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Abstract

The industry-wide adoption of graph databases has been hindered due to the lack of a

standard query language. Hence projects such as ISO/IEC 39075 have been proposed

to integrate features from existing graph query languages, including Cypher, PGQL and

G-Core. Integrating existing query languages requires a systematic comparison so that

exclusive characteristics can be identified. Comparisons can be conducted by using

graph query language benchmarks which are built on theoretical language formalisms.

Literature suggests that existing theoretical language formalisms for graph databases

are not expressive enough in formulating different data retrieval queries. Existing

benchmarks also utilise the topological information stored in the graph schema to

formulate queries for comparing graph query languages. Contemporary graph databases

including Neo4j, Oracle and, Apache Tinkerpop, are either schema-less or schema

optional to support frequent changes in the structure of data found in domains requiring

high flexibility. However, the absence of robust graph schema impacts data consistency,

integrity, and analytics in graph databases.

Lack of expressive theoretical language formalisms and robustly-defined graph

schemas are the two open problems in current graph database research. This thesis

contributes towards solving these problems. We propose novel formalisms of con-

junctive and union of conjunctive queries extended with Tarski’s algebra that are more

expressive than existing theoretical language formalisms. The formalisms are then used

to formulate benchmark queries for comparing the expressiveness of Cypher and PGQL
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on the two core features of graph pattern matching and graph navigation, revealing the

standard and exclusive characteristics for these languages. We present a formal algebra

FLASc that assists in formulating robust graph schemas. We consider three case studies

related to domains such as cyber-physical systems, big data analytics and tourism.

These case studies illustrate the use of FLASc for transforming and loading data-sets

for heterogeneous sources into graph databases such as Neo4j, thereby ensuring data

consistency and integrity.

Findings from this research suggest that formally defined graph schemas help

generate efficient benchmark queries, facilitating the comparison of existing graph query

languages. Furthermore, graph schemas are vital for ensuring better data manageability

and developing future graph query languages to support data definition and data retrieval

mechanisms from graph databases. Overall, our study serves as a formal basis for

generating robust graph schemas and developing benchmarks for comparing existing

graph query languages. This study assists in moving towards query language integration

and interoperability between available graph database technologies; therefore, it serves

as a basis for upcoming standards such as ISO/IEC 39075.
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Chapter 1

Introduction

Big data systems need scalable data management solutions. Big data refers to data-

sets that are massively large in size and data complexity [3]. For instance, data-sets

used in discovering consumer shopping habits, to enable predictive inventory ordering,

personalized health plans and personalized marketing are some examples of big data.

The size of a data-set refers to the number of records stored, and data complexity refers

to the interactions or connections between stored data. Conventional data processing

applications are becoming incompetent in handling large data-sets in the current age

of big data [4, 5]. The associated storing and querying mechanisms must be altered to

manage and curate big data efficiently [6]. Graph databases suit big data as they provide

a better alternative for handling highly interconnected data-sets [7, 8].

From a theoretical point of view, graph databases were first introduced as logical

data model [9] by Kuper in 1985. In the late 1980s application of graph databases was

identified in hypertext systems [10, 11]. Furthermore, similar applications were also

found in object-oriented databases [12] and semi-structured data [13] in 1990s. In the

last two decades, there has been increasing interest from the industry in graph databases.

With the dawn of Web 3.0 and application domains such as social media, industrial

internet of things (IIoT) and artificial intelligence, more businesses are operating online

15
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and generating data-sets that are highly interconnected [14, 15, 16].

Three main factors are contributing towards the popularity of graph databases. The

first factor is the semantic web and the Resource Description Framework (RDF) that are

used to models online resources as labeled and directed multi graphs [17, 18, 19, 20, 21].

RDF is a W3C1 data model standard that describes data as subject–predicate–object

expressions (or triples). This allows the creation of graphs of knowledge, however

unlike more general purpose graph databases, there is no support for properties or

labels - everything is represented using triples. New application domains such as social

media increased the demand for a less restrictive data model [22] than RDFs. This

gave rise to the labeled property graph data model [23, 24, 25, 1, 26, 27] that allow

modeling real-world domains including social media [20, 28], bio-informatics [29],

astronomy [30, 31], and chemistry [6, 5] as labeled, directed and, attributed multi

graphs [25, 32]. Finally, the third factor is the shift of interest in analytic from report

generation to discovering complex relationships between data [33, 34, 35, 36, 37].

Labeled property graph data model is more expressive than other graph data models,

such as the resource description framework (RDF) [38], as it enables the storage of

information inside nodes and edges as attributes (or properties) that exist in the form

of key-value pairs [32]. This means that in graph databases following the labeled

property graph data model, information can be embedded inside relationships which is

an advantage over the RDF data model [15].

1.1 Graph databases

Labeled property graph databases, henceforth referred to as graph databases, are storage

systems that use labeled property graph data model as the underlying data structure.

A graph database representing social media network is presented in Figure 1.1. The

1https://www.w3.org/TR/rdf-concepts/

https://www.w3.org/TR/rdf-concepts/
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graph database consists of five nodes and eight edges. Each node is labeled as PERSON,

while edges are labeled as LIKED, MOTHER_OF and FATHER_OF. For instance,

node n4 is labeled as PERSON and has an associated property signifying that name of

the PERSON is Paul.

Wednesday, 24 March 2021 2:05:36 PM - Window

Figure 1.1: A social media network represented as a graph database

Edge labels and direction of edges assist in determining the nature of relationships

in a graph database [39]. Properties associated with edges further elaborate the nature

of the relationship between any two nodes. As shown in Figure 1.1, a PERSON Paul

is connected to another PERSON Andy where the edge is labeled as LIKED. This

relationship represents that Paul liked a post by Andy. Properties associated with the

edge further elaborate the relationship by providing context that Paul liked Andy’s

post on 3rd December 2020. Similarly, the edge labeled as FATHER_OF between Paul,

Retta and Amber signifies that Paul has two daughters and properties associated with

these edges represent the date of birth of Retta and Amber.

There are two fundamental capabilities provided by any graph database: the ability

to retrieve the stored data and mechanisms to ensure data consistency and integrity.
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1.1.1 Data retrieval in graph databases

Graph databases utilize query languages for retrieving the stored data [25, 40]. Graph

query languages are declarative, and they have been motivated from query languages

for relational databases proposed by Edgar F. Codd in the early 1970s [41, 32]. The

significant advantage of using a declarative query language is that computational logic

can be expressed without describing the control flow. A user only needs to describe

“what” data to retrieve from the graph database without defining “how” the data must be

extracted from the graph database [1, 42]. For example, in the graph database presented

in Figure 1.1 one can ask information about Paul’s daughters. To describe such a query

in a graph query language, a user only needs information about entities in a graph

database and relationships between the entities.

1.1.2 Mechanisms to ensure data consistency and integrity

Graph schemas are efficient in capturing the information about entities and relationships

of a graph database [23]. Furthermore, graph schemas enable the enforcement of

integrity constraints that ensure data consistency and integrity [43, 44, 45, 46]. In graph

databases relationships are as important as data itself [23, 47, 48, 49, 50]. Creation

of any incorrect relationship may result in corrupting the entire graph database. For

instance, altering the direction of an edge between Paul and Retta of the graph database

shown in Figure 1.1 can result in data corruption. Graph schemas are essential for

systematic data retrieval and ensuring data consistency and integrity in graph databases.
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1.1.3 Lack of robust schemas and standard query language for

graph databases

Contemporary graph databases such as Neo4j [51], Oracle [52] and, Apache Tinker-

pop [53] opt to be either schema-less or schema optional. Lack of graph schema has

impacted the industry-wide adoption of graph databases. Absence of graph schema is

disadvantageous in dynamic domains such as social media that are bound to frequent

updates; hence, chances of data corruption are higher.

Another major factor that has affected the adoption of graph databases is a lack of

a standard graph query language. Hence, projects such as ISO/IEC 39075 have been

proposed that aim at developing a standardised graph query language by comparing and

integrating existing query languages. Comparisons can be conducted using graph query

language benchmarks built on existing theoretical language formalisms. However, as

suggested by authors in [33, 54, 55] existing theoretical formalisms for graph query

languages are not expressive enough.

1.2 Research objectives and contributions

Given the limitations in existing graph database technologies, the work presented in

this thesis primarily focuses on achieving the following two research objectives.

RO1: Extend the existing theoretical language formalisms to propose novel formalisms

that can be used to build benchmark queries for comparing the expressiveness of

graph query languages.

RO2: Enhance the existing graph data modeling approaches and propose novel methods

for constructing graph schemas so that data consistency and integrity can be

ensured in labeled property graph databases.
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In the following sections, we briefly discuss the background and limitations of

existing approaches for querying and modeling graph databases. We also present the

major contributions of this work for achieving the research objectives.

1.2.1 Formalisms for graph query languages

Graph query languages use mechanisms to support querying a graph database [56].

These mechanisms are theoretical language formalisms, including conjunctive queries

(CQ) [57, 58], union of conjunctive queries (UCQ) [59, 60, 61], conjunctive regular path

queries (CRPQ) [62, 63], and union of conjunctive regular path queries (UCRPQ) [62,

64, 65, 34] that are shared across several graph query languages [66]. Primarily these

formalisms can be used to express two types of data retrieval queries: graph pattern

matching and graph navigation.

Graph pattern matching queries

Graph pattern matching queries are the starting point of every graph-based data retrieval

[40, 25, 32]. In such queries, the main goal is to find similar sub-graph occurrences

over a graph database by using a graph pattern matching algorithm [28]. Graph pattern

matching queries can only search graph databases in a bounded manner [32, 25]. Graph

pattern matching queries are based on the formalism of conjunctive queries and union

of conjunctive queries [32].

In graph databases, nodes having important connections might not be directly

connected [23, 67, 68]. For instance, to find information about grand children of Paul in

the graph database shown in Figure 1.1, we have to first have to search for daughters of

Paul and then search for their children. To search nodes that are not connected directly

to each other, one needs to navigate multiple intermediate nodes and traverse several

edges connecting the nodes also called as graph navigation.
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Graph navigation queries

Graph navigation queries are extensions of graph pattern matching queries and provide

mechanisms to navigate through the graph database. This an important feature where

the main goal is to search for the existence of paths between any two given nodes of

a graph database [69, 25, 32, 70, 71] where a path is a (possibly infinite) sequence of

nodes and edges. For instance, in the graph database presented in Figure 1.1 there exist

a path connecting nodes labeled as Paul and Dwight. In the path, node Paul is connected

to node Retta by an edge labeled as FATHER_OF and node Retta is connected to node

Dwight by an edge labeled as MOTHER_OF.

Graph navigation queries use formalisms such as regular path queries (RPQ) [72],

two-way regular path queries (2RPQ) [73], nested regular expressions (NRE) [30] and

Tarski’s relation algebra (TA) [74, 75] to navigate through a graph database. These

formalisms share some basic operators such as concatenation, union and, Kleene

star [74] that can be used to express and then search for paths in graph navigation

queries.

Limitations of graph query language formalisms

Existing formalisms for graph query languages are not expressive enough [62, 33, 76,

30, 72, 71, 65, 77]. Expressiveness refers to the ability of a language to express data

retrieval queries. Formalisms on conjunctive regular path queries (CRPQ) combine

the expressive power of conjunctive queries and regular path queries. CRPQ based

formalisms are used in existing benchmarks such as gMark [78, 79, 77]. However,

in CRPQs conjunction is not closed under Kleene star; therefore, paths containing

branches cannot be searched in an unbounded manner. Nested regular expressions

(NRE) overcome the limitations of CRPQ by providing a branching operator that can

be used with the Kleene star operator. However, NREs and CRPQs are incomparable in
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expressiveness [30]. Tarski’s algebra [35, 55, 74] is more expressive than NREs, RPQs

and 2RPQs however, they can only be used for expressing graph navigation queries.

Our contribution

This contribution relates to our first research objective RO1. We propose the exten-

sion of conjunctive queries and union of conjunctive queries with Tarski’s algebra

(CQT/UCQT). These formalisms are more expressive than existing formalisms and

help compare existing practical graph query languages by enabling the formulation of

benchmark queries. In order to demonstrate the utility of CQT/UCQT we present an

integrated framework that facilitates the formulation of benchmark queries that are then

used to evaluate the expressiveness of two practical graph query languages Cypher and

PGQL on the core features of graph pattern matching and graph navigation.

1.2.2 Data modeling approaches for graph databases

Traditional data modeling consists of three stages: conceptual, logical and physical

modeling [80]. In the conceptual modeling stage, requirements related to a problem

domain are gathered, and an abstract model of the graph database is created. The abstract

model, also called the conceptual graph schema, captures the real-world entities of the

problem domain and relationships between them. In the logical modeling stage, certain

rules related to the problem domain are defined and enforced over the conceptual graph

schema. This process results in a logical graph schema. These rules are also known as

integrity constraints and are defined to ensure data consistency in the graph database.

Finally, the physical modeling stage represents the realization of conceptual and logical

graph schema for transforming and loading data-sets into a graph database [44, 45, 43].
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Limitations of modeling graph databases

Existing research on graph database modeling focuses on logical and physical data mod-

eling stages. Subsequent studies [81, 43, 44, 45, 46, 82, 83, 84] focus on the integration

of logical and physical modeling stages for graph databases. Conceptual modeling is

considered to be trivial and is done in an ad-hoc manner. Graph database vendors such

as Neo4j propose the use of visual tools such as Arrow2 to create conceptual graph

schemas. However, the robustness of the conceptual graph schema designed by such

tools cannot be assured. Furthermore, the integration of conceptual graph schemas

generated by existing tools at the logical and physical modeling stage requires human

intervention.

Our contribution

This contribution relates to our second research objective RO2. We present FLASc

a formal algebra for formulating conceptual and logical graph schemas for graph

databases. Operations defined in FLASc are based on the conceptual graphs proposed

by Sowa [47, 48, 49, 50]. We illustrate the use of FLASc to enforce integrity constraints.

To show the integration of conceptual, logical and physical modeling stages, we integrate

FLASc with the well-known Extract-Transform-Load design pattern. We consider three

case studies related to domains such as cyber-physical systems (P2660.1 data-set) [85],

big data analytics (BiDaML diagram data-set) [86], and tourism (Airbnb data-set) [87]

for demonstrating the utility of FLASc for systematically transforming and loading

data-sets from heterogeneous sources into graph databases such as Neo4j.

2http://guides.neo4j.com/arrows

http://guides.neo4j.com/arrows
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1.3 Organisation

This thesis is structured as follows. In Chapter 2 we present the background and

literature review conducted for this research. Conference publication presented in

Chapters 3 and 4 is foundational for preparing Chapters 5, 6, 7 and 8. Gaps identified

in Chapter 2 confer to the two main contributions of this thesis. The first contribution,

related to the novel formalisms of CQT and UCQT, is introduced in Chapter 5 and then

presented in Chapter 6. The second contribution related to the formal algebra FLASc

is introduced in Chapter 7 and then discussed in Chapter 8. Overall findings, insights

and conclusions of this thesis are presented in Chapter 9. Additionally, there are two

conference publications presented in this thesis. In Appendix A and B we present a

tool IASelect for querying graph databases. Appendix B also presents a case study

related to cyber-physical systems which has been used in validating the formal algebra

presented in Chapter 8. A conference publication related to the future direction of this

work is presented as Appendix C and D. A list of acronyms used through out this thesis

is presented as Appendix E.



Chapter 2

Literature Review

2.1 Introduction

To identify the limitations and challenges in querying and modeling approaches for

graph databases, we first conducted a literature review. In the review process, we

looked at the existing research that has been proposed by both industry and academia.

Following this approach enabled us to analyze the advances and limitations related to

modeling and querying graph databases. The literature review was primarily focused

on the following four research questions.

RQ1 What are the existing graph data models and associated query languages that have

been proposed by industry and academia?

RQ2 What are the desired core features in graph query languages?

RQ3 What are the theoretical language formalisms used for querying graph databases?

RQ4 What are the existing approaches used for modeling graph databases?

For addressing RQ1, we investigated current literature related to graph data models

and query languages. A brief survey related to the history of graph data models and

25
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query languages identified for answering RQ1 is presented in Section 2.2. The survey

enabled us to identify several aspects of existing graph data models and query languages.

Graph query languages share some common and exclusive characteristics, such as core

features and theoretical language formalisms. These findings lead us to investigate RQ2

and RQ3 that are answered in Sections 2.3 and 2.4 respectively. Finally, for addressing

RQ4, we looked at modeling approaches that have been used to construct graph data

models identified in RQ1 and findings for RQ4 are presented in Section 2.5.

2.1.1 Methodology for conducting the literature review

For conducting the literature review, we first formulated the search strings by identifying

keywords from research questions RQ1-RQ4. Then the search strings were used to

identify research papers on digital libraries such as Scopus, IEEE Explore, ACM

Digital library and Science Direct. The AUT library portal was used to access the

digital libraries. The inclusion and exclusion criteria of a research paper were based

on the publication’s venue reputation. This was verified by using web portals such as

scimagojr 1 and core 2. Furthermore, snowballing, expert suggestions and, the relevant

paper published in highly reputed database venues such as ACM TODS 3, IEEE TKDE 4,

ACM SIGMOD Record 5,VLDB Journal 6, EDBT 7, ICDT 8 and PODS 9 were other

inclusion criteria for selecting a research paper.

1https://www.scimagojr.com/
2http://portal.core.edu.au/conf-ranks/
3https://dl.acm.org/journal/tods
4https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=69
5https://dl.acm.org/newsletter/sigmod
6https://www.springer.com/journal/778
7https://dblp.uni-trier.de/db/conf/edbt/index.html
8https://dblp.uni-trier.de/db/conf/icdt/icdt2019.html
9https://dblp.uni-trier.de/db/conf/pods/index.html

https://www.scimagojr.com/
http://portal.core.edu.au/conf-ranks/
https://dl.acm.org/journal/tods
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=69
https://dl.acm.org/newsletter/sigmod
https://www.springer.com/journal/778
https://dblp.uni-trier.de/db/conf/edbt/index.html
https://dblp.uni-trier.de/db/conf/icdt/icdt2019.html
https://dblp.uni-trier.de/db/conf/pods/index.html
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2.2 A brief history of graph data models and associated

query languages

We present a brief survey related to the history of graph data models and query languages

proposed by industry and academia in the last thirty years.

2.2.1 Graph data models and query languages proposed by aca-

demia

Graph data models and query languages in late 1980s

The first graph query language G was proposed in [88] as a complement to relational

query languages for expressing transitive and recursive queries over graph-structured

data. A query in G is represented as a labeled directed multi-graph consisting of nodes

and edges, where nodes represent data and edges represent regular expressions over

edge labels. The language G+ was proposed as an extension to G language [89]. The

prime use case of G+ was the ability to compute simple paths in graph-structured

data, and the alphabets of the path must satisfy a regular expression defined over the

edge labels of the graph database. However, it is noted in [89] that the problem of

finding simple paths in a graph is intractable, which means that the problem can be

solved theoretically, but in reality, solving the same problem will require too many

computational resources. The language Graphlog was proposed as an extension to G

and G+ by adding negation and union operators [11]. Like G and G+, Graphlog also

used regular expressions to express and then search for paths in a graph database. All

three languages are used to retrieve data from node and edge labeled graph data model.
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Graph data models and query languages in early to mid 1990s

A query language with SQL like syntax and uses regular expressions over the node and

edge labels to define paths over a graph-based data model called Gram was proposed

in [90]. Pattern Matching Language (PaMaL) was a graphical query language proposed

in [91] for object-oriented databases. The main feature of PaMaL was pattern matching

over graphs and used programming constructs such as loops, procedures and programs.

GOAL query language was also proposed for querying object-oriented databases [92].

GOAL supported the use of recursion and used pattern matching for sub-graphs over

graph databases. Both PaMaL and GOAL are based on graph-oriented object database

model (GOOD) [93] however, PaMaL and GOAL do not support graph navigation

queries. A language for querying GraphDB data model was proposed in [94] where

graph navigation was a prime focus for the language.

Additionally, GraphDB supports graph pattern matching and the ability to search

for shortest paths in a graph database. GraphDB also uses regular expressions defined

over edge labels of a graph database to search for paths. WEB query language was

proposed in [95] support genome research where graph theory-based concepts are used

to perform DNA sequencing. This language provides predefined query templates for

users to extract data stored in a graph database. WEB query language uses a limited

form of regular expressions to search for paths.

Graph data models and query languages in mid to late 1990s

G-Log query language was proposed in [96] where queries are written as rules that depict

labeled directed graphs. These graphs are used to search for similar occurrences of sub-

graphs over the database. HyperNode Query Language (HNQL) query language was

proposed in [97] for querying hypernode graph data model. In hypernode graphs, nodes

can encapsulate another graph [98]. The query language HNQL has operators such as
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sequential composition, conditionals, for and while loops. Sequential compositions

are used for defining paths while for and while loops are used for searching multiple

occurrences of paths in a hypernode graph. Lorel query language was proposed in [99]

for querying object-oriented and semi-structured data model. Lorel has a SQL like

syntax and uses regular expressions to search paths over a graph database.

Graph data models and query languages in early to mid 2000s

Struql query language was proposed in [100] for retrieving data stored in web pages.

The query language provides templates for users to specify the search criteria. The

output of a query written in Struql is a sub-graph, and regular expressions defined over

edge labels are used for graph navigation. UnQL was a functional query language

proposed in [101] for querying semi-structured data. UnQL is restricted to be used on

tree structured data and uses regular expressions for graph navigation. Hyperlog query

language for querying hypernode graph data model was proposed in [102]. Hyperlog

uses templates to describe labeled and directed graphs. A query in hyperlog is a set

of rules which are used to find sub-graphs. Hyperlog does not use regular expressions

for defining paths and supports operators such as composition, conditional constructs,

and iteration for graph navigation. Glide query language was proposed in [103] support

graph pattern matching and navigation. Glide borrows features from XPath and uses

regular expressions for graph navigation.

Graph data models and query languages in mid to late 2000s

A query language for YAGO/NAGA graph data model was proposed in [104]. A query

in this approach is expressed as regular expressions defined over the graph database’s

edge labels. Furthermore, answers are ranked based on the depth of information

gathered and the compactness of the query. SocialScope query language was proposed

in [105] for presenting and querying information related to search engines such as Yahoo.



Chapter 2. Literature Review 30

Information is stored on a social network graph that has attributed nodes and edges.

A uniform algebraic framework is used for retrieving information by using operations

such as node selection, edge selection, union, intersection, difference, composition,

semi-join, and aggregation. Regular expressions are not used for graph navigation.

BiQL query language for querying social network graphs was proposed in [106]. The

query language is based on SQL and uses path expressions in the from clause to specify

a graph pattern. Path expressions are formed by conjunctive edges, which collectively

form a graph pattern. A pattern-matching expression then searches for the occurrences

of graph patterns. BiQL supports graph navigation by expressing path expressions as

regular expressions defined over the graph database’s edge labels. Similar to BiQL

in [107] SoSQL query language is proposed. In SoSQL a special PATH clause is

used to define a path connecting two nodes. The path comprises several subpaths. In

essence, the smallest subpath is an edge of the graph database. The path is made up by

concatenating multiple subpaths. Hence regular expressions in the restricted form are

used in this language.

Graph data models and query languages in the last decade

GraphQL query language proposed in [108] extends relational algebra. The selection

operator is generalized to support graph pattern matching, and the composition operator

is used to output the matched graph. GraphQL does not support graph navigation queries.

SNQL query language for social network domain was proposed in [109]. SNQL is

based on GraphLog and uses regular expressions for graph navigation. G-SPARQL

query language for RDF data model was proposed in [110] covers features such as

graph pattern matching, shortest path and graph navigation. G-SPARQL uses regular

expressions for graph navigation.
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2.2.2 Graph data models and query languages proposed by in-

dustry

In the context of industry graph databases query languages vary upon the underlying

data model used for storing data.

Graph data models and query languages in late 1990s and early 2000s

An RDF data model can be considered as a single table containing three columns (the

subject, predicate and object), with indexing to support the traversal and enumeration of

predicates (relationships) for a given subject. RDF support a standard query language

called a SPARQL [17]. SPARQL has a syntax like SQL and support querying features

such as graph pattern matching and graph navigation. Navigational queries are expressed

using regular expressions.

Graph data models and query languages in the last decade

Labeled property graph databases are much simpler than RDF. They only consist of

nodes and edges, with each node and edge being a simple data structure that consists of

keys and values. Gremlin [111] is a query language for labeled property graph databases

and supports graph navigation using the repeat operator. OrientQL [112] is a query

language for the OrientDB graph database, which provides full SQL support. OrientQL

supports graph-based querying by providing the traverse operator, which supports

finding repeating patterns for graph navigation. Cypher is a query language proposed by

Neo4j [51]. It supports graph pattern matching and a restricted form of graph navigation.

Navigational queries are expressed as regular expressions; however, only a few regular

expressions can be expressed in Cypher. Oracle proposed the Property Graph Query

Language [52] which supports graph pattern matching and graph navigation. PGQL

is influenced by SQL and Cypher as syntax wise PGQL is very similar to SQL and
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Cypher. Navigational queries are expressed as regular expressions over the edge labels,

and PGQL supports more regular expressions than Cypher. Both Cypher and PGQL

operate on the labeled property graph data model.

2.2.3 Findings of the survey

All graph data models use slight variations of the basic graph data structure. Examples

include graph data models proposed by academia such as GOOD [12], Gram [90],

GraphDB [94], HyperNode [102] and GDM [113]. Commercial graph databases such

as RDF by W3C [114] use directed and labeled graphs while Neo4j [51], Oracle [52]

use directed, labeled, and attributed graphs which are also known as labeled property

graph data model [27]. Major query languages focus on graph pattern matching and

graph navigation as core features. Furthermore, a majority of the query languages use

regular expressions to support graph navigation.

Findings from the survey lead us to formulate RQ2-RQ4. Answering these research

questions enabled us to analyze the current body of knowledge related to graph data-

bases, thus obtaining a deeper understanding of the research area. Insights obtained by

answering RQ2-RQ4 enabled us to formally design and develop novel formalisms of

(CQT/UCQT) and our formal algebra FLASc. Findings for RQ2-RQ4 are presented in

the subsequent sections.

2.3 Core features of graph query languages

The Linked Data Benchmark Council (LDBC) [4] suggests that graph pattern matching,

graph navigation, shortest path search, graph construction, and graph clustering [1, 26]

are core features of every graph query language. Graph navigation is an extension of

graph pattern matching, used typically to identify valid paths between node pairs in

a graph database. In [1], 40 core use cases for graph query languages from LDBC
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meetings are presented, out of which 36, 34 and 32 use cases related to graph navigation,

graph construction, and graph pattern matching, respectively. Furthermore, in several

other works, graph pattern matching and navigation are identified as the critical core

features of every graph query language [25, 28, 24].

2.4 Theoretical formalisms for graph database query

languages

2.4.1 Formalisms for graph pattern matching

The most basic formalism used by existing query languages for defining graph pattern

matching is that of conjunctive queries and union of conjunctive queries [32, 25].

Conjunctive queries is the most basic query language for databases [40, 115, 33].

Conjunctive queries

Conjunctive queries are logical formulas written in a restricted form of first-order

logic [66]. Conjunctive queries consist of atomic formulas and/or relations that can be

combined by only using conjunction and existential operators of first order logic [116].

In graph pattern matching queries, relations represent edges and atomic formulas to

represent some conditions related to nodes and edges of a graph database.

Union of conjunctive queries

Conjunctive queries do not support disjunction between relations and atomic formulas.

Hence the union of conjunctive queries have been proposed in the literature [66, 58].

Union of conjunctive queries allow the application of disjunction operator for combining

individual conjunctive queries [40].
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2.4.2 Formalisms for graph navigation

Graph database queries are navigational in nature; thus, there are many formalisms

proposed for graph navigation in the literature. Many of the proposed formalisms are

based on the data structure of data words. Figueira [117] defines data words as a finite

string made up of letters from a set of alphabets and a datum. The formalisms based on

data words are as follows.

Data Paths

The formalism of data paths based on data words is proposed in [118]. Data path

represents a sequence of data values and alphabets of the English language; for example,

1a2b3c4d1 represents a data path [37]. In this example, numbers represent nodes, and

alphabets represent edge labels. The discussed example represents a cyclic graph where

an outgoing edge is labeled as a from node holding data value 1 to node holding data

value 2 and a d labeled incoming edge from node holding data value 4 to node holding

data value 1. There are various formalisms similar to data paths that have been proposed

in the literature.

Register Automata

Formalism based on register automata [119] extends finite state automata (FSA) by

adding a finite set of registers to store data values. They work in ways that are sim-

ilar to FSA and use registers to compare values associated with nodes. However,

authors in [120] suggest that register automata are not closed under the complement

operator, making them less expressive than regular languages, which are closed under

complement.
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Pebble Automata

Pebble automata [121] are specifically designed for navigating through the tree data

structure. A pebble automaton uses pebbles to indicate that a particular node has been

visited. A pebble can be viewed as a counter which is incremented every time a new

node is visited. Stack-based restrictions are imposed in pebble automata to ensure

expected behaviour. Pebbles can be dropped and lifted from the current node, and the

last-placed pebble acts as a head of the automaton. Furthermore, data values at the node

with already placed pebbles are used to compare the current node’s data values.

First-Order and Monadic Second-Order Logic

The use of formalisms such as first-order logic and second-order logic has been proposed

by [122] for querying tree-structured graph database represented as XML documents.

Predicate logic is used to check the existence of values associated with nodes by

expressing predicates in XPath. A formal definition of each query written in XPath is

expressed in equivalent first-order and second-order logic by using logical operators and

universal ∀ and existential ∃ quantifiers. However, the query containment for first-order

logic is undecidable and restrictively decidable for Monadic Second-Order Logic.

Linear Temporal Logic

Formalisms based on Linear temporal Logic (LTL) have been proposed as an alternative

to first-order logic in [120]. LTL based formalism for querying graph databases use

a freeze operator and register automata. The freeze operator uses a register to store

and compare values stored inside the data word. However, query evaluation for this

formalism over graph databases is undecidable [37].

XPath Fragements
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The use of XPath to study the application of Downward Data (DD) automaton, Altern-

ating Top-down Tree on Register Automata (ATRA) and Bottom-Up alternating Tree

Automata with one register (BUDA) on XML database has been proposed in [117].

Authors suggest that each automaton’s limitations, such as DD automaton, are closed

under boolean operators but are limited when comparing data values in the leaf nodes.

The other two automatons are not closed under complement operations.

Regular Expressions

Regular expression is an algebra for describing some patterns that can be accepted

by a finite state automaton [123]. Regular expressions provide three basic operators

of concatenation, union, and Kleene star. These operators are used to formulate path

expressions over the set of edge labels of a graph database. The path expressions are

then used to search data over a graph database.

Why regular expressions are used as a formalism for graph databases

Formalism, such as first-order logic and linear temporal logic, have an undecidable

query containment problem. Register automata have limited expressiveness as they

are not closed under complement. Moreover, [37] suggest that formalism based on

data words are not suitable for graph querying. Authors in [37] propose extending

register automata to create Regular Data Path Queries (RDPQs); however, they assert

that RDPQs are not sufficient to be used in a practical query language for graphs. For

graph-structured data, queries that allow users to specify the types of paths they are

interested in have always played a central role. Most commonly, the specification of

such paths has been utilizing regular expressions over the alphabet of edge labels [99].
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2.4.3 Use of regular expressions based formalisms for querying

graph databases

Formalisms based on regular expressions used to query graph databases are called

regular path queries (RPQ). They use three basic operators of concatenation, union and

Kleene star over a graph database’s edge labels. In order to increase the expressiveness

of RPQs that have been extended to include the inverse operator and are called two-

way regular path queries (2RPQ) [115]. Formalisms of RPQs and 2RPQs are not

expressive enough as they cannot be used to search paths that contain branches on

intermediate nodes [34]. Therefore, formalism of nested regular expressions (NRE) has

been proposed in [30]. NREs extend 2RPQs by adding a nesting operator; furthermore,

Kleene star operator can be applied along with nesting operator to search for paths with

branches in an unbounded manner.

In order to increase the expressive power of existing formalisms for querying

graph databases, subsequent works [124, 115, 125, 64, 62, 33, 66] propose combining

formalisms for graph pattern matching and graph navigation queries. These extensions

result in a more expressive class of theoretical language formalisms such as conjunctive

regular path queries (CRPQ), conjunctive two-way regular path queries (C2RPQ), the

union of conjunctive regular path queries (UCRPQ), the union of conjunctive two-way

regular path queries (UC2RPQ), extended conjunctive regular path queries (ECRPQ)

with regular and rational relations. Formalisms of C2RPQs and NREs are incomparable

in terms of expressiveness [62] since C2RPQs do not allow the application of Kleene star

over branching operator while NREs cannot express cyclic graph structures. Therefore,

authors in [126, 36, 34] propose conjunctive nested regular expressions (CNRE) and

union of conjunctive nested two-way regular path queries (UCN2RPQ) [127].
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Limitations of regular expression based formalisms

Formalisms based on RPQs, 2RPQs and NREs are not expressive enough since they can-

not be used to search for the path containing cyclic structures in an unbounded manner.

A primary reason for this is because in existing formalisms conjunction operator is not

closed under the Kleene star operator. Therefore, graph query language formalism based

on Tarski’s algebra has been studied in [128, 35, 55, 74] that subsume the expressive

power of formalisms such as RPQs, 2RPQs and NREs. Furthermore, graph query

languages proposed by academia such as Navigational XPath [129] and GXPath [34]

utilize fragments of Tarski’s algebra for querying graph databases. Tarski’s algebra

can certainly be used as a theoretical language formalism for querying graph databases.

However, formalism based on Tarski’s algebra can only be used in graph navigation

queries. Therefore, in order to address this gap, we propose the extension of conjunctive

queries and union of conjunctive queries with Tarski’s algebra (CQT/UCQT). These

formalisms enable us to utilize the power of Tarski’s algebra for graph pattern matching

and graph navigation queries. We present a detailed discussion related to CQT and

UCQT in Chapter 6.

2.5 Modeling approaches for graph databases

Graph databases opt to be schema-less or schema optional; hence, this section helps us

identify gaps in the current literature related to graph database modeling approaches.

Our survey identifies the existing studies that have addressed the conceptual, logical

and physical modeling stages for graph databases.
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2.5.1 Conceptual modeling

Conceptual modeling represents the initial stage for modeling a graph database. In this

stage, knowledge is collected in the form of requirements and specifications related

to a problem domain. Using graphs for representing knowledge was first proposed by

Sowa [50, 48, 47, 49]. Furthermore, other works such as [130, 131, 132] use graphs

to represent knowledge at the conceptual modeling stage. Graphs provide a natural

and intuitive interface for understanding the semantics of data [50, 80]. Knowing the

semantics of data is vital for understanding the overall structure of the database [44]

that aids in creating, modifying, and retrieving data. In a conceptual graph schema,

real-world entities are modelled as nodes. Interrelationships between those entities are

modelled as binary edges [47, 132] which means that an edge in a conceptual graph

schema cannot be used to connect more than two nodes. Conceptual graph schemas

provide a level of abstraction that aids in the natural modeling of data [133]. They

are used to define what entities belong to the database and how the information is

structured [80]. Moreover, determining nodes, edges, and the direction of edges are

vital for conceptual modeling [39].

2.5.2 Logical modeling

Logical modeling is used to enforce integrity constraints on the graph schema produced

in the conceptual modeling stage. Integrity constraints serve as mechanisms to ensure

data consistency and integrity. They are broadly classified into two categories (i) graph

entity integrity and (ii) semantic constraints [134]. Graph entity integrity constraints

are related to basic database design principles. These include constraints such as key

identity constraints which ensure that nodes and edges in graph database have unique

identifiers[23, 45, 133, 134, 46]. Label uniqueness constraints ensure that nodes and

edge labels are unique [23, 44, 133, 134, 45]. Constraints such as property data type
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ensure that node and edge properties have predefined data types [44, 46] and mandatory

property ensure that existence of some node and edge properties are compulsory [135,

44]. Edge pattern constraints ensure that the topology of the graph schema defined in the

conceptual modeling stage is maintained in the graph database [46, 134, 135, 81, 45].

Enforcing semantic constraints requires knowledge of the problem domain captured

in the graph schema designed during the conceptual modeling stage [134]. These

constraints are used to guarantee the conformity of graph database with domain-specific

rules and require intervention from end-users. These include cardinality constraints

used to ensure the minimum and maximum number of edges that can exist between

two nodes of a graph database [44, 46, 133, 134, 81, 84, 83]. Path pattern constraints

ensure that a sequence of edges conforms to a path in the graph database. The use of

formalisms such as Extended Conjunctive Regular Path Queries (ECRPQs) to enforce

path pattern constraints has been proposed in [46]. However, the use of ECRPQ based

formalisms can be problematic if appropriate evaluation semantics are not utilized in the

underlying graph database and query language [72, 73, 136]. Graph pattern constraints

ensure that creation of a graph is dependent upon the existence of a certain pre-existing

graph in the graph database [46, 134, 133, 135].

Other integrity constraints discussed in literature include type checking to ensure

that the graph schema and graph database are consistent with each other [23, 133, 135].

This constraint’s primary requirement is that all nodes and edges in the graph database

must conform to the nodes and edges in the graph schema. Node/Edge property value

constraints ensure that nodes and edges in graph database are assigned values based

on some predefined condition [81]. Functional dependencies are used to ensure if an

element can be used to determine value of another element [23, 44, 133, 137, 138, 139].

However, functional dependencies cannot be represented easily in graph databases [23].
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2.5.3 Physical modeling

Physical modeling represents the realization of the graph schema designed during

conceptual and logical modeling into the actual database [140]. While conceptual and

logical modeling can be performed independently of the database platform, physical

modeling depends on the underlying database’s specifications and semantics. This stage

is difficult to understand by the end-users, and domain expertise such as knowledge of

the query languages and database-specific application programming interfaces (APIs)

are required. Physical modeling stage is of two types (i) pre-deployment and (ii)

post-deployment. In the pre-deployment stage, graph schema designed during the

previous two stages is used to prepare database creation scripts that capture the structure

of graph schema and maintain the integrity constraints. These scripts are written

in query languages specific to a particular graph database. In the post-deployment

stage, the main focus is on improving the existing database’s performance, reducing

input/output, database maintenance, and other database administration tasks, which a

database administrator usually performs.

There are two approaches discussed in literature for the pre-deployment stage:

integrated and layered approach [83]. In the integrated approach, changes are made in

the source code of the database system, and query languages are modified to support the

enforcement of integrity constraints over the graph schema. Database creation scripts

are created and directly deployed on the database platform. In the layered approach,

APIs specific to the database platform creates an additional layer that communicates

with the database. This consist of wrappers written in programming languages such as

Java, Python that contains database creation scripts and logic to enforce the integrity

constraints.

There exist many studies to support the physical modeling aspects of graph databases.

For instance, [134] follow a layered approach and propose the construction of a wrapper
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that can be used to enforce integrity constraints, including graph and path pattern

constraints over Neo4j graph database. An integrated approach to extend the source code

of OrientDB to support the enforcement of integrity constraints, including uniqueness,

key, cardinality, and edge degree constraints, has been studied in [81]. Similarly, the

extension of Cypher query language to support additional integrity constraints such

as uniqueness, node property, required edges and mandatory properties is presented

in [45, 82]. A layered approach to demonstrate uniqueness integrity constraint on two

different graph databases Neo4j and Apache Tinkerpop is proposed in [83]. The use

of integrated and layered approach together to perform graph database manipulation

operations on Neo4j graph database is proposed in [46]. Authors in [141] propose the

model-driven engineering-based approach for converting and loading of UML diagrams

into Tinkerpop blueprints10. A formal approach for designing a labeled property graph

schema and demonstrate the use of GraphQL11 to specify graph schema is proposed

in [142].

2.5.4 Limitations of existing modeling approaches for graph data-

bases

Conceptual modeling stage is vital for capturing the semantics of a problem doamin. A

sound conceptual graph schema ensures that logical and physical modeling stages are

also robust [143]. The graph data modeling approaches proposed so far do not provide

the means to create robust conceptual graph schemas. Authors in [144, 145, 141]

propose the use of existing visual modeling tools such as Entity Relationships diagrams

(ERD) and Unified Modeling Language (UML) for creating conceptual graph schemas.

However, the use of such approaches requires an understanding of notations that are

specific to these tools. Furthermore, additional efforts are required for adopting the

10https://github.com/tinkerpop/blueprints
11https://graphql.org/code/

https://github.com/tinkerpop/blueprints
https://graphql.org/code/
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conceptual graph schemas generated by visual modeling tools at the logical and physical

data modeling stages. Contemporary graph database vendors such as Neo4j propose

using tools such as Arrow12 for designing conceptual graph schema. However, the

informal nature of such tools cannot ensure the robustness of generated conceptual

graph schemas.

Therefore, we present FLASc, a simple yet sturdy formal tool that assists in the

formulation of robust conceptual graph schemas which is an advancement over existing

studies in graph database modeling. The majority of integrity constraints presented in the

existing studies can be specified in graph schemas generated by FLASc. Furthermore,

syntax and semantics of FLASc presented in this study assist in its implementation at

the physical modeling stage. FLASc assists in the integration of conceptual, logical and

physical modeling stages, which currently is lacking in graph database research. We

present a detailed discussion related to FLASc in Chapter 8.

2.6 Conclusions

The literature review presented in this chapter enables us to identify gaps in the existing

body of knowledge related to querying and modeling approaches used in graph data-

bases. By answering RQ1, we observed common characteristics of graph data models

and associated query languages. RQ2 helped identify the two core features of graph

pattern matching and graph navigation that are desirable in every graph query language.

Answering RQ3 helped us to identify that existing theoretical language formalisms are

not expressive enough. Therefore, existing formalisms cannot be used to objectively and

comprehensively compare practical graph query languages. We in Chapter 6 discuss

the formal extension of conjunctive queries and union of conjunctive queries with

Tarski’s algebra. We present an integrated framework based on CQT and UCQT that

12http://guides.neo4j.com/arrows

http://guides.neo4j.com/arrows
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is then used to compare practical graph query languages on the core features of graph

pattern matching and graph navigation. This process is demonstrated by comparing

two contemporary graph query languages Cypher and PGQL. RQ4 was designed to

identify existing approaches used for modeling graph databases. Findings from the

literature review suggest that current approaches used for modeling graph databases lack

the integration of conceptual, logical, and physical modeling stages. The conceptual

modeling stage is fundamental for capturing the semantics of a problem domain. Fur-

thermore, this stage is foundational in logical and physical modeling stages. Therefore,

in Chapter 8 we present our formal algebra FLASc that can be used to formulate robust

conceptual and logical graph schemas. We also demonstrate the merger of FLASc with

the well-known Extract-Transform-Load design pattern that enables us to integrate the

conceptual, logical, and physical modeling stages for graph databases.



Chapter 3

Introduction to Manuscript 1

Graph databases provide better support for highly interconnected datasets than relational

databases. However, labeled property graph databases, which have become increasingly

popular, are schema-optional, making them prone to data corruption, especially when

new users switch from relational databases to graph databases. In this work, we provide

a schema-driven formalism for graph databases. This formalism enables schema-

driven loading of graph databases from other sources, such as relational databases.

Also, this formalism enables schema-driven data analytics that allows for a more

structured analysis of data stored in graph databases. Such analytics are based on a

boilerplate approach allowing users who are not experts in the use of graph database

query languages to carry out analytics efficiently. We showcase the utility of the

proposed formalism by considering a case study from Airbnb for illustrating schema-

based loading procedures. The proposed schema-driven analytics process is illustrated

using another case study from an industrial cyber-physical systems standard. Overall,

the schema-driven formalism provides several useful features, such as preventing both

data corruption and long-term degradation of graph database structures.
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Chapter 4

A Schema-First Formalism for

Labeled Property Graph Databases:

Enabling Structured Data Loading

and Analytics (Manuscript 1)

4.1 Introduction

Graph databases have become increasingly popular as they provide better support for

highly interconnected datasets [7, 8]. Highly interconnected datasets are found in

most big data applications including social networks [20, 28], bioinformatics [29] and

astronomy [30, 31]. Such data can be more easily expressed using the nodes and edges

of a graph database than the table-based structure offered by relational databases.

Labeled Property Graphs (LPGs) have gained popularity over other graph database

variants due to their flexibility [146]. Graph database variants like Resource Description

Framework (RDF) are schema-dependent [114, 17, 18, 19, 20, 21]. RDFs enable the

modeling of the entities of a knowledge domain as classes that have properties. RDFs

46
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use concepts such as inheritance to model relationships between classes. Newer big data

application domains such as social media increased the demand for a less restricting

data model than RDFs [22]. This led to the creation of LPGs which provide high

flexibility and expressiveness by allowing nodes and edges to store additional arbitrary

attributes [23, 1, 25, 27]. XML also provides a schema-dependent structure for graph

databases, but this structure only supports trees. Trees are more restrictive subsets of

graphs, and hence XML has limited expressiveness when compared to both RDFs and

LPGs.

A key challenge in migrating to graph databases, and more precisely, LPGs, is

the fact that they are schema-optional, which leaves them more susceptible to data

corruption. In relational databases, a schema defines precisely how data needs to be

organized into tables. Schema are an integral part of any database [27] as it assists

in categorizing and relating data [147], and inferring patterns [148] for efficient data

extraction and analytics. Moreover, any changes to a database must comply with the

schema. In graph databases, a schema describes the allowed node and edge types.

However, LPGs like Neo4j are schema-optional. Consequently, users can dynamically

add a new node or edge types without being restricted by the schema. While this

feature provides flexibility, it can also degrade the graph database’s structure over

time. Currently, organizations moving towards using LPGs are depending primarily on

designer/user skills for preventing data corruption.

We propose a schema-driven formalism for LPGs, which provides better data

integrity when migrating data from other sources. Also, this formalism allows more

structured access to the data stored within a graph database, through the use of template

queries based on the schema. The proposed formalism only restricts the topology of

a graph database, which constrains the use of node and edge types. This formalism

does not constrain how data is stored within the node and edge attributes of LPGs,

ensuring that the schema-first approach does not sacrifice the key advantage of increased
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expressiveness that LPGs provide over RDFs and XML. The primary contributions of

this paper are:

1. A formal description of Labeled Property Graph databases based on graph and

set theory, presented in Sec. 4.2.

2. A schema-driven approach for importing or loading data from other sources into

a LPG database, based on the proposed formalism. This approach, presented in

Sec. 4.3, prevents data corruption during the loading process. This schema-driven

loading process is illustrated through an Airbnb example.

3. A schema-driven approach for data analytics on LPG databases, based on the

proposed formalism, presented in Sec. 4.4. We illustrate this approach through a

case study on the use of industrial agents in manufacturing systems.

Literature related to each of the three contributions listed above is reviewed and

discussed in the corresponding sections of this paper. Concluding remarks and future

directions for this research appear in Sec. 4.5.

4.2 Formalisation of Labeled Property Graph Data-

bases

We start with a few basic definitions related to graphs that are used throughout this

article.

Definition 1 (Directed Multigraph) A directed multigraph G is defined as a pair

(N,E) where N = {n1....nk} is a finite set of nodes and E = {e1....el} is a finite set of

edges. Two associated functions, s ∶ E → N and t ∶ E → N, map edges to unique source

and target nodes, respectively.
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Directed multigraphs are graphs that are (a) directed, such that edges have unique

source and target nodes, and (b) allow multiple edges between nodes in the graph

(nodes with the same source and target nodes are allowed). As we will see later, graph

databases are directed multigraphs (henceforth, graphs) with certain restrictions. We

use the short hand n1 → n2 to represent an edge e where s(e) = n1 and t(e) = n2.

Graphs can contain labels over nodes and edges. A labeling is simply a map

f ∶ S1 ↦ S2 such that for every element a ∈ S1, there is a unique element f(a) ∈ S2.

We can now define an edge-labeled graph as follows. We use the shorthand S1↦ S2 to

define labelings.

Definition 2 (Edge-Labeled Graph) A graph G = (N,E) is called an edge-

labeled graph if there exists a labeling f ∶ E ↦ EL which maps all edges to labels in a

set of edge labels EL. Edge labels are described by the short-hand n1
l
Ð→ n2 for any

(n1, n2) ∈ E and f(n1, n2) = l.

Similarly, we can define a node labeled graph.

Definition 3 (Node-Labeled Graph) A graph G = (N,E) is called a node-

labeled graph if there exists a labeling f ∶ N ↦ L which maps all nodes to labels

in a set of node labels L. Node labels are described by the short-hand n.lbl = l for any

n ∈ N and f(n) = l.

A graph can be both edge and node labeled.

4.2.1 Graph Schema

A graph schema describes the logical structure of a graph database.

Definition 4 (Graph Schema) A graph schema GS is an edge labeled graph (LN ,ES)

with the edge labeling E ↦ LE , where LE is a set of allowed edge labels over the graph

schema.
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A graph schema captures the structural or topographical restrictions on a graph

database. The nodes in a graph schema indicate the allowed node types that a graph

database following the schema can contain.

Example 1 Figure 4.1 shows a graph schema for the Airbnb dataset. This schema

contains six nodes, including LISTING and HOST, which are the permitted node types

in any database conforming to this schema.

REVIEW

LISTING

REVIEWS_FOR

BOOKING_DETAILS

HAS

AMENITY

HAS

HOST

OWNS

USER

WROTE

Figure 4.1: A Graph Schema for the Airbnb dataset

The edges of a graph schema describe correct edge types that a graph database

following the schema can contain. Edges in a graph schema are directed and are

constraint to certain edge types in the dataset.

Example 2 Figure 4.1 shows the permitted edge types in any database conforming

to this schema. For example, the edge HOST
owns
ÐÐ→ LISTING is labeled with owns,

indicating that in the graph database, nodes of type HOST can have outgoing edges to

nodes of type LISTING and that all such edges must be labeled by own.

The label and direction of an edge in a graph schema assists in capturing the nature of

the relationship between two nodes types. Furthermore, such constraints are necessary
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for enforcing topological restrictions over the graph database. Overall, the schema

provides an intuitive way of knowledge representation and aids in modeling various

problem domains.

4.2.2 Graph Database

A graph database structures a given dataset following a graph schema.

Definition 5 (Graph Database) A graph database GDB, defined over a graph

schema GS = (LN ,ES) with the edge labeling E ↦ LE , is an edge-labeled and node-

labeled graph (ND,ED) such that:

• The node labeling ND ↦ N labels each node in the graph database with a node

type defined in the schema. For each node n ∈ ND, there must exist a node type

ns ∈ N, such that n.lbl = ns.

• The edge labeling ED ↦ LE labels each edge in the graph database with an edge

type defined in the schema. For every edge (n1
l
Ð→ n2) ∈ ED there must exist a

corresponding edge (n′1
l
Ð→ n′2) ∈ ES such that n1.lbl = n′1 and n2.lbl = n′2.

Figure 4.2: A sample Graph Database created from Airbnb Dataset
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A graph database contains node types and edge types allowed by its schema. A

graph database structures a given data-set following a graph schema. The edges of a

graph database which also represent the connections between various nodes are formed

based on the edges defined in the graph schema.

A labeled property graph (LPG) database contains data stored within its nodes

and edges, in the form of attributes or properties. A graph database based on labeled

property graph data model provides internal structures inside nodes and edges. That are

used to store additional information related to nodes and edges in the form of properties

(hence, the name labeled property graph where each attribute related to either a node or

an edge is a pair of key and value.

Definition 6 (Data property) A data property a is a variable of any data type, and

a is any valid assignment of a. Given a set of properties A = {a1, . . .}, and a subset

A′ ⊆ A, A′ is a set of unique valid assignments to the properties in A′. 2A is defined as

the set of all valid assignments of all possible subsets of the set of properties A.

Definition 7 (Labeled Property Graph Database) A graph database GDB =

(ND,ED) is a labeled property graph when, given a set of data properties A, there exist

two labelings AN ∶ ND ↦ 2A and AE ∶ ED ↦ 2A assigning properties and values to

each node and edge in the graph database.

Figure 4.2 shows a labeled property graph database created for the Airbnb dataset.

The structure of the graph database is based on the graph schema shown in figure 4.1.

Based on Definition 7, each node and edge of a graph database has some data properties

associated with it. We discuss these aspects of LPGs with a few examples.

Example 3 Figure 4.2 shows that the selected node Eleni has the

node type HOST. The properties associated with the node Eleni are

{id, host_id, host_location, host_name, host_since}. The
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values assigned to the attributes are accessed by using the dot notation such as

Eleni.host_id = 59786. Each node and edge in the LPG contains values for an

arbitrary set of properties.

Based on Definition 5, the structure of the database shown in Figure 4.2 follows the

graph schema in Figure 4.1. Edges in the graph database must ,therefore, conform to

the edge types allowed by the schema.

Example 4 In Figure 4.2, the node TheA2CTeam has an outgoing edge to the node

St Kilda and the edge is labeled with edge type OWNS. The node St Kilda is of

the type LISTING while TheA2CTeam is of type HOST. Hence, the corresponding

edge type must be labeled as OWNS, as that is the only edge type allowed in the schema

between node types LISTING and HOST.

Every edge in a labeled property graph database can have properties associated with

it.

Example 5 The edge e from TheA2CTeam to St Kilda contains one property

"since" with the value 2004 that signifies the year since host has owned a listing.

The value of this property can be accessed using the dot notation, i.e., e.since = 2004.

The notion of a schema for labeled property graphs proposed previously in [7] is

extended into a formal model for property graphs in [27]. A conversion between RDF

and property graph data model by using a standard metadata model is proposed in [149].

A schema-driven approach for performing traversals on graph databases appears in [24].

An application domain driven approach for creating graph schemas is presented in [145].

An extension of relational schemas into a meta model that can be converted into graph

models appears in [150]. Another model-driven approach converts a property graph

data model into a relational data model [146]. However, such existing techniques and

formalisms for schemas are only partially used to design data loading procedures and
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perform data analytics, as proposed in this paper. Furthermore, our schema model

only restricts the topology of a graph database, ensuring that LPGs retain the flexibility

offered by allowing nodes and edges to contain arbitrary property values.

4.3 Schema-Driven Loading of Graph Databases

Loading new datasets into a graph database require sufficient meta-data, ideally captured

as the schema. Loading procedures involve transforming and reorganizing data present

in a legacy format, such as files or relational databases, into the nodes and edges structure

supported by graph databases. Such transformations require sufficient knowledge or

meta-data about the structure of the dataset to being processed. The meta-data governs

how elements of the original dataset are mapped to the nodes and edges of the graph

database, which is precisely the information contained in the schema. Hence, it is

intuitive to plan loading processes by first constructing a schema.

Currently, the process of deciding on the structure of the graph database into which

a dataset is loaded is primarily informal. Ad-hoc approaches to prepare for loading

operations may include preliminary decisions on the structure of the graph database.

These initial structures are based mostly on the existing format of the dataset being

considered, and may not be optimal for the new graph database.

We propose a schema-driven loading strategy for LPGs. In this approach, a graph

schema is defined based on an assessment of the existing format of the dataset being

imported. This schema can be validated by users and can also be analysed using

automatic tools before loading procedures are initiated.

We illustrate the proposed schema-driven loading process using a case study of

Airbnb. Airbnb’s datasets are available to be downloaded from their website under a

Creative Commons license in comma-separated values (CSV) file format [87]. The

Airbnb dataset consists of three CSV files that contain information related to listings,
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reviews and calendar data. The listings file contains information related to hosts, houses,

amenities provided in the listing, the location of the house, etc. The reviews file contains

information related to the users who have stayed in the listings and provided feedback

in the form of reviews. The calendar file contains information related to booking details

such as pricing and occupancy. These files contain multiple lines (rows) of data, where

each row contains a comma-separated list of values. For instance, the example of a CSV

file containing information related to listings from Airbnb’s data is shown in Table 4.1.

Table 4.1: Sample data from listing.csv in the Airbnb dataset

Host
Name

Listing
ID

Listing Name Room
Type

Street Host
ID

Manju 9835 Beautiful Room &
House

Private
room

Bulleen, VIC, Aus-
tralia

33057

Lindsay 10803 Room in Cool Deco
Apartment in Brun-
swick East

Private
room

Brunswick East,
VIC, Australia

38901

Eleni 15246 Large private room-
close to city

Private
room

Thornbury, VIC,
Australia

59786

Eleni 68482 Charming house in-
ner Melbourne

Entire
home/apt

Thornbury, VIC,
Australia

59786

The first stage in the proposed process is an analysis of the existing dataset. To

create a graph schema for the Airbnb dataset some information related to the structure

of the graph is required beforehand. This information describes which entities are

Figure 4.3: Entity Relationship Diagram for the Airbnb dataset
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represented as nodes and how these entities are connected to one another. We use

the Entity-Relationship Diagram (ERD) for the Airbnb dataset shown in Figure 4.3

that presents a logical view of the dataset. The ERD can be visualized as a graph

GERD = (NR,ER), where NR represent tables in the ERD and edges in ER represent

primary key - foreign key relationships between the tables. In Figure 4.3 the nodes and

edges are determined as follows:

• NR = {REVIEW, LISTING,HOST,BOOKING-DETAILS,

AMENITY,USERS}.

• ER ={(REVIEW,LISTING), (REVIEW,USERS), (HOST,LISTING),

(AMENITY,LISTING), (BOOKING-DETAILS,LISTING)}

The second stage is the creation of a LPG schema. For the Airbnb case study, the

CSV files structures are mapped onto nodes and edges of the graph database. The node

and edge types are captured into the schema, which can then be verified manually by

users. For the Airbnb dataset, the LPG schema shown in Figure 4.1 is constructed by

first choosing which fields in the ERD are represented as nodes. While this process is

primarily user-guided, we can use certain patterns to decide on node types. Firstly, node

types should represent data that is expected to have multiple relationships with other

nodes, and not represent data that is associated with single entities and hence better

stored as properties. For example, for Airbnb, since hosts can own multiple listings, it is

useful to create two separate node types (HOST and LISTING in Figure 4.1). However,

information such as address are specific to every listing, and can be stored as properties.

Secondly, node types can be determined based on the expected analytics on the database.

For example, the node type AMENITY in Figure 4.1 represents the fact that users may

want to search listings by amenities.

In order to define the direction of edges in the graph schema we use the

subject-predicate-object format from semantic web [151] to decide the
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direction between the entity nodes derived from the ERD. For example, the edge

HOST
OWNS
ÐÐ→ LISTING signifies the ownership relationship between hosts and listings.

Edge direction is important because data can lose its meaning if relationships are created

incorrectly. For example, a listing cannot own a host. Overall, the following edge types

are allowed by the schema in Figure 4.1.

• USER
WROTE
ÐÐÐ→ REVIEWS

• REVIEW
REVIEWS_FOR
ÐÐÐÐÐÐÐ→ LISTING

• LISTING
HAS
ÐÐ→ AMENITY

• LISTING
HAS
ÐÐ→ BOOKING-DETAILS

• HOST
OWNS
ÐÐ→ LISTING

The third stage is scripts creation where graph schema is used to write scripts for

loading procedures. For the Airbnb case study, this involves automating the process

of loading values from the CSV files into the nodes (and edges) of the graph database.

For this research, we have used Neo4j graph database and the associated Cypher query

language. The data loading scripts in Cypher have to be designed to conform to the

schema designed in the previous step. The listing.csv file contains information

about hosts, listings and amenities. However, the graph schema in Figure 4.1 requires

this data to reside as separate nodes in the graph database. Furthermore, review.csv

contains information about users who have stayed at different listings and/or have

provided reviews. The calendar.csv file contains booking information related to listings.

The interrelated information contained within these files has to be organised as per the

structure of the schema, which governs the structure of the Cypher scripts. There are

three major concerns while constructing load scripts in Cypher.

• Uniqueness constraints have to be defined on node IDs.
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• Nodes must be attributed to data in key-value format.

• Edges must be constructed between nodes based on the topology described using

the graph schema.

The sample listing file as shown in Table 4.1 has Listing ID associated with each

listing which serves as its unique identifier. Therefore, before creating the listing nodes,

the uniqueness constraint has to be established to reduce the chances of data corruption.

Neo4j provides this feature of enforcing uniqueness constraints. As an example, this

can be achieved by running the following query written in Cypher.

QUERY 1:
CREATE CONSTRAINT ON (list:LISTING)
ASSERT list.listing_id IS UNIQUE

The uniqueness constraint ensures that Cypher does not create multiple LISTING

nodes with the same listing ID. To start loading data related from listings.csv,

the following Cypher query is used.

QUERY 2:
LOAD CSV WITH HEADERS FROM
"http://data.insideairbnb.com/australia/vic/melbourne
/2019-07-09/visualisations/listings.csv" AS row
WITH DISTINCT row.id AS listing_id
MERGE (list:LISTING {listing_id:toInteger(listing_id)})

The Cypher query establishes connection with the listings.csv file and then

creates nodes with LISTING node type. All nodes are unique and contain listing ID as

a property. To add other properties to the nodes of type LISTING, additional data has

to be loaded from listings.csv in the form of properties stored as key-value pairs.

This can be achieved by Query 3 that assigns property values to only those LISTING

nodes that match the data in the CSV file via the listing id.

Nodes of type HOST, AMENITY, REVIEW, USER and BOOKING-DETAILS are

created by using a similar procedure than the one illustrated through Queries 1, 2 and
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QUERY 3:
LOAD CSV WITH HEADERS FROM
"http://data.insideairbnb.com/australia/vic/melbourne
/2019-07-09/visualisations/listings.csv" AS row
MATCH (list:LISTING )
WHERE list.listing_id = toInteger(row.id)
SET list.listing_url = row.listing_url,
list.name = row.name,
list.summary = row.summary,
list.space = row.space
list.neighbourhood = row.neighbourhood

3. Next, edges between nodes are established. For example, Query 4 is used to create

edges between nodes of type HOST and LISTING. Each edge created by using Query 4

is labeled as OWNS and represents a valid edge type in the graph schema. Edges are

created based on the primary key-foreign key relationship between entities LISTING

and HOST of the ERD for Airbnb dataset. As shown in Figure 4.3 the cardinality

between tables LISTING and HOST is one-to-many which means that a host can own

many listings while each listing can only be owned by one host. For example, in

table 4.1 host Eleni has two associated listings. To capture such relationships in graph

databases a Cypher query such as Query 4 uses the WHERE clause to create edges that

are based on the primary key-foreign key relationships. Figure 4.4 shows a sub graph

which illustrates a one to many relationship between node type host labeled as Eleni

and two node types listing labeled as (Charming house, Large private)

QUERY 4:
LOAD CSV WITH HEADERS FROM
"http://data.insideairbnb.com/australia/vic/melbourne
/2019-07-09/visualisations/listings.csv" AS row
MATCH (list:LISTING), (host:HOST)
WHERE list.listing_id = toInteger(row.id)
AND host.host_id = toInteger(row.host_id)
MERGE (host)-[:OWNS {since:row.host_since}]->(list)

Entities AMENITY and LISTING as shown in figure 4.3 have a one-to-one rela-

tionship in the ERD. Therefore, Query 5 is used to create edges between nodes of type
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AMENITY and LISTING. Figure 4.4 illustrates one to one relationship between nodes

types listing labeled as (Charming house, Large private) and amenity labeled as (Entire

home, Private room).

Figure 4.4: Sub graph displaying relationships in graph databases

QUERY 5:
MATCH (list:LISTING), (amen:AMENITY)
WHERE list.listing_id = amen.listing_id
CREATE (list)-[:HAS]->(amen)

Figure 4.5 shows the graph schema for the Airbnb LPG which is created in Neo4j

following the process discussed in this section. Queries in Cypher are executed for load-

ing the data from listings.csv, reviews.csv and calendar.csv. The

schema of the database can be checked by using the call db.schema() command in

Cypher.

Other researchers have discussed schema driven frameworks for data model trans-

formation and data loading. For instance, authors in [152, 153] have proposed a

conversion technique from the relational model to NoSQL data stores such as Man-

goDB and Apache Cassandra. These studies, rely on ERDs for creating mapping rules

that facilitate the conversion. Authors in [154] have proposed relational data model

conversion to HBase store by transforming ERDs. Authors in [141] propose the use

of UML diagrams as schema for graph databases. In [155] authors demonstrate the

importance of schema in NoSQL databases. A model (schema) driven approach for
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Figure 4.5: Graph schema for Airbnb dataset in Neo4j

efficient database design and data modeling process is presented in [156]. The im-

portance of schemas in graph databases is also discussed in [78, 157, 79, 158] where

authors suggest using graph schemas for generating graph databases and formation

of queries. In this research, we build upon these existing techniques, and our work

highlights the fact that in labeled property graph databases schema are of equally high

importance. A formal description of the schema can help with analysis or verification

using automated tools, such as model checkers. Formalised schema assist not only

in efficient data loading, but they also provide a systematic approach for graph data

analytics, as discussed in the next section.

4.4 Schema-Driven Analytics for LPGs

We propose a schema-driven method for carrying out analytics over graph databases.

Often, specific users only require analytics on narrow aspects of a graph database, and

may not possess the necessary skills to identify how best to construct such analytics.

Providing a schema as an abstraction of how data is presented allows users to analyse

data in graph databases more easily.
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The first step to perform analytics over any database is data extraction which is

performed by using a query language. Query languages for the databases are declarative

and have been motivated by the relational model proposed by Edgar F. Codd in the

early 1970s [41]. The major advantage of using a declarative query language is that

computational logic can be expressed without describing the control flow. This means

that users specify what to extract from the database without describing how data is

extracted. Cypher is a declarative query language supported by Neo4j. In Cypher,

users specify a sub graph of interest and, then the query engine runs a pattern matching

algorithm to find matching data in the database. For example, the following query helps

in finding the name and location of hosts who provide private rooms as amenities in

their listings.

QUERY 6:
MATCH (host:HOST)-[:OWNS]->(listings:LISTING),
(listings:LISTING)-[:HAS]->(amenity:AMENITY) WHERE
amenity.room_type = "Private room"
RETURN host.host_name, host.host_location

The MATCH clause of the query is used to express sub graph of interest and topolo-

gical information from the graph schema is used to construct the sub graph. The WHERE

clause is used to specify any user-defined restrictions such as identifying listings that

provide private room as an amenity. The RETURN clause displays information of hosts

to the user. The sub graph returned by Query 6 is shown in Figure 4.6.

Figure 4.6: Sub graph returned by Query 6

Traditionally, users wanting to analyse data present in a graph database are expected
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to possess sufficient skills in using an associated query language, such as Cypher.

However, this requirement makes graph databases inaccessible to a large proportion

of potential users who are not experts. Moreover, unlike SQL for relational databases,

graph databases do not have a single standard query language. Consequently, query

languages are highly dependent on the graph database technology being used. Even

experienced database users and developers may find it difficult to perform analytics

when faced with a new graph database technology.

The proposed schema-driven analytics approach for LPGs contains the following

steps. Firstly, the schema is presented to an expert user for analysis and identification

of data to be analysed. Next, the expert user employs a boilerplate-based approach to

create template queries for the analytics required. Finally, these queries are populated

and executed every time a (potentially non-expert) user wants to perform these analytics.

We illustrate the proposed schema-driven analytics approach by using a case study of

using graph databases in industrial cyber-physical systems [16]. This research proposes

a tool IASelect that uses the proposed boilerplate based approach for finding information

related to industrial agent practices based on user preferences. The dataset for IASelect

comes from the IEEE standardization project P2660.1 [159, 160] which was provided

initially in the form of a two-dimensional adjacency matrix stored as a Microsoft Excel

worksheet. The original dataset was loaded into a graph database using the proposed

loading process described in Section 4.3. The graph schema of the resulting LPG stored

in Neo4j is shown in Figure 4.7.

The graph schema shown in Figure 4.7 describes several node types, such

as OnDevice and Hybrid which are two primary industrial agent prac-

tice types. Each node of either type then has additional characteristics

stored as node types Maintenance, Function, Domain and Performance

Efficiency. The mapping between practices and a characteristic is represented as

edges in the graph schema.
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Figure 4.7: Graph Schema for storing information about practices

The IASelect graph database is expected to be used by industrial automation experts

who do not have a working knowledge of Cypher. Hence, using the schema-driven

analytics process described earlier in this section, we develop template queries that

can be used by users to search for industrial practices based on their characteristics.

A sample boilerplate template query written in Cypher for IASelect is presented as

query 7.

Figure 4.8: Web form-based user interface of IASelect

The MATCH clause in the boilerplate query 7 represents a sub graph to search within

the P2660.1 dataset. The MATCH clause describes that the search involves identifying all
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QUERY 7:
MATCH
(technique)-[functionType:WEIGHT]->(f:Function),
(technique)-[domainType:WEIGHT]->(d:Domain),
(technique)-[hoAgent:WEIGHT]->(p:PerformanceEfficiency),
(technique)-[timeB:WEIGHT]->(p1:PerformanceEfficiency),
(technique)-[reuse:WEIGHT]->(m:Maintenance),
(technique)-[scale:WEIGHT]->(p2:PerformanceEfficiency)
WHERE f.name = [FUNCTION]
AND d.name = [DOMAIN]
AND p.name = [HOST AGENTS]
AND p1.name = Time Behaviour
AND m.name = Reusability
AND p2.name = Scalability
RETURN technique.name AS NAME, technique.apiClient AS API CLIENT,
technique.channel AS CHANNEL,
CASE
WHEN [HOST AGENTS] = true
THEN
CASE
WHEN hoAgent.value = false
THEN ([TIME BEHAVIOUR]) * timeB.value + ([REUSABILITY]) *
reuse.value + ([SCALABILITY]) * scale.value
ELSE 0
END
ELSE round((([TIME BEHAVIOUR]) * timeB.value + ([REUSABILITY]) *
reuse.value + ([SCALABILITY]) * scale.value)*1000)/1000
END AS FINAL-SCORE
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possible node variables technique of types OnDevice or Hybrid must have out-

going edges to nodes f, d, p, p1, p2 and m of types Function, Domain,

Performance Efficiency and Maintenance, respectively. Furthermore, the

WHERE clause constrains the search over specific values for some properties of f,

d, p, p1, p2 and m. It also constrains the edges to be considered, by restricting

the search to specific threshold of edge values, which are stored in the graph data-

base as real numbers. In Query 7, FUNCTION, DOMAIN, HOST AGENTS, TIME

BEHAVIOUR, REUSABILITY and SCALABILITY represent parameters that can

be given concrete values by a non-expert user.

To allow non-experts to use IASelect, we develop a user interface which acts as a

front-end for populating the boilerplate queries. The user interface acts as an additional

layer between a user and the query engine. The user submits a data extraction request

by populating the parameters of the boilerplate query. Upon submission, the interface

runs the populated template query in the background using a query engine. Figure 4.8

shows the front-end form developed for Query 7 and the subsequent database extract

report generated in IASelect that displays user criteria-specific, industrial agent practice

recommendations.

Graph databases have become increasingly popular for carrying out data analytics

over big data. A tool to visualize requirements based on Neo4j is presented in [161].

Graph databases have found use in similar tools in other domains like chemistry [6] and

biology [95]. All these approaches use graph theory concepts to handle and inquiry data

from databases. On the other hand, IASelect is focused on increasing the accessibility

of analytics over graph databases through boilerplate queries and front-end generation.

Such an approach is better suited for big data applications because graph databases

scale well. A LPG is a multigraph where two nodes can be connected via multiple

edges. Each such edge can contain separate information about the relationship between

the two nodes. Adding more information, therefore, does not require a refactoring
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or restructuring of the database. This is useful in the case of IASelect, because the

database can be enriched by merely adding new edges and edge types within the schema

if more data to classify industrial agent practices is added to the database. Structural

changes can be easily accommodated in LPGs because they are schema-optional [38],

but that can increase the chances of data corruption. This risk can be mitigated by using

the proposed approach of enforcing topological constraints through the schema and

creating user-specific front-ends.

4.5 Conclusions and Future Directions

This paper focuses on the utility of having a well-defined schema for graph databases

and more precisely labeled property graphs (LPGs). We propose a formally-described

schema that can help create confidence in a LPG’s structure through user scrutiny and

automatic analysis. We show how this schema can make core processes like populating

graph databases with new datasets and helping non-experts perform analytics, more

systematic.

The proposed schema-first approach can assist in preventing data corruption. Any

update operations can be automatically checked against the schema to generate warnings

if they alter the structure of the database. Such constraints can be instrumental in

ensuring data integrity when graph databases are used simultaneously by a large number

of users in a distributed manner as any Create-Read-Update-Delete (CRUD) operations

over the graph database have to be performed following the schema. The schema-driven

approach does not sacrifice the flexibility provided by LPGs in the form of unrestricted

schema-less updates. Firstly, the schema does not constrain the amount and kind of

data being stored in the nodes and edges of a LPG as properties. Also, in its weakest

form, the formalised schema can be used to generate warnings and can be automatically

updated when the database’s structure changes during update operations. A record of
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changes in the schema, which can be formally characterized through our formalism,

can be used to monitor changes to the database over time.

Future directions to this research include extending the proposed formalism to

systematically compare different graph database frameworks and query languages, and

exploring the possibility of generating an intermediate format for queries written in one

language to be automatically transformed into another language.
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Introduction to Manuscript 2

The industry-wide adoption of graph databases has been hindered due to the frag-

mentation in syntax and semantics of available graph query languages. As a result,

several projects have been proposed by industry and academia to develop a standard

query language by integrating features from existing practical graph query languages. A

significant factor that can impact query language integration is the lack of common theor-

etical language formalisms. We propose common formalisms by extending conjunctive

queries and union of conjunctive queries with Tarski’s relation algebra (CQT/UCQT).

The common formalisms are them used to propose an integrated framework that uses

common graph query patterns to compare the expressive power of (CQT/UCQT) with

two practical graph query languages - Cypher and PGQL. In the integrated framework

the query languages are analysed on the core features of graph pattern matching and

graph navigation, revealing the common and exclusive characteristics for these lan-

guages. Overall, our study serves as a formal basis for comparing existing graph query

languages and assists the move towards query language integration and interoperability

between available graph database technologies.
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6.1 Introduction

Graph databases are efficient in storing and analysing highly interconnected data [27,

1, 32, 23, 24, 26]. They are gaining popularity due to application in transportation

networks, bioinformatics, astronomy and chemistry [32, 31, 6, 29, 5] where analysing

interactions between data is vital. Databases use query languages for extracting and

analysing the stored data [162]. Graph databases lack a standard query language as SQL

is for relational databases. As a result, there exist many graph query languages proposed

by industry such as Cypher (Neo4j) [51], PGQL (Oracle) [52], G-Core (LDBC) [1],

SPARQL (W3C) [163], Gremlin (Apache) [111] and query languages from academia

such as navigational XPath [129] and GXPath [34]. This fragmentation has hindered

70
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the industry-wide adoption of graph databases. Therefore, projects such as ISO/IEC

390751, openCypher [164] and Linked Data Benchmark Council (LDBC) [4] have been

proposed to develop a new standardised graph query language by integrating features

from existing query languages such as Cypher, PGQL and G-Core. To integrate query

languages, they have to be compared to identify common and exclusive characteristics

in each language.

The large number of graph query languages proposed by industry and academia

vary in syntax and semantics [32]. SPARQL, Cypher, PGQL and G-Core are declarative

query languages while Gremlin is a functional query language. Syntax of SPARQL and

PGQL is similar to SQL while Cypher and Gremlin have varying syntax to each other

and SQL. The syntax of G-Core is based on SQL, SNQL, SPARQL, Cypher and PGQL.

Furthermore, these query languages’ semantics also vary [1, 32] and are dependent

on the underlying implementation of each query language. Therefore, identifying

a common theoretical language formalism for objectively comparing graph query

languages is vital. By doing so, query languages can be syntactically compared and,

common semantics can also be identified and enforced to show query equivalence.

Moreover, this also helps integrate features from different graph query languages and

aids in query language interoperability.

Practical graph query languages do not share common underlying formalisms. For

instance, query languages Cypher, PGQL and SPARQL use formalisms based on regular

path queries (RPQ) and two-way regular path queries (2RPQ) such as conjunctive

regular path queries (CRPQ), conjunctive two-way regular path queries (C2RPQ), union

of conjunctive regular path queries (UCRPQ) and union of conjunctive two-way regular

path queries (UC2RPQ). SPARQL fully supports these formalisms while Cypher and

PGQL only provide partial support. More expressive formalisms based on nested

regular expressions such as conjunctive nested regular expressions (CNRE) [34] are

1https://www.iso.org/standard/76120.html

https://www.iso.org/standard/76120.html
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partially supported by SPARQL and Cypher while PGQL fully supports the use of such

formalisms. Formalisms such as extended conjunctive regular path queries (ECRPQ)

and their extensions based on regular and rational relations [73, 115] are partially

supported by SPARQL and Cypher while PGQL does not support the use of such

formalisms. Query languages proposed by academia such as navigational XPath and

GXPath are based on Tarski’s relation algebra [34, 74]. Any practical graph query

language does not support formalisms such as context-free path queries (CFP) and their

extensions [128]. To the best of our knowledge an explicit mapping between theoretical

capabilities demonstrated by existing formalisms and practical query languages is

missing. As such theory and practice are being developed independently.

Existing formalisms such as CRPQ, C2RPQ, UCRPQ, UC2RPQ, and CNRE are

not expressive enough and are not shared across all graph query languages. To compare

practical graph query languages, a theoretical language formalism is required that

encompasses the expressive power provided by the majority of graph query language

formalisms. Furthermore, the practical implications of an increase in formalisms’

expressive power also have to be considered. For instance, formalisms such as ECRPQ

provide the ability to output and compare paths. This feature can be problematic in

cases when cycles exist in graph databases. In such scenarios, a query can return infinite

paths if appropriate evaluation semantics are not considered [32]. Similarly, authors

in [72] rule out the practical use of formalism such as Walk logic [165] due to its high

evaluation complexity. Hence we focused on three main research objectives:

RO1 Extend existing theoretical language formalisms to propose common formalisms

that prevails the expressive power of existing formalisms and can also be used to

model practical graph query languages.

RO2 Develop an integrated framework by using the extended formalism proposed by
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RO1 to support the design of benchmark queries used to evaluate the expressive-

ness of practical graph query languages.

RO3 By using the integrated framework proposed by RO2 highlight the common and

exclusive characteristics of practical graph query languages Cypher and PGQL, so

that findings from this study can be used to model future graph query languages.

This research was carried out using mixed methods research methodology, where

we first conducted a literature review to identify gaps related to RO1-RO3 presented

in Section 6.2. For RO1, we extend formalisms of conjunctive queries and union

of conjunctive queries with Tarski’s relation algebra. The evaluation complexity of

these formalisms has been studied previously. Moreover, we are only using these

formalisms to compare graph query languages syntactically. Hence theoretical results

of evaluation complexity related to the extended formalisms are considered as future

work. Concerning RO2, we consider common graph query patterns such as chain

and cycles [77, 54, 166] to construct a generalized and comprehensive collection of

benchmark queries based on the extended formalisms. For RO3 we use, the integrated

framework proposed in RO2 to experimentally compare the expressiveness of graph

query languages Cypher and PGQL.

The scope of this study is limited to measuring the expressiveness of declarative

query languages for graph databases. We do not consider performance, efficiency,

complexity and time to execute the queries. All these factors are based on how well

search algorithms are implemented in each proprietary graph database platform, and

hence cannot be compared formally. The critical contributions of this work are:

1. We conduct a literature review to identify core features of graph query languages,

existing formalisms used for querying graph databases, and common graph query

patterns used later to formulate benchmark queries. The literature review is

presented in Section 6.2. We consider real-world Airbnb case study to develop
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a graph schema and graph database in Section 6.3. The case study is used to

illustrate various definitions and benchmark queries presented in this study.

2. We discuss both the syntax and semantics of conjunctive queries and union of

conjunctive queries extended with Tarski’s algebra in Sections 6.4 and 6.5. The

extended formalisms are then used to compare graph query languages on the core

features of graph pattern matching, and graph navigation identified in Section 6.2.

3. Extending the formalisms lead to a framework inclusive enough for measuring

practical graph query languages’ expressiveness. Furthermore, being focused

on practical graph query languages, the framework assists in industry and aca-

demia’s ongoing efforts to create a standard graph query language. The integrated

framework is presented in Section 6.6.

4. We use the proposed framework to conduct a comprehensive comparison between

two graph query languages Cypher and PGQL which reveals the common and

exclusive queries expressed in the two languages. The benchmark queries and

query language comparison is presented in Sections 6.7 and 6.8.

6.2 Background and Related Works

We have considered RO1-RO3 as primary factors for conducting the literature review.

In this research, we propose common formalisms that can be used to compare the

expressiveness of different practical graph query languages, where expressiveness refers

to the ability of a query language to express different graph query patterns syntactically.

Therefore, we discuss existing formalisms in our review. Due to the diversity in graph

query languages, the feature set provided by each language also vary. Hence, we also

identify core features that are common in graph query languages. To formulate queries

for measuring expressiveness, we identify common graph query patterns that have been
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proposed in the literature. We focused on three key research questions for conducting

the literature review:

RQ1 What are the core features of practical graph query languages proposed by industry and

academia?

RQ2 What are the existing formalisms used in practical graph query languages?

RQ3 What are the existing, common graph query patterns studied in industry and academia

that can be used to formulate benchmark queries for measuring the expressiveness of

practical graph query languages?

The search strings were formulated by extracting keywords from RQ1-RQ3. Then

databases such as Scopus, IEEE Explore, ACM Digital library and ScienceDirect

were searched for research papers using the search strings. We also utilised journal

recommendation tools by Elsevier 2 and Springer 3 to find specific journals for extracting

papers based on the search strings. The inclusion and exclusion criteria of a research

paper were based on the publication’s venue reputation. This was verified by using web

portals such as scimagojr 4 and core 5. Furthermore, snowballing, expert suggestions

and the relevant paper published in highly reputed database venues such as ACM

TODS 6, IEEE TKDE 7, ACM SIGMOD Record 8,VLDB Journal 9, EDBT 10, ICDT 11

and PODS 12 were other inclusion criteria for selecting a research paper. White-papers

from industry were retrieved from official web sources such as W3C [163], Oracle [52]

and Neo4j [51]. Findings from the review are summarised in the following sections:
2https://journalfinder.elsevier.com/
3https://journalsuggester.springer.com/
4https://www.scimagojr.com/
5http://portal.core.edu.au/conf-ranks/
6https://dl.acm.org/journal/tods
7https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=69
8https://dl.acm.org/newsletter/sigmod
9https://www.springer.com/journal/778

10https://dblp.uni-trier.de/db/conf/edbt/index.html
11https://dblp.uni-trier.de/db/conf/icdt/icdt2019.html
12https://dblp.uni-trier.de/db/conf/pods/index.html

https://journalfinder.elsevier.com/
https://journalsuggester.springer.com/
https://www.scimagojr.com/
http://portal.core.edu.au/conf-ranks/
https://dl.acm.org/journal/tods
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=69
https://dl.acm.org/newsletter/sigmod
https://www.springer.com/journal/778
https://dblp.uni-trier.de/db/conf/edbt/index.html
https://dblp.uni-trier.de/db/conf/icdt/icdt2019.html
https://dblp.uni-trier.de/db/conf/pods/index.html
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6.2.1 Core features of graph query languages

Graph query languages have five core features of graph pattern matching, graph naviga-

tion, shortest path search, graph construction, and graph clustering [1, 26].

Figure 6.1: Core features of graph query languages (adapted from [1])

As shown in Figure 6.1, out of 40 use cases identified by Linked Data Benchmark

Council13, graph navigation, graph construction and graph pattern matching are the

most desired core features in any graph query language. Several other works such

as [32, 62, 76, 28, 24] consider graph pattern matching and graph navigation as core

features. These two features are primarily used for data extraction. The main difference

between the two is that graph pattern matching queries search for concrete sub-graph

structures in a graph database, while graph navigation queries focus on navigating

through the topology of a graph database [34, 167]. Queries such as finding nodes

connected by paths labeled with certain edge label are graph navigation queries.

Figure 6.2: History of graph query languages proposed by industry and academia

As shown in Figure 6.2, we surveyed a total of 33 graph query languages proposed
13https://github.com/ldbc/tuc_presentations

https://github.com/ldbc/tuc_presentations
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by industry and academia, and all languages support the core features of graph pat-

tern matching. For graph navigation, 21 query languages support the use of regular

expressions defined over the edge labels of a graph database. Query languages such as

Navigational XPath [129] and GXPath [34] use Tarski’s algebra for graph navigation. In

query languages G-Log [96], SNQL [109], GOOD [93] and WebOQL [168] edges are

treated as binary relations, and transitive closure property of relations is used to answer

graph navigation queries. Query languages such as SoQL [107], SocialScope [105],

GOAL [92] and Hyperlog [102] can only express fixed-length graph navigation queries

while HNQL [97] and PaMaL [91] use iterative loops, to express graph navigation

queries. Query languages proposed by industry such as Cypher, SPARQL and PGQL,

irrespective of differences in their syntaxes, use regular expressions for graph navigation.

6.2.2 Existing formalisms for graph query languages

Identifying a common formalism for comparing query languages is vital because

formalisms assist in understanding the meaning of query languages [169]. By using

a common formalism, queries expressed in different languages can be translated into

mathematical formulas. Moreover, these mathematical representations of queries can

be used to check the syntactic equivalence of queries, thereby assuring reproducibility

of the results [170].

A core formalism for expressing graph pattern matching queries is that of con-

junctive queries (CQ) [40, 32, 171, 115, 172, 173, 14]. Conjunctive queries are an

essential class of database queries that can be used to show the equivalence between

two or more queries [58, 61]. They are further extended to include union, which makes

them equivalent to the selection, projection, join and union (SPJU) fragment of Codd’s

relational algebra [32, 60]. This formalism is called the union of conjunctive queries

(UCQ).
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For graph navigation queries, a basic formalism used is that of regular path queries

(RPQ) [32, 34]. In RPQs a topological order is described using regular expressions

defined over the edge labels of a graph database. Essentially, RPQs are used to describe

and then search for paths in a graph database. RPQs have limited expressiveness as

they can only search for paths in a single direction [62, 37]. Therefore, the formalism of

two-way regular path queries (2RPQ) has been proposed [73, 78, 34] that allows the use

of inverse operation over an edge label and is used to specify opposite direction edges.

Table 6.1: Mapping between existing formalisms and practical graph query languages
(SPARQL,Cypher and PGQL)

Formalisms Types of queries Theory/Practice Query Languages
1 CQ GPM T + P SPARQL,Cypher, PGQL
2 UCQ GPM T + P SPARQL,Cypher, PGQL ◇

3 RPQ GN T + P SPARQL, Cypher ◇, PGQL
4 2RPQ GN T + P SPARQL,Cypher ◇, PGQL
5 CRPQ GPM + GN T + P SPARQL,Cypher ◇,PGQL
6 C2RPQ GPM + GN T + P SPARQL,Cypher ◇,PGQL
7 UCRPQ GPM + GN T + P SPARQL,Cypher ◇,PGQL◇
8 UC2RPQ GPM + GN T + P SPARQL,Cypher ◇,PGQL◇
9 NRE GN T + P SPARQL ◇,Cypher ◇ ,PGQL
10 CNRE GPM + GN T + P SPARQL ◇,Cypher ◇,PGQL
11 UCN2RPQ GPM + GN T + P SPARQL ◇,Cypher ◇,PGQL◇
12 ECRPQ(reg) & ECRPQ(rat) GPM + GN T + P SPARQL ◇,Cypher ◇
13 CFP GPM + GN T N/A
14 TA GN T + P SPARQL ◇,Cypher ◇,PGQL◇

GN = Graph Navigation
GPM = Graph Pattern Matching
T = Theoretical formalism
P = Formalism used in Practical graph query language
◇ = Limited use of the formalism

In graph databases, one often need to search for the existence of paths that contain

topological properties such as branches [34] on the intermediate nodes. Formalisms

such as RPQs and 2RPQs are not expressive enough as they cannot be used to search

arbitrary-length paths that include branches on the intermediate nodes. Hence, the

formalism of nested regular expressions (NRE) has been proposed [174, 73, 37]. NREs

extend regular path queries (RPQs) with inverse and nesting operator. The nesting

operator helps define branches; furthermore, Kleene star can be applied over nested

expression enabling the search of arbitrary-length paths with branches.
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Subsequent works [124, 115, 125, 64, 62, 33, 66] have considered adding the

expressive power of graph pattern matching formalisms such as conjunctive queries and

union of conjunctive queries to graph navigation formalisms. These extensions yield a

more expressive class of formalisms such as conjunctive regular path queries (CRPQ),

conjunctive two-way regular path queries (C2RPQ), union of conjunctive regular path

queries (UCRPQ) and union of conjunctive two-way regular path queries (UC2RPQ).

Formalisms of C2RPQs and NREs are incomparable in terms of expressiveness [62],

since C2RPQs do not allow the application of Kleene star over branching operator

while NREs cannot express cyclic graph structures. Therefore, authors in [126, 36, 34]

propose conjunctive nested regular expressions (CNRE) and union of conjunctive nested

two-way regular path queries (UCN2RPQ) [127].

CRPQs have been extended to formalisms such as extended conjunctive regular path

queries with regular relations (ECRPQ(reg)) and rational relations (ECRPQ(rat)) [73,

115]. ECRPQ based formalisms provide the ability for path comparisons and path based

associations to search for sub-words and sub-sequences in paths [33]. Formalisms based

on context-free paths (CFP) and their extensions have also been studied in theoretical

literature such as [128, 175] and extensions to SPARQL query language have been

proposed to support the use of context-free paths [176, 175]. However, most features

in these formalisms are not yet available in all practical graph query languages. A

primary reason for this is that evaluating queries expressed in context-free path queries’

formalism requires significant computational resources for larger graphs [177, 178].

Therefore, such formalisms cannot be used in practical graph query languages.

Table 6.1 shows a mapping between existing formalisms and their use in practical

query languages such as SPARQL,Cypher and PGQL. We can observe that Cypher

and SPARQL use the formalisms of conjunctive queries(CQ) and union of conjunctive

queries (UCQ) for graph pattern matching. PGQL lacks the UNION clause; therefore,

use of UCQ based formalism is limited in the query language.
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Formalism such as regular path queries (RPQ), two-way regular path queries (2RPQ),

conjunctive regular path queries (CRPQ) and conjunctive two-way regular path queries

(C2RPQ) are used in SPARQL and PGQL. On the other hand Cypher does not allows the

use of Kleene star over the concatenation of two or more edge labels hence RPQ, 2RPQ,

CRPQ and C2RPQ based formalisms are not fully supported in Cypher. Formalisms

such as UCRPQ and UC2RPQ are extensions of CRPQ and C2RPQ; therefore, these

formalism are not fully supported in Cypher. Due to the lack of UNION clause, PGQL

does not fully support UCRPQ and UC2RPQ based formalisms. SPARQL, on the other

hand, fully supports the use of UCRPQs and UC2RPQs.

Formalisms such as nested regular expressions (NRE) and conjunctive nested regular

expressions (CNRE) are only fully supported in PGQL. Both SPARQL and Cypher do

not allow the use of Kleene star over branched structures. In [179], authors propose

the extension of SPARQL to support the application of Kleene star over branched

structures. The formalism of union of conjunctive nested two-way regular path queries

(UCN2RPQ) is extension of CNRE and UC2RPQ so SPARQL and Cypher do not fully

support the formalism while PGQL lacks the UNION clause. Therefore, the formalism

of (UCN2RPQ) is not fully supported in all three query languages.

Extended conjunctive regular path queries based formalism such as ECRPQ(reg)

and ECRPQ(rat) are partially supported by SPARQL and Cypher. In [180, 181,

182] authors propose the extension of SPARQL with path variables and path filtering

expressions while Cypher only provides the ability to output paths. PGQL does not

support the functionality to compare or output paths. The formalisms of context-free

paths (CFP) and their extensions are not used in all the three query languages.

To compare the expressiveness of practical graph query languages, formalisms such

as the union of conjunctive nested two-way regular path queries (UCN2RPQ) [127] can

be used as they are more expressive than other formalisms such as UC2RPQ and CNRE.

However, the main disadvantage of using NRE based formalisms is their inability to
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search for arbitrary-length paths that contain cyclic or acyclic structures between start

and end nodes. Searching for such paths can be vital in graph database application fields

such as bioinformatics and chemistry where for instance, a user might be interested in

searching for the existence of long polymer chains of arbitrary-length that are formed

of repeating acyclic or cyclic structures [31, 6]. Hence, graph navigation formalism

based on the relation algebra of Tarski, henceforth Tarski’s algebra (TA) [75] has been

studied in [183, 22, 35, 55, 129]. Syntax and semantics of Tarski’s algebra for querying

graph databases are discussed in [74], and authors suggest that Tarski’s algebra is more

expressive than graph navigation formalisms such as RPQ, 2RPQ and NRE. As shown

in Table 6.1 practical graph query languages SPARQL, Cypher and PGQL partially

support the use of this formalism for graph navigation queries.

The formalism of Tarski’s algebra is purely navigational; hence in this research,

we propose the extension of conjunctive queries and union of conjunctive queries with

Tarski’s algebra. These extensions provide several advantages firstly, being more ex-

pressive than other graph query language formalisms such as UC2RPQ and UCN2RPQ,

conjunctive queries with Tarski’s algebra (CQT) and union of conjunctive queries with

Tarski’s algebra (UCQT) serve as common formalisms for comparing graph query

languages such as Cypher and PGQL. Secondly, queries that search for arbitrary-length

paths, containing acyclic and cyclic structures between start and end nodes can also be

expressed in CQT and UCQT. Finally, the evaluation complexity of conjunctive queries

and Tarski’s algebra have been previously studied, and we are only using these exten-

sions to compare the expressiveness of graph query languages syntactically. Moreover,

the evaluation complexity is dependent upon the underlying implementation of each

practical graph query language.
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6.2.3 Common graph query patterns

In order to investigate common graph query patterns, several studies have been con-

ducted. Authors in [184, 166] conduct a detailed study by analysing query logs found

in real-world repositories such as OpenLink [185], British museum query logs from

LSQ [186] and Wikidata [187]. Findings for these logs suggest that graph query pat-

terns are broadly classified as chain and cycle patterns. Chain patterns are extended to

form patterns such as tree, star, star-chain, chainset, and forest [74, 188]. Furthermore,

authors in [35] suggest that chains and trees are basic structures for analysing the

expressiveness of query languages, and results can be generalised to more complex

graph patterns. Authors in [189, 190] suggest that chain and star are basic graph query

patterns in SPARQL. Chain patterns can be used to form more structurally complex

patterns, such as directed acyclic graphs (petals) and cycles [166]. The analysis presen-

ted in [77, 184, 166] suggests that cyclic patterns are not that common in real-world

query logs as they tend to increase the evaluation complexity of graph queries. Other

cyclic patterns considered in the literature are flowers and bouquets [166]. Majority of

tools and benchmarks designed for analysing graph query languages such as SPARQL

consider chains and cycles as common graph query patterns. Furthermore, benchmark

queries designed by using such tools are based on the formalism of conjunctive queries

and conjunctive regular path queries [191, 64, 192, 193, 54, 194]

6.3 Airbnb case study

We use a dataset from Airbnb [195] as running example to illustrate various definitions

presented in subsequent sections. Airbnb’s datasets are available for download under

a Creative Commons license in comma-separated values (CSV) file format [87]. This

dataset consists of three CSV files that contain information related to property listings,
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reviews and calendar data. This data set is highly interconnected and requires rigorous

data analytics, making it a prime candidate for graph database implementations. These

features also make this database ideal for comparing graph database queries.

This study is adapted from the work presented previously in [15] where we discuss

the formalism for labeled property graph schema and database developed for the Airbnb

dataset. We briefly discuss these concepts and present some examples.

6.3.1 Labeled Property Graph Schema

A labeled property graph (LPG) schema captures the structural and properties based

restrictions on a LPG database [16], where nodes represent entities and edges represent

relationships between the entities that belong to a domain such as Airbnb dataset. Let

LN be a set of node labels, LE be a set of edge labels and Ps be a set of properties of a

LPG schema such that each ps ∈ Ps contains a key of a specific data type.

Definition 8 (Labeled Property Graph Schema) A Labeled Property Graph

schema Gs = (Ns,Es, Ps, ηs, ξs,∆s) is a tuple where,

• Ns is a finite set of nodes and Es is a finite set of edges of the graph schema.

• ηs ∶ Ns → LN is a node labeling function which maps all nodes to labels in the

set of node labels LN .

• ξs ∶ Es → LE is an edge labeling function which maps all edges to labels in the set

of edge labels LE .

• ∆s ∶ (Ns ∪ Es) → ℘(Ps)
+ is a property labeling function which maps all nodes

and/or edges to the non empty subset of the property set Ps.

Example 6 Figure 6.3 shows a LPG schema for the Airbnb dataset. This schema

contains six labeled nodes, including REVIEW, USER, HOST and LISTING, which

are the permitted node labels in any database conforming to this schema.
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Figure 6.3: A labeled property graph schema for the Airbnb dataset

The edges of a graph schema describe valid edges that a graph database following

the schema can contain. Edges in a graph schema are directed and are restricted to

specific edge labels in the dataset.

Example 7 Figure 6.3 shows the permitted edge labels in any database conforming

to this schema. For example, the edge e6 is labeled with KNOWS, indicating that in the

graph database, nodes of label HOST can have outgoing edges to nodes of label USER

and that all such edges must be labeled by KOWNS.

Nodes and edges of a graph schema also contain information about the allowed data

types stored as properties in any node or/and the edge of a graph database.

Example 8 Figure 6.3 shows the permitted data types associated with the properties

of a node and/or edge of a graph database. For example, node n1 has two associated

properties name and age that have String and Integer as associated data types.
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6.3.2 Labeled Property Graph Database

A labeled property graph (LPG) database uses a graph data structure for storing and

managing data, allowing the modelling of real-world entities as nodes and edges [196].

Nodes are used to store data and relationships or interactions between nodes are stored

as edges [28, 43]. Let Pd be a set of properties of a graph database such that each

pd ∈ Pd is a key-value pair where each value has a data type.

Definition 9 (Labeled Property Graph Database) A Labeled Property

Graph database Gd = (Nd,Ed, Pd, ηd, ξd,∆d) is a tuple where,

• Nd is a finite set of nodes and Ed is a finite set of edges of the graph database.

• ηd ∶ Nd → LN is a node labeling function which maps all nodes to labels in the

set of node labels LN . For each node n ∈ Nd, there must exist a corresponding

node n′ ∈ Ns such that ηd(n) = ηs(n′).

• ξd ∶ Ed → LE is an edge labeling function which maps all edges to labels in

the set of edge labels LE . For each edge (n1, e1, n2) ∈ Gd there must exist a

corresponding edge (n′1, e
′
1, n

′
2) ∈ Gs such that ηd(n1) = ηs(n′1), ηd(n2) = ηs(n′2)

and ξd(e1) = ξs(e′1).

• ∆d ∶ (Nd ∪ Ed) → ℘(Pd)
+ is a property labeling function which maps all nodes

and/or edges to the non empty subset of the property set Pd. For any ni ∈ Nd

(or ei ∈ Ed), there exists n′i ∈ Ns (or e′i ∈ Es) such that ∆d(ni) = ∆s(n′i) (or

∆d(ei) = ∆s(e′i)). The data type of value stored in node (or edge) of graph

database is same as the data type of node (or edge) in the graph schema.

A labeled property graph database created for the Airbnb dataset is shown in

Figure 6.4. The structure and properties of nodes and edges in the graph database follow
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Figure 6.4: Example of a labeled property graph database for Airbnb dataset

the graph schema shown in Figure 6.3. Therefore, the graph database’s nodes and edges

must conform to the graph schema’s valid node and edge labels.

Example 9 In Figure 6.4, the node u2 has an incoming edge from the node h1 and

the edge e36 is labeled with edge label KNOWS. The label of node u2 is USER while the

label of node h1 is HOST. Hence the corresponding edge must be labeled as KNOWS, as

that is the only allowed edge label in the graph schema where HOST is the start node

and USER is the end node.

Each node and edge of a labeled property graph database has some data properties

associated with it.

Example 10 Figure 6.4 shows that the node u1 has the node label USER and two

associated properties in a key-value format that is name:"Ron" and age:32. The

values assigned to the attributes are accessed by using the shorthand notation such

as u1.name = "Ron" and u1.age = 32 we can also observe that data type of the

properties is String and Integer respectively which is consistent with allowed data type

in the graph schema. Similarly, edge e36 has a property since:"2009" associated
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with it. The value of this property can be accessed using the shorthand notation that is

e36.since = "2009" where the data type of value is String.

Labeled property graph(LPG) database considered in this study is restricted by the

following features. A pair of nodes in a LPG database can have zero or more directed

edges; each node and/or an edge in a LPG database can have a single label; each node

and/or edge in a LPG database can have one or more properties where each property is

a key-value pair. The property values are atomic entities, meaning that values such as

maps and lists cannot be associated with a key in a property. Moreover, the values are of

data types String and Integer. The definitions do not support multiple labels over nodes

and edges. These restrictions are enforced for the sake of simplicity, and as mentioned

in [42], these features are not present in all graph database systems and tend to make

the definitions of graph schema and graph databases complex.

The most fundamental application of a database is the ability to extract the stored

information. The mechanism that assists in data extraction is called as querying a data-

base [162, 37, 8]. Querying is usually carried using a declarative query language [197],

that allows users to describe “what" data is to be extracted or manipulated, without

requiring a description of “how" the extraction or manipulation is carried out. We

present some motivating examples of queries that can be used to extract data from the

Airbnb graph database shown in Figure 6.4.

6.3.3 Examples of querying the Airbnb graph database

Example 11 A user Ron, wishes to find a listing that provides free parking as

an amenity. Furthermore, the listing has to be reviewed by Ron’s friend, who knows a

host.

Example 11 represents a graph pattern matching query because, in this query, the

exact sub-graph structure to be extracted from the graph database is known beforehand.
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The sub-graph structure for answering this query is shown in Figure 6.5 and can be

expressed by the formalism of conjunctive queries.

Figure 6.5: Structure of sub graph for query presented in Example 11

The graph database presented in Figure 6.4 only represents a small portion of the

graph database developed for Airbnb dataset. In highly interconnected and large datasets

such as Airbnb two nodes having meaningful connections might not be close to one

another [23, 68, 67]. Furthermore, the total number of edges connecting two nodes can

be vast and may not be known beforehand.

Example 12 A user Ron wants to find out all people connected to him and each other

by KNOWS relationship. Furthermore, people connected to Ron by such a path must

own a listing and have a friend.

Example 12 represents a graph navigation query. The query is used to search for

paths of arbitrary-length connecting Ron to other people such that edges in the path

must be labeled as KNOWS. Furthermore, the end node of the path must have two

outgoing edges labeled as OWNS and FRIEND_OF. The sub-graph structure that has to

be extracted from the graph database is shown in Figure 12, which consists of a path

labeled with KNOWS relationship. The end node of the path has two outgoing edges

labeled by OWNS and FRIEND_OF relationships. The formalism of conjunctive regular

path queries can express this query.

Example 13 A host Renna wants to find out friends and friends of friends such that

all friends of Renna and friends of friends either own a listing or have written a review
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Figure 6.6: Structure of the sub graph for query presented in Example 12

for a listing.

Example 13 represents a graph navigation query, where we search for paths of

arbitrary-length connecting Renna to other people such that edges in the path must

be labeled as FRIEND_OF. Furthermore, the intermediate nodes in the path must have

an outgoing edge labeled as OWNS or WROTE. The sub-graph structure that has to be

extracted from the graph database is presented in Figure 6.7, which consists of a path

with branches in the intermediate nodes. The formalism of nested regular expressions

can be used to express such a query.

Figure 6.7: Structure of the sub graph for query presented in Example 13

Example 14 A user Ron wants to find out all people connected to him and each other

by KNOWS relationship. Furthermore, any two people directly connected by KNOWS

relationship must also have a familiar friend. Additionally, Ron also wants to find

out any reviews that he has written for a listing that provides free parking as an

amenity.

Example 14 also represents a graph navigation query, where we search for arbitrary-

length and fixed-length paths that share a common node represented by the user Ron.
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Edges in the arbitrary-length path must be labeled as KNOWS. Furthermore, in the path,

any two nodes that are adjacent to each other must have outgoing edges labeled as

FRIEND_OF to another common node. The fixed-length path is used to search for a

review written by Ron for a listing that provides free parking as an amenity. The

sub-graph structure that has to be extracted from the graph database is presented in

Figure 6.8 which consists of two paths starting from the same node Ron. The arbitrary-

length path is formed of repeating acyclic structure between the start and end nodes.

Such a query cannot be expressed in existing formalisms.

Figure 6.8: Structure of the sub graph for query presented in Example 14

6.3.4 Insights from the examples

Graph pattern matching queries share common formalisms of conjunctive queries and

union of conjunctive queries. On the other hand, graph navigation queries do not

share a common formalism as shown in Examples 12 and 13 furthermore, existing

formalisms are not expressive enough. As presented in Example 14 expressing paths

of arbitrary-lengths containing repeating acyclic or cyclic structure between the start

and end nodes requires Kleene star operator. In formalisms based on two-way regular

path queries and nested regular expressions, conjunction is not closed under Kleene

star. On the other hand, in Tarski’s algebra conjunction is closed under Kleene star;

therefore, the query in Example 14 can be expressed in Tarski’s algebra. Furthermore,

combining conjunctive queries and union of conjunctive queries with Tarski’s algebra
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yields CQT and UCQT. These formalisms are more expressive than existing formalisms

such as C2RPQ, CNRE, UC2RPQ and UCN2RPQ. Moreover, CQT and UCQT serve

as common formalisms that can be used to compare graph query languages. We discuss

these formalisms in the following section.

6.4 An Integrated Formalism for graph query lan-

guages based on Tarski’s algebra

This section relates to our first research objective RO1. We use the findings from RQ2

presented in Section 6.2.1, to extend the formalisms of conjunctive queries and union

of conjunctive queries with Tarski’s algebra. The formalisms are used later to compare

practical query languages on the core features of graph pattern matching and graph

navigation as presented in Section 6.2.2 for answering RQ1. This formalism allows us

to carry out a systematic comparison shown later in Section 6.7. The most important

elements of graph pattern matching and navigation queries are patterns, which assist in

defining the structure of data that has to be extracted from a graph database [32, 62].

Patterns can represent a simplistic, one-node structure, as well as a complex structure

over multiple nodes and along with their relationships. Broadly, patterns are of two

types navigation pattern and graph pattern.

6.4.1 Navigation pattern

Navigation patterns are used to formulate graph navigation queries and are defined as

follows:

Definition 10 (Navigation pattern) Given a graph schema Gs and graph data-

base Gd, let K be a set of infinite keys, W be a set of infinite values and θ = {≥,≤
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,>,<,=,≠} be a set containing equality and inequalities. We define a set of expres-

sions EXPR1 ⊆ (K × θ × W). A navigation pattern is a graph defined by the tuple

Gp = (VN , VE ,Ep, ηp, ξp,∆p,Φ) where:

• VN is a finite set of node variables and VE is a finite set of edge variables such

that VN ∩ VE = ∅.

• Φ is a topological order defined over the set of edge labels LE .

• Ep = EDE ∪ EΦ where, EDE ⊆ VN × VE × VN is a relation that represents a directed

edges and EΦ ⊆ VN ×Φ × VN is a relation that represent path(s) connecting two

nodes. In cases when Ep = ∅ mean that the navigation pattern only represents

node(s).

• ηp ∶ VN → (LN ∪ ε) is a node labelling function which maps all node variables to

labels in a set of node labels LN and a node variable can have an empty label.

• ξp ∶ VE → (LE ∪ ε) is an edge labelling function which maps all edge variables to

labels in a set of edge labels LE and an edge variables can have an empty label.

• ∆p ∶ (VN ∪ VE) → ℘(EXPR1) is a property labelling function which maps all

node and/or edge variables to the powerset of EXPR allowing each element in

(VN ∪ VE) to be mapped by no element, single or multiple elements from the set

EXPR.

Let x be an element of the set (VN ∪ VE), k ∈ K and w ∈ W if ∆p(x) = (k, θ,w)

then we use the shorthand x.kθw to define an expression, where θ can be one of the

equality or inequalities.

Example 15 Figure 6.9 shows a navigation pattern for the graph navigation query

presented in Example 12. The relation EΦ(u,KNOWS∗, u1) is used to represent a



Chapter 6. Practical and Comprehensive Formalisms for Modeling Contemporary
Graph Query Languages (Manuscript 2) 93

path where a topological order defined over the edge label KNOWS (represented as

(KNOWS)∗) is specified between node variables u and u1. Relations EDE(u1, f, u2) and

EDE(u1, o, l) are used to represent directed edges. Node and edge variables have labels

and properties associated with them for instance, the node variable u has an associated

label USER and a property is used to specify that name of the user should be Ron

represented by the shorthand u.name = Ron.

Figure 6.9: Navigation pattern for the graph navigation query presented in Example 12

Graph pattern

A graph pattern is a restricted form of the navigation pattern presented in Definition 10

and is defined as follows:

Definition 11 (Graph pattern) A navigation pattern is a graph pattern when EΦ = ∅

and Φ = ∅ this means that graph patterns only consists of relations that represent

directed edges that is Ep = EDE.

Example 16 Figure 6.10 shows a graph pattern for the graph pat-

tern matching query presented in Example 11. The relations

EDE(u, f1, u1),EDE(u1, k, h),EDE(u1,w, r),EDE(r, rf, l) and EDE(l, h, a) are used

to represent directed edges of the graph pattern. Node and edge variables have

labels and properties associated with them for instance, the node variable u has an

associated label USER and a property is used to specify that name of user should be

Ron represented by the shorthand u.name = Ron.
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Figure 6.10: Graph pattern for the graph pattern matching query presented in Ex-
ample 11

Navigation and graph patterns are described in a query language so that graph

database’s underlying query engine can interpret them [188]. The query engine then

runs a pattern matching algorithm [51, 52] and outputs the result set in the form of

a table14. Practical graph databases lack a standard query language and as discussed

in Sections 6.2 and 6.3 do not share a common formalism. Furthermore, existing

formalisms are not expressive enough; therefore, we discuss the extension of conjunctive

queries and union of conjunctive queries with Tarski’s algebra in the following section.

We first discuss conjunctive queries and union of conjunctive queries.

6.4.2 Conjunctive queries and union of conjunctive queries

The most basic query language for databases is conjunctive queries [40, 115, 33] that

is based on restricted formalism of first order logic [58, 198]. We use elements for

Definition 10 to describe both graph and navigation patterns as conjunctive queries.

Definition 12 (Conjunctive query) Given a set of head variables H , a set of

body variables B, a set of atomic formulas A and a set of relations R, a conjunctive

query (CQ) is a logical formula in the ∃ , ∧−fragment of first order logic [66, 199], that

is an expression of the form CQ = {(h1, . . . , hi) ∣ ∃ (b1, . . . , bj) a1∧ . . .∧ak∧r1∧ . . .∧rl

} where:

• H = {h1, . . . , hi} is a finite set of head variables such that H ⊆ (NV ∪ EV).

14Graph databases such as Neo4j also provide inbuilt graph visualization
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• B = {b1, . . . , bj} is a finite set of body variables such that B ⊆ (NV ∪ EV) and

H ∩B = ∅.

• A = {a1, . . . , ak} is a finite set of atomic formulas formed by labelling functions

ηp, ξp and ∆p in definition 10, additionally atomic formulas can also belong to the

set EXPR2 ⊆ ((VN ∪ VE) × θ
′

× (VN ∪ VE)) where θ′ = { ≠,= }. Atomic formulas

from the set EXPR2 are used to ensure that node and/or edge variables can be

compared in the query.

• R = {r1, . . . , rl} is a finite set of relations such that R = Ep.

Based on Definitions 10 and 12 conjunctive query represents a graph pattern if

R = EDE.

Example 17 The graph pattern in Figure 6.10 is represented as a conjunctive query

shown as Query 8 where u, f1, u1, k, h,w, r, h1, rf, a are body variables. Relations

EDE(u, f1, u1),EDE(u1, k, h),EDE(u1,w, r),EDE(r, rf, l) and EDE(l, h1, a) are used to

structurally describe the graph pattern. Atomic formulas such as ηp(u) = "USER" are

used to enforce node and/or edge labels based restrictions and u.name = “Ron” is

used to enforce the restriction that the user name should be “Ron”. l is a head variable

and is used to output the result set.

QUERY 8: Graph pattern in Figure 6.10 represented as a conjunctive query

CQ = {l ∣ ∃(u, f1, u1, k, r,w, h, rf, h1, a) EDE(u, f1, u1) ∧ EDE(u1, k, h) ∧
EDE(u1,w, r) ∧ EDE(r, rf, l) ∧ EDE(l, h1, a) ∧ ηp(u) = USER ∧ ξp(f1) =
FRIEND_OF ∧ ηp(u1) = USER ∧ ξp(k) = KNOWS ∧ ηp(h) = HOST ∧ ξp(w) =
WROTE ∧ ηp(r) = REVIEW ∧ ξp(rf) = REVIEW_FOR ∧ ηp(l) =
LISTING ∧ ξp(h1) = HAS ∧ ηp(a) = AMENITY ∧ a.type =
“free parking” ∧ u.name = “Ron”}

Conjunctive queries do not support disjunction between relations and atomic formu-

las; hence union of conjunctive queries have been proposed.
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Definition 13 (Union of conjunctive queries) Union of conjunctive quer-

ies (UCQ) represent the disjunction of conjunctive queries ∨ni=1(CQi), where all con-

junctive queries CQ1,. . . ,CQn share the same tuple of head variables and follow the

disjunctive normal form [58].

Union of conjunctive queries increase the expressiveness of conjunctive queries, for

instance, if one wants to find out listings that were reviewed by a user such that the

age of user should be either less than 25 or greater than 30, such a query can only be

expressed as a UCQ.

Example 18 Query 9 presents a query expressed as union of conjunctive queries. The

query comprises two conjunctive queries that share the same output variable l, and

both queries express the same graph pattern. The first query returns result set for users

with age less than 25 while the second query returns the result set for users with age

greater than 30.

QUERY 9: A query represented as a union of conjunctive query
UCQ =
{(l ∣ ∃(w, r, f, u) EDE(u,w, r) ∧ EDE(r, f, l) ∧ ηp(u) = USER ∧ ξp(w) = WROTE ∧
ηp(r) = REVIEW ∧ ξp(f) = REVIEW_FOR ∧ ηp(l) = LISTING ∧ u.age < 25)
∨
(l ∣ ∃(w, r, f, u) EDE(u,w, r) ∧ EDE(r, f, l) ∧ ηp(u) = USER ∧ ξp(w) = WROTE ∧
ηp(r) = REVIEW ∧ ξp(f) = REVIEW_FOR ∧ ηp(l) = LISTING ∧ u.age > 30)}

Conjunctive queries and union of conjunctive queries represent navigation pattern if

R = (EDE ∪ EΦ). In case when Φ is defined as regular expressions then this formalism

for defining navigation patterns correspond to conjunctive regular path queries (CRPQ),

conjunctive two-way regular path queries (C2RPQ), union of conjunctive regular path

queries (UCRPQ) and union of conjunctive two-way regular path queries (UC2RPQ).

When Φ is defined as nested regular expressions then the formalism for defining
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navigation patterns correspond to conjunctive nested regular expressions (CNRE) and

union of conjunctive nested two-way regular path queries (UCN2RPQ). As discussed

in Section 6.3 these formalisms are not expressive enough; therefore, in this study, we

define Φ by using Tarski’s algebra.

6.4.3 Tarski’s algebra for graph navigation

A very basic fragment of Tarski’s algebra includes operations of concatenation, union

and Kleene star TA(., ∣,∗). This fragment is equivalent to the formalism of RPQ in ex-

pressiveness [128]. Adding inverse operation which is only defined over the edge labels

of a graph database, yields TA(., ∣,∗,− ) which is equivalent to 2RPQ in expressiveness.

Adding projection operation (π) to Tarski’s algebra TA(., ∣,∗,− , π)makes it equivalent

NRE in expressiveness. The projection operation π is used to specify a branched edge

at an intermediate node.

To further increase the expressive power, Tarski’s algebra is extended to support

operations of intersection TA(., ∣,∗,− , π,∩) where intersection symbol (∩) can be used

to express existence of cyclic or acyclic structures. Moreover, by using concatenation

along with intersection series-parallel patterns can be expressed [74]. Tarski’s algebra

is further extended to support negation by adding operations of co-projection and

difference TA(., ∣,∗,− , π,∩, π,−). These operations can be used to specify the absence

of certain pattern in a Tarski’s algebra expression. Operations of diversity and identity

are added to be specified only over the nodes TA(., ∣,∗,− , π,∩, π,−,di,id). Diversity

operation enables to find all pairs of distinct nodes while identity operation enables to

find all pairs of identical nodes [74, 183]

A Tarski’s algebra expression τ defined over the edge labels, is used to specify

a topological order between two nodes of a graph database. Grammar for defining

expressions in Tarski’s algebra is presented in Equation 6.1.
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τ ∶∶= id∣di∣le∣l
−
e ∣π[τ]∣π[τ]∣τ.τ∣τ∣τ∣τ ∩ τ∣τ − τ∣(τ)

∗ (6.1)

Evaluating Tarski’s algebra expressions

The output produced after evaluating a Tarski’s algebra expression (τ) consists all

pairs of nodes (start and end node) that satisfy the existence of a path in the graph

database such that topological order of the path, matches the topological order defined

in the expression (τ) [34, 74]. Given a LPG database Gd = (Nd,Ed) notation JτKGd is

used to denote evaluation of an expression τ over the graph database Gd [183, 35]. The

semantics for evaluating the expression (τ) have been adopted from [183, 22, 35, 55, 74]

and are as follows:

JidKGd = {(n,m)∣n,m ∈ Nd ∧ n =m};

JdiKGd = {(n,m)∣n,m ∈ Nd ∧ n ≠m};

JleKGd = {(n,m)∣n
le
Ð→m ∈ Ed ∧ le ∈ LE}

Jl−e KGd = {(n,m)∣n
le
←Ðm ∈ Ed ∧ le ∈ LE}

Jπ[τ]KGd = {(n,n)∣∃m ∈ Nd ∧ (n,m) ∈ JτKGd}

Jπ[τ]KGd = {(n,n)∣∃m ∈ Nd ∧ (n,m) /∈ JτKGd}

Jτ.τKGd = {(n,m)∣∃z ∈ Nd ∧ (n, z) ∈ JτKGd ∧ (z,m) ∈ JτKGd

Jτ∣τKGd = JτKGd ∪ JτKGd

Jτ ∩ τKGd = JτKGd ∩ JτKGd

Jτ − τKGd = JτKGd − JτKGd

J(τ)∗KGd = ∪i≥0Jτ iKGd such that τ k = (τ.τ . . . k-times . . . τ) where 0 ≤ k ≤ i,

τ 0 = id and τ+ = τ.τ∗.
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6.4.4 Conjunctive queries and union of conjunctive queries exten-

ded with Tarski’s algebra

We have seen how Tarski’s algebra is more expressive than other formalism such as

RPQ, 2RPQ and NRE. We add the expressive power of Tarski’s algebra to conjunctive

queries and call this formalism as conjunctive query with Tarski’s algebra (CQT).

In order to define CQT we use elements from the definitions of conjunctive queries

(Definition 12), navigation patterns (Definition 10) and grammar of Tarski’s algebra

presented in Equation 6.1.

Definition 14 (Conjunctive query with Tarski’s algebra) Given

setsH,B,A andR from Definition 12. A conjunctive query with Tarski’s algebra (CQT)

is an expression of the form CQT = {(h1, . . . , hi) ∣ ∃ (b1, . . . , bj) a1∧. . .∧ak∧r1∧. . .∧rl

} where:

• The sets H = {h1, . . . , hi},B = {b1, . . . , bj} and A = {a1, . . . , ak} have same

interpretation as Definition 12.

• R = {r1, . . . , rl} is a finite set of relations such that R = EDE ∪ Eτ where τ is a

Tarski’s algebra expression defined over the set of edge labels of a graph database

by using grammar presented in Equation 6.1.

Example 19 Figure 6.11 shows a navigation pattern for the graph navigation query

presented in Example 14. The relation Eτ(u, (((FRIEND_OF.FRIEND_OF−) ∩

KNOWS)∗ ∩ di), u2) represents an arbitrary-length path where expression τ =

(((FRIEND_OF.FRIEND_OF−) ∩ KNOWS)∗ ∩ di) is used to specify a path formed of

repeating acyclic structures. The diversity operation di is used to ensure that start and

end nodes of the path are not same . Relations EDE(u,w, r),EDE(r, rf, l) and EDE(l, h, a)

are used to represent directed edges. These three edges represent a path as they share
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common start and end node variables r and l. Furthermore, nodes and edges have

associated labels and properties as per Definition 10.

Figure 6.11: Navigation pattern for the graph navigation query presented in Example 14

Example 20 The navigation pattern in Figure 6.11 is represented as a CQT

query as shown in Query 10 where u,w, l, rf, h, a are body variables. Relation

Eτ(u, (((FRIEND_OF.FRIEND_OF−) ∩ KNOWS)∗ ∩ di), u2) represents an arbitrary-

length path while relations EDE(u,w, r),EDE(r, rf, l) and EDE(l, h, a) are used to repres-

ent fixed-length path. Both paths share a common variables u and all four relations are

used to structurally describe the navigation pattern presented in Figure 6.11. Atomic

formulas such as ηp(u) = USER are used to enforce node and/or edge labels based

restrictions and a.type = free parking are used to enforce property based re-

strictions. u2 and r are output variables and are used to return the desired output.

QUERY 10: Navigation pattern in Figure 6.11 expressed as CQT query

CQT = {u2, r ∣ ∃(u,w, l, rf, h, a) Eτ(u, (((FRIEND_OF.FRIEND_OF−) ∩ KNOWS)∗ ∩
di), u2) ∧ EDE(u,w, r) ∧ EDE(r, rf, l) ∧ EDE(l, h, a) ∧ ηp(u) =
USER ∧ ξp(w) = WROTE ∧ ηp(r) = REVIEW ∧ ξp(rf) =
REVIEW_FOR ∧ ηp(l) = LISTING ∧ ξp(h) = HAS ∧ ηp(a) =
AMENITY ∧ u.name = “Ron” ∧ a.type = “free parking”}

Very similar to conjunctive queries we propose the extension of CQT to union of

conjunctive queries with Tarski’s algebra.
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Definition 15 (Union of CQT) Union of conjunctive queries with Tarski’s al-

gebra (UCQT) represent the disjunction of conjunctive queries with Tarski’s algebra

∨ni=1(CQTi), where all CQT1,. . . ,CQTn share the same tuple of head variables and

follow the disjunctive normal form.

Union of conjunctive queries with Tarski’s algebra increase the expressive power of

conjunctive queries with Tarski’s algebra as they enable the use of disjunction. Formal-

isms of CQT and UCQT are incomparable in expressiveness to extended conjunctive

regular path queries (ECRPQ). This is because CQT and UCQT cannot compare and/or

produced paths as output. On the other hand ECRPQ and their extensions cannot

express arbitrary-length paths with branches, acyclic and cyclic structures. Moreover,

path comparisons and the ability to output paths is not provided by all practical graph

query languages15.

Formalisms of CQT and UCQT are certainly more expressive than formalisms based

on two-way regular path queries and nested regular expressions such as CRPQ, C2RPQ,

CNRE, UCRPQ, UC2RPQ and UCN2RPQ. Therefore, we use formalisms of CQT and

UCQT to compare practical graph query languages Cypher and PGQL.

The result set returned after evaluating a query depends upon the underlying imple-

mentation and evaluation algorithms used by a particular query language. Therefore,

in order to objectively compare graph query languages, we have considered two cri-

teria of (i) syntactic equivalence and (ii) semantic equivalence. We discuss syntactic

equivalence in the following section and present semantic equivalence in Section 6.5.

6.4.5 Syntactic equivalence of queries

Based on Definitions 12, 13, 14 and 15 we can observe that formalisms used for

expressing graph and navigation patterns such as CQ, UCQ,CQT and UCQT are

15Cypher provides the ability to output paths



Chapter 6. Practical and Comprehensive Formalisms for Modeling Contemporary
Graph Query Languages (Manuscript 2) 102

similar. The only difference between these four formalisms is that CQT and UCQT

consist of additional relations that represent path expressions. Two conjunctive queries

(or conjunctive query with Tarksi’s algebra) are equivalent if head variables, atomic

formulas and relations defined for each query are also equal [40, 58]. For checking

syntactic equivalence between queries we present Algorithm 1.

Algorithm 1: Check if two CQT queries are syntactically similar
Input: Queries Q1 and Q2

Output: TRUE or FALSE
1 if Compare(Q1.H,Q2.H) AND Compare(Q1.A,Q2.A) AND

Compare(Q1.R,Q2.R) then return TRUE;
2 else return FALSE;
3 Function Compare(X: Set, Y: Set) : Boolean is
4 if (X ∈ Eτ AND Y ∈ Eτ AND X.τ == Y.τ AND X == Y ) then return TRUE ;
5 else if (X == Y ) then return TRUE;
6 else return FALSE;
7 end

Algorithm 1 takes two queries Q1 and Q2 as inputs. The algorithm calls a function

Compare (lines 1) to check if the set of head variables (H), atomic formulas (A)

and relations (R) are identical (lines 3-7). The compare function does a standard set

comparison to check if two sets are of same size and elements are pairwise equivalent

(line 5). To match two relations representing path expressions the Compare function uses

grammar for Tarski’s algebra presented in equation 6.1 to check if two path expressions

are identical (line 4). Algorithm 1 returns TRUE if head variables, atomic formulas and

relations in both the queries are identical (line 1) and FALSE otherwise (line 2).

Moreover, Algorithm 1 can also be used to check syntactic equivalence between

queries expressed in formalisms such as union of conjunctive queries and union of

conjunctive queries with Tarski’s algebra since these formalisms are extensions of CQ

and CQT under union.
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6.5 Semantics of CQT and UCQT

Semantics of a query refers to finding the answer (or result set) of the query in a graph

database [34, 62]. We discuss two types of semantics (i) evaluation semantics and

(ii) output semantics. Evaluation semantics correspond to the underlying algorithm

used by different query languages to search for the existence of patterns in a graph

database. Output semantics are used to determine the result set generated by different

query languages which might contain duplicates depending upon the output semantics

used by different query languages. We discuss these criteria in detail in the following

sections.

6.5.1 Evaluation semantics

Evaluation semantics for a CQT query that represents a graph or navigation pattern Gp

against a graph database Gd corresponds to finding all the possible occurrences of Gp in

Gd [200, 201]. A graph or navigation pattern might never occur in the graph database,

but if the graph or navigation pattern occurs, then the pattern matching algorithm finds

all sub-graphs in the graph database structurally similar to the graph or navigation

pattern. We follow the same notion of matching a graph or navigation pattern against a

graph database as discussed in [32, 62, 171, 173].

A graph or navigation pattern can contain variables (in form of node and edge

variables) and constants such as node labels, edge labels and topological order defined

over edge labels. Therefore, matchM of Gp in Gd is a homomorphism mapping from

variables and constants in a graph or navigation pattern to constants in a graph database.

Formally, the mapping is defined asM ∶ Gp → Gd, the graph or navigation pattern is a

match in the graph database if the following conditions hold:

• All node and edge variables in a graph or navigation pattern are mapped to the

graph database’s node and edges.
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• All node/edge labels in a graph or navigation pattern are mapped to node/edge

labels in the graph database

• For every edge EDE(ni, ej, nk) of the graph or navigation pattern it holds that

(M(ni),M(ej),M(nk)) ∈ Ed andM(ni),M(nk) ∈ Nd.

• For every edge Eτ(ni, τ, nk) of the navigation pattern it holds that

(M(ni),M(nk)) ∈ JτKGd where M(ni) is the start node and M(nk) is the

end node of the path satisfied by the expression τ andM(ni),M(nk) ∈ Nd. As

previously mentioned in Section 6.4.3 while evaluating path expressions we check

for existence of all paths between two nodes that satisfy the path expression.

The mappingM is a non injective mapping [32, 73] which means that multiple

variables in Gp can be mapped to same elements in Gd.

Example 21 In the graph database shown in Figure 6.4 a host Renna wants to find

out the year since she has owned a listing named Grafton House and information

about a user whom a friend of Reena knows. Query 11 is the CQT representation of

this query.

QUERY 11: Query in Example 21 represented as CQT

CQT = {(o, u ∣ ∃(h, l) EDE(h, o, l) ∧ Eτ(h,(FRIEND_OF.KNOWS), u) ∧ ηp(u) =
USER ∧ ξp(o) = OWNS ∧ ηp(l) = LISTING ∧ ηp(h) = HOST ∧ h.name =
“Renna” ∧ l.name = “Grafton House”) }

Table 6.2 shows the mapping from node and edge variables in Query 11 to the

nodes and edges in the graph database. We can observe for instance that variable u is

mapped to the node u2 of graph database that isM(u) = u2. The values associated

with this node can be accessed by using the dot notation u2.name = David. The edge

(M(h),M(o),M(l)) is a valid edge in the graph database that is (h3, e19, l3) ∈ Ed.
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The set of nodes returned by the path expression J(FRIEND_OF.KNOWS)KGd are

(M(h),M(u)) = {(h3, u2), (h1, u1)}. The filter conditions based on node/edge labels

and properties are used to restrict the result set for instanceM(h).name = Renna

indicates that the result set should be returned for a host named Renna. Hence the set

of nodes (h1, u1) are not included in the final result set.

Table 6.2: Mapping between node/edge variable in Query 11 and graph database shown
in Figure 6.4

Node/edge variables in navigation pattern o u h l
Nodes/edges in graph database e19 u2 h3 l3

Evaluating a query expressed as the union of conjunctive queries with Tarski’s

algebra (UCQT) corresponds to combining the result set produced by all the conjunctive

queries with Tarski’s algebra (CQT) that are used to form a UCQ with the condition

that all CQT must share the same tuple of head variables.

Example 22 In the graph database shown in Figure 6.4, one can ask information

about hosts who either own a listing named as Grafton House and are connected

to people by path labelled with KNOWS relationship, or these hosts are known by users

Ron and David and are connected to people by path labelled with FRIEND_OF

relationship. Query 12 is the UCQT representation of this query, formed of two CQT

that are used to express different navigation patterns, however, both the queries share

the same output variable h.

QUERY 12: Query in Example 22 represented as UCQT

UCQT = {(h ∣ ∃(o, l, p) EDE(h, o, l) ∧ Eτ(h, (KNOWS∗ ∩ di), p) ∧ ξp(o) =
OWNS ∧ ηp(l) = LISTING ∧ ηp(h) = HOST ∧ l.name = “Grafton House”)
∨
(h ∣ ∃(a, b, p) EDE(a, k1, h) ∧ EDE(b, k2, h) ∧ Eτ(h, (FRIEND_OF∗ ∩ di), p) ∧
ηp(a) = USER ∧ ηp(b) = USER ∧ ξp(k1) = KNOWS ∧ ξp(k2) = KNOWS ∧ ηp(h) =
HOST ∧ a.name = “Ron” ∧ b.name = “David”)}
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The output produced after evaluating CQT or UCQT is a set of head variables and

the corresponding values associated with the head variables represent the answer (or

result set) of the query.

Example 23 Outputs produced after evaluating Queries 11 and 12 are presented in

Tables 6.3 and 6.4 respectively where we can see that the output is only displayed for

the head variables o and u of Query 11, and head variable h of Query 12. We use the

dot notation to display property information related to the head variables.

Table 6.3: Result set produced by Query 11

o.since u.name u.age
2000 David 23

Table 6.4: Result set produced by Query 12

h.name h.age
Renna 39
Shradha 29

6.5.2 Output semantics

In database query languages two types of output semantics exist (i) set-based- and (ii)

bag-based-semantics [32, 202]. In set-based semantics, duplicate values are eliminated

from the final result set while bag based semantics maintain the duplicate values. The

importance of output semantics depends upon the type of output returned by a query.

There are four types of outputs (i) Boolean, (ii) nodes and/or edges, (iii) path and (iv)

graph. The boolean output is produced when there are no head variables in a query, and

we only check the existence of the graph or navigation pattern in a graph database. If

head variables are specified in the query, we get nodes and/or edges as output. When it

is desirable to output the entire path connecting some nodes results in path as output.
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Finally, when it is desirable to output, the entire graph, after evaluating the query, results

in graphs as output. There is no difference between set and bag-semantics when the

query’s output is boolean, path and graphs [32]. The importance of set and bag-based

semantics is vital when nodes and/or edges are considered outputs. For instance in case

of cycles in a graph database there may exist many (possibly infinite) paths between two

nodes; hence the query can return duplicate values for node and/or edges. Therefore,

for CQT and UCQT we consider set-based output semantics.

Formalisms of CQT and UCQT use homomorphism based evaluation semantics for

graph pattern matching, arbitrary path semantics for graph navigation and set based

output semantics. On the other hand, practical query languages do not use same

evaluation semantics and output semantics [32]. This means that two syntactically

identical queries expressed in different query languages may not produce the same

result set if underlying evaluation and output semantics differ.

6.5.3 Query equivalence

We consider the concept of query equivalence which states that given a graph schema

Gs, two queries Q1 and Q2 are equivalent if they produce the same result set for all

databases instantiated by the graph schema Gs [40, 58, 203]. To prove that the result set

generated by two syntactically identical queries expressed in different query languages

is same, the underlying semantics must be the same. We discuss the evaluation and

output semantics used by practical graph query languages and present some examples

related to Cypher and PGQL.

Evaluation semantics used in practical graph query languages

Evaluation semantics for graph pattern matching: Broadly there are two types of

evaluation semantics for graph pattern matching (i) homomorphism based semantics
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and (ii) isomorphism based semantics. Under homomorphism based semantics all

possible sub-graphs in graph database that match the graph pattern are returned in the

result set. This means that multiple node and/or edge variables in a graph pattern can

match to same node and/or edge in the graph database. On the other hand isomorphism

based semantics enforce restrictions on the result set based on conditions that either a

node variable match to a single node (no-repeated-node semantics) or an edge variable

only match to a single edge (no-repeated-edge semantics) or both node and/or edge

variable match a single node and/or edge in a graph database (no-repeated-anything

semantics) [32]. Homomorphism based semantics are less restrictive than Isomorphism

based semantics.

Example 24 A graph pattern that searches for nodes connected by KNOWS relation-

ships is presented in Figure 6.12. This graph pattern is used to search for sub-graphs

over the graph database shown in Figure 6.4. The graph pattern consists of three nodes

represented by node variables x, y and z connected by two edges represented by edge

variables k1 and k2. The central node should only have incoming edges from other

nodes, and the label of the edges should be KNOWS.

Figure 6.12: Example of a graph pattern

Example 25 Queries 13 and 14 describe the graph pattern in Figure 6.12 expressed

in Cypher and PGQL respectively. To display the associated edges, we use the inbuilt

function ID provided by both the languages. The result set produced by both the queries

is present in Table 6.5 that consists of names associated with each node and the edge

IDs.
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QUERY 13: Graph pattern in Figure 6.12 expressed as a Cypher query
MATCH (x)-[k1:KNOWS]->(y), (y)<-[k2:KNOWS]-(z)
RETURN x.name, ID(k1), y.name, ID(k2), z.name

QUERY 14: Graph pattern in Figure 6.12 expressed as a PGQL query
SELECT x.name, ID(k1), y.name, ID(k2), z.name
MATCH (x)-[k1:KNOWS]->(y), (y)<-[k2:KNOWS]-(z)

As shown in Table 6.5 running the query in PGQL returns 14 rows whereas Cypher

only return 6 rows. The result set returned by Cypher is shown between rows 1-6 where

we can observe that in each row, single edge in the graph database is mapped to only

one edge variable. This is because Cypher uses no-repeated-edge isomorphism based

semantics whereas PGQL follows less restrictive homomorphism based semantics. The

result set returned by a query expressed in PGQL contains all valid matches even in

cases where multiple node and/or edge variables are mapped to the same node and/or

edge of the graph database.

Table 6.5: Result set generated by Cypher and PGQL for graph pattern in Figure 6.12

x.name ID(k1) y.name ID(k2) z.name
C
Y
P
H
E
R P

G
Q
L

1 Ron e25 Shradha e27 David
2 Ron e26 John e37 David
3 Rohan e22 Reena e23 Dave
4 David e27 Shradha e25 Ron
5 David e37 John e26 Ron
6 Dave e23 Renna e22 Rohan
7 Ron e25 Shradha e25 Ron
8 Ron e26 John e26 Ron
9 Rohan e22 Renna e22 Rohan
10 Renna e24 Ron e24 Renna
11 John e28 David e28 John
12 David e27 Shradha e27 David
13 David e37 John e37 David
14 Dave e23 Renna e23 Dave

Evaluation semantics for graph navigation:The evaluation semantics for graph

navigation queries are as follows:

• Arbitrary path semantics consider all paths that can be included in the result set of
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a graph navigation query. However, a query may return infinite paths; therefore,

under these semantics, we are only interested in the existence of such paths, and

actual paths are not returned [30, 115, 52].

• Shortest path semantics only consider the shortest paths returned after evaluating

a graph navigation query. Such queries correspond to finding “top-k” shortest

paths connecting nodes[32].

• No-repeated-node semantics allow paths where the same node cannot occur more

than once in the result set of a graph navigation query. Such paths are commonly

known as simple paths [204, 205].

• No-repeated-edge semantics allow paths that only have distinct edges which

means that in cases where cycles exist in a graph database, infinite paths are not

returned in the evaluation of a graph navigation query under these semantics [32,

51].

Example 26 Queries 15 and 16 represent queries expressed in Cypher and PGQL

respectively that are used to search for paths of arbitrary-lengths where edges are

labelled by KNOWS relationship. The result set for these queries presented in Table 6.6

is only generated for the host Renna where the start and end nodes of the paths are

provided as outputs.

QUERY 15: Navigation pattern representing the expression (KNOWS)∗ expressed as a
Cypher query
MATCH (a:HOST)-[:KNOWS*1..]->(b)
WHERE a.name = "Renna"
RETURN a.name,b.name

The graph database shown in Figure 6.4 contains a cycle between node h1(host

named Shradha) and node u2(user named David) where the edges are labelled by

KNOWS relationship. The number of paths found after evaluating an arbitrary-length
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QUERY 16: Navigation pattern representing the expression (KNOWS)∗ expressed as a
PGQL query
SELECT a.name,b.name
MATCH (a:HOST)-/:KNOWS+/->(b)
WHERE a.name = "Renna"

graph navigation query can be infinite in case cycles exist in graph database. Practical

graph query languages avoid such scenarios by using different evaluation semantics.

Cypher uses no-repeated-edge semantics while PGQL uses arbitrary path semantics.

In the graph database shown in Figure 6.4 there exist two paths that contain no-

repeated-edges labelled by KNOWS relationship between node h3(host named Renna)

and node h1(host named Shradha). Therefore, the result set produced by Queries 15

expressed in Cypher returns two rows where the start node is Reena and end node

is Shradha as shown in Table 6.6. On the other hand PGQL uses arbitrary path

semantics therefore, the number of paths are infinite. Such scenarios are avoided in

PGQL by not allowing duplicate rows to be returned in the result set.

Additionally, both query languages also allow the use of shortest path semantics for

finding shortest paths connecting any given nodes in a graph database.

Table 6.6: Result set generated by Cypher and PGQL for Queries 15 and 16

a.name b.name
P
G
Q
L

C
Y
P
H
E
R

Renna Ron
Renna Shradha
Renna John
Renna David
Renna Shradha
Renna John

Output semantics used in practical graph query languages

The choice of output semantics depends on different evaluation semantics used by query

languages. For example, PGQL employs set based output semantics along with arbitrary
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path semantics for graph navigation queries. Therefore, duplicate records are eliminated

from the result set, as shown in Table 6.6. Cypher employs bag based output semantics

and no-repeated-edge semantics for graph navigation queries. Moreover, using bag

semantics along with arbitrary path semantics are problematic [32]. For graph pattern

matching both query languages use bag based output semantics.

As previously discussed the choice of output semantics also depends upon the type

of output returned by the query language. Both Cypher and PGQL allow Boolean and

node and/or edge as outputs. The ability to output paths is only provided by Cypher

and since PGQL uses arbitrary path semantics outputting paths can be problematic as

infinite paths can be returned. Cypher does provide the ability to visualize graphs, but

PGQL does not provide this functionality. Furthermore, graphs are not provided as

outputs in both query languages.

6.5.4 Semantic equivalence of queries

To show the semantic equivalence between two queries expressed in different graph

query languages the evaluation semantics and output semantics must be the same. Graph

query languages such as Cypher and PGQL do not share the same evaluation and output

semantics. Furthermore, semantics are dependent on the implementation of query

languages. Therefore, semantic equivalence cannot be proved between queries without

making syntactic adjustments.

Table 6.7: Evaluation and output semantics used by Cypher and PGQL

Cypher PGQL
GPM No-repeated-edge isomorphism and bag semantics (†,⊛) Homomorphism and bag semantics (⊛)

GN No-repeated-edge isomorphism and bag semantics (⊛) Arbitrary path and set semantics
GPM = Graph Pattern Matching
GN = Graph Navigation
⊛ = Set based output semantics can be enforced
† = Homomorphism based evaluation semantics can be enforced
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The evaluation and output semantics for graph pattern matching and graph naviga-

tion queries used in Cypher and PGQL are summarized in Table 6.7. We can observe

that set based output semantics can be enforced for graph pattern matching and graph

navigation queries in Cypher and PGQL by using the DISTINCT keyword. For graph

pattern matching PGQL uses homomorphism based evaluation semantics by default

while in Cypher homomorphism based evaluation semantics can be enforced by us-

ing multiple MATCH clauses [32, 171]. The dissimilarity is observed for evaluation

semantics in graph navigation queries as Cypher uses no-repeated-edge isomorphism

based semantics while PGQL uses arbitrary path semantics and syntactic adjustments

cannot be made to enforce particular evaluation semantics.

6.6 An Integrated Framework for describing graph

queries

The integrated framework discussed in this section relates to RO2. We use the form-

alisms of CQT and UCQT to measure graph query languages’ expressiveness. To

formulate queries, we consider some common graph query patterns such as chains and

cycles identified via RQ3 and discussed in Section 6.2.3. These graph query patterns

are then turned into queries to measure the expressiveness of graph query languages.

6.6.1 Equivalence between queries expressed in different graph

query languages

Queries expressed in different graph query languages are equivalent if they represent

the same graph or navigation pattern and the result set produced after evaluating the

query is also same. In order to show that queries express same graph or navigation

pattern we first convert the queries into CQT and UCQT based representation and then
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use Algorithm 1 to show syntactic equivalence. To show that the result set produced

by syntactically identical queries is also the same, we enforce the same evaluation and

output semantics.

6.6.2 Expressing graph query patterns

Graph query languages use graph and navigation patterns to extract data from graph

databases. In this section, we look at various graph query patterns discussed in the

literature such as in [64, 77, 184, 74, 189, 166] that we use to formulate graph and

navigation patterns to compare graph query languages. Graph query pattern are broadly

classified as chain and cycle patterns. A chain is a path where the start and end node of

a path are not the same. In contrast, a cycle is a path where the start and end node are

the same.

Chain patterns and their extensions

Chain pattern, as shown in Figure 6.13, are the most basic patterns, and other patterns

are their extensions. The extension of chain patterns include shapes such as tree, star,

star-chain, chainset, and forest [77]. A tree pattern, as shown in Figure 6.14 contains

a start(or root) node with no incoming edge, and other nodes in a tree have exactly

one incoming edge. A star pattern, as shown in Figure 6.15 contains at most one node

that has more than two incoming and/or outgoing edges. A star-chain, as shown in

Figure 6.16 is a chain of star patterns. A chainset as shown in Figure 6.17 is formed by

the union of set of disjoint chains, and a forest as shown in Figure 6.18 is formed by the

union of set of disjoint trees.

Figure 6.13: Chain pattern
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Friday, 18 September 2020 5:24:14 PM - Document1 - Word

Figure 6.14: Tree pattern

Friday, 18 September 2020 6:25:14 PM - Greenshot image editor

Figure 6.15: Star pattern

Friday, 18 September 2020 5:24:14 PM - Document1 - Word

Figure 6.16: Star-chain pattern

Figure 6.17: Chain set pattern

Friday, 18 September 2020 6:12:18 PM - Presentation5 - PowerPoint

Figure 6.18: Forest pattern

Acyclic and cyclic patterns

The simplest form of acyclic patterns is petal that consists of a start node, an end

node and at least two distinct chains connecting the start and end nodes as shown in
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Figure 6.20. Plain cycle patterns are chains with the same start and end node, as shown

in Figure 6.19. Other cyclic patterns include flowers and bouquet. A flower pattern,

as shown in Figure 6.21 has one central node and three types of patterns such chains,

trees and petals all three are attached to the same central node. For example, the flower

pattern in Figure 6.21 contains five chains, two petals and one tree pattern connected to

a central node. Flower patterns have a property that the path length of chains, petals and

trees is two [166]. A bouquet pattern, as shown in Figure 6.22 is formed by the union

of set of disjoint flower patterns.

Friday, 18 September 2020 5:24:14 PM - Document1 - Word

Figure 6.19: Plain cycle pattern

Friday, 18 September 2020 5:24:14 PM - Document1 - Word

Figure 6.20: Petal pattern

Friday, 18 September 2020 5:24:14 PM - Document1 - Word

Figure 6.21: Flower pattern
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Figure 6.22: Bouquet pattern

Properties of patterns

Patterns have various properties associated with them such as path length, maximum

degree and length of cycle. Path length refers to the longest path in a pattern. Maximum

degree refers to the total number of incoming and/or outgoing edges of a node in a

pattern, and length of cycle refers to the longest length of a chain used to form a cyclic

pattern.

Table 6.8: Properties of graph query patterns

Pattern types Properties

Chain Path Length Maximum Degree
1-3 2

Star Path Length Maximum Degree
2-4 3-4

Tree Path Length Maximum Degree
3-6 3-5

Cycle Length of cycle
3-6

The values associated with properties of various patterns are derived from the

existing studies such as in [184, 166]. The pattern properties and associated values are

summarized in Table 6.8 where we can observe that majority of chain patterns have

path length of 1-3 and the maximum degree of inner nodes is 2. Star patterns have

a path length of 2-4 and maximum degree varies between 3-4. Tree patterns have
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longest path length of 3-6 and a maximum degree of nodes ranges between 3-5. Cycle

patterns have length between 3-6.

6.7 Comparing Cypher and PGQL using CQT and

UCQT

The integrated framework allows us to construct a comprehensive set of graph pat-

tern matching and navigation benchmark queries that can be used to compare the

expressiveness practical graph query. We use the integrated framework to evaluate the

expressiveness of two popular graph query languages Cypher and PGQL.

6.7.1 Benchmark queries for measuring expressiveness

We use graph query patterns presented in Section 6.6.2 to construct graph and navigation

patterns. These patterns are then turned into queries and tested for support by Cypher

and PGQL. We test if each query language can syntactically and logically express

each pattern. We then run each query on the Neo4j and Oracle databases, which were

deployed on identical hardware configurations. The only difference in the experimental

setup is that Neo4j runs on the Windows operating system while Oracle runs on Linux.

The benchmark queries for graph pattern matching consist of ten queries representing

shapes such as chain, tree, star, chainset, forest, star chain, plain cycle, petal, flower and

bouquet. We use the same graph patterns for graph navigation queries as we used for

graph pattern matching queries. The only variation between graph pattern matching and

graph navigation queries is that for graph navigation we use Kleene star operation over

the graph patterns presented in Figures 6.13, 6.17, 6.14, 6.18, 6.15 , 6.16, 6.19, 6.20,

6.21 and 6.22. Additionally, we also consider chains formed out of multiple edge labels,

star formed by chains of single and multiple edge labels.
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6.7.2 Equivalence of queries expressed in Cypher and PGQL

Syntactic equivalence of queries

In order to show syntactic equivalence between queries we first discuss the conversion

of queries expressed in Cypher and PGQL into CQT and UCQT based representa-

tion. As discussed in Section 6.4 the formalisms of CQT and UCQT are based on

conjunctive queries and union of conjunctive queries. Therefore, queries expressed in

CQT and UCQT also correspond to the selection, projection, join and union (SPJU)

fragment of relational algebra. The join or more specifically natural join in graph

and/or navigation patterns is based on the notion of compatible mappings [32, 171, 172]

which states that relations/edges in graph or navigation patterns are join compatible if

some of the node variables are same. For example in Query 11 relations EDE(h, o, l)

and Eτ(h,FRIEND_OF.KNOWS, u) are joined based on the common node variable h.

Selection is used to enforce some restriction on the result set in the query, for example,

the condition that node and edge variables in the query must belong to certain labels

and properties such as host name should be Renna represent selection. Projection is

used to output the result set for example, in Query 11 the head variables u, o are used to

output result of the query. Finally union is used to combine the result set from different

CQT. Table 6.9 shows the mapping between relational algebra operations and clauses

in Cypher and PGQL.

Table 6.9: Relational Algebra like operations in Cypher and PGQL

Relational Algebra Operations Cypher PGQL
Natural join MATCH MATCH

Selection WHERE WHERE
Projection RETURN SELECT

Union UNION N/A

Both query languages use MATCH clause to express a graph/navigation

pattern or natural join of graph/navigation patterns where ASCII art
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is used to draw the pattern(s). For example, the navigation pattern

in Query 11 can be expressed in the MATCH clause of Cypher and

PGQL as the following pattern (h:HOST)-[o:OWNS]->(l:LISTING),

(h)- [FRIEND_OF]->()-[:KNOWS]->(u:USER). In the pattern

h, l, u are node variables while o is the edge variable. Moreover

(h:HOST)-[o:OWNS]->(l:LISTING) represents an edge EDE(h, o, l) while

(h)- [FRIEND_OF]->()-[:KNOWS]->(u:USER) represents a path connecting

two nodes that is Eτ(h,FRIEND_OF.KNOWS, u). The symbol : signifies that nodes

and/or edges have been assigned a label for example u:USER signifies the labelling

ηp(u) = USER similarly w:WROTE means ξp(w) = WROTE. The WHERE clause is

optional in both the languages [171, 51, 52] and represents selection in Cypher and

PGQL. For projection Cypher uses the RETURN clause while PGQL uses the SQL like

SELECT clause.

Both languages support the use of logical OR in the WHERE clause. Even though

Queries 17 and 18 are not in the disjunctive normal form (DNF). The queries can be

transformed into DNF and represented as a UCQT.

QUERY 17: A navigation pattern expressed as a Cypher query
MATCH (u:USER)-[w:WROTE]->(r:REVIEW),
(r)-[:REVIEW_FOR]->()-[:HAS]->(a:AMENITY)
WHERE u.age < 25 OR u.age > 30
RETURN u,w,r

QUERY 18: A navigation pattern expressed as a PGQL query
SELECT u,w,r
MATCH (u:USER)-[w:WROTE]->(r:REVIEW),
(r)-[:REVIEW_FOR]->()-[:HAS]->(a:AMENITY)
WHERE u.age < 25 OR u.age > 30

However, the UNION clause is only present in Cypher while PGQL does not supports

the clause. This means that some queries that can be expressed in Cypher cannot be

expressed in PGQL. For example, Query 12 can only be expressed in Cypher because
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both CQTs in Query 12 are structurally different and the result set cannot be combined

without the explicit use of UNION clause. Based on the discussion presented in this

section we can conclude that every query expressed in Cypher and PGQL by using the

four clauses presented in Table 6.9 can be represented in the formalisms of CQT and

UCQT. Moreover, syntactic equivalence between such queries can be shown by using

Algorithm 1.

Semantic equivalence of queries

As discussed in Section 6.5.4 Cypher and PGQL do not share common evaluation and

output semantics. Therefore, in order to show semantic equivalence, evaluation and

output semantics have to be syntactically enforced. The choice of semantics to be

enforced depends upon the query languages being compared. As shown in Table 6.7

homomorphism based evaluation semantics can be enforced in Cypher for graph pattern

matching queries and set based output semantics can be enforced in both the languages.

Moreover, these semantics are ideal because this comparison is based on the formalisms

of CQT and UCQT that use homomorphism based evaluation semantics for graph

pattern matching queries and set based output semantics. For graph navigation queries

we choose arbitrary path evaluation semantics since they are common between PGQL

and CQT(UCQT), these semantics cannot be enforced in Cypher for graph navigation

queries. Furthermore, nodes and edges are considered as outputs of queries since these

are common output types in Cypher, PGQL and formalisms of CQT and UCQT.

6.7.3 Findings from benchmark queries

Graph pattern matching: As shown in Table 6.10 graph patterns such as chain, tree, star,

star chain, cycle, petal and flower can be expressed in both the languages. Moreover,

conjunctive queries represent the common formalism in both languages. Cypher can
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express graph patterns such as chain set, bouquet and forest whereas PGQL cannot

express such patterns. The main reason behind this is the absence of the UNION clause

in PGQL which makes it unable to combine result set of two or more conjunctive queries

that do not represent same graph pattern. For instance, the chainset graph pattern and

forest graph pattern shown in Figures 6.17 and 6.18 respectively are made up of different

chains and trees. Expressing such graph patterns requires the explicit use of UNION

clause. A shown in Table 6.10 PGQL only allows limited use of union of conjunctive

queries. This is because we can still use the Boolean connector OR in the WHERE

clause of PGQL and such queries can be expressed as the union of conjunctive queries.

Based on the experiments presented in Table 6.10 we can observe that concerning graph

pattern matching queries Cypher is more expressive than PGQL.

Table 6.10: Comparison between Cypher and PGQL for graph pattern matching queries

Exp Graph pattern Formalism used in Cypher Formalism used in PGQL
1 Chain CQ CQ
2 Tree CQ CQ
3 Star CQ CQ
4 Star Chain CQ CQ
5 Cycle CQ CQ
6 Petal CQ CQ
7 Flower CQ CQ
8 Chainset UCQ UCQ ◇

9 Bouquet UCQ UCQ ◇

10 Forest UCQ UCQ ◇

◇ = Limited use of formalism

Graph navigation: We considered seventeen navigation patterns for analysing graph

navigation queries in Cypher and PGQL. For chain shaped patterns, we considered two

variations chain formed by a single repeating edge label and chain formed by multiple

repeating edge labels. As shown in Table 6.11 experiment 1 can be performed by

both the query languages, whereas experiment 2 can only be performed in PGQL. In

Cypher Kleene star operation cannot be applied over the concatenation of two or more

different edge labels; therefore, only navigation patterns representing chains formed by
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single edge labels can be expressed in Cypher. On the other hand navigation patterns in

experiments, 1 and 2 can be expressed in PGQL where PATH clause is used to express

a pattern and then Kleene star operation is applied over the pattern in the MATCH clause.

In PGQL PATH clause is not a stand-alone clause and has to be used with the MATCH

clause. Navigation patterns in experiments 1 and 2 can be expressed in CQT by using

the TA(., ∣,− ,∗) fragment of Tarski’s algebra.

Table 6.11: Comparison between Cypher and PGQL for graph navigation queries

Exp Navigation patterns Cypher PGQL Fragment of Tarski’s algebra Formalism
1 Chain with single edge label � � TA(., ∣,− ,∗) CQT
2 Chain with multiple edge labels N/A � TA(., ∣,− ,∗) CQT
3 Tree N/A � TA(., ∣,− ,∗, π) CQT
4 Star N/A � TA(., ∣,− ,∗, π) CQT
5 Star chain N/A � TA(., ∣,− ,∗, π) CQT
6 Star with chains of single edge label � � TA(., ∣,− ,∗) CQT
7 Star with chains of multiple edge label N/A � TA(., ∣,− ,∗) CQT
8 Cycle N/A N/A TA(., ∣,− ,∗,∩) CQT
9 Petal N/A N/A TA(., ∣,− ,∗,∩) CQT
10 Flower N/A � TA(., ∣,− ,∗,∩, π) CQT
11 Chainset N/A N/A TA(., ∣,− ,∗) CQT
12 Forest N/A N/A TA(., ∣,− ,∗, π) CQT
13 Bouquet N/A N/A TA(., ∣,− ,∗,∩, π) CQT
14 Difference N/A � TA(., ∣,− ,∗, π) CQT
15 Union of chains with single edge label � N/A TA(., ∣,− ,∗) UCQT
16 Union of Star with chains of single edge label � N/A TA(., ∣,− ,∗) UCQT
17 Union of Trees N/A N/A TA(., ∣,− ,∗, π) UCQT

Tree, star and star chain shaped navigation patterns presented as experiments 3, 4

and 5 can only be expressed in PGQL whereas Cypher does not express such navigation

patterns. It turns out that in PGQL tree and star patterns are expressed by using the

PATH and WHERE EXISTS clauses together. The MATCH clause is used to apply the

Kleene star over the patterns.

Example 27 As shown in Query 19 the PATH clause describes a path starting from

node u:USER and with end node a:AMENITY. Along the path, branches are existen-

tially quantified using the WHERE EXISTS clause at nodes h,l and u respectively

that describes a sub query. Finally the MATCH clause is used to apply the Kleene star

over the entire tree structure expressed in the PATH clause.
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QUERY 19: Graph navigation query for a tree shaped navigation pattern expressed in PGQL
PATH p1 AS
(u:USER)-[:KNOWS]->(h)-[:OWNS]->(l:LISTING)-[:HAS]->(a:AMENITY)
WHERE EXISTS (SELECT * MATCH (h)-[:FRIEND_OF]->())
AND EXISTS (SELECT * MATCH (l)-[:HAS]->())
AND EXISTS (SELECT * MATCH (u)-[:KNOWS]->())

SELECT DISTINCT x,y
MATCH (x)-/:p1+/->(y)

Navigation patterns in experiments 3, 4 and 5 can be expressed as CQT by using

the TA(., ∣,− ,∗, π) fragment of Tarski’s algebra. We consider two more variations of

star-shaped navigation patterns: stars formed by chains of single but distinct edge

labels (experiment 6) and stars formed by chains of multiple edge labels (experiment

7). As shown in Table 6.11 both Cypher and PGQL can express navigation pattern in

experiment 6. However, experiment 7 can only be expressed in PGQL, because Cypher

does not allow the use of Kleene star over the concatenation of two or more edge labels.

These navigation patterns can be expressed as CQT by using TA(., ∣,− ,∗) fragment of

Tarski’s algebra.

As shown in experiments 8 and 9 both Cypher and PGQL cannot express navigation

patterns to search for repeated cyclic and acyclic structures between nodes. These

navigation patterns can be expressed in CQT by using the TA(., ∣,− ,∗,∩) fragment of

Tarski’s algebra. The PATH clause in PGQL does not allow comma-separated edges

to be specified in a pattern as done in the MATCH clause and only chain, tree and star-

shaped patterns can be expressed inside the PATH clause. Cyclic and acyclic navigation

patterns are harder to evaluate, and hence many graph query language tends not to

include them in their implementations [77]. Moreover, cyclic structures are also not

that common in real-world data sets [166]. A navigation pattern representing a flower

shape is presented as experiment 10 only PGQL can express such a pattern with the

limitation that flower pattern must only be formed of chain and tree.
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Experiments 11, 12 and 13 cannot be expressed in both the query languages. Exper-

iment 11 requires the use of Kleene star over the union of two or more chains patterns.

Similarly, experiments 12 and 13 require Kleene star over the union of two or more tree

patterns and flower patterns, respectively. As shown in Table 6.11 chainset patterns can

be expressed as CQT by using TA(., ∣,− ,∗) fragment, forest pattern can be expressed as

CQT by using TA(., ∣,− ,∗, π) fragment and bouquet pattern can be expressed as CQT

by using TA(., ∣,− ,∗, π,∩) fragment of Tarski’s algebra.

Navigation patterns that search for the absence of certain pattern in a path are

presented as experiment 14 in Table 6.11. Such a navigation pattern can only be

expressed in PGQL by using the WHERE NOT EXISTS clause along with the PATH

clause. These navigation patterns can be expressed as CQT by using the TA(., ∣,− ,∗, π)

fragment of Tarski’s algebra.

Results presented in Table 6.11 are obtained by using the formalism of CQT. These

results can be easily extended to the formalism of UCQT as discussed in Definition 15

queries expressed in UCQT combine the result set obtained from individual CQT. We

consider three more navigation patterns presented in Table 6.11 as experiments 15, 16

and 17 all three navigation patterns cannot be expressed in PGQL where as experiments

15 and 16 can only be expressed in Cypher because of the presence of UNION clause.

Navigation patterns in experiments 15 ,16 and 17 can be expressed as UCQT by using

the TA(., ∣,− ,∗) fragment and TA(., ∣,− ,∗, π) fragment of Tarski’s algebra respectively.

Based on the experiments presented in Table 6.11 it turns outs that PGQL is more

expressive than Cypher in terms of expressing graph navigation queries. PGQL allows

expressing structures such as chains, trees and stars. In terms of cyclic and acyclic

structures, both the languages do not express such structures for graph navigation.

Furthermore, chain shaped navigation patterns are shared between both the languages

that can be expressed as CQT by using the TA(., ∣,− ,∗) fragment of Tarski’s algebra. In

the following section, we further examine the extent to which chain shaped navigation
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patterns can be expressed in both languages.

6.8 Comparison of chain shaped queries in Cypher and

PGQL

Chain shaped navigation patterns are used to search for paths that do not have branches

or cycles between start and end nodes. Such navigation patterns can be expressed as

CQT and UCQT by using the TA(., ∣,− ,∗) fragment of Tarski’s algebra. Paths are

sequences of edges where the total number of edges in the sequence represents the

path’s length. For example an expressions such as τ = a.b−.c is used to search for the

existence of paths that has three edges labeled as a, b− and c respectively. For describing

such expression, we employ concatenation and more edge labels can be specified in

the expression for searching longer paths. Broadly there are two types of chain shaped

expressions: fixed-length and arbitrary-length.

6.8.1 Fixed-length expressions

Expressions formed over elements of the set LE involving a random but valid use of

inverse, concatenation and union operations (but without the use of the Kleene star

operator) results in searching for fixed-length paths in the graph database. The valid

use of operations corresponds to defining expressions by using the TA(., ∣,− ) fragment

of Tarski’s relation algebra. Standard results obtained from the algebra can be applied

which state that applying concatenation operation over two expressions always increases

the length of the path represented by the new expression[55, 74]. For example, the

expression a.b− generates paths of length 2. We use the shorthand τn to represent

expressions that generate paths of length n.

• Expressions in τ1, such as a, b−, a∣b etc., where a, b ∈ LE will require searching
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for edges (size 1 path) in the graph database.

• Expressions in τi, where i ≥ 1, such as a.b, a∣b−.c, (a∣b).c−.(d−∣e), etc., where

a, b, c, d, e ∈ LE , will require searching for paths containing i edges in the graph

database.

The union operation can be seen as a choice, and when two expressions that represent

paths of different sizes are combined over a union, the resulting expression has the same

size as the highest-sized operand. In other words, the union operation does not increase

the length of a path. For example, let τ3 = a.b.a− and τ2 = b−.a be two expressions

formed by applying concatenation. Then applying union operation over τ3 and τ2 will

result in an expression τ3∣τ2 = a.b.a−∣b−.a where length of paths represented by the

expression is never greater than 3. We present two theoretical results over the notion of

Tarski’s algebra representing fixed-length patterns, which are useful in constructing a

rich set of chain shaped graph navigation queries.

Lemma 1 Every expression written in the TA(., ∣,− ) fragment containing union can

be rewritten as a union of union-free expressions.

Consider an expression of the form (a∣b−.a | a−.a.a−∣b.b.b.b) such an expression

can be rewritten as τ1 | τ2 | τ3| τ4 where τ1 = a, τ2 = b−.a, τ3 = a−.a.a− and τ4 = b.b.b.b.

Lemmas 1 have been presented in existing studies such as [73, 183, 206, 136, 128, 55].

Lemma 2 Every union-free expression τn that represent fixed-length paths of length n

are formed by applying concatenation operation n − 1 times.

A proof for lemma 2 follows where we state that for all i > 1, τi = {a.b ∶ (a ∈

τj) ∧ (b ∈ τk) ∧ (j + k = i)} where τj and τk are union free expressions. The base case

involves constructing τ2 expressions which can be done using concatenation operation

once over two expression representing paths of length 1(from τ1). Hence, we can see
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that to create expressions of size 2, we require applying the concatenation operation

once. Next, as our inductive hypothesis, we assume that for some i > 2, and for all l ≤ i

and l ≥ 2, τl−expressions (of size l) are formed by applying concatenation operation

l − 1 times.

For our inductive step, we need to prove that τi+1− expressions (of size i + 1)

are formed by applying the concatenation operation i times. This can be shown by

expanding the expression for τi+1 as τi+1 = {a.b ∶ (a ∈ τj) ∧ (b ∈ τk) ∧ (j + k = i + 1)}.

We can see that expressions of size i + 1 can be formed by applying concatenation

over two expressions of size j and k where j + k = i + 1. Since expressions of size j

require j − 1 concatenations, and expressions of size k require k − 1 concatenations (as

per the inductive hypothesis), the total number of concatenations required to form the

expression of size i + 1 are j − 1 + k − 1 + 1. Since j + k = i + 1, we get the total number

of steps to be equal to i which completes the proof.

Forming fixed-length expressions

We start by formulating fixed-length expressions of path length 1 which are expressions

of the form a, b, a− or b−, or any finite union of a, b, a−, and b−. Navigation patterns

labelled by expressions of size 2 are formed using the concatenation operation once, over

expression of size 1. Similarly, expressions of size 3 can be formed by concatenating

expressions of size 1 and 2. Possible combinations are shown in Table 6.12, where for

an expression of size 3 of the form τ1.τ2, the first operand τ1 is shown in the cells of the

first column and the second operand τ2 is shown in the cells of the first row. Expressions

of path length 3 can contain a finite nesting of union operations but must contain at least

one concatenation operation. Hence, expressions of path length 3 can be of the form

a.a.a, b.(a∣a−).b−, and (a∣b∣a−).b−.(a∣b∣a−).

Expressions of path lengths larger than 3 can be obtained by gradually increasing the

number of concatenation operations used, along with a finite nesting of other operations
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Table 6.12: Expressions of path length 3

τ1 ↓
τ2 →

a.a b.a− a−.(a∣a−) b−.(a∣b∣a−) (a∣a−).b− (a∣b∣a−).(a∣a−)

a � � � � � �
b � � � � � �
a− � � � � � �
b− � � � � � �
a∣a− � � � � � �
a∣b∣a− � � � � � �

like union while using brackets to specify the order of precedence. If a language supports

expressing finite nesting of inverse over single edge label, union and concatenation, any

two valid expressions to form larger expressions, then testing its support for expressions

of path lengths 1, 2 and 3 is sufficient to deduce its support for all expressions of sizes

larger than 3.

6.8.2 Arbitrary-length expressions

For constructing expressions of arbitrary-lengths, we apply the Kleene star operator over

fixed-length expressions that is expressions formed by using the TA(., ∣,− ,∗) fragment

of Tarski’s relation algebra over the set of edge labels LE that includes expressions of

the form (τn)∗, (τn)∗.(τm)∗, (τn)∗∣(τm)∗, ((τn)∗)∗,(τ∗n .τ∗m)∗ and (τ∗n ∣τ∗m)∗ such that

n,m ≥ 0.

Forming arbitrary-length expressions

Kleene star operator’s use results in an arbitrary-length expression that can be unrolled

unto fixed-length expressions of increasing sizes. In our experiments, we test languages

to support Kleene star applied over expressions of sizes 1, 2 and 3. A language that

supports Kleene star over expressions of these sizes, as well as a finite nesting of inverse

over single edge label, union and concatenation, will automatically support expressing

Kleene star operation over expressions of sizes 4 and beyond. The complete list of fixed
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and arbitrary length navigation pattern are listed in Table 6.13.

Table 6.13: Expressions of fixed and arbitrary path length

Expression Example
τ1 a, b, a∣a−, a∣b∣b−, a∣b∣b−∣a−
τ2 a.b, b.(a∣a−), (a∣b∣b−∣a−).(a∣b)
τ3 a.a.b, (a∣b∣b−).(a∣b∣b−∣a−).(a∣b)
τ1∣τ2 (a∣a.b), (a∣a−)∣(a∣b∣b−∣a−).(a∣b)
τ∗1 a∗, (a∣b)∗, (a∣b−)∗, (a−∣b−)∗
τ∗2 (a−.(a∣b))∗, (a.b)∗, ((a∣b).(b∣a−))∗
(τ3)∗ ((a∣b).(a−.a−))∗
(τ1∣τ2)∗ ((a∣b)∣(a−.a−))∗
(τ1)∗∣(τ1)∗ a∗∣(a∣b)∗
(τ1)∗∣(τ2)∗ a∗∣(a.(a∣b))∗
(τ1)∗.(τ1)∗ (a−)∗.(a∣b)∗
(τ1)∗.(τ2)∗ (a−)∗.(b−.(a∣b))∗
(τ∗1 )∗ (a∗)∗
(τ∗2 )∗ ((a−.(a∣b))∗)∗
(τ∗1 ∣τ∗2 )∗ (a∗∣(a.(a∣b))∗)∗
(τ∗1 .τ∗2 )∗ (a∗.(a.(a∣b))∗)∗

6.8.3 Forming concrete queries

The chain shaped expressions from Table 6.13 can now be transformed, if supported,

into Cypher and PGQL queries by expressing each expression as a concrete query. This

leads to a comprehensive and objective comparison of the two languages, presented

in the next section. To formulate the queries for this comparison, we used the graph

schema for Airbnb dataset, presented in Figure 6.3, and populate two databases in

Neo4j and Oracle on this schema with identical data from Airbnb. We then use the edge

labels defined in the schema to create concrete queries based on expressions described

in Table 6.13.

We reduce the total number of queries generated, but not the coverage of all query

classes, using topological knowledge from the graph schema. For example, the Airbnb

graph schema clearly shows that over any path in a graph database, an edge labelled

by WROTE will always be followed by an edge labelled by REVIEW_FOR. Similarly,
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the edge label KNOWS will never be followed by REVIEW_FOR. Even though we can

quickly formulate queries that require searching for the pattern KNOWS.REVIEW_FOR,

the knowledge that this query will never yield a result set allows us to remove it from

the comparison queries.

6.8.4 Comparison based on Fixed-Length Navigation patterns

Table F.1 in Appendix F shows the navigation patterns formed of fixed length expres-

sions, expressed as queries in Cypher and PGQL. Out of a total sixteen fixed length

expressions shown in Table F.1, Cypher can express thirteen navigation patterns while

PGQL can only express nine navigation patterns. Both languages allow the use of

union over edge labels to form fixed length expressions of path length 1, as shown

in experiment 1a and 1d. The direction of the edges in experiments 1a and 1d are

same. However, direction of edges in not same in experiment 1b so for expressing

such expressions we apply lemma 1 and convert the expression into a union of union

free expressions. By doing so experiment 1b can only be expressed in Cypher since it

supports the UNION clause.

Navigation patterns representing paths of length 2 are presented as experiments

2a-2f, where we can see that experiments 2c and 2e cannot be expressed in both the

languages. We can apply lemma 1 to such expressions but in such a case the resulting

expressions will not represents paths of length 2. For example, applying lemma 1 on

expression (OWNS|KNOWS−).(OWNS|WROTE) results in three expressions where

two expressions OWNS and WROTE represent paths of length 1 while the expression

KNOWS−.OWNS represent paths of length 2. In other words, not all paths will be of

length 2 where as in experiments 2a-2f we are only interested in expressions that

represent paths of length 2. The use of inverse and concatenation operations nested

together is supported by both the languages, as shown by experiments 2a. Experiments
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3a-3c represent paths of length 3 where we can see that both the languages cannot

express experiment 3b, this is for the same reason as per why we cannot express

experiments 2c and 2e. The use of inverse and union is permissible in both the

languages with the condition that the two edge labels involved in the union operation

must be of same direction as shown in experiments 2d, 2f, 3a and 3c.

The navigation patterns in experiments 4a-4c contain expressions that represent

paths of length 1 or 2 or both. This is because the union operation is applied over

expressions of path length 1 and 2. As shown in Table F.1 only Cypher can express

such navigation patterns. We can apply lemma 1 over these expressions and express

them in Cypher by using the UNION clause. On the other hand PGQL cannot express

any navigation patterns in experiments 4a-4c. Based on the experiments presented in

Table F.1 we can see that in terms of fixed length chain structured navigation patterns

Cypher is more expressive than PGQL. A primary reason for this is the absence of

UNION clause is PGQL. Furthermore, union operation over edge labels is supported

only in two cases: when the inverse operation has not been applied at all, or when the

inverse operation has been applied over all the edge labels.

6.8.5 Comparison based on Arbitrary-Length Navigation Patterns

Table F.2 in Appendix F shows navigation patterns formed of arbitrary length expres-

sions, expressed as queries in Cypher and PGQL. Out of a total of twenty seven queries

Cypher can only express six queries where as PGQL can express thirteen queries. In

Cypher Kleene star operation is supported when it is applied over expressions repres-

enting paths of length 1 as shown in experiments 5a,5c and 5d. The expression in

experiment 5a searches for path of lengths 0,3,6,. . . where edges in the paths are labeled

by any combination of the labels WROTE,OWNS and HAS. These experiments can also

be performed in PGQL. Experiment 5c cannot be performed in both the languages this
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is because the use of union operation with edges of opposite direction is not permitted

in both the languages.

Experiments 6a-7c involve applying Kleene star over fixed-length expressions

representing paths of length 2 and 3. Out of 9 experiments 6 can be expressed in PGQL

where as Cypher cannot express any of the experiments. A primary reason for this is

due to the availability of PATH clause in PGQL to express fixed-length expressions

and then the MATCH clause to apply Kleene star over expressions defined in the PATH

clause. Experiments 6c,6e,7b and 10b cannot be expressed in both the languages

because it involves the use of Kleene star over expressions formed by union of edge

labels representing opposite direction edges. Experiments 8a,8b and 8c cannot be

expressed in both the languages. In these experiments Kleene star operation is applied

over expressions representing paths of different length which is achieved by applying

union operation over expressions of lengths 1 and 2. Since PGQL also supports the use

of multiple PATH clauses so we tried to express experiment 8a in PGQL as shown in

Query 20.

QUERY 20: Query showing the use of multiple PATH clauses in PGQL
PATH p1 AS ()-[:WROTE]->()
PATH p2 AS ()-[:REVIEW_FOR]->()-[:HAS]->()
SELECT x.name, y.name
MATCH (x)-/:p1|p2∗/->(y)

PGQL syntactically does not considers this query as incorrect however, the result

set produced by this query only satisfies the fixed length expression in the path variable

p1. This is a limitation of PGQL because it only permits application of Kleene star over

only one path variable. Experiments 9a and 9b can be expressed in both the languages

as Cypher allows the use of Kleene star operation over expressions representing paths of

length 1 and PGQL allows the use of PATH and MATCH clause to express such patterns.

However, experiments 10a and 10c cannot be expressed in Cypher while PGQL can

express such expressions by using the PATH clause. Experiment 11 can be expressed
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only in Cypher and not in PGQL this is because Cypher allows the use of lemma 1 and

such an expression can be easily expressed in Cypher by using the UNION clause.

Experiment 12 cannot be expressed in both the languages as PGQL does not

support the UNION clause whereas Cypher does not allow the use of Kleene star over

expressions of path length greater than 1. Experiments 13,14,15 and 16 represent

expressions formed by applying Kleene star over expressions of arbitrary lengths, both

Cypher and PGQL are unable to express such patterns. Overall, for graph navigation

queries PGQL is more expressive than Cypher, a primary reason for this the presence of

PATH clause that enables the query language to express a variety of navigation patterns.

6.9 Conclusion

This article proposes an extension of conjunctive queries and union of conjunctive

queries with Tarski’s algebra. We have proposed novel formalisms of CQT and UCQT

that provide a formal basis to compare, integrate and model practical graph query lan-

guages. In order to objectively compare practical graph query languages, a framework is

proposed that integrates the extended formalisms with common graph query patterns to

generate a comprehensive set of benchmark queries. This process is the basis of a com-

parative study of two practical graph query languages Cypher and PGQL. Our analysis

shows that Cypher is more expressive than PGQL for graph pattern matching queries

due to the presence of explicit UNION clause. For graph navigation queries PGQL is

more expressive than Cypher due the presence of the PATH clause. In PGQL the use of

PATH clause along with the MATCH clause enables the application of Kleene star over

complex structures such as chains, trees, stars and star chains. Cypher on the other hand

does not provide such functionality and has limited expressiveness concerning graph

navigation queries. Our study also shows that with respect to graph navigation queries,

cyclic and acyclic graph query patterns cannot be expressed in both the languages.
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Such graph query patterns are important because they may have use in specialised

graph databases used in fields like chemistry, biology and astronomy. This study’s

shape-based analysis can help identify common and exclusive characteristics for other

currently available practical graph query languages such as SPARQL, GSQL, SQL/PG

and Gremlin. Furthermore, the extended formalism and the integrated framework can

be utilised to model future graph query languages; therefore, they serve as a basis for

upcoming standards like IEC/ISO 39075.

6.9.1 Limitations

We have considered Tarski’s algebra for comparing the graph navigation features of

query languages. However, formalisms such as Tarski’s algebra are purely navigational

and do not support comparisons of data values in path expressions [34]. We intend to

include formalisms used in query languages such as GXPath, regular expressions with

memory (REM), walk logic and register logic [65, 34, 73, 165, 72] along with Tarski’s

algebra for graph navigation in future studies. Furthermore, we have also not considered

more expressive formalisms such as ECRPQ that enable path comparisons and context-

free paths in our study. This is because features provided by such formalisms are not yet

present in all practical query languages. Moreover, returning paths can be problematic

if cycles exist in graph databases as infinite paths can be returned if arbitrary path

semantics are used. Another important concept of the algorithmic complexity associated

with graph query languages and the extended formalism is not considered in this study,

and we see it as future work.

We have only considered operations such as natural join, selection, projection and

union. Other operations such as difference is computationally more expensive [32].

As a result difference clause is not implemented yet in Cypher and PGQL but similar

functionality can be simulated by using the NOT EXISTS clause along with WHERE
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clause. Cypher also allows the use of NOT keyword to simulate difference operation

with a restriction that the pattern specified in the WHERE NOT clause must represent

an eulerian path [171]. Cypher and PGQL do not have such restrictions in the WHERE

NOT EXISTS clause.

The use of EXISTS and NOT EXISTS clause represents semi join and anti semi

join respectively, that correspond to the semi join algebra and its equivalent formalism

guarded fragments (GF) of first order logic [207, 63, 208, 209]. We do not consider

the study of guarded fragment of first order logic in this study. Furthermore, we

have also not considered other relational algebra operations such as outer join and

aggregate functions. Outer join clause OPTIONAL MATCH is only present in Cypher

while aggregate functions are used after the result set is returned by a pattern matching

algorithm.

6.9.2 Future work

The use of conjunctive queries based formalism for graph pattern matching reveals some

similarities between query languages for graph and relational databases. Concerning

difference operation, graph query languages such as Cypher and PGQL implement this

operation by using semi-join algebra and equivalent guarded fragment of first-order

logic. For graph navigation queries authors in [74, 55, 14] also suggest similarities

between Tarski’s algebra and semi-join algebra. Semi join algebra can be particularly

useful in query optimisation. Hence, we consider the study of graph query languages

based on semi-join algebra as future work.

We also intend to work on graph schema driven template query generation tool and

the formalisms identified in this research will assist in creating the tool that can be

used to test the expressiveness of other query languages such as SPARQL, Gremlin,

SQL/PG and GSQL. The automatic generation of query language adapters is another
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interesting future direction of this work, which will help the community’s shared goal

of high interoperability between available graph database technologies.



Chapter 7

Introduction to Manuscript 3

Contemporary graph databases are either schema-less or schema-optional to support

frequent changes in the structure of data found in domains requiring high flexibility.

However, the lack of structure impacts on data transformation and loading operations

from heterogeneous sources into graph databases. We present a formal algebra FLASc

for specifying and generating graph schema for labeled property graph databases. We

formally define FLASc and demonstrate the use of FLASc generated graph schemas

to systematically transform and load data-sets related to domains of cyber physical

systems, big data analytics and tourism. Findings from three disparate case studies show

that FLASc-generated schemas assist in enforcing integrity constraints that reduces the

chance of data corruption, hence assuring data consistency and integrity. The two case

studies related to cyber physical systems and tourism have been adopted from our two

conference publications presented as Chapters A, B, 3 and 4. The case study related to

big data analytics has been adopted from [86].
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8.1 Introduction

Labeled property graph database henceforth graph database are storage systems that

allow modeling of real-world entities as nodes and relationships between entities as

edges [196]. Nodes and edges in a graph database have associated labels. Data is stored

inside nodes and edges as properties that exist in the form of key-value pairs [32, 23].

Graph databases are efficient in storing and managing highly interconnected data-

sets related to domains such as transportation networks, social media, bioinformatics,

chemistry and astronomy [23, 133, 32, 31, 5]. Graph databases suit big data applications

as they provide a better alternative for modeling and handling complex information [7, 8].

Graph databases are more efficient than relational databases for extracting information

from highly connected data-sets. Specifically, querying graph databases does not require

the expensive join operation [14]. Furthermore, unlike relational databases, the same

139



Chapter 8. FLASc: A Formal Algebra for Labeled Property Graph Schema
(Manuscript 3) 140

graph database can be used for online transaction processing (OLTP) as well as online

analytical processing (OLAP) tasks [144, 210, 211]. The interconnections between

data represent the underlying meaning of a graph data-set. Therefore, maintaining data

consistency and integrity is vital in graph databases [23, 130].

Obtaining a database that is sound and consistent requires embracing good database

modeling principles [80]. In contrast to relational databases, modeling principles

for graph databases are ad-hoc and not well-grounded [144]. Contemporary graph

databases lack mechanisms to ensure data consistency and integrity, especially when

the data being stored comes from multiple heterogeneous sources [81]. A primary

reason is that graph databases are either schema-less or schema-optional [81]. A

schema represents the overall structure of a data-set and assists in understanding data

semantics [44]. Furthermore, schemas aid in defining integrity constraints that are

sets of rules for ensuring consistency and integrity in the database that conforms to

the schema [212, 135]. The lack of schema and integrity constraints poses significant

challenges in ensuring data consistency and integrity [213], in performing advanced

analytics and achieving data interoperability [214], and for data integration, query

optimization and processing [215].

Traditional database modeling consists of three stages conceptual, logical and

physical modeling [80]. In graph databases, the conceptual modeling stage represents

gathering requirements of a given problem domain that are then used for defining entities

and relationships between them. The logical modeling stage represents the enforcement

of integrity constraints, including mandatory, optional and unique properties associated

with entities and relationships defined in the conceptual modeling stage. The physical

modeling stage represents the realization of graph schema formulated at the conceptual

and logical modeling stage into database creation scripts.

An open problem in graph database design is that practitioners do not have proper

guidelines for designing the conceptual models [44, 80] that can facilitate systematic
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transformation and loading of data from heterogeneous sources into graph databases.

Conceptual modeling stage is not used in the majority of graph database solutions [216,

217]. Graph databases lack abstraction tools [23] and most current research is primarily

focused on logical and physical modeling [81, 45]. These observations lead us to the

following research questions:

RQ1. What are the key strengths and limitations of existing approaches used for model-

ing graph databases?

RQ2. What mechanisms can be designed to formulate conceptual and logical graph

schemas for labeled property graph databases?

RQ3. In order to ensure data consistency, how can the graph schema generated by RQ2

be used to systematically import data from heterogeneous sources into a labeled

property graph database?

RQ3.1 How can the Extract-Transfrom-Load design pattern be extended in order to

support loading data-sets for heterogeneous sources into graph database?

We answered these research questions using a mixed-methods research methodo-

logy [218]. Firstly, for addressing RQ1 a literature review was carried out to identify

existing evidence and gaps in the literature related to the research question. We ad-

dressed RQ2 by proposing an algebra FLASc which is based on conceptual graphs

introduced by Sowa [50, 48, 49]. The two operators of JOIN and DETACH provided

by FLASc serve as mechanisms for formulating conceptual graph schemas which are

further extended to logical graph schemas. For addressing RQ3 and RQ3.1, we illustrate

the integration of FLASc with the well known Extract-Transform-Load (ETL) design

pattern. The graph schemas generated by FLASc can be used to enforce integrity

constraints and assist in the systematic generation of database creation scripts hence

ensuring data consistency. To demonstrate the utility of our approach we consider three
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distinct case studies related to industrial cyber-physical systems [16], big data analyt-

ics [86, 219] and tourism [87, 15]. We generate graph schemas for the heterogeneous

data-sets provided in the three case studies and produce database creation scripts in

Cypher using the FLASc integrated ETL design pattern. The critical contributions of

this work include:

1. We formulate FLASc a formal algebra for constructing a labeled property graph

schema that can capture data semantics of any given problem domain. We define

operators of FLASc that assist in constructing a graph schema.

2. We demonstrate the use of graph schemas formulated via FLASc to enforce

integrity constraints that ensure data consistency in contemporary labeled property

graph databases such as Neo4j.

3. We illustrate how FLASc can be integrated with the Extract-Transform-Load

process for loading data-sets from heterogeneous sources into Neo4j.

Two case studies related to tourism and cyber physical systems, presented in Sec-

tions 8.5.2 and 8.5.4, have been adopted from previously published research [16], [220]

and [15] respectively. The formalism for labeled property graph schemas presented

in [15] and [220] is foundational for designing our algebra FLASc. The work presented

in this research paper empowers users of FLASc to design robust graph schemas for

labeled property graph databases.

The rest of the chapter is organized as follows. Section 8.2 presents background

information and related work. The gaps identified in Section 8.2 are used to build FLASc

which is presented in Section 8.3. In Section 8.4 we illustrate how the conceptual and

logical graph schema formulated using FLASc can be used to enforce several integrity

constraints in Neo4j graph database. In Section 8.5 we present the integration of FLASc

with ETL design pattern and experimentally demonstrate its use for data transformation



Chapter 8. FLASc: A Formal Algebra for Labeled Property Graph Schema
(Manuscript 3) 143

and loading of heterogeneous data-sets into Neo4j graph database. Finally, in Section 8.6

we summarize the key contributions and future directions of this work.

8.2 Background and Related Work

This section enables us to address RQ1. We present a brief survey of the existing

approaches that have been proposed for modeling graph databases.

8.2.1 Graph database design and modeling

Graph databases use graphs consisting of nodes and edges as elementary data struc-

tures for modeling any problem domain [133, 32, 23]. All graph databases use slight

variations of the basic graph data structure. For example, graph databases proposed in

academia such as GOOD [12], Gram [90], GraphDB [94], GDM [113], [96] and [221]

use directed labeled graph data structures. Graph database such as hyper log [222, 97]

use hyper node and hyper edge based graphs. Commercial graph databases such as

Resource Description Framework (RDF) by W3C [114] use directed labeled graphs

while Neo4j [51], Oracle [52] use directed, labeled and attributed graphs which are

also known as property graphs [27]. There are three main stages of modeling a graph

database: conceptual, logical and physical.

Conceptual modeling

Conceptual modeling represents the initial stage of modeling a graph database. In this

stage, knowledge is collected in the form of requirements and specifications related

to a problem domain. Using graphs for representing knowledge was first proposed by

Sowa [50, 48, 47, 49]. Subsequent works [130, 131, 132] also propose the use of graphs

to represent knowledge at the conceptual modeling stage. Graphs provide a natural
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and intuitive interface for understanding the semantics of data [50, 80]. Knowing the

semantics of data is vital for understanding the overall structure of the database [44]

that aids in creating, modifying and retrieving data. Schemas created at the conceptual

modeling stage provide a level of abstraction that aids in the natural modeling of

data [133]. Conceptual graph schemas are used to define entities that belong to the

database and relationships between those entities [80]. Moreover, determining nodes,

edges, and the direction of edges are vital for conceptual modeling [39].

Logical modeling

Logical modeling is used to define integrity constraints on entities and relations of

conceptual graph schema. Integrity constraints serve as mechanisms to ensure data

consistency and integrity. They are broadly classified into two categories: graph entity

integrity and semantic constraints [134]. Graph entity integrity constraints are related to

basic database design principles. These include constraints such as node/edge property

uniqueness [23, 45, 133, 134, 46], label uniqueness [23, 44, 133, 134, 45], property

data type [44, 46] and mandatory property constraints [135, 44]. Enforcing semantic

constraints require knowledge of the problem domain captured in the conceptual graph

schema. These constraints are used to guarantee the conformity of graph database

with domain specific rules and require intervention from end users. These include

edge pattern [46, 134, 135, 81, 45], graph pattern [46, 134, 133, 135] and path pattern

constraints [46]. Other constraints discussed in literature include type checking [23,

133, 135], node/edge property value constraints [81], cardinality constraints [44, 46,

133, 134, 81, 84, 83] and functional dependencies [23, 44, 133, 137, 138, 139].

Physical modeling

Physical modeling represents the realization of the graph schema designed during

conceptual and logical modeling into actual database [140]. There are two approaches
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discussed in literature for physical modeling: integrated and layered [83]. In the

integrated approach, changes are made in the source code of the database system.

Database creation scripts are created and directly deployed on the database platform.

In the layered approach, APIs specific to the database platform are used to create an

additional layer that communicates with the database. This consist of wrappers written

in programming languages such as Java, Python that contains database creation scripts

and logic to enforce the integrity constraints.

Integration of logical and physical modeling

There exist many studies to support the integration of logical and physical modeling

aspects of graph databases. For instance, [134] follow a layered approach and propose

the construction of a wrapper that can be used to enforce integrity constraints, including

graph and path pattern constraints over Neo4j graph database. An integrated approach to

extend the source code of OrientDB to support the enforcement of integrity constraints,

including uniqueness, key, cardinality, and edge degree constraints, has been studied

in [81]. Similarly, the extension of Cypher query language to support additional

integrity constraints such as uniqueness, node property, edges pattern, and mandatory

properties is presented in [45, 82]. A layered approach to demonstrate the enforcement

of uniqueness integrity constraint on two different graph databases Neo4j and Apache

Tinkerpop, is proposed in [83]. The use of integrated and layered approach together to

perform graph database manipulation operations on Neo4j graph database is proposed

in [46]. Authors in [141] propose the model-driven engineering based approach for

converting and loading of UML diagrams into tinkerpop blueprints1.

1https://github.com/tinkerpop/blueprints

https://github.com/tinkerpop/blueprints


Chapter 8. FLASc: A Formal Algebra for Labeled Property Graph Schema
(Manuscript 3) 146

8.2.2 Gaps in Current Literature

Several studies have been proposed in the last decade that address the problem of

modeling graph databases. These studies mainly focus on the integration of logical and

physical modeling aspects. A primary reason of this due to graph data models such as re-

source description framework (RDF) [17], labeled property graphs [27] and creation of

query languages such as SPARQL [163], Cypher (Neo4j) [51], Gremlin (Apache) [111],

PGQL (Oracle) [52] and GSQL (TigerGraph) [223] to support data modeling and re-

trieval. More recently, projects such as ISO/IEC 390752, openCypher [164] and Linked

Data Benchmark Council (LDBC) [4] have been proposed for developing a standard

query language for the labeled property graph data model. Most of these studies focus

on extending the existing query languages to support logical and physical modeling

while conceptual modeling is done in an ad-hoc manner. Authors in [134, 145, 142]

present a formal approach for logical modeling of graph databases. However, physical

modeling in these research papers are not discussed in detail [84] and application of the

proposed formalisms on real-world data-sets are considered future work.

To obtain a robust graph database that captures semantics of the problem domain

conceptual modeling stage is vital. A sound conceptual graph schema ensures that

logical and physical modeling stages are also robust [143]. The graph data modeling

approaches proposed so far do not provide the means to create robust conceptual graph

schemas.

Authors in [144, 145, 141] propose the use of existing visual modeling tools such as

entity relationships diagrams (ERD) and unified modeling language (UML) for creating

conceptual and logical graph schemas. The schemas generated by such visual models are

based on node-labeled graphs [15] where only the nodes can have properties associated

with them. On the other hand FLASc directly supports LPG schemas that have labels

2https://www.iso.org/standard/76120.html

https://www.iso.org/standard/76120.html
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and properties associated with nodes and edges [15, 220]. Modeling tools such as ERD

and UML are generic and while they can be used to model LPG schema, they do not

capture subtleties like edge labels and attributes without carefully considered extensions.

As an example, edge-related information has to be stored as additional nodes in an

ERD. Both UML and ERD are semi-formal modeling tools whereas FLASc provides a

formal basis for LPG schemas. This opens up the opportunity to define a FLASc-driven

schema-generation language based on formal languages such as conjuntive queries and

first order logic. However, extensions of FLASc are not in the scope of this research

paper.

Therefore, we present FLASc a simple yet sturdy formal tool that assists in the

formulation of robust conceptual graph schemas which is an advancement over existing

studies in graph database modeling. The majority of integrity constraints presented in the

existing studies can be specified in graph schemas generated by FLASc. Furthermore,

syntax and semantics of FLASc presented in this study assist in its implementation at

the physical modeling stage. FLASc assists in the integration of conceptual, logical and

physical modeling stages which currently is lacking in graph database research.

8.3 FLASc: Formal Algebra for conceptual and logical

graph Schema

This section addresses RQ2, we present the formal algebra FLASc that assists in

formulating conceptual and logical graph schemas for labeled property graph databases.

We use the concepts from Sowa’s conceptual graphs identified in Section 8.2.1 to

propose the operations of FLASc. We use a formal approach for constructing FLASc

which assures the robustness of its design [224, 225]. FLASc has sound mathematical

basis that enables a user to precisely define: (i) connections between entities of a
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graph database (intensional information) and (ii) properties associated with entities and

relations in a graph database (extensional information) [47, 48, 49, 50].

We consider a data-set from Airbnb [15, 220] as our first case study related to the

tourism domain that assists in illustrating various definitions and concepts of FLASc.

This data-set consists of three CSV files that contain information related to property

listings, reviews and calendar data. This data-set is highly interconnected, making it a

prime candidate for graph database design and implementation.

8.3.1 Basic terminology

Definition 16 (Directed Multigraph) A directed multigraph G = (N,E, s, t) is a tuple

where N is a set of nodes and E is a set of edges. Two associated functions, s ∶ E → N

and t ∶ E → N, map each edge to its source and target nodes, respectively.

We use the shorthand G = (N,E) to represent a directed multigraph.

Each edge in a directed multigraph has unique source and target nodes. Edges with

same source and target nodes are allowed (hence the term multigraph. We use the short

hand ni → nj to represent an edge ek where s(ek) = ni and t(ek) = nj .

Graph can contain labels over nodes and edges. Given a set of node labels LN and a

set of edge labels LE such that LN ∩ LE = ∅. A labeling is simply a map f ∶ S1 → S2

such that for every element a ∈ S1, there is a unique element f(a) ∈ S2. We can define

an edge- labeled graph as follows.

Definition 17 (Edge-Labeled Graph) A graph G = (N,E, ξ) is called an edge-

labeled graph if there exists a labeling ξ ∶ E → LE which maps all edges to labels

in a set of edge labels LE . We use the short-hand ek = ni
l
Ð→ nj for any ek ∈ E and

ξ(ek) = l.

Similarly, we can define a node labeled graph.
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Definition 18 (Node-Labeled Graph) A graph G = (N,E, η) is called a node-labeled

graph if there exists a labeling η ∶ N → LN which maps all nodes to labels in a set of

node labels LN for any ni ∈ N and l ∈ LN if l is mapped to ni then η(ni) = l.

8.3.2 Conceptual graph schema

A conceptual graph schema is used to capture intensional information. Conceptual

modeling is easier for the user to understand and contribute. Therefore, a conceptual

graph schema must be closer to the semantics of natural languages like English. It

must reflect real-world entities, and relations that are not directly represented by the

conceptual graph schema must be accessible to infer [48, 132]. As discussed in [15]

to define relationships, we use the (subject,predicate,object) format from

semantics web [151] where the subject can be a noun, the predicate can be a verb, and

an object can also be a noun.

Definition 19 (Conceptual Graph Schema) Given a set of node labels LN and a set

of edge labels LE , conceptual graph schema Gs is a tuple (Ns,Es, ηs, ξs, LN , LE) where,

• Ns is a finite set of nodes and Es is a finite set of edges of the graph schema.

• (Ns,Es) is a directed multigraph.

• ηs ∶ Ns → LN is a node labeling function and ξs ∶ Es → LE is an edge labeling

function.

We use the shorthand notation Gs = (Ns,Es, ηs, ξs) to represent the conceptual graph

schema.

Example 28 The conceptual graph schema generated for Airbnb case study as

discussed in [15] is presented in Figure 8.1. The graph schema consists of six

labels including review, user, host and listing and four edge labels
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wrote, review_for, has and owns. In the Airbnb data-set [87] a person

using Airbnb service can write a review for a listing that was recently visited by him or

her. A conceptual graph schema in such a scenario consists of entities such as user

and review. Relationships can be of the form (users,wrote,review) where

users is the subject, wrote is the verb and review is the object.

Wednesday, 10 March 2021 2:02:03 PM - neo4j@neo4j://localhost:7687/neo4j - Neo4j Browser

Figure 8.1: Conceptual graph schema generated for Airbnb case study

Basic conceptual graph schema

Basic conceptual graph schemas are restricted form of conceptual graph schemas. They

serve as building blocks for formulating conceptual graph schemas. Formally basic

conceptual graph schemas are defined as follows.

Definition 20 (Basic Conceptual Graph Schema) Given sets of node and edge la-

bels LN and LE , a basic conceptual graph schema Gb is a tuple (Nb,Eb, ηb, ξb) where
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• Nb = {ni, nj} is a set of two nodes.

• Eb = {ek} ∪ ∅ can either be a singleton set or an empty set.

• (Nb,Eb) is a restricted from of directed multigraph supporting only one directed

edge between two nodes.

• ηb ∶ Nb → LN is a node labeling function and ξb ∶ Eb → LE is an edge labeling

function.

Example 29 The Airbnb data-set consists of several basic conceptual graph schemas

including Gb1 = ({n1, n2},{n1
wrote
ÐÐÐ→ n2}, η1, ξ1) such that ηb1(n1) = user, η1(n2) =

review and ξ1(n1
wrote
ÐÐÐ→ n2) = wrote. Similarly Gb2 = ({n2, n3},{n2

review_for
ÐÐÐÐÐÐ→

n3}, η2, ξ2) such that η2(n2) = review, η2(n3) = listing and ξ2(n2
review_for
ÐÐÐÐÐ→ n3).

The basic conceptual graph schema is used to represent the intensional information

that a review was written by a user and review was written for a listing.

Basic conceptual graph schemas serve as a starting point for a database designer

and assist in conceptual modeling. A basic conceptual graph schema can contain nodes

that are not connected to one another by an edge. A designer can create separate basic

conceptual graph schemas for each requirement and/or use case. We define FLASc to

create conceptual graph schemas from basic conceptual graph schemas.

Syntax and semantics of FLASc

An algebra consists of sets, constants that belong to the sets and some functions or

operators that are used to manipulate data stored inside the sets [169]. Our algebra

FLASc is defined as follows:

Definition 21 (FLASc) An algebra defined over a finite set of basic conceptual graph

schemas GB, is a tuple ⟨GB,G,F⟩ where:
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• G is the set of all conceptual graph schemas over GB, with GB ⊂ G.

• F is a set containing three operators:

1. JOIN: G × G → G is a binary operator such that if G1,G2 ∈ G then JOIN

(G1,G2) is a conceptual graph schema formed by the union of two conceptual

graph schemas. Let G1 = (N1,E1, η1, ξ1) where LN1 is a set of node labels

and LE1 is a set of edge labels associated with G1. Let G2 = (N2,E2, η2, ξ2)

where LN2 is a set of node labels and LE2 is a set of edge labels associated

with G2. Then JOIN(G1,G2) = ((N1 ∪ N2), (E1 ∪ E2), η3, ξ3) such that

η3 ∶ (N1∪N2) → (LN1∪LN2) and ξ3 ∶ (E1∪E2) → (LE1∪LE2). The resulting

conceptual graph obtained from JOIN (G1,G2) also has two associated

functions s ∶ (E1 ∪ E2) → (N1 ∪N2) and t ∶ (E1 ∪ E2) → (N1 ∪N2).

2. DETACH: G × G → G is a binary operator such that if G1,G2 ∈ G then

DETACH (G1,G2) is a conceptual graph schema formed by applying ring

sum over the edge sets of G1 and G2. Let G1 = (N1,E1, η1, ξ1) where LN1 is

a set of node labels and LE1 is a set of edge labels associated with G1. Let

G2 = (N2,E2, η2, ξ2) whereLN2 is a set of node labels andLE2 is a set of edge

labels associated with G2. The resultant conceptual graph schema consists of

all the nodes present in graphs G1 and G2 that isN1∪N2. While the ring sum

operator is only applied over the edge sets of two graphs that is (E1 ⊕ E2) =

(E1∪E2)−(E1∩E2). DETACH(G1,G2) = ((N1∪N2), (E1⊕E2), η3, ξ3) such

that η3 ∶ (N1 ∪N2) → (LN1 ∪ LN2) and ξ3 ∶ (E1 ⊕ E2) → (LE1 ⊕ LE2). The

resulting conceptual graph obtained from DETACH (G1,G2) also has two

associated functions s ∶ (E1⊕E2) → (N1∪N2) and t ∶ (E1⊕E2) → (N1∪N2).

3. DELETE_NODE: G×G → G is a binary operator such that if G1,Gd ∈ G then

DELETE_NODE(G1,Gd) is a conceptual graph schema formed by applying

ring sum over the node sets of G1 and Gd. Let G1 = (N1,E1, η1, ξ1) where
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LN1 is a set of node labels and LE1 is a set of edge labels associated with

G1. Let Gd = (Nd,∅, ηd) is a node labeled graph where LNd
is a set of node

labels associated with Gd. Then the resultant conceptual graph schema

consist of nodes that are formed by applying the ring sum over the node sets

of two graphs that is (N1 ⊕Nd) = (N1 ∪Nd) − (N1 ∩Nd). The set of edges

in the conceptual graph schema DELETE_NODE(G1,Gd) is equal to the set

of edges in G1 that is (E1 ∪∅). The set of nodes in conceptual graph schema

DELETE_NODE(G1,Gd) belongs to the set (N1 ⊕ Nd) such that ∃ni ∈ N1

where ∀e ∈ E1, s(e) /= ni, t(e) /= ni. Furthermore, ∀nd ∈ Nd, η1(ni) =

ηd(nd). The resulting conceptual graph schema DELETE_NODE(G1,Gd)

= ((N1⊕Nd), (E1∪∅), η2, ξ2) such that η2 ∶ (N1⊕Nd) → (LN1⊕LNd
) and

ξ2 ∶ E1 → LE1 . The conceptual graph schema also consists of two associated

functions where s ∶ E1 → (N1 ⊕Nd) and t ∶ E1 → (N1 ⊕Nd).

FLASc provides JOIN, DETACH and DELETE_NODE operators over basic concep-

tual graph schemas to formulate composite conceptual graph schemas. We can now

discuss the semantics of these three operators and provide some examples.

JOIN is used to combine together two or more conceptual graph schemas. We

follow the similar notion of join compatible mapping as discussed in [32, 171, 172].

Two conceptual graph schemas are join compatible if they share common nodes. That

is G1 = (N1,E1, η1, ξ1) and G2 = (N2,E2, η2, ξ2) are join compatible if ∃ei ∈ E1 and

∃ej ∈ E2 such that either s(ei) = t(ej) or t(ei) = s(ej) or s(ei) = s(ej) or t(ei) = t(ej).

Furthermore, if s(ei) or t(ei) = ni and s(ej) or t(ej) = nj then η1(ni) = η2(nj).

Example 30 The basic conceptual graph schemas presented in Example 29 are join

compatible because both graphs share a common node n2 that have the node label

review.

Figure 8.2 shows that applying the JOIN operator over basic conceptual graph
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schemas Gb1 = (N1,E1, η1, ξ1) and Gb2 = (N2,E2, η2, ξ2) creates a conceptual graph

schema Gb3 = JOIN (Gb1,Gb2). Graphs Gb1 and Gb2 are join compatible because the

target node of edge e1 ∈ E1 that is t(e1) and source node of edge e2 ∈ E2 that is s(e2)

are same. Moreover the node labels associated with these two nodes are also same that

is η1(t(e1)) = η2(s(e2)) = review.

Figure 8.2: The application of JOIN operator to connect two conceptual graph schemas

Two join compatible conceptual graphs share common nodes. This assists in

connecting smaller graphs. When two conceptual graph schemas are not join compatible,

then application of the JOIN operator creates a union of two disconnected conceptual

graph schemas.

DETACH is used to delete edges from a conceptual graph schema. This operator is

useful if a database designer wishes to delete existing relationships in a conceptual graph

schema. The graph produced after applying a DETACH operator over two conceptual

graph schemas contain nodes from both the graphs. While edges of the new conceptual

graph schema are calculated by applying the ring sum operator over the edges of

conceptual graph schemas that provided as input to the DETACH operator. Applying

the DETACH operator over two conceptual graph schemas Gb1 = (N1,E1, η1, ξ1) and

Gb2 = (N2,E2, η2, ξ2) creates a conceptual graph schema Gb3 = DETACH (Gb1,Gb2). If

one graph is a sub-graph of another conceptual graph schema then applying DETACH

operator over such graph represents set difference of the edge set. An edge can only be

deleted using DETACH if (E1∩E2) /= ∅ which means that both conceptual graph schema
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must share some common edges. Furthermore, the labels associated with these edges

must be same that is, ∃e1 ∈ E1 and ∃e2 ∈ E2 such that ξ1(e1) = ξ2(e2). The application

of DETACH removes existing edges from a conceptual graph schema. The resulting

conceptual graph schemas after the application of DETACH may contain disconnected

nodes.

Example 31 Edges can be deleted from a conceptual graph schema by using DETACH.

As shown in Figure 8.3 applying DETACH between conceptual graph schemas Gb1 and

Gb3 results in conceptual graph schema Gb4 that only contains an edge between node

n2 and n3. That is Gb4 = DETACH (Gb1,Gb3) such that η(n1) = user, η(n2) = review

and η(n3) = listing. Furthermore, node n1 is not the source and target of any edge

in the conceptual graph schema.

Figure 8.3: The application of DETACH operator to delete an edge from a conceptual
graph schemas

DELETE_NODE is used to delete disconnected nodes in a conceptual graph schema.

This operator is useful if a database designer wishes to delete existing nodes that are

not connected to any other nodes in a conceptual graph schema. That is nodes that

are neither the source nor the target of any edge in a conceptual graph schema. A

node can only be deleted by using DELETE_NODE if N1 ∩ N2 /= ∅. This means that

both graph must share common nodes. Furthermore, ∃ni ∈ N1 and ∃nj ∈ N2 such that

η1(ni) = η2(nj) which means that both nodes must have same node label.
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Example 32 Disconnected nodes can be deleted from a conceptual graph schema

by using the DELETE_NODE. As shown in Figure 8.4 applying the DELETE_NODE

operator between conceptual graph schemas Gb4 and Gd results in a conceptual graph

schema Gb7 that only consists of nodes n2, n3 and an edge connecting nodes n2 and

n3. The resulting graph does not contain any disconnected node. That is Gb7 =

DELETE_NODE(Gb4,Gd) such that η(n2) = review and η(n3) = listing. The

graph Gd only consists of a node n1 such that η(n1) = user and this node has been

removed from the conceptual graph schema Gb4.

29 August 2021 15:21:25 - Window

Figure 8.4: The application of DELETE_NODE operator to delete a node from a con-
ceptual graph schemas

Using JOIN and DETACH together become helpful if the label and/or direction of

edges in a conceptual graph schema have to be altered or changed. These operators,

when used together, enables a designer to alter intensional information stored in a

conceptual graph schema.

Example 33 For instance if a designer wishes to alter the label and direction of

an edge between node n1 labeled as user and node n2 labeled as review in the

conceptual graph schema Gb3 presented in Example 30. As shown in Figure 8.5 a

designer can apply DETACH between graphs Gb1 and Gb3 which results in graph Gb4 =

DETACH(Gb3,Gb1). The designer can now define a basic conceptual graph schema Gb5

where η(n1) = user and η(n2) = review. Applying the JOIN operator between
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graphs Gb4 and Gb5 results in conceptual graph schema Gb6 = JOIN(Gb4,Gb5) as shown

in Figure 8.5.

Figure 8.5: The application of JOIN and DETACH operators to alter an existing edge

8.3.3 Logical graph schema

A logical graph schema is used to capture extensional information of the entities and

relations stored in a graph database. A logical graph schema is formed by enforcing

integrity constraints on conceptual graph schema. Label uniqueness constraints are

automatically enforced in the logical graph schema since the node, and edge labels used

in conceptual graph schema are unique. For defining property-based constraints, we

first define properties that can exist in graph databases. Properties in graph databases

exist as key-value pairs where property values are atomic entities and have an associated

data type. Logical graph schema stores properties as key-type format. Properties can be

mandatory as well as optional for instance, properties such as ids must be unique. This

information must be stored in a logical graph schema.

Let K be a set of infinite keys (e.g., id, name, age, etc.) and T be a finite set of

data types (e.g., String, Integer, etc.) We define a set of properties P ⊆ (K × T). The

property set is of two types (i) mandatory property set (Pm) and (ii) optional property
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set (Po) such that P = Pm ∪ Po. Mandatory property set can have some properties that

have unique values associated with them. Let U be a set of Boolean values, we define

a uniqueness function U ∶ Pm → U that maps elements from mandatory property set

to TRUE or FALSE signifying that some values associated with a mandatory property

must be unique.

Edges in a graph schema also have semantic information such as cardinality as-

sociated with them which refers to total number of edges that can exist between any

two given nodes of a graph database. Cardinality of an edge represents a range where

the minimum value of cardinality refers to minimum number of edges that must exist

between any two nodes of a graph databases. Similarly, maximum value of cardinality

refers to maximum number of edges that can exist between any two nodes in a graph

database.

Let MIN ∈W represent a minimum cardinality set which belongs to a set of whole

numbers. Let MAX ∈ N represents a maximum cardinality set which belongs to a set of

natural numbers. We define a set of cardinalities as C ⊆ (MIN×MAX) with a condition that

if min ∈ MIN and max ∈ MAX then min ≤ max. This means that minimum cardinality

can never be greater than maximum cardinality. The minimum cardinality belongs to a

set of whole numbers which means that minimum cardinality can be zero. On the other

hand maximum cardinality belongs to a set of natural numbers therefore, the smallest

value that can be associated with maximum cardinality is 1. Furthermore, in such as

scenario minimum cardinality can be either 0 or 1.

A logical graph schema extends the conceptual graph schema discussed in Defin-

ition 19 by labeling the nodes and edges with mandatory and optional properties.

Moreover, in a logical graph schema edges are labeled with cardinality values. Formally,

a logical graph schema is defined as follows:

Definition 22 (Logical Graph Schema) A logical graph schema Gl is a tuple
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(Ns,Es, Pm, Po,Cs, ηs, ξs,∆m,∆o, ζs) where,

• (Ns,Es, ηs, ξs) is a conceptual graph schema as presented in Definition 19.

• ∆m ∶ (Ns ∪ Es) → P
+(Pm) is a mandatory property labeling function that maps

all nodes and edges to the non empty subset of the mandatory property set where

P+(Pm) represents the powerset of mandatory property set excluding the empty

set.

• ∆o ∶ (Ns ∪ Es) → P(Po) is an optional property labeling function that maps all

nodes and edges to the powerset, represented as P(Po), of the optional property

set.

• ζs ∶ Es → Cs is a cardinality labeling function that maps all edges to a set of

cardinalities such that ∀e ∈ Es, the cardinality function ζs(e) = (min,max)

returns a minimum and maximum value pair such that min ≤ max, min ∈ MIN

and max ∈ MAX.

Example 34 By using Definition 22 the logical graph schema generated for Airbnb

case study is presented in Figure 8.6. The logical graph schema’s topology is the same

as the conceptual graph schema presented in Figure 8.1.

Based in Definition 22 we can observe that a logical graph schema extends the

conceptual graph schema by defining the property labeling functions over the nodes and

edges of conceptual graph schema. Therefore, the intensional information captured in

the conceptual graph schema is maintained in the logical graph schema. Additionally,

the logical graph schema consists of extensional information as unique, mandatory and

optional properties [226]. Furthermore, the data type associated with each property is

also captured in the logical graph schema.
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Example 35 Figure 8.6 shows the properties associated with nodes and edges of the

logical graph schema. For instance, the node labeled as host consists of a mandatory

and an optional property. The mandatory property host_id is of data type Integer

and must be unique. The value associated with the Boolean flag being TRUE signifies

the uniqueness constraint. The optional property name is of data type String and

does not contain the uniqueness constraint. As discussed in Definition 22 edges of the

logical graph schema contain information about the cardinality. For instance, the edge

between node labeled as host and listing is labeled as owns and the cardinality

associated in (1,n). This means that a host can own multiple listings and a listing

can be associated with a single host. In the cardinality n represents a place holder for

a natural number that can be calculated while creating the database creation script.

05 September 2021 18:00:58 - Window

Figure 8.6: Logical graph schema generated for Airbnb case study

In our approach, the combination of conceptual and logical graph schema modeling

stages represent the four steps of database design as suggested by Chen [227]. Informa-

tion such as identify of entity set, relationship set and organization of data into entities

and relationships is covered in conceptual graph schema modeling stage [226]. In the
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logical graph schema modeling stage semantic information such as cardinality of edges

and properties associated with nodes and edges are defined [226].

FLASc operations for designing logical graph schemas

The three operations, JOIN, DETACH and DELETE_NODE can also be used for design-

ing and manipulating the logical graph schema. As mentioned in Definition 22 a logical

graph schema is an extension of conceptual graph schema. Therefore, node and edge la-

beling functions as well as source and target function are valid in a logical graph schema.

The semantics associated with these functions are also same. A logical graph schema

consists of additional functions such as mandatory and optional property labeling and

edge cardinality functions. The use of FLASc operators namely JOIN, DETACH and

DELETE_NODE is constrained due the additional labeling functions at the logical graph

schema modeling stage. We now discuss the application of FLASc operators for logical

graph schema modeling:

JOIN: The application of JOIN on two given logical graph schemas works in the

similar manner as for source, target, node and edge labeling functions as presented

in Definition 21. The additional mappings are required for property and cardinality

labeling functions which are discussed as follows:

Definition 23 (JOIN on Logical Graph Schema) Given two logical graph

schemas Gl1 = (Ns1,Es1, Pm1, Po1,Cs1, ηs1, ξs1,∆m1,∆o1, ζs1) and Gl2 =

(Ns2,Es2, Pm2, Po2,Cs2, ηs2, ξs2,∆m2,∆o2, ζs2) then Gl3 = JOIN(Gl1,Gl2) =

((Ns1 ∪Ns2), (Es1 ∪Es2), (Pm1 ∪Pm2), (Po1 ∪Po2), (Cs1 ∪Cs2), ηs3, ξs3,∆m3,∆o3, ζs3)

where:

• ((Ns1 ∪Ns2), (Es1 ∪ Es2), ηs3, ξs3) is a conceptual graph schema where node and

edge labeling functions ηs3 and ξs3 are defined in the same way as in Definition 21.
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• ∆m3 ∶ (Ns1 ∪Ns2 ∪Es1 ∪Es2) → P
+(Pm1 ∪Pm2) the mandatory property labeling

functions that maps all the nodes and edges to the powerset (excluding the empty

set) of the mandatory property sets of both the logical graph schemas.

• ∆o3 ∶ (Ns1 ∪ Ns2 ∪ Es1 ∪ Es2) → P(Po1 ∪ Po2) the optional property labeling

function that maps all the nodes and edges to the powerset (including the empty

set) of the optional property sets of both the logical graph schemas.

• ζs3 ∶ (Es1 ∪ Es2) → (Cs1 ∪ Cs2) is a cardinality labeling function which maps all

edges to the cardinality sets of both the logical graph schemas.

The notion of two logical graph schemas being join compatible is same as discussed

for conceptual graph schemas as discussed in Section 8.3.2. With respect to the

properties two logical graph schemas are join compatible if nodes have same mandatory

and optional properties that is, ∃n1 ∈ Ns1 and ∃n2 ∈ Ns2 such that ∆m1(n1) = ∆m2(n2)

and ∆o1(n1) = ∆o2(n2). In such a scenario we say that nodes n1 and n2 of two logical

graph schemas are join compatible.

DETACH: The DETACH operator can be utilized by a database designer to delete

an existing edge from a logical graph schema. Deleting an existing edge from a logical

graph schema requires checking that the two conceptual graphs share some common

edge with same labels as discussed in Section 8.3.2. Additionally, deleting edges in

logical graph schemas also requires that the edge properties and cardinalities must

be same. In order to formalize the notion of DETACH operator at the logical schema

level we further divide the set of mandatory and optional properties into node and edge

properties. Let NPm and EPm be two sets containing mandatory properties specific to

nodes and edge respectively such that Pm = NPm ∪ EPm. Similarly, let NPo and EPo be

two sets containing optional properties specific to nodes and edge respectively then

Po = NPo ∪ EPo
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Definition 24 (DETACH on Logical Graph Schema) Given two logical graph

schemas Gl1 = (Ns1,Es1, (NPm1 ∪ EPm1), (NPo1 ∪ EPo1),Cs1, ηs1, ξs1,∆m1,∆o1, ζs1)

and Gl2 = (Ns2,Es2, (NPm2 ∪ EPm2), (NPo2 ∪ EPo2),Cs2, ηs2, ξs2,∆m2,∆o2, ζs2) then

Gl3 = DETACH(Gl1,Gl2) = ((Ns1 ∪ Ns2), (Es1 ⊕ Es2), (NPm1 ∪ NPm2 ∪ (EPm1 ⊕

EPm2)), (NPo1 ∪ NPo2 ∪ (EPo1 ⊕ EPo2)), (Cs1 ⊕ Cs2), ηs3, ξs3,∆m3,∆o3, ζs3) where:

• ((Ns1 ∪Ns2), (Es1⊕Es2), ηs3, ξs3) is a conceptual graph schema where node and

edge labeling functions ηs3 and ξs3 are defined in the same way as in Definition 21.

• ∆m3 ∶ (Ns1 ∪ Ns2 ∪ (Es1 ⊕ Es2)) → P
+((NPm1 ∪ NPm2) ∪ (EPm1 ⊕ EPm2)) the

mandatory property labeling functions that maps the nodes and edges to the

powerset (excluding the empty set) of the mandatory node and edge property sets.

• ∆o3 ∶ (Ns1 ∪ Ns2 ∪ (Es1 ⊕ Es2)) → P((NPo1 ∪ NPo2) ∪ (EPo1 ⊕ EPo2)) the op-

tional property labeling functions that maps the nodes and edges to the powerset

(including the empty set) of the optional node and edge property sets.

• ζs3 ∶ (Es1⊕Es2) → (Cs1⊕Cs2) is a cardinality labeling function which maps edges

to the cradinality sets.

In order to delete existing edges by using the DETACH operator there must exist

some edges that are common between two logical graph schemas that is (Es1 ∩ Es2) /= ∅.

This means that labels for both edges must be the same. Additionally, the properties and

cardinalities associated with the common edges must be same as well that is ∃e1 ∈ Es1

and ∃e2 ∈ Es2 such that ∆m1(e1) = ∆m2(e2),∆o1(e1) = ∆o2(e2) and ζs1(e1) = ζs2(e2).

DELETE_NODE: The DELETE_NODE operator can be utilized by a database de-

signer to delete disconnected nodes from a logical graph schema. As discussed in

Section 8.3.2 in order to delete an existing disconnected node the two logical graph

schemas must contain common nodes. As mentioned in Definition 21 the node labeling
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must be same. Additionally the mandatory and optional properties must be the same as

well.

Definition 25 (DELETE_NODE on Logical Graph Schema) Given two logical

graph schemas Gl1 = (Ns1,Es1, (NPm1∪EPm1), (NPo1∪EPo1),Cs1, ηs1, ξs1,∆m1,∆o1, ζs1)

and Gl2 = (Ns2,∅, (NPm2 ∪ ∅), (NPo2 ∪ ∅),∅, ηs2,∅,∆m2,∆o2) is a node labeled prop-

erty graph then Gl3 = DELETE_NODE(Gl1,Gl2) = ((Ns1 ⊕Ns2), (Es1 ∪ ∅), ((NPm1 ⊕

NPm2) ∪ (EPm1 ∪ ∅)), ((NPo1 ⊕ NPo2) ∪ (EPo1 ∪ ∅)), (Cs1 ∪ ∅), ηs3, ξs3,∆m3,∆o3, ζs3)

where:

• ((Ns1 ⊕Ns2), (Es1 ∪ ∅), ηs3, ξs3) is a conceptual graph schema where node and

edge labeling functions ηs3 and ξs3 are defined in the same way as in Definition 21.

• ∆m3 ∶ ((Ns1 ⊕Ns2) ∪ (Es1 ∪ ∅)) → P+((NPm1 ⊕ NPm2) ∪ (EPm1 ∪ ∅)) the man-

datory property labeling functions that maps the nodes and edges to the powerset

(excluding the empty set) of the mandatory property sets of both the logical graph

schemas.

• ∆o3 ∶ ((Ns1 ⊕Ns2) ∪ (Es1 ∪ ∅)) → P((NPo1 ⊕ NPo2) ∪ (EPo1 ∪ ∅)) the optional

property labeling function that maps the nodes and edges to the powerset (in-

cluding the empty set) of the optional property sets of both the logical graph

schemas.

• ζs3 ∶ (Es1 ∪ ∅) → (Cs1 ∪ ∅) is a cardinality labeling function which maps all

edges to the cardinality sets. Since the logical graph schema Gs2 is a node labeled

property graph therefore, the function ζs3 maps all the edges from logical graph

schema Gs1 to cardinality set Cs1 of the logical graph schema Gs1.

In order to delete existing nodes by using the DELETE_NODE operator there must

exist some nodes that are common between two logical graph schemas that is (Ns1 ∩
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Ns2 /= ∅). This means that labels for both nodes must be the same. Additionally,

the mandatory and optional properties associated with the common nodes must be

same as well that is ∃n1 ∈ Ns1 and ∃n2 ∈ Ns2 such that ∆m1(n1) = ∆m2(n2) and

∆o1(n1) = ∆o2(n2).

Axiomatic specifications of FLASc operations

The axiomatic specifications of any algebra enable us to check its completeness [169].

In order to show the axiomatic specification we use infix notation for the operators in

FLASc. As such we use the (&) notation for the JOIN operator, (3) notation for the

DETACH operator and (∇) notation for the DELETE_NODE operator.

The axiomatic specification of FLASc operators is presented in Table 8.1. For

defining the identity axiom, we define an identity graph IG = (∅,∅) which means

that the identity graph does not contain any nodes and edges. We can observe that

JOIN, DETACH and DELETE_NODE operations follow associativity, commutativity,

idempotent and identity axioms.

Table 8.1: Axiomatic specifications of operators in FLASc

Axioms JOIN DETACH DELETE_NODE
Associativity ∀G1,G2,G3 ∈ G [(G1 & G2) &

G3 = G1 & (G2 & G3)]

∀G1,G2,G3 ∈ G

[(G13G2)3G3 =

G13(G23G3)]

∀G1,G2,G3 ∈ G

[(G1∇G2)∇G3 =

G1∇(G2∇G3)]

Commutativity ∀G1,G2 ∈ G [G1&G2 = G2&G1] ∀G1,G2 ∈ G [G13G2 =

G23G1]

∀G1,G2 ∈ G [G1∇G2 = G2∇G1]

Identity ∀G1 ∈ G [G1 & IG = G1] ∀G1 ∈ G [G13IG = G1] ∀G1 ∈ G [G1∇IG = G1]

Idempotent ∀G1 ∈ G [G1 & G1 = G1] ∀G1 ∈ G [G13G1 = G1] ∀G1 ∈ G [G1∇G1 = G1]

& = JOIN operator
3 = DETACH operator
∇ = DELETE_NODE operator

The distributive axioms for the JOIN, DETACH and DELETE_NODE operators is

presented in Table 8.2. The axiomatic specification of FLASc operators enable us to use

FLASc for generating new graph schemas from existing logical and conceptual graph

schemas.
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Table 8.2: Distributive axiom of FLASc operators

FLASc operators Axiomatic Specification
JOIN and DETACH ∀G1,G2,G3 ∈ G [G1 & (G23G3) = (G1 & G2)3(G1 & G3)]

JOIN and DELETE_NODE ∀G1,G2,G3 ∈ G [G1 & (G2∇G3) = (G1 & G2)∇(G1 & G3)]

DETACH and DELETE_NODE ∀G1,G2,G3 ∈ G [G13(G2∇G3) = (G13G2)∇(G13G3)]

& = JOIN operator
3 = DETACH operator
∇ = DELETE_NODE operator

The integrity constraints that can be enforced by a logical graph schema presented

in Definition 22 include graph entity integrity constraints such as property unique-

ness, label uniqueness, property data type and mandatory property constraints. The

enforcement of these constraints and semantics constraints such as edge pattern, graph

pattern, and path pattern constraints can be done at the physical modeling stage by using

database-specific query languages. Following the graph schema to generate database

creation scripts at the physical modeling stage ensures data consistency.

Schema Instance consistency

The schema instance consistency is used to ensure that the labeled property graph

database constructed at the physical modeling stage adheres to the logical graph schema

generated by using FLASc. A labeled property graph database uses a graph structure for

storing and managing data, allowing the modeling of real world entities as nodes and

edges [196, 15]. Nodes are used to store data and relationships or interactions between

nodes are stored as edges [32, 16]. Nodes and edges in a graph database can have

properties associated with them. Let Pd be a set of properties of a graph database such

that each pd ∈ Pd is a key-value pair where each value has a data type. To accommodate

the existence of mandatory and optional properties the set of properties can be further

written as Pd = Pdm ∪ Pdo. Formally a labeled property graph database is defined as

follows:
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Definition 26 (Labeled Property Graph Database) A labeled property

graph database Gd is a tuple (Nd,Ed, Pdm, Pdo, ηd, ξd,∆dm,∆do) where,

• Nd is a finite set of nodes and Ed is a finite set of edges of the graph database

• (Nd, Ed) a directed multigraph.

• Pdm and Pdo are mandatory and optional property sets associated with the graph

database.

• ηd ∶ Nd → LN is a node labeling function which maps all nodes to labels in the

set of node labels LN .

• ξd ∶ Ed → LE is an edge labeling function which maps all edges to labels in the set

of edge labels LE .

• ∆dm ∶ (Nd∪Ed) → P
+(Pdm) is a property labeling function which maps all nodes

and/or edges to all subsets (excluding the empty set) of the mandatory property

set Pdm.

• ∆do ∶ (Nd ∪ Ed) → P(Pdo) is a property labeling function which maps all nodes

and/or edges to all subsets (including the empty set) of the optional property set

Pdo.

The notion of schema instance consistency implies that a labeled property graph

database adheres the structural restrictions established by a labeled property graph

schema [27]. Such a notion can be formally defined as follows:

Definition 27 (Schema Instance Consistency) Given a labeled property

graph database Gd = (Nd,Ed, Pdm, Pdo, ηd, ξd,∆dm,∆do) as defined in Definition 26

and a labeled property graph schema Gl = (Ns,Es, Psm, Pso,Cs, ηs, ξs,∆sm,∆so, ζs) as

defined in Definition 22. We say that Gd is consistent with Gl when:
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• For each node n ∈ Nd, there must exist a corresponding node in graph schema

where n′ ∈ Ns such that ηd(n) = ηs(n′).

• For each edge ei ∈ Gd there must exist a corresponding edge in graph schema

that is e′i ∈ Gl such that ηd(s(ei)) = ηs(s(e′i)), ηd(t(ei)) = ηs(t(e′i)) and ξd(ei) =

ξs(e′i).

• For each ni ∈ Nd (or ei ∈ Ed), there exists n′i ∈ Ns (or e′i ∈ Es) such that ∆dm(ni) =

∆sm(n′i) (or ∆dm(ei) = ∆sm(e′i)). The data type of value stored in node (or edge)

of graph database is same as the data type of node (or edge) in the graph schema.

• For each ni ∈ Nd (or ei ∈ Ed), there exists n′i ∈ Nso (or e′i ∈ Eso) such that

∆do(ni) = ∆so(n′i) (or ∆do(ei) = ∆so(e′i)). The data type of value stored in node

(or edge) of graph database is same as the data type of node (or edge) in the

graph schema.

• The total number of edges of a certain label generated in the labeled property

graph database must be between the minimum and maximum cardinality values

associated with edges of same label in the graph schema.

Cardinality can be enforced programatically at the physical modeling stage by

using the logical graph schema generated by FLASc. Similarly, the adherence to node

and edge labeling, property (optional and mandatory) labeling can be enforced at the

physical modeling stage. The logical graph schema is independent of the underlying

implementations. Moreover, the graph schema can be used in both integrated and

layered physical modeling approaches. To support our claim in the following two

sections, we experimentally demonstrate the use of graph schema to transform and load

data-sets by using both approaches for physical modeling graph databases.
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8.4 Using FLASc to enforce integrity constraints

In this section, we demonstrate the use of graph schema generated by FLASc for

enforcing integrity constraints, which are essential for ensuring data consistency in

graph databases. We illustrate the manual integration of conceptual, logical and physical

modeling stages. We design the database creation scripts using the logical graph schema

generated by FLASc for Airbnb data-set as shown in Figure 8.6. We do not make any

changes to the source code of Neo4j; however, the formulation of database creation

scripts in Cypher is driven by the logical graph schema. We then execute these scripts

directly over the Neo4j graph database.

As discussed in [15] Airbnb data-set consists of three CSV files containing informa-

tion related to listings, review and calendar data. The listing file contains information,

such as hosts that own the listings, amenities provided in the listings, location of the

listing etc. The reviews file contains information related to the users who have stayed in

the listings and provided feedback in reviews. The calendar file contains information

related to booking details such as pricing and occupancy. These files contain multiple

lines (rows) of data, where each row contains a comma-separated list of values. For

instance, a CSV file containing information related to listings from Airbnb’s data is

shown in Table 8.3.

Table 8.3: Sample data from listing.csv in the Airbnb data-set

Host
Name

Listing
ID

Listing Name Room Type Street Host
ID

Manju 9835 Beautiful Room &
House

Private room Bulleen, VIC, Aus-
tralia

33057

Lindsay 10803 Room in Cool Deco
Apartment in Brun-
swick East

Private room Brunswick East,
VIC, Australia

38901

Eleni 15246 Large private room-
close to city

Private room Thornbury, VIC,
Australia

59786

Eleni 68482 Charming house in-
ner Melbourne

Entire home/apt Thornbury, VIC,
Australia

59786
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8.4.1 Manual generation of database creation scripts

The logical graph schema generated by FLASc for Airbnb data-set contains intensional

and extensional information that assists a database designer for enforcing integrity

constraints in the database scripts.

Enforcement of graph entity integrity constraints

Graph entity integrity constraints are used to enforce restrictions on properties associated

with nodes and edges in a graph database. The extensional information captured in the

logical graph schema as discussed in Definition 22 is used to enforce such constraints.

We discuss the enforcement of graph entity integrity constraints for transforming and

loading Airbnb data-set into Neo4j graph database by using Cypher query language.

Node property uniqueness constraint: The sample listing file as shown in

Table 8.3 has Listing ID associated with each listing. Furthermore, in the lo-

gical graph schema shown in Figure 8.6 listing_id field the uniqueness flag is set

to be True which means that the listing_id must be unique. Therefore, before

creating the listing nodes in the Neo4j graph database, the uniqueness constraint must be

established to reduce data corruption chances. This is achieved by running the following

query in Cypher.

QUERY 21: Cypher query to enforce node property uniqueness constraint
CREATE CONSTRAINT unique_listing_id IF NOT EXISTS ON
(list:listing)
ASSERT list.listing_id IS UNIQUE

The uniqueness constraint specified in Query 21 ensures that multiple nodes with

same listing_id are not created in the Neo4j graph database. The use of IF NOT

EXISTS clause is used to ensure that the constraint is enforced at most once. The next

constraints to be enforced are the mandatory node and edge property constraints.
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Mandatory node property constraint: The sample listing file also contains in-

formation about the host_id and in the logical graph schema as shown in Figure 8.6,

the host_id is a mandatory field. Therefore, additional constraints must be enforced

on the listing nodes. This can be achieved by running the following query in Cypher.

QUERY 22: Cypher query to enforce mandatory node property constraint
CREATE CONSTRAINT listing_host_id IF NOT EXISTS ON
(list:listing)
ASSERT EXISTS list.host_id

The node property existence constraint specified in Query 22 ensures that listing

nodes must always have a value assigned to the property host_id the ASSERT

EXISTS clause is used to enforce such a condition.

Mandatory edge property constraint: The mandatory property constraints can

also be specified on the edges that have to be created in the graph database. The logical

graph schema as discussed in Definition 22 helps in enforcing this constraint in two

ways; first, it provides details about the edge labels. Second, it also provides details

about mandatory, unique and optional properties associated with the edges. For example,

as shown in Figure 8.6 the edge labeled as owns has a mandatory property since

which can be enforced by running the following Cypher query.

QUERY 23: Cypher query to enforce mandatory edge property constraint
CREATE CONSTRAINT owns_edge_id IF NOT EXISTS ON
()-[owns:OWNS]->()
ASSERT EXISTS owns.id

The mandatory edge property constraint shown in Query 23 is used to ensure that

their is always a value assigned to id of every edge labeled as OWNS in the graph

database.

Node key constraint: This constraint can be applied over a set of node properties.

This constraint combines the functionality provided by uniqueness and mandatory

property constraints. For example, the node labeled as host has two mandatory and
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unique properties user_id and name. This constraint can be enforced in the Neo4j

graph database by using the following Cypher query.

QUERY 24: Cypher query to enforce node key property constraint
CREATE CONSTRAINT ON (u:user)
ASSERT u.user_id, u.name IS NODE KEY

As shown in Query 24 the use of IS NODE KEY keywords along with the ASSERT

clause is used to enforce that the properties user_id and name are unique and must

have a value associated with them in the graph database.

Property data type constraint: Logical graph schema is used to enforce property

data type constraint over the node and edge properties. As discussed in Definition 22 a

logical graph schema contains properties that have a data type associated with them.

Therefore, database creation scripts are designed by utilizing this information. For

instance, in the logical graph schema shown in Figure 8.6 listing_id and host_id

are of Integer data type the Cypher query to enforce this constraint is as follows:

QUERY 25: Cypher query to enforce property data type constraint
LOAD CSV WITH HEADERS FROM
"http://data.insideairbnb.com/australia/
vic/melbourne/2021-01-10/visualisations/listings.csv" AS row
WITH DISTINCT row.id AS listing_id, row.host_id AS host_id
MERGE(list:listing{listing_id:toInteger(listing_id),
host_id:toInteger(host_id)})

The property data type constraint presented in Query 25 is enforced by using the

inbuilt toInteger() function provided by Cypher query language. The use of this

function is due the specification in logical graph schema that the data type associated

with listing_id and host_id must of Integer type. In Query 25 the use of

Cypher’s MERGE clause represents the creation of two nodes that is a listing node and

a host node. This also illustrates the combination of conceptual and logical modeling

stages where a basic conceptual graph schema containing two disconnected nodes as
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discussed in Definition 20 is further labeled with node properties further representing

the use of node labeling function (η) as discussed in Definition 22.

Other graph entity integrity constraints such as node and edge label uniqueness

are by default maintained by the logical graph schema generated using FLASc. By

definition 22 a node/edge can only have one label associated with it. On the other hand,

Neo4j allows a node to be associated with more than one label. FLASc does not support

this for the sake of simplicity. As mentioned in [42], these features are not present in all

graph database systems and tend to make the definitions of graph schema and graph

databases complex. Constraints such as edge property uniqueness can be specified in

FLASc however, such constraints cannot be enforced in Neo4j.

Enforcement of semantic integrity constraints

Semantic integrity constraints are used to enforce a topological restriction on the

graph database. The intensional information captured in the graph schema during the

conceptual modeling stage becomes useful to enforce semantic integrity constraints.

Edge pattern constraint: To enforce edge pattern constraint the topological in-

formation stored in the logical graph schema is used while creating the database creation

scripts. For instance, Query 26 is used to create edges between nodes of label host

and listing. Each edge created by using Query 26 is labeled as owns and represents

a valid edge in the logical graph schema shown in Figure 8.6.

QUERY 26: Cypher query to enforce edge pattern constraint
LOAD CSV WITH HEADERS FROM
"http://data.insideairbnb.com/australia/
vic/melbourne/2021-01-10/visualisations/listings.csv" AS row
MATCH (l:listing),(h:host)
WHERE l.listing_id = toInteger(row.id)
AND h.host_id = toInteger(row.host_id)
MERGE (h)-[:owns{since:datetime(row.last_review)}]->(l)
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The MATCH clause in Query 26 is used to obtain already existing listing and host

node from the graph database. The WHERE clause at is used to define some constraints

to filter results based on the values obtained from the csv files. The MERGE clause in

Query 26 represents the creation of a basic conceptual graph schema containing two

nodes and an edge connecting them as discussed in Definition 20. The edge of the basic

conceptual graph schema is further labeled with edge properties further representing

the use of edge labeling function (ξ) as discussed in Definition 22.

Graph pattern constraint: Enforcing graph pattern constraints require knowledge

about the topology of the data-set, which is captured by logical graph schema. These

constraints check for the existence of certain graph structure in the database before any

new node or edge can be created. Graph pattern constraint in Cypher is presented as

Query 27 which ensures that listing nodes that have been reviewed by a user

are attached to booking_detail nodes by edges that are labeled as has.

QUERY 27: Cypher query to enforce graph pattern constraint
:auto USING PERIODIC COMMIT
LOAD CSV WITH HEADERS FROM
"http://data.insideairbnb.com/australia/
vic/melbourne/2021-01-10/visualisations/calendar.csv" AS row
MATCH (u:user)-[:wrote]->(r:review),
(r)-[:review_for]->(l:listing)
WHERE l.listing_id = toInteger(row.listing_id)
MERGE (l)-[:has{id:toInteger(row.id)}]->(b:booking_detail)

In Query 27 the MATCH clause is used to check if graph pattern exists or not. This

graph pattern [32] is built by using the intensional information in the logical graph

schema presented in Figure 8.6 that assists in formulating valid graph patterns for

enforcing such constraints. The MATCH clause in this query connects two graph patterns

which are join compatible [220]. The MERGE clause is used to combine the graph

obtained from the MATCH clause with a logical graph schema specified in the MERGE

clause. This represents the use of JOIN operator. The two logical graph schemas
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are join compatible since they share the node l labeled as listing. Query 27 also

illustrates the use of USING PERIODIC COMMIT clause, which is used to handle the

large amount of data being processed.

Path pattern constraint: These constraints check for the existence of certain paths

in a graph database before a new node or edge can be created. Query languages

for graph databases use the formalism of conjunctive two-way regular path queries

(C2RPQs) and nested regular expressions (NREs) to express and then search for

path patterns [124, 115, 125, 64, 62, 33, 66, 174, 30]. In these formalisms regular

expressions defined over the edge labels of the graph database are used to describe path

patterns [32]. The intensional information captured in logical graph schema assists

in creating valid path patterns. Query 28 illustrates the enforcement of path pattern

constraint in Cypher. Very similar to Query 27 the use of MERGE clause in the query

represents the use of JOIN operator to combine the graph obtained from the MATCH

clause at line 3 with the logical graph schema specified in the MERGE clause.

QUERY 28: Cypher query to enforce path pattern constraint
:auto USING PERIODIC COMMIT
LOAD CSV WITH HEADERS FROM
"http://data.insideairbnb.com/australia/
vic/melbourne /2021-01-10/visualisations/calendar.csv" AS
row
MATCH (u:user)-[:wrote]->()-[review_for]->l
WHERE l.listing_id = toInteger(row.listing_id)
MERGE(l)-[:HAS{id:toInteger(row.id)}]->
(a:amenityamenity_id:toInteger(row.amenity_id))

In Query 28 the path pattern constraint is specified in the MATCH clause, which

represents the regular expression (wrote.review_for) formed by applying con-

catenation operator over the edge labels wrote, review_for and has. Other

regular expressions operators such as union and Kleene star can also be used to form

more expressions. However, Cypher only provides limited support for regular expres-

sions as the Kleene star operator’s use over the concatenation of two more edge labels
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is not allowed in Cypher [32, 220]. Further modifications can be done to the query

language by using formalism such as Tarski’s algebra instead of regular expressions for

increasing their expressiveness [220].

Other Constraints such as schema instance consistency are ensured since the gen-

eration of database creation scripts is driven by the logical graph schema. Constraints

such as functional dependencies are not easy to enforce in graph databases [23]; how-

ever, in order to enforce functional dependencies while modeling graph databases, a

designer can follow the approach proposed in [144]. This approach states that every

non-key property must only provide information about the associated nodes and edges.

Constraints such as edge identify uniqueness and cardinality constraints cannot be

directly enforced in Neo4j. However, enforcing such constraints can be done by writing

a wrapper in programming languages such as Java, Python that can be used to ensure

that edge ids must be unique.

The logical graph schema generated by FLASc enables us to enforce several practical

integrity constraints. FLASc assists in the generation of robust conceptual and logical

graph schemas. FLASc can be integrated with the existing Extract-Transform-load

process for ensuring data consistency when data from heterogeneous sources is being

loaded into a graph database such as Neo4j. The manual approach presented in this

section has limitations. Firstly this approach requires a database designer to possess

knowledge of graph database query language such as Cypher. Secondly, creating the

database creation scripts manually can be cumbersome and error-prone, making the

process less maintainable, scalable and manageable. Finally, Cypher does not support

loading data from heterogeneous sources into the Neo4j graph database. Therefore, to

mitigate such limitations in the next section, we present our layered approach.
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8.5 A layered approach for data transformation and

loading using FLASc

Graph databases are schema-less or schema optional; therefore, maintaining data

consistency and integrity is not easy. A graph database can be easily altered unless

the database’s underlying source code is not amended to support the enforcement of

all integrity constraints. Hence in this section, we propose a layered approach that

incorporates the development of an additional wrapper to ensure data consistency. While

following the layered approach, we use the APIs provided by Neo4j to access the graph

database. We illustrate how FLASc can be used to assist the transformation and loading

of data from heterogeneous sources into graph databases hence addresses RQ3 and

RQ3.1.

8.5.1 Schema driven layered approach

Overview: The overall physical view of our layered approach is presented in Figure 8.7,

that consists of three main components (i) FLASc which serves as a graph schema

generator, (ii) an importing subsystem and (iii) a graph database such as Neo4j.

Source FileFLASK

Importing Subsystem

Neo4j Graph Database

Graph Schema Data Files

Figure 8.7: Physical view of Schema driven layered approach
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The importing subsystem takes source files and a graph schema generated by

FLASc as inputs. The subsystem then creates database creation scripts in Cypher by

following the intensional and extensional information captured in the graph schema.

The subsystem then interacts with the Neo4j graph database by using the APIs and

executes the database creation scripts on the graph database.

Importing subsystem design: The importing subsystem is based on the Extract-

Transform-Load (ETL) design pattern. As shown in Figure 8.8 the Extract stage is used

to fetch data from a source and consolidated it into a repository. The transform stage is

used to apply appropriate transformation rules over the repository data. The transform

stage uses the graph schema generated by FLASc to apply the transformation rules and

create the database creation scripts. The load stage is finally used to execute the scripts

on the database. In the load stage, database is accessed by using the specific API calls.

EXTRACT TRANSFORM

DATA SOURCE

LOADREPOSITORY DB SCRIPTS

FLASK

GRAPH SCHEMA

Figure 8.8: Process view of Schema driven layered approach

Technology stack: The subsystem is developed as a Java Maven project where the

front end is designed using Java Swing library3. The subsystem uses Neo4j libraries for

establishing a connection with the Neo4j graph database. Maven is used for handling

API specific external dependencies. Neo4j’s Cypher language is used for querying and

creating the database.

3The source code is available for download at removedforblindreview.github.com
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8.5.2 Airbnb case study

Transforming and loading data in CSV format is straight forward in Neo4j and Cypher.

Furthermore, the Airbnb data-set exists in the form of denormalized relational tables as

such connection between nodes can be established based on primary key foreign key

relationships. As shown in Query 27, the clause LOAD CSV WITH HEADERS FROM

represents the extract stage. In Query 27 the data is being fetched from the Airbnb

website as shown in line 2-3. The data is stored in a repository represented by the “row”

variable in the query. The transform stage in Query 27 is represented in lines 4-6 where

the MATCH clause is used to search for the existence of a pattern, WHERE clause is

used to restrict the result set based on some conditions and finally the MERGE clause is

used to create the edge between node labeled as listing and booking_details.

The transform stage is also responsible for ensuring that the integrity constraints are

enforced, which is done by using the graph schema. In a layered approach, the load

stage is responsible for creating a connection with the Neo4j graph database by making

appropriate API calls. The additional wrapper written in Java is used to execute the

entire query on Neo4j finally.

The main advantage of using the layered approach is that additional logic can be

written to ensure data consistency. For instance, Cypher does not provide inbuilt

mechanisms to enforce the uniqueness constraints on edges. A layered approach is

beneficial in such scenarios as additional logic can be written in programming languages

to generate unique values for a particular edge property. The layered approach’s

advantage is evident when data in formats other than CSV are to be loaded into the

Neo4j graph database. To illustrate this, we present the use of our layered approach to

transform and load data-set related to big data analytics case study.
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8.5.3 BiDaML case study

Implementing large-scale big data projects requires ongoing collaborations and mon-

itoring by multiple stakeholders who have differing concerns. BiDaML (Big Data

Analytics Modelling Languages) [86] is a domain-specific language for planning, spe-

cifying, monitoring and designing big data analytics projects. BiDaML suite presents

different graph-based diagrams with highly interrelated data. The BiDaML diagrams

considered in this case study consists of five diagrams brainstorming, process, technique,

data, and deployment that provide different levels of abstractions. These diagrams are

generated for National Bowel Cancer Screening Program (NBCSP) in Australia [228].

The BiDaML suite currently lacks the necessary automation and tooling required

to allow individual users to view customised information specific to their needs and

preferences within these diagrams. Importing data-sets from highly structured tools,

such as the current HTML based implementation of BiDaML diagrams into graph

databases such as Neo4j, is a challenge. This is due to the reason that Neo4j does not

provides clauses for importing HTML data. We illustrate the use of our schema driven

approach for transforming and loading BiDaML diagrams into Neo4j.

BiDaML diagrams data-set

The BiDaML data-set consists of five diagrams generated by the BiDaML suite. Brain-

storming diagram provides an overview of a data analytics project and all the tasks and

sub-tasks involved in designing the solution at a very high level. Users can include com-

ments and extra information for the other stakeholders. Process diagram specifies the

analytics process, which includes sequencing the tasks identified in the brainstorming

diagram and relating these tasks to participants or stakeholders. Technique diagrams

show how tasks from the brainstorming/process diagrams are elaborated further by

applying specific techniques. Data diagrams document the data and artefacts produced
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in each of the above diagrams at a low level, i.e. the technical AI-based layer. They

also define the outputs associated with different tasks like output information, reports,

results, visualisations, and outcomes. And finally, deployment diagrams depicts the

run-time configuration, i.e. the system hardware, the software installed on it, and the

middle-ware connecting different machines for development related tasks.

Figure 8.9: Logical graph schema for BiDaML diagrams

The graph schema generated by using FLASc for BiDaML diagrams is presented in

Figure 8.9 where the node labeled as TASK allows edges that are available in different

diagrams, including outgoing edges to other tasks allowed in brainstorming, process

and technique diagrams. These edges are distinguished from each other via additional

edge labels. For instance, edges between task nodes in brainstorming diagrams are

labeled as TT. Edges between task nodes in process diagrams are labeled by PR. The

schema also allows other node labels like ROOT in brainstorming diagrams, START,

END and CONDITION in process diagrams and INFRASTRUCTURE node labels in

deployment diagrams. In BiDaML, technique and data diagrams can have techniques

and data artefacts that are used as nodes in deployment diagrams. For simplicity of

the graph schema, we classify techniques, artefacts, etc., as nodes of label OTHER.
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As shown in Figure 8.9 graph schema also captures the extensional information such

as mandatory, unique and optional properties related to nodes and edges of BiDaML

diagrams. For example, the node labeled as TASK has nine associated properties where

id,diagram_type and name are mandatory properties. The id property must be unique

and properties including type,activity_type and organization are optional.

Importing subsystem for BiDaML diagrams data-set

To transform and load BiDaML diagram data-set into Neo4j we still use the same ETL

design pattern with slight modification to each stage. As shown in Figure 8.10 data

files in HTML format are passed to the Extract stage that consists of two processes:

Parse-HTML and Data builder. The HTML file contains information about nodes and

edges of BiDaML graphs using map tags as well as additional properties such as id,

name, type, sub-type, activity-type, stakeholder, comments and organization. Parse-

HTML process reads the entire HTML file by using the JSoup library [?] and creates

a repository containing all the nodes and edges, which is then passed on to the Data

Builder for further processing.

Source
Parse‐HTML Data Builder

Cypher Query 
Builder

Database 
Connector

Neo4j 
Interface

EXTRACT

Repository

TRANSFORMLOAD

Data Files

Cypher StringCypher Query

Edgelist

Graph Schema

FLASK

Figure 8.10: ETL stages shown as Data flow diagram to upload BiDaML diagram
data-set into Neo4j

The Data builder process first removes duplicate elements in the repository. The

builder then converts the repository into a list of edges (and nodes) that need to be

stored in the graph database. In the Transform stage, the Cypher Query Builder takes
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the edge list from the extract stage and graph schema generated using FLASc as inputs

to generate Cypher queries for loading data into Neo4j. This stage also ensures that

appropriate integrity constraints captured in the graph schema are enforced.

The final load stage consists of a Database Connector process and a Neo4j graph

database interface. The Database Connector process establishes a connection with

the Neo4j graph database using the Neo4j interface. A session is created between the

subsystem and the Neo4j database. The Cypher query constructed in the transform

stage is packaged into a create query and then executed. This process also ensures that

nodes are not duplicated, especially if some of the imported nodes were already present

in the database.

The time at which each node or edge is created during the ETL operations or during

subsequent editing of the diagrams, is stored as a time stamp attribute within each

updated element. Additional information, such as clustering of tasks in brainstorming

diagrams and mapping tasks to specific stakeholders, is all stored as attributes of the

corresponding nodes.

8.5.4 P2660.1 case study

Designing robust Industrial Cyber-Physical Systems (ICPS) largely depends upon

identifying industrial agents, that provide complex and harmonious control mechanisms

at the software level. These industrial agents practices are used to develop more

extensive and feature-rich ICPS. IEEE Standardization projects such as P2660.1 aim at

identifying industrial agent practices that can suit the requirements of future ICPS. A

key challenge with this project is the identification of industrial agent practices based on

some user-defined criteria. This case study is based on a tool (IASelect) developed

for IEEE standardization project P2660.1 [85] that assists in selecting best fit industrial

agent practices for ICPS [16].
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P2660.1 data-set

The P2660.1 data-set consists of two practices OnDevice and Hybrid. Each practice

is of two types Tightly-coupled and loosely-coupled. Practices have an associated set

of qualities, which make these practices suitable to use in specific contexts. Hence,

selecting the best-fit practices requires identifying the associated qualities. P2660.1

working group identifies four kinds of qualities Domain, Function, Maintenance and

Performance efficiency. Each quality has an associated type; for instance, Domain

has three associated types, including Factory Automation, Building Automation and

Energy. Similarly, quality Function has three associated types Monitoring, Control and

Simulation. The P2660.1 data-set exists in the form of an adjacency matrix where an

ICPS expert assigns a score to a combination of practice and associated quality.

Figure 8.11: Logical graph schema for P2660.1 data-set

The graph schema generated by using FLASc for P2660.1 data-set is presented in
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Figure 8.11 which consist of two practice nodes and four quality nodes. Each practice

node is connected to a quality node by an edge labeled as has_score. This signifies

that every practice to be stored in the graph database must connect with a quality, which

represents the intensional information associated with the data-set. The extensional

information is captured by node and edge properties. All nodes and edges have an

associated property id which is a mandatory property, is of Integer data type and value

associated with this property must be unique. Property such as type is mandatory but

may not be unique. All edges have a unique and mandatory property id. The score

property is mandatory but is not unique, and this is because the same score value can

be assigned to different practice-quality pair by an ICPS expert. All edges contain an

optional property assignedOn with an associated data type date-time.

Importing subsystem for P2660.1 data-set

To transform and load the P2660.1 data-set into Neo4j, we use the ETL design pattern

with slight modifications. As shown in Figure 8.12 data in XLS file format containing an

adjacency matrix is passed to the Extract stage that consists of two processes Parse-AM

and Data builder.
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Figure 8.12: ETL stages shown as Data flow diagram to upload P2660.1 data-set into
Neo4j

The Parse-AM process is used to reads the entire XLS file by using the Apache

POI library [229] and converts it into a repository. The other process required to
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transform and load the P2660.1 data-set into Neo4j are similar to the processes used in

the BiDaML diagram case study presented in Section 8.5.3.

8.5.5 Lessons learned from the case studies

The formal basis for FLASc and its integration with the ETL design pattern suggests that

the data from heterogeneous sources can be transformed and loaded into several graph

database by using our approach. We consider three case studies related to cyber-physical

systems, big data analytics and tourism as presented in Sections 8.5.2, 8.5.3 and 8.5.4

respectively. The only factor that differs in loading these three diverse data-sets is the

Extract phase’s parse process.
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Figure 8.13: ETL stages shown as Data flow diagram to upload BiDaML diagram
data-set into Neo4j
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Figure 8.14: ETL stages shown as Data flow diagram to upload P2660.1 data-set into
Neo4j

As shown in Figures 9.5 and 9.6 the parse process uses different APIs for reading

data from heterogeneous sources. All other stages for loading data into the Neo4j graph

database remain the same. Similarly, suppose data has to be transformed and loaded
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into a database other than Neo4j. In that case, only the Load stage needs to be altered

so that APIs specific to the database platform can be utilized. The transform stage in all

the scenarios as mentioned above remains the same and consistent. This demonstrates

the generalizability of our approach, since by using the FLASc integrated ETL design

pattern can be used to load data-sets from heterogeneous sources into a graph database.

Furthermore, our approach is not limited to a specific data-set format and a particular

graph database.

The use of FLASc for loading data-sets from heterogeneous sources becomes

more evident when using the layered approach. As shown in Table 8.4 only a limited

number of integrity constraints can be enforced in a layered approach without using

FLASc. As shown in Table 8.3 structured data-sets such as provided in the Airbnb case

study exist in the form of CSV files and contain intensional information as primary

and foreign keys. However, semi-structured data provided in BiDaML and P2660.1

data-sets require predefined structural information for systematic transformation and

loading. The intensional information is facilitated by using FLASc hence ensuring data

consistency and integrity while using the layered approach.

8.6 Discussion, Conclusion and Future work

In this research, we present a formal algebra FLASc for generating robust graph schema

for labeled property graph databases. We illustrate the integration of FLASc with the

Extract-Transform-Load design pattern that assists in systematic transformation and

loading of data-sets from heterogeneous sources into graph databases such as Neo4j.

Graph schemas generated by FLASc assist in specifying integrity constraints in the

database creation scripts, ensuring data consistency and integrity.

Our approach presents the integration of conceptual, logical and physical modeling

stages for graph databases. FLASc enables users to capture requirements of any given
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problem domain as basic conceptual graph schemas. The JOIN and DETACH operators

provided by FLASc can then be used to construct robust conceptual graph schemas from

basic conceptual graph schemas. Properties associated with nodes and edges of graph

schema are specified at the logical modeling stage. Finally, in the physical modeling

stage, the enforcement of integrity constraints and design of database creation scripts

are driven by FLASc generated graph schemas.

The integration of FLASc with the Extract-Transform-Load design pattern illustrates

the practical application of our approach. This is demonstrated by using three diverse

case studies related to cyber-physical systems, big data analytics and tourism. The

intensional and extensional information captured in the graph schema assists in the

transform stage of the data loading process. This information can be used to enforce

several integrity constraints on the data-sets being loaded into a graph database.

Table 8.4: Coverage of integrity constraints

Integrity constraints Integrated FLASc Layered FLASc Layered without FLASc

Graph
entity

Node Property Uniqueness ✓ ✓ ✓

Node/Edge Label Uniqueness ✓ ✓ ×

Edge property uniqueness × ✓ ×

Mandatory Node property ✓ ✓ ✓

Mandatory Edge property ✓ ✓ ✓

Property data type ✓ ✓ ×

Semantic
Edge pattern ✓ ✓ ×

Graph pattern ✓ ✓ ×

Path pattern ✓ ✓ ×

Others
Type checking ✓ ✓ ×

Edge Cardinality × ✓ ×

Relationship Type × × ×

GN = Graph Navigation

GPM = Graph Pattern Matching

As shown in Table 8.4, FLASc facilitates the enforcement of several integrity

constraints. We can observe that FLASc generated graph schemas are useful in enfor-

cing semantic constraints because such constraints require knowledge of relationships

between entities in data-sets. Semantic constraints such as edge, graph and path pattern

constraints cannot be enforced without knowledge about relationships in the data-set. As

shown in Table 8.4 graph entity integrity constraints such as edge property uniqueness
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constraint cannot be enforced in the integrated approach due to the limitations in the

Neo4j graph database. Furthermore, FLASc generated logical graph schema also enable

a database designer to specify cardinality constraints on the edges of a graph schema.

However, due to the limitations in Neo4j graph database cardinality constraints cannot

be enforced in the integrated approach. Such challenges can be mitigated in the layered

approach by writing additional logic in programming languages such as Java, Python

for specifying edge uniqueness and cardinality constraints.

The use of FLASc for loading data from heterogeneous sources becomes more

evident while using the layered approach. As shown in Table 8.4 only a limited number

of integrity constraints can be enforced in a layered approach without using FLASc.

The support for integrity constraints such as node property uniqueness, mandatory node

and edge property constraints are by default provided by Neo4j. Other constraints

cannot be enforced without the intensional and extensional information captured in the

graph schemas generated by FLASc. In general, the support for integrity constraints

depends on the capabilities provided by the underlying graph database in the absence of

a robustly defined graph schema.

The integration of FLASc and ETL design pattern suggests the generazibility of

our approach, as data from heterogeneous sources can be transformed and loaded into

different labeled property graph databases. As shown in Figures 8.10 and 8.12, while

using our approach the only stage that differs in loading data-sets from heterogeneous

sources is the parse process in extract stage. The parse process requires the use of

specific APIs for reading different data formats. All other stages for loading data into

the Neo4j graph database remain the same. Similarly, in scenarios where data has to be

transformed and loaded into graph databases other than Neo4j, the load stage needs to

be altered so that APIs specific to the database platform can be utilized, transform stage

in all scenarios remain the same.
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8.6.1 Limitations

As shown in Table 8.4 graph schemas generated by FLASc provide the ability to enforce

several useful integrity constraints. However, other constraints relationship types is

not covered in our approach. Relationship types represent the nature of relationships

such as inheritance, association, composition and realisation, between nodes of a graph

database. The enforcement of such constraints is not supported by FLASc in its current

state. Furthermore, FLASc cannot be compared with other conceptual modeling tools

such as entity-relationship diagrams (ERD) and unified modeling language (UML)

diagrams as these tools support the specification of relationship types.

The main motive of FLASc is to assist in the design of robust conceptual graph

schemas so that the soundness of logical and physical graph schemas can be ensured.

FLASc generated conceptual graph schemas can preciously capture the intensional

information. Relationship types are edge related properties [27]; hence can be classified

as extensional information. These properties can be easily captured in the logical

graph schema. For instance, by altering Definition 22, the logical graph schema can be

enriched to support extensional information such as relationship types.

8.6.2 Conclusion and Future work

The scope of our study is limited to the Neo4j graph database. Therefore, the per-

formance evaluation of using our approach for transforming and loading data-sets into

other graph databases is not discussed. We consider this as future work where FLASc

can be utilised for evaluating the coverage of integrity constraints offered by other

graph databases provided by vendors such as Oracle [52], Apache Tinkerpop [53] and

TigerGraph [223]. We intend to work on extending FLASc to support other integrity

constraints such as cardinality constraints, relationship types and functional depend-

encies. The support of such constraints can enable FLASc to represent visual models
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expressed in languages such as Entity relationship diagram (ERD), Unified Modeling

Language (UML) and System Modeling Language (SysML).

Moreover, using the FLASc extended ETL design pattern, visual models expressed

as ERD, UML or SysML diagrams related to software development projects can be

imported into graph databases. Storing software development visual models in graph

databases provides the additional advantages of tractability and efficient database

manageability, such as automatically identifying inconsistencies across all project

diagrams.

In its current state our formal algebra FLASc supports the creation of robustly

defined graph schemas that captures the intensional and extensional information. A

natural extension to this work is the proposal of a formal schema creation language.

We intend to combine our novel query language proposed in [220] with FLASc to

propose a graph schema creation language. In [220] we propose the novel formalims of

conjunctive queries and union of conjunctive queries extended with Tarksi’s algebra

(CQT/UCQT) for extracting data stored in a graph database. This language can be

further combined with FLASc for creating a novel graph schema creation language.

A main advantage of such an approach is the ability to use restricted form of first-

order logic (conjunctive queries) while defining a graph schema which also makes our

approach compatible with object role modeling language proposed in [230]. This will

further assist in the industry wide initiative of standardizing query language for graph

databases.



Chapter 9

Discussion and Conclusions

9.1 Introduction

Graph databases are ideal for handling highly interconnected data-sets. By using

graph databases, real-world entities and relationships between them can be modeled

as graphs. Data stored in graph databases can be inferred more efficiently when

compared to relational databases [231, 232]. However, there exist several challenges

that have obstructed the industry-wide adoption of graph databases. The literature review

presented in Chapter 2 enables us to identify that theoretical language formalisms used

by existing benchmarks for comparing graph query languages are not expressive enough.

We also identified that existing graph database modeling approaches do not provide

mechanisms to construct robust graph schemas.

In Chapters 5 and 6 we propose the novel formalisms of CQT and UCQT that

are formed by extending conjunctive queries and union of conjunctive queries with

Tarski’s algebra. We present the construction of an integrated framework by considering

common graph query patterns and use novel formalisms to construct benchmark queries.

These benchmark queries are then used to compare the expressiveness of two practical

graph query languages Cypher and PGQL objectively. The Airbnb case study presented

192
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in Chapters 3 and 4 is used as a common data-set for formulating the comparison

queries. Our study serves as a formal basis for comparing and integrating contemporary

graph query languages and assists projects such as ISO/IEC 39075.

In Chapters 7 and 8 we present FLASc a formal algebra that assists in formulating

conceptual and logical graph schemas for labeled property graph databases. We illustrate

the integration of FLASc with the well-known Extract-Transform-Load design pattern.

We demonstrate the use of our approach to ensure data consistency while systematically

transforming and loading data-sets from heterogeneous sources into a graph database

such as Neo4j. These data-sets have been adopted from cases studies presented in

Chapters A, B, 3 and 4. Overall, our approach displays the integration of conceptual,

logical, and physical data modeling stages currently absent in existing graph database

technologies.

The formalism related to graph schema and graph database as presented in

Chapters 3 and 4 serves as a basis for constructing the integrated framework for query

language comparison proposed in Chapters 5 and 6. Furthermore, the schema driven

data loading and analytics approach presented in Chapter 4 enabled us to realized the

importance of graph schema. Hence the design of formal algebra FLASc presented in

Chapters 7 and 8 is driven by the findings from Chapter 4.

9.2 Major findings of this work

Chapters 5, 6, 7, and 8 represent the major contributions and work done for the comple-

tion of this thesis. The findings and insights obtained from these works are presented in

the following sections.
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9.2.1 Practical and Comprehensive Formalisms for Modeling Con-

temporary Graph Query Languages (Chapter 6)

There are three main research objectives of manuscript 1 presented in Chapter 6. The

first research objective is related to the proposal of a novel theoretical language formal-

ism that can be used for evaluating the expressiveness of practical graph query languages.

We have discussed the syntax and semantics of CQT and UCQT in Sections 6.4 and 6.5

respectively. For addressing the second research objective in Section 6.6 we present

the construction of an integrated framework by using the novel formalisms of CQT

and UCQT. Finally, the third research objective demonstrates the use of an integrated

framework to compare practical graph query languages Cypher and PGQL as presented

in Sections 6.7 and 6.8 respectively. Major contributions and findings obtained after

addressing the research objectives are summarized as follows.

Integrated framework for comparing graph query languages

The integrated framework presented in Section 6.6 assists in performing an in-depth

examination of existing practical query languages. Furthermore, the two novel form-

alisms of CQT and UCQT presented in Sections 6.4 and 6.5 enable us to express

graph navigation queries formed of cyclic and acyclic graph query patterns as shown in

Figures 9.1, 9.2, 9.3 and 9.4.

Friday, 18 September 2020 5:24:14 PM - Document1 - Word

Figure 9.1: Plain cycle pattern

The graph navigation queries formed by using the cyclic and acyclic graph query
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Friday, 18 September 2020 5:24:14 PM - Document1 - Word

Figure 9.2: Petal pattern

Friday, 18 September 2020 5:24:14 PM - Document1 - Word

Figure 9.3: Flower pattern

Figure 9.4: Bouquet pattern

patterns cannot be expressed in existing theoretical language formalisms. The analysis

based on chain shaped graph query patterns presented in Section 6.7 reveals limitations

of both Cypher and PGQL. For instance, Cypher does not allow the use of Kleene star

over the concatenation of two or more edge labels; this finding is consistent with [32].

Both Cypher and PGQL support the use of union operator over edge labels only in two

cases: when the inverse operator has not been applied at all or when the inverse operator

has been applied over all the edge labels.
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The integrated framework utilizes the graph schema of a problem domain to formu-

late meaningful benchmark queries that can be used to evaluate the expressiveness of

different graph database query languages objectively. This can be achieved by generat-

ing database instances on different graph databases by using the same graph schema.

For instance, comparative study between Cypher and PGQL presented in Sections 6.6

and 6.7 of Chapter 6 uses the same graph schema presented in Figure 6.3 to instantiate

graph databases in Neo4j and Oracle. The graph schema is then used to formulate

benchmark queries that are executed on both the systems.

The integrated framework can serve as a tool for creating and evaluating future

graph query languages and can be used by the projects such as LDBC Task force [233]

and ISO/IEC 39075. The novel formalisms of CQT and UCQT are more expressive than

existing formalisms. The novel formalisms can be used to formulate chain and cycle

shaped graph query patterns for expressing graph pattern matching and graph navigation

queries as discussed in Section 6.6 of Chpater 6. Authors [188, 55, 35] suggest that

chain and cycle shaped graph query patterns are integral for expressing more complex

graph query patterns. Therefore, by using the formalisms of CQT and UCQT, more

expressive benchmarks queries can be created for evaluating the expressiveness of graph

query languages.

A comprehensive and objective comparison of Cypher and PGQL

We present a detailed comparison of two contemporary graph query languages Cypher

and PGQL. As discussed in Section 6.7.3 our analysis shows that Cypher is more

expressive than PGQL for graph pattern matching queries due to the presence of explicit

UNION clause. For graph navigation queries PGQL is more expressive than Cypher

due the presence of the PATH clause. In PGQL the use of PATH clause along with

the MATCH clause enables the application of Kleene star over complex structures such

as chains, trees, stars and star chains. Cypher on the other hand, does not provide
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such functionality and has limited expressiveness concerning graph navigation queries.

Cypher is certainly more useful for searching sub-graphs in a graph databases. PGQL on

the other hand is useful for navigating through the graph database. For graph navigation

Cypher uses no-repeated edge isomorphism based semantics therefore, Cypher cannot

output all existing paths in a graph database. The ability to output paths is only provided

by Cypher and since PGQL uses arbitrary path semantics outputting paths can be

problematic as infinite paths can be returned.

Our comparative study also shows that concerning graph navigation queries, cyclic

and acyclic graph query patterns cannot be expressed in both Cypher and PGQL. As

mentioned in [166, 77, 54] occurrence of cyclic and acyclic graph query patterns are

not common in real-world data-sets. Therefore, practical graph query languages do not

provide the ability to express such patterns. However, searching for such graph query

patterns can be vital in graph database application fields such as bioinformatics and

chemistry where for instance, a user might be interested in searching for the existence

of long polymer chains of arbitrary-length that are formed of repeating acyclic or cyclic

structures [31, 6].

Syntactic and semantic equivalence: As discussed in Section 6.4.5 formalisms of

CQT and UCQT can be used to show syntactic equivalence of queries. However, as

discussed in Section 6.5.4 query equivalence cannot be shown unless the evaluation and

output semantics used by graph database engines are the same. Graph query languages

use different evaluation and output semantics; therefore, to support interoperability

between different graph query languages, vendors must provide means to enforce

different evaluation semantics. As shown in Table 6.7 Cypher supports the enforcement

of homomorphism based semantics for graph pattern matching queries. Similarly,

PGQL supports the enforcement of isomorphism based semantics for graph pattern

matching queries. A major limitation is observed for graph navigation queries where

both Cypher and PGQL do not support the enforcement of similar evaluation semantics.
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A primary reason for this because the result set of a graph navigation query may contain

infinite paths if cycles exist in a graph database and appropriate evaluation semantics

are not followed. Our this finding is also consistent with findings reported in [32, 25].

9.2.2 FLASc: A Formal Algebra for Labeled Property Graph

Schema (Chapter 8)

There are two research questions addressed in Manuscript 2 presented in Chapter 8. An-

swering the first research enables us to propose our formal algebra FLASc. We present

the syntax and semantics of FLASc in Section 8.3. Answering the second research

question enables us to propose the integration of FLASc with the Extract-Transform-

Load design pattern as presented in Sections 8.4 and 8.5. FLASc integrated ETL design

pattern assists in the systematic import of data-sets from heterogeneous sources into

graph database by ensuring data consistency and integrity. Major contributions and

findings are as follows.

An algebra for generating robust conceptual graph schemas

The algebra FLASc is based on conceptual graphs presented by Sowa [47, 48, 49, 50].

In Section 8.3 we illustrate the use of FLASc for creating well-formed conceptual graph

schemas from basic conceptual graph schemas. By using FLASc a user can define basic

conceptual graph schemas, which are based on requirements of the problem domain.

FLASc can formulate well-formed conceptual graph schemas from basic conceptual

graph schemas by using the operators for JOIN and DETACH as discussed in Section ??.

These two operators of FLASc ensure that the problem domain’s intentional information

is well captured in the conceptual graph schema. The extensional information in the

form of mandatory, optional, and unique properties are encoded in the conceptual graph

schema at the logical modeling stage as presented in Section ??. The generation of
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database creation scripts in the physical modeling stage is driven by the conceptual and

logical graph schemas formulated by using FLASc as presented in Section ??. The

formal approach provided by FLASc for formulating conceptual graph schemas ensures

their robustness which is an advancement over existing tools. Overall, our approaches

present the integration of conceptual, logical, and physical modeling stages, which is

lacking in contemporary graph databases. The graph schemas formulated using FLASc

can be used for ensuring data consistency and integrity in graph databases. Furthermore,

a formal approach used in FLASc can be used in studying and designing future data

definition languages for contemporary graph databases.

Systematic import of data-sets into graph databases

Enforcement of robust integrity constraints using FLASc: The conceptual and lo-

gical graph schema helps enforce several applicable integrity constraints. Schemas

formulated by FLASc ensure that both graph entity integrity and semantic integrity con-

straints can be enforced as presented in Section ??. The use of graph schemas is evident

while enforcing semantic integrity constraints. This is because enforcing such integrity

constraints requires the knowledge of relationships between entities in data-sets; this

finding is consistent with [134, 135]. Semantic constraints such as edge, graph and path

pattern constraints cannot be enforced without knowledge about data-sets relationships.

The majority of integrity constraints discussed in studies such as [81, 46, 44] can be

enforced using conceptual and logical graph schemas formulated by FLASc.

Integration of FLASc and ETL design pattern: As presented in Section ??

the integration of FLASc with the Extract-Transform-Load design pattern illustrates

the practical application of our approach. We use the intensional and extensional

information captured in the graph schemas to assist in the transform stage of the design

pattern as shown in Figure 8.8. Using the graph schemas formulated by FLASc database

creation scripts can be created that contain the integrity constraints hence ensuring
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data consistency and integrity. Furthermore, the topology of database scripts is driven

by the graph schema. The use of ETL design pattern facilitates the utility of our

approach for loading data-sets into other graph databases, including Oracle [52] and

TigerGraph [223] that follow the labeled property graph data model.

Transforming and loading data-sets from heterogeneous sources: The formal

basis for FLASc and its integration with the ETL design pattern suggests that the data

from heterogeneous sources can be transformed and loaded into several graph database

by using our approach. We consider three case studies related to cyber-physical systems,

big data analytics and tourism as presented in Sections ??, ?? and ?? respectively. The

only factor that differs in loading these three diverse data-sets is the Extract phase’s

parse process.
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Figure 9.5: ETL stages shown as Data flow diagram to upload BiDaML diagram data-set
into Neo4j
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Figure 9.6: ETL stages shown as Data flow diagram to upload P2660.1 data-set into
Neo4j

As shown in Figures 9.5 and 9.6 the parse process uses different APIs for reading

data from heterogeneous sources. All other stages for loading data into the Neo4j graph

database remain the same. Similarly, suppose data has to be transformed and loaded
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into a database other than Neo4j. In that case, only the Load stage needs to be altered

so that APIs specific to the database platform can be utilized. The transform stage in all

the scenarios as mentioned above remains the same and consistent. This demonstrates

the generalizability of our approach, since by using the FLASc integrated ETL design

pattern can be used to load data-sets from heterogeneous sources into a graph database.

Furthermore, our approach is not limited to a specific data-set format and a particular

graph database.

As presented in Section 8.6 the use of FLASc for loading data-sets from heterogen-

eous sources becomes more evident when using the layered approach. As shown in

Table 8.4 only a limited number of integrity constraints can be enforced in a layered

approach without using FLASc. As shown in Table 8.3 structured data-sets such as

provided in the Airbnb case study exist in the form of CSV files and contain intensional

information as primary and foreign keys. However, semi-structured data provided in

BiDaML and P2660.1 data-sets require predefined structural information for systematic

transformation and loading. The intensional information is facilitated by using FLASc

hence ensuring data consistency and integrity while using the layered approach.

9.2.3 Practical and theoretical implications of this research

The work presented in this thesis serves as a bridge between existing theoretical literature

related to graph database and the contemporary graph database technologies provided

by the industry. On one hand there are many studies such as [62, 33, 76, 30, 72, 73, 71,

65, 36, 37, 34] that focus on theoretical language formalisms for graph databases. On

the other hand there exist several practical graph query languages proposed by industry.

Our research presented in Chapter 6 provides an explicit mapping between existing

theoretical language formalisms and practical query languages for graph databases. Our

study also enables us to identify common characteristics shared by theoretical language
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formalisms and practical graph query languages. Furthermore, our finding that existing

formalisms are not expressive enough lead us to propose more expressive formalisms

of CQT and UCQT. As presented in Section 6.6 these formalisms can be used to create

and evaluate future query languages for graph databases.

Similarly, there exist several studies that only focus on logical and physical modeling

aspects of graph databases. As mentioned in Section 8.2 conceptual modeling is

an important data modeling aspect that assists in capturing data semantics of any

problem domain. However, existing graph databases opt to be either schema-less or

schema optional furthermore, conceptual modeling is conducted in an ad-hoc manner.

Conceptual modeling has been widely studied in the literature as conceptual graphs [47,

48, 49, 50]. In our research presented in Chapter 8 we propose a formal algebra FLASc

that can be used to generate robust conceptual and logical graph schemas for labeled

property graph databases. The design of FLASc is motivated from conceptual graph and

our approach illustrates the integration of conceptual, logical and physical modeling

stages for graph databases. Moreover, the integration of FLASc with Extract-Transform-

Load design pattern increases the efficiency of transforming and loading data-sets from

heterogeneous sources into graph databases.

Our work also shows a strong correlation between graph schemas and the design

of benchmark queries. Graph schemas provide the context of the problem domain;

furthermore, by utilizing the intensional and extensional information stored in a graph

schemas meaningful benchmark queries are generated. Using graph schemas for

generating benchmark queries reduces the total number of queries generated, but not

the coverage of all query classes. Hence, our work assists in generating more efficient

benchmark queries that can be used to evaluate different query languages.
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9.3 Limitations of this work

9.3.1 Practical and Comprehensive Formalisms for Modeling Con-

temporary Graph Query Languages (Chapter 6)

Comparison of data values in paths

We have considered Tarski’s algebra for comparing the graph navigation features of

query languages. However, formalisms such as Tarski’s algebra are purely navigational

and do not support comparisons of data values in path expressions [34]. We intend to

include formalisms used in query languages such as GXPath, regular expressions with

memory (REM), walk logic and register logic [65, 34, 73, 165, 72] along with Tarski’s

algebra for graph navigation in future studies. Furthermore, we have also not considered

more expressive formalisms such as ECRPQs that enable path comparisons and context-

free paths in our study. This is because features provided by such formalisms are not yet

present in all practical query languages. Moreover, returning paths can be problematic

if cycles exist in graph databases, as infinite paths can be returned if arbitrary path

semantics are used. Another important concept of the algorithmic complexity associated

with graph query languages and the extended formalism is not considered in this study,

and we see it as future work.

Coverage of operation in CQT and UCQT

We have only considered operations such as natural join, selection, projection and

union. Other operations such as difference is computationally more expensive [32].

As a result difference clause is not implemented yet in Cypher and PGQL but similar

functionality can be simulated by using the NOT EXISTS clause along with WHERE

clause. Cypher also allows the use of NOT keyword to simulate difference operation

with a restriction that the pattern specified in the WHERE NOT clause must represent
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an eulerian path [171]. Cypher and PGQL do not have such restrictions in the WHERE

NOT EXISTS clause.

The use of EXISTS and NOT EXISTS clause represents semi join and anti semi

join respectively, that correspond to the semi join algebra and its equivalent formalism

guarded fragments (GF) of first order logic [207, 63, 208, 209]. We do not consider

the study of guarded fragment of first order logic in this study. Furthermore, we

have also not considered other relational algebra operations such as outer join and

aggregate functions. Outer join clause OPTIONAL MATCH is only present in Cypher

while aggregate functions are used after the result set is returned by a pattern matching

algorithm.

9.3.2 FLASc: A Formal Algebra for Labeled Property Graph

Schema (Chapter 8)

Integrity constraints

FLASc provides the ability to enforce several useful graph entity integrity and semantic

constraints; however, other constraints such as cardinality constraints, relationship types

and functional dependencies are left out. Cardinality constraints are vital for ensuring

the minimum and maximum number of edges between any two nodes of a graph

database. Furthermore, expressiveness of graph schema formulated by FLASc cannot

be compared with other conceptual modeling tools such as Entity-relationship diagrams

(ERD) [234] and unified modeling language (UML) [235] diagrams. This is because

tools such as ERDs and UML also support the specification of relationship types such

as inheritance, association and composition. The enforcement of such constraints is not

supported by FLASc in its current state.

However, the motive of FLASc is to assist in the design of robust conceptual graph

schemas with the aim to preciously capture the intensional information. The number of
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allowed edges between nodes and the type of relationships are properties related to the

entities of the graph database; hence, they can be classified as extensional information.

These properties can be easily captured at the logical modeling stage. For instance, by

altering Definition 22 presented in Chapter 8 the logical graph schema can be enriched

to support extensional information such as cardinality and relationship types.

Diversity of graph databases

The scope of our study is limited to the Neo4j graph database. Therefore, the per-

formance evaluation of using our approach for transforming and loading data-sets into

other graph databases is not discussed. We consider this as future work where FLASc

can be utilised for evaluating the coverage of integrity constraints offered by other

graph databases provided by vendors such as Oracle [52], Apache Tinkerpop [53], and

TigerGraph [223].

9.4 Conclusion

This thesis is primarily focused on achieving the following two research objectives:

RO1: Extend the existing theoretical language formalisms to propose novel formalisms

that can be used to build benchmark queries for comparing the expressiveness of

graph query languages.

RO2: Enhance the existing graph data modeling approaches and propose novel methods

for constructing graph schemas so that data consistency and integrity can be

ensured in labeled property graph databases.

For achieving RO1 we present an extension of conjunctive queries and union of

conjunctive queries with Tarski’s algebra in Chapter 6. We have proposed novel

formalisms of CQT and UCQT that provide a formal basis to compare, integrate and
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model practical graph query languages. In order to objectively compare practical graph

query languages, a framework is proposed that integrates the extended formalisms with

common graph query patterns to generate a comprehensive set of benchmark queries.

This process is the basis of a comparative study of two practical graph query

languages Cypher and PGQL. Our analysis shows that Cypher is more expressive than

PGQL for graph pattern matching queries due to the presence of explicit UNION clause.

For graph navigation queries PGQL is more expressive than Cypher due the presence

of the PATH clause. In PGQL the use of PATH clause along with the MATCH clause

enables the application of Kleene star over complex structures such as chains, trees,

stars and star chains. Cypher on the other hand does not provide such functionality and

has limited expressiveness concerning graph navigation queries.

Our study also shows that with respect to graph navigation queries, cyclic and acyclic

graph query patterns cannot be expressed in both the languages. Such graph query

patterns are important because they may have use in specialised graph databases used in

fields like chemistry, biology and astronomy. This study’s shape-based analysis can help

identify common and exclusive characteristics for other currently available practical

graph query languages such as SPARQL, GSQL, SQL/PG and Gremlin. Furthermore,

the extended formalism and the integrated framework can be utilised to model future

graph query languages; therefore, they serve as a basis for upcoming standards like

IEC/ISO 39075.

For achieving RO2, we in Chapter 8 present a formal algebra FLASc for generating

robust graph schema for labeled property graph databases. We illustrate the integration

of FLASc with the Extract-Transform-Load design pattern that assists in systematic

transformation and loading of data-sets from heterogeneous sources into graph databases

such as Neo4j. Graph schemas generated by FLASc assist in specifying integrity

constraints in the database creation scripts, ensuring data consistency and integrity.

Our approach presents the integration of conceptual, logical and physical modeling
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stages for graph databases. FLASc enables users to capture requirements of any given

problem domain as basic conceptual graph schemas. The JOIN and DETACH operators

provided by FLASc can then be used to construct robust conceptual graph schemas from

basic conceptual graph schemas. Properties associated with nodes and edges of graph

schema are specified at the logical modeling stage. Finally, in the physical modeling

stage, the enforcement of integrity constraints and design of database creation scripts

are driven by FLASc generated graph schemas.

The integration of FLASc with the Extract-Transform-Load design pattern illustrates

the practical application of our approach. This is demonstrated by using three diverse

case studies related to cyber-physical systems, big data analytics and tourism. The

intensional and extensional information captured in the graph schema assists in the

transform stage of the data loading process. This information can be used to enforce

several integrity constraints on the data-sets being loaded into a graph database.

9.5 Future directions

As presented in Chapter 6 the use of conjunctive queries based formalism for graph

pattern matching reveal similarities between query languages for graph and relational

databases. Concerning difference operation, graph query languages such as Cypher and

PGQL implement this operation by using semi-join algebra and equivalent guarded

fragment of first-order logic. For graph navigation queries, authors in [74, 55, 14] also

suggest similarities between Tarski’s algebra and semi-join algebra. Semi join algebra

can be particularly useful in query optimisation. Hence, we consider the study of graph

query languages based on semi-join algebra as future work. Furthermore, insights from

the work presented in this thesis can be used to build tools for supporting interoperability

between relational database query language SQL and graph database query languages

such as Cypher, PGQL, GSQL and SQL/PG. Initial ideas for developing such a tool
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called as FLUX have already been published and presented as Appendix C and D.

We intend to work on extending FLASc to support other integrity constraints

such as cardinality constraints, relationship types and functional dependencies. The

support of such constraints can enable FLASc to represent visual models expressed

in languages such as Entity relationship diagram (ERD), Unified Modeling Language

(UML) and System Modeling Language (SysML). Using the FLASc extended ETL

design pattern, visual models expressed as ERD, UML or SysML diagrams related to

software development projects can be imported into graph databases. Storing software

development visual models in graph databases provides the additional advantages of

tractability and efficient database manageability, such as automatically identifying

inconsistencies across all project diagrams.

Another important future direction is the integration of FLASc with the novel

formalisms of CQT and UCQT. Due to the lack of a standard query languages for graph

databases, these formalisms can be useful in studying and comparing the enforcement

of graph entity and semantic integrity constraints provided by existing graph languages.

For instance, the MATCH clause in queries 26, 27 and 28 presented in Section 8.4 of

Chapter 8 represent graph and navigation patterns discussed in Section 6.4 of Chapter 6.

These queries can be expressed by using the novel formalism of CQT and UCQT. The

intensional and extensional information captured by FLASc generated graph schemas

can be formally expressed in the theoretical language formalisms of CQT and UCQT.

Therefore, integrating FLASc with CQT and UCQT assists in formalising data definition

languages for graph databases.

We intend to work on a graph schema driven template query generation tool. We

can observe from our work presented in Chapter 6 that graph schemas assist in creating

benchmark queries. The schema provides the context for creating the benchmark

queries in the integrated framework. Therefore, the graph schema driven template query

generation tool requires the merger of FLASc integrated ETL design pattern presented
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in Chapter 8 with CQT and UCQT based integrated framework presented in Chapter 6.

The formalisms identified in this research will assist in creating the tool that can be used

to test the expressiveness of other graph query languages such as SPARQL, Gremlin,

SQL/PG and GSQL. The automatic generation of query language adapters is another

interesting future direction of this work, which will help the community’s shared goal

of high interoperability between available graph database technologies.
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cardinality constraints on a neo4j graph database,” Future Generation Computer
Systems, vol. 115, pp. 459–474, 2021.

[85] P2660.1, ““recommended practices on industrial agents: Integration of software
agents and low level automation functions.”,” 2020, accessed: 2021-03-16.
[Online]. Available: https://standards.ieee.org/standard/2660_1-2020.html

[86] H. Khalajzadeh, M. Abdelrazek, J. Grundy, J. Hosking, and Q. He, “Bidaml:
A suite of visual languages for supporting end-user data analytics,” in 2019
IEEE International Congress on Big Data (BigDataCongress). IEEE, 2019, pp.
93–97.

[87] Airbnb, “Inside airbnb: Adding data to the debate,” 2018, accessed: 2019-02-03.
[Online]. Available: http://insideairbnb.com/get-the-data.html

[88] I. F. Cruz, A. O. Mendelzon, and P. T. Wood, “A graphical query language
supporting recursion,” in ACM SIGMOD Record, vol. 16, no. 3. ACM, 1987,
pp. 323–330.

[89] ——, “G+: Recursive queries without recursion,” in Proceedings of the Second
International Conference on Expert Database Systems, 1988, pp. 355–368.

[90] B. Amann and M. Scholl, “Gram: a graph data model and query languages,” in
Proceedings of the ACM conference on Hypertext, 1993, pp. 201–211.

[91] M. Gemis and J. Paredaens, “An object-oriented pattern matching language,”
in International Symposium on Object Technologies for Advanced Software.
Springer, 1993, pp. 339–355.

[92] J. Hidders and J. Paredaens, “Goal, a graph-based object and association lan-
guage,” in Advances in Database Systems. Springer, 1994, pp. 247–265.

https://standards.ieee.org/standard/2660_1-2020.html
http://insideairbnb.com/get-the-data.html


REFERENCES 217

[93] M. Gyssens, J. Paredaens, and D. V. Gucht, “A graph-oriented object model
for database end-user interfaces,” in Proceedings of the 1990 ACM SIGMOD
International Conference on Management of data, 1990, pp. 24–33.

[94] R. H. Güting, “Graphdb: Modeling and querying graphs in databases,” in VLDB,
vol. 94. Citeseer, 1994, pp. 12–15.

[95] M. Graves, E. R. Bergeman, and C. B. Lawrence, “Querying a genome database
using graphs,” in Proceedings of the 3th International Conference on Bioinform-
atics and Genome Research, 1994.

[96] J. Paredaens, P. Peelman, and L. Tanca, “G-log: A graph-based query language,”
IEEE Transactions on Knowledge and Data Engineering, vol. 7, no. 3, pp.
436–453, 1995.

[97] M. Levene and G. Loizou, “A graph-based data model and its ramifications,”
IEEE Transactions on Knowledge and Data Engineering, vol. 7, no. 5, pp.
809–823, 1995.

[98] N. M. Alex A., “Ldbc use case analysis and choke point analysis,” 2013,
accessed: 2019-03-01. [Online]. Available: http://ldbcouncil.org/sites/default/
files/LDBCD3.3.1.pdf

[99] S. Abiteboul, D. Quass, J. McHugh, J. Widom, and J. L. Wiener, “The lorel query
language for semistructured data,” International journal on digital libraries,
vol. 1, no. 1, pp. 68–88, 1997.

[100] M. Fernández, D. Florescu, A. Levy, and D. Suciu, “Declarative specification of
web sites with s,” The VLDB Journal—The International Journal on Very Large
Data Bases, vol. 9, no. 1, pp. 38–55, 2000.

[101] P. Buneman, M. Fernandez, and D. Suciu, “Unql: a query language and algebra
for semistructured data based on structural recursion,” The VLDB Journal, vol. 9,
no. 1, pp. 76–110, 2000.

[102] A. Poulovassilis and S. G. Hild, “Hyperlog: A graph-based system for database
browsing, querying, and update,” IEEE Transactions on Knowledge and Data
Engineering, vol. 13, no. 2, pp. 316–333, 2001.

[103] R. Giugno and D. Shasha, “Graphgrep: A fast and universal method for querying
graphs,” in Object recognition supported by user interaction for service robots,
vol. 2. IEEE, 2002, pp. 112–115.

[104] G. Weikum, G. Kasneci, M. Ramanath, and F. Suchanek, “Database and
information-retrieval methods for knowledge discovery,” Communications of the
ACM, vol. 52, no. 1, pp. 56–64, 2009.

http://ldbcouncil.org/sites/default/files/LDBC D3.3.1.pdf
http://ldbcouncil.org/sites/default/files/LDBC D3.3.1.pdf


REFERENCES 218

[105] S. Amer-Yahia, L. Lakshmanan, and C. Yu, “Socialscope: Enabling information
discovery on social content sites,” arXiv preprint arXiv:0909.2058, 2009.

[106] A. Dries, S. Nijssen, and L. De Raedt, “A query language for analyzing networks,”
in Proceedings of the 18th ACM conference on Information and knowledge
management. ACM, 2009, pp. 485–494.

[107] R. Ronen and O. Shmueli, “Soql: A language for querying and creating data in
social networks,” in 2009 IEEE 25th International Conference on Data Engin-
eering. IEEE, 2009, pp. 1595–1602.

[108] H. He and A. K. Singh, “Query language and access methods for graph databases,”
in Managing and mining graph data. Springer, 2010, pp. 125–160.

[109] M. San Martın, C. Gutierrez, and P. T. Wood, “Snql: A social networks query
and transformation language,” cities, vol. 5, p. r5, 2011.

[110] S. Sakr, S. Elnikety, and Y. He, “G-sparql: a hybrid engine for querying large
attributed graphs,” in Proceedings of the 21st ACM international conference on
Information and knowledge management. ACM, 2012, pp. 335–344.

[111] Apache, “Gremlin query language apache tinkerpop,” accessed: 2021-01-
02. [Online]. Available: https://tinkerpop.apache.org/docs/current/tutorials/
gremlin-language-variants/

[112] OrientDB, “Open source graph database,” 2010, accessed: 2018-10-01. [Online].
Available: https://www.orientdb.org/

[113] J. Hidders, “Typing graph-manipulation operations,” in International Conference
on Database Theory. Springer, 2003, pp. 394–409.

[114] W3C, “Resource description framework,” 2021, accessed: 2021-02-27. [Online].
Available: https://www.w3.org/RDF/

[115] P. T. Wood, “Query languages for graph databases,” ACM Sigmod Record, vol. 41,
no. 1, pp. 50–60, 2012.

[116] C. Stadler, M. Saleem, A.-C. N. Ngomo, and J. Lehmann, “Efficiently pinpointing
sparql query containments,” in International Conference on Web Engineering.
Springer, 2018, pp. 210–224.

[117] D. Figueira, “Reasoning on words and trees with data,” Ph.D. dissertation, École
normale supérieure de Cachan-ENS Cachan, 2010.

[118] L. Segoufin, “Automata and logics for words and trees over an infinite alphabet,”
in International Workshop on Computer Science Logic. Springer, 2006, pp.
41–57.

https://tinkerpop.apache.org/docs/current/tutorials/gremlin-language-variants/
https://tinkerpop.apache.org/docs/current/tutorials/gremlin-language-variants/
https://www.orientdb.org/
https://www.w3.org/RDF/


REFERENCES 219

[119] M. Kaminski and N. Francez, “Finite-memory automata,” Theoretical Computer
Science, vol. 134, no. 2, pp. 329–363, 1994.
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Appendix A

Introduction to Manuscript 4

The ongoing fourth Industrial Revolution depends mainly on robust Industrial Cyber-

Physical Systems (ICPS). ICPS includes computing (software and hardware) abilities

to control complex physical processes in distributed industrial environments. Indus-

trial agents, originating from the well-established multi-agent systems field, provide

complex and cooperative control mechanisms at the software level, allowing us to

develop larger and more feature-rich ICPS. The IEEE P2660.1 standardisation project,

"Recommended Practices on Industrial Agents: Integration of Software Agents and Low

Level Automation Functions" focuses on identifying Industrial Agent practices that can

benefit ICPS systems of the future. A key problem within this project is identifying

the best-fit industrial agent practices for a given ICPS. This paper reports on the design

and development of a tool to address this challenge. This tool, called IASelect, is

built using graph databases and provides the ability to flexibly and visually query a

growing repository of industrial agent practices relevant to ICPS. IASelect includes

a front-end that allows industry practitioners to interactively identify best-fit practices

without having to write manual queries.
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B.1 Introduction

Industrial Cyber-physical systems (ICPS) are seen as a core ingredient in the 4th

Industrial Revolution [236], which complemented with emergent ICT technologies,

such as Internet of Things, Big Data, Cloud Computing and Data Analytics, promotes

the deployment of more interoperable, flexible, responsive and reconfigurable devices

and systems. ICPS contain deep integration of computational applications with physical

automation devices and are designed as networks of interacting cyber and physical

elements [237, 238, 236]. Each component of an ICPS integrates its physical hardware

function with a software (cyber) application acting as a virtual representation of its

tangible counterpart.

The Multi-Agent Systems paradigm, derived from distributed artificial intelligence,
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promotes distribution, decentralization, intelligence, autonomy and adaptation, contrib-

uting to achieve flexibility, robustness, responsiveness and re-configurability [239]. This

paradigm provides a fundamentally different way to design complex control systems

based on the distribution of intelligence and decentralization of control functions over

distributed autonomous and cooperative entities, called agents. Used in industrial con-

texts, agents, or more specifically Industrial Agents, can help to develop highly adaptive

ICPS. In industrial environments, and aligned with the ICPS principles, the intercon-

nection of intelligent software agents with the automation control devices, e.g., robots

and PLCs (Programmable Logic Controllers), assumes a crucial role. Usually, this

interconnection is created in a proprietary, case-by-case, and ad hoc manner. However,

the use of a standardized way to implement this interface can help achieve transparency,

interoperability, and scalability.

The IEEE P2660.1 standardization project, "Recommended Practices on Industrial

Agents: Integration of Software Agents and Low Level Automation Functions", has been

working on a methodology to rank and select best-fit Industrial Agent practices for the

interfacing between software agents and automation control devices. Previous work was

devoted to identifying the patterns derived from a survey of existing implementations

of industrial agents [240], and to assess their characteristics, using the ISO/IEC 25010

standards family as a starting point [160].

This paper describes the design and development of a tool called IASelect for im-

plementing the methodology to select recommended interfacing practices. IASelect

uses a graph database to store interfacing practices templates and their technological

instantiations along with their characterization according to a set of quality criteria. It

provides a front-end for users to interactively retrieve the best interface practice for a

particular application scenario. In particular, the primary contributions of this paper are:

1. The design and development of a graph database to store the available data on
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Industrial Agent practices. This approach provides several benefits including,

better data governance, data visualization, and interactive querying. A summary

of available industrial agent practices is discussed in Sec. B.2 and the design of

the graph database is presented in Sec. B.3.

2. The creation of query patterns and templates to allow industrial practitioners to

use and query graph databases more easily. These patterns allow more flexibility

than more static mechanisms like forms and spreadsheets. We discuss the design

and development of these patterns in Sec B.3.

3. An implementation of the proposed graph database and query patterns using

Neo4j and Java into a tangible tool called IASelect. This GUI-based tool can

be used by both users and administrators to identify practices and/or manage the

knowledge base. The implementation is presented in Sec. B.4.

B.2 Background

Software agents can work with low-level automation functions in a variety of ways.

A survey of commonly-encountered practices helped the P2660.1 working group to

develop a set of generic interface practices clustered according to two dimensions,

as illustrated in Fig. B.1 [2]. Coupling, shown on the X-axis, is dependent on the

integration between high-level control (agents) and low-level control. Tight coupling

indicates a direct and permanent coupling, as in the use of remote procedure calls. Loose

coupling involves a mediated connection, such as through a queue. The Y-axis pertains

to the location of the agent. Agents can be on-device, where they run on the same

controller as the low-level functions. Hybrid systems have agents running externally

rather than on the same controller. The survey carried out by the working group
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classified available practices into four primary interface practices: Tightly Coupled–

Hybrid, Tightly Coupled–On-device, Loosely Coupled–Hybrid and Loosely Coupled–

On-device. Each one of the generic interfacing practices shown in Fig. B.1 can be

instantiated using several different technologies.

On-device

Hybrid

Tightly coupled Loosely coupled

Direct call, HLC running 
remotely

Pub/sub, HLC running 
remotely

Pub/sub, HLC and LLC 
running in the device

Direct call, HLC and LLC 
running in the device

Direct call, HLC 
compiled with the 
LLC

Figure B.1: Interface patterns considering interaction mode and location levels of
abstraction. [2]

Each practice has an associated set of qualities or characteristics, which make it

more suitable for use in specific contexts. Selecting a best-fit interface practice for

a given system context, therefore, requires identifying these associated qualities for

each practice. The P2660.1 working group used the comprehensive yet generic set of

characteristics from ISO/IEC 25010 [159], formerly ISO/IEC 9126, as a starting point

to differentiate between practices. The ISO/IEC 25010 standard groups system qualities

into eight characteristics. Each characteristic is then further separated into multiple

sub-characteristics. Subsequently, a survey was conducted with a team of experts in the

domain to identify qualities that are most relevant to the field [160]. The survey found

that testability, availability, time behavior, interoperability, availability, fault-tolerance

and reusability emerged as the most important characteristics for the practices. Further

work conducted by the working group showed how specific measures from the standard

could be used to evaluate the practices [241]. In this paper, the characterization of
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practices and implementations is extended into a tool that allows stakeholders, especially

industry experts, to identify best-fit practices through the qualities that are most desirable

in their context.

There are existing tools used for managing and querying data sets for domains

similar to ICPS. For instance, in [242] authors discuss an approach to store information

related to security standards in relational databases and Structured Query Language

(SQL) is used for data retrieval. In [243], authors have discussed an approach to store

security requirements in a schema less XML database. However, a database with no

schema based restrictions has higher risk of data corruption. In [161], authors have

presented a tool to visualize requirements, and Neo4j database has been used to maintain

the graph structure. Similar kind of tools have also been used in other domains for

example in [6] where authors have proposed a tool for storing chemical compounds as

graphs and graph algorithms are used to search chemical structures over the database.

In [95], authors have proposed an approach based on graph databases for genome

sequencing. The approaches discussed so far, except [242] use graph theory concepts to

handle and inquiry data. In this paper, we present a tool that uses a graph database to

store the P2660.1 data set and, automates the analysis of existing interfacing practices

on user-defined selection criteria.

B.3 Designing a Graph Database for Selecting Indus-

trial Agent Practices

As data size increases, managing data with traditional tools such as spreadsheets

becomes a complicated task. Based on the law of entropy, an increase in data size

also means that over time, disorder in the data set will increase. Spreadsheets are too

cumbersome to maintain, primarily when shared and used by multiple stakeholders,
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such as users and administrators simultaneously. Database management systems serve

as an alternative for organizing large data sets. Furthermore, they assist in correlating

and analyzing collected data.

B.3.1 Rationale for using Graph Databases

Rational database management systems (RDBMS) are the most popular tools for

managing data. They have proven to be persistent in providing concurrency control

and integration mechanism for data since 1970s [68]. RDBMS are highly efficient in

handling large data banks. However, RDBMS have limited ability to capture the overall

semantics of a domain [244, 68]. Moreover, as the number of relationships between

data grows, RDBMS become inefficient in managing and querying data [67]. On the

other hand, Graph databases (GDBs) are gaining wide acceptance in the industry due

to there application in domains that deal with the querying and analysis of connected

data [68, 67, 23, 27, 25, 125]. A graph database contains nodes and edges where nodes

represent the entities and edges represent relationships between the entities [23, 67].

Together, nodes and edges capture the overall semantics of the domain. The resulting

structure is more straightforward and is at the same time more expressive than those

produced by RDBMS and Not Only SQL (NO-SQL) databases such as wide-column

stores, document stores and key-value stores [133, 8].

For searching data, a spreadsheet or a RDBMS performs a search and match oper-

ation. This operation represents a relational join between different tables to calculate

relationships at the time when a query is running. This operation tends to be computa-

tionally expensive in highly interconnected data-sets. Graph databases are more efficient

in such cases as the relationships between data are created at database creation stage and

are stored inside the database. Hence, the overhead of calculating relationships at the

time when data is being retrieved from the database is minimized in graph databases.
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Graph database solutions such as Neo4j are based on the property graph data

model [68, 27]. A property graph data model is more expressive than other graph

data models, such as the resource description framework (RDF) [114]. A property

graph stores information inside nodes and edges as key-value pairs which means that

information can be embedded inside relationships which is an advantage over the RDF

data model.

Another advantage of using graph databases is that they scale well. A property

graph data model supports multi-graphs where two nodes can be connected via multiple

edges with each edge containing separate information about the relationship between

the two nodes. Adding more information, therefore, does not require a refactoring

or restructuring of the database. Current graph database solutions such as Neo4j are

schema optional [38], which means that the graph database can easily accommodate

any structural changes. While there are higher chances of data corruption, this risk

can be mitigated by enforcing integrity constraints and writing additional logic in a

programming language like Java or Python. The use of such integrity constraints at the

database creation stage ensures data integrity and data consistency.

B.3.2 A Graph Database for Industrial Agent practices

The P2660.1 data set relates each interfacing practice to a score for specific system

qualities, some of which come from ISO/IEC 25010. Table B.1 shows the list of these

qualities. This mapping was represented as a two-dimensional adjacency matrix where

each mapping between a practice and a sub-characteristic was assigned a value, called its

weight. The adjacency matrix can be visualized as a graph where interfacing practice and

sub-characteristics are represented as nodes. Furthermore, the edge between a practice

and a sub-characteristic is labeled with the appropriate score for that relationship.
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Table B.1: System qualities mapped in the P2660.1 data set

Domain Function Maintenance Performance
Efficiency

Factory Automation
Building Automation
Energy

Monitoring
Control
Simulation

Re-usability
Capacity To Host
agents

Time behaviour
Scalability

Graph Schema for P2660.1 data set

Creating a graph database requires information about how data can be connected and

structure. This information is called a graph schema. A graph schema provides an

general view of the entire database by capturing its topology. Intuitively, nodes and

edges of the graph schema represent the node, and edge types of the graph database.

Node and edge types also assist in grouping together the nodes and edges of the graph

database later for searching and visualization.

Fig. B.2 shows the graph schema constructed using the P2660.1 data set. The schema

is a labeled directed graph where the node types represent the relevant characteristics

from Table B.1, as well as the two possible location levels (OnDevice and Hybrid).

The graph schema allows storing the weights on edges that reflect the scores as per the

P2660.1 data set. The direction of an edges shows that there exists a weighted mapping

from a practice to a characteristic. For example, in the graph schema in Fig. B.2 there is

an outgoing edge from hybrid practice and an incoming edge to maintenance.

Figure B.2: Graph Schema for storing information about practices
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A Graph Database for the P2660.1 data set

A graph database (GDB) is instantiated from its graph schema. Fig. B.3 represents the

graph database for the P2660.1 data set, instantiated from the graph schema in Fig. B.2.

Information related to nodes and edges of the graph database is contained as attributes

of these elements and are stored as key-value pairs. For example, the node with name

OT ∶ 1 represents a OnDevice tightly technique where the attributes key apiClient has

a value java assigned to it. Similarly, there are edges between nodes where attribute

key weight has a value assigned to it.

Figure B.3: Sample Graph Database representation of P2660.1 data set

B.3.3 Querying the P2660.1 Graph Database

In this research, we are using Neo4j as a graph database for storing data. To retrieve

data from the database we need to define the kind of data we want to extract. Neo4j

provides a declarative query language called Cypher [38] to retrieve data from the graph

database. Searching a graph database requires defining a sub-graph as a pattern to look

for within the database. This sub-graph is expressed using a graph pattern.
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A graph pattern assists in defining the sub-graph of interest so that similarly struc-

tured data can be extracted from the database. Structurally, a graph pattern is expressed

as a sub-graph of the graph schema. A pattern matching algorithm then uses the graph

pattern to search for the sub-graph over the graph database. For example, by referring

to the graph schema as in Fig. B.2 one can search for queries such as find all hybrid

techniques for factory automation domain which have been assigned weight greater

than 2. Such a query can be expressed as a graph pattern in Cypher as follows:

QUERY 29: Example of searching a graph pattern in the P2660.1 data-set
MATCH (h:Hybrid)-[w:WEIGHT]->(d:Domain)
WHERE w.value > 2
AND d.name = "Factory Automation"
RETURN *

The graph pattern is expressed in the MATCH clause of the query. A graph pattern

consists of node/edge types and node/edge variables. The node/edge types assist in

specifying the type of data, and the node/edge variables assist in accessing the node/edge

attributes of the graph database. The MATCH clause uses a pattern matching algorithm

to find all the matching sub-graphs in the graph database. The sub-graphs are further

restricted based on the filter conditions specified in the WHERE clause. Filter conditions

are set based on the attribute value stored in the database and are designed using the

node/edge variables. Finally, the RETURN clause outputs the sub-graph shown in Fig.

B.4 and marks the end of the query.

Figure B.4: Result of running Query 29 on the Graph Database shown in Figure B.3
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B.4 Implementation

Graph databases are at an early stage of industry-wide adoption. Moreover, users

working in domains such as cyber-physical systems and multi-agent systems may not

be familiar with graph database query languages like Cypher. Therefore, we have

developed a tool IASelect that assists in querying graph databases without requiring

a working knowledge of Cypher.

B.4.1 IASelect- Architecture

IASelect must feature several important qualities. We use the terminology from

ISO/IEC 25010 to list the following system characteristics:

• Functional suitability: Functionally, IASelect must provide features such as

the ability for administrators to manage the underlying database, and the ability

for users to query the database to rank available practices that are relevant to their

context.

• Usability: IASelect must be highly usable for both administrators and users.

It must allow users to enter information interactively and provide appropriate user

error protection, and also present the results clearly. The tool must be accessible

for multiple users from different sub-domains of industrial control.

• Availability: IASelect must be accessible to multiple users, possibly present

in different locations, at the same time.

• Portability: IASelect should be independent of the users’ computer configura-

tions.

Functional suitability is supported through the design of the database, as described

in Sec B.3, which allows all desired features to be included within the tool. The



Appendix B. IASelect: Finding Best-fit Agent Practices in Industrial CPS Using
Graph Databases (Manuscript 4) 243

SERVER
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Model Controller

NEO4J DATABASE

CLIENTDATA

REQUEST

RESPONSE

Figure B.5: Component Diagram for IASelect

architecture of IASelect, shown in Fig. B.5, supports all other characteristics.

To achieve high availability, IASelect is based on a client-server architecture.

The client side is a web-page that can be run on most machines (supporting portability).

The server runs both the Neo4j database and an application to handle requests from

the client. Decoupling the server side from the client’s machine allows us to (a) allows

users to use IASelect without installing any new software such as Neo4j, (b) control

the server side for both privacy and performance, and (c) allow for easily modifying or

scaling the server or the client side without affecting the other. The application server

provides a restful web service so that users can query graph database over the web.

Currently, the server application and database are deployed on a cloud data center.

For usability, which is a primary characteristic of IASelect, we embed a Model-

View-Controller (MVC) design pattern inside the client-server architecture. The client-

side web-page contains the View which can change depending on who the user is.

Currently, we support two views: the administrator view and user view. Administrators

can to update the database while users can only query it. At the time of writing, only

the user view has been fully integrated into IASelect. The Model and Controller are

java class objects which run on the server side application. The Controller class object

handles the conversion of requests from a View into Cypher queries, and the Model

class runs the queries on the Neo4j database. Using the MVC pattern support scalability

and enables the addition of Views (for additional user types) easily. It also ensures that
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the code base is cleaner and understandable, making it easier to maintain.

The client web-page further improves usability by providing drop-down lists (for

reducing user error) for users to select appropriate context-specific qualities and metrics.

The results returned from the server side application are then displayed as a ranked list

which can easily be understood.

B.4.2 Software Implementation of IASelect

Technology Stack

The server side has been implemented in Java and integrated with Gradle and Maven.

Gradle is used for build automation. We have added the Spring boot plugin to the

Gradle project to provide an embedded Tomcat server to host the server side application.

We use the Maven libraries to connect the Java project with the Neo4j database. The

database queries written in Cypher are embedded inside the server side application’s

Java code and are executed through the appropriate method call. The client side is a

web-page that is built using HTML5, CSS3, and Javascript. We have used AJAX to

communicate between the client and the server using the XMLHttpRequest.

Transaction Sequence

The web-page running on the client machine is accessed through a URL. The tool

assists users in extracting data from the graph database based on the specified criteria.

IASelect generates a report which lists all the matching practices and recommends

the most suitable practice. For generating a practice report in IASelect, users are

presented with a web form. The web form serves as a boilerplate [245] to specify the

criteria for generating a practice report. Boilerplates are semi-complete query structures

that can be completed through user input.

When a request is submitted, the controller object running within the server side
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application receives the request. At the same time, the application establishes a con-

nection with the Neo4j database instance using the Bolt protocol. Bolt is a TCP based

network protocol which is integrated into Neo4j for connecting to other applications.

Once the connection between the database and the model has been established, the

controller passes the request to the model by calling the appropriate method. The model

then requests a session with the Neo4j database instance and sends a query written in

Cypher to be executed at the Neo4j database. The request parameters received from the

client are embedded inside the Cypher query. The model then returns the query results

obtained from Neo4j database to the controller. The controller then passes the result-set

to the server and, finally the server sends the result-set back to the client in the form of

a response. At the client, the response is further processed and is displayed on the web

page.

Tool Usage

The user provides the necessary context-specific details using the following steps. In the

first step, a user sets the context of search by specifying relevant qualitative requirements

that the Industrial practices must fulfill. This is done by selecting the sub-characteristics

related to function and domain as listed in Tab. B.1. The sub-characteristics defines

the application context for the interface practice. Furthermore, the user also specifies

if the practice should be capable to host agents. For example, as shown in section 1

of Fig. B.6, the context is set for searching practices for factory automation domain,

simulation function and the practice should be capable to host agents. A practice report

can be generated for other sub-characteristics of function and domain by using the drop

down menu in the web form.

In the second step, the user sets criteria based on maintenance and performance

efficiency related to the practices. Users specify which sub-characteristics are deemed

most relevant in their context. For determining the relevance of sub-characteristics a
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Figure B.6: Web form based client interface of IASelect

percentage scale is assigned on the weights between practices and sub-characteristics

related to maintenance and performance efficiency. For example, as shown in section 2

of Fig. B.6, scalability, time-behaviour and re-usability are set with percentage scale

of 10, 10 and 80 respectively (the total must be 100). In this particular scenario, the

user clearly prefers a practice with high level of re-usability, and that scalability and

time-behaviour are of lower relevance.

Finally, based on the context and criteria, a practice report is generated which

displays a list of matching practices with technique name, API client, channel and final

score assigned to each practice. The final score is calculated by multiplying cumulative

percentage weight for each practice with a respective average weight between practice

and particular function sub-characteristics. For example, as shown in section 4 of

Fig. B.6 technique HL:2 has Apache Milo, MQTT and, 4.6 as API client, channel and,

final score, respectively.

The recommended practice as highlighted in section 5 of Fig. B.6, corresponds to

the practice that got the highest final score, for example, HL:1 is the recommended

practice for this scenario. The tool also provides the list of alternative interface practices

sorted based on the score values.
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B.5 Conclusions and Future Directions

This paper presents the construction of a graph database tool, called IASelect, to

allow industry practitioners to identify best-fit industrial agent practices for industrial

CPS. IASelect is easy to use and, its architecture enables scalability and flexibility.

For instance, the edges of the graph database currently contain the weights between

practices and sub-characteristics, which makes the database equivalent to a spreadsheet

table. In the future, additional properties can be added to nodes and edges without

altering the topology of the graph. Such scalability and flexibility are not present in

spreadsheets.

The front end of IASelect enables users to query graph databases without having

a working knowledge of query languages like Cypher. IASelect uses a boilerplates

based approach that enables users to query the graph database. Furthermore, the

boilerplate based approach is not limited to the P2660.1 data-set and can be extended

to domains other than ICPS. IASelect has been deployed in the cloud as a restful

web service. This enables other users to access data related to industrial agent practices

via Restful web API. Furthermore, users can integrate the web service into their own

applications. Deploying IASelect in the cloud also provides advantages specific to

cloud computing technology such as scalability, availability, reliability and security.

IASelect is an attempt to harness the potential of property graph databases in the

domains such as ICPS. However, currently we are only partially utilizing the power

of graph database query languages. Graph databases enable users to identify, search

and, extract patterns from data. Users can specify a sub-graph of interest to search all

similar occurrences of sub-graph in graph database. In IASelect however, we are

searching for very specific patterns which are tailor made to meet the requirements from

the P2660.1 standard and it cannot yet be used to search for generic patterns. In the

future, IASelect also needs to feature an administrator view for inserting new data,
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and updating and deleting data from the database.
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Introduction to Manuscript 5

With the influx of Web 3.0 the focus in Big Data Analytics has shifted towards modelling

highly interconnected data and analysing relationships between them. Graph databases

befit the requirements of Big Data Analytics yet organizations still depend on relational

databases. A major roadblock in the industry wide adoption of graph databases is that a

standard query language is still in its inception stage hence withholding interoperability

between the two technologies. In this research we propose a tool FLUX for translating

relational database queries to graph database queries.
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FLUX: From SQL to GQL query

translation tool (Manuscript 5)

D.1 Motivation for the study

D.1.1 Relational Databases and query languages

Relational databases organize data in multiple tables which consist of rows and columns.

In order to extract information ( or query) [246] a relation database multiple tables

have to be combined together with a search and match operation [16, 247]. Moreover,

the search and match operation called as a join, is performed every time a database is

queried. For querying relational databases use the de facto Structured Query Language

(SQL) [248]. SQL is being updated consistently [249] and has been accepted as an ISO

standard query language1.

1https://www.iso.org/standard/16661.html
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D.1.2 Graph databases and query languages

A graph database consists of nodes and edges where nodes are used to store data and

relationships or interactions between nodes are stored as edges of the graph database

[43, 28, 7, 8]. Storing relationships as edges means that relationships between data are

computed at the database creation stage. This means that unlike relational databases,

querying graph database is computationally less expensive with respect to the search

and match operations.

A major disadvantage of current graph database solutions is that there is no

standard query language like SQL is for relational databases. This lack of stand-

ard query language has resulted in initiatives such as Linked Data Benchmark Council

(LDBC) [125, 250], OpenCypher [164] and ISO/IEC 390752 which are working towards

creating a standard query language (GQL) for graph databases. The GQL manifesto3

proposed by ISO/IEC 39075 aims to integrate features from current graph query lan-

guages such as Cypher4, PGQL5, GSQL6,SQL/PG7 and G-Core [196].

D.1.3 Research problem

Relational databases have been around since the 1970s [251] and their importance is

unlikely to diminish [252]. However, they are becoming incompetent in handling the

size and complexity of large data sets in the current age of Big Data Analytics [4, 5].

Big Data Analytics projects still rely heavily on relational databases. Graph databases

suit Big Data as they provide a better alternative for handling highly interconnected

data sets [7, 8]. However, lack of a standard query language has hindered the adoption

2https://www.iso.org/standard/76120.html
3https://www.gqlstandards.org/existing-languages
4https://neo4j.com/developer/cypher-query-language/
5https://pgql-lang.org/spec/1.2/
6https://www.tigergraph.com/gsql/
7https://www.w3.org/Data/events/data-ws-2019/assets/lightning/

OskarVanRest.pdf

https://www.iso.org/standard/76120.html
https://www.gqlstandards.org/existing-languages
https://neo4j.com/developer/cypher-query-language/
https://pgql-lang.org/spec/1.2/
https://www.tigergraph.com/gsql/
https://www.w3.org/Data/events/data-ws-2019/assets/lightning/OskarVanRest.pdf
https://www.w3.org/Data/events/data-ws-2019/assets/lightning/OskarVanRest.pdf
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of graph database technology by relational database practitioners. In order to facilitate

an easy migration from relational to graph databases in this research we propose a tool

FLUX for translating relational database queries to graph database queries. Particularly,

this research aims to answer the following research questions:

• What are the existing formalisms for translating relational database queries into

graph database queries?

• Which query translation methods can be used to build a tool that translates SQL

queries into GQL queries?

Since GQL is still in its inception stage we consider two of the most highly adopted

languages in academia and industry namely Cypher and PGQL in the initial development

stages of FLUX. Moreover, these languages are part of the GQL manifesto.

D.2 Background and Related work

In this section we discuss various query translations studies that have been conducted in

the past amongst several query languages for relational and graph database. Figure 1

represents a visual representation, a graph where nodes represent query languages and

directed relationships represent the translation direction. The relationships are labeled

with a reference to the research papers that discuss the translation.

For example, a directed edge between the nodes SQL and SPARQL means that

a study exists that discusses the translation of a SQL query to SPARQL. The edge

label [253] represents a reference to citation in the bibliography. Similarly, authors

in [254] discuss the translation of queries in Cypher to queries in SQL. In [255, 253, 256,

257] authors discuss the translation of SQL queries into query languages such as XPATH,

DOCUMENT based, SPARQL and Gremlin respectively. In [258, 259, 260, 261]

authors discuss the translation of SPARQL queries into DOCUMENT based, SQL,
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16 October 2021 18:14:46 - Window

Figure D.1: A graph depicting query translation studies conducted between various
database query languages

XPath and Gremlin queries. In [262, 263] authors discuss the translation of XPATH

queries into SQL and SPARQL. In [264] authors discuss the translation of Gremlin

queries into SQL. Based on the existing literature and as shown in Figure 1 it is evident

that there is a lack of research that discusses the translation of SQL queries into graph

query languages such as Cypher and PGQL hence this brief review suggests novelty in

our study.
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D.3 Research Methodology

We take a formal approach to study query languages for relational and graph databases.

We define formal semantics for language translation as doing so assures reproducibility

and easy exchange of queries [170, 169].

D.3.1 Database schema

In order to efficiently translate a relational query into a graph query the underlying

relational and graph data models need to follow similar schema. We use the schema

based data model translation approach proposed in [15] to assist this study.

D.3.2 Query language formalisms

Relational database query languages

SQL for relational database is based on relational algebra [265, 266] which is a high

level procedural language. Relational algebra uses operations such as join, selection,

projection, cartesian product, aggregations and outer join[212].

Graph database query languages

Graph database query languages are broadly divided into two categories (i)graph

pattern matching and (ii) graph navigation.

• Graph pattern matching queries use the formalism of conjunctive queries[32].

Moreover, relational algebra operations such as join, selection, projection, ag-

gregations and outer join are also used.

• Graph navigation queries use the formalism of Regular Path Queries (RPQ) and

their extensions [56, 197].
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Relational database query languages and graph pattern matching have some over-

laps. Furthermore, a formalism based on Tarski’s algebra has been studied for graph

navigation which subsumes relational algebra and can be represented as semi join

algebra [74, 55]. Based on the brief discussion in this section we can observe some

common characteristics between query languages for relational and graph databases

that can assist in query translation.

D.3.3 Prototype of FLUX

In order to build FLUX we use prototype approach where we apply findings from the

query formalisms to build a smaller version of FLUX with limited features. And more

features and support for other query languages are added in subsequent iterations.

16 October 2021 18:19:54 - Window

Figure D.2: Block diagram illustrating five iterations for constructing FLUX

Prototype construction for FLUX is presented in Figure 2 where in the 1st iteration

we develop the core features for FLUX. These core features are derived from existing

query formalisms. In the 2nd and 3rd iterations we add modules that convert SQL to

PGQL and SQL to Cypher respectively. We further enhance FLUX to support translation

of SQL to SQL/PG and SQL to GSQL in the 4th and 5th iteration. As shown in Figure 2

FLUX in its full operational form takes a SQL query as input and output’s an equivalent

query in PGQL, Cypher, SQL/PG and/or GSQL.
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D.4 Contribution and significance

Given the suitability of graph databases for Big Data Analytics and initiatives such as

ISO/IEC 39075 have made the industry wide adoption of graph databases much easier.

On the other hand organizations have invested heavily in relational databases and rely

on them. In order to migrate from relational to graph databases a database administrator

has to manually convert data model and the associated queries. A tool such as FLUXwill

facilitate the industry wide adoption of graph databases. By using FLUX organizations

can port their existing relational database based Big Data Analytics solutions to graph

databases henceforth, harness the power of graph databases. Moreover, a formal

approach followed to construct FLUX ensures accuracy in the query translation process

and opens up opportunity for future research.

This research make significant progress in answering the research questions men-

tioned in Section D.1.3 through the following primary contributions:

• Define the formal semantics for translating queries written in SQL to GQL

queries.

• Develop a query translation tool FLUX that can be used to convert queries written

in SQL to GQL queries.

D.4.1 Scope of the study

The scope of this study is limited to converting SQL queries to Cypher and PGQL.

Support for other languages such as GSQL and SQL/PG will be added in next iterations.

The language G-Core has not been fully implemented yet hence support for G-Core

will be added in the future iterations of FLUX.



Appendix E

List of Acronyms

ACM Association of Computing Machinery

API Application Programming Interface

ATRA Alternating Top-down tree on Register Automata

BiDaML Big Data Analytics Modeling Language

BUDA Bottom-Up alternating Tree Automata with one register

CFP Context Free Paths

CNRE Conjunctive Nested Regular Expressions

CRPQ Conjunctive Regular Path Queries

CSV Comma Separated Value

CQ Conjunctive Queries

CTL Computational Tree Logic

C2RPQ Conjunctive Two-way Regular Path Queries

DD Downward Data

EDBT Extending Database Technology

ELT Extract Transform Load

ERD Entity Relationship Diagram

FSA Finite State Automata
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GDM Graphical Data Model

GOOD Graph Oriented Object Database model

GQL Graph Query Language

HNQL Hyper Node Query Language

HTML Hyper Text Markup Language

ICDT International Conference on Database Theory

ICPS Industrial Cyber Physical systems

IEC International Electrotechnical Commission

IEEE Institute of Electrical and Electronics Engineers

ISO International Organization for Standardization

LDBC Linked Data Benchmark Council

LDM Logical Data Model

LPG Labeled Property Graphs

LTL Linear Temporal Logic

NBCSP National Bowel Cancer Screening Program

NRE Nested Regular Expressions

OLAP Online Analytical Processing

OLTP Online Transaction Processing

PaMaL Pattern Matching Language

PGQL Property Graph Query Language

PODS Symposium on Principles of Database Systems

RDF Resource Description Framework

RDPQ Regular Data Path Queries

RPQ Regular Path Queries

SNQL Social Networks Query and Transformation Language

SoQL Social Networks Query Language

SQL Structured Query Language



Appendix E. List of Acronyms 259

SysML System Modeling Language

TA Tarski’s Algebra

TKDE Transactions on Knowledge and Data Engineering

TODS Transactions on Database Systems

2RPQ Two-way Regular Path Queries

UCRPQ Union of Conjunctive Regular Path Queries

UCQ Union of Conjunctive Queries

UC2RPQ Union of Conjunctive Two-way Regular Path Queries

UCN2RPQ Union of Conjunctive Nested Two-way Regular Path Queries

UML Unified Modeling Language

UnQL Unstructured data Query Language

VLDB Very Large Data Base

W3C World Wide Web Consortium

XML eXtensible Markup Language
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