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Abstract 

Due to increasing electric vehicles (EVs) uptakes, power system distribution 

network will have to accommodate the increased load level for charging EVs. 

Thus, the importance of a robust power system especially in the distribution 

network level is indisputable. During the planning or reinforcement stage of 

distribution networks, it is paramount to have some estimations and analyses 

done on system-wide EV charging loads that will be placed in the network. Thus, 

this paper systematically investigates the EV fleet composition, market shares, 

and charging patterns within New Zealand (NZ) area. A multivariate 

probabilistic modelling of dependent random variables and cumulative 

distribution functions is adopted for the accurate estimation of aggregated EV 

charging demands. Several vehicle travel survey data sets are utilised to 

quantitatively determine charging behaviours and driving patterns of EVs. The 

developed methodology based on Monte-Carlo simulation (MCS) is utilised to 

generate results close to the real use-cases daily power demand, which can be 

further utilised in the analysis of EV charging strategies. In addition, non-smart 
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and smart EV charging strategies are introduced to mitigate impacts of the 

large-scale EV deployment and to guarantee the charging completion for each 

EV. 

Keywords: Charging, EV electrical load model, Probabilistic modelling, Smart 

charging strategies 
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1. Introduction 

During the last decade, the reduction of fossil fuel dependency and the reinforcement 

of environmental policies had motivated the automotive industry to shift development 

directions from conventional internal combustion engine vehicles (ICEVs) to electric 

vehicles (EVs). Both opportunities and challenges of EV deployments need to be 

identified in the electricity industry to achieve better integration at the planning and 

operational levels [1]. Along with expected environmental benefits, the increasing 

penetration of EVs may potentially reshape electricity load profiles due to the grid-to-

vehicle and vehicle-to-grid power flow [2].  

EV deployment impacts on transportation, manufacturing, economy or long-term 

power system plan have been identified, studied and quantified mainly by means of 

mathematical, deterministic and probabilistic models. Such models are necessary 

primarily for two reasons. Firstly, real world data about EV use is not publicly 

available due to the privacy concern and the low EV uptake to date. Secondly, 

although data is available, there will still be a concern on how to make use of the data 

to access and mitigate impacts for the conditions with different EV charging and 

driving patterns [3]. Moreover, the EV charging demand is considered as an essential 

input for EV charging strategies to carry out scheduling subject to a set of constraints. 

In order to demonstrate the convincing effectiveness of EV charging strategies, it is 

necessary to consider the randomness and heterogeneity of EV charging demands.  
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Reviews of the studies into the modelling of EV charging demand have been carried 

out to identify the weakness and strength in each approach [3]. The studies conducted 

in Refs. [4, 5] proposed mathematical analyses of EV charging demands, in which the 

fluid dynamic traffic model and the queueing theory were utilised to evaluate the 

charging demands regarding spatial and temporal dynamics. The Markov chain 

models were built in Refs. [6, 7], uncertainties related to when and where EVs will be 

recharged were pre-defined by a global transition matrix in which charging events for 

the next time interval were only influenced by pre-determined transition probabilities. 

In deterministic studies, distribution network constraints were utilised to estimate the 

threshold level of EV penetrations that would exceed thermal ratings [8-10]. In 

probabilistic studies, stochastic procedures are used to complete the quantitative 

analysis [11]. The national transport survey was adopted in support of the extraction 

of probability density functions. The method of Monte-Carlo Simulation (MCS) was 

presented in Refs. [7, 12], where loading profiles with the integration of EVs were 

acquired by probabilistic density functions (PDFs). The study [13] also employed 

MCS to evaluate EV deployment impacts on a distribution network with increasing 

penetration levels. 

The diverse stochastic techniques become a popular choice to generate EV charging 

data, which is considered as essential input parameters of controlled or optimised 

charging strategies to evaluate EV deployment impacts. Different charging 

algorithms, methods and strategies in the field of smart EV charging systems were 
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reviewed in [14]. A number of metaheuristic approaches can be found in centralised 

and decentralised charging strategies that manage EV charging behaviours to achieve 

optimisation targets, such as the minimum cost, the minimum power variance and the 

minimum emission [13, 15, 16]. The scheduling of EV charging loads in each domain 

is carried out by measuring local parameters or associated criteria, such as tariff 

signals or local electrical signals [17-21]. 

A rigorous estimation of EV deployment impacts at the system level is considered 

important for distribution network operators (DNOs) in the planning phase of network 

reinforcements. Most of the existing research works evaluate EV deployment impacts 

mainly based on reasonable assumptions about the randomness characteristic while 

ignoring the heterogeneity characteristic. For instance, in [7], the authors merely made 

use of a BMW i3 model to represent all EVs within the distribution network. The 

fixed EV plug-in time and plug-out time were assigned in [9] to simulate the worst-

case scenario in which the EV charging demand overlap the peak residential loads. 

The study [22] introduced an example of the stochastic charging scenario with the 

application of the conditional Gaussian distribution to simulate arrival times, charging 

times and departure times for an EV fleet. A probabilistic model of EV driving 

patterns was developed in [6] based on different PDFs extracted from transportation 

survey data, but only one charging mode was considered in the model.  

The research gap among these studies is the lack of consideration for heterogeneity in 

the modelling of EV charging demands so that the effectiveness level of charging 
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strategies is not convincing. Such heterogeneity in EV charging loads is composed of 

factors that will change the profiles of EV charging loads, such as different daily 

driving mileages, recharging times and different compositions of EV fleets. For 

example, equivalent numbers of commercial EVs and private EVs may result in 

entirely different charging demands, which has been investigated in [23]. More 

importantly, despite the importance of EV charging behaviours in fore-mentioned 

works summarised, current smart charging strategies primarily rely on the simplistic 

representation of EV charging and travel behaviours. The promotion of EV usages 

will potentially alter the transport and electricity network. Hence, it is necessary to 

develop an empirically estimated model amenable for these integrated cross-sector 

analyses based on existing statistics data available. By this modelling technique, the 

proposed EV charging strategies can be carried out to validate the performance and 

effectiveness closer to a real case.  

From the practical operation view, the EV scheduling problem is formulated as an 

optimization model in this paper in order to identify the grid benefits solution that 

satisfies the charging requests. Therefore, the main contributions of the paper are: 

1. A large-scale EV charging model that bridges the gap between the 

representations of charging behaviour used in integrated transport and power 

system analyses for the appraisal of smart charging strategies.  



 

5 

2. A multivariate probabilistic model to estimate aggregated EVs charging loads 

with the consideration of randomness and heterogeneity based on 

transportation statistic data.  

3. A case study to test effectiveness of non-smart and smart charging strategies 

regarding peak-shaving and valley-filling impacts on the aggregated EVs 

charging loads. 

The rest of the paper is organised as follows. The EV charging and driving patterns 

considering all relevant factors are explained in Sections 2 and 3. Section 4 provides 

the modelling approach based on MCS. Then, the charging strategies and a case study 

are described in Section 5. The results and discussion are presented in Section 6, and 

the paper is concluded in Section 7. 

2. EV Fleets Composition in NZ 

The 2018 annual vehicles statistic from NZ Ministry of Transport [24] indicated that 

over 7000 Electric Vehicles (EVs) are running on the road, 49% of which are 

concentrated in Auckland as presented in Fig. 1Fig. 1. As shown in Table 1Table 1, 

although the EV penetration in NZ has experienced a rapid growth in recent years, it 

merely occupied nearly 0.1% in 2017 [24]. The EV penetration represents the 

percentage of the total EVs number over the total vehicles number. 

Table 1 EV penetrations in New Zealand from 2014 to 2018 

Year EVs Number Annual EVs Fleet Growth EV Penetration   

2014 232   0.01%   

2015 592 255.17% 0.02%   
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2016 1114 188.18% 0.03%   

2017 2752 247.04% 0.07%   

2018 7000 240.30%     

 

New 
Zealand

 

Fig. 1. EVs Distribution Map in New Zealand in 2018 

2.1 Projected Ownership of Electric Vehicles 

The EV population is a critical determinant of EV charging demands. The New 

Zealand Center of Advanced Engineering (CAENZ) proposed four scenarios about 

future EV uptakes in [25] based on NZ government and consulting company works as 

shown in Table 2Table 2. 

Table 2 Predicted EV populations in NZ 

Years 
EV uptake scenarios (unit: millions) 

Lower Case Upper case 

2040 0.9 2 

2030 0.3 1.2 

Current 0.007 
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2.2 Projected EV Fleets Composition 

EV populations can be categorized into five main fleets according to EV ownership 

statistics in NZ, which are private EVs, utility EVs, commercial EVs, electric goods 

trucks, and electric buses [24]. The fleet categories include a variety of EV 

manufacturers, in which each brand has its own endurance mileage, battery capacity 

and charging power.  

Table 3 

Table 3Table 3 introduces five mains EV models to represent each EV fleet in the 

modelling of charging demands. Their technical parameters will be used in MCS. Fig. 

2Fig. 2 depicts the composition ratio of ICEV fleets in NZ [24]. The present and 

projected amount of various EV fleets in Table 4Table 4 are derived from predicted 

EV populations in Table 2Table 2 with the assumption that the composition ratio of 

the five EV fleets is equivalent to that of the ICEV fleets in Fig. 2Fig. 2. 

Table 3 Charging parameters of five types of EV models 

EV types 
Manufacturers 

Model 

Battery 

Capacity 

(kWh) 

Charging Power(kW) Full 

endurance 

mileage 

(km) 

Slow 

Charging 

Quick 

Charging 

Private Vehicle Nissan-Leaf 24/40 6.6 11 150/250 

Utility Vehicle Nissan-Leaf 40 6.6 11 250 

Commercial 

Vehicles 
Nissan-Leaf 40 -- 11 250 

Goods Truck EMS 18 series 240 -- 80 250 

Bus AUT-BUS 202 -- 50 200 
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Fig. 2 2018 composition ratio of ICEV fleet in NZ 

Table 4 The present and projected EV fleets in NZ  

EV uptake 

scenarios 

Private Electric 

Vehicle 

Electric 

Utility 

Vehicles 

Electric 

Commercial 

Vehicle 

Electric 

Goods Truck 

Electric 

Bus 

2018 Uptake 5919 633 394 35 20 

2030 Lower 

Case Uptake 
253660 27127 16881 1490 842 

2030 Upper 

Case Uptake 
1014641 108507 67524 5961 3367 

2040 Lower 

Case Uptake 
760981 81380 50643 4471 2525 

2040 Upper 

Case Uptake 
1691068 180844 112540 9935 5611 

3. Analysis of EV Charging Behaviour  

Some existing studies [6, 7, 22, 26] in the appraisal of charging strategies relied on 

simplistic representation of EV fleets conforming to a certain probability model, 

which merely considered randomness of charging behaviours while ignoring 

heterogeneity. A multivariate probabilistic model is introduced to characterise both 

randomness and heterogeneity in the modelling of EV charging demand based on the 

summary statistics in NZ. Such model can be used to represent of consistent charging 

Utility Vehicle(330912)

9.04%

Goods Vehicle(18180)

0.5%

Bus(10268)

0.28%

Private Vehicle(3094345)

84.55%

 

 

Commercial Vehicle (131069)

5.63%
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behaviours used in integrated transport and power system analyses. It is assumed that 

advent of EVs will not affect daily travel patterns and lifestyles in general so that EVs 

have similar driving patterns with ICEVs. The following uncertainty factors are 

considered when modelling the 24-hour EV charging demand: (i) EV charging 

duration, (ii) EV charging power, (iii) EV daily travel distance/EV initial battery SoC, 

(iv) EV recharge probability, (v) EV plug-in time. These uncertainties were treated 

separately for each EV, which are random variables generated by predefined PDFs in 

Table 5Table 5.  

The PDFs of EV daily driving distances are either of normal or logarithmic 

distribution type in previous studies with a positive value of the travel distance [27-

29]. It can be expressed by Eqs. (1(1) and (2(2), respectively. 

𝑓𝐷1(𝑥𝑖,𝑗) =
1

𝜎𝐷1,𝑗√2𝜋
𝑒𝑥𝑝 [−

(𝑥𝑖,𝑗−𝜇𝐷1,𝑗)
2

2𝜎𝐷1,𝑗
2 ] , 𝑥 > 0     (1)      

𝑓𝐷2(𝑥𝑖,𝑗) =
1

𝑥𝜎𝐷2,𝑗√2𝜋
𝑒𝑥𝑝 [−

(𝑙𝑛𝑥𝑖,𝑗−𝜇𝐷2,𝑗)
2

2𝜎𝐷2,𝑗
2 ] , 𝑥 > 0   (2) 

where 𝑖 = {1,2,3…𝑁𝑗}  represents ith EV in the specific EV fleet, 𝑗 = {1,2,3,4,5} is 

the total vehicle amount in the specific EV fleet, specifically 1: private EVs, 2: utility 

EVs, 3: commercial EVs(taxies), 4: electric goods trucks, 5: electric buses. 𝑥𝑖,𝑗 is the 

daily travel distance of an EV, 𝜇𝐷1,𝑗,𝜇𝐷2,𝑗 are mean values, and 𝜎𝐷1,𝑗, 𝜎𝐷2,𝑗 are 

standard deviation values. For different EV fleets, the corresponding mean values and 

standard deviations are defined in Table 5Table 5.  
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The endurance mileages of different EV models are related to their corresponding 

battery capacities. Given the full endurance mileage 𝐷𝑗 , the initial state of charge 

𝑆𝑂𝐶𝑖,𝑗 can be estimated by Eq. (3(3). 

             𝑆𝑂𝐶𝑖,𝑗 = 1 −
𝑑𝑖,𝑗

𝐷𝑗∗ƞ1
, 0.05 ≤

𝑑𝑖,𝑗

𝐷𝑗∗ƞ1
≤ 0.95     (3) 

where 𝑑𝑖,𝑗 represents the daily travel distance of 𝑖𝑡ℎ EV, which is a random variable 

derived from Eqs. (1(1) and (2(2). All vehicles need to be fully charged before the 

next journey starts.  

Various studies about the efficiency of EV powertrain have been carried out to 

include the loss of battery power in driving cycles and the battery life cycle [30, 31]. 

This study considered ƞ1 = 0.95 to represent the loss of battery power during EV 

running. 

The plug-in time 𝑡𝑝𝑖,𝑗 is given in Eq.(4(4). 

𝑓𝑡(𝑡𝑝𝑖,𝑗) =
1

𝜎𝑡,𝑗√2𝜋
𝑒𝑥𝑝 [−

(𝑡𝑝𝑖,𝑗−𝜇𝑡,𝑗)
2

2𝜎𝑡,𝑗
2 ]       (4) 

where 𝑡𝑝𝑖,𝑗 is the plug-in time of an EV, 𝜇𝑡,𝑗 is the mean value, and 𝜎𝑡,𝑗 is the 

standard deviation. For different EV fleets, the corresponding values of 𝜇𝑡,𝑗, 𝜎𝑡,𝑗 are 

defined in Table 5Table 5. 

For each EV, 𝑡𝑐𝑖,𝑗 is the charging duration of 𝑖𝑡ℎ EV in 𝑗𝑡ℎ fleet type, 𝐶𝑎𝑝𝑖,𝑗 is 

the full battery capacity, charging efficiency ƞ2 is 0.95 in all cases, 𝑁𝑗 is the total 

number of the specific EV fleet. 𝑡𝑑𝑖,𝑗 is the charging duration to reach 𝑆𝑂𝐶𝑖,𝑗 =
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0.95 with rated charging power 𝑃𝐶𝑖,𝑗
 defined in Table 3Table 3. 𝑃𝐸𝑉𝑖,𝑗

(𝑡) is the 

charging power of each EV at time t, 𝑃𝐸𝑉(𝑡) the total EV charging power at time t. 

              𝑡𝑐𝑖,𝑗 = ∑ (0.95 − 𝑆𝑂𝐶𝑖,𝑗
𝑁𝑗

𝑖=1
) ×

𝐶𝑎𝑝𝑖,𝑗

𝑃𝐶𝑖,𝑗
×ƞ2

        (5) 

𝑡𝑑𝑖,𝑗 = 𝑡𝑝𝑖,𝑗 + 𝑡𝑐𝑖,𝑗           (6) 

{
𝑃𝐸𝑉𝑖,𝑗

(𝑡) = 𝑃𝐶𝑖,𝑗
, 𝑡𝑝𝑖,𝑗 ≤ 𝑡 ≤ 𝑡𝑑𝑖,𝑗

𝑃𝐸𝑉𝑖,𝑗
(𝑡) = 0,      𝑜𝑡ℎ𝑒𝑟 𝑡𝑖𝑚𝑒

       (7) 

𝑃𝐸𝑉(𝑡) = ∑ ∑ 𝑃𝐸𝑉𝑖,𝑗
(𝑡)

𝑁𝑗

𝑡=𝑖
5
𝑗=1         (8) 

Over 80% of light vehicles were parked overnight at private residences or private off-

street locations [25]. The assumptions in this model are to consider that 80% of the 

private EVs plug in the charging infrastructure during the off-work period 18:00 p.m.- 

next 07:00 a.m. and the remaining 20% will be recharged during working hours 9:00 

a.m.-17:00 p.m. The values of 𝜇𝐷2 and 𝜎𝐷2 for private EVs are considered to be 3.2 

and 0.92 respectively based on the average daily travel distance of 23.2 km specified 

in [25]. Due to the absence of travel data on utility EVs, it is assumed that it has the 

same driving pattern with private EVs. Typically, there are three working shifts for 

commercial EVs (Taxies) per day, 0:00-9:00, 9:00-16:00, 16:00-24:00. In Ref. [32], 

authors pointed out driving distances of taxi drivers in every driving shift are ranging 

from 33 km to 350 km (an average of 195.49 km, 𝜇𝐷1, std. dev. of 49.99, 𝜎𝐷1), thus 

charging twice a day is necessary to support the driving requirement. It is reasonable 

to assume that commercial EVs are quite likely to be charged with the fast charging 



 

12 

mode because the shorter charging time implies longer service hours to make profit. A 

survey of 95 truck drivers carried out in Ref. [32] also revealed that daily driving 

distances are ranging from 38 km to 500 km (an average of 201.80 km, 𝜇𝐷1, std. dev. 

of 94.42, 𝜎𝐷1). Two charging times and the high charging mode are essential to 

electric goods trucks as well. The electric buses are usually recharged with the high 

charging mode during off-service periods. As electric buses have relatively fixed daily 

routes so that their daily travel distances are relatively stable. The probability 

distribution parameters are 𝜇𝐷1 = 155, 𝜎𝐷1 = 10 according to electric bus operation 

data from Auckland University of Technology [33]. 

According to the summary of travel survey discussed above, Fig. 3Fig. 3 presents the 

probability distributions of five EV fleets’ daily travel distances. The corresponding 

PDFs parameters are summarised in Table 5Table 5.  

 

Fig. 3 Probability distributions of daily travel distances by vehicle types 
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Table 5 Characteristic EV charging parameters for probabilistic modelling 

 Daily Charging 

Times 
  

Charging 

Period 

(𝑇𝑝, 𝑇𝑑) 

 
Charging 

Mode  

𝑀𝐶 

 Probability  Initial 𝑆𝑂𝐶𝑖,𝑗 

Distribution 
  Plug in time 

𝑡𝑝𝑖,𝑗  

Electric Private 

Vehicle 
1 

9:00~17:00  slow 10%  

Equation (5.3) based on 

log N (3.2,0.92) 

N(9,0.9) 

18:00~07:00  slow 80%  N(18.5,1) 

09:00~17:00  fast 10%  Even 

Distribution 

Electric Utility 

Vehicles 
1 

9:00~17:00  fast 30%  Equation (5.3) based on 

log N (3.2,0.92) 

N(12,0.9) 

18:00~07:00  slow 70%  N(18.5,1) 

Electric 

Commercial 

Vehicles 

2 

00:00~09:00  fast 90%  
Equation (5.3) based on 

N(195.49,49.99) 

N(4,2.5) 

09:00~16:00  fast 60%  N(12,2.5) 

16:00~24:00  fast 50%  N(18,1.5) 

Electric Goods 

Trucks 
2 

00:00~09:00  fast 80%  Equation (5.3) based on 

N(201.8,94.42) 

N(3,1.5) 

09:00~24:00  fast 120%  N(14.5,2.8) 

Electric Bus 1 22:00~07:00  fast 100%  Equation (5.3) based on 

N(155,10) 
N(22,0.5) 

N (μD1,j, σD1,j): normal probability distribution function.  Log N (μD1,j, σD1,j): logarithmic probability distribution function.  (𝑇𝑝𝑖,𝑗 , 𝑇𝑑𝑖,𝑗): charging period constraints. 
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4. Modelling Method of EVs Charging Load  

4.1 Monte Carlo Simulation 

The multivariate probabilistic model in MCS aims to estimate EV charging demands 

according to the transportation statistics data in New Zealand. The following are 

assumptions made for the simulation conducted in this paper: 

a. Charging facilities are enough so that the EV owners start charging immediately 

once parked. 

b. The generation capacity is enough to supply EV loads. 

c. The charging power is rounded to the nearest integers toward infinity in the 

hourly charging power calculation 

4.2 Calculation Process of EV Charging Load based on MCS 

In the MCS, 𝑡𝑝𝑖,𝑗, 𝑀𝐶 and 𝑆𝑂𝐶𝑖,𝑗 are independent stochastic variables for each EV, 

which are generated based on the modelling parameters in Table 5Table 5. The MCS 

schematic process is presented in Fig. 4Fig. 4, specifying the following steps: 

1. Initiate EV modelling parameters listed in Table 3Table 3 and Table 4Table 4. 

2. Based on the probability density functions of stochastic variables, EV charging 

demand data is generated by Eqs. (1(1)-(4(4). 

3. Get the charging load of each EV based on Eqs. (5(5)-(6(6). 
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4. Accumulate the charging load of each EV. Loop counts until total EV 

calculation complete by Eq. (7(7)-(8(8). 

Plug-in Times

Charging Modes

Daily Mileages

Charging Durations

Daily charging power 
curve of each EV

Aggregated EVs 
Charging Power

Monte-Carlo Simulation EV charging power demand Calculation

 EV uptakes 
 (Table 3, 4)

𝑓𝐷1 𝑥𝑖,𝑗 𝑓𝐷2 𝑥𝑖,𝑗

𝑡𝑐𝑖,𝑗

𝑃  𝑖,𝑗
𝑡

𝑃  𝑡

Probability Density 
Distributions  

(Table 5)

𝑡𝑝𝑖 ,𝑗

𝑀𝐶

Start

End

Determine Charging 
Complete Time 𝑡𝑑𝑖,𝑗

Determine Initial 
battery State of 
EV 𝑆𝑂𝐶𝑖,𝑗

Determine Charging 
Power 𝑃𝐶𝑖,𝑗

 

Fig. 4 The schematic process of EV charging demands simulation 

5. EV Charging Strategies 

According to empirical estimations, private EVs, utility EVs and electric buses have 

more charging flexibility during the night. In contrast, commercial EVs and electric 

goods trucks are essential to be fully charged within the shortest time for the next 

driving work so that they are not participated in charging strategies.  

The flowchart of the proposed EV charging strategies is displayed in Fig. 5Fig. 5. The 

input parameters for each charging strategies are obtained from the MCS. The 

targeted EV fleets selected by the proposed charging strategies are private EVs, utility 

EVs and electric buses when they plug in networks after 𝑇𝑝=18:00 p.m. and plug out 

before 𝑇𝑑=next 7:00 a.m. (next day usage constraint). Optimization algorithms aims 

to achieve peak-shaving and valley-filling effect on the typical daily power curve, and 
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at the same time, to guarantee selected EV fleets to be fully charged before expected 

usage time 7:00 a.m. 

E-Pri: Private EV number
E-Uti: Utility Evs number
E-Bus: Electric Bus number
MCS:Monte Carlo Simulation

Identify 
targeted EVs 

 
 𝑡𝑝𝑖 ,𝑗  𝑇𝑝 = 1  00 𝑝.𝑚.     

 𝑡𝑑𝑖,𝑗 ≤ 𝑇𝑑 =  𝑒𝑥𝑡   00 𝑎.𝑚.  

Time-delayed 
charging strategy 

Time-delayed and 
restricted power charging 

strategy

Input Parameters 
(MCS in Fig. 4)

Select EV number Nj 
(E-Pri,E-Uti,E-Bus)

i=1 

Check
Charging Constraints

Smart Charging 
Strategy (GA)

Y Y

N

    Update                for 
three charging strategies                   

𝑃  𝑡

Y

SOC>0.9

Low Charging Mode
𝑃𝐶𝑖,𝑗

= 4

Y

N

i=i+1

Check Stop 
Criteria

i<=Nj

Y

Start

End

Y

N

N

𝑡 𝑖 ,𝑗 + 𝑡𝑐𝑖,𝑗 ≤ 𝑡𝑑𝑖,𝑗

 

Fig. 5 Flowchart of EV charging Strategies 
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5.1 Non-smart EV Charging Strategies 

5.1.1 Time-Delayed EV Charging Strategy 

EV charging data is obtained from MCS described in Fig. 4Fig. 4. The selection 

process of specific EV fleets for the charging strategy is presented in Eq. (9(9): Only 

private EVs, utility EVs and electric buses are considered in the charging strategy. 

The scheduling duration is between 18:00 p.m. and next 7:00 a.m. 

               {
𝑡𝑝𝑖,𝑗  1  00 p.m.      𝑗 = {1,2,5} 

𝑡𝑑𝑖,𝑗 ≤ next   00 a.m.  𝑗 = {1,2,5} 
  (9) 

Eq. (10(10) delays start charging time 𝑡 𝑖,𝑗 by 3 hours since EV plug-in time 𝑡𝑝𝑖,𝑗 

and verifies charging period constraints to make sure that each EV completes the 

charging before 𝑡𝑑𝑖,𝑗 (the next day expected usage time 7:00 a.m.) 

{
𝑡 𝑖,𝑗 = 𝑡𝑝𝑖,𝑗 + 3       𝑗 = {1,2,5} 

𝑡 𝑖,𝑗 + 𝑡𝑐𝑖,𝑗 ≤ 𝑡𝑑𝑖,𝑗      𝑗 = {1,2,5}
    (10) 

5.1.2 Time-Delayed and Restricted Power EV Charging Strategy 

This charging strategy combines the time delayed process and the restricted charging 

power process. The time-delayed process is the same as described above. The 

additional restricted power process is to assign a new charging power 𝑃𝐶𝑖,𝑗
= 4 kW 

instead of 6.6 kW, to private EV and utility EVs if the initial battery SoC is over 0.9, 

as described in Eq. (11(11) 
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{
𝑃𝐶𝑖,𝑗

= 4, 𝑓𝑜𝑟 0.9 < 𝑆𝑂𝐶𝑖,𝑗 ≤ 1     

𝑃𝐶𝑖,𝑗
= 6.6, 𝑓𝑜𝑟 0.05 < 𝑆𝑂𝐶𝑖,𝑗 ≤ 0.9 

        (11) 

5.2 Smart Charging Strategy based on Genetic Algorithm 

The same EV fleets and scheduling duration as previously described are considered in 

the smart charging strategy. The objective function in Eq. (12(12) is to minimize the 

peak-valley difference on power curves by applying Genetic Algorithm (GA). The 

decision variable in Eq. (13(13) is the start charging time 𝑡 𝑖,𝑗 of each EV. 

• Objective Function 

𝑀𝑖 ∑ 𝑃𝑇.𝑣𝑎𝑟(𝑡) = 𝑃𝑇.𝑚𝑎𝑥(𝑡) − 𝑃𝑇.𝑚𝑖𝑛(𝑡)
𝑇
𝑡=1    (12) 

• Decision Variable  

                     𝑡𝑝𝑖,𝑗 < 𝑡 𝑖,𝑗 ≤ 𝑡𝑑𝑖,𝑗 − 𝑡𝑐𝑖,𝑗        (13) 

• Charging Conditions 

In the smart charging strategy, the charging power of each EV is set up based on Eq. 

(11(11) as well, except for electric buses with the high charging mode. The total 

charging power are calculated according to Eq. (14(14) and Eq.(15(15).   

             {
𝑃𝐸𝑉𝑖,𝑗

(𝑡) = 𝑃𝐶𝑖,𝑗
, 𝑡 𝑖,𝑗 ≤ 𝑡 ≤ 𝑡 𝑖,𝑗 + 𝑡𝑐𝑖,𝑗

𝑃𝐸𝑉𝑖,𝑗
(𝑡) = 0, 𝑜𝑡ℎ𝑒𝑟 𝑡𝑖𝑚𝑒           

       (14) 

              𝑃𝑇(𝑡) = 𝑃𝑏𝑎𝑠𝑒(𝑡) + 𝑃𝐸𝑉(𝑡)            (15) 
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where 𝑃𝑏𝑎𝑠𝑒(𝑡) is the original demand-side base load at time t, 𝑡 𝑖,𝑗 is the start 

charging time; in the smart charging strategy, the EVs do not have to be recharged 

once parked. The start charging times is subject to the optimization 

process. 𝑃𝑇,max/𝑚𝑖𝑛(𝑡) is the total electrical load at time t. The subscripts mean 

maximum and minimum values. 

5.3 Genetic Algorithm Implementation 

An appropriate scheduling of the charging times may lead to energy savings, but at 

the same time, it also increases the complexity as it needs to satisfy constraints from a 

set of EV users and the electrical network. The choice of scheduling optimisation 

algorithms depends on several aspects, such as the computation time, the required 

quality of solutions, and the selection of the problem’s constraints or objective 

functions.  

The use of GA has been discussed in Refs. [15, 34-36] as a well-established heuristic 

approach to compute EV scheduling. In particular, the natural evolution character of 

GA is able to make the process more likely to converge to a global optimum. 

Therefore, it has been proven to be robust optimisation techniques dealing with non-

linear and non-convex problems in the EV scheduling [34]. Also, GA has the ability 

to work with search spaces by using multiple points of the population and iterative 

characteristics and to exploit any kind of heuristic knowledge from the problem 

domain, and by doing so, it is competitive with the most efficient methods in the 
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scheduling [36]. Given that decision variables used in this study are a type of floating 

numbers, according to the satisfactory performance of GA for discrete spaces [15], 

GA was selected to solve EV scheduling problems in this study.  

In this article, three adjustable parameters P, Cr, Mr need to be defined to solve the 

scheduling problem. P is the population size in each generation (alternatively 

iteration), which directly affects the computation time and convergence rate. In 

genetic operators, Cr and Mr are crossover rate and mutation rate, respectively, to 

enable GA to enhance search capability. The adjustment of P, Cr and Mr tries to 

remove the undesirable response and to obtain more optimal solutions at the given 

computation time step. A sensitivity analysis based on the empirical method is 

conducted to determine values of P, Cr and Mr, aiming to achieve lowest mean fitness 

of the obtained results in each generation, in other words, to achieve the lowest power 

variation on the load curve, as displayed in Fig. 9Fig. 9b. With a population size of 

10, cases 1-3 in Fig. 6Fig. 6 demonstrate that Cr=0.8 and Mr=0.1 obtain the highest 

computing efficiency. The purpose of cases 4-6 in Fig. 6Fig. 6 is to find an 

appropriate value of population size (P=300) to obtain the best solution set at the 

given computation time step, which is considered as 3 minutes for 2018 EV uptake. 
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Fig. 6 The average fitness of the population in the parameter tuning 

The GA implementation begins with the encoding, in which EV charging data 

specified in Table 5Table 5 is used as constraints (𝑡𝑝𝑖,𝑗, 𝑡𝑑𝑖,𝑗) to determine the feasible 

solution space of the population. The decision variable 𝑡 𝑖,𝑗 for a set of EVs are 

encoded into a chromosome of parent generation. The population size (P=300) in 

each generation is composed of 300 chromosomes. The chromosome of offspring 

generation inherits part of genes from the parent generation while also receives some 

modified part of gene from crossover and mutation operator, which can be described 

as the global searching capability for the decision variable in Eq.(13(13). A proper 

fitness function described in Eq. (12(12) is designed to search a potential set of 𝑡 𝑖,𝑗 

to give a lowest grid load variance, at the same time, to guarantee selected EV fleets 

to be fully charged before expected usage time 7:00 a.m. The loop iteration will repeat 

again to produce new generations until iteration converges to stopping criteria. 
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5.4 Case Study 

A case study is utilized to evaluate the effectiveness of the proposed charging 

strategies. The Auckland real-time base load and demand-side wholesale electricity 

price from [37] are used in the simulation. The NZ 2030 lower case EV uptake is 

considered in the Auckland city case study. There will be 0.3 million EVs running on 

the road, 49.9% of which are in Auckland District. The composition ratio of five EV 

fleets is based on the current statistical data introduced in Fig. 2Fig. 2. The total 

charging cost of EV could be estimated based on Eq. (16(16).  

𝑇𝑐𝑜 𝑡 = 𝑊 𝑝𝑟𝑖𝑐𝑒(𝑡) × 𝑃𝐸𝑉(𝑡)       (16) 

where 𝑊 𝑝𝑟𝑖𝑐𝑒(𝑡) is demand side wholesale electricity price. 

5.5 Applicability and Limitations 

The modelling of EV charging demand could be either on-line or off-line. In the off-

line system, the EV travel and charging patterns were extracted from summary 

statistics, as the real world data about EV use is not publicly available. The variability 

of EV travel and charging patterns could be redefined in Table 5 to access short-term 

EV charging demand if on-line charging events data can be obtained. The modelling 

process may appear suitable for long-term planning, such as planning of power 

generation capacity, planning of network reinforcement. 



 

23 

The proposed strategies can be potentially applied for on-line smart charging systems. 

Fig. 7Fig. 7 displays a schematic structure of the on-line smart EV charging system. 

Start charging times 𝑡 𝑖,𝑗 of EVs are considered as decision variables in the 

optimisation process. The data communication between EV chargers and local servers 

could be realized by either wire or wireless technology, such as internet of things and 

the power line communication. Overall, the operation of the system is based on the 

event-driven architecture. The main event in this system is the occurrence of EVs 

plug-in and plug-out. In this methodology, EV users, EV chargers, local servers and 

main server should perform a set of tasks, as shown in the following process: 

• Every EV charger transmits battery parameters and requests a start charging time 

for the specific parking duration and the expected battery SoC set by the user. 

• The local server acts as a data aggregator to collect all EV charging requests 

within its domain at each computation time step (3 minutes). 

• The main server executes the optimal charging algorithm taking into account all 

EV chargers’ data and predicted base loads at the current time step. The scheduled 

start charging times 𝑡 𝑖,𝑗 are sent back to all chargers through local servers. 

• The requested EV chargers update the charging schedule and execute it. 

• Any charging process is interrupted before the estimated plug-out time. EV 

chargers will send a disconnection request to the local server. 

• The main server will receive interrupted charging signals and update new EV 

charging loads for scheduling in the next time slot. 
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Fig. 7 Schematic structure of a on-line smart EV charging system 

6. Results and Discussion 

6.1 Free EV Charging Power Demand 

The 2018 EV uptake defined in Table 4Table 4 have been applied in MCS to generate 

a charging demand that is closer to the real-case in NZ. The temporal distribution of 

the uncontrolled EV’s charging demand is conducted in the probabilistic model as 

depicted in Fig. 8Fig. 8a. The simulation results display private EVs and utility EVs 

are mainly recharged in early hours during on-work and off-work periods. Due to 

longer daily travel distances, the electric goods trucks, commercial EVs and electric 

buses have lower initial battery SoC, represented by blue, green and pink dots.  

After the EV charging data is obtained, the total daily EV charging power 𝑃𝐸𝑉(𝑡) 

could be calculated based on the flowchart described in Fig. 4Fig. 4. By far the 

greatest charging demand in Fig. 9Fig. 9a is from private EVs, contributing roughly 

14MW rapid growth on the black power curve between 18:00 a.m. and 24:00 p.m. 

The uncontrolled EV charging scenario gives rise to the overall charging demand at 
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early night with a peak power of 19 MW, which is almost the same time as when 

households turn their heating, cooking and other appliances on. 

The charging period of private EVs, utility EVs and electric buses could be further 

delayed to avoid peak hours as their charging process almost ends up before 2:00 a.m. 

when it is still too early for the next day’s usage.  

6.2 Coordinated EV Charging Power Demand 

The free EV charging load profiles in Fig. 8Fig. 8a and Fig. 9Fig. 9a reveals that 

private EVs and utility EVs are the primary sources contributing to the rapid power 

raise due to higher penetrations. As introduced in Section 5, three charging strategies 

are designed to coordinate selected EV fleets when plugged-in during 18:00 p.m.-next 

7:00 a.m. without affecting EV use in the next day. Fig. 10Fig. 10 presents a 

comparison between coordinated EV charging load curves and original EV charging 

load curves, where the peak power point was decreased from 19 MW to 12.5 MW and 

finally levelled out at 10.9 MW in the smart charging strategy. Therefore, it is 

apparent from Fig. 8Fig. 8b and Fig. 9Fig. 9b that the concentrated charging loads in 

peak hours were delayed to span on off-peak periods to reduce load variance. 
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              (a)                                   (b) 

Fig. 8 (a) Scatter plot between plug-in time and initial SoC in 2018 NZ free charging 

scenario (b) Scatter plot between plug-in time and initial SoC in 2018 NZ smart 

charging scenario 

 

                   (a)                            (b) 

Fig. 9 (a) Indicated NZ EV charging profile in 2018 free charging scenario 

(b) Indicated NZ EV charging profile in 2018 smart charging scenario 

  

Fig. 10 Indicated NZ EV charging load profile in 2018 with three charging strategies 
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6.3 Management of EV Charging Demand: Case Study 

Currently, there are just 3499 EVs in Auckland and may not lead to a distinct increase 

in the daily power load profile. Therefore, the 2030 lower case EV uptake is adopted 

in the case study as detailed in Section 5.4. 

Fig. 11Fig. 11 displays EV deployment impacts on the Auckland electrical load curve 

(22/05/2018). From the free charging load curve (red dotted), we can see that the peak 

charging demand coincides with peak hours of the day, leading to a peak power of 

nearly 1400 MW. Comparing charging load curves in three charging strategies, it is 

found that there is no noticeable load spike as the peak charging demand is delayed to 

off-peak periods. Consequently, proposed non-smart and smart charging strategies 

demonstrate a positive correction on the electricity load profile regarding peak-

shaving and valley-filling influences. 

The further statistical analysis shown in Fig. 12Fig. 12 demonstrates effectiveness 

levels of three charging strategies. The smart charging strategy achieves the best 

performance to flatten the power curve with a power variance range between 788.55 

MW and 1173.83 MW. With the extra EV burden, various power curves have similar 

mean values nearly 990 MW, which could be explained by the electrical energy 

consumptions from the same EV uptake. The analysis results are summarised in Table 

6Table 6. In 2030 EV lower case, the growth rate of Auckland peak loads will reach 

31% without proper management of the EV charging demands. Whereas, by applying 
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the proposed charging strategies, the growth rate can be restricted to merely 6%~9%. 

The standard deviation of the electrical loads with integration of EVs decreases from 

234 MW to 128 MW. The charging cost savings due to the lower electricity price 

after midnight gives an economic incentive to EV owner to give up direct control of 

the charging process.  

 

Fig. 11 Indicated EV charging load profile with three charging strategies  

 

Fig. 12 Box plot of indicated EV charging load profile in 2030 with three charging 

strategies 
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Table 6 Charging indexes of large-scale EVs deployment in Auckland power system  

 

Auckland 

Electricity 

Load in 

2018 

Auckland 2030 Lower Case EV charging Load 

Free 

charging 

Delayed 

charging 

strategy 

Delayed and 

restricted 

power 

charging 

strategy 

Smart 

charging 

strategy 

Peak Load(kW) 1086 1423 1179 1152 1173 

Peak Load-Growth 

Rate 
 31% 9% 6% 8% 

Load Standard 

Deviation(kW) 
175 234 149 136 128 

Load Standard 

Deviation Change 

Rate 

 34% -15% -22% -27% 

𝑇𝑐𝑜 𝑡 (Thousands 

NSD$) 
 118 109 107 113 

6.4 Future EV Deployment Impacts 

 

Fig. 13 Indicated Charging load profile of future EV uptakes 
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Fig. 13Fig. 13 exhibits the indicated 24-hour base load profile with future EV uptakes 

specified in Section 4. Without consideration of the base load growth, the lack of 

demand-side management on EVs may challenge NZ national power system 

regarding power generation, transmission and distribution equipment, leading to peak 

loads from 6024MW to 10464MW. It may exceed New Zealand’s total installed 

generation capacity of 9281MW [38].  

7. Conclusions and future research 

In this paper, the uncertainty problems in planning of distribution networks with 

integration of EVs have been addressed. The estimation of aggregated EV charging 

loads based on the elaborated multivariate probabilistic model is implemented in 

MCS, taking into account several factors that may affect the loading profiles. EV 

charging and driving patterns are considered in the modelling in order to present the 

EV charging demand closer to a realistic scenario, in which the randomness and 

heterogeneous characteristics have been detailed by the proposed methodology. 

Moreover, the evaluation of EV charging demand at the national level reveals the 

potential shortage of generation installed capacity in NZ based on future EV uptakes. 

The case study demonstrates the peak charging demands as a result from the 

coincidence of EV charging loads and residential loads has been mitigated by the 

proposed coordinated charging strategies, in which targeted EV fleets were 

rescheduled to flatten the load curve, so as to postpone the investment of network 

reinforcement. 
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This study has shown the EV modelling technique used for the cross-sector analysis 

(transport and energy sectors) regarding the temporal distribution of charging 

behaviours, and charging strategies. However, more research and analysis are 

required to justify the adoption of EVs on the spatial distribution in electrical 

networks, and on economic incentives in demand-side response. Future works will 

explore price and non-price incentives for behavioural change in the design of EV 

charging strategies under a smart distribution network environment. Extending the 

smart charging strategy into temporal, spatial and economic considerations in the 

distribution networks could be a focal spot for the analyses of integrated transport and 

power systems at the tactical and operational level. 
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