

VIRTUAL ENGINEERING CENTRE

Dr Antony Robotham - Executive Director

OPTIS China User Meeting 2011

18 October 2011, Shanghai, PR China

Supported by

Case Study with Bentley Motors

ual

nmar

PhD: Aerodynamic Control of VAWTs

Open University

BSc: Mechanical Engineering

Leeds University & GEC Large Machines

Designing is more than just creating a product...

...it is also about creating an emotional experience!

VIRTUAL ENGINEERING CENTRE

BENTLEY MOTORS

OPTIS + VEC = HIGH FIDELITY VIRTUAL PROTYPES

VIRTUAL ENGINEERING CENTRE

VE - integration of product and process modelling using digital technologies

VE impacts product development performance

- Rapid response to customer requirements
- > More comprehensive exploration of the solution space
- > Higher quality products to market quicker
- Reduce the risk and cost of development
- Enabling the supply chain to collaborate

Virtual Engineering

VIRTUAL PROTOTYPE - a product model embedded within a synthetic environment of the relevant life cycle phase enabled to simulate a task

Virtual Prototypes

Virtual Prototypes

VIRTUAL ENGINEERING enables integration across the product life cycle

VE across the Product Lifecycle

High fidelity VIRTUAL PROTOTYPES support early decision making in NPD

VPs across the Product Lifecycle

A Centre of Excellence in Virtual Engineering...

- VE best practice demonstration
- VE business development and research
- > VE education and skills development

... providing VE support to the aerospace supply chain and other high valued added manufacturing sectors

Virtual Engineering Centre

Located in North West region of UK

- Largest manufacturing region in the UK by GVA
- Manufacturing generates 20% of the region's GVA
- Employs 400,000 people in the region

Virtual Engineering Centre

Project Partners

- University of Liverpool
- STFC Daresbury Laboratory
- > NWAA
- Morson Projects
- > BAE Systems
- Airbus (Associate)

Funding

- > NWDA
- > ERDF

VEC Project Partners

VEC Technology Suppliers

VEC Technical Facilities

Virtual Reality & Visualisation

BENTLEY MOTORS

Founded by W.O. Bentley in 1919

Located in Crewe, England since 1946

Owned by Volkswagen AG since 1998

Bentley Motors

"To build a good car,

a fast car,

the best in class"

W.O. Bentley

Design Development

Virtual Models

PR0 Gateway

PR1 Gateway

PR2 Gateway

IDKM & EDKM

Production

Objectives

- Improve the quality of the design solution
- Reduce time and cost of new vehicle design
- Replace physical mock-ups with virtual prototypes

Surface and Build

Virtual surface validation

Ergonomics

- Ergonomic Validation vision/reflections
- Lighting Development illumination

Priorities for Bentley Motors

ENGINEERING

CFNTRF

VEC

Optis

Bentley Motors

Demonstration Project

- Vehicle CAD data of Mulsanne
- Virtual Reality technologies
- Optical behaviour

Common technology challenges include:

- Immersion and auditor tracking
- Physics based real-time visualisation
- Realistic exterior environments
- Augmented physical reality
- Actual visibility of variation

Demonstration Project

Health Warning – Everything you are about to see is a simulation

VEC + OPTIS = HIGH FIDELITY VPS

Step 1: CAD Geometry

Capture and measure properties

- > Materials
- Light emitting sources

Step 2: Material Properties

Add measured information using SPEOS for CATIA

- Light sources
- Materials
- > Sensors
- Environments (any location and time)

Step 3: Integrate into One Model

Run simulation and post-process data

Step 4: Physics-based Simulation

Waterfall lights, Reading lights, Switches, Gauges, Needles, Headlamps

Review VE results with Human vision

Step 5: Evaluate in CAD (Speos)

Step 5: Optis SPEOS

Step 5: Optis SPEOS

RT Lab

Interactive (real time) assessment of components and assemblies, modify viewpoint, change lighting conditions, change materials, evaluate glare, reflections, ergonomics in a real time environment.

Not pre-calculated

Used for early design review to assess lights, materials, positioning, reflections & glare

Step 6: Evaluate in RT Lab

Step 6: Evaluate in RT Lab

VR Lab,

- Full 3xDOF assessment of reflections, lighting conditions, spectrum changes, from a
- Hi-fidelity full physics based rendering
- Pre-calculated view point

Used for design review, communication and decision making on lighting levels, sunlight impact, veiling glare, and reflections

Step 7: Evaluate in VRLab

Step 7: Evaluate in VRLab

VIRTOOLS

- Real time immersive tool to enable interaction between 'designers/engineers' with virtual products models and virtual environments.
- Uses CAD data from CATIA (3DXML)
- Material properties
- Real time tracking
- Physics-based behaviour
- Programmable capabilities

Step 8: Evaluate in VR (Virtools)

Step 8: Evaluate in VR (Virtools)

Capability to perform full vehicle reviews (physics based) before physical prototypes have been built

Real time, dynamic design review with the flexibility to accommodate different user viewpoints

Full physics based analysis of vehicle interiors and exteriors

Inspection capability for exterior examination

A facility with technical partners to develop a process that can be used within Bentley Motors

Demonstrator Outcomes

Future plan to create an augmented seating & steering column module to interact and enhance the immersive environment

Reduce rendering calculation time by use of CPU & GPU clusters

Dr A Robotham

ENGINEERING

VIRTUAL

CENTRE

Virtual Prototypes have an important role to play in NPD

Immersive, user experiences require hi-fidelity physics-based models of the product and the active environment

Interaction with VPs must be intuitive and non-invasive

Exploration of the total design space will be expensive

Concluding Remarks

Thank You