dom as a projective transform and since there are 6 extrinsic parameters (three ro-
tation and three translation), we can obtain only two constraints for the intrinsic
parameters.

To solve the calibration equations, first the parameters can be estimated by a
closed-form solution which is obtained by the symmetric matrix B = A~TA~! or
also expressed as a six-dimensional vector b = (B11, B2, B2, B13, Bas, Bs3)T.

We obtain the following equation using h; = (h;1, hi2, hi3)? as the it column
vector of H:

h!Bh; = v/b (2.12)

where the six-dimensional v;; is:

vij = [hithj1, hithja +hishj1, hishjo, hishji +hihys, hishjo +hishjs, hishjs)T (2.13)
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The two constraints given in Equation (2.11) map into the following two homo-
geneous equations:

{ vis ] b=0 (2.14)
(vi1 — vi2)T

Considering now that there are n images taken, we obtain then n Equation (2.14)
which can be written as the following equation where V is a 2n x 6 matrix and the
equation gives a solution for b up to a scale factor when n > 3):

Vb =0 (2.15)
The solution of Equation (2.15) is known as the eigenvector of VI'V associated
with the smallest eigenvalue). With the b estimation it is possible now to calculate
the intrinsic parameters from the relation B = AA~T A as follows:
A\ = Bsz — [B?; + ¢,(B12B13 — B11Ba3)] /B
O = 4/ )\/Bn
B= \/)\Bll/(BnBzz — B,)
v = ~B12a’/A
cx =7 cy/a— Biza? /A
Cy = (BlgBlg — BllB23)/(BllB22 — B122) (216)

and the extrinsic parameters as follows:

r, =\ "'h;

ro = AMA " 'hy

rs =r; XIo

T = M 'hg. (2.17)

The intrinsic and extrinsic parameters obtained previously from Equations (2.16)
and (2.17) are the initialization values for a bundle adjustment algorithm (Levenberg-
Marquardt for example) of the following function:

DO lmi; — m(A, Ry, Ty, M) (2.18)

i=1 j=1

where the matrix R is related to the vector r by the Rodriguez formula and

m(A, R;, T, M;) is the projection of point A/; in image i as in Equation (2.9).
Finally, the lens distortion has been neglected so far but at this point the radial

distortion is taken into account (since it is the predominant distortion while tangent
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distortion remains neglected). Let (x,y) the coordinates of the ideal (if there were
no distortion present) image coordinates and (#,y) the corresponding real image
coordinates then the distortion can be expressed as a polynomial:

z + xlk1 (2 + %) + ka(2® +4°)7
y+ylki(a® + 7)) + ko (2” + y°)?] (2.19)

x

y
with the radial distortion coefficients initialized to zero (k; = ko = 0) for initializa-
tion and further refined by iterative minimization of the average Euclidean distance
of the projected and observed image points using an overdetermined system of lin-
ear equations. Alternatively, Zhang proposed to include the distortion parameters

into the error in Equation (2.18) to estimate simultaneously due to the slow conver-
gence of the iterative minimization when calculating the distortion coefficients.

2.6 Calibration Method for Fish Eye Cameras

The calibration methods covered so far are limited to the pinhole camera model
because it assumes perspective projection. The pinhole camera model for normal
lenses models the projection of a 3D scene into an image plane. This modeling is
applicable because normal lenses have smaller FOV but it is not appplicable with
fish-eye lenses because the resulting image plane is an infinite plane if the perspec-
tive projection is used as well.

From the pinhole camera projection equation we have:

x:f7X, y:f7y with r = ftan¢ (2.20)
where f = focal length, (z,y) = image point coordinates and (X,Y, Z) = scene point
coordinates or r = distance between image point and principal point and ¢ = ray
incidence angle (between incoming ray and principal axis). We can see that r goes
to co when ¢ gets closer to 5. Or it can be interpreted alternatively that because
of the tremendous distortion of fish-eye lenses, the approximation by perspective
projection no longer holds as in the case of the pinhole camera model.

Lens manufacturers design lenses according to the application with different op-
tical characteristics as FOV, projection model, distortion model and forth. The projection
model refers to the ideal projection while distortion model describes the actual de-
viation from the (ideal) projection model.

The most common projection models are as follows:

r= ftan¢ (2.21)
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r= fsin¢ (2.22)
r=fé (2.23)
r=2ftan(¢/2) (2.24)
r=2fsin(¢/2) (2.25)

where (2.21) is perspective, (2.22) is orthogonal, (2.23) is equidistance, (2.24) is stere-
ographic, and (2.25) is equisolid perspectives respectively. Fish-eye lenses usually
follow equidistance, stereographic or equisolid projection models but not exactly so
in general fish-eye lenses can be approximated as well by a polynomial equation:

r(¢) = k1o + kao® + k3o® + . .. (2.26)

where k1, k2, k3, . .. are parameters to be determined by calibration. The traditional
polynomials such as the Zhang’s method (pinhole camera model) fourth order poly-
nomial is insufficient due to the tremendous distortion in fish-eye lenses. Instead,
higher order polynomial is needed for fish-eye lenses, up to ninth order in the case
of Equation (2.26).

Using higher order polynomial for modeling the distortion in fish-eye lenses re-
sults in more unknown coefficients to be determined by calibration. Namely, mod-
eling the distortion with Equation (2.26) leads to five radial coefficients ki,..., ks
to be determined by calibration instead of just two k1, ky as in Zhang’s method.
Nevertheless, there is a better alternative to polynomial model which is the division
polynomial model since it requires fewer terms or unknown coefficients to be deter-
mined (one or two coefficients are good enough for most cases). The division model
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Figure 2.5: Left: projections for fish-eye. Right: fish-eye image.
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proposed by Fitzgibbon [7] has the form:

Xd

= 2.27
L+ kir? + kort 4 ...+ kypr(p) 227)

Xu

where r? = (22 + y2) is the pixel radius, xy = (24,ys) and xqa = (z4,va) are the
images points undistorted and distorted respectively and 2p is the polynomial order
in the general form.

In general there are two approaches for fish-eye lenses calibration which are:
(i)using the pinhole camera and correcting fish-eye lens distortion (with higher or-
der polynomials for example) afterwards and (ii) by modeling the fish-eye projec-
tion directly. The first method (i) is limited to relatively small FOV (less than 7 since
when ¢ approaches 7/2 the image point goes to co). Therefore, the second approach
(ii) of modeling directly the fish-eye lens projection is more general. Kannala and
Brandt [17] proposed a generic camera model for fish-eye lenses that utilizes the
polynomial model (using division model would yield to fewer parameters but the
calibration method remains basically the same).

This generic model calibration procedure consists of four steps:

1. Initialization of internal parameters.

2. Computation of homography (back-projection).
3. Initialization of external parameters.

4. Minimization of projection error.

The initialization of internal parameters &, k2, ks, k4, 1o, vo can be done by find-
ing the k1, ko parameters in the model r(¢) = k14 + ko¢® that fits best the lens focal
length and FOV data, k3, k4 by estimating from ks = &z /Tmaee aNd ks = Ymaz/Tmaz
when the image is a full frame for example, and finally the ¢, and ¢, center of dis-
tortion as approximately the image center.

The computation of homography is done by backprojecting the image points
m! = (u’,v")T into the points Z located on the unit sphere centered in the camera
coordinates as follows:

sz} = Hjz}, (2.28)

where Hj is the planar homography and z}, = (X*,Y*,1)" the calibration’s control
points coordinates for the view j. The homography Hj can be calculated by back-
projecting the control points as mentioned earlier and estimating initially H; from
the correspondence 7 <+ x}, and defining & = Hjz}/||H;x} | as the image of z,
by Hj. Finally, refining H; by minimization of Z;\Ll sin® a! (where o is the angle
between 7} and 7).
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The initialization of external parameters from the homographies H; = [r},r?, riT;]
up to a scale and:

I‘]l = /\th1
rs = \h?
=71 xr;
T; = AR5

where \; = (H;*?)/ [|h%|| and using the singular value decomposition (SVD) to cal-
culate the closest orthogonal matrices (Frobenius norm as metric) as the initial val-
ues of [r},r?,r?].

Finally, the camera parameters are refined by using Levenberg-Marquardt to
minimize of the projection error or sum of squared distances d (between the mea-

sured and calculated control points) as follows:

M N
>N d(mi,my)? (2.29)

i=1 j=1

2.7 Rectification

As mentioned earlier, the concept of image rectification is important in 6D vision
since it simplifies the finding of stereo correspondence in images. The rectification
is well known and researched topic, as for example [11]. When using stereo cam-
eras for example, the ideal case is to have them in standard stereo geometry to get
better results. Standard or coplanar stereo geometry refers to the ideal setup of two
cameras (pinhole cameras for example) that have:

1. Same focal length,

2. Collinear image rows,

3. Coplanar image plane,
4. Same image plane’s size,
5. Parallel optical axes.

Standard stereo geometry gives better results because the stereo correspondence
in rectified images is reduced to a one-dimensional search due the epipolar constraint.
Epipolar constraint refers to the fact that image rows or epipolar lines are collinear or
more specifically that the row y in the left image is collinear with row ¥’ in the right
image for example.
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Figure 2.6: Rectified stereo image with an epipolar line (drawn as white line).

In standard stereo geometry a scene or a 3D point X =(X,Y,2)is projected into
the image 2 where b is the baseline (a line that intersects the optical centers of both
cameras) as follows:

w=Lixy) and i =Lix—nv (2.30)
Z Z

More formally, the epipolar geometry relates to the geometric relationship between
two perspective views of the same 3D scene and created by the intersection of the
image planes and the planes that have the baseline as axis. Thus, epipolar line is the
intersection between an epipolar plane and the image plane with the epipolar lines
intersecting in the epipole. An epipolar plane is any of the planes that intersect the
baseline.

Before rectification can be done, the stereo cameras are assumed to be calibrated
by any of the calibration methods presented in Section 2.3 to determine the camera
internal parameters and relative positions.

Rectification in simple terms is finding two new virtual cameras H and H' from
H and H', where H = A[RT] and H and H’ are the given homographies of the real
stereo camera (see Figure 2.7). Virtual cameras are ideal cameras with parallel op-
tical axes, no distortion, and independent of the real cameras used so the resulting
rectified images are independent as well. Rectification can be visualized as the 3D
retroprojection or mapping of the real images into virtual stereo cameras. Alterna-
tively, rectification is a process that moves the real cameras over their optical centers
to make them coplanar resulting in epipoles at infinite and parallel epipolar lines.
Also, bringing the baseline parallel to the horizontal axis ensures that the epipolar
lines are horizontal as well.
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Figure 2.7: Rectification.

Let us examine next a common stereo rectification method used in Bouguet’s
calibration toolbox [5]. In this toolbox, the rectification aims to both minimize the
retroprojection changes and maximize the common view area. Let us define the
rotation and translation matrices between stereo images as (R, T). The changes
in the retroprojection is minimized by splitting the matrix R in half between the
left and right camera, which produces the rotation matrices r;, r, for the left and
right camera respectively. The rotation 7, 7. makes the cameras coplanar since their
principal rays became parallel but still not in standard stereo geometry.

Let us define Ryect = [€1, €2, eg]T the rotation matrix that will take the left cam-
era into the virtual camera position but also align the epipolar lines. The epipole
vector e; can be calculated by taking the principal point (¢, ¢,) as the origin of the
left image with the direction of the epipole along the translation vector T while e
is chosen to be orthogonal to the principal ray, and finally e3 is orthogonal to e; and
ey as follows:

T

€] = ——
Tl
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T
[*Tya TIa 0}

T2+ T2

€eg = €1 X ey

€y =

The epipolar row alignment is done by calculating Ry, Ry from R.ec¢ as follows:

Ri = Rrect ' 71
R: = Ryect - 7r

Finally, the rectified left and right camera matrices A ect—1, Arect—r Can be cal-
culated as follows:

fml Vi Cxl 1 0 0 O
H =ArceotHi=| 0 fu cyp 010 0 ]
0 0 1 00 10
fer W Car 1 0 0 T,
Hr = ArectfrI:Ir = 0 fyr Cyr 01 0 0
0 0 1 001 0

where H;, H, are the homography of left and right cameras respectively, and simi-
larly 7, v the skew factors, fi, f, the focal lengths, and ¢;, ¢, the principal points.



Chapter 3

Advanced Camera Configuration Calibration
Methods

This chapter informs about the standard routines to be carried out when setting up a multi-
camera system (e.g., in a test vehicle such as HAKA1) for stereo image analysis. The steps to
be performed include the installation of the cameras, their geometric calibration, the derived
rectification procedures, and some testing of image recording for the different options of
multi-camera set-ups.

3.1 Camera Installation

In chapter 2 we presented the three requirements for a successful multiple camera
installation setup:

1. It allows a practical installation of multiple cameras.
2. Itis robust and stable over time and all road conditions.
3. It provides a solution for different weather conditions or different FOV lenses.

As pointed out earlier in Section 2.1, a suction pad is not a good solution for
multiple cameras since it is unstable among other issues. Installing multiple cam-
eras (more than two cameras) would require an optical bench to provide with an
unobstructed view for the cameras but also without blocking the driver’s view as
well. Mounting more than two cameras on suction pad is an impractical solution
as we can see in Figure 2.2. Alternative camera mounting locations have been used
such as the car’s front grill to overcome the visibility obstruction issue [4] .

We learned from experience while working on the enpeda.. project that despite
the challenges, the multiple camera configuration is needed as such since it is neces-
sary to have multiple cameras installed simultaneously even though not all cameras
might be used or recording at the same time. Also because we wish very often to
keep some or all cameras ‘fixed’ in a particular configuration or installation in order
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Figure 3.1: Calibration setup for Basler and Firefly MV stereo cameras with 9 mm
lenses.

to reuse the cameras over time for comparison or just to keep them in the same con-
figuration and installation for different weather conditions or multiple experiments.

At the same time, the camera installation also must not be permanent but prac-
tical and accessible in order to service the cameras from time to time such as ad-
justing their focus or changing lenses, or even for dismounting or mounting the
cameras. As it is also noted in Section 2.1, there are certain applications such as
panoramic view that requires necessarily an external installation because of the vi-
sual obstructions inside the cabin caused by the “pillars’ or unwanted reflections
of the glass windows. Obviously, the external camera installation must satisfy the
same requirements (internal cameras installation) of a stable and practical platform
for the installation of multiple cameras.

Additionally, it would be also greatly desirable that external installation offered
the same protection and rain-free view offered by the windshield but in practice it is
still a challenging issue. The reason the rain remains a challenge is because the wiper
provides a rain-free view but at the cost of a view intermittently obstructed by the
wiper’s travel. The wiper’s visual obstruction has not been solved satisfactorily yet
and it is one of the areas for future work, since rain affects vision and DAS should
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Figure 3.2: Calibration setup for Basler and Firefly MV stereo cameras with fish eye
lens on roof mounting.

handle rainy conditions as well.

In summary, a solution that addresses the issues above have been implemented
in HAKA1 with two setups manufactured with prefabricated aluminum bars with
groves. This aluminum bar is called ‘channel’ in the industry jargon.

1. The first setup inside the cabin for all weather condition is an horizontal mount-
ing bar made of a 20mm by 40mm channel mounted between the "A’ pillars
(columns that support the roof and windshield). Figure 3.1 shows the final
camera mounting bar.

2. The second setup for external camera mounting is a rectangular frame made
of four 20mm by 80mm channels forming a rectangular frame resting horizon-
tally on top of the roof racks (Figure 3.2.)

The design and location of the interior mounting bar and roof frame meets the three
requirements outlined at the beginning. However, the design was not straightfor-
ward but evolved as unanticipated challenges became apparent during the exper-
iments. The challenges are: (i)junwanted reflections inside cabin, (ii) wobbling or
cantilevering movements in the roof mounting frame. The reflection issue (i) was
underestimated at the beginning and addressed by designing a mounting bracket
that allows the cameras as closest as possible to the windshield since doing that min-
imizes the dashboard reflections. The challenge was that the windshield is curved
unlike the mounting bar which is straight. So the solution for mounting the cam-
eras closest to the windshield regardless of its location (middle or end of windshield
for example)was to design a mounting bracket with multiple fittings that allows the
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camera to be closer to the windshield as possible (Figure A.3. A close view of the
bracket design and how is mounted on the mounting bar).

Nevertheless, the mounting bracket solution did not eliminate the unwanted
reflections satisfactorily (Figure 2.1). The unwanted reflections affected quite signif-
icantly while evaluating algorithms and the scene when recording with the cameras
installed inside the cabin. Thus a final solution for eliminating or reducing the re-
flections was needed urgently and finally the current solution was implemented.
The current solution is covering the underside of the camera up to the windshield
by stretching a piece of black, uniform texture fabric held with small suction cups
(Figure 3.3). The fabric solution works better than paper (another common solution)
since fabric can be folded or removed easily to access the lenses.

The second challenge (ii) while designing the external camera mounting is the vi-
bration or cantilevering of the long section of the frame. Cantilevering is the flexing
movement when the long and thin channels are supported on thin support points

Figure 3.3: Black fabric for anti-reflection (marked with white borders).
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such as the car roof racks. Even small weights such as the cameras and the camera
brackets fitted at the end of frame amplified this flexing movements or vibrations.
The solution was to mount the channel frame on top of another rigid but lightweight
support frame such as the black plastic pallet visible in Figure 3.2 (roof frame made
of channels for mounting cameras externally). The support frame also provided
rigidity to torsion along the opposite corners as well as cantilevering.

Finally, special brackets have been for the externally mounted cameras to allow
for some limited rotation (tilt and yaw) to orient the cameras front and down to the
road (the area of interest). Furthermore, the external frame allows for all around
view and mounting of cameras and currently two sets of stereo cameras with fish-
eye lenses can be mounted facing forward and backward for full stereo view of
HAKAZ’s front and rear (see Figures A.4 and A.5).

3.2 Camera Synchronization

Camera synchronization is a very important for DAS since the multiple cameras are
mounted on vehicles that can travel at high speed on motorways for example (as
explained in Section 2.1). The synchronization problem emerged early on when the
rectified stereo images taken while driving showed that object’s image displaced
several pixel rows.

The synchronization of multiple cameras is normally checked by taking a shot or
series of shots of a CRT screen that displays a special calibrated test pattern (see Fig-
ure 3.4). The test pattern is drawn by a software readily and freely available online
(we use one called synctest created by Peter Wimmer [30]). Knowing the refresh rate
of the CRT monitor and some parameters entered by the user, it is easy to calculate
the time delay between multiple cameras. The synchronization issue depends on
the context and its particular application. Few fractions of a seconds might be good
enough in general but unacceptable for DAS applications which require ranges of
less than 1/100 s to be considered "synchronized” for DAS purposes.

There are two solutions available to the synchronization issue as mentioned in
Section 2.2:(i) software synchronization, (ii) hardware triggering. The software syn-
chronization solution (i) was implemented first in the enpeda.. project. One software
solution was available thanks to one of the enpeda.. project partners. They made
available their camera or image recording application which synchronizes multi-
ple cameras within milliseconds range. But there are limitations with this specific
software application:

1. Limited to standard video formats (DCAM Format 7 excluded).

2. All cameras must be connected to the same port.
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3. The overall bandwidth (resolution and frame rate) limited due to multiple
cameras sharing the same port. For example, for a Firewire A (400 Mbps) port
with stereo cameras connected, only about half of that is available for each
camera and so on (more precisely, only around 160 Mbps is available for data
because of the 20% overhead in the Firewire A protocol).

Another software solution is provided by manufacturer PointGrey worked for
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Figure 3.4: Top: stereo Basler AF602 cameras with fish-eye lenses synchronized with
DT9817-H. Bottom: sample of non-synchronized stereo images.
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its line of cameras such as the Firefly MV for all video formats and across different
ports but limited to Windows OS only. On the other hand, Basler does not provide
any software synchronization solution for its line of cameras.

However, we needed a universal and accurate solution to synchronize all the
cameras (PointGrey and Basler) in a multiple camera configuration connected across
different Firewire ports (ideally one camera connected to one Firewire port to max-
imize the resolution and frame rate). The solution that meets these requirements
is by hardware triggering (ii) with the an A/D signal generator utilized as exter-
nal trigger. The external trigger device used is the DT9817-H module manufac-
tured by Datatranslation (a multi function A/D signal acquisition and generator)
and controlled by an application created using Datatranslation’s SDK. In particu-
lar, the Basler AF602 cameras required an external trigger for synchronization since
they must be connected to different ports to use full resolution available at highest
frame rate possible. The test results shows that the synchronization is in the order
of milliseconds when using DT9817-H as the external trigger in four Basler cameras.

The external trigger DT9817-H module controls the frame rate and the synchro-
nization by sending square pulses at the frequency set in the application. Addition-
ally, DT9817-H allows to control the shutter time by varying the length or duration
of the pulse that controls the frame rate. But the results of experiments have shown
that it is better to keep the square pulse length or duration constant (about half of
the length or duration of the total length from pulse to pulse) and set the shutter
time by software instead. The reason is that the dynamic range in illumination from
a very sunny afternoon to late afternoon is to great. Thus a settings that works fine
in low light conditions such as late afternoon could be too bright to control in sunny
conditions causing the cameras to flicker and lose images.

3.3 Overview of Pinhole Camera Calibration Methods

The calibration of pinhole cameras (a static setup and in the context of DAS) is prac-
tical and quite robust and accurate using planar checkerboard as the large number
of available methods and recent research shows, with two very well known meth-
ods shown earlier in Section 2.3. One of the most popular calibration method is the
OpenCV calibration not only because of its widespread usage but also practical by
using planar checkerboard and more importantly, shown to be robust and accurate.
OpenCV made its calibration toolbox readily available since it comes included with
the OpenCV library (a popular open source computer vision library developed by
Intel).

The OpenCV calibration method is based on the work of Bouguet’s calibration
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[5] which has been also implemented in Matlab. Thus, the Bouguet’s calibration (ei-
ther in the OpenCV or Matlab implementation) is the widely used for the calibration
of pinhole model cameras in many settings such as laboratory, autonomous robots,
DAS among others.

Finally, Bouguet extended this calibration toolboxes later on to calibrate fish-
eye cameras as well (which is included as one of the fish-eye calibration methods
in Section 3.5). Bouguet’s calibration in the OpenCV implementation form will be
covered next not only because of its popularity but also since it is the basis for one
of the selected fish-eye calibration methods.

3.4 OpenCV Calibration

The OpenCV calibration implementation was greatly influenced by Zhang’s calibra-
tion method (shown earlier in Section 2.5) and in lesser form by Heikkila’s four step
calibration method [13]. Bouguet’s camera model (which is utilized in the OpenCV
calibration) is similar to Heikkila’s camera model. On the other hand, Bouguet’s
method consists of two steps similar to Zhang’s method: (i) closed form solution
of the calibration parameters, (ii) non-linear optimizations. The first step (i) is very
similar to Zhang’s initial estimation of the planar homography except here it ex-
ploits the orthogonality of vanishing points.

The second step calculates the parameters by minimizing the Euclidean back-

Figure 3.5: Checkerboard corner detection with OpenCV calibration toolbox.
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projection error also similar to Zhang’s method but using a different optimization
(example of corner detection Figure 3.5).

OpenCV calibration solves four intrinsic parameters f,, f,, ¢z, ¢, and five distor-
tion parameters composed of three radial k1, k2, k3 and two tangential p1, p» (similar
to Heikkila’s internal camera model). The calibration parameters are calculated first
disregarding any distortion. Let us define the homography H as column vectors for
each view where rq, 7o are the two rotation matrix columns, T the translation vector,
s a scale factor, and A the camera intrinsic matrix.

H=|h; hy hy|=sA[r r T] (3.1)
We obtain from Equation (3.1) the following equations for 71,2, T (Where A = %):
1 =M"'h;, 1o =MA"'hy, T =XA"'hg (3.2)

Since the rotation vectors 71, r» are orthonormal, then r{ 7, = 0 and also ||r| =
|ra|] or rTry = rdre. Thus, from Equation (3.1) and by exploiting the orthonormality
of r1, ro, the first constraint is derived as:

hy"A"TA " hy =0 (3.3)
the second constraint can be derived by replacing r; and r; as follows:
hi7A"TA 'h; = h,TA " TA 'hy (3.4)

To simplify notation, let us set:

By1 Bz Bis
B=ATA'=| By, By, Bo (3.5)
Bi3 Bas DBss

where the general closed-from solution of B is:
f%% 0 —cy/fa
B=| 0 7  —a/f] (3.6)
—c 02 02
7 o Gty

By replacing with B in Equation (3.4) and also noting that B is symmetric, we
obtain that:

4T ¢ oT
hithji B
hithja + highji Bia
hioh; B
h{Bh; = viib = 22 ' 3.7
PNV hizhji + hiihjs B3 G7)
hizhja + highjs B3
hishjs |1 | Bss |
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the two constraints can be rewritten as

T
{ Vi2

(V11 — Vi2

. } b=0 (3.8)

Therefore, we can stack K equations from K checkerboard images as Vb = 0,
where V is a 2K x 6 matrix, and there exists a solution for b when K > 2.

The intrinsic parameters are calculated from the closed-form solution Equation (3.6)
directly as follows:

A = Bss — (B%3 + ¢y(Bi2B13 — B11B23))/B11

fe=+/A/Bu

fy= \/)\Bn/(BnBQQ — BY,)

¢y = —Bi3a?/\

¢y = (B12B13 — B11B23)/(B11B2s — Bi) (3.9)

The extrinsic parameters are calculated from Equation (3.2) (where A = 1/||A"1hy ||)
as follows:

r = AA"1hy

re = MA " thy

rs =11 X Iy

T = AA"'h; (3.10)

The second part of calibration is a non-linear optimization by minimization of
the total retroprojection error, using Levenberg-Marquardt algorithm for example,
over the calibration parameters. The objective function to be minimized is J(¢); see
Equation (3.11), where R is the covariance matrix of the observation error, y(0) is
the vector of the estimated error (geometric distance) and 6 is a vector containing the
nine intrinsic parameters (focal length, principal point and distortion coefficients)
and six extrinsic parameters.

J(0) =y (O)R"'y(0) (3.11)

The OpenCV distortion model was originally introduced by Brown in 1966 and
is the same distortion model used by Heikkila later on. Unlike Zhang’s method that
considers only radial distortion with two coefficients, this distortion model includes
both radial and tangential distortions as follows:

z, = 2q(1 4+ kyr? + kor + k3r®) (3.12)
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Yr = ya(l + k1r? + kor® + ksr®) (3.13)
Tp = 2 + (2p1y + p2(r? + 227)) (3.14)
Yp = yr + (2p2z + pr (72 + 2y%)) (3.15)

The tangential distortion [Equations (3.14)and (3.15)] deals with decentering and
lens defects while the radial distortions [Equation (3.12) and (3.13)] is a polynomial
function of 6-th order even though for most cases the 4-th order suffices (k3 = 0).

3.5 Calibration Methods for Fish-Eye Cameras

In Figure 3.6 we can notice immediately the disastrous results of trying to calibrate
fish-eye lens camera images using pinhole camera calibration methods. Calibration
methods for fish-eye must be able to handle the enormous radial distortions at least
in order to be useful. In that respect, one approach to calibrate fish-eye lens cam-
eras is to reuse the pinhole camera model while compensating for the distortions.
Bouguet'’s fish-eye calibration toolbox [5] uses this approach and an early popu-
lar (still popular) calibration method for fish eye lenses. This calibration method is
based on his previous work on calibration for pinhole camera model but available
only in the Matlab version and not implemented in the OpenCV library. Bouguet’s

Figure 3.6: Calibration results of fish-eye lens image undistorted using OpenCV for
pinhole cameras.
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fish eye calibration is not radically different from the pinhole calibration method but
gives surprisingly good calibration results and became popular as well.

The other approach for fish-eye calibration is using a projection model differ-
ent than pinhole camera. The calibration methods developed by Scaramuzza [23]
and Mei [20] are two examples of calibration using a different projection model.
Interestingly, these calibration methods by Scaramuzza and Mei are intended for
omnidirectional but they can handle both catadioptric and wide lenses despite the
physical and optical differences between fish-eye lens cameras and omnidirectional
cameras. These calibration methods make use of a generic projection model in order
to accept a wide variety of mirror shapes for catadioptric systems as well as fish-eye
lenses. Furthermore, Scaramuzza and Mei have based or borrowed many functions
in their calibration toolbox from Bouguet’s calibration toolbox as a statement of the
popularity of Bouguet’s toolbox.

The calibration methods by Scaramuzza and Mei will be explained later in the
chapter while Bouguet’s fish eye calibration will be presented next.

3.6 Bouguet’s Planar Calibration

The Bouguet'’s fish-eye calibration toolbox [5] is a minor reworking of his pinhole
camera calibration toolbox using the same calibration steps and algorithms except
for the obvious change needed in distortion modeling.This calibration method also
consist of two steps:(i) a closed-form solution of the calibration parameters and
(if) non-linear optimizations. The calibration algorithm and procedure remain un-
changed (except for some minor differences) with respect to the pinhole camera
calibration toolbox. The differences are in the distortion modeling as well as few a
extra steps to compensate for the distortion.

Regarding the distortion modeling, in the pinhole camera model both radial and
tangential distortions with five coefficients (1, k2, K3, p1,p2) are considered in the
OpenCV calibration method. In particular, the radial distortion in the pinhole cali-
bration toolbox is a polynomial of 6" order but typically 4" order suffices.

For the fish-eye lens calibration on the other hand, the tangential distortion dis-
regarded completely and the radial distortion is also a polynomial function gain but
up to the 8" order instead. The resulting distortion function with 4 coefficient has
the form:

1+ k1p? + kop + k3p® + kyp® where p= /22 + 42 (3.16)

Obviously, just replacing the radial distortion function will not do it but more
changes are needed which are minor nonetheless. The changes are the extra steps
introduced to compensate for the enormous distortions typical of fish-eye lenses
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as well as different parameter initialization process as thereof. Firstly, the initial-
ization for parameters is more primitive and simpler than the OpenCV calibration
implementation where DLT’s equations and the vanishing point properties were ex-
ploited. For the fish-eye calibration toolbox, the principal point is estimated with the
image center and the focal length using the approximation f = p/¢ instead.

Nevertheless, these estimations produces bad approximations so in practice the
calibration works best using the initial approximations entered by the user. The
calibration toolbox can read the principal point estimated by the user manually by
finding visually the principal point from a raw sample image and the focal length
from the lens manufacturer’s spec sheet.

Finally, the fish-eye distortion is compensated before the checkerboard corner
detection step and later before the calibration process itself using the initial param-
eters estimation. As a result of the introduction the fish-eye distortion compensa-
tion step, the calibration algorithms and the calibration process in general remains
largely unchanged since both calibration methods work in normalized coordinates.
Experiments have shown the critical importance of entering good parameters es-
timations for the initialization as rough estimates causes the checkerboard corner
detections to fail miserably (Figure 3.5).

3.7 Scaramuzza’s Planar Calibration

A generic model for calibration of omnidirectional (catadioptric and wide angle
lenses) was proposed by Scaramuzza and Siegwart in [23]. This generic model ap-
plies to camera with central projection (with a single effective viewpoint or single
focal point). But fish-eye lenses which are generally non-central projection (with mul-
tiple focal points depending on incidence angle) can be approximated as well with
this generic model (Figure 3.7).

This generic model assumes radial or axial symmetry of the optics and approx-
imates the projection model with a parametric function rather than a specific pro-
jection function. The method is generic since this model uses a parametric function
as projection function regardless of the type of mirror (parabolic, hyperbolic among
others) or lens in the optics. The calibration method also uses a 2D calibration object
with known geometry such as planar checkerboard and shown at different arbitrary
poses or positions and orientations.

Firstly, this generic camera model has two planes: (i) camera image plane (u’,v’)
(if) sensor image plane (u”, v”). The image plane(i) is really the camera sensor
plane and the so called ’sensor plane’ (ii) is actually an imaginary plane paral-
lel to the image plane(i) and located at the origin of the coordinate system in the
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sensor plane

Figure 3.7: Left: fish-eye lens mapping of scene point X into the sensor point u” [23].
Right: fish-eye lens as a non-central system [23].

case of catadioptric. Let X be scene point and u” = [u”,v”]T its projection on the
sensor plane(ii), and v’ = [u/,v']T its projection onto the camera plane(i). In gen-
eral, both projection into planes (i) and (ii) are related by an homography A so that
u” = Au’ + T. The imaging function g(u”, v"’) that relates to a point u” in the sensor
plane and the scene point X as follows:

Ap = Ag(u”) = A\g(Au' + T) = PX (3.17)

where X is a constant, P the perspective projection matrix but actually g(u”,v"”) =
(u", 0", f(u”,v"))T where f normally depends on the particular shape of the mirror
in catadioptric case. Here f is generalized here with a parametric function of the
form f(u”,v") = ag + a1 p” + anp"™ where p"" = /u'""? + v/ (Figure 3.8).

The calibration will determine the coefficients a; and the matrices A and t that
satisfy Equation (3.17). The calibration is done in two stages where A, T are esti-
mated first and the coefficients a4, ..., ay afterwards.

Hence, firstly the parameters A, T of the homography are estimated iteratively
assuming initially that the camera and sensor plane coincide or that A = I and
T = 0. A is refined by a non linear method such as Levenberg-Marquardt algorithm
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Figure 3.8: Top: parametric function f. Bottom: optical ray angle 6 of the correspond-
ing 3D with respect to the horizon.

and t refined by a iterative search algorithm.
Thus Equation (3.17) can be rewritten as (where (u’,v’) is pixel coordinate of
image point u’):
u/
AP =\ V' -P-X (3.18)
ap + Clgpl2 +...+ (le”N

Let I’ be the observed image point and M} = [X7, Y}, Z!] its coordinates and

m} = [u},v?] its corresponding image point coordinates in the image plane (the
index 7 indicates the observed checkerboard and index j the j-th point on the i-th

checkerboard. Since the calibration object is a planar checkerboard, Z; = 0 and
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Equation (3.18) can be simplified to (where [ri,rh, ri] = R! is the rotation matrix
and T the translation matrix):

u
A ph =\ . vl . =P X; (3.19)
ap + azp;” + ...+ anpj

[ ST S,

x
. . ) Y
P‘-X}z[r’i ry i T OJ
1
x
=[rl ry T] Y} (3.20)
1

The Equation (3.20) can be further simplified by removing constant \} (depth
scale) by multiplying both sides of the equation with p} as follows:

X
)\;p;x;)}:p;x[rzl ry T ] Y/ | =0
L 1 ]
% N
, vj N x [l rhy T] Y | =0 (3.21)
0,0—|-Cl2p;- —|—...—|—6le3- L 1 |

The extrinsic parameters will be also determined for each checkerboard pose but
let us focus in particular a pose i first. From Equation (3.21), each point p; on the
checkerboard contributes to three homogeneous equations (without the index ¢ for

readability and with g(p;) = ap + a2p§-2 +...+ aNp;'-N):

vj(rngj + 7"32Yj + t3) — g(pj)(rngj + TQQYJ' + tg) =0 (3.22)
g(pj)(r1in Xy +r12Yj +t1) —uj(r3n Xy +raY; +t3) =0 (3.23)
uj(rngj + 7“225/} + tg) — vj(pj)(rllXj +r2Y; + t1)=0 (3.24)

The variables X;,Y;, Z; as well as u;,v; are known and Equation (3.24) is lin-
ear with respect to 711,712,721, 722,%1, t2. By stacking all unknowns in this Equa-
tion (3.24) into a vector, we obtain a system of linear equations for L points in the
checkerboard:
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M-H=0 where H= [Tlh 12,721,722, tl, tQ]T (325)

—’U1X1 —UlYl U1X1 U1Y1 —V1 Ul

and M = (3.26)

—ULXL —ULYL ULXL uLYL —vVL Uy

By using SVD, a linear estimation of H is obtained by minimization of least-
squares or min IMH]||* with ||[H||* = 1. Since the vectors ry, ry are orthonormal, the
Equation (3.25) is unique up to a scale factor and also the unknowns 31, r32 be calcu-
lated. So far, the calibration has calculated the rotation parameters ri1, 712,721, 722
and translation parameters t1,t2 as well as rs;,rs2 for each pose i. The missing
translation ¢t3 will be calculated next along with the intrinsic parameters.

We can find now the intrinsic parameters ay, ..., an by replacing the estimated
values in Equation (3.22),(3.23) with the calculated values obtained previously and
calculating the t} for each pose. Again we obtain the following system of linear
equations by stacking up all unknown variables in Equations (3.22),(3.23) into a vec-
tor and including all K poses of the checkerboard:

ag
as

A1 Alp% e Alp{V —U1 0 ... 0 . Bl

Cl CK,D% . Clp{\] —U1 0o ... 0 : D1

S R S S O N A I A B &%)
3

AK AKp%( AK,O% 0 0 ... —VK t% BK

CK CK,D% CKp% 0 0o ... —UK . DK
Lt ]

where A =1l X+ rh Y+t
B; = v'(ry; X' +15,Y")
Ci =ri, X' +ri, Y 4+ 1)
D; = u'(rk, X* 4 ri, X,
The linear least-squares solution of Equation (3.27) is obtained through the pseudo-
inverse matrix method as well as the parameters a;,...,ay. The best fitting poly-

nomial f is calculated by iteratively increasing from N = 2 until it stops when the
retroprojection error is less than a given error e.
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Figure 3.9: Automatic corner detection. Left: not detecting correctly. Right: missing
corners.

The parameters calculated previously are to be further refined by a combination
of: (i) linear and (ii) non-linear (maximum likelihood criterion) minimization. The
linear refinement (i) is described below:

1. Recalculate all extrinsic parameters i1, 712,721, 722, 731, 732, t1, t2, t3 by using
the estimated intrinsic parameters ao, as, . .., a, and solving using SVD (up
to a scale factor) the resulting system of linear homogeneous equations from
Equations (3.24),(3.22),(3.23). The scale factor is determined later on due the
orthogonality of ry, rs.

2. Refine in turn the intrinsic parameters using the recalculated extrinsic param-
eters earlier by solving the resulting linear system of Equations (3.23),(3.22)
using the pseudo-inverse matrix methods.

Nevertheless, the previous linear solution minimizes an algebraic distance that
is not physically meaningful. Thus, the parameters are further refined as mentioned
earlier by a non linear minimization of maximum likelihood criterion as follows:

K L
E=Y"Y"|lui - a(R’, Ty, A, O, a0, as, ..., an, X3)|” (3.28)
i=1 j=1
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where there are K images of the checkerboard with L control or corner points in
the checkerboard and u(R’, Ty, A, O, ag, as, . ..,an,X’) is the retroprojection of
the scene point X} on the i-th pattern Equation (3.20) and R’ and T the rotation
and translation matrices.

The final calibration parameters are calculated by minimizing the retroprojec-
tion error Equation (3.28) using Levenberg-Marquardt algorithm. Nevertheless, the
main hindrance with using this toolbox is the automatic corner dectection feature
not working correctly most of the time as shown in Figure 3.9.

3.8 Mei’s Calibration Method

The third calibration method introduced here, by Mei and Rives [20] is also for single
view point omnidirectional cameras using checkerboards and is an improvement on
checkerboard and corner detection over the Scaramuzza’s calibration method.

The camera projection model will be introduced first, followed by an explanation
of initialization of parameters and the calibration steps at the end.

This calibration method uses an unified projection model as camera projection model.
The unified projection model based on a previous work by Geyer and Barreto [10],[3]
and is used as an exact model with small corrections. The unified projection model
proposed by Mei and Rives (see Figure 3.10), simplifies the calibration by reducing
the number of parameters as well overcoming the difficulty of estimating the initial
values as in the polynomial approximation model by Scaramuzza presented in Sec-
tion 3.7. The unified model uses a reference system different than the used in [10],[3]
(see Figure 3.11) and the values of parameters £(mirror parameter) and 7 depends
on the actual mirror equation used, in particular for fish-eye lenses the parameter
E=1.

The image scene points in the mirror are projected into the sphere as follows:
X)r, = (Xs)F, = HXLH = (X,,Ys, Z;) and the projected image points are then
referenced with respect to C, = (0,0,&), (xs)r,, — (Xs)F, = (X, Y, Zs + ). This
point is projected further into the normalized plane m = (ZX—%, ZLH, 1) = h=1(xs)
where the normalized image point is finally projected using the projection matrix K
as follows:

fin fina ¢
p=Km= 0  fon ¢, | m=k(m) (3.29)
0 0 1

with focal length = [ f1, fg]T or f, principal point = (¢, ¢, ), and skew +.
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This the final projection of this unified projection model uses a generalized camera
(represented by K) which considers the camera sensor and mirror as one device. The
importance of using the generalized camera for calibration is that the estimation of
(f,m) is not independent.

Figure 3.10: Unified projection model [20].
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Checkerboard Lens

Figure 3.11: Coordinate reference system.

The calculation of x, for a given image point p is as follows:

R s — 2\ (2 2
h™'(m) = [ TyJ with 7= 5+\/1;(jy2£+)1(x 7 (3.30)
r_

The projection model considers both radial f;(p) and tangential f;(x,y) distor-
tion (where p = /22 + y2), similarly to the OpenCV calibration’s model as follows:

fa(p) = 14 k1p* + kap* + ksp°

2kszy + ka(p? + 222
ft(CE,y)Z[ 3TY a(p )

3.31
2kaxy + k3 (p* + 2y?) (331)

The following notation will be used for the distortion function D and distortion

parameters V3 = [ ki ko ks ki ks ] and the generalized camera projection as

PX,VH,withV=[ V! V2 V3 V*] where Vi=[a fi fo & ¢ ]

and VZ = €], and V! = [ qu1  Gu2 Qw3 Quwt twi tws tws | the quaternions

to parametrise the rotation Eq. 3.37 and W the corresponding transformation.
Finally, let G be the composition of all projection functions as follows:

G=PoDoHoW (3.32)

Thus, by using a non-linear minimization algorithm such as Levenberg-Marquardt,
the last step of the calibration will minimize the following function:

m
1

Fz) =5 (G(V.g) —ei) (3.33)

i=1
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where m is the number of checkerboard images with g; points each, and e; the values
of projected images.

The validity of the unified projection model for fish-eye lenses in particular is
shown next. The perspective projection of an image point m,, = (z,y,1) = (5, %,1)
can be expressed in the unified projection model with £ = 1 (where the parameter £
is not very meaningful here since a fish-eye lens does not have a mirror) as follows:

X Y
Z+ Xl Z + lIxIl’

1) (3.34)

my = (
Finally, from Equation 3.34, the polynomial division model equations for fish-
eye lens cameras are obtained by algebraic manipulation as follows:

2pq

_ : — Im2 2
Pu= T P with p=/mi+m (3.35)

u

The initialization step of parameters for the calibration method will be presented
next. The parameters &, f, ¢, ¢, are estimated as follows: Firstly, the principal point
is initialized by approximating it with the image center or alternatively using the
circular image border if full frame image is available. Secondly, § is initialized as
¢ = 1 and furthermore the authors found that inaccuracies in &, f not affecting sig-
nificantly the corner extraction step.

Finally, the generalized focal length f estimated linearly from at least three image
points selected from a non-radial line image as follows from Equation 3.30:

T

h=(m) ~ [ y ] where f(z,y) = %(1 — (2% + %) (3.36)
f(z,y)

Let p = (u,v) be a image plane point and p. = (uc,v.) the corresponding point,

then by the relation f : p. = fm (projection on the normalized plane) we obtain

now:

€T
“ 1
h™(m) ~ [ Yy } where ¢(m) = ﬁ(f2 — (u2 +v2)) (3.37)
9(uc,ve)
We obtain for points belonging to a line image ! defined by the normal N the
following relation:

Ng 0 = nguc + nyve + 3(a — b(u2 + v2))
N=|n, |, '(m'N=0s<{ a= fn,

b=mn, f
(3.38)
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In general, for n points p1, pz, - - - , Pn belonging to the same line /, we obtain the
least square solution by (SVD) P = USV? from the last column of V associated to
the minimal singular value from this system:

P, x1Cix1 =0 (3.39)
Ucl Vel 1/2 _<u§1 + v?l)/2 “
where P = : : : ,C = ©2
C3

Uen Ven 1/2 —(uZ, +v2,)/2
The value of focal length f is calculated from the selection of at least three image

points located on a non-radial line of focal as follows: (i) let us define t = ¢} +

2 + cscq first and d = /1/t,n, = c1d with n, = cod. (ii) for non-radial lines

(n. = /1 —n2 — n2 ) we obtain then from C:

Foad (3.40)

Nz

Finally, the calibration procedure consists of three steps: (i) initialization of pa-
rameters, (ii) finding the homography, and finally (iii) non-linear refinement of pa-
rameters. During the first step (i) initialization of parameters, at least three non-
radial point in the image are selected to estimate focal length f with Equation 3.40.
The homography calculation step (ii) is performed by retroprojecting the checker-
board images as usual. Lastly, the final step (iii) involves the non-linear minimiza-
tion of the cost function Equation 3.33 (an euclidean distance between the checker-
board projection and the images) which is used to refine the parameters as usual
again.






Chapter 4

Evaluation Techniques

This chapter informs about two ways of evaluating accuracies of calibration in the context
of DAS, and these techniques will then be applied in Chapter 5. The back projection error is
simply defined by mapping recorded calibration patterns back into 3D space and identifying
the places where they would "hit” the shown calibration object. The row misalignment error
is evaluating the accuracy of having matching image lines in the calculated rectified images.

4.1 Specifics of a Driver Assistance Context

Camera calibration involves many intrinsic and extrinsic parameters as seen in ear-
lier chapters. Furthermore, the accuracy of camera calibration depends on several
factors such as: How the system is setup, baseline in stereo systems, quality of op-
tics, resolution of the camera sensor, and so forth. In general, calibration results are
generally sensitive to the resolution of camera sensors such that better calibration
results can be obtained with higher resolution cameras. However, it is also possible

Figure 4.1: Calibrating pinhole-type cameras in HAKAL. Left: as seen by an ob-
server. Right: as seen by a gray-level camera in HAKAL.
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to get more accurate results with a good calibration of low resolution cameras than
with a bad calibration of high resolution cameras. Thus, a good calibration method
can be said as the method that produces or calculates the best or optimal overall
solution for all parameters.

Calibration in the DAS context is not only different from calibrating in a labora-
tory by being outdoors, but also influenced by other factors. Thus, a brief introduc-
tion of those differences and factors affecting calibration in DAS will be introduced
next before presenting the calibration evaluation methods used.

In theory, it should be possible to calibrate a camera setup in a laboratory but in
reality that is not always possible or practical since the cameras must be firmly and
securely fitted in the car outside a lab.

Thus, calibration in the DAS context requires that calibration is performed on
the ego-vehicle in a dynamic and ever changing outdoor space rather than in a con-
trolled laboratory setup. Thus, the analysis and comparison of different calibration
methods must be performed in similar conditions and setup as the cameras are nor-
mally operated. Performing calibration outdoors in a different scale imposes differ-
ent requirements and challenges. For example, the checkerboard used in .enpeda..
project is quite large (at least 90cm x 100cm) with large squares made of lambertian
materials to deal with outside bright lightning conditions. Also, the typical baseline
of stereo cameras for DAS is around 40cm and the distance of objects are in the or-
der of several meters (Figure 4.1 shows a typical calibration session of normal lens
cameras mounted in HAKA1).

Furthermore, calibration of fish-eye lens cameras in a DAS context poses even
more challenges. The same pinhole-type camera calibration methods can not be

Figure 4.2: Checkerboard image too small. Left: calibration result. Right: raw image.
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Figure 4.3: Checkerboard image too far away. Left: calibration result. Right: raw
image.

directly applied here, as attempts to use the same large (90 cm by 90 cm) checker-
board in a similar fashion was unsuccessful (see Figure 4.2) as well as attempts to
use a much larger checkerboard (approximately 2.4m x 6m) made no improvements
(see Figure 4.3).

The previous definition of a good calibration method can be further refined as a
method that also provides accurate results as the camera system and in the context
that is being used. So firstly, the obvious and meaningful metric of measuring the
back projection error will be considered first. Secondly, the calibration errors in row
misalignments (applicable for stereo images) will be finally considered, since the
calibration results in the DAS context are used very often for stereo vision analysis.

In summary, the selected evaluation methods are back projection error and row
misalignment error. The row misalignment error can be estimated using common
static stereo analysis such as disparity match of epipolar lines with Dynamic Pro-
gramming as well as comparing the calibrated row component of the calibrated
principal point. The back projection error will be presented next.

4.2 Backprojection Error

The process of mapping 2D object images into the 3D space, by inverting the per-
spective transform, is generally referred to as backprojection. For example, see [18]
for the backprojection of surface patches. The simplest case of backprojection is
given by mapping a point p in an image “along the ray starting at this point” into
the 3D space, where the direction of that ray is defined by the central projection of
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the camera (i.e., the line connecting the center of projection with the given point p.
A point p can not identify a corresponding point P in 3D space but it requires an
intersection of the calculated ray with a plane in 3D space instead. Backprojection
is similar to the corner detection process but reversed as it calculates the the back-
projected P from the detected corner p in the image sensor. Thus, the formulas to
calculate the backrprojection depends on the projection model used.

The calculated intrinsic and extrinsic parameters (being the result of the consid-
ered calibration) define a central projection; we also take a set of specified, say N
calibration points (e.g., selected corners of squares of the used calibration checker-
board) for defining a set of projected points in the image; central projection and
those NV points define now a set of IV rays pointing into the 3D space. Now we
intersect those IV rays with the calibrated 3D pose of the shown calibration checker-
board (i.e., with a plane). The resulting N points in 3D (i.e., on that plane) should
now ideally coincide with the corresponding calibration points. To visualize this
situation, we may map the texture of the calibration checkerboard on the rectangle
used as calibrated pose of this board, and also indicate the intersecting N rays by N
points on that textured rectangle.

Altogether, this maps a set of NV points into an image of the calibration board.
Calibration points appear in this image in the form of some “noisy” pixel patterns.
It remains to identify distances between one of those IV points and, say, the centroid
of its corresponding calibration point.

Let us define N the total number of calibration points (X, Y;) representing the
real (distorted) image world coordinates of the checkerboard, and (X;,Y;) the im-
age points calculated by the calibrated camera model. Thus, mean error, maximum
error, and standard deviation are defined as follows:

1 N
Emean = N § D; (mean error)
i=1
FE = max D; maximum error

2

1 N
o= (N Z:(Dz - Emean)2>

where D; = \/(X'l - X))+ (YZ -Y;)2.

A good calibration produces back-projection error is in the subpixel range. But
that is not always the case as we can see in Figure 4.4 and 4.5 an example of bad fish-
eye calibration using Bouguet’s method (back-projection error of each checkerboard
corner plotted).
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As a result, back-projection error provides an intuitive and meaningful evalua-
tion tool while comparing the results of different calibration methods for the same
camera setups. However, the results of back-projection error can not be compared
across different cameras since the back-projection error is sensitive to the camera
sensor’s resolution, FOV and object to camera distances. The deal with these issues
of portability across different cameras and camera setups, the normalized calibra-
tion error can be used as a general evaluation method.
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Figure 4.4: Back-projection errors of a bad fisheye calibration using Bouguet’s
method. Crosses (+) indicates the pixel error in z-axis and y-axis for each calibration
points.
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Figure 4.5: Left: closeup of bad backprojected corners (circles) and incorrectly de-
tected corners (crosses). Right: Back-projected corners of one of the calibration im-
ages shown in Fig. 4.4 as red crosses.

4.3 Row Misalignment Error

The calibration data is needed to rectify the raw images, as we have seen previously,
which in turn simplifies the stereo correspondence task for example. Stereo corre-
spondence refers to the matching of 3D points in stereo images (from two different
camera views). Namely, a scene point P visible in both cameras is projected onto
two corresponding image points p; and p, (left and right respectively). A vector can be
defined from p; as disparity as follows:

A=(p—p) = (2 —2r,y —yr)" (4.1)

For a stereo cameras set in the standard stereo geometry, the disparity becomes
just a scalar disparity instead as follows:

As = \/(QL’[ - 1'7“)2 + (yl - yr)2 (42)

Finally, a disparity map A(z,y) can be created from calculating the scalar dispari-
ties of image points corresponding to the point P with 3D coordinates P = (X,Y, Z)
calculated as follows (where f, b are focal length and baseline respectively):

f(X —0)
S
o fX . A
x = with y =
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b- b- b-
we obtain X = T Y = Y ,Z = /
Ty — Ty Ty — Tp Ty — Tp

In general, the correspondence analysis in stereo images can done by analyz-
ing the intensity values using a similarity measure of a window of size or block of
neighboring pixels along the epipolar lines and as a result it is called intensity-based
correspondence analysis.

One such similarity measure is the mean square error (MSE), which compares the
intensity values of block of pixels in the stereo images, can be defined as follows:

—
|
—

n

1 . . , .
MSE(x,yd) = — Z (BEi(z + i,y +j) — Er(z —d+1i,y+ 7)) (4.3)

<
I
)

with d > 0 and multiple of m, an offset of x; — z, of the column positions in the
left and right images for blocks of size m x n. The scalar disparity in the standard
stereo geometry Ay 4(x,y) can be defined as the difference in column positions for
the pair of blocks with minimum MSE value. Finally, the correspondence analysis
along epipolar lines can be done by the matching process of the MSE similarity
measure for example using Dynamic Programming (DP). The proposed method of
evaluating the different calibration method is by comparing the results of matching
epipolar lines using DP or Dynamic Programming (a detail explanation of matching
of epipolar lines using Dynamic Programming can be found in [18].

For the rectified stereo images of accurately calibrated cameras should give good
results when running this proposed evaluation method (see Figure 4.6). The ratio-
nale is that more accurate calibration methods should give better disparity matching
results because of more accurately rectified images. The proposed evaluation tool
of using disparity matching with DP will provide an indirect measure of the row
misalignment errors by means of the visual inspection of the resulting disparity
match. Figure 4.6 shows an example comparing the results of the disparity matches
between raw images and rectified ones.

Once a stereo camera system has been calibrated and resulting images rectified,
depth maps (which are useful in DAS) can be generated as well using stereo cor-
respondence and simple triangulation of disparities. There are many factors and
errors that affect the evaluation process such as: mismatch and correlation errors
but we are interested only in the calibration or pointing error p .

Finally, when the same calibration images are used the row misalignment error
can also be easily and quickly estimated by comparing the row component y — axis
of the calibrated principal point. Since row errors will affect all rows including the
principal point.
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Figure 4.6: Row misalignment error of stereo images by DP (Basler 9mm lens). Top
left: left camera raw image. Top right: same image rectified. Bottom left: disparity
match of raw images. Bottom right: disparity match of the same rectified images.



Chapter 5

Experiments

This chapter informs about the experimental results of different camera configurations using
the calibration methods described in Chapter 3 and using the evaluation techniques described
in Chapter 4.

5.1 Introduction

This section presents the results of the experiments using different camera and lens
configurations to test and compare all four selected calibration methods introduced
in Chapter 3.

The details about the experiment setups and components used are as follows,
the experiments were performed with the stereo cameras setup in HAKA 1 as they
would be normally done during normal operations and the details about the camera
and lens configurations, calibration grid and images are detailed next.

Two camera configurations have been used consisting of two camera models at
different image resolutions: (i) PointGrey Firefly MV with 1/3” sensor cameras at
640 x 480 resolution, and (ii) Basler AF622 with 2/3” sensor cameras at 1280 x 960
resolution at least.

The selected lenses used in the experiments were: (i) Fujinon HF9HA-1B 9mm
focal length tv lens for pinhole camera experiments and (ii) Fujinon FE185C057HA-1
fish eye lens for fisheye experiments. Furthermore, the pinhole camera experiments
were done with cameras mounted inside while the fisheye experiments were done
with the cameras setup on the roof mounting similar to the setup in Figures 3.2, 3.1.

The calibration grid used was the planar calibration grid or checkerboard of 90
cm X 100 cm in size with at least 9 x 8 squares (Figure 4.1). The calibratiom images
used were similar to those typically used for the calibration in the DAS context and
in these experiments consisted of approximately 20 stereo images which can be used
as four smaller sets of five to 20 images as well. These four sets of calibration images
have been used to test the performance and accuracy of each calibration method
with varying number of calibration images.
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The following sections are organized as follows: the results of the evaluation
techniques explained in Chapter 4 are presented by presenting the experimental
data of the calibration methods in tables, graphs the backprojection error ¢ as cal-
ibration pixel error figures and figures of disparity matches of selected calibration
methods as well.

The experiments using OpenCV calibration method will be presented next fol-
lowed by Bouguet, Mei and Scaramuzza’s methods using the fisheye lens after-
wards.

5.2 OpenCV Calibration’s Experiments

OpenCV calibration method used two sets of 25 calibration images taken with Fire-
fly MV cameras (lower resolution) first and followed by the second set taken with
Basler cameras (high resolution images). The experiments for testing the pinhole
camera were slightly different than the rest since only one pinhole calibration method
was considered. Five sets of calibration images instead of four and a third smaller
set of calibration images were used (Figures A.8, A.9, A.10).

The results of the calibration (Tables 5.1, 5.2, 5.3) shows the average backprojec-
tion errors errory,error,(pixels) for the x-axis and y-axis respectively and the cali-
bration parameters (intrinsic parameters f,, fy, ¢z, ¢, in pixels and distortion param-
eters (tangential p;, p» and radial 1, k2, k3 where k3 = 0). The calibration results
using Firefly MV with 9mm lens are presented in Table 5.1 and graphs of backpro-
jection error for the left and right cameras are presented in Figure 5.1. The row
misalignment error can be estimated visually by comparing the disparity matches

Table 5.1: Calibration data for left Firefly MV camera with 9mm lens at 640 x 480.

Images 5 10 15 20 25
errors 0.064 0.061 0.059 0.056 0.054
errory 0.081 0.075 0.072 0.069 0.067
fa 1532.5+10.2 1533.5+£7.0 1533.0£6.4 1532.6£58 1533.0E£54
fy 1534.04+ 104 1535.0£7.0 1534.4+6.4 1534.0+£58 1534.3+5.3
Cz 358.7+£12.0 360.2 £8.7 364.3+£7.2 361.8+6.4 361.4+6.1
cy 270.7+£9.8 2717+ 7.3 269.7+£6.3 270.6 £5.6 271.3+£5.3
p1(1072) 0.24+0.2 0.2+0.1 0.1+0.1 —-0.1£0.1 0.1+0.1
p2(1072) 0.3+0.2 0.2+0.1 0.3+0.1 02+0.1 0.2+0.1
k1(1072) —-132£7.1 —-86+57 —-101+44 -105+34 —-10.8+3.2
k2(1071)  —27.0427.0 —42.64+22.9 —43.84+185 —43.94+13.3 —43.24+12.3
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Figure 5.1: Firefly MV camera with 9mm lens backprojection error. Left: left camera.
Right: right camera.
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Figure 5.2: Firefly MV camera w/9mm lens focal length values and error. Left: left
camera. Right: right camera.

of the raw and rectified images in Figure 5.3 and finally the graph of focal length as
function of calibration set number is shown in Figure 5.2. The calibration results
with Basler cameras fitted with 9mm lens using the calibration images (Figures A.9)
are presented in Table 5.2 and graphs of backprojection error for the left and right
cameras are presented in Figure 5.5. Finally, Figure 5.6 shows the disparity match
between the raw and rectified images and the graph of focal length as function of
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Table 5.2: Calibration data for left Basler camera with 9mm lens at 1280 x 960.

Images 5 10 15 20 25
errory 0.064 0.057 0.055 0.060 0.078
errory 0.074 0.072 0.075 0.086 0.100
fa 1371.1£18.3 1380.0+10.7 1381.1+10.0 13784+3.1 1377.8+28
fy 1371.6 £19.5 1380.24+10.7 1381.0+10.1 13784+3.1 1380.1+2.8
Ca 645.1 +16.0 645.0 £ 11.3 646.9 = 8.2 644.6 4.8 640.5 £ 3.2
Cy 473.8 £12.5 472.4+9.6 473.91+6.6 466.1 £4.0 465.7 £ 3.0
p1(1072) —-0.1+£0.2 —-0.1+0.1 -01+£01 -0.140.04 0.10+0.03
p2(1072) 0.2+0.3 0.1£0.2 0.1£0.1 0.2£0.1 —-0.10+0.03
K1(1072) —-2.9+15.6 —-16.5+£4.1 -206+1.8 —199+13 —-23.3+0.5
k2(1072)  —1143 £ 1115 —90 £ 69 —8£12 —-124+10 17£3
Table 5.3: Calibration data with set of five and 10 images.

Images 5 10

error, 0.101 0.095

errory 0.117 0.126

fa 1373.6 £5.4 1376.9 £ 3.6

fy 1376.6 £ 5.4 1379.9 £ 3.5

Cx 646.5 + 5.8 641.9 £4.4

Cy 462.6 +5.0 465.8 £4.0

p1(1072) 0.16 & 0.05 0.14 4+ 0.04

p2(1072) —0.21+0.11 —0.06 &+ 0.05

k1(1072) -21.8+1.1 —23.3+0.6

k2(1072) —13.8+£4.0 16.6 £ 3.2

calibration set number is shown in Figure 5.4. In addition, another two extra set of
five and 10 calibration images (Figure A.10) selected from the last 10 images from
the original 25 calibration set) was used in the calibration experiments as well. Inter-
estingly, these calibration sets yielded a bigger pixel error but the calibration results
are better or comparable to the results of the previous 20 image set calibration as
shown in Table 5.3. These results are due to the fact that in these calibration sets,
the checkerboard were closer to the camera and larger as a result compared to the
other calibration sets. This phenomenon resulted in larger backprojection error as
the number of calibration images increased to 15, 20 and 25 as it can be seen in
the Figure 5.5. However, the larger checkerboard images do not affect negatively
the accuracy of the calibration but they actually improve it. As a result, the set of
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Figure 5.3: Row misalignment error of stereo images by DP (Firefly MV 9mm lens).
Top left: left camera raw image. Top right: same image rectified. Bottom left: disparity
match of raw images. Bottom right: disparity match of the same rectified images.

just five or 10 calibration with closer checkerboard images yielded very good re-
sults for such a small set of calibration images and confirmed by the calibration data
in Table 5.3. Another indicator of good calibration is the focal length which the
(Figures: 5.2,5.4) shows that the backprojection error is within a subpixel range and
also good indicator of accuracy not only visual inspection of the disparity matching
in rectified images but also comparing with the calibrated focal length against the
value specified by the lens manufacturer which can be calculated knowing the cam-
era sensor pixel size. For example, the pixel size of Firefly MV is 6um x 6um thus
1532.93pizels x 6pum =~ 9.19mm which is similar to the reported 9mm focal length
of the Fujinon HF9HA-1B lens.

Thus, the OpenCV calibration method is found to be an accurate and suitable
pinhole calibration method as the good convergence of the calibrated focal length
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Figure 5.4: Basler at 1280 x 960 with 9mm lens focal length values and error. Left:

left camera. Right: right camera.

Calibration Pixel error

Rl 009
i Feaxs
o O Yeaxis [ 0.08 ——
5 2l
— [.08 @
g ooy @ :IE 0.07
D_ =N .-...'
0.0B = o M
e 0.05

] 10 15 20 25
Mumber of images

Calibration Pixel errar

A 10 15 20 25
Mumber of images

Figure 5.5: Basler at 1280 x 960 resolution with 9mm lens backprojection error. Left:

left camera. Right: right camera.

values shows in Figures 5.2 and 5.4. The focal length was selected as another ref-
erence for the quality of calibrations because it is a parameter that can be compared
with across the same model of lenses and it is independent of pixel resolutions.
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5.3 Bouguet’s Calibration Experiments

Bouguet’s calibration method for fisheye used calibration images taken with Basler
cameras at 1280 x 1024 resolution and another taken with Firefly MV cameras at 640
x 480 (Figures A.11, A.12).

Figure 5.8 shows the disparity match of two linearly rectified images. Table 5.5
shows the result of the calibration with four sets of calibration images from five to
20 images (Figures A.12). The table displays average backprojection errors error,,
errory (pixels) for the x-axis and y-axis respectively and the calibration param-
eters (intrinsic parameters f,, fy, ¢z, ¢, in pixels and radial distortion parameters
K1, K2, K3, k4). The calibration results using Firefly MV with fisheye lens are pre-
sented in Table 5.4 and graphs of backprojection error in Figure 5.9.

Figure 5.6: Row misalignment error of stereo images by DP (Basler 9mm lens).
Top left: left camera raw image. Top right: same image rectified. Bottom left: disparity
match of raw images. Bottom right: disparity match of the same rectified images.



66

5. Experiments

Table 5.4: Calibration data for left Firefly MV camera with fisheye lens at 640 x 480.

Images 5 10 15 20
erTorsy 0.064 0.069 0.067 0.069
errory 0.070 0.077 0.078 0.080
fa 297.0 £ 0.7 296.7 £ 0.6 296.6 £ 0.5 296.8 £ 0.4
fy 296.4+0.7 296.1 £0.6 296.1£0.5 296.3+0.4
Czx 341.4£0.5 341.6 £ 0.3 341.6 £ 0.3 341.6+0.2
cy 240.0£0.4 240.3 £0.3 240.3 £0.2 240.3 £0.2
K1 0.027 £ 0.015 0.024 £0.011 0.022 £ 0.007 0.021 & 0.007
K2 —0.085 £ 0.079 —0.067 4 0.063 —0.056 4= 0.031 —0.05 4 0.030
K3 0.137 £+ 0.166 0.107 £0.134 0.081 £ 0.055 0.067 & 0.052
K4 —0.080 +0.120 —0.062 £ 0.098 —0.042 £+ 0.037 —0.033 £ 0.031

The calibration results using Basler with fisheye lens are presented in Table 5.5
and graphs of backprojection error in Figure 5.10. We can also compare the cali-
brated focal length with the manufacturer’s specification as follows: the pixel size
of Basler AF622 is 6.7um x 6.7um thus 296.55pizels x 6.7um =~ 1.98mm which is
similar to the reported 1.8mm focal length of Fujinon FE185C057HA-1.

In summary, this method shows to be precise with a subpixel backprojection
error, accurate as the disparity match shows and robust as it can be seen by cal-
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Figure 5.7: Bouguet’s calibration data with Basler at 1280 x 1024 with fisheye lens
focal length values and error. Left: left camera. Right: right camera.
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ibrated focal length values are converging nicely (Figure 5.7) but more impor-
tantly the graphs comparing the calibrated principal point by different methods
(Figures 5.11, 5.12) which show the values calculated by Bouguet’s method is con-
sistent and confirmed by the results of the other methods.

However, the result of the disparity match (Figure 5.8) is poorer compared to the
results of OpenCV (Figures 5.6, 5.3) since in the case of the fisheye lens experiments
a small central area of the image have been selected and magnified during the recti-
fication process. Additionally, the Bouguet’s calibration method requires a manual
initialization of the focal lengths and principal point in order to successfully detect
the corners which is cumbersome and not very practical. An initial calibration using
the manually entered aforementioned parameters are good initialization parameters

Figure 5.8: Row misalignment error of stereo images by DP (Basler w/fisheye lens).
Top left: left camera raw image. Top right: another raw image. Bottom left: disparity
match of top left image rectified. Bottom right: disparity match of top right image
rectified.
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Table 5.5: Calibration data for left Basler camera with fisheye lens at 1280 x 1024.

Images 5 10 15 20
erTorsy 0.068 0.070 0.073 0.070
errory 0.070 0.076 0.078 0.075
fa 267.1+£1.0 265.8 £0.7 265.6 0.6 265.4 £ 0.5
fy 266.9+ 1.0 265.5 £ 0.7 265.3 £ 0.6 265.2 £ 0.5
Czx 632.1£0.2 632.2£0.2 632.3 £ 0.1 632.3 £0.1
cy 488.24+0.2 488.3 £0.1 488.1+0.1 488.1+0.1
K1 0.001 £ 0.007 0.009 £ 0.005 0.013 & 0.005 0.014 £ 0.004
K2 0.021 £0.012 0.007 £ 0.016 —0.005 4+ 0.014 —0.008 £ 0.012
K3 —0.028 £ 0.023 —0.014 4+ 0.019 0.001 £0.017 0.005 £+ 0.015
K4 0.010 & 0.003 0.005 £ 0.008 —0.001 £ 0.007 —0.002 £ 0.006

for the real calibration which produces accurate calibration data as shown in the ex-
periments. In overall, Bouguet’s calibration method is found to be suitable, precise
and accurate enough to be used in the DAS context according to these experiments
using these sets of calibration images under the described conditions. The need for
manual initialization of the some parameters is not a problem since the same lens is
used over and over again and just the camera setup needing a re-calibration.
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Figure 5.9: Firefly MV at 640 x 480 resolution with fisheye lens backprojection error.
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5.4 Mei’s Calibration Experiments

Mei’s calibration method for fisheye used the same set of calibration images as the
previous Bouguet’s calibration method (Figures A.11, A.12). Tables 5.6, 5.7 below
show the result of the calibrations with average backprojection errors error,,error,
(pixels) for the x-axis and y-axis respectively and the calibration parameters (intrin-
sic parameters f, fy, ¢z, ¢y in pixels and radial distortion parameters x1, k2 as well
as tangential distortion parameters x3, k4).

The calibration results using Firefly MV with fisheye lens are presented in Table
5.6 and graphs of backprojection error in Figure 5.13.

The calibration results using Basler with fisheye lens are presented in Table 5.7
and graphs of backprojection error for the left and right cameras (Figure 5.14). It
is interesting to note that the backprojection errors are also in the similar range to
those obtained by Bouguet’s method. Nevertheless, the difference in the gener-
alized focal length f,, f, and principal point are greater than those by Bouguet’s
method but consistent with them indicating they are accurate but not as precise
(Figures 5.11, 5.12). Mei’s methods uses the generalized focal length according to
the unified projection model which has not physical meaning in the case of fisheye
lenses.

Thus, the f;, f, values can not be compared to the calibrated focal length by
Bouguet’s method. Another difference with Bouguet’s method implementation is
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Figure 5.10: Basler at 1280 x 1024 resolution with fisheye lens backprojection error.
Left: left camera. Right: right camera.
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Figure 5.11: Comparison of principal points (left Basler at 1280 x 1024 res. ) as
function of calibration images. Left: x-axis values. Right: y-axis value.
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Figure 5.12: Comparison of principal points ( right Basler at 1280 x 1024 res. ) as
function of calibration images. Left: x-axis values. Right: y-axis value.

the semi-automatic initialization of intrinsic parameters which performed quite well
and easily. However, the fact that the calibration results are not as precise as Bouguet’s
method makes it less preferable than Bouguet’s method as well as the need for many
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Figure 5.13: Firefly MV camera with 9mm with fisheye lens backprojection error.
Left: left camera. Right: right camera.

more calibration images as we can observe the slower convergence by comparing
the values of f;, f, calibrated with five or ten images against those calibrated with
20 images. In overall, Mei’s calibration method is the second best behind Bouguet’s
method according to these experiments using these sets of calibration images under
the described conditions.

Table 5.6: Calibration data for left Firefly camera with fisheye lens at 640 x 480.

Images 5 10 15 20
errory 0.051 0.054 0.055 0.056
errory 0.053 0.058 0.063 0.064
fa 417.5 £ 46.3 4275 £45.4 547.4 £ 82.7 527.4+£47.1
fy 416.7 £ 46.2 426.8 £45.3 546.4 £ 82.6 526.4 £47.0
Cz 342.6 £0.5 342.7+£0.3 342.7+£0.3 342.6 £0.2
cy 241.44+0.4 241.6 £0.3 241.7+£0.3 241.7+£0.2
K1 —0.341 £ 0.007 —0.343 £ 0.005 —0.313 4+ 0.040 —0.321+0.018
K2 0.136 £0.012 0.138 £0.010 0.108 £ 0.036 0.113 £0.016
K3 —0.0003 +0.0003 —0.0004 £ 0.0002 —0.0003 £0.0003 —0.0003 £ 0.0002

K4

—0.0005 £ 0.0005

—0.0002 £ 0.0003

—0.0005 £ 0.0004

—0.0005 £ 0.0003
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Figure 5.14: Basler at 1280 x 1024 resolution with fisheye lens backprojection error.
Left: left camera. Right: right camera.

5.5 Scaramuzza’s Calibration Experiments

Scaramuzza’s calibration method for fisheye used the same set of calibration images
as the previous Bouguet’s and Mei’s calibrations methods (Figures A.11, A.12).

The tables 5.9, 5.8 show the results of the fisheye calibrations similarly to previ-
ous experiments with the single backprojection error as error (pixels) as the average
of errory,error, and the calibration parameters (principal point coordinates c,, ¢, in

Table 5.7: Calibration data for left Basler camera with fisheye lens at 1280 x 1024.

Images 5 10 15 20
errory 0.069 0.063 0.062 0.058
errory 0.070 0.063 0.061 0.058
fa 496.4 £ 56.8 501.0 £39.6 500.6 £ 33.0 506.8 £ 30.3
fy 496.0 £ 56.7 500.5 £ 39.6 500.1 £ 33.0 506.3 £ 30.3
Cz 634.3£0.5 634.1+£0.3 634.1+£0.2 634.1+£0.2
cy 488.8 £ 0.6 489.3£0.4 489.1+£0.3 489.3 £0.3
K1 —0.294 £ 0.031 —0.302 £ 0.021 —0.301 +£0.017 —0.302 +0.016
K2 0.097 £0.017 0.101 £0.012 0.101 £0.010 0.102 £ 0.010
K3 0.0005 £ 0.0009 —0.0003 £0.0007 —0.0001 4 0.0005 —0.0004 £ 0.0004

K4

—0.0014 £ 0.0008

—0.0013 £ 0.0004

—0.0013 £+ 0.0003

—0.0012 £ 0.0002
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Table 5.8: Calibration data for left Firefly camera with fisheye lens at 640 x 480.

Images 5 10 15 20
error 0.0979 0.1042 0.1060 0.1078
cy 241.7 241.7 241.7 241.7
Ca 344.2 344.1 344.1 344.1
a1 100.0 100.0 100.0 100.0
as —2.96 —2.96 —2.96 —2.96
as 0 0 0 0
ay 9.62 x 107° 1.30 x 107° 1.02 x 107° 1.02 x 107°
as 1.10 x 1078 4.51 x 1078 4.34 x 1078 8.14 x 1078
ag 1.49 x 10~1? 8.30 x 10714 2.18 x 10711 2.90 x 10711

pixels and the distortion parameters a1, a2, as, a4, as, ag. The focal length is a func-
tion of p thus not included in the tables.

The calibration results are presented in Table 5.8, 5.9 and graph of backprojec-
tion error in Figure 5.15. The backprojection error is noticeable greater especially in
the left Basler camera experiments (Figure 5.15) which translates into less accurate
calibration.

Because the same calibration images were used it is possible to estimate the row
mismatch by comparing the row component of the calibrated principal point ¢, as
mentioned in Section 4.3 since ¢, value is representative of any inaccuracies in row

Calibration Pixel error Firefly b Calibration Pixel error Basler
0.14 1.4
left-camera — left-camera
D13 ""*""right-car‘nera 1 12 B right_camera
o * T 1
Eomg | =
o o
mﬂ 0.8
0.09 : : — :
] 10 15 20 5 10 15 20
Mumber of images Mumber of images

Figure 5.15: Backprojection error. Left: Firefly MV at 640 x 480. Right: Basler at
1280 x 1024 resolution.
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Table 5.9: Calibration data for left Basler camera with fisheye lens at 1280 x 1024.

Images 5 10 15 20
error 0.844 1.117 0.851 1.082
cy 495.0 495.0 495.0 495.0
Ca 633.8 634.1 633.6 633.7
a1 100.0 100.0 100.0 100.0
as —2.72 —2.70 —2.71 —2.73
as 0 0 0 0
ay 1.56 x 107° 1.48 x 107° 1.39 x 107° 1.30 x 107°
as —2.43 x 1078 —-1.93x 1078 —1.06 x 1078 —8.00 x 107°
ag 5.61 x 10~ 11 4.79 x 10711 2.65 x 10711 2.51 x 10711
mismatches.

As Table 5.10 shows, the difference in ¢, values between Bouguet and Mei’s
methods are approximately 1.17pizels and 1.5pizels for the left and right cameras
respectively. However, a comparison between Bouguet and Scaramuzza’s methods
yields a difference in ¢, of approximately 6.94pixels and 0.14pizels for the left and
right cameras respectively (see Figure 5.16). We can conclude that Bouguet and
Mei’s values are quite accurate while the Scaramuzza’s left camera calibration value
is not. This row mismatching inaccuracy is confirmed again by the poorer results
seen in Figure 5.18 when compared to the similar disparity match in using Bouguet’s
calibration data (Figure 5.8).

The reasons for the inaccuracies and greater errors are most likely due to the
automatic corner detection feature which it does not perform well as noted earlier
(Figure 3.9). In fact, it was almost not practical that for the lower resolution images
all the corners had to be detected manually which makes it very impractical and
time consuming task. Additionally, the tables 5.8, 5.9 shows no improvement or

Table 5.10: Comparison of backprojection error and row errors (fisheye calibration
of Basler cameras at 1280 x 1024 resolution with 20 calibration images.

Camera Parameter Bouguet Mei Scaramuzza
Left error 0.073 0.058 1.082
Cy 488.1 £0.1 489.3+0.3 495.0
Ca 632.3 +0.1 634.1 +£0.2 633.7
Right error 0.076 0.057 0.80
Cy 504.1 £ 0.1 505.6 + 0.2 504.0

Cz 632.0 £0.2 631.3£0.2 630.8
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Figure 5.16: Comparison of principal points calibrated by different methods (Basler
at 1280 x 1024). Left: left camera. Right: right camera.
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Figure 5.17: Comparison of principal points calibrated by different methods (Firefly
MYV at 640 x 480). Left: left camera. Right: right camera.

very slow convergence of the intrinsic parameters when increasing the number of
calibration images unlike the other methods where there are improvements.

In summary, the results of comparing these three fisheye calibration methods us-
ing the same Basler cameras setup and set of calibration images shows in Table 5.10



76 5. Experiments

Figure 5.18: Row misalignment error of stereo images by DP (Basler w/fisheye lens).
Top left: left camera raw image. Top right: another raw image. Bottom left: disparity
match of top left image rectified. Bottom right: disparity match of top right image
rectified.

the backprojection errors as well as the calibrated principal points results shown in
Figure 5.16 confirms the results that the Bouguet’s method performed better (closely
followed by Mei) in terms of accuracy as the error in the principal points are smaller
even though the backprojection error was slightly larger than Mei’s values.

Finally, Scaramuzza’s calibration method performed the worst in accuracy, ro-
bustness and suitability according to these experiments using these sets of calibra-
tion images under the described conditions.



Chapter 6

Conclusions

This chapter summarizes the results of the experiments to test and compare the selected
calibration methods for various types of lenses in different configurations in DAS context.
Finally, possible areas for future work and improvements are identified.

6.1 Results

The OpenCV experiments setup in the DAS context with two different camera con-
figurations and resolutions confirmed its accuracy and robustness with even only
ten calibration images.

The focal length as a function of used calibration images (Figures: 5.2 and 5.4)
shows that the backprojection error is within a subpixel range and a good indicator
of accuracy which is also confirmed by the visual comparison of disparity matching
of raw images and rectified images.

Thus, the OpenCV calibration method is confirmed to be an accurate and suit-
able pinhole calibration method based on the backprojection error results, disparity
matches and the good convergence of the calibrated focal length values shows in
Figures 5.2 and 5.4. The focal length was selected as another reference for the qual-
ity of calibrations because it is a parameter that can be compared with across the
same model of lenses and it is independent of pixel resolutions. Therefore it is a
good indicator of accuracy for other pinhole camera calibrations.

The experiments with fisheye lens calibration methods were tested next with
Bouguet’s fisheye calibration method presented. This method proved to be accurate
as well as precise within a subpixel backprojection error. Additionally, the calibrated
focal length values are converging well when increasing the number of calibration
images (Figure 5.7). Finally, the comparison of the principal points with other cali-
bration methods as well the disparity matches of linearly rectified images show that
the calibration data to be precise enough. As stated earlier, the need for a man-
ual initialization is not a problem since the camera setups are reused often in the
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DAS context and the re-calibration is needed just as a measure of normal mainte-
nance due to vibrations and movements of normal driving. In overall, Bouguet’s
calibration method and implementation seems most suitable, and accurate enough
according to these experiments using the given sets of calibration images. Mei's
calibration method came second mostly because of its of accuracy and finally Scara-
muzza’s calibration method proved almost impractical to use but more importantly
the calibration results were not improving or converging very slowly as well as great
differences noted in the principal point of one of the cameras. The focal length is not
comparable in the fisheye lenses since it depends on the particular camera and pro-
jection model used. However, the principal point can be used as reference since
the same calibration images were used in all fisheye calibration methods thus they
should return the same or very similar principal point values.

In conclusion, OpenCYV calibration method is an accurate and suitable calibration
method for vision-based DAS even using small number of calibration images of a
checkerboard in both low and high resolution images. As a result, the experiments
shows that the optimal number of calibration images for OpenCV is around ten as a
good balance between accuracy and calibration errors for the smallest set of calibra-
tion images. On the other hand, for fisheye lenses configurations, Bouguet’s method
seems accurate and robust enough as well as suitable performing well with also a
small set of calibration images. Mei’s method came second in accuracy and requir-
ing a large number of calibration images but easy to use because the semi-automatic
intrinsic parameters initialization performs quite well. Scaramuzza’s method did
not require any manual input nor parameters initialization but the automatic corner
detection which made it almost impractical but most importantly failed in robust-
ness, accuracy and precision.

6.2 Future Work

Three areas can be identified for further improvements and extensions. Firstly, us-
ing different checkerboards that might improve the performance of Scaramuzza’s
calibration method since an accurate corner detection provides accurate data for cal-
ibration. It seems plausible that the poor performance of automatic corner detection
affected significantly on the accuracy of Scaramuzza’s calibration method. Secondly,
another evaluation technique independent of image resolution such as the normal-
ized calibration error used to comparing the calibration methods. Finally, a robust
and accurate automatic or self-calibration method for all lenses (pinhole and fish-
eye lenses) would be not only convenient but necessary as normal production cars
incorporates stereo cameras for DAS.



Appendix A

Appendix

Additional figures and graphs with closeups of the inside camera mounting bar
and external roof mounting, set of calibration images, experiments’ focal length and
extrinsic parameters plotted among others.

Figure A.2: Inside cabin camera’s mounting bar (six cameras fitted including stereo
Bumblebee camera).



80 A. Appendix

Figure A.3: Close view of a bracket and the mounting bar (Firefly MV camera with
9mm lens).

Figure A.4: View of externally mounted fish eye cameras. Left: front view of
HAKAL. Right: rear view of HAKA1.

Figure A.5: Close view of the brackets for externally mounted fish eye cameras.
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Figure A.6: Pinhole camera stereo rectification (9mm lens). Top: stereo image before
rectification. Bottom: rectified stereo images.

Figure A.7: Comparison of pinhole and fish eye lens for the same scene. Left: normal
9mm lens pinhole camera. Center: raw image taken with fisheye 1.8mm lens. Right:
same image rectified.
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Figure A.9: Calibration images of the left Basler camera with 9mm lens at 1280 x
960.
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Figure A.10: Set of 10 calibration images (with closer checkerboard images) taken
with Basler camera at 1280 x 960
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Figure A.12: Calibration images of the left Basler camera with fisheye lens at 1280 x
1024.
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