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Abstract 

In recent years, deep learning methods have been applied to our daily lives and various 

industries. Visual object detection methods are broadly employed to a consortium of 

tasks, including human face detection in public areas, traffic signs detection, car plate 

number recognition, etc. Natural Language Processing (NLP) methods are implemented 

for language translation, Automatic Speech Recognition (ASR), client embedding, item 

embedding, etc.  

In this thesis, we contribute to special character recognition by using deep learning. 

The Adaptive Bezier Curve Network (ABCNet) is a text detection and recognition 

method utilized to recognize English Braille, which implements parameterized Bezier 

curves for detecting arbitrary-shape text in natural scenes. YOLOv5 is the second deep 

learning method that was implemented for Māori symbol recognition. The methods 

show outstanding performance in our experiments. Both methods detect and recognize 

visual objects with high accuracies. The results of our experiments prove deep learning 

methods are feasible to be implemented for detecting and classifying special characters, 

shortening the time cost of translation, and reducing labor costs.  

 

Keywords: Deep learning, object detection, scene text recognition and detection, 

ABCNet, YOLOv5 
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Chapter 1 

Introduction 

 

 

This chapter will introduce the background information relevant 

to our project, which is special character detection and 

recognition. We will present our research questions, 

contributions, and the structure of this report. 
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1.1 Background and Motivation 

From ancient times to the present, the records of what happened can be passed on to 

next generations, allow people to learn the experience from the past which is very 

important for the development of human being. Text is one of the critical media of 

human civilization, which is a very significant invention. It varies the methods of people 

delivering and exchanging information, the communications between individuals 

become much effective. Humans take advantage of images, murals, and symbols to 

describe surroundings and events in the early period. In modern times, each nation has 

its own official language and text. There are unique texts and symbols in special scenes 

employed by exceptional people, or traditional symbols and characters are still used by 

small crowds.  

When we meet a brand-new type of language or text, translating the characters into 

known text relying human labour is very cumbersome, time-consuming. Using 

computers and deep learning for detecting and recognizing characters permits the 

translation process to become more efficient, and less knowledge is needed from readers 

(Popel et al., 2020). The motivation of this research project is to implement a type of 

translator by using deep learning. The special characters of braille and Māori symbols 

are translated into plain English, which assists people in understanding the meaning of 

these special characters. 

Māori symbols are created by Māori tribes of the south pacific region, who are the 

indigenous Polynesian of New Zealand. Pre-colonial Māori had no official language. 

Therefore, the traditions and knowledge were recorded and passed through generations 

by telling descriptively and drawing. Māori symbols influence art forms in New 

Zealand, especially famous haka, wood carvings, pounamu carvings, and tattoos. Māori 

symbolism represents the culture, history, and their belief visually. The symbols 

recorded the past and future. The symbols are constructed by spirals, curves, 

supernatural deities, and natural images. For example, “Kuro” represents the silver fern 



3 

 

native of New Zealand, which shows in many scenarios such as large artworks and 

wood carving (Mead, 2016). 

 Braille is a formed system designed for visually impaired people to gain 

information through touch reading and writing. Braille system generally applies 64 

kinds of braille characters for users to edit information. A braille character is represented 

in a braille cell, which has six flatten or raised dots, organized in the shape of a 3×2 

matrix. There are two general levels of braille characters. In the first level, one character 

will only represent one English alphabet, number, or punctuation. And the second level, 

a braille character, can define a prefix, suffix, or even a word (Weygand, 2020). 

 In this research project, we would like to design a model using deep learning 

methods, which translate the braille characters into plain English and define Māori 

symbols into their corresponding meanings. We understand these special characters and 

symbols more efficiently through interpreters, with less time and labor cost for 

translating manually.  

1.2 Research Questions 

The primary purpose of this project is to detect and recognize special 

characters/symbols by implementing deep learning methods. Thus, the research 

questions of the thesis will be: 

(1) Are the novel deep learning methods suitable for detecting the characters and 

symbols? And which should be chosen for running the experiment. 

(2) Are there any modification or upgrade need to be made for the methods or the 

models? 

(3) Can deep learning methods solve the problem with high accuracy and minor error 

or misjudgment? 

There are various types of deep learning methods for detection tasks. We need to 
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select the appropriate methods for our project. Therefore, we will go through the 

methods in the literature review. Regarding the methods we choose, the evaluations are 

feasible for detecting the braille and Māori symbols, also prove how robust the methods 

can be when inferencing the targets. 

1.3 Contributions 

The focus of this project is on special character detection and recognition by using deep 

learning methods. We collected general braille characters and five types of Māori 

symbols for our datasets. We review various famous methods of deep learning, 

including different types of Convolutional Neural Network (CNN) models, object 

detection methods of Fast R-CNN series and YOLO series. We choose ABCNet for 

braille detection and recognition in natural scenes, YOLOv5 for Māori symbols 

detection. We go through the details of methods and the model structures. The 

modifications are made for ABCNet, and the network can implement parameterized 

Bezier curves to draw the prediction bounding boxes while inferencing videos and real-

time detection. In this project, our contributions are: 

(1) Solving the special character recognition problem by using two deep learning 

methods, ABCNet and YOLOv5. 

(2) Two corresponding datasets are created for the project. 

(3) Modifying the inference method of ABCNet, the network can draw curved 

prediction box for arbitrary-shape braille text when the inference resource is 

video or real-time webcam. 

(4) We train and evaluate the methods using the datasets and prove the robustness 

of the methods and capability of the networks for detection and recognition. 

1.4 Objectives of This Report 

In this thesis, our objective is to solve the problem of translating special characters. We 

find feasible deep learning methods as the solutions. While the methods are selected, we 

prepare for the relevant data and train the network properly. After the training process is 
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accomplished, the networks need to be evaluated through the data not included in the 

dataset. We must check whether the networks can infer the targets if the input resource 

is the image, video, and real-time webcam. The real-time detection is what we desire 

that the networks can achieve, which showcases that the networks have the ability to 

apply mobile detection. 

1.5 Structure of This Report 

The structure of the thesis is described as follows: 

▪ In Chapter 2, we will expound on the related deep learning methods, the various 

types of CNN models are mentioned. We will also introduce R-CNN and 

YOLO's object detection methods and discuss the advantages and disadvantages 

of the methods. 

▪ In Chapter 3, the deep learning methods are chosen to run the experiment of the 

project. The details of the methods, including the network structures, data 

preprocessing methods, and the loss function are explained in the methods. We 

describe the details of the datasets for the training and validation processes. Also, 

the modifications to the models will be mentioned in this chapter 

▪ In Chapter 4, we will show the results of our experiment. The evaluation metrics, 

time consumption, loss curves will be mentioned. The modification and 

inference results will be represented. 

▪ In Chapter 5, we will discuss the performance of the network based on the 

results in Chapter 4. The unsatisfactory results will also be shown, and the 

reasons will be discussed. After analyzing the results of the modes, we will 

examine the limitations of our work at the end of this chapter. 

▪ In Chapter 6, we draw our conclusion for our project, then envision the possible 

improvements and operations in the future based on the conclusion and the 

previous work.                          
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Chapter 2 

Literature Review 

 

 

This chapter focuses on the literature of machine learning and 

deep learning methods relevant to this project, including 

convolutional neural networks and object detection methods.  
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2.1 Introduction 

Computer vision is one of the essential fields in deep learning. It plays a vital role in 

image searching, instant translation, self-driving vehicles, robot application, and 

navigation, etc. such as identifying people, objects, car license plates in images, videos, 

or live cams (Khalil & Mouftah, 2021; Vaswani et al., 2018; Lin et al., 2015). Visual 

object detection and instance translation using deep learning can support us to 

understand special characters and symbols. This project will implement special 

character recognition based on object detection/recognition techniques and natural 

scenes text recognition. This chapter will introduce the relevant fundamental concepts 

and knowledge, including Convolutional Neural Network, object detection/recognition, 

Recurrent Neural Network, and Scene Text Recognition (STR). 

2.2 Convolutional Neural Network 

2.2.1 Simulate Human Brain Functionality 

The concept of neural network was first introduced as a biological aspect, and the neural 

networks in artificial intelligence mimic the constructures of biological neurons. Related 

work that influenced the origin of the Convolutional Neural Network (CNN) is relevant 

to the visual cortex. One of the notable achievements was the project made in 1968 

(Hubel & Wiesel, 1968). They anesthetized a cat, connected its optic nerves to an 

oscilloscope using electrodes, showed different images to the cat, and observed the 

brain waves (Hubel & Wiesel, 1962).  It is shown: 

▪ The lateral geniculate nucleus (LGN) responds to tiny spots of light but not 

diffuse reflection. 

▪ When the visual cortexes receive information from LGN, they no longer 

respond to aperture but the bright and dark lines. 
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▪ A simple type of cortical cells in the visual cortex only responds when specific 

areas are stimulated at particular angles. 

▪ Other cells (including complex cortical cells) will only respond to the light in 

specific directions but not sensitive to area changes, and the lights can move on 

the screen without causing cell inactivation. This can be explained as a group 

of simple cortical cells converging on complex cells. 

According to the phenomena, in each step, the inputs of interneurons are converged 

and give one output. The information is selectively erased in each step. Thus, the brain 

can act like a filter on different levels and distinguish some complex features. The first 

concept is the multilayer structure. The experiment shows that the retina and LGN 

constitute the first layer for receiving the visual signal and making preliminary 

processing in response to light spots. Then, the simple cells start responding to the lines, 

and more complex cells do further processes. The second concept is filtering, that 

different cells respond to specific inputs and filter out other information. The third one 

is local connectivity, which means each neuron will not respond to the whole image. It 

only focuses on the area that next to it. The last concept is translation invariance. 

In 1980, Fukushima et al. (1982) introduced a pattern recognition mechanism called 

Neocognitron to help people understand how our brain works by building a pattern 

recognition network simulating the human brain. This model has been regarded as the 

prototypical model of Convolutional Neural Network (CNN). Two types of cells were 

designed based on a biological neural network called simple cells (S-cells) and complex 

cells (C-cells), the cells will be grouped as planes, and a layer inside the network is 

composited by the planes. Neocongnitron contributed to simulating the structure of 

neuroscience using the computer, with the step-by-step filter utilized CNN nowadays, 

take advantage of ReLU as a nonlinear function, average pooling for downsampling, 

guarantee the translation invariance of the network and sparse interaction (Schmidhuber, 

2015). 
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Although Neocognitron is very fancy, it is built based on unsupervised learning 

WTA (Winner Take All), which has limited practicability. From 1989 to 1990, LeCun et 

al. (1989) applied backpropagation to supervised learning in deep networks, similar to 

Neocognitron. The difference is when generating each feature map, only a single neuron 

is applied to every receptive field (Gilbert & Wiesel, 1992; Luo et al., 2016). The entire 

convolution operation is equivalent to scanning the input with a small convolution 

kernel and then following with a squashing function. This operation permitted weight 

sharing, which reduced the number of free variables, the risk of overfitting, and 

improved generalization ability. It speeds up the training process while reducing the 

parameters. 

    The model cresceptron (Weng et al. 1992) contributed two tricks that were designed 

for training models. The first trick is data augmentation, which applies multiple 

transformation methods to original training data, including translation, rotation, 

rescaling, etc. This trick augments the size of the training dataset and improves the 

robustness of the algorithms, reducing the risk of overfitting. The second trick is max 

pooling (Weng et al., 1992; Nagi et al., 2011). 

2.2.2  Modern CNN 

LeCun et al. (1998) suggested the first complete modern CNN called LeNet-5. The 

structure of LeNet-5 contains all types of essential layers compared to previous models. 

The network layers have been deepened to 7 layers, with two layers of convolutional 

layers and pooling layers. Between the second layer (subsampling layer S2) and the 

third layer (convolutional layer C3), the number of feature maps is increased from 6 to 

16. Instead of applying a full connection between S2 and C3 layer, different feature 

maps will have 3 to 5 different S2 outputs (in different ranges) as inputs. This gives two 

benefits: Reducing the connection numbers by not using the full connection and 

breaking down the symmetry between different feature maps, which is conducive to the 

robustness of its representation. LeNet-5 takes use of Tanh as its activation function, 
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which is shown as eq.(2.1) : 

tanh⁡(𝑥) = ⁡
𝑒𝑥−𝑒−𝑥

𝑒𝑥+𝑒−𝑥         (2.1) 

where a symmetric activation function triggers faster converge. ReLU has replaced in 

LeNet-5 because the model was not too deep, the problem of gradient vanishing can be 

ignored, the nature of accelerating convergence is much critical to be considered. 

Another alternation is at the output layer, RBF layer replaced the original fully 

connected layer as shown in eq.(2.2) 

𝑦𝑖 = ∑ (𝑥𝑗 − 𝑤𝑖𝑗)
2

𝑗         (2.2) 

where 𝑦𝑖 is regarded as a penalty term. From the perspective of probability theory, the 

output of RBF is thought as a Gaussian distribution that has not been regularized with 

negative log-likelihood. The benefit of using RBF is that the user can set the parameters 

of RBF (Er et al., 2002). 

In 2012, the emergence of AlexNet marked the rise of deep learning. The structure 

of AlexNet has eight layers, including five convolutional layers and three pooling layers. 

AlexNet is similar to LeNet-5, but more convolutional layers and larger parameter space 

are exploited for fitting dataset ImageNet, which is a boundary between shallow neural 

network and deep neural network (Krizhevsky et al., 2012). After each convolutional 

layer, there is a ReLU function as shown in eq.(2.3),  

𝑅𝑒𝐿𝑈(𝑥) = max⁡(0, 𝑥).        (2.3) 

    If the input is a positive number, gradient saturation will not occur, solving the 

problem of vanishing gradient, which Sigmoid cannot handle, giving faster convergence. 

But there are some disadvantages of the ReLU function. One typical issue is when the 

input is negative, the gradient will be 0 when proceeding with backpropagation, and this 

is called Dead ReLU (Lu et al., 2019). Data augmentation was also applied while 

building AlexNet. The technique Dropout is used to selectively ignore the nodes in the 

backpropagation process during training, preventing overfitting (Gal & Ghahramani, 
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2016). 

In 2015, the proposal of ResNet was a milestone in the history of CNN, which won 

the champion of ILSVRC 2015 with 3.6% error rate. Relying upon the experience, the 

depth of a neural network is highly relevant to its performance. Theoretically, when the 

layers are added into a network, it can execute more complex feature extraction, better 

results can be achieved when the model is deeper. Unfortunately, when more layers are 

added to the network, the accuracy appears to be saturated or even decreased.  

Given a hypothesis that a shallow neural network has reached its best configuration, 

we add extra layers to form a deep neural network. The parameters inside the extra 

layers are set to be always identically equal. The extra layers will not affect input and 

output, which gives the deeper network the same error rate. But during training, the 

parameters in additional layers cannot be identically equal, which conducts a worse 

performance called degradation. The experimental result (He et al. 2016) shows that the 

56-layer network has a higher error rate in training and testing than the 20-layer network. 

It is not a problem of overfitting because both training error and testing error of 56-layer 

network are higher. What happens is called vanishing/exploding gradients. The loss 

function is shown as eq. (2.4): 

𝐿𝑜𝑠𝑠 = 𝐹(𝑋,𝑊)        (2.4) 

𝜕𝐿𝑜𝑠𝑠

𝜕𝑋
=

𝜕𝐹(𝑋,𝑊)

𝜕𝑋
        (2.5) 

𝐿𝑜𝑠𝑠 = ⁡𝐹𝑛(𝑋𝑛 ,𝑊𝑛), 𝐿𝑛 = 𝐹𝑛−1(𝑋𝑛−1,𝑊𝑛−1),…⁡𝐿2 = 𝐹1(𝑋1, 𝑊1) (2.6) 

𝜕𝐿𝑜𝑠𝑠

𝜕𝑋𝑖
=

𝜕𝐹𝑛(𝑋𝑛,𝑊𝑛)

𝜕𝑋𝑛
∗ … ∗

𝜕𝐹(𝑋𝑖+1,𝑊𝑖+1)

𝜕𝑋𝑖
      (2.7) 

Its gradient after backpropagation is calculated by eq. (2.5). Extending to multi-

layer neural networks with the same principle, the loss function can be represented as eq. 

(2.6), where n represents the number of layers. According to the chain rule, the gradient 

in layer i can be calculated by using eq. (2.7) (Hecht-Nielsen, 1992).  
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The initial value of W usually is set as 0. If 𝑊1 × 𝑊2 × …⁡× ⁡𝑊𝑛  is getting smaller, 

it generates a slower update of W, which is called vanishing gradient problem. If W in 

each layer has an enormous value which is bigger than 1.0, it will induce gradient 

exploding. The problem of gradient vanishing and exploding problems are remedied 

using methods such as batch normalization, which allows the network depth to become 

10 times deeper with less increased error rate. However, the degradation problem might 

occur.  

ResNet has the residual blocks for solving the issues if the network gets deeper. The 

residual function 𝐻(𝑋) = 𝐹(𝑋) + 𝑋 replaces the standard output, which means eq. (2.7) 

has changed into eq. (2.8): 

𝜕𝑋𝑖+1

𝜕𝑋𝑖
=

𝜕𝑋𝑖+𝜕𝐹(𝑋𝑖,𝑊𝑖)

𝜕𝑋𝑖
= 1 +

𝜕𝐹(𝑋𝑖,𝑊𝑖)

𝜕𝑋𝑖
      (2.8) 

The “shortcut connections” does not introduce additional parameters and 

computation under identity mapping. A residual block has two layers, where X 

represents the input of the residual block, F(x) is the output after the first layer of linear 

change and activation function. Before the second activation function, F(x) is added 

with input X. For redundancy layers that can satisfy identity mapping, we only need F(x) 

= 0, which is easier than H(x) = x (Naranjo-Alcazar et al., 2019).  

2.3 Object detection 

The watershed of the development process of object detection is separated into 

conventional object detection and object detection based on deep learning. Girshick et al. 

introduced R-CNN, proposed the first object detection method using deep learning 

techniques. In modern times, object detection methods are grouped into two categories, 

two-stage detection and one-stage detection. Two-stage detection defines the detection 

as “from coarse to fine”, and one-stage detection describes it as “one step in place” 

(Wang et al., 2013; Zou et al., 2019). 
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2.3.1 R-CNN 

R-CNN and CNN methods are applied to object detection, which are the main research 

ideas in visual object detection. Compared to traditional methods such as Viola-Jones 

face detection using a sliding window to determine all possible areas, R-CNN operates 

Selective Search to pre-extract regions that are more likely to be visual objects and only 

extract features from these regions using CNN (Viola & Jones, 2001; Uijlings et al., 

2013). R-CNN includes four steps: Generating regions, feature extraction, classification, 

and localization refinement (Girshick et al., 2014).  

 In the first step, the network receives an image as input by using the Selective 

Search method to generate 1,000~2,000 candidate regions called Region 

Proposal/Region of Interest (RoI). The regions are in rectangular shapes with different 

sizes and ratios. The regions will be reshaped for fitting CNN, two methods are 

considered: Anisotropic scaling and isotropic scaling. In feature extraction, R-CNN 

takes advantage of AlexNet as its backbone. The AlexNet will be pre-trained into a 

classifier that can classify 1,000 categories. The pre-trained CNN will be finetuned for 

classifying 21 classes (20 types of objects + background). 

 Regarding pattern classification, R-CNN refers to SVMs as its classifiers (21 SVMs 

included) (Cortes & Vapnik, 1995). The output features from CNN will be graded by 

SVMs, then through Non-maximum Suppression (NMS) for eliminating overlapped 

regions (Bodla et al., 2017). For localization, each class will be refined with its 

bounding box by using a linear regressor. Because R-CNN must go through thousands 

of regions, the computation cost is prohibitively expensive and time-consuming.  

2.3.2 Fast R-CNN & Faster R-CNN 

To reduce the computational time, Girshick et al. (2015) came up with a new plan and 

proposed Fast R-CNN. Instead of extracting features from each region, Fast R-CNN 

adopts the whole image as the input of CNN. Fast R-CNN achieves most end-to-end 
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training processes (except RoI). The features are temporarily stored inside graphic 

memory, do not need extra storage. SVM classification and bounding box regressor are 

combined with CNN while training. Two layers replace the softmax layer. One responds 

softmax for regions classification (including backgrounds), another is for finetuning the 

bounding boxes (Grave et al., 2017).  

With regard to feature extraction, the procedures such as convolution, pooling, and 

activation function (ReLU) do not require fixed-size inputs. RoI pooling layer is added 

to the network. It maps inputs in different sizes onto fixed-scale vectors. RoI Pooling 

divides the regions evenly into 𝑀 × 𝑁 blocks, then performs max pooling to each block. 

The regions are transformed into the same size and ready to be passed through to the 

next layer. Although inputs in different sizes will generate different sizes of feature 

maps, the RoI pooling layer extracts a fixed-dimensional feature representation for 

every region, which feature maps can go through softmax.  

Fast R-CNN still applies selective search to generate RoI, which is time-consuming 

to provide every RoI. Therefore, in Faster R-CNN, a neural network is proposed for 

extracting edges, which means, generating RoI, feature extraction, classification, and 

localization are all unified into a deep neural network (Ren et al., 2015). The structure 

of Faster R-CNN is regarded as a Region Proposal Network (RPN) with Fast R-CNN. 

The RPN is employed to replace the selective search method (Li et al., 2018). 

2.3.3 YOLO 

The R-CNN series have high accuracies in detection tasks. However, due to 

characteristic of the two-stage network structure, the detection speed cannot meet the 

real-time requirement. It is indispensable to design a faster network for solving real-

time tasks. 

    A one-stage detection method called YOLO (You Only Look Once) has been 

proposed (Redmon et al., 2016). It has a faster detection speed of 45 FPS, published in 

CVPR 2016, and has attracted wide attention. The main idea of YOLO is to turn 
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detection tasks into a regression problem. A whole image is the input of the network, 

getting the location and classes of the bounding box. In Faster R-CNN, an RPN 

structure is employed for getting RoI of the targets, this method has high accuracy, but 

the extra effort is needed to train the RPN. YOLO splits the image into 7 × 7 grids, 

these grids are regarded as the RoI, and RPN is not required. Each grid is responsible 

for predicting multiple bounding boxes with the confidence value. The corresponding 

data of a bounding box contains the information of its location and the confidence score. 

The data is shown as 

𝐕 = (𝑥, 𝑦,𝑤, ℎ, 𝑐)        (2.9) 

where (𝑥, 𝑦) represents the coordinates of the central point of the box, 𝑤  shows the 

width, ℎ is the height of the box, 𝑐 denotes the confidence score. 

 The first version of YOLO, namely, YOLOv1 improves the speed of object 

detection. It permits the pipeline of the network to become straightforward. But it has a 

disadvantage which cannot proceed with multitarget detection properly. Also, the 

accuracy of localization is poor, the recall of the method is low. Therefore, YOLO9000 

is introduced to eliminate the problem in the previous version of YOLO (Redmon & 

Farhadi, 2017). More versions of the YOLO series were introduced for visual object 

detection. The novel detection method YOLOv5 gains very efficient inference speed 

while ensuring the accuracy of detection. This method is one of the candidates' deep 

learning methods to be chosen for running this project's experiment (Jocher et al., 2020). 
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Chapter 3 

Methodology 

 

 

The main content of this chapter is to clearly demonstrate the 

deep learning that we select for this project based on the 

reviewed methods. We articulate the details of ABCNet and 

YOLOv5, which will be implemented for the experiments of this 

thesis.  
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3.1 ABCNet For Braille Recognition 

We execute E2E (end-to-end) scene text recognition (spotting) for braille characters. 

ABCNet as a novel solution is regarded as a relatively suitable method (Wang et al., 

2011; Li et al., 2017). ABCNet (Liu et al. 2020) is an E2E model for text spotting. The 

structure of ABCNet has three arts, including an FPN-ResNet-based detection 

framework, Bezier Align, and a lightweight recognition branch. ABCNet is the first 

method that implements parameterized Bezier curve for scene text detection and 

recognition. It detects arbitrary-shape text in natural scenes adaptively, feasible for 

curve text detection. 

3.1.1 FPN-ResNet Detection Branch 

Inspired by FCOS, ABCNet takes use of the structure of FPN with ResNet as its anchor-

free detection branch (Tian et al., 2019; He et al., 2019). The popular object detection 

methods, including R-CNN series models, SSD, YOLO series, and anchor-based 

detection methods, implement pre-set bounding boxes and scan the entire image to 

search targets (Liu et al., 2016). These methods have the following disadvantages: 

▪ The bounding boxes are in various sizes, ratios, and usage counts. These 

hyperparameters have outstanding outcomes based on the detection results. 

▪ The bounding boxes need to be adjusted during different tasks because the 

sizes of the targets in each task are different, and small targets are very hard to 

detect. 

▪ To improve the score of recall, the network will generate a huge number of 

bounding boxes, most of the boxes are negative samples, which lead to the 

unbalance between positive samples and negative samples, affect the final 

results. 

    The anchor-free methods do not implement pre-defined bounding boxes for the tasks 

by applying regression methods to generate the boxes (Zhu et al., 2019). YOLOv1 is 
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one of the famous methods of anchor-free detection. ABCNet takes an example by using 

the architecture of FCOS and FPN with ResNet as its backbone and detection branch to 

detect different sizes of features on different feature maps. 

 In YOLO, if a grid contains the central point of the target, then it is marked as a 

positive sample. Otherwise, it will be labeled as negative samples. This method brings a 

lousy impact on recall estimation. The networks of ABCNet and FCOS are treated as a 

position(pixel) as the positive sample as long as it is within the ground truth bounding 

box (Long et al., 2015). Instead of only focusing on how to predict the central point of a 

target, the network is learning how to predict the distance to the top, bottom, left, and 

right (𝑡, 𝑏, 𝑙, 𝑟) of the ground truth bounding box of each position.  

 We assume 𝐹𝑖 is the i-th feature map on the backbone, 𝑠 represents the stride of the 

feature map. The ground truth of bounding boxes of the input image is defined as 𝐵𝑖 =

(𝑥0
𝑖 , 𝑦0

𝑖 , 𝑥1
𝑖 , 𝑦1

𝑖 , 𝑐𝑖), 𝑥0 and 𝑦0 represent the top-left coordinates of the bounding box, 𝑥1 

and 𝑦1 display the bottom-right coordinates of the bounding box, 𝑐 shows the class of 

the target.  Each pixel (𝑥, 𝑦) on the feature map 𝐹𝑖 is mapped to the original input image 

as eq. (3.1)  

𝒑 = (⌊
𝑠

2
⌋ + 𝑥𝑠, ⌊

𝑠

2
⌋ + 𝑦𝑠)       (3.1) 

    Regression operation is applied to each position, if a position (𝑥, 𝑦) is within the 

ground truth, then we regard it as the positive sample 𝑐∗ , it will be regarded as a 

negative sample (𝑐∗ = 0), the network can make full use of foreground samples by this 

method. The network defines a 4D vector 𝑡∗ as the regression target 

𝑡∗ = (𝑙𝑒𝑓𝑡∗, 𝑡𝑜𝑝∗, 𝑟𝑖𝑔ℎ𝑡∗, 𝑏𝑜𝑡𝑡𝑜𝑚∗)    (3.2) 

where the 4-tuple 𝑡∗  represents the distances between the position and the four 

boundaries of the ground truth. Apparently, the values are non-negative and need an 

exponential function to give correct outputs of these four values, as shown in eq. (3.3) 

𝑙𝑒𝑓𝑡∗ = 𝑥 − 𝑥0
(𝑖), 𝑡𝑜𝑝∗ = 𝑦 − 𝑦0

(𝑖), 𝑟𝑖𝑔ℎ𝑡∗ = 𝑥1
(𝑖) − 𝑥, ⁡𝑏𝑜𝑡𝑡𝑜𝑚∗ = 𝑦1

(𝑖) − 𝑦⁡ (3.3) 
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FPN structure in ABCNet backbone is employed for dealing with the issues while 

detecting overlapping objects. The FPN lets the network make predictions on various 

sizes of feature maps, feature maps in different sizes are offered to predict objects in 

different scales (Lin et al., 2017). For example, a feature map with stride=8 is 

accommodated for predicting small objects, stride=16 for the visual objects in medium 

sizes, stride=32 for big objects. In ABCNet, visual features are extracted on three scales, 

as 
1

4
 ,⁡

1

16
, and 

1

32
 

There are five feature maps implemented [𝑝3, 𝑝4, 𝑝5, 𝑝6, 𝑝7], with six thresholds: 

[𝑚2, 𝑚3, 𝑚4, 𝑚5, 𝑚6, 𝑚7] = [0,64,128,256,512,∞]. The feature map 𝑝𝑖 corresponds to 

interval (𝑚𝑖−1,𝑚𝑖). For the employment of the thresholds, the network will traverse all 

positions on every feature map. For position (𝑥, 𝑦) on the feature map 𝑝𝑖 , firstly, we 

calculate the values of (𝑙∗, 𝑡∗, 𝑟∗, 𝑏∗), the maximum value 𝑚 = 𝑚𝑎𝑥(𝑙∗, 𝑡∗, 𝑟∗, 𝑏∗), then 

we estimate whether 𝑚 is within the threshold, which means if it satisfies 𝑚𝑖−1 < 𝑚 <

𝑚𝑖 , the maximum value 𝑚 will be grouped into either positive or negative samples 

(Kannadaguli, 2020). 

 Regarding objects overlapping during object detecting, while performing the 

detection tasks, if there are two bounding boxes of different sizes which overlap with 

each other, the maximum value 𝑀 of all 𝑚 calculated in the smaller box will not exceed 

the boundaries of the box, which means 𝑀 ≤ max⁡(𝑏ℎ , 𝑏𝑤) . Therefore, the pixel 

positions in the small box will be mostly mapped to a smaller threshold, which permits 

the positions relate to a feature map with a smaller stride. Similarly, most of the positive 

samples that in the large bounding box will be mapped to a larger threshold. By the 

solution above, the backbone network of ABCNet can perform multiscale prediction 

and solve the problem of objects overlapping. 

 The network suppresses the low-quality detection of bounding boxes that are far 

away from the center of the target (Lee & Park, 2020). There is still a gap between 

anchor-based methods and anchor-free methods after applying multiscale detection. The 

reason is that object detection is expanded to the entire ground truth boxes instead of the 
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target center, which might generate a number of prediction boxes that the centers are far 

away from the target center. Therefore, the method is introduced to the network by 

using Binary Cross-Entropy (BCE) for optimization to constrain the number of 

generated boxes (De Boer, 2005). The equation of Center-ness is shown as eq. (3.4): 

𝑐𝑒𝑛𝑡𝑒𝑟𝑛𝑒𝑠𝑠∗ = √
min⁡(𝑙∗,𝑟∗)

max⁡(𝑙∗,𝑟∗)
+

min⁡(𝑡∗,𝑏∗)

max⁡(𝑡∗,𝑏∗)
    (3.4) 

where the value of Center-ness is within the interval [0,1]. 

3.1.2 Bezier Curve Detection 

The most novel feature of ABCNet is to execute Bezier curves and form the border of 

the bounding boxes of text. Instead of the rectangular boxes applied to current Scene 

Text Recognition (STR) methods such as CharNet, FOTS, CRAFT, and Attention OCR 

(Liu et al., 2018; Liu et al., 2018; Baek et al., 2019; Zhang et al., 2019). This permits 

that the network is able to predict arbitrary-shaped text in natural scenes.  

 

Figure 3.1: An example of Bezier curve 

The Bezier curve was named in 1972 after the French engineer Pierre Bezier 

(Hazewinkel, 1997). It has been implemented in various image processing fields, 

including graphic design, animation, trajectory calculation, etc. For example, computer-
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aided design software includes the function of drawing curves by using Bezier curve 

method. The design of fonts adopted in modern computers is also controlled by piece-

wise Bezier curves. Compared with other spline-based methods, the Bezier curve is a 

type of curve represented by connected vectors, shown in Figure 3.1 (Choi et al., 2008). 

Bezier curve is interactive, the shape of the curve is modified by changing the 

vectors. While drawing the curve, a polygon is shown through multiple vectors in 

advance to represent the trend and direction of the curve, like the initial outlines. A 

Bezier curve is defined as the product of vectors and a primary function, as shown in eq. 

(3.5) 

𝑉(𝑡) = ⁡∑ 𝑓𝑖,𝑛(𝑡)𝐴𝑖
𝑛
𝑖=0       (3.5) 

where 𝐴𝑖 represents vector, 𝑓𝑖,𝑛 shows a primary function, which is expressed by using 

eq.(3.6) 

𝑓𝑖,𝑛(𝑡) = {
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡1⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑖 = 0

(−𝑡)𝑖

(𝑖−1)!

𝑑𝑖−1

𝑑𝑡𝑖−1

(1−𝑡)𝑛−1−1

𝑡

  (3.6) 

    This primary function is equivalent to a polynomial of 𝑛 − 1 for the parameter 𝑡 ∈

[0,1]. Through the equation, we calculate the curve by using the connected vectors. A 

Bezier curve is defined based on a set of points by Bernstein polynomials (Lorentz, 

2013; Oruç, 2003). For the vectors to generate the curve, regarding control points, 

which are presented as control points 𝑃0, 𝑃1, 𝑃2 …⁡𝑃𝑛, we define a control point 𝑃(𝑡) as 

shown in eq. (3.7)  

𝑃(𝑡) = ∑ 𝑃𝑖𝐵𝑖
𝑛(𝑡)𝑛

𝑖=0 ,       (3.7) 

where 𝐵𝑖
𝑛(𝑡) represents the Bernstein polynomial of the 𝑖-th control points: 

𝐵𝑖
𝑛(𝑡) = 𝐶𝑛

𝑖 𝑡𝑖(1 − 𝑡)𝑛−𝑖      (3.8) 

The 𝐶𝑛
𝑖  represents the combinatorial number, 
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𝐶𝑛
𝑖 = ⁡

𝑛!

𝑖!(𝑛−𝑖)!
         (3.9) 

 ABCNet implements cubic Bezier curves for generating the bounding boxes during 

prediction, which is flexible enough to sufficiently describe most of the arbitrary-shaped 

scene text as shown in eq. (3.10) 

𝐵(𝑡) = 𝑃0(1 − 𝑡)3 + 3𝑃1𝑡(1 − 𝑡)2 + 3𝑃2𝑡
2(1 − 𝑡) + 𝑃3𝑡

3  (3.10) 

    The cubic Bezier curve is responsible for generating upper and bottom curve 

boundaries of the bounding boxes, other two are straight lines. Each curve has four 

control points and eight control points in total for a text box. Based on the cubic Bezier 

curve, the task of finding the arbitrary-shaped scene text is simplified into the task of 

finding a bounding box that contains eight control points. Since the detection branch of 

ABCNet only needs to predict a few more coordinates than other networks without 

adding additional layers, the overall inference speed is not significantly affected. 

 

Figure 3.2: The four control points relate to one Bezier curve 

 Regarding the network to learn the coordinates of the control points, a regression 

method is utilized for regressing the targets based on the ground truth information. For 

one Bezier curve in a bounding box, the coordinates of four control points are 

reformatted into (𝑥, 𝑦, 𝑤1, ℎ1, 𝑤2, ℎ2, 𝑤3, ℎ3, 𝑤4, ℎ4) , where (𝑥, 𝑦)  represents the 
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coordinates of the central point relevant to the minimum circumscribed horizontal 

rectangle, 𝑤𝑖 and ℎ𝑖 show the relative coordinates of 𝑖-th control point with respect to 

the central point. The coordinates of four control points are described 

as (𝑥1, 𝑦1, 𝑥2, 𝑦2, 𝑥3, 𝑦3, 𝑥4, 𝑦4) = (𝑥 + 𝑤1, 𝑦 + ℎ1, 𝑥 + 𝑤2, 𝑦 + ℎ2, 𝑥 + 𝑤3, 𝑦 + ℎ3, 𝑥 +

𝑤4, 𝑦 + ℎ4) , 𝑤𝑖  and ℎ𝑖  are negative. The predicted coordinates 𝑃∗  are expressed as 

eq.(3.11). 

𝑃∗ = (𝑝𝑥
∗ , 𝑝𝑦

∗ , 𝑝𝑤1
∗ , 𝑝ℎ1

∗ , 𝑝𝑤2
∗ , 𝑝ℎ2

∗ , 𝑝𝑤3
∗ , 𝑝ℎ3

∗ , 𝑝𝑤4
∗ , 𝑝ℎ4

∗ )         (3.11) 

    The coordinates of ground truth are 

𝑃 = (𝑝𝑥 , 𝑝𝑦, 𝑝𝑤1, 𝑝ℎ1, 𝑝𝑤2, 𝑝ℎ2, 𝑝𝑤3, 𝑝ℎ3, 𝑝𝑤4, 𝑝ℎ4)            (3.12) 

Based on the information of the given coordinates, we calculate the minima 𝑋𝑚𝑖𝑛 

and maxima 𝑋𝑚𝑎𝑥 of the circumscribed rectangle, its width 𝑤𝑐ℎ𝑟 = 𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛and its 

height ℎ𝑐ℎ𝑟 = 𝑌𝑚𝑎𝑥 − 𝑌𝑚𝑖𝑛. The parameterizations of the coordinates are adopted as eq. 

(3.13-3.17): 

𝑑𝑋 =
𝑝𝑋

∗ −𝑝𝑋

𝑤𝑐ℎ𝑟
, 𝑑𝑌 =

𝑝𝑌
∗ −𝑝𝑌

ℎ𝑐ℎ𝑟
        (3.13) 

𝑑𝑤1 =
𝑝𝑤1

∗ −𝑝𝑤1

𝑤𝑐ℎ𝑟
, 𝑑ℎ1 =

𝑝ℎ1
∗ −𝑝ℎ1

ℎ𝑐ℎ𝑟
      (3.14) 

𝑑𝑤2 =
𝑝𝑤2

∗ −𝑝𝑤2

𝑤𝑐ℎ𝑟
, 𝑑ℎ2 =

𝑝ℎ2
∗ −𝑝ℎ2

ℎ𝑐ℎ𝑟
      (3.15) 

𝑑𝑤3 =
𝑝𝑤3

∗ −𝑝𝑤3

𝑤𝑐ℎ𝑟
, 𝑑ℎ3 =

𝑝ℎ3
∗ −𝑝ℎ3

ℎ𝑐ℎ𝑟
      (3.16) 

𝑑𝑤4 =
𝑝𝑤4

∗ −𝑝𝑤4

𝑤𝑐ℎ𝑟
, 𝑑ℎ4 =

𝑝ℎ4
∗ −𝑝ℎ4

ℎ𝑐ℎ𝑟
      (3.17) 

 For each control point, the coordinates are calculated as eq. (3.18)  

∆𝑥 = 𝑃𝑖𝑥 − 𝑥𝑚𝑖𝑛 , ∆𝑦 = 𝑃𝑖𝑦 − 𝑦𝑚𝑖𝑛      (3.18) 

where 𝑥𝑚𝑖𝑛  and 𝑦𝑚𝑖𝑛  are representing the minimum value of 𝑥  and 𝑦  of the four 

vertices. There are only one extra convolutional layer and sixteen outputted channels 
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required for learning the values of ∆𝑥  and ∆𝑦 , which costs negligible computation 

overhead (Liu & Jin, 2017). 

3.1.3 Bezier Ground Truth 

The Bezier ground truth needs to be labeled based on the polygon annotations, such as 

dataset CTW1500 and Total-Text (Liu et al., 2017; Ch’ng & Chan, 2017). The general 

ground truth and annotations are presented in polygon shapes. The network has to 

generate the control points of Bezier curves for the bounding boxes based on the 

polygon ground truth for training.  

 

Figure 3.3: Comparison of polygon ground truth and Bezier ground truth 

    Figure 3.3 shows the transformation from general polygon ground truth into Bezier 

ground truth. On the left side of the image, the polygon annotations are with 14 

annotation points in total. Taken the upper curved boundary as an example, the 

annotated points of polygon ground truth are [𝑝0, 𝑝1, 𝑝2, 𝑝3, 𝑝4, 𝑝5, 𝑝6] . The control 

points of the Bezier curve are [𝑏0, 𝑏1, 𝑏2, 𝑏3], which are the values we need to calculate. 

We wish the generated Bezier curve could pass through these annotated points 𝑝𝑖  as 

many as possible, which means all the 𝑝𝑖 could meet the parameterized Bezier curve 

equation, and the coordinates can satisfy the matrix in the equation below: 

[
 
 
 
𝐵0,3(𝑡0)

𝐵0,3(𝑡1)

⋯
⋯

𝐵3,3(𝑡0)

𝐵3,3(𝑡1)

⋮ ⋱ ⋮
𝐵0,3(𝑡𝑚) ⋯ 𝐵3,3(𝑡𝑚)]

 
 
 

[
 
 
 
 
𝑏𝑥1

𝑏𝑥2

𝑏𝑦1

𝑏𝑦2

𝑏𝑥3

𝑏𝑥4

𝑏𝑦3

𝑏𝑦4]
 
 
 
 

= [

𝑝𝑥1

𝑝𝑥2

⋮

𝑝𝑦1

𝑝𝑦2

⋮
𝑝𝑥𝑚

𝑝𝑦𝑚

]   (3.19) 
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where 𝑡 is calculated using the ratio between the cumulative length of polyline segments 

and the perimeters of the polylines of seven annotated points based on the curved 

boundary. The number of 𝑏𝑖 usually less than 𝑝𝑖 , we find the best values of each 𝑏𝑖 and 

the Bezier curve using the standard least square method. The result of the Bezier ground 

truth is shown on the right side of Figure 3.3. Compared to the original polygon-shaped 

ground truth, the Bezier ground truth fits the actual text better.  

3.1.4 BezierAlign 

After generating the Bezier ground truth annotations, the alignment method called 

BezierAlign is implemented for feature alignment and sampling, which is an extended 

method from ROI Align. For the traditional ROI Pooling and ROI Align method, the 

sampling grids are usually rectangular-shaped or quadrilateral-shaped, which will 

contain too much background information into the sampling results and bring negative 

affect to the training process (He et al., 2017; Sun et al., 2018).  

For ABCNet, which is handling the arbitrary-shaped scene text, the general 

alignment methods are not applicable. For BezierAlign, as a point at any position inside 

the feature map, we firstly calculate the ratio 𝑡 ∈ [0,1] between 𝑔𝑖𝑤  and 𝑤𝑜𝑢𝑡  that is 

shown in Figure 3.4. 

 

Figure 3.4: BezierAlign 

𝑡 =
𝑔𝑖𝑤

𝑤𝑜𝑢𝑡
        (3.20) 

where⁡ 𝑔𝑖𝑤 represents the distance from the observed point to the left boundary of the 
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feature map, 𝑤𝑜𝑢𝑡 shows the width of the feature map.  

Once 𝑡 is calculated, the point of the upper Bezier curve 𝑡𝑝 and lower Bezier curve 

𝑏𝑝 are rendered by using the value of 𝑡 and the Bezier equation. Based on the values of 

𝑡𝑝 and 𝑏𝑝, we get all the positions of the points on the line segment between 𝑡𝑝 and 𝑏𝑝 

by applying linear interpolation 

𝑜𝑝 = 𝑏𝑝 ∙
𝑔𝑖ℎ

ℎ𝑜𝑢𝑡
+ 𝑡𝑝 ∙ (1 −

𝑔𝑖ℎ

ℎ𝑜𝑢𝑡
).     (3.21) 

3.1.5 Light Weight Recognition Head 

Table 3.1: the structure of the recognition head of ABCNet 

    The recognition branch of ABCNet is a lightweight recognition head, including six 

convolutional layers, LSTM, CTC layer, and one fully connected layer as its main 

components (Shi et al., 2016; Hochreiter & Schimidhuber, 1997; Graves et al., 2006). 

For each convolutional layer, the padding is set to 1, 𝑛 represents the size of each batch, 

𝑐 shows the size of the channel. The width and height of outputted feature map are 

shown by using 𝑤 and ℎ. The number of classes 𝑛𝑐𝑙𝑎𝑠𝑠  are set to 97, which include 

lower and upper English alphabets, general symbols, and digits. 

In Natural Language Processing (NLP), the task of sentiment classification is to 

Layers (CNN-RNN) Parameters (kernel size, 

stride) 

Output Size (n,c,h,w) 

Conv 4 

Conv 4 

Average pooling 

(3, (1,1)) 

(3, (2,1)) 

- 

(𝑛, 256, ℎ, 𝑤) 

(𝑛, 256, ℎ, 𝑤) 

(𝑛, 256,1,𝑤) 

Channels-permute 

Bi-LSTM 

Fully connected layer 

- 

- 

- 

(𝑤, 𝑛, 256) 

(𝑤, 𝑛, 512) 

(𝑤, 𝑛, 𝑛𝑐𝑙𝑎𝑠𝑠) 
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classify the emotional tendency of a given text, which is regarded as a class of 

classification tasks (Chowdhury, 2003). The general method for handling emotion 

classification is to express the word or phrase first, then combine the expression of 

words in the sentence by an appropriate combination method. Finally, the presentation 

of the sentence is employed to classify the sentiment.  

 Long short-term memory (LSTM) is a type of recurrent neural network (RNNs) 

(Mikolov et al., 2010). Due to its characteristics, it is very suitable for modeling time-

series data, such as text (phrases, sentences, etc.). In order to form a phrase or a 

sentence, the easiest way is to add the words together by summing the expression of the 

words or taking their average value. Unfortunately, this method cannot be considered 

for the positions of words inside the phrase. For example, the phrase “I do not think this 

is good,” where the word “not” is placed before the words “think this is good” and 

brings the sentiment into a derogatory term. By implementing LSTM, we capture long-

distance dependencies because LSTM can selectively learn and forget the information 

through training. 

 The components of LSTM include input word 𝑋𝑡  at time 𝑡, cell state 𝐶𝑡 , hidden 

state ℎ𝑡, temporal cell state 𝐶̃𝑡 , forget gate 𝑓𝑡 , input gate 𝑖𝑡 , and output gate 𝑜𝑡 . The 

process of LSTM emphasizes forgetting additional information of the cell and 

remembering new information, letting the essential and valuable messages can be 

passed down, and redundant data is abandoned, and the ℎ𝑡 will be given in each time 

step. The operation of forgetting, remembering, and outputting corresponds to the prior 

hidden state ℎ𝑡−1 with the present output 𝑋𝑡 to calculate the values of 𝑓𝑡, 𝑖𝑡, and 𝑜𝑡. All 

three gates apply the Sigmoid function, where the activation function is Tanh.  

The first step for LSTM is to decide what information should be abandoned 

selectively. Forget gate 𝑓𝑡 is composed of the Sigmoid function layer. The inputs are 

ℎ𝑡−1 and 𝑋𝑡, the output of each node in cell 𝐶𝑡−1 will be restricted in [0,1]. The output 

‘1’ represents fully reserved, ‘0’ stands for forgetting the information. The forget stage is 

described by the following equation: 
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𝑓𝑡 = 𝜎(𝑊𝑓 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓)      (3.20) 

 The next step will decide what information will be retained in the neural cells, 

containing two parts. Firstly, there will be an input gate layer structured by sigmoid 

function responds to the value for altering (Sak et al., 2014). Then, a Tanh function layer 

will generate a new candidate value 𝐶𝑡, which will be added into the cell state. These 

two steps will be combined for altering the state value: 

𝑖𝑡 = 𝜎(𝑊𝑖 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖)      (3.22) 

𝐶̃𝑡 = tanh⁡(𝑊𝑐 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐)     (3.23) 

 Based on the steps above, we alter the prior cell state⁡𝐶𝑡−1 into the new cell state 𝐶𝑡: 

𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ 𝐶̃𝑡       (3.24) 

where 𝑖𝑡 ∗ 𝐶̃𝑡 represents the new candidate value. It is measured by how much we want 

to update the value of each state. 

 Finally, there is the output state. The output is based on the states of the cells, with a 

filter involved. The sigmoid layer correspondingly decides which part of the cell state 

need to be outputted (Malhotra et al., 2015), then take the cell state through the Tanh 

function layer, multiply it by using the output of the sigmoid threshold, to output the 

desired result: 

𝑜𝑡 = 𝜎(𝑊𝑜 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜)     (3.25) 

ℎ𝑡 = 𝑜𝑡 ∗ tanh⁡(𝐶𝑡)       (3.26) 

    The backpropagation (BP) of LSTM updates the parameters iteratively by using 

gradient descent, which is the same as the BP in RNN (Gonzalez & Yu, 2018). In RNN, 

we adopt a hidden state ℎ𝑡 and gradient 𝛿(𝑡) for the BP. There are two ℎ𝑡 and 𝐶𝑡: 

𝛿ℎ
(𝑡)

=
𝜕𝐿

𝜕ℎ𝑡         (3.27) 
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𝛿𝐶
(𝑡)

=
𝜕𝐿

𝜕𝐶𝑡         (3.28) 

for a better derivation, the loss function 𝐿(𝑡) is split into two parts, which include loss 

𝑙(𝑡) at time 𝑡, and loss 𝐿(𝑡 + 1) after time 𝑡,  as shown in eq.(3.29) 

𝐿(𝑡) = {
𝑙(𝑡) + 𝐿(𝑡 + 1), 𝑖𝑓⁡𝑡 < 𝜏

𝑙(𝑡)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡, 𝑖𝑓⁡𝑡 = 𝜏
 .    (3.29) 

The full BP equation of LSTM is 

𝜕𝐿

𝜕𝑊𝑓
= ∑ [𝛿𝐶

(𝑡) ⊙ 𝐶(𝑡−1) ⊙ 𝑓𝑡 ⊙ (1 − 𝑓𝑡)](ℎ(𝑡−1))𝑇𝜏
𝑡=1    (3.29) 

 

Figure 3.5: The structure of bi-directional LSTM 

The bi-directional long short-term memory (Bi-LSTM) is the combination of 

forward LSTM and backward LSTM, which is applied to the recognition head of 

ABCNet (Huang et al., 2015). Like the example shown in Figure 3.5, the forward 

LSTM operation will generate three vectors ℎ𝐿0, ℎ𝐿1, ℎ𝐿2 in sequence. The backward 

LSTM will generate vectors ℎ𝑅0, ℎ𝑅1, ℎ𝑅2. The vectors will be combined to form the 

result as [ℎ𝐿0, ℎ𝑅2][ℎ𝐿1, ℎ𝑅1][ℎ𝐿2, ℎ𝑅0], which represented by the vectors ℎ0, ℎ1, ℎ2. 
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The method of calculating losses for ABCNet includes three parts: FCOS loss, 

Center-ness loss, and Bezier loss: 

𝐿𝑡𝑜𝑡𝑎𝑙 = 𝐿𝐹𝐶𝑂𝑆 +  𝐿𝑐𝑒𝑛𝑡𝑒𝑟𝑛𝑒𝑠𝑠 + 𝐿𝐵𝑒𝑧𝑖𝑒𝑟     (3.30) 

𝐿𝐹𝐶𝑂𝑆 = 𝐿({𝑝𝑥,𝑦}, {𝑡𝑥,𝑦}) =
1

𝑁𝑝𝑜𝑠
∑ 𝐿𝑐𝑙𝑠(𝑝𝑥,𝑦, 𝑐𝑥,𝑦

∗ ) +
1

𝑁𝑝𝑜𝑠
∑ 1{𝑐𝑋

∗ >0}𝐿𝑟𝑒𝑔(𝑡𝑥,𝑦 , 𝑡𝑥,𝑦
∗ )𝑥,𝑦𝑥,𝑦  

   (3.31) 

𝐿𝑐𝑒𝑛𝑡𝑒𝑟𝑛𝑒𝑠𝑠(𝑥, 𝑦) = 𝑚𝑒𝑎𝑛{𝑙1, ⋯ , 𝑙𝑛},    𝑙𝑛 = −[(𝑦𝑛 ∙ 𝑙𝑜𝑔𝜎(𝑥𝑛) + (1 − 𝑦𝑛) ∙

log⁡(1 − 𝜎(𝑥𝑛))]         (3.32) 

𝐿𝐵𝑒𝑧𝑖𝑒𝑟(𝑥, 𝑦) =
1

𝑛
∑ 𝑧𝑖𝑖 ,   𝑧𝑖 = {

0.5(𝑥𝑛 − 𝑦𝑛)2,   𝑖𝑓|𝑥𝑖 − 𝑦𝑖| < 1
|𝑥𝑖 − 𝑦𝑖| − 0.5,        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  (3.33) 

    The FCOS loss is constructed by two loss functions. The Focal loss as classification 

loss 𝐿𝑐𝑙𝑠 and IoU loss as localization loss 𝐿𝑟𝑒𝑔 (Lin et al., 2017; Yu et al., 2016). The 

center-ness loss is calculated using binary cross-entropy with logits, and the Bezier loss 

is computed by using smooth L1 loss (Mao et al., 2016; Pang et al., 2019).  

3.2 YOLOv5 For Māori Symbols Recognition  

Compared to Māori symbols, English braille characters are used similarly to the English 

alphabets and punctuations. Māori symbols are more likely to represent things and 

implied meanings. For example, the Koru represents spiral, meaning new beginnings 

and growth. The Hei Matau shows fishhook, meaning prosperity, safety and good health. 

Manaia displays a spirit creature, meaning supernatural and guardian spirit (Lambert, 

2009). Rather than using the methods of natural scene text recognition, object detection 

methods might be more suitable for the Māori symbols recognition task. Therefore, 

YOLOv5 is applied as the detection method for Māori symbols recognition.  

3.2.1 Input  

The YOLOv5 has three types of processes to the input images, including Mosaic data 

augmentation, self-adaptive anchor calculation, and self-adaptive image rescaling. 
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Through these operations, the training results can be significantly improved. 

 The mosaic method of data augmentation is inspired by CutMix augmentation, 

which was introduced in 2019 (Bochkovsky et al., 2020; Yun et al., 2019). It was firstly 

implemented in YOLOv4, which only includes two images during the process. The 

mosaic augmentation takes four images and combines them into one image after some 

conversion. 

 

Figure 3.6: The results of mosaic augmentation on Māori symbols dataset 

By mixing the images to make the model perform different scenarios and train the 

model to detect the objects in different scenes, the model will be adaptive to various 

contexts in those scenes while training. The four original images are multiplied in 

different ways. The mosaic augmentation brings four images into random cropping, 

which positively affects translation and occlusion. The classes of the objects might not 

from the same image in the training data.  

The images will then be combined in a random sequence. It is optional to rescale 

the images into the same size before combining, with the bounding boxes in each image 

being resized simultaneously (Hao & Zhili, 2020). After the images are stitched together, 
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the formed image will be cropped again randomly. The augmentation method has 

various objects in the combined images if original images only contain one object 

(present one bounding box). 

Pertaining to YOLO series methods, the initial shapes of anchors, ratios, and scales 

are different depending on the dataset. The dataset usually will have visual objects that 

are not quite under the same distribution of aspect ratios compared to the official dataset, 

such as COCO dataset (Laroca et al., 2018; Lin et al., 2014). YOLOv5 exploits k-means, 

initial guess, and genetic algorithms that automatically adjust the anchors during 

training (MacQueen, 1967; Smidstrup et al., 2014; Whitley, 1994). In order to compare 

the anchor against the data, there is a determination that if they fall below a certain 

matching threshold, the network will start training new anchors automatically, replacing 

the original anchors with new anchors in the model and training the model, then saving 

the model with these new anchors. 

The images in the dataset for training the network are usually in various ratios. The 

general methods to process the images are to scale them into a standard size and then 

put them through the detection network. The YOLOv5 has introduced a novel method 

for rescaling the input images for improving the inference speed. The images after 

rescaling might have varying degrees of black padding, which could be regarded as the 

redundancy that affects the inference speed in real-time tasks. The pseudocode for this 

operation is shown below: 

Algorithm 1 Image Rescaling 

Input: Input image 

Output: Rescaled image 

1: function LETTERBOx(Image, new_shape=(640, 640), color=(114, 114, 114), 

auto=True, scaleFill = False, scaleup = True) 

2: shape ← [image − height, image − width] 

3:  if new shape is integer then 

4:  new_shape ← (new_shape, new_shape) 

5:  end if 

6:  r ← min(new_shape height/shape height, new_shape width/shape width) 

7:  if not scaleup then 

8:  r ← min(r, 1.0) 
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9:  end if 

10:  ratio ← [r, r] 

11:  new unpad ← [integer(round(shape width ∗ r)), integer(round(shape height ∗ r))] 

12:  dw, dh ← new_shape width – new_unpad[0], new_shape height – new_unpad[1] 

13:  if auto then 

14:  dw, dh ← MOD(dw, 64), MOD(dh, 64) 

15:  else 

16:  if scaleFill then 

17:  dw, hd ← 0.0, 0.0 

18:  new_unpad ← new_shape 

19:   ratio ← [new_shape height/shape with, new_shape width/shape height] 

20:   end if 

21:  end if 

22:  dw ← dw/2 

23:  dh ← dh/2 

24:  if shape(not includes the last element) is not equal to new_unpad then 

25:   image ← openCV.resize(image, new_unpad, interpolation = cv2.INTER 

LINEAR) 

26:   top, bottom ← integer(round(dh − 0.1)), integer(round(dh + 0.1)) 

27:   left, right ← integer(round(dw − 0.1)), integer(round(dw + 0.1)) 

28:    image←openCV.copyMakeBorder(image,top, bottom, left, right, 

cv2.BORDER CONSTANT, value =color) 

29:  end if 

30: return image, ratio, (dw, dh) 

31: end function 

 

 

Figure 3.7: The self-adaptive image rescaling 

The rescaling process is described in three steps. The first step is to calculate the 

ratio between the input image and the parameter 𝑛𝑒𝑤_𝑠ℎ𝑎𝑝𝑒, which is set as (416,416) 
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or (640,640) as default. The ratio between the heights and widths will be compared, and 

the smaller ratio 𝑟 is chosen for the further processes. The second step is to calculate the 

size after rescaling, with the height and width of the input image both multiplying 𝑟 

separately.  

In last step, the resized height ℎ subtracts the resized width 𝑤 for getting the total 

height of the padding ℎ𝑝. The network YOLOv5 requires five times downsampling, so 

ℎ𝑝 mod 32(equals to 25) and divided by 2 to get the height of top padding and bottom 

padding (Xu & Jin, 2008). 

3.2.2 Network Structure 

 

Figure 3.8: The network structure of YOLOv5 

The network structure of YOLOv5 contains three major components, including the 

backbone, the neck structure, and output layers. Inside its backbone, the Focus structure 

is introduced for implementing slicing operation. The function of the Focus layer is 

similar to the SpaceToDepth in TResNet (Ridnik et al., 2021).  
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Figure 3.9: The focus structure 

The Focus layer provides the input of a transformation from space to depth. The 

operation is to get one value after every one pixel, just like adjacent downsampling. The 

result represents four images which complementary to each other without losing 

information. Therefore, the information of W and H will be concentrated to the channels, 

with the number of the channels expanding four times, which also means the original 

RBG channels have increased into 12 channels (Yao et al., 2021). Those four images 

will be put through a convolutional layer, to generate doubled feature maps without 

information spoilage. Implementing Focus structure to the input image is to reduce the 

cost of computation from 2-dimensional convolutional layer and operate tensor 

reshaping to reduce the resolution(space) and increase the number of channels(depth).  

 There is a critical component inside the backbone and neck structure: The 

BottleNeckCSP structure (Zhou et al., 2021). The CSPNet is regarded as an upgraded 

version of DenseNet (Wang et al., 2020; Huang et al., 2017). According to the dense 

block and transition layer, CSPNet optimizes the method of backpropagation and 

improves the learning ability of the network. As the depth and width of the neural 

network have increased, the volume of the network becomes more significant and 

requires more computation. It limits the usage of the network on mobile devices. The 

primary purpose of CSPNet is to make the deep learning method such as ResNet, 

DenseNet is deployed on CPU and mobile devices without sacrificing the inference 

performance. 
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Figure 3.10: Comparing DenseNet and CSPDenseNet 

The intention of the Cross Stage Partial (CSP) structure is to reduce the 

computation and enhance the performance of the gradient. The scheme is to split the 

input into two parts before entering the dense block. The block calculates one part of the 

input, and the other part is directly concatenated by using a shortcut connection (Wang 

et al., 2021). Taken the DenseNet as an example, inside the altered structure 

CSPDenseNet, the input feature map 𝑥0 has been separated into [𝑥0
′ , 𝑥0

′′],  𝑥0
′  is linked to 

the last transition layer, and 𝑥0
′′ is going through the dense block.  

 Regarding the gradients operated to update the weights, the path contains duplicate 

gradient information which belongs to the other. Based on retaining the original network 

structure, the path for passing the gradient has doubled. The cross-stage method can 

reduce the negative effect of copying the feature map directly for the concatenation 

process and reduce the computational complexity (Liu et al., 2020). The BottleNeckCSP 

structure in YOLOv5 integrates the ideas of BottleNeck and CSP structure. 

    The BottleNeck is a neural network structure that compresses and amplifies 

information. This structure is generally found in autoencoders, fire-module in squeeze-

net, and ResNet (Gehring et al., 2013; Landola et al., 2016). In order to reduce the 

dimension and increase the dimension of the input, which is similar to NMF, it has the 

capability of removing high-frequency noise of the images (Lee & Seung, 1999). 

Generally speaking, the deep learning methods that implement BottleNeck structure into 

their networks have achieved better accuracy than traditional convolutional networks 
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and fully connected networks. The basic structure is regarded as a classic residual 

structure. The first part is 1 × 1  convolutional block, including 1 × 1  convolutional 

layer, batch normalization layer, and leaky ReLU. Then a 3 × 3 convolutional block, 

and the result is added with the initial input through the residual structure (Bjorck et al., 

2018; Xu et al., 2015). 

 

Figure 3.11:BottleNeckCSP structure 
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Figure 3.12: Structure of convolutional block and BottleNeck 

 Due to various reasons, video and audio data contain extremely abundant and 

diverse information. For the specific tasks (human face recognition, object tracking, 

voice recognition, etc.), only a small amount of data is useful for the tasks, and most of 

the data is redundant and irrelevant. According to the theory, the extracted feature from 

the initial data, the classification results are just a “form of expression” of the 

information. The algorithms need to eliminate the useless information from the 

collected data and retain the valuable information for the specific tasks. We hope to 

obtain a short expression of the image. Thereby, the parameters inside the networks and 

the complexity of the model are reduced. The BottleNeck structure is one of the 

solutions. 

 The BottleNeck reduces the number of channels through a 1 × 1 convolutional 

block. The number of the channels of the convolution in the middle of the network has 

diminished to 
1

4
 . The convolution in the middle contains the same number of channels 

as the input channels. The 3 × 3 convolutional block is exploited to increase or restore 

the number of the channels. The number of channels of the BottleNeck output equals 

the input channels. The BottleNeck in the deeper networks can reduce the use of the 
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parameters and computation, improving the performance of the networks (Rezende et 

al., 2017). 

 The primary function of the Spatial Pyramid Pooling (SPP) module is to solve the 

problem that the sizes of the input images are not uniform. For most object detection 

methods, the output layer would be fully connected, which requires that input images be 

managed into the same size. The present image preprocessing methods, such as resizing, 

and cropping will cause a certain degree of image distortion and affect the final 

accuracy. The SPP module implements multiple pooling layers to generate same size 

outputs from the input data. The SPP module  (He et al. (2015) is mainly designed for 

two problems: 

• To Avoid the image distortion caused by the image cropping, rescaling, etc. 

• To solve the problem of the CNN extracting feature maps repeatedly, which 

dramatically improves the speed of generating candidate bounding boxes and 

saves computational cost. 

 

Figure 3.13: SPP module in YOLOv5 

The SPP module in YOLOv5 contains four parallel paths for forwarding the 

information. Three paths have been connected with max-pooling layers, with kernel 
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sizes as 5 × 5, 9 × 9,  13 × 13, respectively. And the fourth path transmits the output of 

the first convolutional layer to the second convolutional layer directly using a shortcut 

connection. The module is referenced by the idea of the spatial pyramid to achieve the 

fusion of local features and global features. After the fusion, the expression ability of 

the feature maps is enriched. This is conducive to the situations when the sizes of the 

targets have significant differences during the detection. Especially for the complex 

multi-target detection methods such as the YOLO series, it greatly improves the 

detection accuracy. 

Pertaining to object detection methods, in order to achieve better performance on 

extracting features, extra layers will be inserted into the backbone and output layers, 

which is called the Neck structure. The PANet has inspired the Neck structure in 

YOLOv5. It is introduced for instance segmentation tasks.  

The PANet adds a bottom-up path augmentation structure to the FPN network, 

which does not exceed 10 layers (Liu et al., 2018). The shallow layers in FPN will be 

connected to the last layer 𝑃2 of the top-down structure through a horizontal shortcut, 

and the information is transferred from 𝑃2 to the top layers along with the augmentation 

structure. The number of layers within this process will not exceed 10, so the 

information of shallower features can be preserved in a better way. Inside the 

augmentation structure, except the first layer 𝑁2, the rest of the layers are fusion results 

of the feature maps in FPN.  

The bottom-up path augmentation structure is a conventional feature fusion 

operation (Tan et al., 2019). The general combination can be represented as feature map 

𝑁𝑖 passes through a convolutional layer in size 3 × 3, with 𝑠𝑡𝑟𝑖𝑑𝑒 = 2, the size of the 

feature map will be reduced to half. Then it will be added to feature map 𝑃𝑖+1. The 

result needs to get through another convolutional layer in size 3 × 3, with 𝑠𝑡𝑟𝑖𝑑𝑒 = 1 to 

form the final feature map 𝑁𝑖+1. The bottom-up path augmentation structure improves 

the speed of information fusion and shortens the length of the path between the low-

level features and high-level features. 
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In FPN, visual objects in different sizes are allocated to different layers, such as the 

most miniature objects will be assigned to feature map 𝑃2, the biggest will be allocated 

to 𝑃5. This method is straightforward and effective, but the result might not be the best. 

For example, two objects with a difference of only 10 pixels might be assigned to 

different feature maps. To receive a better result, PANet proposed adaptive feature 

pooling, which is described: 

• Applying feature extraction using RoIAlign and generating four sets of feature 

maps that are in the same shape. 

• To fuse the feature maps by calculation methods such as sum, product, etc.  

• Operating the fused feature maps for classification tasks, bounding box 

prediction, and mask prediction 

 

Figure 3.14: The neck structure in YOLOv5 

 However, to simplify the network and facilitate the deployment in actual situations, 

PAN structure in YOLOv5 does not implement adaptive feature pooling. The Neck 

structure has replaced the addition operation with concatenation to improve the 
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performance of the predictions. The BottleNeckCSP in Neck structure is slightly 

different. The residual units are replaced by the CBL block, which combines 

convolutional layer, batch normalization layer, and activation function layer (Leaky 

ReLU).  

3.2.3 Loss Function 

The method of loss calculation in YOLOv5 contains three parts, including calculating 

the loss value of localization, classification, and confidence. Calculating localization 

loss, which also means bounding box prediction, is an important task in object detection 

methods. In order to give a bounding box to the target, which needs to predict the 

location of that box, a typical method utilized for the prediction is calculated by using 

the squared loss function as eq. (3.34), 

𝐿𝑙𝑜𝑐𝑎𝑙 = (𝑥 − 𝑥∗)2 + (𝑦 − 𝑦∗)2 + (𝑤 − 𝑤∗)2 + (ℎ − ℎ∗)2  (3.34) 

where⁡(𝑥, 𝑦) represents the top-left coordinates of the predicting box, (𝑤, ℎ) shows the 

width and height of the box (Domingos, 2000). For predicting the bounding boxes, the 

network needs the information of the overlap area between the prediction and the 

ground truth bounding box, it is better if the network gets a bigger ratio of the 

overlapping area to the union area. Although the value cannot be well measured by only 

applying the squared loss function. Thus, various loss calculation methods are 

introduced to solve the problem, including Mean Squared Error Loss (MSE), IoU loss, 

GIoU loss, DIoU loss, and CIoU loss (Wang & Bovik, 2009; Zhou et al., 2019). 

Regarding YOLOv5, the methods for calculating the localization loss include GIoU, 

DIoU, CIoU. And the network sets CIoU as the default method. 

 Intersection over Union (IoU) presents the ratio of the intersection area and the 

union area of the prediction and ground truth: 

IoU(𝐵1, 𝐵2) =
|𝐵1∩𝐵2|

|𝐵1∪𝐵2|
       (3.35) 

    If the prediction and the ground truth overlap entirely, the IoU should be 1.00, and it 
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will be 0 if the boxes do not interact with each other. The IoU loss is defined as eq. 

(3.36) 

LIoU = 1 − IoU(B,𝐵𝑔𝑡)      (3.36) 

    However, two problems need to be considered. If the prediction and the ground truth 

box have no intersection area, the loss value will be 1.00, which cannot describe the 

distance between the boxes. Another problem is when the ground truth box includes the 

prediction box, the ratio between the boxes and the value of the IoU are fixed, which 

leads to the problem that the loss value will have no change wherever the prediction 

stays in the ground truth. 

 For solving the problems of IoU, GIoU is introduced to the object detection 

methods. GIoU adds one extra box based on IoU that can contain the ground truth and 

the smallest prediction box. Because IoU is a concept of ratio, it is insensitive to the 

scale of the objects. The purpose of the GIoU is equivalent to add a closure penalty 

relevant to the prediction and the ground truth (Rezatofighi et al., 2019). The 

optimization of the regression loss of the bounding box, such as MSE loss and L1-

smooth loss, is not entirely equivalent to IoU optimization. Also, 𝐿𝑛 norm is sensitive to 

the scale of the object. IoU cannot optimize the area that is not included in the 

intersection directly.  

 

Figure 3.15: The penalty is the minimal area of the shaded area 
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 Suppose area A represents ground truth, B shows the prediction, and C is the 

closure area of A and B, the GIoU is shown as eq. (3.37). 

GIoU = IoU −⁡
|𝐶\(𝐴∪𝐵)|

|𝐶|
       (3.37) 

where the area of |𝐶\(𝐴 ∪ 𝐵)| represents by area of C minus the area of (𝐴 ∪ 𝐵). For 

applying the GIoU as the method to calculate the loss of the bounding box regression, 

we assume the coordinates of the prediction and ground truth are 𝐵𝑝 = (𝑥1
𝑝
, 𝑦1

𝑝
, 𝑥2

𝑝
, 𝑦2

𝑝
) 

and 𝐵𝑔 = (𝑥1
𝑔
, 𝑦1

𝑔
, 𝑥2

𝑔
, 𝑦2

𝑔
), the area of the boxes and be represented as : 

𝐴𝑔 = (𝑥2
𝑔

− 𝑥1
𝑔) ∗ (𝑦2

𝑔
− 𝑦1

𝑔
)      (3.38) 

𝐴𝑝 = (𝑥2
𝑝
− 𝑥1

𝑝) ∗ (𝑦2
𝑝

− 𝑦1
𝑝
)      (3.39) 

    The intersection of 𝐵𝑝 and 𝐵𝑔  is shown as eq. (3.40). 

𝐼 = {
(𝑥2

𝐼 − 𝑥1
𝐼) ∗ (𝑦2

𝐼 − 𝑦1
𝐼)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑥2

𝐼 > 𝑥1
𝐼 , 𝑦2

𝐼 > 𝑦1
𝐼

0⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
   (3.40) 

where (𝑥1
𝐼 , 𝑦1

𝐼)  and (𝑥2
𝐼 , 𝑦2

𝐼)  are the top-left and bottom-right coordinates of the 

intersection area, can be calculated as: 

𝑥1
𝐼 = max(𝑥̂1

𝑝
, 𝑥1

𝑔
) , 𝑥2

𝐼 = min⁡(𝑥̂2
𝑝
, 𝑥2

𝑔
)     (3.41) 

𝑦1
𝐼 = max(𝑦̂1

𝑝
, 𝑦1

𝑔) , 𝑦2
𝐼 = min⁡(𝑦̂2

𝑝
, 𝑦2

𝑔
)    (3.42) 

where 𝑥̂𝑝 and 𝑦̂𝑝 are calculated by getting the minimum and maximum values between 

𝑥1
𝑝
, 𝑥2

𝑝 and 𝑦1
𝑝
, 𝑦2

𝑝
: 

𝑥̂1
𝑝

= min(⁡𝑥1
𝑝
, 𝑥2

𝑝) , 𝑥̂2
𝑝

= max(⁡𝑥1
𝑝
, 𝑥2

𝑝)    (3.43) 

𝑦̂1
𝑝

= min(⁡𝑦1
𝑝
, 𝑦2

𝑝) , 𝑦̂2
𝑝

= max(⁡𝑦1
𝑝
, 𝑦2

𝑝)    (3.44) 

 Based on the steps which are shown above, the coordinates of the minimum area 𝐵𝑐 

that can contain both 𝐵𝑝 and 𝐵𝑔  can be calculated by: 
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𝑥1
𝑐 = min(𝑥̂1

𝑝
, 𝑥1

𝑔) , 𝑥2
𝑐 = max⁡(𝑥̂2

𝑝
, 𝑥2

𝑔
)    (3.45) 

𝑦1
𝑐 = min(𝑦̂1

𝑝
, 𝑦1

𝑔) , 𝑦2
𝑐 = max⁡(𝑦̂2

𝑝
, 𝑦2

𝑔
)    (3.46) 

and 𝐵𝑐  is   

𝐴𝑐 = (𝑥2
𝑐 − 𝑥1

𝑐) ∗ (𝑦2
𝑐 − 𝑦1

𝑐)      (3.47) 

    Thus, eq. (3.47) for calculating the IoU is changed into the following form, 

IoU = ⁡
𝐼

𝑈
=

𝐼

𝐴𝑝+𝐴𝑔−𝐼
       (3.48) 

and the value of GIoU and the GioI loss are calculated by the following eq. (3.49-3.50) 

𝐺𝐼𝑜𝑈 = 𝐼𝑜𝑈 −
𝐴𝑐−𝑈

𝐴𝑐        (3.49) 

𝐿𝐺𝐼𝑜𝑈 = 1 − 𝐺𝐼𝑜𝑈       (3.50) 

 The GIoU loss optimizes the situation if the prediction and ground truth have no 

intersection area. If the distance between the boxes is very close, the GIoU loss draws 

near the IoU loss. Therefore, the results of the two loos functions are similar, although 

the GIoU loss permits the network to have a faster convergence. 

 

Figure 3.16: DIoU 
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 Compared to GIoU, Distance-IoU (DIoU) is more consistent with the mechanism of 

regression, considering the distance between the boxes, intersection rate, and the sizes 

of the boxes at the same time, which allows the regression result to become more stable, 

reduces the rate of the divergence during the training processes (Zheng et al., 2020). The 

blue grid represents the ground truth 𝐵𝑔𝑡 , and the red grid shows the prediction 𝐵. The 

black dash line connects the central points of those two boxes, the green box represents 

the minimum closure box 𝐶, and the red dash line 𝑐 is the diagonal of 𝐶.  

 The IoU-based loss is defined as 𝐿 = 1 − 𝐼𝑜𝑈 + 𝑅(𝐵, 𝐵𝑔𝑡) , where the element 

𝑅(𝐵, 𝐵𝑔𝑡) is the penalty of the loss function. The penalty in DIoU is defined as eq. 

(3.51), 

𝑅𝐷𝐼𝑜𝑈 =
𝜌2(𝑏,𝑏𝑔𝑡)

𝑐2        (3.51) 

where 𝜌(∙) represents the Euclidean Distance between two central points, which is the 

length of the black dash line, 𝑏 and 𝑏𝑔𝑡show the central point of  𝐵 and 𝐵𝑔𝑡  (Danielsson, 

1980). The Euclidean Distance is calculated by the eq. (3.52), 

𝜌 = √𝜌2(𝐵, 𝐵𝑔𝑡) = √(𝑥1
𝑝
− 𝑥2

𝑝
)2 + (𝑦1

𝑝
− 𝑥2

𝑝
)    (3.52) 

where  𝑥𝑝 and  𝑦𝑝 are defined based on the coordinates of prediction and ground truth: 

𝑥1
𝑝

= 𝑥2
𝐵 − 𝑥1

𝐵 , 𝑦1
𝑝

= 𝑦2
𝐵 − 𝑦1

𝐵     (3.53) 

𝑥2
𝑝

= 𝑥2

𝐵𝑔𝑡
− 𝑥1

𝐵𝑔𝑡
, 𝑦2

𝑝
= 𝑦2

𝐵𝑔𝑡
− 𝑦1

𝐵𝑔𝑡
   (3.54) 

based on the elements above, DIoU is described as eq. (3.55) 

DIoU(B,𝐵𝑔𝑡) = IoU(B,𝐵𝑔𝑡) − 𝑅𝐷𝐼𝑜𝑈    (3.55) 

and DIoU loss is calculated as eq. (3.56) 

LDIoU = 1 − DIoU = 1 − IoU + 𝑅𝐷𝐼𝑜𝑈 = 1 − IoU +
𝜌2(𝑏,𝑏𝑔𝑡)

𝑐2  (3.56) 
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 Similar to GIoU loss, DIoU provides the moving direction for the bounding box 

while it does not overlap with the ground truth (Yuan et al., 2020). It minimizes the 

distance between two boxes more directly, which gives a faster convergence while 

training compared to GIoU. While dealing with the circumstances, if the central points 

of the prediction and ground truth are on the same line vertically or horizontally, DIoU 

loss increases the speed of calculating regression, while GIoU loss is degrading into IoU 

loss.  

 Complete-IoU (CIoU) is regarded as the upgraded version of DIoU. Considering 

the ratio issues of width and height between the bounding boxes, CIoU has added one 

extra impact factor 𝑎𝑣  into the calculation process. The 𝛼𝑣  is combined by two 

elements, 𝛼 is a parameter utilized for trade-off, which is defined as eq. (3.57) 

𝛼 =
𝑣

(1−𝐼𝑜𝑈)+𝑣
       (3.57) 

where 𝑣 is the parameter which is employed for measuring the consistency of the aspect 

ratio: 

𝑣 =
4

𝜋2 (𝑎𝑟𝑐𝑡𝑎𝑛
𝑤𝑔𝑡

ℎ𝑔𝑡 − 𝑎𝑟𝑐𝑡𝑎𝑛
𝑤

ℎ
)2     (3.58) 

and the equation of CIoU and CIoU loss are shown as (3.59), 

𝐶𝐼𝑜𝑈 = 𝐼𝑜𝑈 − (
𝜌2(𝑏,𝑏𝑔𝑡)

𝑐2 + 𝑎𝑣)     (3.59) 

and 

𝐿𝐶𝐼𝑜𝑈 = 1 − 𝐶𝐼𝑜𝑈 = 1 − 𝐼𝑜𝑈 +
𝜌2(𝑏,𝑏𝑔𝑡)

𝑐2 + 𝑎𝑣.   (3.60) 

  For calculating the classification loss and confidence loss, YOLOv5 implements the 

method of BCEWithLogitsLoss and Focal Loss. The BCEWithLogitsLoss combines the 

sigmoid function layer with Binary Cross-Entropy (BCE) loss together as one unit, 

which is more stable than simply applying the BCE loss after the sigmoid function, 
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𝐿(𝑥, 𝑦) = {𝑙1, … , 𝑙𝑁}𝑇 , 𝑙𝑛 = −𝑤𝑛[𝑦𝑛 ∙ log⁡(𝜎(𝑥𝑛)) + (1 − 𝑦𝑛) ∙ log(1 − 𝜎(𝑥𝑛))] (3.61) 

where 𝑥𝑛 represents the score of predicting the n-th positive sample, 𝑦𝑛 shows the label 

of the n-th sample,  𝜎 is the sigmoid function, and 𝑁 denotes the batch size. 

    Pertaining to Focal loss, it is introduced as a strategy for solving the problem of 

serious disequilibrium between positive and negative samples. The class imbalance is a 

serious problem while training the object detection network. Because the network will 

apply intensive sampling in every position on the input image, if the image only 

contains a small number of objects, then the number of negative samples will be much 

more than the positive samples (Tran et al., 2019). For current detection methods, the 

RPN module can filter out negative samples. The detection head also adopts a fixed 

proportion for sampling positive and negative samples (1:3 for example) or applies 

Online Hard Example Mining (OHEM) for dealing with the class imbalance issue (Tang 

et al., 2018; Shrivastava et al., 2016).  

 Different from sampling methods, focal loss adjusts the cross-entropy dynamically 

based on the confidence. Suppose the confidence of correct prediction increases, the 

coefficient of loss will gradually decay to 0. In that case, the training loss pays more 

attention to the hard samples, while the loss values for most of the easy samples give 

less contribution. The cross-entropy for binary classification is defined as eq. (3.62), 

𝐶𝐸(𝑝, 𝑦) = {
− log(𝑝) ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑖𝑓⁡𝑦 = 1

− log(1 − 𝑝) ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
   (3.62) 

where 𝑦 ∈ {−1,1} represents the true label, as 1 stands for positive sample, and -1 

stands for negative sample. The element 𝑝 ∈ [0,1] is the probability that the model 

predicts a positive sample: 

𝑝𝑡 = {
𝑝⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑖𝑓⁡𝑦 = 1
1 − 𝑝⁡⁡⁡⁡⁡⁡𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

     (3.63) 

and the equation of cross-entropy is simplified as eq. (3.64) 

𝐶𝐸(𝑝, 𝑦) = 𝐶𝐸(𝑝𝑡) = −𝑙𝑜𝑔𝑝𝑡    (3.64) 



49 

 

 While applying cross-entropy for calculating the loss, the easy samples might 

contribute a large proportion of loss values, which may cause the imbalance issue. For 

eliminating the problem, focal loss adds an extra regulatory factor(1 − 𝑝𝑡)
𝛾  into the 

function as shown in eq. (3.65), 

𝐹𝐿(𝑝𝑡) = −(1 − 𝑝𝑡)
𝛾𝑙𝑜𝑔𝑝𝑡     (3.65) 

where if 𝑝𝑡 is small, the factor approach to 1, which will not affect the loss value. If 𝑝𝑡 

approaches to 1.00, the factor will be close to 0, the number of correct easy sample 

losses will be reduced effectively. 

3.2.4 Dataset， Modification and Resources 

Table 3.2: Image distribution inside datasets 

Network Train Validation Total 

ABCNet 1600 400 2000 

YOLOv5 2400 600 3000 

    Regarding our experiments, there are two individual datasets for training and 

validating their corresponding networks, ABCNet and YOLOv5. The dataset for 

ABCNet named “ABC” contains 2,000 images in total. The dataset “v5” for YOLOv5 

includes 3,000 images.  

The dataset for ABCNet comprises four types of characters, including capital letters, 

lowercase letters, punctuations, and numbers. There are 7,677 instances inside the 

dataset, where the English letters are the main components to form the instances. 

According to the annotation files, there are 37,380 English letters, where capital letters 

are 5,312, and lowercase letters are 32,068. 
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Figure 3.17: The distribution of Alphabets in dataset ABC 

The lowercase letters include the letters from ‘a’ to ‘z’, but the capital letter ‘X’ is 

missing. Although the number of each letter is not equal because some letters appear 

more often in instances, and some are employed less for expression. For capital letters, 

letter ‘O’ is applied the most as 670 times, letters ‘J’ and ‘W’ only appear four times and 

one time respectively, which are the least used capital letters in the dataset. Letter ‘a’ is 

applied for lowercase letters, which appears 3,676 times in the instances. Letter ‘q’ is 

the least used lowercase letter that only appears two times.  

 

Figure 3.18: The distribution of punctuations and numbers in dataset ABC 
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The components to form the instances also include punctuations and numbers, not 

all the punctuations are included inside the dataset, only ten general symbols. The full 

comma is the most employed punctuation, appearing 222 times in the dataset. For the 

numbers, the dataset does not include all the numbers, missing 5, 6, and 8. The number 

2 appears the most in the dataset as 306 times.  

The format of the data is to mimic the structure of dataset CTW1500 with minor 

changes. The first step is to generate the CTW1500 like annotations stored as txt files. 

The labelling tool for the labelling process is a tool which is designed for ABCNet, to 

draw two types of bounding boxes, including rectangular-shape and arbitrarily-shape 

boxes. The labelling tool requires 14 points for each bounding box. The format of the 

label for each box is represented as [𝑥1, 𝑦1, 𝑥2, 𝑦2 ……𝑥14, 𝑦14 , 𝑡], where 𝑡 stands for the 

text that needs to be detected and recognized inside the box. 

 

Figure 3.19: Labeling tool 

 After the CTW1500 style annotations are created, it is needed to transfer the label 

format into Bezier ground truth, with eight control points in total. After the 

transformation, the label will be changed into [𝑥1, 𝑦1, 𝑥2, 𝑦2 ……𝑥8, 𝑦8||||𝑡], the ground 

truth within eight control points will be drawn on the image to ensure the Bezier curves 

are nicely placed.  
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Figure 3.20: The Bezier ground truth 

The dataset “ABC” has 2,000 images in total. There are 1,000 images collected 

through the Internet. Another 1,000 images are generated based on the first half images.  

 

Figure 3.21: Comparison of original images and augmented images 

Figure 3.21 shows the difference between the original images and the augmented 

images. The random noises are injected into the images using a script file, including 

Gaussian-distributed additive noise, Poisson-distributed noise, salt noise, pepper noise, 

salt & pepper noise (Russo, 2003; Dytso & Poor, 2020; Azzeh et al., 2018).  

After adding the noises, the color of the images also changed according to the script. 

The augmentation only applies extra noises and color changes to the images. The 

pseudocode of the script is shown in Algorithm (2). 
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Algorithm 2 Image Augmentation 

Input: Original image 

Output: Augmented image 

1: path ← Image folder path 

2: image names ← os.listdir(path) 

3: save direction ← path to save the modified images 

4: for every image name in image names do 

5:  if image name ends with (’.jpg’) then 

6:   img ← Image.open_image_file from pathjoin(path + image name) 

7:    img ← Numpy.array(img) 

8:     noise img ← skimage.util.randomnoise(img, mode=’speckle’) 

9:   noise img ← noise img ∗ 255 

10:   noise img ← noise img.astype(numpy.int64) 

11:   OpenCV.imwrite[(save direction + image name), noise img] 

 

Figure 3.22: There are five classes of Maori symbols in dataset “v5”. The symbols from 

left to right are Hei Matau, Koru, Hei Tiki, Manaia, and Pikorua. 

Dataset “v5” for training YOLOv5 contains 3,000 images in total. It is split into two 

parts, with 80% of the images for training and the rest 20% exploited for validating the 

trained network. There are five types of Māori symbols in the dataset, including Hei 

Matau, Koru, Hei Tiki, Manaia, and Pikorua. The proportion of the classes in “v5” is 

very balanced compared to dataset “ABC”. Each type has 600 images. All of them are 
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legal public images collected through the Internet, some are individual images, and 

some are video frames taken from multiple video files. The images include symbols 

represented mainly as Tattoos, engravings, and pieces of jewelry. We have not applied 

data augmentation to “v5” because YOLOv5 has already arranged the data 

augmentation method to be implemented during training, and a duplicate pre-made 

augmentation is not needed. 

While preparing the dataset “v5”, a few labeling tools have been employed for 

generating the annotations for the images, including Labelme, LabelImg, and voTT 

(Russel et al., 2008; Yu et al., 2019; Ezhilarasi & Varalakshimi, 2018). After a few 

rounds of tests, LabelImg is chosen to label the images.  

 

Figure 3.23: The user interface of LabelImg 

Labelme is more suitable for dealing with the labels for image segmentation, voTT is 

very convenient to install and execute. But it does not support the YOLOv5 annotation 

format itself, which needs an extra process to transform the labels into the correct 

format. Compared to the proposed tools, LabelImg is also easy to install and be 

implemented for labeling. It has the option for generating the labels in YOLO required 

format. The generated annotation files are represented as txt files.  
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Figure 3.24: The structure of the dataset folder 

The annotation format for the ground truth box is recorded as [𝑐𝑙𝑎𝑠𝑠, 𝑥𝑐 , 𝑦𝑐 , 𝑤, ℎ], 

where the first value represents the class of the subject. Instead of describing the class 

using a word(words), the classes will be transformed into serial numbers (e.g., 0,1,2), 

and the numbers will be recorded instead while labeling the images. 𝑥𝑐 and 𝑦𝑐 are the 

coordinates of the central point of the bounding box after normalization, 𝑤 represents 

the normalized width of the box, and ℎ shows the normalized height of the box. The 

final structure of the dataset folder is presented in Figure 3.24. The reason why we 

choose it to generate the annotation files as txt files instead of XML files is that there 

are 3,000 images required to be labeled. The mistakes might have occurred during the 

labeling process. The .txt files are very easy to be modified. While an error is found, it is 

easy to adjust the file in a concise period. 

    ABCNet is integrated within a toolbox called AdelaiDet. The base functionalities of 

the toolbox are depending on the opensource framework Detectron2, which is 

introduced and managed by FaceBook AI (FAIR) (Joulin & Paris, 2015). The Adelaidet 

includes multiple deep learning methods such as FCOS, BlendMask, MEInst, ABCNet, 

ConInst (Chen et al., 2020; Zhang et al., 2020; Tian et al., 2020). Like other general 

detection frameworks, the predictions will be presented as rectangle boxes, wherever 

the detecting media is an image or a video clip. The toolbox has their own arrangement 
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or adjustments for each detection method to modify the detection box into its required 

styles. For ABCNet, the detection box is generated based on Bezier curves and 

Bernstein Polynomials. In order to perform the curved ground truth, there is a script file 

visualizer.py that is responsible for the task. The class has referred to the Visualizer 

algorithm designed by Detecron2. There is one class called TextVisualizer created in the 

script, and the class includes five functions. They are designed to get multiple 

coordinates on the parameterized Bezier curves to draw the prediction box, apply the 

functionality for decoding the classification result into general text, and draw the 

prediction boxes.  

 

Figure 3.25: Comparisons of the prediction results between image and video. 

We run a prior training before starting the actual project with a small Braille dataset 

for checking the prediction results. The network generates the boxes built with curved 

boundaries. The label shows the value of the score with the predicted text. But suppose 

we switch the detecting source from image to video. In that case, the prediction result is 

shown in the rectangular box. And the label only shows the percentage of the score 

without the predicted text, which is unable for the user to estimate if the prediction has 

fully matched all the characters or there still exist some false predicted elements for the 

word. Based on this result, by checking through the documents and script files 

corresponding to ABCNet inside AdelaiDet toolbox, a possible algorithm inside the 

script file predictor.py in the ‘demo’ folder might be the main reason for the differences.  

Inside the script file, there are two functions. The first function is responsible for 
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producing prediction outputs for images. The second function has the duty for videos. 

Read through the details of two functions. The first function utilizes the TextVisualizer 

as the visualizer to produce the prediction. The second function still applies the 

visualizer algorithm designed by Detectron2. The original visualizer can only produce a 

hollow rectangular box for prediction, which cannot perform curved or polygon 

boundaries for the area. Therefore, it is necessary to modify the function to make it 

possible when utilizing the right visualizer for detecting the target video. After a few 

rounds of adjustment, the function can generate the right style of boundaries for the 

prediction. The pseudocode of the function is shown as Algorithm (3).  

Algorithm 3: Produce Prediction on Video 

Input: Video for inference 

Output: Predictions 

1: function RUN_ON_VEDIO(video) 

2:  function PROCESS_PREDICTIONS(frame, predictions) 

3:   frame ← OpenCV.cvtColor(frame, OpenCV.COLOR RttB2BttR) 

4:  if panoptic segment is in predictions then 

5:  panoptic segment, segment info ← predictions[”panoptic_segment”] 

6:  vis_frame ← video visualizer.draw_panoptic_seg predictions[frame, 

7:  panoptic_segment.to(transfer to cpu), segments info] 

8: else 

9: if instances are in predictions then 

10:  frame ← frame[:, :, :: −1] 

11:   predictions ← predictions[”instances”].to(transfer to cpu) 

12:    vis_frame ← visualizer.draw_instance_predictions(predictions) 

13:    else 

14:   if semantic segment in predictions then 

15:   vis_frame ← video visualizer.draw_semantic_segment(frame, 

16: predictions[”semantic_segment”].argmax(dimension=0).to(transfer to cpu)) 

17: end if 

18: end if 

19: end if 

20: vis_frame ← OpenCV.cvtColor(vis_frame.get_image(), OpenCV.COLOR 

RttB2BttR) 

21: vis_frame ← OpenCV.cvtColor(vis_frame, OpenCV.COLORBttR2RttB) 

22: return vis_ frame 

23: end function 

24: created_frame ←frame_from_video(video) 

25: if the process is parallel then 

26:   terminal print(‘− − − − −− > parallel’) 
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27:  buffer_size ← predictor.default_buffer_size 

28:  frame_data ← deque() 

29:   for sequence of the frame and frame in created_frame do 

30:   frame data.append(frame) 

31:   predictor.put(frame) 

32:    if sequence of the frame >= buffer size then 

33:     frame ← frame_data.popleft() 

34:   predictions ← predictor.get() 

35:   yield process_predictions(frame, predictions) 

36:   end if 

37:   end for 

38:   while length of frame_data is not null do 

39:   frame ← frame_data.popleft() 

40:   predictions ← predictor.get() 

41:   yield process_predictions(frame, predictions) 

42:   end while 

43: else 

44:  terminal print(‘− − − − −− > notparallel’) 

45:  for each frame in frame_gen do 

46:    visualizer ← TextV isualizer(frame, metadata, instance mode = instance 

mode) 

47: yield process_predictions[frame, predictor(frame)] 

48:  end for 

49: end if 

50: end function 

After correcting the presentation of predicting videos, less important issues of the 

predicted labels need to be adjusted. The colors for the prediction area, boundaries, and 

the text in the label use darker colors to present the subject. The observed target is 

covered in heavy colors, which is hard for users to check the braille characters while 

inferencing. The text in the label is small, which also brings difficulty for comparing the 

prediction and the real label and checking whether the prediction fully matches all the 

characters or symbols in the real label.  

Therefore, little changes are made for the function in the script visualizer.py. 

Changing the original color from default RGB values (0.1,0.2,0.5)  into ‘y’, which 

represents the color yellow. By changing the predicted label from top-left position [0] to 

position [39], we modified the label to be shown at the bottom-left position, which 

provides a better view of the target without covering some area inside the box shown in 
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Figure 3.25. One more change for the function is the font size of the label, by letting the 

variable multiply by 1.50, which allows the text to be shown more evident while 

inferencing the objects. 

 

Figure 3.26: The ABCNet training progress represented on the terminal in Windows 10 

This project includes two networks, ABCNet and YOLOv5. It is important to set up 

the proper systems and environment for running the networks. Through official 

installation structure for both networks, it is possible to implement the networks on 

Microsoft Windows 10 operating system. By following the installation guidelines, the 

networks are installed on Windows 10. There will be a virtual environment for each 

network, which permits the network to run smoothly in their own environment and no 

conflicts between the two networks. A few tests are required to ensure the 

functionalities of the networks are working properly. The tests are based on running the 

training process with a small dataset. After testing the networks, we figure out that the 

YOLOv5 runs correctly on Windows 10, though ABCNet has an issue while training.  

    In the beginning, the terminal shows the progress of the training without any issue. It 

runs smoothly and the values for the losses are shown for every 20 iterations. We set 
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every 1,000 iterations as the checkpoint. After the first 1,000 iterations, the network 

processes the evaluation for a temporary state.  

In Figure 3.26, the precision, recall, and H-mean rates in evaluation metrics are all 

represented as 0, including the E2E and detection-only results. In this case, this is 

impossible for us to understand whether the training process can proceed with no 

technical issues relevant to the system and running environment. Therefore, we must 

build the environment for ABCNet using Ubuntu. By following the same instruction to 

install the network to the Ubuntu system, the checkpoints' evaluation metrics are shown 

with correct values. Thus, we arrange to run the networks separately on two different 

systems with suitable environments, as YOLOv5 will be trained using Windows 10, and 

ABCNet will be trained on Ubuntu. 

We choose Python as the programming language for implanting both deep learning 

methods and training the networks. The framework for running the scripts is PyTorch 

(Paszke et al., 2019). Regarding the hardware, we mainly operate a laptop with GPU 

GeForce GTX1060 for the entire project. The size of GPU memory is limited to only 

6G bytes, the batch sizes for training the networks are very small. Regarding YOLOv5, 

the batch size is set as two, while ABCNet is one. 
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Chapter 4 

Results 

 

 

In this chapter, the results of the experiments will be 

demonstrated. The results include the training result of 

ABCNet, the training results of YOLOv5 also encapsulate 

comparisons. 
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4.1 Prediction Display of ABCNet 

Based on the methods, algorithms, modifications, and resources, we train the networks 

with their corresponding dataset which all are prepared by ourselves. In this chapter, we 

show the training results of the networks. The images and videos that are not included in 

the datasets will be applied for testing the inference performance of the networks. To 

simulate the situations when the networks are implemented for solving the real-life 

problem. 

 

Figure 4.1: Comparing the video prediction after using parameterized Bezier curves 

 Figure 4.1 shows the adjusted inference result compared to the prediction displayed 

using the original rectangular bounding box. From the image, the results are detailed. 

The upper and bottom boundary are represented in slightly curved lines. Other two short 

boundaries are not shown vertically but drawn with certain angles according to the final 

trained ABCNet. Instead of using a hollow box for the predicted area, the prediction 

fills the box with color after adjustment. It highlights the area that has been detected, 

which gives us a benefit while evaluating the prediction, whether it has covered the 

braille characters nicely without too much unwanted background, more accessible for us 

to view the actual result.   

 The original display of the prediction label only shows the score in percentage, 

same as the left-hand result in Figure 4.1, where 86.0% has shown in the label, which is 

not sufficient for us to evaluate the result. It is impossible to compare the predicted 
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characters and the actual characters in the video. Only the score of the detection cannot 

be utilized to estimate whether some characters in the prediction have been misjudged. 

Therefore, the update adds the predicted characters into the prediction label. As we see 

the adjustment results, the predicted characters are shown as “love” with a score of 

0.862. Thus, we ensure that the network perfectly predicts the braille word “love” 

shown in the test video.  

 

Figure 4.2: Prediction labels before and after the adjustment 

    Figure 4.2 shows the adjustment of the display and position to the prediction label. 

For the original display methods shown on the left side, the top-left is prediction when 

inferencing image and the bottom-left is video prediction. The labels are placed at the 

top-left corners of the predictions. The labels overlap with the detected area of braille, a 

part of the braille characters cannot be viewed by the user. We change the position of the 

prediction label from top-left to bottom-left, which will not intersect with the prediction 

area in most cases. Furthermore, we enlarge the size of the text of the label. We replace 

the colors of the prediction, including the label box, text inside the label, and the 

detected area. More vivid colors make it easier for us to observe the prediction results.  
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4.2 Result of ABCNet 

Table 4.1: Iterations and time costs for training ABCNet 

Iteration Checkpoint period Time cost/ each 

iteration 

Total training time 

100,000 1,000 0.55 sec 15h 21min 23sec  

    In Section 4.1, we demonstrate the adjustments for the display of the detection 

generated from ABCNet. In this section, we will describe the training and evaluating 

results of ABCNet. 

Table 4.2: Time consumption for evaluation 

Data loading Inference Evaluation Total time cost 

per image 

Total time cost 

0.0011 s/per 

image 

0.3 s/per image 0.0006 s/per 

image 

0.3017 s/per 

image 

95 sec 

We manage to train the network by 100K iterations with every 1K iterations as a 

checkpoint. The GPU memory usage for training the network is 2,783MB as the 

maximum memory during the process. The entire training process takes nearly 16 hours 

to finish.  

For each checkpoint, the network will be evaluated periodically by using the 

validation set. The 400 images in the validation set are managed into various batches. 

According to the batch size, which is 1.0, there are 400 batches for validation. The 

average time costs for the inference at each checkpoint are shown in Table 4.2. For each 

image, the total evaluation time is 0.3017 seconds. The network takes 95 seconds to 

finish the evaluation process. Therefore, the average speed for the network to infer the 

objects we operate is 3.3FPS. Compared to the official inference speed from GitHub, 

which is the maximum 11.3 FPS, ours is much slower.  
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Table 4.3: Evaluation metrics of ABCNet 

 Precision Recall H-mean(F1-score) 

E2E 0.89 0.90 0.90 

Detection Only 0.98 0.99 0.98 

Table 4.3 shows the evaluation metrics of the final trained ABCNet. Regarding E2E 

detection, the precision of ABCNet is 0.89, recall is 0.90, and the H-mean reaches 0.90. 

For detection-only, the precision is 0.98, recall is 0.99, and the H-mean is 0.98. The 

values of the evaluation metrics for detection only are slightly higher than E2E 

detection, with each metric has an approximate 0.10 difference. 

 

Figure 4.3: The evaluate metrics 

 Figure 4.3 shows the trends of the evaluation metrics of detection only and E2E 

detection during the training. All the metrics increase rapidly during the first 10K 

iterations. The values increase slowly between 10K and 40K iterations. While the 

training process reaches and exceeds 40K iterations, the metrics keep at relatively stable 

values with only small fluctuations. Regarding E2E detection, the values of the metrics 

stopped growing around 0.90, cannot be as close to 1.00 as the metrics. 
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Figure 4.4: Inferencing images 

 

Figure 4.5: Inferencing videos 

 Figure 4.4 and Figure 4.5 show the detection results with inferencing images and 

videos. We choose a yellow color for images to demonstrate the detected braille, the red 

color is applied to the label box with white text inside. The text is viewed clearer with 

the red color as the background. Regarding videos, the detected braille is covered in 

wathet blue. The label box is represented in blue with white text. The prediction results 

all gain very high confidence scores. None of them is less than 0.70. The highest score 

in the figures is 0.925 while detecting the braille word “mommy”.  
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Figure 4.6: Real-time inferencing through webcam 

The ABCNet is defined as an E2E scene text detection and recognition method, 

where it can apply the functionality of real-time text spotting. Therefore, after testing its 

performance with inferring images and videos, we must test how the network 

accomplishes the real-time tasks using the webcam. Figure 4.6 is a moment of the 

network is being inferenced with the braille characters by using webcams. From the 

image, we test whether the network can detect the arbitrary-shaped braille and draw the 

boundaries of the area with Bezier curves, we deliberately bend the paper with a hand-

written braille word. The result shown in the image is relatively perfect. The braille 

shown by the webcam is correctly detected and enclosed by the curved box. Inside the 

box, we can find very little unwanted background.  

The confidence score of the prediction is 0.931, which is very high, and the 

predicted characters all match to the braille characters. The terminal shows on the right 

side, which is next to the webcam window. It displays the status of the network while 

inferencing. The inference speed shown in the terminal is 3.18 FPS. One frame is 

regarded as one iteration for the network. The test proves the ABCNet can detect and 

classify braille words in plain English in real time, though the inference speed is slow, 

which cannot satisfy the user if they require a smooth-running state. 
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Figure 4.7: The loss curves of the training process 

The loss function of ABCNet includes three main parts, FCOS loss, center-ness loss, 

and Bezier loss. FCOS loss is combined with two loss functions responsible for 

classification and regression (localization).  

Table 4.4: Values of losses at the final training iteration 

Bezier loss Center-ness 

loss 

FCOS 

classification 

loss 

FCOS 

Localization 

loss 

Total loss 

0.0099 0.6018 0.0368 0.0689 0.7174 

Table 4.4 represents the values of each loss after the training. The total loss is 

0.7174. All the losses are reduced at a rapid speed at the first 10K iterations. The values 
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of Bezier loss, classification loss, and localization loss become stable at 40k iterations 

shown in Figure 4.7. Compared to other losses, though Center-ness loss is reduced very 

fast at the beginning, it has relatively unstable fluctuation during the entire training 

process. It also contributes most of the loss value as 0.60. 

4.3 Result of YOLOv5x 

Table 4.5: Training volume and time consumption 

Dataset size Epoch Batch per 

epoch 

Time cost per 

epoch 

Total training 

time 

1500 300 600 8.99min 44hr 56min 

3000 200 1200 16.37min 54h 33min 

We explore the results of YOLOv5x in this chapter. We have trained the network 

with two datasets of different sizes. The dataset “v5” with 3,000 images is the main 

dataset. Another dataset contains 1,500 images, collected as the control group to get a 

comparison result. 

 

Figure 4.8: Distribution of labels in the datasets 

 Figure 4.8 represents the labels distribution status in two datasets. In dataset “v5”, 

the instances in all the classes are around 500. Hei Matau has the largest number of 
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instances for nearly 700. Most of the instances are captured in the middle of the images. 

From the scattergram, most of the instances have minor ratios of width between 0 and 

0.40, the ratios of heights are between 0.10 and 0.90. Inside the control group, the 

instances for each class are around 250, which is half of the amounts in “v5”. As same 

as “v5”, most of the instances in the control group are placed in the middle of the 

images. Most of the width ratios in the control group are gathered between 0.0 to 0.3. 

The height ratios are between 0.00 to 0.80. 

Table 4.6: Evaluation metrics of YOLOv5x 

Dataset Class Precision Recall mAP@.5 mAP@[.5:.95] 

v5 All 0.989 0.98 0.991 0.973 

Control Group All 0.981 0.948 0.976 0.95 

v5 Hei Matau 0.994 0.946 0.977 0.954 

Control Group Hei Matau 1 0.877 0.931 0.909 

v5 Koru 0.976 0.985 0.995 0.975 

Control Group Koru 0.983 0.972 0.984 0.956 

v5 Hei Tiki 1 0.993 0.996 0.975 

Control Group Hei Tiki 1 0.981 0.986 0.964 

v5 Manaia 0.974 0.992 0.994 0.987 

Control Group Manaia 0.922 0.983 0.984 0.97 

v5 Pikorua 1 0.983 0.995 0.976 

Control Group Pikorua 1 0.929 0.995 0.951 

Table 4.5 shows the training volumes and time costs of the training. Regarding 
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dataset “v5”, we set up 200 epochs training steps, and each epoch has 1,200 batches. 

The overall time consumption is 54 hours and 33 minutes. For the comparisons, we 

apply 1,500 images to train the network with 300 epochs, but each batch only has 600 

batches, the overall time costs are 44 hours and 56 minutes, respectively, which are less 

than the training time with dataset “v5”. Although the number of epochs is more than 

the training with dataset “v5”, the time cost is 10 hours less by using 3,000 images for 

training. 

 Table 4.6 shows the results of the training using two datasets. The results include 

the overall value of precision, recall, mAP@0.5, and mAP@[0.50:0.95]. mAP@0.50 

stands for the mean Average Precision (mAP) if the IOU threshold is 0.50, and 

mAP@[0.50:0.95] represents the average mAP at different thresholds, from 0.50 to 0.95. 

From Table 4.6, by exploiting the “v5” dataset for the training, the overall precision gets 

0.99, recall as 0.98, mAP@0.50 as 0.99, and mAP@[0.50:0.95] as 0.97. Compared to 

the control group results, all the metrics are slightly higher. While checking through the 

evaluation metrics for every class of Māori symbol, only the precision of the symbol 

Hei Matau in the control group is 1.00, which is a little higher than the precision of the 

main results. The precisions of symbols Hei Tiki and Pikorua all reach 1.0. The recall of 

Pikorua of the control group gets the lowest score as 0.93.  

 

Figure 4.9: The PR (precision vs recall) curves 

 Figure 4.9 represents the PR curves of the two training results. The overall PR 

curve of the “v5” dataset is able to wrap the PR curve defined by the control group. The 
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overall precision of “v5” is 0.99, the overall precision of the control group is 0.98, 

which is slightly lower. The PR curves for each class of “v5” are more compact to each 

other, and the shapes are closer to all-classes PR curve. While observing the PR curves 

of the control group, the curves of the classes have more distances between each other. 

The PR curve of Hei Matau in the control group shows more fluctuation. Once its recall 

rate reaches around 0.9, the rate of the Hei Matau precision in the control group starts 

reducing. 

Table 4.7: The losses of the training 

Dataset Gpu_mem Box loss Object-ness 

loss 

Classification 

loss 

Total loss 

v5 3.25G 0.0054 0.0034 0.0004 0.0091 

Control group 3.25G 0.0055 0.0034 0.0005 0.0094 

 

 

Figure 4.10: The trends of the metrics during training by using dataset “v5” 



73 

 

 

Figure 4.11: The metrics during model training by using control group dataset 

In Table 4.7, we show the final loss values. The two training processes all apply 

3.25G of GPU memory for training. The total loss trained using “v5” is 9.10x10-3, and 

the total loss of the control group is 9.40x10-3, with the box loss and the classification 

loss slightly gaining more loss values than the experiment group. And the object-ness 

losses are all equal to 3.40x10-3. 

 Figure 4.10 and Figure 4.11 gather the trends for each metric, including evaluations, 

training, and validation losses of two training processes. The classification loss of 

validation of dataset “v5” is reduced more smoothly. In the control group, the 

classification loss of validation is decreased rapidly at the beginning, which is down to 

5.00x10-3. But the loss cannot be minimized in a smooth rhythm. The loss value 

slightly increases at the end of the training. 

 

Figure 4.12 Inference results on images of YOLOv5x 
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 Figure 4.12 demonstrates the detection results with inferencing images using 

YOLOv5x. The networks detect all types of Māori symbols with high confidence scores. 

Most of the scores reach over 0.90. There is one Hei Tiki shown as the image 

background is detected with a score of 0.48. Although the score is not high, the network 

still detects the symbols correctly and localizes the position with a bounding box in 

feasible size. 

 

Figure 4.13: Inferencing video using YOLOv5x 

 The YOLOv5x generates nice results while inferencing the objects in the images. 

We bring the test further by applying detection using videos. On the left side of Figure 

4.13, the generated predicted video clip is shown, the right side is the terminal that 

execute the inference process.  

The detection result in the video is shown in Figure 4.13. The network predicts the 

symbol Koru correctly with a confidence score of 0.97, which is very high. The 

boundaries of the predicted bounding box are very close to the Koru symbol. The 

terminal shows the detection process. The video is detected as frames. As the example 

in the image above, the network takes around 0.11 seconds to detect one frame of the 

video. It takes 50.21 seconds to get all 417 frames. Therefore, the approximate inference 

speed of YOLOv5x is 8-9FPS by our computer. After inferring the videos, we also test 

the real-time detection using the same webcam like ABCNet.  
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Figure 4.14: Inferencing Māori symbols by real-time webcam 

Unfortunately, we do not have the chance to gather Māori symbols as real-life 

entities. We display the symbol by using a small screen device. Figure 4.14 shows the 

real-time process. The webcam is shown on the left side, which represents a Manaia 

symbol. The network detects the symbol into the correct class, with a confidence score 

of 0.97, which is very high. The symbol is warped tightly with a bounding box. Inside 

the terminal, the information describes the real-time inferencing status, where number 0 

represents the webcam. The status shows the size of the webcam, detection result, and 

time cost for each frame. The webcam size is 480×640, and the inference speed for each 

frame is around 9.20x10-2 – 9.70x10-3 second, which is 10.3FPS - 10.87FPS. It is faster 

than other videos. 
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Chapter 5 

Analysis and Discussions 

 

 

In this chapter, the results of the experiment are analyzed 

and compared. The results are also detailed. The possible 

reasons for the results will be discussed. 
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5.1  Analysis 

In this chapter, we analyze the results in the previous chapter, and deficient inference 

results will also be included. The relevant results and analysis will be discussed in the 

following sections. 

5.1.1 ABCNet 

The results show how the ABCNet predicts braille characters using images, videos, and 

a real-time webcam. Within the training schedule, we set 100K iterations for the training. 

In most situations, the ABCNet detects and classifies the braille characters with high 

accuracy by using parameterized Bezier curves to draw the prediction box with a less 

unwanted background. Moreover, the confidence scores are usually high with correct 

predictions. However, the network cannot fully recognize all the braille characters in a 

word. 

 

Figure 5.1: Misjudgment braille words 

    In Figure 5.1, there are two braille words, “happy” and “anniversary” that need to be 

detected and recognized. Two words are detected and warped nicely with the bounding 

boxes. The first word “happy” has been recognized correctly without wrong characters, 

but the score is 0.56, which is low. The second word “anniversary” has been detected, 
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but the network predicts the word as “annikersny” with two misspellings, though the 

score is 0.87, which is higher than the first prediction.  

  

Figure 5.2: Braille character ‘r’, ‘n’, and ‘o’ 

 We observe the braille word “anniversary” in the image. The overall angles of the 

characters are deflected about 30 degrees counterclockwise related to the vertical 

direction of the image. However, the positions of the mispredicted characters are 

parallel to the vertical direction of the image. This might be one of the reasons why the 

network produces the wrong prediction. Regarding the mispredicted character ‘r’, it has 

two dots difference to ‘n’. Inside the image, the second dot in the first column is 

inconspicuous, leading to a misprediction by classifying ‘r’ into ‘n’. As the shape of 

character ‘o’ is similar to ‘r’ and ‘n’, we assume there is a probability that the network 

might mispredict ‘r’ into ‘o’.  

 

Figure 5.3: Mis-predicted and undetected braille 

 In Figure 5.3, the network deals with multitarget detection where there are 6 braille 

words represented in the image. Half of the words are correctly detected and recognized. 
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The top-left braille represents “fabulous”, the network only detects five characters, and 

two of them are correctly classified, which are “ou”. This braille word is rotated 

approximately 60 degrees clockwise relative to the horizontal direction of the image. 

Because each braille character is constituted by dots. Unlike English alphabets that are 

written by connected lines. Therefore, if the position is extremely rotated, an inevitable 

mistake may occur.  

Other two braille characters at the bottom-right represent the same word “the”. 

These are shorthand braille characters, which show an English word with only one 

braille character. Our dataset covers only the basic characters and punctuations, and no 

shorthand characters are included. Therefore, the network cannot detect and recognize 

the braille in simplified way.  

 

Figure 5.4: Detecting small targets using ABCNet 

Figure 5.4 shows the result while ABCNet is utilized to detect small targets. As we 

see in the image, some pieces of jewelry are decorated using braille. Only one has been 

detected correctly, with a confidence score of 0.66. The result is unexpected that we 

expect all the braille to be detected and recognized by the network. The ABCNet applies 

FPN with ResNet as its backbone, which should be able to handle the detection when 

the targets are in various sizes.  
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Figure 5.5: Comparison if the braille is big enough 

We assume the braille characters in the image are too small. Most of the dots 

become inconspicuous. The network might classify the dots as background noises, so 

the braille cannot be detected. The sizes of braille words in Figure 5.5 are bigger than 

the words in Figure 5.4. The dots have better clarity. Hence, the network detects all the 

braille correctly with high scores.  

We show the final loss values of each loss function of ABCNet in the result. Among 

them, the center-ness loss contributes a large portion of loss values to the total loss. The 

center-ness is designed to suppress the number of low-quality prediction bounding 

boxes which is generated by calculating their centrality, in order to improve the 

performance of the network. ABCNet applies BCE loss as the center-ness loss for each 

prediction. It sums up all the center-ness loss and takes the mean value as the overall 

center-ness loss. The center-ness loss is also volatile during the training compared to 

other losses. We believe that the network will generate multiple candidate prediction 

boxes during the detection, most of which are low-quality. The ABCNet implements the 

BCE loss for comparing the center-ness values of each prediction with the target. The 

low-quality boxes will gain more loss value, increasing the final mean value of center-

ness loss. Therefore, the center-ness loss fluctuated during the training and received a 

large loss value at the end. 
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Compared with other real-time spotting methods, the real-time inference speed of 

ABCNet is very slow which only reach 3.18 FPS which mentioned in Chapter 4. 

Although the parameterized Bezier curves only generate a small amount of computation 

overhead when calculating the control points of the Bezier curves, which should not 

have too much impact on the inference speed. However, if the BezeirAlign takes effect, 

the calculation is at the pixel level, multiple positions need to be calculated to obtain the 

required values. It might need a large amount of computation. Therefore, the number of 

frames detected by the network in a second will be relatively small, and the detection 

speed will be slower than other methods.  

5.1.2 YOLOv5 

We have two sets of results of YOLOv5 that are trained by using two different datasets, 

the dataset “v5” for our experiments. The evaluation metrics of the results are both in 

very high scores. In the control group, the precision of class Hei Matau, Hei Tiki, and 

Pikorua all reach 1.00. The precision of class Hei Tiki and Pikorua in the experiment 

group is also up to 1.00. 

 The network of the control group has been trained for 300 epochs. The network has 

been trained 200 epochs with the experimental group. But the overall values of the 

evaluation metrics of the experiment group are higher than the control group. It achieves 

better results with a larger dataset and fewer training iterations. From the PR curves 

shown in Figure 4.9, we see that all PR curve of the experiment group fully wraps the 

curve of the control group, which means that the network performance of the 

experiment group is better than the control group network. Therefore, if the network has 

the same structures and hyper-parameters in various experiments, the one employing the 

largest dataset for the training can get the best result with less training. 
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Figure 5.6: Multitarget detection with one object has not been detected 

After being trained, YOLOv5 has shown robust results while proceeding with 

object detection tasks, which can detect and recognize the five Māori symbols with high 

accuracy in most cases. For dataset “v5”, we have collected 600 images for each symbol, 

which is relatively equal. Compared to the “v5” dataset with dataset “ABC”, there is no 

case that a class with a very small proportion. Because there are only 5 types of symbols 

in “v5”, which is easier for us to manage the data balance. A more balanced dataset is 

applied to train the model so as to perform better on inferencing targets. Although the 

number of images of each class is equal, most of the symbols in the images are 

represented as pieces of jewelry, jade carvings, and wood carvings. However, we only 

collect a few Hei Matau shown as tattoos and paintings with more abundant patterns.  

Figure 5.6 shows the result if YOLOv5 is applied to multitarget detection on Māori 

symbols. There are four symbols in the image that are drawn on stones. Three of them 

were detected, while the Hei Matau at the top has not been detected. We checked the 
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dataset and found that only 58 images on Hei Matau are represented as tattoos and 

paintings, which is not enough to enhance the data variety.  Therefore, we assume this is 

why the proposed network cannot detect the Hei Matau painting in the image, as only a 

few relevant images are collected. The network does not have enough data to learn the 

relevant features. 

 

Figure 5.7: The detection result shows the symbols are misjudged. 

Regarding the jade and wood carving items of Māori symbols, a symbol has 

multiple forms of expression. It incorporates visual features from other symbols. For 

example, the Hei Mautau jades in Figure 5.7, the shape of the tips is similar to the tail 

part of Mania. Also, the overall structure of the two symbols is similar. Thus, the 

network will have a probability to detect and recognize the symbols as Manaia. 

Similarly, in the bottom-right of the image, there are two Hei Matau jade pieces 

combined with the spiral feature of the symbol Koru. The pieces of jewelry are 

occluded by the upper boxes, which are not fully displayed. Thus, the network classifies 

the symbols as Koru. 

5.2 Discussion 

In our experiment, we applied ABCNet for braille spotting and YOLOv5 for Māori 

symbol detection. Both methods take advantage of relatively complex deep network 

structures with many layers. The residual structure is implemented in both networks to 
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eliminate the problem of network degradation and gradient disappearance. The FPN 

structures are cited in the networks to enhance the ability to detect multiscale network 

targets. The training results show that the networks can efficiently detect and classify 

the targets with high accuracies in different scenarios and have no problem dealing with 

multitarget detection by using images and videos from webcams. The evaluation metrics 

of the networks all reach very high scores. 

 In the previous section, we analyzed erroneous results in the experiment. To apply 

ABCNet for braille detection and recognition, we figure out that because of the 

particularity of braille itself, the braille character is represented by single or multiple 

dots organized with a certain pattern to match with the corresponding English alphabet 

or numerous letters.  

    Compared to braille, English alphabets or unique characters utilized by other 

countries are represented using continuous lines. The characters have unique 

characteristics, which can be distinguished easily from other objects or backgrounds. 

Although braille characters are composed of dots with orders, there is a probability that 

the proposed network is confused with other circular objects while inferencing.  For 

example, the network might have a possibility to recognize the vertical traffic lights as 

the braille character ‘L’ because it is formed by three dots vertically. Also, if the braille 

is too small, it might become vague in the image. And the dots of the braille may be 

regarded as noises of the background. 

 YOLOv5 is a very powerful object detection method, which has a good 

performance in our experiment. In order to compare the YOLOv5 with previous YOLO 

series methods, it applies the residual structure to the Backbone and Neck. While the 

network is deeper, the ability of feature extraction and feature fusing of the network will 

not be reduced. The Focus structure in the Backbone affects the width of the feature 

map, the learning ability is enhanced. The PANet is applied to the Neck structure to 

enhance the feature extraction ability further. The evaluation metrics of the trained 

network all reach more than 0.90, and the metrics even is up to 1.00.  YOLOv5 fully 
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utilizes the features of the Māori symbols in the training set. Throughout the experiment 

al results, we understand that the dataset provides a big impact on the training process. 

A dataset with more images effectively reduces the time consumption of the training 

while maintaining accuracy and even getting better performance. If a type of targets 

have multiple expressions, we need to collect enough data for each type of targets, that 

the network can learn the feature more adequately. 

5.3 Limitations 

In the previous chapter, we show the results of our experiment. The overall results 

satisfy our expectations. There are still limitations during the preparation and 

experiment. Due to the special circumstances and restrictions by the travel policies, we 

cannot collect the data of Māori symbols from its region country and the territories 

where the symbols are popular. Similarly, related to investigate and collect the braille 

data, due to the different versions of braille used in different regions, we cannot find and 

collect images and videos of English braille in public areas where we conduct the 

experiment, such as English braille documents in libraries, braille interpretations 

besides the notice, etc.  

 Hence, the method of collecting data is limited by searching relevant publicly 

available images and videos through the Internet. In methodology, we show the 

distribution of the characters in the dataset ABC. Numerous characters appear very 

rarely. The reason is that these characters are seldom shown in the images that can be 

found on the Internet. For example, the uppercase ‘X’ is not included in the dataset. The 

lowercase ‘x’ appears less in the dataset. The data distribution in dataset ABC is not like 

the Māori symbols dataset “v5” where each class in “v5” has 600 images, the amounts 

of instances for each type only have minor differences. Thus, applying dataset ABC for 

the training might negatively affect the performance of the network. Also, the shorthand 

braille characters are not included in the dataset. The recognition ability of ABCNet is 

limited as it only can detect the general braille characters and punctuations. 
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 Regarding the dataset “v5”, though the number of images of each class is relatively 

equal, with 600 images per class, most of Māori symbols are represented as jewelry and 

sculptures. In contrast, only a small number of the symbols are represented as tattoos 

and paintings. This may be the reason why the trained YOLOv5 gives better 

performance while detecting the symbol shown as jewelry or sculpture. This might 

make a misjudgment or cannot detect the symbol if it is a tattoo or art of painting. Due 

to limited time and finite ways of data collection, we cannot obtain more images for the 

datasets, which affects the final performance of the proposed networks.  

 Regarding hardware, because the computer to run the experiment only has a single 

6G GPU, the training processes for the networks are very time-consuming. We explain 

the inference speeds of ABCNet and YOLOv5 on our computer are 3 PFS and 10FPS, 

respectively, while the official inference speeds are 11 PFS and 30-140 FPS. We assume 

the main reason is a big gap between the hardware and the software, so our experiment 

cannot get a similar speed. 
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Chapter 6 

Conclusion and Future Work 

 

 

 In this chapter, we summarize deep learning methods that we 

selected for this thesis. We explore how the methods have 

experimented with the results and the deficiency of the 

experiments. We will discuss the plan of what we need to 

improve in the future.  
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6.1 Conclusion 

The main purpose of this thesis is to detect and recognize special symbols/characters 

(braille characters and Māori symbols) by applying appropriate deep learning methods. 

We expound on the history of CNN, a deep learning method in the literature review. We 

understand that the residual and bottleneck structure from ResNet gives the networks an 

opportunity to increase their depth without reducing the performance. R-CNN series 

methods as two-stage methods which adopt the deep learning methods for object 

detection tasks. YOLO significantly improves inference speed as a one-stage method 

and allows the network to proceed with detection in real-time. We choose ABCNet and 

YOLOv5 as the methods among various deep learning models. Both methods are 

relatively novel and have good detection performance. 

 ABCNet, an E2E scene text spotting method, applies Bezier to detect and recognize 

text ingeniously. Most text detection methods involve square or rectangular bounding 

box to represent the detected target. ABCNet implements parameterized Bezier curve to 

generate the prediction box for arbitrary-shape text in natural scenes and does not 

generate too much computation cost, which will not negatively affect the network. The 

prediction result of ABCNet is represented in a curved text box, without too much 

unwanted background. The angle of rotation, degree of distortion of the target can be 

shown more clearly. 

 YOLOv5 integrates a variety of excellent structures, such as combing the residual 

structure and SCP structure into BottleNeckCSP and applying PANet as its Neck 

structure. It makes use of various tricks for the input, which includes self-adaptive 

anchors. We received a better training result by using the genetic algorithm of natural 

inspired computing to adjust the preset anchors. There is also a trick of self-adaptive 

image rescaling to reduce the padding and improve the detection speed of the network. 

Regarding outputs, YOLOv5 provides GIoU, DIoU, and CIoU. We apply CIoU to our 

experiment for a better training result. The experimental results of YOLOv5 prove its 

excellent ability of object detection. 



89 

 

 Throughout the experiments, we prove that ABCNet and YOLOv5 perform well in 

handling detection tasks. However, due to the resource constraints, our training datasets 

have limited data, we cannot get more high-quality data through other ways instead of 

the Internet. The dataset ABC only contains general braille characters corresponding to 

single English letters and punctuations, not related to a single braille character 

representing multiple letters or an English word. Therefore, the trained ABCNet cannot 

detect the braille in shorthand form. From the experiment results of YOLOv5, we get a 

conclusion about the dataset. The quality of the dataset, including a number of images 

and a diversity of the representation of instances, affects the time cost of the training 

and training result. The bigger dataset effectively reduces the time consumption of the 

training process while improving the inference ability of the network. 

6.2 Future Work 

Based on our experiment results and analysis, we believe that the dataset is not 

sufficient. The networks cannot detect the target or even make a misjudgment in some 

situations. We will collect more data in the future. For braille images, we will collect the 

braille data in abbreviated form to enhance the ability of detection and recognition of 

ABCNet. More data of high resolution with small braille characters will be added to the 

dataset to improve the network ability when detecting small targets. We will add more 

images to the Māori symbols dataset so as to enrich the different expressions of the 

symbols. More new symbols also will be added in the future. We plan to eliminate the 

hardware obstacle, which limits the speed, by upgrading the GPU and CPU of the 

computer. We hope the networks can produce a better performance on real-time 

detection and recognition with the changes. 
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