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Abstract 

 

This thesis presents a new approach to the visualization of audio files that 

simultaneously illustrates general audio properties and the component sounds that 

comprise a given input file. New audio segmentation and classification methods are 

reported that outperform existing methods. In order to visualize audio files, the audio is 

segmented (separated into component sounds) and then classified in order to select 

matching archetypal images or video that represent each audio segment and are used as 

templates for the visualization. Each segment's template image or video is then 

subjected to image processing filters that are driven by audio features. One visualization 

method reported represents heterogeneous audio files as a seamless image mosaic along 

a time axis where each component image in the mosaic maps directly to a discovered 

component sound. The second visualization method, video texture mosaics, builds on 

the ideas developed in time mosaics. A novel adaptive video texture generation method 

was created by using acoustic similarity detection to produce a resultant video texture 

that more accurately represents an audio file. Compared with existing visualization 

methods such as oscilloscopes and spectrograms, both approaches yield more accessible 

illustrations of audio files and are more suitable for casual and non expert users.  
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Preface 
 

Organization of this Thesis 
 

 

This thesis presents research in the field of content-based audio visualization. The 

research reported in this thesis is cross disciplinary so the in-depth review of literature 

of particular relevance to each specific aspect of the research is presented in the 

applicable chapter.    

Chapter 1 introduces the reader to the existing literature in the field of general audio 

visualization. The motivation for this research is discussed and the research objectives 

are introduced. 

Chapter 2 begins with a description of the methodology used. Then the reader is 

introduced to the framework of our audio visualization system and the development 

environment used.  

Chapter 3 introduces relevant literature in the field of audio segmentation. 

Subsequently the development and evaluation of a novel 2-phase audio segmentation 

method is detailed.  

Chapter 4 covers the current literature on audio classification and other relevant 

classification methods. The development and evaluation of an accurate, adaptive 

classification method with new class detection is described. 

 Chapters 5 and 6 describe two alternate and complementary methods for visualizing 

audio; using images and video textures. The chapters also review the relevant literature 

on image processing and video texture generation respectively. 

Chapter 7 analyzes the audio visualization system and proposes potential avenues for 

future research and development. 
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Chapter 1 
Introduction 

 

 

This chapter introduces the motivation for this research and highlights the challenges 

involved. Prior work in audio visualization is also reviewed. 

 

1.1   Motivation and Research Objectives 
 

With the advance of digital media technologies, the use of digital audio is becoming 

increasingly widespread. Digital audio files have been used widely in a variety of fields 

including film, television, computer gaming, radio, website design, and audio book 

production. Extensive databases have been developed to store digital audio. 

Management of audio files is therefore becoming more and more important. Research 

on audio databases and audio file management has included aspects such as audio file 

classification and audio file search, retrieval and querying, as well as audio database 

navigation. Providing efficient and effective browsing and navigation tools still remains 

a major challenge. 

 

Traditional text-based management is not effective with audio databases because an 

audio file is usually treated as an opaque collection of bytes with primitive fields such 

as name, file format and sampling rate [1] attached. For example, typical audio database 

query systems use simple keyword matching of pre-defined tags for each audio file. 

These results are often not satisfactory, especially when the user is not familiar with the 

tags for the audio database. Those accustomed to searching, scanning and retrieving text 

data can be frustrated by the inability to inspect the audio objects. Even if a previous 

user has assigned keywords or indices to the data, the labeling is often highly subjective 

and may not be useful for another user [1]. When a user submits a keyword search in an 

audio database all the audio files in the database are searched and a list of audio files 

whose indices contain the specified keyword is returned as the result. However, one 

keyword could be mapped to multiple audio files which may or may not be equivalent 
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depending on the context. For example, the keyword "rain" could be used to represent 

drizzle, shower, down pour, rainstorm and thunder storm. This may lead to unexpected 

query results. As a consequence users may need to spend a significant amount of time 

listening to the audio files in order to find the desired audio file. Therefore it can be 

difficult, even for experienced users, to find a specified audio file in a large audio 

database when using a text-based query system. The subjective nature of assigned 

keywords and the tedium of manual annotation have motivated researchers to find more 

efficient and automated methods for audio database management.  

 

The management of small databases is not difficult as it is possible to listen to each file 

and to select the required sound. For large databases, this is ineffective. Users may find 

it difficult to distinguish and remember all the examined sounds. This is particularly 

true for non-expert users. For example, the same note sounds different when played on 

different instruments. Users may also forget the exact properties of a specific sound 

heard and may be unable to compare it with another sound from the set of audio files 

that is listened to at a later time. But even the untrained eye can easily recognize the 

differences between two images even when they are similar to each other (as in the 

game "critical seekers" [2]). If it is possible to relate audio files to images, audio 

visualization may provide a solution to the problem of effective and efficient 

management of audio databases.  

 

The linear nature of audio files also makes them difficult to navigate and compare. For 

example, the navigation of an audio database is particularly difficult because the linear 

nature of audio files requires the sequential examination of each file and each of these 

examinations may require the same period of time as it takes to play the audio. Even the 

inspection of query results from an audio database requires considerable time and, as 

discussed above, provides unreliable results for non-professional users.  

 

Figure 1-1 shows a query for an audio database. The names of resulting audio files do 

not provide enough information about either the database or the query candidates for 

viewers to be confident about what the files contain. For example, although viewers can 

know that all the returned sounds are frog croaks they cannot know which one is louder 

or which one is competing against background noise.  

 

 



 

 

Query results

frog1

frog2

frog3

 
Figure 1-1: Audio database query. 

 

It is much easier to query and navigate image databases because the human visual 

system can rapidly scan a structured page of thumbnail images. If images or video/video 

textures could provide accurate visual analogies of audio files, users could visually 

navigate the whole audio database and rapidly scan through a set of audio candidates 

returned from a query. Audio visualization would enable an audio database management 

system to mimic image/video database query and navigation and would therefore 

benefit from the associated effectiveness. For example, scanning a set of 10 image 

mosaics representing audio files would require at most a few seconds and is 

independent of the durations of the audio files they represent, whereas listening to each 

audio file sequentially would require the sum of the time required to play each file. It 

has been shown that the average human is in some ways better at seeing than hearing 

because there are more neurons in human's brains devoted to seeing than to hearing [3].  

 

This research aims to encode audio files visually as images and/or video textures for a 

single audio input or all audio files in the database. This will allow the viewer to 

visually interpret an input audio file, browse through an audio database or rapidly scan 

through a set of audio candidates returned from a query through some defined interface.  
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Figure 1-2: An example of a time mosaic audio visualization. 

 

Simply put, the objective of this system is to view what happens in the sound sequence. 

The resultant visualization is a composite image built from simple graphical elements 

driven by the audio data. The relative positions of image tiles in the resulting mosaic 

will show the time sequences of their corresponding audio clips (Figure 1-2). 
 

In addition to identifying the component sounds, the visualization conveys more subtle 

audio features such as loudness, pitch, noise ratio, etc, on a sound-by-sound basis. We 

propose to achieve this by mapping audio properties to image filtering operations. 

Video textures will also be employed in this system in order to enhance the visualization 

of the audio content and properties, and also the visualization of the changes in audio 

properties over time. 

 

The way in which the system will be used by various users, and the tasks users wish to 

perform, may vary. For an expert user visualizing audio files might provide rapid access 

to a subset of audio that they then analyze using expert tools to identify and manipulate 

the audio files. In the longer term the modular system described in Chapter 2 might 

readily be extended to accommodate tools specifically for use by experts. 

 

For the novice user this system should provide a means of searching for specific audio 

files rapidly, either by supplying a query audio or a query image or by browsing using 

the ontological database structure. For example, a novice might wish to add sound to a 

digital photo album or select sounds for their cell phone by browsing series of images to 

select the desired audio. A semi-professional user might wish to identify and locate 

sounds required for a website or a piece of software that they are developing. Although 

these users may be computer literate and perhaps even software developers, they are not 

experts in sound processing. It is anticipated that the system will be used by a broad 

range of users, from passionate experts to amateurs. 
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1.2   Challenges in Audio Visualization 
 

Audio processing

Machine learning

Human computer 
interaction

Computer vision

Image processing

Audio segmentation

Audio classification

Audio feature 
extraction

Video texture 
generation

Data mining

Acoustic‐visual feature 
relationship

Audio visualization

 
Figure 1-3: Relevant research areas of audio visualization. 

 

Audio visualization research falls under the general area of audio processing and 

image/video processing. Figure 1-3 shows the main research areas that are relevant to 

audio visualization. The thickness of the lines is indicative of the importance of each 

area to this particular research. Reciprocal relationships are indicated in Figure 1-3 by 

the use of connecting arrows pointing in both directions. So the challenges for audio 

visualization also come from different fields. 

 

In this domain, a primary requirement for successful visualization is the correct 

extraction of audio features. The audio features can be used for segmentation, 

classification, and the production of resultant image/video texture generation.  

 

An audio input may contain more than one sound and an audio visualization system 

must be capable of analyzing the content of an input audio file while identifying the 

individual sounds. Segmentation provides a foundation for classification. The accuracy 

of segmentation limits the accuracy of the visualization results for heterogeneous audio 

inputs. 
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Image and video processing are two other important aspects of audio visualization 

research. As the result of any audio visualization will be an image or video/video 

texture which can represent the audio input(s), image processing or video texture 

generation is an essential part of the process. 

 

Acoustic-visual feature relationship research works as a bridge which connects the areas 

of audio processing and image/video processing. It is based on audio feature extraction 

and the study of human perception. Although defining the relationship between audio 

features and the human perception of and reaction to those features is still an open 

problem, a number of experiments have demonstrated that it is possible for humans to 

associate auditory and visual percepts [4]. 

 

Other related fields include machine learning, computer vision, human computer 

interaction and data mining. For example, data mining techniques are needed in training 

a system using a given data set. Audio visualization will benefit from any improvements 

in these related fields. 

 

To summarize, the audio visualization research reported in this thesis explores the 

following research questions:  

1. Can we design a system to visualize heterogeneous audio inputs? 

a. Can we separate the different sounds and represent the contents accurately? 

b. How can we combine images or video to represent the content of a digital 

audio file? 

2. Is it possible to develop an audio classification method that classifies general 

sounds accurately enough to allow for visualization of an audio file? 

3. Is it possible to classify an unknown sound by integrating an adaptive new-class 

detection method into an audio classification method? 

4. How can we construct an image or image sequence that represents a digital audio 

file? 

a. How can features of audio files be mapped to the features of images? 

b. How can we combine images to form a sequence that is representative of a 

digital audio file?  

5. How can we synthesize new video sequences that map accurately to the content 

and sequence of a digital audio file? 
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6. Can meaningful images and video textures be automatically generated for digital 

audio files? 

 

Addressing these issues will improve the management and intelligibility of audio 

databases. 

 

1.3   Audio Visualization Literature Review  
 

This section contains a review of existing approaches to audio visualization. The more 

detailed literature review for the specific methods employed in each module of our 

audio visualization system is presented in the corresponding chapter of this thesis. 

 

A history of audio visualization is introduced and then existing approaches to audio 

visualization are reviewed thematically in the following order:  

 

1. audio properties visualization 

2. auditory-visual associations 

3. visualizing the structure of an input audio file 

4. music visualization 

5. speech visualization 

6. visualization of audio files with images 

7. audio database visualization 

8. visualizing similarity of different audio files 

 

1.3.1   Audio Visualization Introduction  
 

The term "audio visualization", also called "sound visualization" has been defined by 

Nomura, Shiose, Kawakami, Katai and Yamanaka as reading sounds [5]. They found 

that sound visualization is a viable alternative to listening as a way of understanding 

audio [5]. Various attempts have been made to visualize different kinds of sounds, some 

of which were made prior to the invention of the computer. The first attempt at 

visualizing sound can be traced back to the development of the phonautograph (Figure 

1-4). A phonautograph is a device for converting sound into visible traces [6]. Four 

wave shapes were examined for flute, clarinet, oboe and saxophone tones (C3, "middle" 

C) using the phonodiek (an advanced phonautograph). The images from a phonodiek 



illustrated that the differences of the sounds could be visually presented using different 

wave shapes. The phonautograph and phonodiek are similar to modern oscilloscopes in 

that both the phonautograph and modern oscilloscopes depict the wave shape along the 

time axis. 
 

 

 
Figure 1-4: The first audio visualization device – a Phonautograph. 
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Figure 1-5: An Oscilloscope (L) and a spectrogram (R) for a cat's meow. 

 

The result from an oscilloscope, as shown in Figure 1-5 (L), is a very common 

representation that expresses the audio signal as amplitude along a time axis. 

Oscilloscopes are commonly used in modern audio signal processing and can be 

considered to be the most direct form of visualization. From the oscilloscope, users are 

able to gain some basic understanding of a sound such as its duration, amplitude, and 

power (power is positively correlated to amplitude). 

 

Besides representing sound as waves in the time domain, sounds may be visualized and 

analyzed using spectrograms. The spectrogram represents an audio signal in the 

frequency domain, as shown in Figure 1-5 (R). The magnitudes of the windowed 
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discrete-time Fourier transform are shown against the two orthogonal axes of time and 

frequency. Experts may directly derive information from sound spectrographs such as 

bandwidth (wide band or narrow band), or even recognize certain words by reading 

their spectrographs [7].  

 

Oscilloscopes and spectrograms are two widely used methods in audio analysis and 

signal processing but neither oscilloscope wave-shapes nor the spectrogram of a sound 

enables non-professional users to understand its content or to perceive its audio features. 

More accessible methods are needed to visually represent audio inputs. 

 

1.3.2   The Visualization of Audio Properties  
 

In audio processing, a piece of audio can be represented by a vector of audio feature 

values. Tzanetakis and Cook proposed a method for visually representing audio files by 

images called TimbreGrams [8], in which colour perception and the pattern recognition 

capabilities of the human visual system are exploited to interpret timbral and temporal 

information. 

 

 
Figure 1-6: TimbreGrams for speech and classical music [8]. 

 

In TimbreGram images (Figure 1-6), light and bright colours typically correspond to 

speech and singing, while purple and blue colours represent classical music segments. 

Users can easily distinguish speech from classical music by the colours in the images. 

This approach can be used as an effective tool for speech/music discrimination as the 

resultant images can illustrate audio properties even to non-professional users. 

However, this method does not meet our audio visualization requirements because it 

does not give enough information about the content of an input file. 
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Similar work has also been explored by Politis, Margounakis and Karatsoris [9]. But in 

this case the input files are limited to music and the visualized features are limited to a 

specific feeling they describe as the "chromatic of music", which is sometimes 

subjective and cannot be used effectively on general audio files1 or by non-professional 

users. A chromatic is adopted from colour models and used to describe a user's feeling 

for a piece of music. Audio properties have also been represented by other visual 

features in other applications, such as loudness by height of a sphere [10], reverberation 

by colour [11], and pitch by light intensity [4].  

 

 
Figure 1-7: Visualization results for single notes on various instruments in phase space [3]. 

 

The shape of an object is a visual feature that has been used in some audio visualization 

approaches that generate black-and-white images [3]. In this algorithm, any sound 

signal f(t) is transformed into a three-dimensional phase space Φ3(f)=(f(t),f'(t),f''(t)). 

Then in a discrete form of this transformation, periodic signals are represented by 

simple shapes, for example a sinusoid represented by a circle or an ellipse. Natural 

sounds which are comprised of different sinusoidal signals have more complicated 

shapes. The images in Figure 1-7 represent the same note played on three different 

instruments. The sounds produce different shapes in phase space. In addition, the 

consonance of a chord has been visualized using the roughness of the curve as a visual 

cue [12].  

 

These approaches were developed for varying purposes and use different visual features 

to visualize audio features. But none of these systems can visualize both the content and 

audio features of sounds in a way that is accessible to non-professional users. Users 

                                                      
1 In this context, the term general audio files defines a limited subset of short duration speech and music 

sounds as well as environmental and animal sounds.  
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cannot grasp the content and audio properties by rapidly visually scanning the results. 

Moreover the visualization of the audio features is only suitable for audio files of the 

same type because the audio features of different types of sounds are quite different. 

The comparison of audio features is only meaningful when it is made between sounds of 

the same type. However, these studies are important because they offer information 

about auditory-visual associations that could be employed in our audio visualization 

system. 

 

1.3.3   Auditory-Visual Associations 
 

The perception of auditory or visual features is subjective and can differ from one 

person to another. However, the study of associations between auditory and visual 

features can provide information about the most commonly experienced associations 

and this can be used to develop audio visualization systems. 

 

Giannakis and Smith discovered auditory-visual associations such as pitch-lightness and 

loudness-colourfulness [13]. Evans also generated heterophonic maps to connect visual 

features to musical features [14]. Smith and Williams [15] noted connections between 

audio properties and human feelings. The pitch of tone defines the perceived volume of 

a sound and in their visualization is represented by the location of a sphere in a three 

dimensional space. The size of the sphere indicates the level of volume and the colour 

maps to the timbre of the music. However, it has been found that the relationships 

between audio and visual features vary from one individual to another and this poses a 

difficulty for any audio visualization system that is dependent on these relationships. 

For example, the commonly used visual feature, colour, does not generate the same 

reaction in all people. Kaya and Epps tested the emotion-colour relationship and found 

that the responses to the same colour by different people were quite varied [16]. The 

details of visual-acoustic relationships will be discussed further in chapter 5. 

 

Consistent relationships between audio and visual features are needed in order to 

represent audio features visually when employing image processing filters. The most 

commonly accepted audio-visual pairs can be employed in an audio visualization 

system as long as viewers are made aware of how they are to be interpreted and these 

interpretations are consistent. However, for our purposes, the visualization of an audio 

input by the visualization of audio features alone, and without description of its content, 
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is not sufficient. When this approach is used, users can only view the differences 

between audio inputs when they are the same type of sounds, because audio properties 

from different types of sounds are diverse and incomparable.  

 

1.3.4   Visualizing the Structure of an Audio File 
 

Some audio visualization systems aim to represent the structure of sounds, especially 

music, using images [17]. Audio pieces are parameterized into a pre-designed acoustic 

feature space and then the similarity or dissimilarity between two audio "instants" are 

calculated as an element in a matrix and represented by a pixel in the final image. The 

resultant image for a piece of music is a checkerboard image, intended to show the 

resemblance among instants of the music input. This method is useful for the analysis of 

music structure but the images produced using this method do not provide useful 

visualizations of general audio files.  

 

Foote's visualization of music using self similarity [17] has been extended to structural 

analysis for indexing and thumb nailing [18] [19]. It is worth exploring the possibility of 

adapting this technique for use in the audio segmentation stage of our visualization 

system. It is conceivable that image processing based edge detection and the resultant 

similarity matrix of an image could be used to detect abrupt changes of audio properties 

between different sounds in an audio file. 

 

More recently, Bergstrom, Karahalios and Hart introduced a new method for visualizing 

the structure of music showing consonant intervals between notes and common chords 

[20]. The results can offer information to experienced musicians about the structures of 

music but they are hard to interpret for non-professionals.  

 

All of these methods are intended for knowledgeable users and are strictly designed to 

visualize musical files. As songs often have repeating regions, from the resultant 

structure image, viewers can find the repeating patterns which are important for music 

summarization. But they do not help in the understanding of the content beyond the 

structure.  
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1.3.5   Music Visualization 
 

In this subsection, "music visualization" refers to a 2D or 3D image that represents 

music. Non-professional users may first encounter music visualization as a secondary 

output of audio media player software [21]. These systems typically generate and render 

animated imagery that is based on certain audio features in real time and is 

synchronized with the music when it is played.  

 

Music visualization is the most commonly studied topic in audio visualization. Most 

research in audio visualization handles music input only and could be more accurately 

described as music visualization.  

 

Some music visualization research has resulted in methods that are used to represent or 

describe a piece of music [22] [23]. Others have developed ways in which music can be 

generated to represent given visual features [5] [9] [24]. Because this work concerns 

ways in which music and visual features can be related it provides some helpful 

information about visual and acoustic feature relationships. 

 

The audio features that best describe music are not necessarily the best for the 

description of general audio files. Some audio features of music, such as tempo, are not 

likely to be relevant to general audio files so the approaches for visualizing music are 

not suitable for general audio visualization. However, because general audio databases 

are not limited to certain types of audio files they may contain a considerable number of 

music files. Therefore any system for the visualization of general audio files must be 

able to visualize music as well as other sounds.  

 

A tool named MELIRIS was developed to visualize the feelings that musical pieces may 

generate in the audience [22]. It is a chromatic analysis tool as well as a standard media 

player. It presents chromatic information in colourful stripes and tracked pixels. 

MELIRIS also visualizes sound attributes in sonograms, frequency distributions and 

frequency-amplitude graphs. The system provides a music classification process based 

on the chromatic index. 

 

Some music visualizations are derived from note-based or score-like representations of 

music, typically from MIDI note events [17]. The traditional method for visualizing 



music is music notation [15] but unfortunately, many people cannot read music scores 

so Smith and Williams used colour and three-dimensional space to visualize music 

instead of standard music notation [15]. In addition, Malinowski [25] introduced "The 

Music Animation Machine" (MAM), that displays the music's structure by using bars of 

colour to represent the notes in the music.  

 

Music visualization methods have been categorized into two types, augmented score 

and performance visualization, by Hiraga and Matsuda [23]. The former was intended to 

assist composers in documenting expressive intentions on a musical score or to assist 

performers in learning a piece of music [26] [27]. Some were developed to assist 

musical performances [28] [29]. Hiraga and Watanabe [30] generated a system to 

illustrate any change in performance using a series of Chernoff faces that may be used 

in music training or practice.  

 

In some approaches, the result is not limited to the visualization of audio features but 

also includes their changes. For example, Hiraga and Matsuda visualized tempo change, 

dynamic changes and the articulation of music pieces with vertical lines, horizontal 

intervals and the height and width of bars [23]. This kind of research concentrates more 

on music analysis than on visualization. For example, Politis et al. argue that the song 

"How you gonna see me now" (Alice Cooper) is most similar to "The trooper" (Iron 

Maiden) and both belong to the category of Metal songs [9]. They visualize these two 

songs by using chromatic graphs (Figure 1-8) and use these to compare their similarity. 

 

 

Figure 1-8: Visualization of two songs using chromatic graphs (in terms of colouring) [9]. 
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It is also important to note that the reasons for music visualization vary. For example, 

music visualization has been used to support music learning [30] [31]. It has also been 

used to analyze performance. Mood was used instead of content and tags for a musical 

data mining interface [31]. This system has been tested using several instruments and 



provided visualizations that facilitate the analysis of expression, principally in classical 

music performances.  

 

Rather than visualizing audio inputs with images, some researchers have attempted to 

use visual characteristics to affect sounds [5]. Lubar argued that some elements in music 

could be applied to visual arts such as paintings [24]. Besides proposing an algorithm to 

visualize music according to its melodic structure, Politis et al. invented "chromatic 

bricks" to create a complete music piece from colours [9]. It is a mapping from colour to 

melody – an inverse process to the analysis and visualization of music.  

 

1.3.6   Speech Visualization 
 

Speech visualization systems concentrate on content description or position illustration 

rather than feature illustration.  

 

Hailpern et al. hypothesized that speech visualization techniques can both act as a 

means to support communication and a method to help autistic children develop speech 

skills by visualizing vocalization [32] (see Figure 1-9 (L)).  

 

 
Figure 1-9: (L) Graphic matching in speech learning [32]; (R) Clock visualization for conversation [33]. 

 

Karahalios and Bergstrom visualized audio conversation using simple graphical 

elements to identify the current speaker [33]. Different colours were used to represent 

different participants around the table and the length of each rectangular slice, which 

forms a section of the circle, corresponds to the average amplitude of voice (Figure 1-9 

(R)). Similar approaches can be found in Donath, Karahalios and Viegas' research into 

the visualization of conversation [34] and the work of Bergstrom and Karahalios who 

visualized speakers in conversations around a table using a clock-like image [35].  

 15
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Simunek [36] developed a system for human face animation driven by phonemes that 

produces a kind of visualization for speech by animating lip movement. Bregler et al. 

created a new video of a person mouthing words that he did not speak in the original 

footage [37]. Bregler's work could be useful when trying to represent an audio file using 

archetypical video templates. His methods could be adapted to generating new video 

sequences that accurately represent the time sequence of sounds in a general audio file. 

 

The purpose of speech visualization may be different from the purpose for our audio 

visualization system but the approaches used in speech visualization and the use of 

video represent commonalities. 

 

1.3.7   The Visualization of Audio Files using Images 
 

Audio visualization results are most commonly static 2D or 3D images. Visualizations 

of audio files have also been constructed in three-dimensional space by Smith and 

Williams [15], Chaudhary and Freed [38], Kaper et al. [11] and Hiraga et al. [31]. Smith 

and Williams present a method for visualizing the audio properties of MIDI music by 

using colour and three-dimensional space [15]. The mapping function is defined by the 

musical characteristics and the piece of music is transformed into three dimensional 

graphical representations. Tones are represented by coloured spheres and the pitch, and 

volume and timbre are the audio properties that define the spheres. Kunze and Taube 

also generated a 3D graphical tool that could be used by composers to write music [39]. 

 

The time, amplitude and features (such as frequency, channel number, etc.) of sounds 

are visualized in 3D in Figure 1-10. Hiraga et al. [31] produce 3D images in which the 

depth axis stacks multiple channel layers. Three properties, pitch, volume and tempo 

were represented by the height, diameter and colour saturation of cylinders.  

 

Either 2D or 3D images can be employed to visualize sounds as long as there are 

enough visual features available to represent the selected audio features. The advantages 

of 3D over 2D become apparent when more than one sound is visualized at the same 

time, for example, visualizing all the audio files in an audio database.  

 



 
Figure 1-10: Sound visualizations: (L) from method in [38];  (R) from method in [11] . 

 

1.3.8   Audio Database Visualization  
 

The approaches mentioned thus far are for the visualization of individual audio files but 

some research has also been undertaken regarding the visualization of audio collections. 

This research has been aimed at the visualization of the distribution of audio files, or the 

similarities or dissimilarities between audio files. Audio collections have been 

visualized according to selected or pre-defined audio properties, rather than the content 

or properties of a specific audio file. This subsection explores existing techniques and 

solutions for browsing and searching large audio databases, and visualizing audio 

similarities in audio clusters.  

 

The visualization of an audio database generally involves representing audio file 

clusters. It is a useful way of displaying the whole structure of an audio database 

especially when the audio files change frequently or they need to be classified in 

different ways. For example, a database of songs may have more than one way in which 

it can be clustered. A view that shows all the clusters may provide a better insight into 

their properties as well as the opportunity to explore their relationships. Research into 

audio database visualization has led to the development of automatic methods for 

clustering audio files and showing their similarities. The visualization of similarities 

between audio pieces can provide assistance with the exploration of audio collections. 
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Conventional tools for audio database management are based on directory-based tree 

structures and lists of textual information [40] [41]. A two-dimensional "landscape" is 

the prevalent representation. The central idea is to generate a geographic view of audio 

collections by using the distance between two audio files to roughly represent their 

differences. It can be employed to visually cluster audio, for example, in the 

classification of music according to genre. 

 

Pampalk proposed an approach named "Islands of Music" which aims to provide an 

intuitive interface that can be used to analyze, organize and visualize digital music 

libraries based on perceived acoustic similarities of music pieces [42]. In this approach, 

the similar music pieces are clustered together like islands on a map. This can be used 

for music databases and the island maps can be based on a set of selected features such 

as instruments used, melody or rhythm of music. A geographical map indicates the 

relationships between music files. A genre pre-classification is not required in the 

"Islands of Music" because the system, based on psychoacoustic models, can estimate 

the acoustic similarities of any given music in raw audio format to other audio files in 

the database [43]. The left image in Figure 1-11 is a geographic map generated to 

represent the similarities between audio files.  

 

 
Figure 1-11: (L) Music collection visualization result by "Islands of Music" [43];                                          

(R) Content-based exploration of music archives [44]. 

 

The concept of Islands of Music has been extended in [41], [44], [45] and [46]. 

Pampalk, Goebl and Widmer extended the Islands of Music to the visualization of 

changes of the cluster structure [44]. The resultant map illustrates how modification of 

the audio features with respect to weighting or normalization changes the cluster 
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structures (Figure 1-11 (R)). Schedl visualized a very large audio database employing 

hierarchical components [45]. An interface was also proposed by Zhu and Lu to browse, 

search and navigate personal digital music collections [41]. 

 

Lampropoulos and Tsihrintzis [47] visualized the organization of music files with a 

dendrogram. Leaves of the tree represent music files and the height illustrates the 

similarities between two songs (see Figure 1-12 and Figure 1-13). This is an efficient 

way of visualizing the differences between audio files within a class but if a database 

contains multiple classes these visualizations provide no information about the contents 

of audio files. 

 

 
Figure 1-12: Resultant visualization of audio file query results from system in [47].  

 

 
Figure 1-13: Browser of selected audio files to show their distances (differences) in [47].  

 

Sounds are represented visually by Brazil and Fernström by sonic objects, which are 

objects used to represent an audio file, with specific properties in the Sonic Browser 

[48]. Users can define a position on a grid from which all sounds fall into a surrounding 

region. Figure 1-14 shows the visualization from the Sonic Browser. The left image in 

Figure 1-15 visualizes the genres in the audio database. 
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Figure 1-14: Visualizing audio database using the Sonic Browser [48]. 

 

Tzanetakis et al. developed an implement for visualizing sound collections to show the 

relative similarity within genres (the right image in Figure 1-15) [49]. Bainbridge et al. 

proposed a visualization for digital music libraries [50]. Koutsoudis et al. [51] proposed 

incorporating signal processing techniques and using psychoacoustic models for 

classification purposes to describe music. 

 

 
Figure 1-15: Audio database structure visualization results (L: in [48]; R: in [49] ). 

 

The above mentioned approaches can be used to cluster audio files with certain similar 

characteristics and to visually illustrate their distributions in a database. But non-

musicians do not benefit from such visualization results. 

 

1.4   Summary 
 

A more general method is needed because the existing research related to audio 

visualization provides no approach that can be used to visualize the content of audio 

input as well as its audio properties. This thesis presents a general method for audio 
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visualization which is more accessible than the existing methods because the filtered 

images used in the application are directly representative of sounds in the real world. 
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Chapter 2 
The Audio Visualization 

System Framework 
 

 

This chapter discusses the methodology applied in this research. Then the framework of 

the proposed audio visualization system is presented. Modules in the system are 

introduced and the process of visualizing an audio file is explained. Finally there is a 

brief discussion of the development environment used. 

 

2.1   Development Methodology 
 

This research is founded in empirical, experimental based research. Specific 

experimental design is addressed in the relevant sections of the thesis. The proposed 

research involves developing methods, determining dependant and independent 

variables then experimentally evaluating these factors. Because of the iterative nature of 

the experimental process we adopted a traditional iterative software development 

approach, namely the Spiral model [52], when developing the system's segmentation 

and classification modules. We approached these experimental phases as a continual 

refinement of the algorithms and methods developed in order to optimize the 

performance and accuracy of the methods. In the case of the segmentation and 

classification experiments descriptive and comparative statistics were employed to 

inform the next cycle of experiments. The development of the visualizations was also an 

iterative experimental process where the resultant visualization was used as a subjective 

guide to further improvements. The pre and post module development phases were 

informed by the systems development research method described by Nunamaker et al. 

[53]. We have adapted their key phases as follows: 

• Phase 1 requires the construction of a conceptual framework for the system and 

represents a process that positions the research. The challenges, objectives and 

research questions are identified. As part of this process an in-depth literature 

review is undertaken. 



• Phase 2: involves developing a unique architecture, defining the system modules 

and functionality, the components and their interrelationships. 

• Phase 3: implements and tests the individual modules of the system. It is in this 

phase that the spiral model is utilized to guide development. 

• Phase 4: requires the integration, fine-tuning and evaluation of the combined 

modules.  

• Phase 5: documents the processes and findings of the research. 

 

2.2   The Audio Visualization System Framework 
 

Figure 2-1 shows the framework for this novel audio visualization system, which has a 

pre-built audio database and a visualization generation component to process audio 

input. A well-selected database should be able to accommodate any potential classes of 

sounds to ensure the accuracy of the classification and visualization processes.  

 

Segmentation module

Classification module

Time mosaics 
generation module

Video textures 
generation module

Visualization result

Input audio file

Audio visualization system

…...…...

Visualization generation

Template 
image/video 

for class i

Audio file 1

Audio file 2

Audio file n

…...

Template 
image/video 

for class j

Audio file 1

Audio file 2

Audio file m

…...

Database

class in audio database
audio database
visualization of audio input

 
Figure 2-1: Framework of audio visualization system. 

 

The system has four modules: a segmentation module, a classification module, a time 

mosaics generation module and a video textures generation module. An audio database 
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is employed as the training set for audio classification and visualization. In this audio 

database the audio files have been classified manually. Each class has an archetypical 

template image and template video, that are used to represent that class of audio files. 

The visualization generation algorithm takes the audio input and generates images or 

video texture to represent it.  

 

 

 

Figure 2-2: Processes of visualizing an audio input. 

 

Figure 2-2 shows a detailed view of the framework. An audio file, which may contain a 

single sound or multiple sounds, is introduced as the file to be visualized. The 

segmentation module separates the input audio into component sounds. Then each audio 

segment is classified. The classification process selects the template image or video for 

each audio clip. A distinctive seamless sequence of images based on the computed 

audio features of each segment and the audio file is generated by the time mosaic 

module. In a similar way the video texture module generates a period of video texture. 
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2.3   The Development Environment 
 

To implement the system, three propriety software systems were used. SQL Server was 

the database management system employed to store the audio files, each audio file's 

metadata and the template images and videos for each class of audio file. The user 

interface to the audio visualization system was developed using Java. MATLAB was 

employed to process the audio files, images and videos. MATLAB was chosen due to 

the built-in image filters available. 
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Chapter 3 
Audio Segmentation 

 

 

The goal of this research was to investigate and develop an accurate and robust, 

unsupervised segmentation method for partitioning a heterogeneous audio input stream 

into its composite segments, known as audio clips. The implementation of this 

segmentation method is the first module of the audio visualization system. The module 

separates an input audio stream into individual sounds (sound clips) and indicates the 

silence periods between the sound clips (which are not involved in the subsequent 

classification step).  

 

Existing audio segmentation methods are reviewed and their limitations discussed. The 

existing methods are not suitable for the proposed application and therefore a novel 

two-phase segmentation method is presented. The experiments with, and analysis of, 

this method are detailed. The two-phase segmentation method offers accurate results 

comparable with other high performance segmentation algorithms and provides a 

general scheme that is appropriate for the audio visualization system.  

 

3.1   The Audio Segmentation Module 
 

Segmentation plays an important role in audio processing applications such as content-

based audio retrieval and recognition, audio classification, and audio database 

management. For general mixed-sound audio files, segmentation is an especially 

important step because it is much easier and more accurate to undertake further analysis, 

such as query or classification, using segmented homogeneous audio clips than using a 

raw audio input stream.  

 

Sounds that are considered homogeneous are sounds that are acoustically similar. 

Generally, the characteristics of a single sound tend to be constant over time. The 

characteristics of sounds in the same class tend to be acoustically similar as well. The 



simplest boundary between two neighbouring sounds is an abrupt change, or transition, 

in acoustic features which occurs in a single frame or between two adjacent frames. If 

there are different sounds in an audio stream, they can therefore be separated by 

locating abrupt changes in audio features between two adjacent frames. Gradual 

transitions across sound segments are more complex and therefore more difficult to 

determine.  

 

Audio segmentation identifies appropriate boundaries for different sounds in a single 

audio stream and partitions these continuous streams into homogeneous regions. The 

adjoining sounds are considered homogeneous if they are acoustically similar and could 

be classified as belonging to the same class in the ontology. After segmentation each 

resulting audio clip or segment contains only one sound, or acoustically similar sounds 

of the same class, that is acoustically different from other sounds in the audio stream. 

Where the audio is entirely homogeneous, the resulting output after segmentation is the 

same as the input. The output of a heterogeneous audio file is a series of audio clips 

where each contains one or more sounds of a particular class.  

 

As the first stage of the audio visualization system, the segmentation process tries to 

detect the boundaries of each audio clip within the input audio stream, i.e. the frames 

where the acoustic characteristics change (Figure 3-1). The segmentation module output 

consists of the number of audio clips and each clip's start and end position relative to the 

start of the input audio file. Subsequently, the duration and variation of each audio clip 

can be easily extracted. From the perspective of the audio visualization system, the 

output of this module provides the input for the classification module, the second part of 

the system. 

 

 
Figure 3-1: An overview of the segmentation process. 
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The boundary detection of two sounds that overlap is purpose-dependant and 

challenging. A discussion of audio segmentation with overlap can be found in a number 

of references [54] [55]. Boakye segmented speech acquired from interpersonal meetings 

into three categories: single-speaker speech, overlapping speech, and non-speech [54]. 

Overlapping alters the audio features even if the original sounds are of the same type 

(belonging to the same class). In audio segmentation, the overlapping period between 

two sounds is ambiguous because whether a sound clip is the overlapping of two sounds 

or a homogeneous single sound is determined by the task specific semantics. For 

example, noisy speech can be considered as a kind of overlapping if the segmentation 

aims to separate speech, noise, and silence. Another example is the processing of 

musical audio to identify and separate musical instruments. Samples containing multiple 

instruments are of the overlapping type though they are treated as a type of music in 

many applications. For sound visualization, the signal of two overlapping sounds is 

different from either of the original two sounds and should be treated as a new sound 

snippet. The proposed segmentation module acts as a pre-process for further 

classification and visualization of a single sound. Wherever overlapping regions exist 

the goal is to identify the overlapping areas between the neighbouring sounds and to 

separate the overlapping areas from the surrounding sounds.  

 

The requirements of the segmentation method in the audio visualization system are: 

Robustness: The database contains unrestricted and general classes of sounds so 

it is desirable to be able to segment most types of audio and not be limited to just 

the broadly defined classes such as speech/music/sounds/silence. 

Accuracy: As the first module of the audio visualization system, all further 

analysis of the audio depends on the output of this module. Therefore the 

accuracy of the segmentation is fundamental and crucial to the following 

modules in the audio visualization system. Inaccurately detected segments 

would lead to incorrect classification results and give spurious visualization 

results. 

Flexibility and practicality: The audio visualization system uses an existing 

database to visualize any new input audio. The database cannot cover all 

possible types of input audio therefore, as the first step to process the input 

audio, this module should be able to function unsupervised and to automatically 

accommodate new audio types. 

 



The novel two-phase segmentation method introduced herein not only meets the 

requirements of the audio visualization system, but is competitively accurate for general 

audio segmentation. It is also worth noting that this two-phase method, as an accurate 

segmentation technique, can be used in other applications as well. Potential applications 

include speech and music segmentation, speaker change detection, speaker clustering, 

musical structure extraction and music summarization. 

 

3.2   Literature Review 
 

Several methods have been developed to segment audio streams in different 

applications. Some techniques have been designed for, and limited to, audio samples 

that contain only certain types of sounds, while others have been used for audio samples 

containing heterogeneous sound types.  
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Figure 3-2: Categories for existing segmentation methods. 

 

Figure 3-2 illustrates some possible ways to group reported segmentation methods. 

Segmentation approaches belong to either classification-dependent segmentation (CDS) 

or classification-independent segmentation (CIS). They can also be grouped depending 
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on which audio features they use to view and interact with the input stream, such as 

time-domain, frequency-domain or a hybrid of both. Yet another criterion is whether the 

approach requires a training set to learn from prior audio segmentation results 

(supervised approach) or not (unsupervised approach). Segmentation methods may also 

be defined as model-based or model-free. These categories will guide our discussion of 

prior work.  

 

Chen et al. [56] identify two types of segmentation approaches: classification-dependent 

segmentation (CDS) and classification-independent segmentation (CIS). CDS methods 

consider that the property-vector of each frame (a short duration signal) in an audio clip 

independently belongs to a specific class. If all frames of a sound piece belong to the 

same class, the sound piece belongs to the class. So in CDS methods such as in Lu et al. 

[57] and Hain et al. [58], classification is carried out before segmentation. Segmentation 

can therefore be regarded as a post-analysis (classification) step. Hence the accuracy of 

the partitioning obtained is highly dependent on the accuracy of classification. 

Whichever algorithm is employed, misclassification cannot be totally eliminated 

because the spread of the acoustic properties across different classes contained in the 

audio stream makes it difficult to find distinct boundaries between audio classes. Frame-

based classification increases the risk of misclassification because different types of 

sounds have different structures. Even if a homogeneous sound belongs to a class, its 

individual frames do not all necessarily belong to the same class. Huang and Hansen 

[59] argued that pre-classification tends to cause the insertion of short duration 

segments, resulting in a "toggling" action between potential classes. Lu et al. [57] 

claimed the post-smoothing process can improve the segmentation accuracy for audio 

segmentation, but it is based on the continuity of an audio stream in a video program, 

which does not suit all general purpose audio segmentation methods. CDS methods can 

be problematic because it is difficult to control their performance [56]. Unlike methods 

which rely on a prior classification, CIS approaches detect changing points in input 

audio by self-similarity. For a general audio visualization system, the CIS method is 

more suitable than CDS if classification is undertaken prior to segmentation. This is due 

to the misclassification of individual frames observed when the CDS is used. 

Consequently CDS is more likely to result in incorrect template image selection and 

therefore incorrect visualization. 
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For audio segmentation, there is no absolute measurement for determining which audio 

feature set is better than others. Audio feature set selection depends on the purpose of 

the segmentation process and the type of audio file being segmented. Panagiotakis and 

Tziritas [60] employed a typical time-domain approach that used the root-mean-square 

(RMS) and zero crossing rate (ZCR) to discriminate speech from music. Tzanetakis and 

Cook [61] presented a general methodology for temporal segmentation based on 

multiple features. Saunders [62] used the energy contour and the zero-crossing rate 

features to discriminate between the speech and music segments in an audio stream. 

Scheirer and Slaney [63] used a set of 13 audio features to discriminate between speech 

and music segments. Eight of the 13 audio features were based on power such as 4 Hz 

modulation energy and spectral centroid. However, these power-related features are not 

very suitable for short-duration sounds. Cepstral coefficients were used by Moreno and 

Rifkin [64] and Seck et al. [65] to classify and segment speech and music. The reported 

accuracies of these audio features provide some inspiration for general segmentation in 

developing the present audio visualization system. 

 

Different mathematical models have been employed in model-based segmentation 

approaches, such as Gaussian Mixture Models (GMM) [63] [66] [67], Hidden Markov 

Models (HMM) [68] [69] [70], Bayesian Methods [71] [72] [73] and Artificial Neural 

Networks (ANN) [74]. Some classifiers have also been used for segmentation such as 

support vector machines (SVMs) [75] and K-nearest neighbour clustering schemes [76]. 

For instance, a two level process using a K-Means classifier combined with Hidden 

Markov Models, which has been applied to football audio broadcast tracks with three 

result classes whistle/crowd/speaker, has been proposed in Lefèvre et al. [76]. 

 

In contrast to the model-based methods, there are also model-free or metric-based audio 

segmentation methods [73]. The model-free methods always depend on the self-

similarity of the input audio [77] [78] [19] [79] [80] [81]. Tzanetakis and Cook [61] 

proposed a general framework for audio segmentation and classification. The 

segmentation was based on change-detection of audio textures which was generated 

from the Mahalonobis distance. From their experiments on a large data set (2 hours of 

audio data including speech, music and mixed audio), the accuracy achieved was 

approximately 90%. Foote [17] processed the self-similarity matrix with a checker-

board kernel, which calculates the cross-similarity values between regions. Subsequent 

work by Foote [82] detected the heterogeneous regions with a checker-board kernel 
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with Gaussian taper. Audio segmentation methods based on a similarity matrix have 

been employed to process news-broadcasting [83], which is relatively acoustically 

dissimilar, and to extract music structures or music summarizations. The accuracy 

evaluation of these methods was undertaken with specific input audio types and has not 

been reported for use with audio files in a non-music/non-speech database. Moreover, 

all these methods have the common drawback that there is no kernel that suits all audio 

files. 

 

The main difference between a supervised and an unsupervised segmentation method is 

that the supervised method needs a training set, whereas the unsupervised approach 

derives its model from the input signal itself. The unsupervised approach tests the self-

likelihood ratio within the input audio itself to detect and observe possible changes. 

Examples of unsupervised audio segmentation approaches can be found in several 

papers [70] [71] [84]. On the other hand, the systems developed by Spina and Zue [66] 

and Ramabhadran et al. [68] must be trained before segmentation. It is difficult to 

compare the performance of supervised vs. unsupervised methods in the literature as no 

common bench-mark dataset has been used however both methods have reported 

relatively high accuracies.  

 

As audio segmentation can be used in various fields, the existing segmentation methods 

can be classified according to their purpose such as "speech/music discriminating" [85] 

[86], "speaker identification" (speaker change detection) [59] [72] [87] and "music/song 

structure extraction/summarization" [88]. Kimber and Wilcox [89] classified audio 

recordings into speech, silence, laughter, and non-speech sounds, in order to segment 

discussion recordings from meetings. Peeters [90] solved speech/music segmentation 

and music genre recognition with a system for audio indexing. The system includes 

feature extraction, feature selection, feature space transformations, and statistical 

modelling. Its purpose is radio stream segmentation (speech/music) but its performance 

deteriorates when its audio input is mixed with other categories of sounds. Homayoon et 

al. presented a distance measurement for evaluating the closeness of two sets of 

distributions in speaker recognition [91]. A method named DISTBIC has been proposed 

to segment audio based on speakers [92]. The method detects the most likely changes of 

speaker, then validates or discards them.  
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A significant amount of work has also been conducted in the music field. Some systems 

concentrate on finding repeating patterns, ignoring sections that occur only once, and 

analyzing structures in music and songs [81]. Some try to attach semantically 

meaningful labels to the sections found, whereas others concentrate on locating correct 

boundaries. Ong [93] separated the music structure discovery into two processes: pre-

analysis segmentation and post-analysis segmentation. Pre-analysis segmentation 

(sometimes called frame segmentation) takes place before the content analysis process 

and performs crucial preparations for the content analysis description. Bartsch and 

Wakefield [77] presented a method that produced short representative samples ("audio 

thumbnails") from selections of popular music by identifying the chorus or refrain of the 

song. Ganapathiraju, et al. [94] pointed to the importance of segmentation boundaries 

for summarization.  

 

Although there are many approaches to audio segmentation, they are focused on a 

narrow type of audio such as speech, or music, or noise, or silence separation. For any 

input audio, the final outcome from different applications may be different owing to 

these distinct purposes. The selection of a segmentation method always depends on the 

specific requirements of the application. Existing segmentation methods work well for 

specific applications but are not general enough for databases containing broad types of 

sounds from different fields. Because of their limitations, none of the existing methods 

can give satisfactory segmentation results for general audio. Finding a method to 

segment general audio files containing different types of sounds remains an open and 

significant problem.  

 

An accurate automatic segmentation method that is capable of accommodating a variety 

of sounds is needed for audio visualization. The next section introduces a two-phase 

unsupervised model-free segmentation method that works for general audio files. This 

novel two-phase segmentation method is flexible enough to handle much broader 

classes through self-learning and self-adjustment.  

 

 



3.3   A Novel Two-Phase Audio Segmentation Method for 
General Audio Files 

 

In order to study an audio file, it must be split into a sequence of snippets (frames) from 

which feature vectors are extracted using acoustic features. An audio feature vector 

characterizes its corresponding audio frame. Any further processing is based on these 

audio feature vectors. The segmentation module looks for the difference between the 

audio vectors of frames within a given input stream.  

 

This section presents a two-phase CIS method for general audio files. It can detect audio 

clip boundaries from the information contained within the audio file itself. Its 

implementation and audio feature selection abilities are discussed in each of the 

corresponding procedures within the method. 

 

3.3.1   A Framework for the Two-Phase Audio Segmentation Method 
 

.  .  .

.  .  .

.  .  .

 
Figure 3-3: Framework for the novel two-phase audio segmentation method. 

 

Figure 3-3 is a structural view of the two-phase audio segmentation method. The first 

phase exploits time-domain features to identify silence periods and roughly separates 

the audio. After the initial segmentation, further segmentation in the frequency domain, 

phase two, is performed. This second phase of the segmentation process takes advantage 

of the fact that sounds tend to be homogeneous in terms of their audio features. 

Therefore it can be assumed that any abrupt change in the audio features indicates the 

start of a new audio clip. This more sophisticated approach is performed on segments 
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from the initial segmentation; it detects subtle changes in more complex acoustic 

features until each audio clip contains a single sound. These stages, depicted in Figure 

3-3, will each be discussed in further detail.  

 

3.3.2   Phase One – Silence Detection 
 

General audio files may have a short period of silence between sounds where the sound 

clips do not overlap. Therefore silence detection can often be used to separate sounds. 

The first phase of the two-phase segmentation finds the start and end of audio clips 

based on silence periods. Root Mean Square (RMS) [60] and Spectral Power (SP) [95] 

are widely used audio features for silence detection. If the selected audio feature of a 

frame is less than a pre-determined threshold, it is regarded as a silence frame [95]. But 

neither RMS nor SP is suitable when the sound's duration is very short, say less than 

10ms, e.g. hand claps as shown in Figure 3-4. 
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Figure 3-4: Wave shape of audio file "Hands clapping" and its SP, RMS;                                            

(Inset) Enlarged wave shape of sound 7 in "Hands clapping". 
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The signal in Figure 3-4 contains eight hand claps, each lasting ~11ms. Using both 

RMS and SP, only five are detected. The remaining three clearly audible sounds, 

visually identifiable in the time-amplitude signal, are not detected. When sound one and 

sound seven are compared (the top graph in Figure 3-4) the SP values of the two sounds 

are similar if marking their boundaries manually. However sound seven is not identified 

as a signal in the input audio. This is because when the input audio is split into frames 

sound seven is split into two frames (Figure 3-4 (Inset)) which contain short limited 

sample points, resulting in two frames being detected as silence. Neither RMS nor SP 

work for short duration signals such as this hand-clapping example. 

 

In order to cope with very short sounds, a new approach is proposed. The maximum 

amplitude value of each frame is used as a parameter to label silence and signal frames 

with an empirical threshold T. The threshold T adapts to each audio file thus:  
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where A is the absolute amplitude of the signal. Adapting the threshold using the mean 

value of the absolute amplitudes of an input sound is necessary to minimize the effects 

of noise within an audio file with variable SP. This results in higher thresholds which 

eliminate most of the noise in a signal but may also result in the removal of the edges of 

a fading signal. This tradeoff between loss of signal edges and elimination of noise is 

necessary to achieve good segmentation.  

 

The given audio is separated into frames, each lasting 2.5ms. Such a short frame size is 

not appropriate for accurate audio feature extraction. But in this two-phase segmentation 

method audio features are not required in this phase, and the 2.5ms frame leads to 

accurate silence detection for signal boundaries using the maximum amplitude. 

 

Once all the frames have been marked, the start and end points for each audio clip are 

detected. Given frame fi if fi-1 and fi-2 are silent then fi is a clip start frame fs and if fi+1 

and fi+2 are silent then fi is a clip end frame fe. The clip is then defined as C∈{fs, 

fs+1,....fe}. If the silence between two audio clips Ci and Ci+1 is short (less than 0.01 × 

input_audio_duration for general sound) these two audio clips are combined. If an 
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audio clip Ci is very short (less than 5ms in duration), it is barely audible and is 

therefore discarded as noise and does not need to be considered in further analysis. If a 

resulting sound clip lasts more than 5ms but less than 16ms, the frame in front of it and 

the frame after it are added to it to form a single clip. The result of the first phase is a set 

of sound clips (signal frames). 

 

Different systems may have different requirements even when using the same 

segmentation method. The considerations discussed here are for a segmentation method 

that is used as a precursor to the classification and eventually to the audio visualization 

of general audio files. It is important to consider the number of different sounds present 

in an audio file. For the audio visualization system, it has been limited to less than one 

hundred. This is because the space on a computer screen is limited and as a result the 

visualization output cannot contain too many components. This restriction can be fine-

tuned to fit other applications. For instance, for long-lasting input audio files which may 

have hundreds of short sounds, the duration restriction for combining two neighboring 

audio clips should be decreased correspondingly. It is of little concern if two different 

audio clips are combined incorrectly, because they are likely to be separated again in the 

second phase of this segmentation method. 
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Figure 3-5: Correct audio segmentation result for a mixed sound audio file. 
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Figure 3-5 gives an example of segmentation results based on silence detection. There 

are two signals in the input audio. The first is a telephone's touch-tones, (marked in grey) 

and the second is a violin (marked in black). Using this adaptive threshold based on 

amplitude the silence periods between the telephone touch tones in signal 1 are correctly 

detected. However the silence period between signal 1 and signal 2 is not of a sufficient 

duration to be detected using silence detection.  
 

3.3.3   Phase Two – Edge Detection within Self-similarity Maps 
 

For any audio clips detected in the first phase, if two sounds are seamlessly connected 

with no or very short silence between them, such as audio clip seven in the 

telephone/violin audio example, silence detection does not work. When the presence of 

silence cannot be totally relied on, a subsequent, more sophisticated refinement phase is 

required for the separation of contiguous clips. Because a sound's audio features tend to 

be homogeneous, any abrupt changes in audio features may indicate the start of a new 

sound clip. Foote [17] was the first to use a two-dimensional self-similarity matrix 

(autocorrelation matrix) where a song's frames are matched against themselves. In a 

similar vein, Cooper and Foote [19] used a two-dimensional similarity matrix for music 

summarization. These methods establish that the self-similarity map can indicate the 

changes within audio clips. Foote's similarity matrix [17] is adapted as the second phase 

of the two-phase audio segmentation procedure. When similarities between each pair of 

frames are extracted, a self-similarity matrix is generated for the input audio segment. 

 

This self-similarity matrix can be represented by a greyscale image (See Figure 3-6 Top 

(L)). Each element in the self-similarity matrix is mapped to a pixel in the image and its 

value is linearly calculated. Because the matrix is scaled to a grey image, the maximum 

of the self-similarity matrix is set to one and the minimum value is zero. In this thesis, 

the term "self-similarity map" refers to the greyscale image of the self-similarity matrix. 

If there is only a single sound in the audio clip, the self-similarity map is homogeneous; 

otherwise, a self-similarity map contains some homogeneous blocks which correspond 

to sounds in the input audio. Once the self-similarity map is generated, the next step is 

to accurately detect abrupt changes of pixels between blocks which represent changes of 

sounds in the audio.  
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Figure 3-6: Top: (L) Similarity map image; (R) Edge detection of similarity map image;                     

Bottom: Segmentation result based on similarity map image. 

 

In Foote's segmentation method a checkerboard kernel is used to calculate cross-

similarity values between different regions along the diagonal of the self-similarity map. 

Kernel size affects the accuracy. A small kernel tends to be sensitive and on a short time 

scale and is capable of finding detailed changes. On the other hand, a large kernel is 

suitable for those audio files that have few segments but each segment contains several 

sounds. Because it is impossible to find a kernel size that suits all kinds of sounds, an 

edge detection method in image processing is employed in our segmentation method, 

instead of a kernel comparison on a similarity map, to locate changes in audio 

properties. Edge detection in self similarity maps has not been previously used to assist 

audio file segmentation. 
 

Sobel edge detection [96] is commonly used in image processing to detect the edges of 

an image. Here we employ Sobel edge detection, for the first time in audio 

segmentation, to identify any abrupt changes in the audio self-similarity map. When 

applying Sobel edge detection, a heterogeneous image can be separated into 
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homogeneous regions. The edge pixels of the regions represent the boundaries in the 

audio clip. In this way, the audio clip is then separated into homogeneous sound regions.  
 

The audio clip in Figure 3-5 (lower image) is used as an example: its similarity map is 

the left image of the top row in Figure 3-6. The similarity map has zeros along its 

diagonal because the distance is zero from each frame to itself. There are two 

homogeneous blocks in the similarity map that indicate two homogeneous sounds in the 

audio clip. Figure 3-6 Top (R) gives the resultant image from performing Sobel edge 

detection on the self-similarity map (Figure 3-6 Top (L)). The changing frames are 

clearly evident in the resultant edge detection image. The final segmentation result for 

the phone and violin mixed audio clip is illustrated in Figure 3-6 (bottom image). It can 

be seen that the edges of the similarity map accurately illustrate the boundaries of the 

sounds.  

 

This second phase of segmentation is performed only on audio clips that are longer than 

ten frames, since there is little possibility that audio clips shorter than ten frames contain 

multiple distinguishable sounds. 
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Figure 3-7: Result of segmenting the audio file (Figure 3-5) using Euclidean-d similarity segmentation 
method. 



 

An alternative method used in detecting self similarity that has been employed 

previously is the use of a Euclidean distance (Euclidean-d or dEuclidean) similarity 

measure. Figure 3-7 shows the result of applying one phase Euclidean-d as a similarity 

segmentation method using the same audio file as in Figure 3-5. The audio clip seven in 

the upper image of Figure 3-5 is not separated when a one-phase Euclidean-d measure is 

used. This example clearly illustrates that the two-phase segmentation method (Figure 

3-6) is better than the silence detection method (where clip seven is not segmented) or 

the similarity segmentation methods (Figure 3-7) because it correctly separates the two 

sounds in audio clip seven. 

 

The novel two-phase segmentation developed here is a method that was designed for 

both long and short duration audio clips. Figure 3-8 shows results obtained using this 

segmentation method with clips of varying lengths in a single audio file. In this example, 

there are five audio clips. The first and fifth have a relatively long duration and the rest 

are relatively short. The resulting segmentation is demarcated by blue lines 

superimposed on the original waveform. Segmentation generates a series of sound clips 

in which each sound clip is a segment of audio, containing a homogeneous set of 

features for each frame. 
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Figure 3-8: Segmentation result for long and short signals. 
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Figure 3-9: The comparison of the similarity map with and without adding silence frames. Images in the 

left column are a homogenous audio with 2 extra silence frames, its similarity map and edge detection 
result. Images in the right column are the same audio without silence frames and the corresponding results. 

 

In general, the similarity matrix has minimum values of zero on the diagonal because 

each frame has a maximum similarity to itself by definition. For a homogeneous audio 
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clip, the real values of similarity distance are small, but are extended in the similarity 

map after normalization because no matter what the real value of the maximum 

similarity distance, it is scaled to one. To represent the audio clip correctly, two silence 

frames are added at the front and the end of the audio clip. After adding a silence frame, 

the maximum similarity distance in the audio clip is a signal frame compared with 

silence frames. Similarity distances of homogeneous audio clips will not be extended. 

The images in Figure 3-9 illustrate the importance of adding silence frames to a 

homogeneous audio clip. Image L(A) in Figure 3-9 is the wave-shape of the audio 

shown in image R(A) with two extra silence frames at the front and at the end. Their 

corresponding normalized self-similarity maps are shown in images L(B) and R(B). 

Compared with image L(B), the differences are accentuated in image R(B), which is the 

normalized self-similarity map of an audio clip without adding extra silence frames.  

 

Further edge detection based on R(B) gives image R(C). The self-similarity map is 

separated into many small regions which correspond to improper small audio clips. 

However, image L(B) keeps homogeneity because, in comparison with silence, frames 

within this homogenous audio signal have similar properties. The edge detection result 

shows there is no obvious change within the audio clip. There are two silence frames 

added in the example of Figure 3-6 too. It shows that for heterogeneous input audio, 

adding silence frames does not affect the segmentation result.  

 

The pixel Sij in the self-similarity map of an audio file represents the distance between 

the feature vectors of frame i and frame j in the audio. There are many methods that can 

be used to compare and derive the differences between two vectors. Some of them can 

be adapted for self-similarity matrix generation. The similarity map can be generated 

from different distance extraction methods, such as the Euclidean-d mentioned in [17] 

[81], the Cosine of the angle between frame vectors [82] [93], the Kullback Leibler 

distance (KL2) [87], and the Hotelling T2-Statistic distance [97]. Ong [93] claimed that 

compared with Euclidean-d, the cosine of the angle between two vectors (named cosine-

d or dcosine in this chapter) yields a large similarity score even if the vectors have small 

magnitudes. Besides these distance equations, Chen et al. [56] presented a similarity 

equation for two vectors, which measures the differences in the magnitude and angle 

between two vectors. Based on these existing similarity extraction equations, four more 

vector similarity extraction equations are presented here. The performance of each of 



these possible equations, in the two-phase audio segmentation method, was evaluated. 

A detailed discussion of the calculation of these similarity extraction methods follows.  

 

Given two audio frames with n-dimension audio vectors a and b, then we define θ  as 

the angle between a and b. The existing methods are defined in Table 3-1.  

 

Table 3-1: Existing equations for similarity between two vectors. 
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Viewed geometrically, vectors have length (magnitude) and direction. Because the 

length of each vector is a value between 0 and 1, the distance between two vectors 

 is between 0 and )b,a(d Euclidean n  and gives the magnitude of vector ||a-b||. 

 also equals a value between 0 and 1, and gives the cosine of angle)b,a(d esinCo θ . 

Chen's vector distance equation (also named Chen-d or dChen in this chapter) consists of 

two parts. The first part dlog estimates the difference between the magnitudes of two 

vectors. In Chen-d, when 5.0=α , the magnitude (dlog) and direction ( ) of 

the vectors have the same weights. In Chen's paper and this thesis, 
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When the coefficient of Chen-d equation α  is set to 0.5, length and direction have the 

same weight in computing the distance between the two vectors. Chen-d was the first 

method to use both magnitude and direction when calculating the distance between two 

vectors. Chen-d values are between 0 and 1 according to the following:  
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Based on these existing methods, four new equations for comparing the similarity 

between two vectors have been developed and are presented in Table 3-2. 

 

Table 3-2: New methods for calculating the similarity between two vectors. 
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)b,a(d Angle  is the normalized angle between two vectors and represents the directional 

difference between vectors a and b. Whereas produces a curvilinear 

representation for the angle between vectors a and b, produces a linear 

curve. 

)b,a(d esinCo

)b,a(d Angle

Figure 3-10 (L) shows the difference between the two methods of calculating 

distances. 

 

In Chen-d, the curve of  is a logarithmic curve for logd a  / ba +  (Figure 3-10 (R)), 

which ranges from [0, 1]. In an n-dimensional feature space, vectors, a  and b  range 

from [0, n ].  
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Figure 3-10: (L) The comparison of dcosine(a,b) and dAngle(a,b).                                                          

(R) The comparison for distances dlog, dSine, and dLinear. 

 

Figure 3-10 (R) visually compares the Chen-d measure with two new variants, Sine-

Chen and Linear-Chen.  uses a sine curve instead of the logarithmic curve 

in Chen-d: 
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Figure 3-10 (R) shows that Sine-Chen distance ranges from [0,1]. As in Chen-d, the 

magnitude and direction of the vectors have the same weight when . 5.0=α

 

The graph of dLinear(a, b) is the polyline in Figure 3-10 (R). The polyline changes 

linearly with variable ||a|| / ||a|| + ||b||. 
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Figure 3-11: Visualization of distance dChen(a,b) and dLinear-Chen1(a,b). 

 

The dLinear line length is also clamped between zero and one. The distances dLinear-

Chen1(a, b) and dChen(a, b) are visualized in Figure 3-11 as surfaces. The dLinear-Chen1(a, b) 

distance is the upper one because its dLog(a, b) is bigger than dLinear(a, b) when the value 

of (||a|| / ||a|| + ||b||) is neither 0, 0.5, or 1.  

 

Table 3-1 and Table 3-2 contain seven equations that can be used to extract the 

similarity (distance) between two vectors in n-dimension audio feature space. Table 3-2 

shows four novel equations, discussed in detail earlier in this section, that were derived 

in an attempt to improve on the results of the existing approaches (Table 3-1). The tests 

undertaken to evaluate and compare the performance of all seven measures in the two-

phase audio segmentation method are reported in the following sections.  

 

3.4   Evaluation Method  
 

A widely used standard non-musical sound database, called MuscleFish [1] [98], is 

employed to fully evaluate this two-phase segmentation method. MuscleFish contains 

16 classes and 410 audio files as described in Table 3-3, with Nc being the number of 

sounds in each class. The duration of the sounds varies from less than 1 second to 

approximately 15 seconds. When compared to databases in previously reported 
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segmentation evaluations, this database introduces some significant segmentation 

issues. For example, classes "Alto trombone", "Cello(bowed)", "Oboe", "Percussion", 

"Tubular Bells", "Violin (bowed)" and "Violin (pizz)" belong to the category of music 

so these audio files are acoustically similar. Moreover, the database has a broad range of 

classes, including musical instrument samples, animals, machines, speech, and everyday 

sounds (e.g. thunderstorm and hand clapping).  

 

Table 3-3: The 410 audio files and 16 classes in the MuscleFish audio database. 

MuscleFish Classes Nc MuscleFish Classes Nc 

Alto trombone 13 Male Voice 17 

Animals 9 Oboe 32 

Bells 7 Percussion 99 

Cello (bowed) 47 Telephone 17 

Crowds 4 Tubular Bells 20 

Female Voice 35 Violin (bowed) 45 

Laughter 7 Violin (pizz) 40 

Machines 11 Water 7 
 
 

 

For segmentation evaluation, 1000 audio files were generated. Each file was built by 

conjoining two randomly selected files from the MuscleFish database. Each file in the 

MuscleFish database contains from one to seven sounds. Thus the generated test files 

may contain anywhere from two to fourteen sounds. These 1000 audio files were 

separated into 10 sets of 100 files and these sets were used for testing the accuracy of 

segmentation methods. For example, the generated test audio file illustrated in Figure 

3-5 has seven sounds where the first six sounds belong to the first audio file and the last 

sound belongs to the second audio file. Because the number of sounds in a test audio 

file is unknown, experiments based on these audio files are general and comprehensive. 

 

The accuracy of the segmentation method is compared with the manually marked audio 

file to ensure that the correct segments or sounds in the file have been identified. This is 

the generally accepted way of verifying the performance of segmentation methods in the 

literature reviewed. 

 

There is no consistent evaluation method that can be applied for all possible audio 

applications. Martin, Scheirer and Vercoe [99] also note that there is no ground truth for 
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music. The segmentation results are therefore context dependent. The correctness of 

segmentation depends on the application and should be perceptually meaningful. As the 

primary module of an audio visualization system, segmentation should partition sounds 

by using acoustical differences. Although the physical end of the first sound and the 

physical beginning of the second sound is the actual boundary of the two sounds, more 

tolerant rules for a "correct segmentation result" are adopted according to the specific 

purpose of the audio visualization system thus: 

• In this application, if two signals belong to the same class, any segmentation 

result is regarded as "correct" because the two signals can be visualized by the 

same kind of video/image.  

• One tolerance frame before and after the actual boundary is integrated for 

evaluation. This small tolerance is introduced because, for the actual boundary 

frame, it is possible that some samples in the front belong to the sound in front 

of it and the remaining samples belong to the sound after the frame. So the 

actual boundary frame is acoustically different from its two neighbouring 

frames. Any one of these three frames can be regarded as a boundary frame. In 

other words, suppose the real boundary frame is numbered i, any one of frame i-

1, frame i and frame i+1 is correct for separating the two neighbouring sounds. 

• If an audio file is separated into smaller pieces because the silence periods 

between are long enough to cause partitioning, the results with smaller pieces 

are accepted as correct. 

 

To evaluate the two-phase segmentation method its accuracy is compared with existing 

self-similarity methods (Euclidean-d and Cosine-d) and an existing silence detection 

method. In the two-phase segmentation method, the performance may be affected by 

other factors, such as the equations used to generate the similarity map in the 2nd phase, 

the audio feature extraction algorithms and audio feature set selections. The different 

combinations of these factors, as well as different similarity calculation methods, are 

tested and compared in the following section. 

 

3.5   Experiments and Analysis 
 

The various different factors or parameters that affect the accuracy of audio 

segmentation results were discussed in 3.4 above. A corresponding experiment has been 

designed for each factor. 
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• Generally speaking, accurate audio feature extraction requires sounds of adequate 

duration such as the standard frame size of 16ms found in Li [98]. However, some 

experiments are required to ensure a suitable frame size is employed.  

• After extracting the audio features for all the frames, the values of all audio frames 

are normalized to [0, 1] for each feature. This ensures that each feature has the same 

weighting in the distance calculations. After normalization, the feature vector of a 

silence frame may be non-zero. Some experiments are also necessary to test whether 

or not the feature vectors for silence frames need to be reset to zero. In the 

experiments described below the audio feature vectors for silence frames after 

normalization are either retained (general normalization) or clamped to zero 

(modified normalization). 

• A suitable equation for vector similarity distance extraction is required for the 

second phase of this segmentation method. The audio feature set is another 

important factor for the segmentation accuracy. Thus experiments with different 

audio feature sets are essential.  

 

The following experiments were undertaken using the 10 groups of audio files (100 

audio file each) the generation of which was discussed in Section 3.4. Because each 

parameter in the segmentation process (i.e. frame size, normalization method and 

feature set) is interdependent an initial assumption must be made about one of these 

three parameters. In the first two experiments, to enable the selection of a suitable frame 

size and audio feature vector normalization method, the PercCeps8 feature set was 

selected. The following audio features form the PercCeps8 feature set:  

• Total Spectrum Power: the spectral density of the signal wave (the power carried by 

the signal wave per unit frequency). 

• Brightness: the frequency centroid of given audio signal. 

• Bandwidth: the square root of the power weighted average of the squared difference 

between the spectral components and the frequency centroid. 

• Pitch: the mean fundamental frequency (F0). 

• Eight order Mel Frequency Cepstral Coefficients (MFCCs): a compact 

representation of an audio spectrum that takes into account the nonlinear human 

perception of pitch, as described by the Mel scale. 

 



 

These features were selected because their combination has been shown to give the 

most accurate classification results for the MuscleFish database [98] and have been 

employed in post-classification segmentation [75]. It is reasonable to assume that this 

feature set therefore provides the best possible representation of general audio files and 

would also therefore be appropriate for the segmentation of such audio files. Details of 

the computation of these features can be found in Li [98]. Additionally, although the 

feature set PercCeps8 was normalized according to the training set [98], which is not the 

same as an unsupervised audio processing, it provides a good indication of possible 

audio features and feature combinations that are worth trying in the experiments for 

establishing parameters for the two phase segmentation method. 

 

Experiment One: Frame size determination 

 

The performance of the two-phase method using two different frame sizes, 16ms and 

32ms were tested. These two frame sizes were selected because they are commonly 

used in audio processing. The feature vectors were normalized and the silence frames 

retained using Li's method [98]. For silence detection methods normalization is not 

required and is therefore not used in the silence experiment here.  

 

Table 3-4: % average accuracy of segmentation methods using different frame sizes. 
 
 
 

One-phase Two-phase 
Frame Size 

Silence Cosine-d Euclidean-d Cosine-d Euclidean-d 

32ms 81.0 87.5 89.6 88.8 93.9 

16ms 82.7 91.4 94.6 92.7 96.6 
  

 

Table 3-4 and Figure 3-12 show the percentage average accuracy for each approach. It 

is clear that in all five methods a 16ms frame size gave better accuracy. The results 

when using the best performing Euclidean-d two phase segmentation method with a 

16ms frame size was significantly more accurate than those achieved using a 32ms 

frame size; χ2 = 8.06, df = 1, p < 0.01. 
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Figure 3-12: Comparison of different frame sizes (16ms and 32ms). 

 

Experiment Two: Normalization 

 

In an attempt to improve the accuracy of segmentation we explored an alternative 

approach to normalize the audio feature vectors. Typically, during normalization, audio 

features for a silence frame may be scaled to a non-zero vector because some audio 

features can be negative (MFCC features). In Li [98] and our experiment one the audio 

feature vectors for silence frames after normalization were retained (general 

normalization). We proposed a new approach, modified normalization, in which the 

feature vectors for silence frames were clamped to zero. This modified normalization 

approach was compared with the standard reported general normalization approach. We 

examined the accuracy of various segmentation methods using a 16ms frame size and 

the PercCeps8 feature set (Table 3-5). 

 

Table 3-5: Average accuracy of segmentation methods using different normalization approaches. 
 
 
 

One-phase Two-phase 
Normalization Method 

Cosine-d Euclidean-d Cosine-d Euclidean-d 

modified 85.1 86 86.7 92.8 

general 91.4 94.6 92.7 96.6 
  

 

Unfortunately the modified normalization method in all cases reduced the accuracy of 

the segmentation. 
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The results from experiment one indicated that our proposed two phase method using 

Euclidean-d should provide the best result when segmenting audio files derived from 

the MuscleFish database. Therefore the next experiment was designed to explore the 

hypothesis that the two-phase method is better than the one-phase method for general 

audio segmentation.  

 

Experiment Three: Comparison of segmentation methods 

 

In this experiment the accuracy of our two-phase segmentation method was compared 

with existing methods. Again we used the experimentally determined best frame size of 

16ms and the best reported feature set PercCeps8. Experiment two determined that the 

best normalization method was the general approach and the audio feature vectors 

calculated using the PercCeps8 feature set were therefore normalized using this method. 

 

Table 3-6 shows the segmentation accuracy using the previously described methods. 

When examining the accuracy by group it can be seen that the silence method is the 

least reliable. The best silence edge detection result accurately segments 91 of the 100 

audio files in group 1 and the worst accurately segments 76 of the 100 files in group 2. 

 

Table 3-6: Accuracy of the different segmentation methods by audio file group. 
 
 
 

One-phase Two-phase 
Group 

Silence Cosine-d Euclidean-d Cosine-d Euclidean-d 

1 91 96 98 96 98 

2 76 86 90 89 95 

3 84 94 98 95 99 

4 82 90 94 93 96 

5 83 90 92 91 94 

6 84 91 92 92 96 

7 89 97 96 97 98 

8 79 86 94 88 95 

9 79 94 98 95 99 

10 80 90 94 91 96 

Average 82.7 91.4 94.6 92.7 96.6  
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Variations in the audio file features appear to have a large impact on the accuracy of this 

method. The two phase Euclidean method has the least variation between groups and is 

also the most accurate method. This two-phase method with Euclidean-d in a similarity 

map provided the most accurate segmentation result with an average of 96.6%. The 

method using only silence detection gave the worst average result (82.7%). The poor 

performance of the segmentation based on silence detection is not unexpected because 

some audio files in the MuscleFish database do not contain short silence periods so 

there is no obvious boundary between two sounds in the wave-shape of the generated 

audio files. 

 

The Euclidean-d gave better accuracy, regardless of the approach (two-phase method or 

the similarity map alone), than the cosine-d. The two-phase method gave greater 

accuracy than the use of the similarity map alone. Moreover, the Euclidean-d two-phase 

method was significantly more accurate that the second most accurate method, 

Euclidean-d; χ2 = 4.75, df =1, p < 0.05. Cosine-d is mainly used for calculating the 

dissimilarities between vectors of small magnitude. In contrast the magnitudes of the 

audio feature vectors for audio in the MuscleFish database are relatively long. Where 

the vectors have a higher magnitude Euclidean-d has been shown to perform better [82] 

so it is not surprising that for the MuscleFish database Euclidean-d proved to perform 

better than Cosine-d. 

 

Because the two-phase segmentation approach looked promising further experiments 

were undertaken focusing solely on the two phase method and exploring a number of 

potential feature sets. 

 

Experiment Four: Evaluation of feature sets in the two-phase method 

 

For segmentation there is always a tradeoff between the accuracy and the efficiency of 

the feature calculations. More features give a more accurate result but can significantly 

affect the computing efficiency. This experiment was designed to determine the degree 

of contribution of the features (see Table 3-7) used in the PercCeps8 feature set (Section 

3.5). If a set with fewer features could be employed the usability of the audio 

visualization may be improved. A frame size of 16ms and a general normalization 

method were used. Each feature set was tested in the two-phase segmentation method 

using seven vector distance extractions. 



Table 3-7: The three new feature sets tested. 
 
 
 

features 
Feature set 

Bandwidth Brightness Pitch MFCC8 Spectral Power 

PercCeps8      

1      

2      

3      
  

 

Table 3-8: Percentage average accuracy using four different feature sets and seven different vector 
distance calculations in the two-phase method. 

 
 
 

vector distance calculation method  Feature 
Set Euclidean-d Cosine-d Angle Chen-d SineChen Linear-

Chen1 
Linear-
Chen2 

PercCeps8 96.6 92.7 94.3 92.7 92.6 93.1 94.6 

1 92.6 87 90.5 84.7 84.9 89.5 95.6 

2 90.8 86.3 87.4 82.2 82.8 87.6 83.5 

3 92.2 86.7 90.1 84.8 85.3 89.0 93.0 
  

 

The results of the experiments are given in Table 3-8 and the average accuracies for 

different audio feature sets are shown in Figure 3-13. The PercCeps8 audio feature set 

gave the most accurate results in 6 of the 7 segmentation methods and audio feature set 

2 (Bandwidth, Brightness and Pitch) was consistently the worst result. 
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Figure 3-13: Comparison of different audio feature sets. 
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The results show that the MFCC feature contributes significantly to the accuracy of the 

segmentation. Because the overall accuracy is relatively high, the improvement gained 

by choosing any particular audio feature set or method is not large but some 

combinations seem comparatively more accurate than others. In our case accuracy of 

the segmentation is critical to the subsequent audio classification step and it is clear 

from this experiment that PercCeps8 is the most appropriate feature set for our 

application. For an application where speed is more important than accuracy any of the 

subsets may be appropriate.  

 

Experiment Five: Using a larger database 

 

The hypothesis we have posed is that the two-phase segmentation method is more 

accurate than the one-phase method and that it should be applicable to other audio data 

stores.  

 

Because the segmentation is the pre-classification step we must also consider the 

potential affect of a larger database on the classification accuracy. Solely more audio 

files do not necessarily lead to less accurate classification results. More data may lead to 

more concrete clusters if there are a small number of classes. Additionally, it may lead 

to more overlapping regions between the two clusters. The segmentation's performance 

may be affected because the feature set and distance calculations that we have 

experimentally established may be too specific to the audio files in the MuscleFish 

database.  

 

In this experiment we examined the accuracy of the two-phase segmentation using a 

larger database (VisualData; see Section 4.6 for a full discussion of the VisualData 

database and ontology). Not only is this database larger (contains more audio files) but 

it also has a broader and more hierarchical ontology. A frame size of 16ms is used along 

with general normalization and the PercCeps8 feature set. 

 

Using the larger database the two phase segmentation method gives the best accuracy 

regardless of the vector distance calculation method (Table 3-9). Although the accuracy 

for Euclidean-d two-phase method with the VisualData database (92.8%) is slightly 



lower than for the MuscleFish database (96.6%) the gap between two-phase and one-

phase accuracy increased. For the MuscleFish database the difference between the 

accuracy of the one-phase method and that of the two-phase method is two percent 

whereas with the VisualData database the two-phase method is 10.3% more accurate.  

 

Table 3-9: The percentage average accuracy of segmentation using the VisualData database. 
 
 
 

vector distance calculation method  Segmentation 
Method Euclidean-d Cosine-d Angle Chen-d SineChen Linear-

Chen1 
Linear-
Chen2 

Two-Phase 92.8 91.4 89.7 89.0 89.4 92.1 92.0 

One-Phase 82.5 81.2 81.0 79.1 78.3 80.1 80.1 
  

 

On the basis of these experiments it can be concluded that:  

• The two-phase audio segmentation method performs better than existing 

approaches such as segmentation based on silence detection and self-similarity 

segmentations.  

• Frame size affects the segmentation accuracy. 

• Different audio feature sets lead to different segmentation results.  

• The standard Euclidean-d calculation (Section 3.3, Table 3-1) performs better 

than any of the novel similarity equations discussed in Section 3.3 (Table 3-2). 

 

To fully illustrate how the two-phase segmentation method performs, the five 

segmentation methods in experiment 1 were undertaken using the audio file illustrated 

in Figure 3-14. This audio file was generated by conjoining the audio files 

"female3.cosponsor.au" and "teltt7.au" from the MuscleFish database. The upper image 

in Figure 3-14 gives the shape of the audio file. The first audio file is marked in grey 

and the second is marked in black in the image. Each frame lasts 16ms and is marked in 

the image. The segmentation results are illustrated in Figure 3-14. In this instance the 

Euclidean-d gave the correct segmentation result using the two-phase segmentation 

method. The results from the other methods are incorrect. 
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Figure 3-14: Segmentation experiment results using 5 different methods. 
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Figure 3-15: The starting audio file amplitude vs. frames (16ms). 

ower2.au" and 

mshitinverse.au", marked in grey and black in the image respectively.  

ct segmentation results. The results from the other distance 

easures are correct. 

vious silence (the silence period is 

horter than one frame) between different sounds. 

 

 

Figure 3-15 shows a repeat of the previous experiment using another audio file. In this 

case the input audio file is generated from the audio files "bellT

"

 

Their segmentation results are illustrated in Figure 3-16. The Cosine-d and Sine-Chen 

distance give incorre

m

 

The two examples discussed above are just two of the 1000 audio files tested and have 

been chosen to illustrate that two-phase segmentation method works well for 

heterogeneous audio files even if there is no ob

s
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Figure 3-16: Segmentation results for audio shape in Figure 3-15 using our two-phase method. 

 
 60



 61

3.6   Chapter Summary 
 

This chapter describes a model-free and training-free two-phase method for general 

audio segmentation. The experiments detailed in Section 3.5 prove that this two-phase 

segmentation method performs well with a wide variety of classes in the MuscleFish 

database. Therefore we propose that this novel method is potentially a good, generic 

solution to general audio segmentation problems. As a segmentation tool, this method 

outperforms typical CDS methods or model-based approaches reported in prior work. 

Moreover, by a judicious design of the feature set, this method can be tailored for other 

applications such as music structure analysis and summarization, speaker detection in 

speech analysis, as well as audio retrieval and classification for general sounds.  

 

At the onset of the development of our segmentation method we outline three core 

requirements for an effective segmentation process namely, robustness, accuracy, and 

flexibility and practicality. Our novel two phase method meets these requirements.  

 

Our experiments have demonstrated that the two phase method performs well with a 

wide variety of classes. The segmentation results are good for both the MuscleFish and 

the larger VisualData audio databases despite the fact that each database has a different 

ontology and different audio files. This suggests that the two phase method is not only 

robust but also flexible. Our two phase segmentation method is fully automated and 

functions unsupervised so that this method is a practical first step in an audio 

classification process. 

 

By employing the maximum of amplitude, the first segmentation phase avoids the errors 

commonly occurring for short duration sounds when using existing segmentation 

methods. The second phase distinguishes segments where there is no silence between 

them. As a result our two phase method can accurately separate silence from sounds and 

detect abrupt changes in acoustic features. Indeed the experiments in Section 3.5 found 

that our novel two phase method is more accurate than existing methods. 



Chapter 4 
Audio Classification 

 

 

In the audio visualization system, after segmenting the input audio file into 

homogeneous pieces (discussed in Chapter 3), each of the resultant audio clips is fed 

into a classification module to find the class it belongs to in the given database. The 

module reads an audio clip out of the segmentation module and performs a 

classification process to determine the most plausible matching class of audio in the 

database. At the same time, it detects whether or not the input audio clip is a new class 

that is not in the database and gives a reminder to users if this is the case. 

 

The first two sections in this chapter introduce the key concepts of audio classification 

and review existing classification methods. Full details regarding the classification 

module and a new class detection method are presented in Section 4.3 and Section 4.4. 

Experiments that evaluate the performance of the classification method are reported. 

The integration of the classification method and the new-class-detection method is 

described. Methods for training the module to find suitable parameters and thresholds 

for the given audio data set are discussed in Section 4.5. 

 

4.1   Introduction to the Classification Module  
 

Classification can be understood as a process in which a previously unknown input 

signal is assigned to a class C∈ {C1, C2, ..., Cn} in an audio database. Such an 

assignment is made by establishing and applying a decision rule in a designed feature 

space to find a class (or an audio file in a class) that is deemed closest to the new audio 

[100]. 

 

In the proposed audio visualization system the classification module is used to process 

the resultant audio clips from the segmentation module and the content of each input 

audio clip is categorized. This is achieved by employing a pre-selected audio feature set 
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to enable the audio clip to be compared with the audio files in the database. The schema 

for the module is shown in Figure 4-1. The input for this module is an audio clip and the 

output is the class in the database that the input audio clip belongs to. The proposed 

audio visualization system assumes that when the class an audio file belongs to is 

known it can be visually represented using a template image or video for that class.  

 
... ... ...

 
Figure 4-1: Scheme of classification module. 

 

The correctness of the audio visualization system is determined by the template 

selection. The template image/video is correct when the classification is accurate. If the 

given audio clip is classified into an incorrect class, the template image for this class 

cannot represent the audio clip correctly and the result would be an incorrect audio 

visualization. The visualization aspect is discussed in more detail in Chapter 5 and 

Chapter 6. 

 

The previously discussed segmentation module (Chapter 3) is an audio pre-processing 

step designed to enhance the performance of further analysis. Segmentation provides an 

input audio clip to the classification module that is homogeneous. The input audio clip 

is therefore a single sound and the input audio file does not contain overlapping sounds 

as these have been eliminated during the segmentation process. 

 

Although many approaches have been developed for audio classification, existing 

research assumes the use of rich training datasets where it is unlikely for a query 

candidate to fall outside the ontology of the database. Dealing with a situation where the 

input sound is very different from those in the training dataset remains an unsolved 

problem. 
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4.2   Literature Review 
 

Classification plays an important role in audio processing because it offers ways to 

efficiently navigate and provide control for the search of, and retrieval from, audio 

databases. Effectively managing numerous audio files is challenging and relies on the 

accurate classification and retrieval of audio files. A traditional text-based method is not 

feasible for audio management because an audio file is usually treated as an opaque 

collection of bytes with primitive fields attached [1]. Furthermore, because of the 

subjective nature of assigned keywords and the tedium of manual annotation, text-based 

methods are inefficient. Audio classification is an efficient tool for managing audio 

collections by clustering audio files automatically. Audio classification extracts the 

physical and perceptual features from an audio input and then uses these features to find 

the class in which it is most likely to fit. Audio classification aims to categorise the 

audio files automatically and accurately.  

 

Audio classification has been studied using many approaches and can be used in 

different domains. For example, clustering the audio/visual data into events such as 

passing through doors and crossing the street [101]. In the music domain, there have 

been studies of artist classification [102] [103] and musical instrument detection and 

classification [104] [105] [106] [107] [108] [109] [110] [111]. Some approaches have 

concentrated on classifying specific audio files, such as classifying speech into local 

speech/crosstalk and local speech/ cross talk alone/ silence [112]. Kokoras and Pasquet 

evaluated classification methods for flute sounds [113]. In the music field there has also 

been some work to establish classification methods for the music genre [49] [114] [115] 

[116]. Various classifiers have been investigated as well as the performance of different 

audio feature sets. Certain audio features such as timbre and rhythm, used in the 

classification of music, are only meaningful for music and therefore are not applicable 

to the classification required of audio files in our system.  

 

Some researchers have developed sophisticated approaches for the classification of 

more diverse sounds. For example, Burred and Lerch extended the classification results 

to speech, background noise and 13 musical genres [117]. All of these approaches 

demonstrate the importance of audio classification accuracy in an audio processing 

system. 
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Although the audio segmentation and audio query/retrieval methods used in audio 

processing may be capable of categorising audio inputs, they are not suitable for this 

proposed audio visualization system. Such techniques focus on finding the most similar 

audio files to the query/retrieval candidate and as such can be regarded as a kind of 

Nearest Neighbour classification method. We are looking for an exact classification that 

will allow us to select an appropriate template image in order to visually represent a 

sound. 

 

Studies of audio classification and segmentation show that they are closely related to, 

and dependent on, each other. Segmentation can be a pre-process, as in the new two 

phase segmentation reported in Chapter 3, or a post-process of classification, such as the 

smoothing process proposed by Lu et al. [57]. A general framework for integrating, 

experimenting and evaluating different techniques of audio segmentation and 

classification has been proposed by Tzanetakis and Cook [61]. In addition, they also 

proposed a segmentation method based on feature change detection. The accuracy of 

classification achieved in their experiments on a large data set was reported to be about 

90%. Some segmentation approaches can even be regarded as classification because 

audio segmentation also results in classes. Speaker recognition can be a segmentation 

issue but it can also be a classification problem if users group the collections by 

speakers. Another example can be found in Kimber and Wilcox [89], who separated 

meeting records into speech, silence, laughter and non-speech sounds. Although they 

were "segmenting audio recordings", the process was similar to classification as the 

resultant classes were defined according to their specific aims. But segmentation can 

only take the place of classification when the classes are limited in number and broad 

such as in the examples mentioned above. In our proposed audio visualization system, 

the segmentation process cannot take the place of the classification module because the 

classes in our system are not as broad and there are many more classes. Additionally, 

we wish to have an adaptive ontology that allows for the classification and visualization 

of files that belong to classes that do not exist in the database. The segmentation module 

in the system aims to separate the audio input into homogeneous clips but does not 

classify. Rather, it acts as a pre-process to the classification of the input audio file. The 

results of the segmentation need further analysis (classification) before it becomes 

possible to categorize the audio file contents. 
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Audio query and retrieval are two processes that are closely related to classification 

because they can be regarded as maximum likelihood classification. They are based on a 

similarity measurement that is similar to the Nearest Neighbour (NN) classifier. For the 

query candidate in our audio visualization system, there is not always an exactly 

matching audio file, but one or more relatively similar audio files to the query 

candidate. In an audio visualization system, audio retrieval and query are not employed 

because they cannot categorize the input audio file or find suitable image/video to 

represent it. Moreover, the audio/image or audio/video pairs in the same class of the 

audio database are generated by using the same template image/video and the specific 

audio features of the audio files. The visual features may be different but their content is 

the same if two images or videos belong to the same class. The resulting image or video 

of a query and retrieval cannot truly visually represent the input audio file unless its 

audio features are exactly the same. We propose that the most efficient way for 

image/video to represent an input audio file is to generate a unique image/video by 

employing image processing filters driven by the audio features on the template of the 

class. 

 

A number of previous attempts have been made to classify audio files [118] [119]. In 

one sense the result of audio classification is subjective because the definition of the 

different classes is dependent on specific requirements and the subjective judgements of 

the person who interprets these requirements and constructs the definitions. Like 

segmentation, audio classification results can be quite different even for the same audio 

database. For example, music collections have been classified by genre [120] [121] 

[122], by mood or emotion [118] [123] [124] [125], or by instrumentation [126]. 

Experiments reported in Homburg et al. [127] also supported the subjectivity of audio 

classification. In the experiments, 24 different classification schemes were created by 

the users from various different personal viewpoints. From these experiments, even for 

the same audio files in a database, there were different database structures to group the 

audio files. To fit the specific structure of the database and its audio files, any 

classification system needs to be trained. When the audio files in a database are divided 

into different classes, their audio features are extracted and used as a training data set 

for the classification system. Training consists of a series of experiments in which each 

experiment tests a feature set and model using the training data set and gives a 

classification result. The model induced from the training set is tested for accuracy on 
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an independent old-out test dataset. The classification result from an experiment is 

compared with the training data set and results in a measure of the accuracy of this 

feature set and model combination. The best feature set and model offers the maximum 

accuracy. In other words, the classification system is trained by a process of finding the 

best feature set and model so that the classification result from the system can best fit 

the class definitions.  

 

The sound to be classified may be not only from an audio database but other sources of 

sound. Some researchers have used news broadcasts as sound sources. Meinedo and 

Neto separated broadcast news into speech and non-speech, then further analyzed the 

speech and non-speech sounds separately [83]. The speech sounds were further divided 

by gender and the non-speech sounds were separated into noise and music. Then they 

further presented a system for speech/non-speech classification, speaker segmentation, 

speaker clustering, gender and background conditions classification for broadcast news 

[74]. The resultant classes were limited in part by the limited scope of the audio inputs. 

These approaches address the most well studied topic: speech/music classification. This 

type of classification is relatively straight forward and can achieve a high level of 

accuracy because the two classes are so broadly classified. There are many different 

approaches for speech/music classification [63] [128] [129]. Classification of speech, 

music and noise has also been reported [130] [131]. Similar approaches have been used 

to separate audio files into broad classes such as speech, music, environmental sound 

and silence [57] [132]. Especially when segmentation is performed beforehand, 

speech/music classification can be achieved with a high level of accuracy [132]. As the 

classes in these approaches are broadly defined the methods are limited in application 

and they are not suitable for databases containing a large number of narrow classes such 

as the MuscleFish database. 

 

Overlapping, where multiple sounds occur in a single audio file simultaneously[54], 

brings difficulties for not only segmentation (see Section 3.1) but also classification. 

Many approaches have been proposed for pure audio classification using different 

feature sets based on different models. When an audio file is comprised of more than 

one kind of sound, the classification is more difficult and the result is not as accurate as 

for homogenous audio files. To achieve higher accuracy, some new classes other than 

pure acoustic classes have been defined. For example, Kiranyaz et al. [132] classified 

audio files into speech, music, fuzzy and silent. The fuzzy class can be regarded as a 
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class of audio files with overlap. The introduction of fuzzy regions was made to 

minimize misclassification and thus increase accuracy. Srinivasan et al. [133] detected 

and classified audio files that consisted of more than one sound, such as combinations 

of speech and music together with background sound. The audio files were categorized 

into mixed class types for example music with speech, noisy speech, etc. They achieved 

a classification accuracy of over 80%.  

 

The accuracy of classification is affected by many different factors, such as the noise 

ratio of the input audio, whether the classes are broadly defined, the resources of the 

audio and classification pattern, etc. Appropriate feature set selection is important for 

accurate classification results. Pfeiffer et al. described basic features used in audio 

analysis [85]. One hundred and forty three features were studied by Li et al. [134] to 

determine their discrimination capability. Wold et al. [1] analyzed and compared 

statistical values (means, variances and autocorrelations) of four audio features for 

content-based audio indexing purposes. They found that not only audio features but also 

their statistical values can be used in audio processing. The audio features and their 

statistical values can form a large number of acoustic parameters in audio processing.  

 

The selected feature set is always specific to each classifier and class type. Different 

audio features are selected according to specific requirements and patterns. For certain 

type of sounds some audio features are more important than others, for example ZCR is 

critical for speech determination [135]. Biatov demonstrated that features extracted 

from ZCR can achieve 76.6% accuracy for speech recognition [135]. The importance of 

ZCR in speech/music discrimination was also reported by Saunders [62] who presented 

a real-time classification for radio broadcasts using ZCR and short-time energy, which 

gave an accuracy of 95% to 96% [62]. Other audio features have been compared in 

different implementations. For example, Ravindran et al. proved that the feature Noise-

Robust Auditory Feature (NRAF) is better than MFCC in classifying noisy sounds 

[136].  

 

The influence of the number of features and the need for feature selection were 

discussed by Bocchieri and Wilpon [137]. A feature set that contains a high number of 

dimensions does not always lead to more accurate classification for unstructured sounds 

[138]. Burred and Lerch pointed out that more features do not necessarily result in more 

accurate classification especially when the training samples for each class are limited 
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[117]. Audio feature set selection is dependent on the experimental results. In other 

words, any classification system needs to be trained to find the most suitable feature set. 

Li performed experiments to compare various classification methods and feature sets 

and reported that the accuracy of classification depends on both audio feature set 

selection, and the classifier [98]. So the selection of classifier is also an important factor 

in improving the classification accuracy.  

 

Many methods have been used in audio classification such as Hidden Markov Models 

(HMM) [139] [140] [141] [142], Nearest Feature Line (NFL) [98], k-Nearest Neighbour 

(k- NN) [57] [143], Gaussian Mixture Model (GMM) [102] [110] [112] [144], Bayes 

decision rules [145] [146], AdaBoost-based classifier [131] [147], Artificial Neural 

Networks [74] and Support Vector Machines (SVMs) [103] [105] [108] [114] [118] 

[119] [148] [149].  

 

Some of the commonly used classifiers have been modified for specific purposes. 

Zhang and Kuo used a three-component GMM as classifier [130]. Joder, Essid and 

Richard used SVM with alignment kernels in audio classification [111]. Han, Gao, and 

Ji provided selective ensemble SVMs to improve the accuracy of 

speech/music/silence/speech with environment music (S-M class) discrimination [150]. 

In audio signal processing, a Bayesian hierarchical structure has been used for 

classifying music with pre-selected audio features [151] [152]. Bayesian models have 

been proposed for the classification of polyphonic music [153] [154]. A Gaussian 

Radial Basis function based Artificial Neural Network (ANN) [155] has also been 

applied to music classification. Bugatti et al. compared the performances of Bayesian 

Multi-layer Perceptron (MLP) for speech and music [156]. Comparative studies of the 

accuracy of various classification methods have also been undertaken [119]. Many 

studies have been undertaken that compare the accuracy between these classification 

patterns [98] [119] [157]. Homburg et al. compared the averaged accuracies from four 

different methods: "Random classifier, C4.5 decision trees, k-Nearest Neighbour and 

Naïve Bayes" [127]. Support vector machines (SVMs), together with a binary tree 

recognition strategy, a distance-from-boundary metric, and suitable feature combination 

selection can control the error rate within 10% [119]. All these studies provide 

information about potential classification processes for our proposed audio visualization 

system.  
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For the MuscleFish database the NFL method has been reported to achieve the best 

accuracy (90.22%) if a suitable feature combination is employed [98]. Accordingly, 

NFL has been selected and adapted as the classifier for our classification module. 

 

There are other possibilities for the improvement of classification accuracy, such as 

combining two or more classifiers or using a hierarchically structured database instead 

of a direct structured database. Some models have been combined in an attempt to 

improve the accuracy of classification. A hybrid of SVM/HMM has been employed to 

obtain accurate classification [158]. Lopes, Lin and Singh used a scheme of indoor and 

outdoor audio classification [159] and found that a multi-stage classifier performs better 

than a single stage one. However, multi-stage classifiers require users to select different 

features for each stage and this increases the complexity of the system. The constitution 

and structure of the database can also affect the classification accuracy. In a number of 

studies the use of hierarchically structured databases has been reported to result in 

accurate classification [49] [117] [130] [142] [160]. Hierarchically structured databases 

have been found to be an improvement on direct structure databases. Burred and Lerch 

claimed that a hierarchical classification scheme is preferable because some features are 

more suitable than others for classification [117]. A generic scheme based on a 

hierarchical (and recursive in some places) structure was used by Herrera and Serra 

[160] to describe sounds at multiple levels of details. Although the hierarchically 

structured database may improve accuracy, it also shares the same drawback as using 

more than one classifier: it increases the difficulty of implementation because of the 

requirement for feature set selection for each level. As the accuracy of using NFL alone 

is satisfactory for our audio visualization purpose these other possibilities were not 

considered in our classification module. 

 

As a result of the prior research presented above it can be concluded that a carefully 

selected classifier and a suitable feature set can be used to achieve satisfactory 

classification accuracy. But the existing applications for audio classification can only 

determine the most likely class in the database the query candidate may belong to. They 

are limited because they can not process audio files that do not belong in an existing 

class. Instead they classify these files incorrectly into the most similar class. This 

problem is addressed in our module by introducing a novel new-class-detection 

function. New class detection is discussed in the following sections together with the 

training and learning processes and the classifier employed in this module. 
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4.3   Training and Learning for the Classification Module 
 

The training set is a basic concept in the area of artificial intelligence. A training set 

consists of an input vector and an output vector. Training is used to induce a model 

from a set of representative samples from the underlying data distribution. A model is 

induced that captures the separation between classes. This model is later used to classify 

new samples as they arrive. 

 

In general, training is a function that takes one or more arguments and results in an 

output vector. The learning method's task is to run the system once with the input 

vectors as the arguments, calculating the output vector, comparing it with the answer 

vector and then changing the feature weights or feature selections in order to produce an 

output vector that is more likely to produce the answer vector the next time the system 

is simulated. The main characteristics required of a training set are that it: 

 

1. defines the categories and the thresholds between different categories, 

2. selects the features and their weights to get satisfactory classification results, and 

3. defines the relationships between audio features and visual features so that the 

output (video/image) can be generated by comparing the differences and 

similarities between a new input and its most similar audio files. 

 

This process of training is needed in the classification module. Figure 4-2 shows the 

framework for the classification module in our audio visualization system.  

http://en.wikipedia.org/wiki/Input
http://en.wikipedia.org/wiki/Array
http://en.wikipedia.org/wiki/Parameter
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Figure 4-2: Framework for the classification module. 
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Figure 4-3: Training/Learning process for feature set selection. 

 
Figure 4-3 shows the training/learning process for feature set selection in classification. 

All possible audio features for classification are extracted from each audio clip. With 
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the pre-defined feature combinations (which will be discussed in Section 4.4) and 

classifier (NFL method), the classification accuracies are calculated. These results are 

compared and the most accurate feature set is saved for the module.  

 

 
Figure 4-4: Training/Learning process for parameter selection and                                                 

automatic threshold determination in new class detection. 

 

Figure 4-4 shows the steps taken to train the new class detection function in the 

classification module. The steps use the selected feature set that resulted from the 

processes shown in Figure 4-3. The possible parameters (which will be discussed in 

Section 4.5) for the new-class-detection are extracted first. Then for all the possible 

parameter combinations, thresholds are determined by comparing their error ratios. The 

corresponding parameter set and thresholds of the minimum of the errors are selected 

for the new class detection function in the classification module.  

 

When the database is initialized the above processes are run based on the training set 

(the original database). The selected audio feature set, parameter set and corresponding 

thresholds are stored and used for classification until the learning process is run again. 

The learning process is re-run when new audio files are added to the database. 
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As new audio files are added to the database it is possible that the initial settings for the 

module may not be suitable for the expanded dataset. The training process can be run 

again as learning processes to adjust the settings of the module. Thus the audio feature 

set for classification, parameter set and thresholds for new-class-detection in the 

classification module are adjusted automatically when new audio files are introduced to 

the database.  

 

4.4   General Classification Method 
 

The review of the literature on classification methods identified the Nearest Feature 

Line (NFL) method used by Li to be the one that produced the best classification result 

on the MuscleFish database [98]. Therefore, the classifier NFL method is adapted in the 

classification module and is describe in this section. The details of suitable feature set 

selection, based on a given training set, are provided after a description of the NFL 

method. The process developed and described in this chapter is general and can be used 

on any given training set. The MuscleFish database used for our segmentation testing is 

employed as a training set for the classification experiments. Details of the MuscleFish 

database can be found in Chapter 3.  

 

4.4.1   NFL Method in Audio Classification 
 

There are many different pattern classification applications that use the NFL method in 

domains outside of audio processing, such as face recognition [161], image retrieval 

[162], and prediction of protein locations [163]. When compared with four other 

classifiers (SVM, NN, 5-NN and NC) the NFL method produced the lowest error ratio 

when applied to the MuscleFish database [98] [119]. 

 

The NFL method can be seen as an extended classifier derived from the NN method. 

The feature line in the NFL algorithm is a linear interpolation and extrapolation of any 

two prototype points within a class. NFL requires more than one prototype sample per 

class. With suitable samples, a class can be represented in the feature space by the 

feature lines in it.  

 

For a given query sample, the Euclidean distances from it to any feature line are 

calculated. From all these distances, the feature line of smallest value is called the 



nearest feature line of the query sample. The NFL method defines the rule to classify the 

query sample: the query sample belongs to the class which contains its nearest feature 

line.  

 

In the NFL method, the topological shape of the distribution for a class is more 

important than its sample numbers. When there are not many prototype samples in a 

class, the NFL is theoretically able to expand the representational capacity of the 

available points in the feature space, accounting for new conditions not represented by 

the original samples [164]. The NFL method has been reported to effectively improve 

the classification accuracy when the number of prototype samples per class is small 

[165].  

 

Figure 4-5 illustrates the calculation of the distance from a query sample x to the NFL 

21xx . The NFL distance can be calculated using two steps: 

Step 1: Compute the projection point p on the line 21 xx  : 

 where
)xx()xx(
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Step 2: Calculate the Euclidean distance ||xp|| in n-dimensional feature space. See  

  Chapter 3, E3-2 for details of the calculation. 

 

 

Figure 4-5: Generalization of two feature points x1 and x2 to the feature line 21xx .                                 
The feature point x of a query sample is projected onto the line as point p. 

 

4.4.2   Cross-Validation for the Classifier and Feature Set Selection 
 

The accuracy of any classification method is determined by feature set selection. As 

mentioned above, different audio features suit different audio categories. An improper 
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feature set will lead to inferior classification accuracies. To find a suitable feature set for 

a classification, based on a given training set, an experiment dependent process is used. 

In the classification module, a standard Leave-One-Out cross validation is used to both 

test the accuracy of the classification method and to find the best feature set for the 

training set. 

 

Leave-One-Out cross validation uses a single sample from the original database as the 

validation data, and the remaining samples in the database are used as training data. A 

comparison of the predicted property value and the real value of the validation data 

comprises the assessment of the predictive result. This process is repeated until each 

sample in the database has been used once as validation data. The classifier and the 

feature set are evaluated by comparing all the results.  

 

The computational cost of Leave-One-Out cross-validation is high if there are a large 

number of samples in the database. There are two reasons that Leave-One-Out cross-

validation was utilized firstly it was only employed as a bench-mark and secondly it 

was used because it gives an almost unbiased estimator. An alternative to this method 

would be to employ a 10-fold cross validation method which is less computationally 

expensive. However to ensure the result is reliable the process must be repeated several 

times with different foldings thus raising the computational cost. For bench-marking 

purposes, the Leave-One-Out cross-validation method is the general accepted method. 

 

4.4.3   Feature Set and Accuracy Experiments 
 

The feature set that is used can have an important effect on classification accuracy. As 

can be seen from the experiments reported by Li [98], even for the same classification 

method, the results for different audio feature sets may be quite different. Therefore the 

selection of a suitable feature set is important for classification. The subsequent feature 

extraction process selects the audio feature set that will result in the most accurate 

classification based on the training set.  

 

For certain types of sounds, some audio features are more important than others, for 

example ZCR for speech determination [135]. The best feature set also varies according 

to the specific training set. Different types of sounds require different combinations and 

weightings of the feature set in order to best match them.  



 

The problem of audio feature selection is simpler if the types of sounds in the database 

are quite different and the number of classes is limited, for example having only a 

speech class and a music class in the database. Speech audio files all have the same 

deterministic audio features, which are quite different from those of music files, making 

the selection of features for the purpose of audio classification simpler. The training set 

MuscleFish presents unique difficulties for audio feature selection owing to the mixed 

classes and the disparate nature of the sound files. 

 

The tested feature sets were adopted from Li's experiments [98]. He used Perc, CepsX 

as well as their combinations for feature sets. But, for better classification results, ZCR 

has been uniquely employed in combination with Perc in the experiments reported in 

this thesis.  

 

Table 4-1: Number of correct classifications for 32 audio feature sets using MuscleFish database                 
(n = 410). 

 
 
 

Modified-Perc CepsX 

Pitch Pitch/Silence ratio
ZCR 

X=5 X=8 X=10 X=15 

   356 363 364 357 
   361 363 366 357 

   360 366 368 362 
   360 368 367 366 
   363 367 364 359 
   364 364 356 370 

   363 364 366 362 
   362 366 365 361  

 
 

In order to investigate both the efficiency and the accuracy of the classifications, 

variations on the Perc features set with and without ZCR and CepsX (where X=5, 8, 10 

and 15) were tested in the experiments. The Modified-Perc feature set consists of a core 

set of features Spectral Power, Subband Power, Brightness and Bandwidth. This core is 

extended to form various Modified-Perc feature sets as indicated in the first two 

columns of Table 4-1. This forms the training process for the classification module 

based on the Leave-One-Out cross-validation method. The normalization of features 

was carried out as detailed by Li [98]. It should be noted that in the following general 

classification experiments the segmentation process is not used as a pre-classification 

step. This is because we wish to validate our system against the results reported by Li 
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using the standard evaluation database MuscleFish. Moreover, the segmentation module 

test files were generated by randomly combining MuscleFish files and therefore if 

segmentation was 100% correct we would have segments to classify that are the same as 

the audio files in MuscleFish with the silence periods removed.  
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Table 4-1 shows the results for 32 experiments using a Leave-One-Out test, with 

different feature sets, using the MuscleFish database as a training set.  

 

The most accurate feature set was a combination of pitch + ZCR + Ceps8, and has been 

selected for the audio visualization system. It achieved a best accuracy at 90.2% 

(370/410). Our classification system always automatically selects the best feature set 

regardless of the size of the margin between it and the next best feature set. 

 

In order to ensure that the classification method was generalisable to a larger database 

we evaluated its performance on a larger database VisualData which was designed as a 

dataset for the generation of audio file visualizations (Table 4-2).  

 

For the VisualData audio files the experiments indicate that using pitch in the feature 

set does not increase the accuracy of classification. This is not entirely unexpected 

because there are many methods for extracting pitch and none of them are particularly 

accurate.  

 

Table 4-2: Number of correct classifications for 32 audio feature sets using VisualData database             
(n = 611). 

 
 
 

Modified-Perc CepsX 

Pitch Pitch/Silence ratio 
ZCR 

X=5 X=8 X=10 X=15 

   531 545 545 544 

   529 542 543 545 

   532 546 547 547 

   530 547 547 546 

   528 541 544 538 

   528 538 544 541 

   528 542 546 544 

   530 547 546 544   
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Three feature sets gave the same classification accuracy (86%) for the VisualData 

database. This accuracy is similar to that observed for MuscleFish. Of these the one 

most suitable for our classification method consists of the Modified-Perc core feature 

set, ZCR and Ceps8. There are two reasons for this. Firstly in our visualization system 

classification is preceded by the segmentation of the audio files. In the segmentation 

process all silence periods are removed therefore the pitch/silence ratio is not a 

contributing feature. Moreover because we wish the system to be computationally 

efficient we wish to select the best feature set with the least features in order to 

minimise the effort in calculating the feature vectors and to reduce the dimensions of 

the feature space. 

 

4.5   Introducing a New Class Detection Method 
 

Although the NFL method can classify audio files with satisfactory accuracy, it assumes 

the use of rich training datasets where it is unlikely for a query candidate to fall outside 

the ontology of the database. Dealing with a situation where the input sound is very 

different from those in the training dataset (a process known as novelty detection) 

remains an unsolved problem for audio.  

 

In the literature, novelty detection is defined as the identification of new or unknown 

data that a machine learning system is not aware of during training. Novelty detection is 

considered to be one of the fundamental requirements of a good classification system. 

Most novelty detection methods employ statistical approaches that are driven by data 

distribution [166]. Novelty detection is most generally used in unsupervised learning 

systems [167] and in audio classification, models are usually supervised therefore to 

date there has been no reported attempts to incorporate novelty detection in an audio 

classification system. 

 

This section presents an additional phase in our classification module in order to detect 

new class files. The next section explores a novel approach to the detection of new 

classes during classification. The parameter set selection and threshold determination 

for new-class-detection is also discussed and an evaluation established. 
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4.5.1   Overview 
 

Existing audio classification methods assume high quality training sets that map cleanly 

to the target audio provided by the user. However, for more general use, the application 

should be able to process input sounds that are very different from those in the training 

set.  

 

The new class detection step addresses this limitation, by flagging a particular sound 

input as potentially belonging to a new class. In new class detection, suitable parameters 

are extracted for the audio file first, then used to determine if the audio file can be 

classified into the existing ontology or whether it should form a new class in the 

database. The output of the classification module, that is comprised of the classification 

and new-class-detection processes, is the classification result which identifies the class 

in the database that the clip may belong to. If the file cannot be classified, a new class is 

required in the database so the classification module automatically builds a new class 

for the audio input and allows the user to define the new class name.  

 

To be more flexible, the module should be able to not only predict whether a single 

query sample belongs to an existing class, or a new class, but also to give a reminder 

when the database has new audio files which may be able to be clustered together for a 

new class. This is achieved by introducing an uncertainty label besides the two results 

of "belonging to an existing class" and "belonging to a new class (not in the database)".  

 

When the classification module identifies an uncertain result, it leaves the classification 

decision to the user. For an audio file, if all of its parameters are consistent it is easy to 

make a definitive classification. However, for those audio candidates that have 

conflicting parameter values, for example one parameter may indicate that the file 

belongs to an existing class but another may indicate a new class is required the 

uncertain criterion is necessary in order to ensure a more accurate classification result. 

 

If the user classifies an uncertain file to an existing class the file is still marked as 

uncertain. When there are more audio files marked as uncertain, users can re-evaluate 

them and make further decisions about whether new classes should be built for these 

uncertain audio files. In general, by incorporating new-class-detection, this 



classification module addresses limitations of current classification methods, and offers 

greater flexibility and robustness in general audio classification. 

 

4.5.2   Parameters Used in New Class Detection  
 

 
Figure 4-6: Parameters NFLd, RCCd and NCCd used in "new class detection" experiments. 

 

 
Figure 4-7: Parameter Fnum used in "new class detection" experiments. 

 

Four novel parameters are introduced for new-class-detection in this section. Because 

the PercCeps8+ZCR feature set offers the best classification results, this feature set is 

used for the calculation of these four parameters (Figure 4-6 and Figure 4-7):  

• NFL distance (NFLd), Euclidean distance from the query sample to its NFL. 

• Real Center Class distance (RCCd), Euclidean distance between the query 

sample and the class centroid. 
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• Normalized Centroid Class distance (NCCd), with normalization carried out in 

the same manner as for PercCepsX [98]. 

• Class Feature Range Number (Fnum). When we test Audio a and determine its 

class A, regardless of the accuracy of the result, we find the maximum values 

and minimum values of each audio feature in the class. Fnum is defined as the 

number of features of a that are in the feature ranges of that class. 

 

If an audio file a ∈ A but is incorrectly classified as a ∈ B then the parameters for new 

class detection are extracted from B. These parameters can be used individually or as a 

parameter set, depending on the training set.  

 

 
Figure 4-8: Expanded Fnum. 

 

For any given database, the classification parameters may be adapted or fine-tuned to 

that dataset to give more accurate classification results. There are many ways to fine-

tune these parameters. For example, when extracting the parameter Fnum, the feature 

range can be expanded to a bigger area, for example see Figure 4-8 which illustrates a 

20% enlargement of the area. The corresponding values for Fnum are shown on the 

right of Figure 4-8. The extraction of the parameters is flexible and can be fine-tuned 

according to the training set. In order to illustrate the point Figure 4-6, Figure 4-7 and 

Figure 4-8 show a two-dimensional feature space formed using only two audio features. 

However, in new class detection the parameters are extracted in a high dimensional 

space. The number of dimensions is determined by the number of features used in the 

pre-defined feature set. 
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4.5.3   Evaluation of the "New Class Detection" Method 
 

In order to evaluate the accuracy of new class detection and select the suitable 

parameter set for the system, two Leave-One-Out experiments were developed. The two 

experiments Leave-One-File-Out (LOFO) and Leave-One-Class-Out (LOCO) are 

detailed in Figure 4-9.  

 

In LOFO, when a sound is used as the query, it is not used as a prototype so the 

prototype set consists of the entire database minus the query. 370 audio files were tested 

in the LOFO experiment. These files are those that can be correctly classified into an 

existing class, when classifying the file without new class detection (see Section 4.3). If 

one of these audio files is classified as a "new class", it is incorrect because we know 

that it actually belongs to an existing class in the database. In LOCO, the prototype set 

only includes the files that do not belong to the class of the query candidate. In this case 

if the query candidate is classified as belonging to an existing class in the database, the 

classification result is incorrect. All 410 audio files in the MuscleFish database were 

tested in the LOCO experiment. 

 

 
Figure 4-9: LOFO and LOCO experiments. 

 

The parameter set and threshold for each parameter were also determined during the 

LOFO and LOCO experiments. The values for the four parameters (NFLd, RCCd, 

NCCd, and Fnum) were calculated for each query candidate. For NFLd, RCCd and 
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NCCd if the resulting values were less than a threshold, the query candidate had a 

higher likelihood of belonging to the calculated class. And if the value of Fnum was 

greater than its threshold, the query candidate was close to the result class. So we define 

that for a query candidate a, if any of the parameters in a parameter set do not pass the 

threshold test, a is classified as a candidate for a "new class". Because the correct 

classification and new class definition results are known for these files, the best 

parameter set and thresholds are the combination where it achieves the most accurate 

new class detection result. The 3 steps for threshold determination, employing the 

database as a training set, are as follows:  

1. Calculate parameter vectors, 

2. Determine the threshold range for each parameter, 

3. Calculate the best threshold value. 

 

For the LOFO and LOCO experiments four parameters are extracted (NFLd, RCCd, 

NCCd, and Fnum). For each parameter i a vector vi is calculated. The threshold for 

parameter i must be greater than the minimum value and less than the maximum value 

(the range of valid threshold values) for the vector vi. This range is divided equally into 

100 possible threshold values. Classification (with new class detection) is then 

undertaken using LOFO and LOCO using this set of 100 thresholds. The threshold that 

resulted in the lowest error ratio is then used as the threshold for parameter i for the 

database.  

 

The results of a number of experiments using different combinations of parameters are 

given in Table 4-3. The ticks indicate which parameter or parameters have been used in 

the experiment. From these experiments, the corresponding parameter set for the most 

accurate result is found. The most accurate result is considered to be the best parameter 

set for the classification module. As has been found for the feature set for classification, 

different training sets will give different parameter sets. 

 

The results in Table 4-3 show that for the classification of audio files in the MuscleFish 

database, NFLd is the most effective parameter of the four parameters tested. NFLd 

used on its own has an accuracy that is comparable to the most accurate parameter set 

NFLd and NCCd (see Exp. 1 and Exp. 5, Table 4-3).  

 



 

Table 4-3: Number of files incorrectly classified for the LOFO and LOCO experiments and the 
MuscleFish database using various parameter sets. 

 
 
 

Parameter set 
  Exp # 

NFLd NCCd  RCCd    Fnum  
  LOFO 
  n = 370  

 LOCO 
n = 410 

Total 
n = 780 

1        132 63 195 

2        223 69 292 

3        283 34 317 

4        111 101 212 

5       131 63 194 

6     131 67 198 

7     132 63 195 

8     228 64 292 

9     111 101 212 

10     111 101 212 

11      132 63 195 

12      132 63 195 

13     132 63 195 

14      100 101 212 

15     132 63 195 
 

 

The new class detection experiments were duplicated using the VisualData database to 

ensure the flexibility and robustness of the approach. In the LOFO experiment, 547 

audio files were tested. These are the files which were correctly classified using the 

general classification method. In LOCO, all the 611 audio files were tested. The results 

are given in Table 4-4. Again NFLd proved to be the best parameter for classification 

with total percentage accuracy, for the LOCO + LOFO, experiments of 79%. It is worth 

noting that there is a minor improvement (4%) in the best classification accuracy for the 

VisualData database when compared to the MuscleFish database classification results. 

 

The parameter Fnum does not contribute to the accuracy of the classification for either 

database. When it is used individually it performs substantially worse than NFLd (see 

Exp. 4 and Exp. 1 respectively in Table 4-3 and Table 4-4). The accuracy is not 

improved when it is combined with parameters or parameter combinations (see for 

example, Exp. 1 and Exp. 7 in Table 4-3 and Table 4-4).  
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Table 4-4: Number of files incorrectly classified using various parameter sets with the VisualData 
database. 

 

 
 

Parameter set 
  Exp # 

NFLd NCCd  RCCd    Fnum  
  LOFO 
  n = 547  

 LOCO 
n = 611 

Total 
n = 1158 

1        123 124 247 

2        260 129 389 

3        197 251 448 

4        161 166 327 

5       123 124 247 

6       123 122 245 

7     123 124 247 

8     266 125 389 

9     161 166 327 

10     161 166 327 

11      124 122 246 

12      123 124 247 

13     123 122 245 

14      161 166 327 

15      124 122 246 
 

 

NCCd and RCCd do not produce accurate classification results in the LOFO 

experiments however they make a minor contribution to accuracy when combined with 

NFLd (see Exp. 11 in Table 4-3 and Table 4-4).  

 

4.5.4   The Uncertain Criterion: "New Class Detection" Experiments  
 

In previous experiments, the audio files were separated into 2 categories: the files were 

either classified into an existing class in the database or labeled as a new class. For an 

audio file, if all of its parameters are consistent it is easy to make a definitive 

classification. However, some audio files have conflicting parameter values. One 

parameter may indicate that the file belongs to an existing class, but another may 

indicate a new class is required. These audio files are difficult to classify and so an 

uncertain criterion was introduced. Figure 4-10 shows the results of testing audio 

classification using the uncertain criterion and Table 4-4 provides the results of testing 

the accuracy of audio classification using the uncertain criterion. 
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Figure 4-10: Audio file classification using the uncertain criterion. 

 

From the experimental results provided in Table 4-3 and Table 4-4, it can be seen that 

the most effective combination of parameters is NFLd + NCCd, these form the 

parameter set that is employed in the following work. Figure 4-10 shows how the 

parameter space of NFLd and NCCd is separated into four regions, existing class, new 

class and uncertain areas. For a query candidate, when both parameters are less than 

their corresponding thresholds, it is classified to an existing class (the lower left 

quadrant area). When both the parameters are greater than their threshold (the upper 

right quadrant), the query candidate belongs to a new class. The rest of the query 

candidates, which have one parameter greater than threshold and another less than 

threshold, are marked as uncertain. 

 

Reduction of the number of incorrect files can lead to an increase in the number of files 

classified as uncertain. The threshold is therefore optimized to minimize the number of 

incorrect files while simultaneously maximizing the number of correct files. With the 

optimized thresholds, 370 audio files were tested (which are correctly classified without 

new class detection) in LOFO and all the 410 audio files in LOCO (Table 4-5).  
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Table 4-5: Results for LOFO and LOCO experiments using the uncertain criterion and the MuscleFish 
database (NFLd + NCCd). 

Existing  8 

New  22 Incorrectly classified  
(40 audio files) LOFO 

Uncertain  10 

Existing Correct 131 

New Incorrect 117 Correctly classified  
(370 audio files) LOFO  

Uncertain  122 

Existing Incorrect 40 

New Correct 318 410 audio files LOCO 

Uncertain  52 
  

 

In the two experiments, the number of incorrectly classified audio files is 157 (117 in 

LOFO and 40 in LOCO) of the 780 query candidates. This shows that our system can 

deal with audio files that do not belong to existing classes of the training set, and the 

correct classification ratio with new class detection is ≈ 80%. This is a significant result 

as it is comparable with the results of classification accuracy without new class 

detection using other classifiers such as 5-NN [98]. Furthermore, the system allows 

users to fine-tune any threshold to obtain desired results. For example, by increasing the 

thresholds to maximize the existing class region. 

 

The 40 incorrectly classified audio files were also tested (top row, Table 4-5). Only 8 

files of the 40 are classified into an existing class directly. The system prompts the users 

to consider classifying the remaining 32 audio files manually because they are marked 

as uncertain. Our system largely reduces the risk of misclassification. In a system 

without new class detection, for example that used by Li [98], a LOCO experiment 

would result in all 410 files being incorrectly classified. In our system only (40/410) 

10% are incorrectly classified. 

 

This experiment was repeated using the VisualData database (Table 4-6). The number 

of incorrectly classified audio files for both the LOFO and the LOCO experiments was 

185 files. The number for audio files that gave an uncertain result was 276. In the 

context of the experiment an uncertain classification is considered a correct 

classification therefore the total error is 16%. This means that the accuracy of the 
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classification using new class detection and the uncertain criterion is 84% for the 

VisualData database and 80% for the MuscleFish database suggesting that this method 

is suitable for general sound classification. 

 

Table 4-6: Results for LOFO and LOCO experiments using the uncertain criterion and the VisualData 
database (NFLd + NCCd). 

Existing  12 

New  41 Incorrectly classified  
(64 audio files) LOFO  

Uncertain  11 

Existing Correct 290 

New Incorrect 94 Correctly classified  
(547 audio files) LOFO  

Uncertain  163 

Existing Incorrect 91 

New Correct 407 611 audio files LOCO  

Uncertain  113 
  

 

There are other possible parameters for new class detection such as the distance of the 

test sample to its nearest point in the resultant class. This is similar to finding a 

threshold of NN classifier. Other classifiers can also provide other potential parameters 

to detect whether or not the input belongs to a new class. As the classifier in this module 

is NFL, these possible parameters were not considered for use in the module. In other 

implementations, they could be worthy of investigation. 

 

4.6   Hierarchical Classification 
 

Some research has shown that the use of a hierarchically structured database leads to a 

more accurate classification [49] [117] [130] [142] [160]. The VisualData database has 

been designed with that in mind. Currently this database is somewhat limited as there 

are only two levels within the hierarchy of the database (Figure 4-11). However, it 

seemed reasonable to undertake some preliminary tests to evaluate the affect of a 

hierarchical structure on our audio classification method. 
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Figure 4-11: VisualData ontology overview. 

 

In this experiment an audio file is first classified into a parent class in the upper level. 

Then it is reclassified within the child classes of the identified parent class to determine 

if the file actually should belong to an existing child class. The general classification 

method uses the NFL method and various feature sets. Because silence is removed in 

the segmentation method, the pitch-to-silence ratio feature would not contribute to the 

accuracy of the feature sets as the pitch-to-silence ratio would be a constant value. 

Therefore the pitch-to-silence feature is always omitted from the classification feature 

sets used. 

 

The Leave-One-Out cross-validation method is again employed to test the classification 

accuracy. If an audio file is incorrectly classified at the parent level, it can never be 

correctly classified at a lower level. For this experiment, only the audio files correctly 

classified at the parent level are processed in the second, subclass classification step. 

Therefore, in this experiment, the number of incorrectly classified audio files is 

considered to be the number of incorrectly classified audio files at the parent level 

(Table 4-7) and at the child level (Table 4-8). 
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Table 4-7: Number of incorrectly classified files for LOFO, using parent level classes (n = 611). 

Modified-Perc CepsX 

Pitch 
ZCR 

X=5 X=8 X=10 X=15 

  19 14 13 11 

  21 14 13 12 

  18 11 11 10 

  19 14 11 11 
  

 

Table 4-8: Number of incorrectly classified files for LOFO, using child level classes. 

Modified-Perc CepsX 

Pitch 
ZCR 

X=5 X=8 X=10 X=15 

  66 60 54 53 

  60 58 57 55 

  68 62 55 55 

  61 59 55 52 
  

 

Table 4-7 shows the inaccuracy for the first pass classification at the parent level and 

Table 4-8 shows the inaccuracy for the second pass classification at the child level. 

 

Using a hierarchical database, in this case, only improved the classification by one file. 

Five hundred and forty eight files were correctly classified, using the best feature set 

and the hierarchical classification method (Table 4-9). With standard classification, 

using the best feature set, 547 files were classified correctly (Table 4-2). However, a 

non-hierarchical classification is clearly more computationally efficient than a 

hierarchical approach. Firstly because the non-hierarchical classification occurs in a 

single pass. Secondly because in a hierarchical classification method the parent class is 

broad and contains many files and the feature set calculations increase exponentially 

with the number of files. 

 

Table 4-9: Total number of correctly classified files after two passes. 

Modified-Perc CepsX 

Pitch 
ZCR 

X=5 X=8 X=10 X=15 

  526 537 544 547 

  530 539 541 544 

  525 538 545 546 

  531 538 545 548   
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4.7   Classification of Mixed Sound Audio Files 
 

All the experiments detailed previously in this chapter classify the files in the 

MuscleFish and VisualData (Section 5.3) databases. These audio files consist of sounds 

from a single class. However when audio files are to be visualized the input audio file 

may consist of any number of sounds from various classes as was the case with the files 

that were used to test the two phase segmentation module in Chapter 3. The experiments 

described in this section use mixed sound audio files which must undergo segmentation 

prior to classification. Not only is this segmentation step essential to the audio 

visualization process but it should also lead to more accurate classification of mixed 

sounds audio files. In a standard classification approach the sounds in an input file are 

treated as if they are one sound belonging to one class and are classified using the mean 

values of their combined audio features. Naturally this standard approach is most likely 

to lead to a misclassification of the file.  

 

In our system the mixed sounds in an audio input are separated into audio clips using 

the two-phase segmentation process (Chapter 3). Each resultant audio clip contains a 

single sound or group of similar sounds. Then these audio clips are independently 

classified.  

 

For this set of experiments, if an input audio file is a mixed sound file, the audio file is 

correctly classified when and only when all the sounds in it are correctly classified. 

Misclassification of any one of the sounds leads to an incorrect result for the audio file 

as a whole. The accuracy of this test depends on both the accuracy of the segmentation 

and the classification phases. The audio files used for testing in the following 

experiments are the audio files that were generated using the VisualData files (see 

Chapter 3, Section 3.4 for test file generation discussion) for evaluating the two phase 

segmentation method.  

 

The first experiment used two phase segmentation followed by general classification of 

the audio segments. For classification the feature set used was Modified-Perceps8 with 

ZCR with the NFL method. Of the 1000 mixed audio files 63.4% of audio files were 

classified correctly (Table 4-10). It is important to note that an incorrect classification 

may mean that only one of the segments is incorrectly classified for that audio and that 



the majority of the segments extracted from the input audio file were correctly 

classified.  

Table 4-10: Classification accuracy for mixed sound audio files. 

 Correct 
classification 

Incorrect 
classification Total 

Mixed audio files 634 (63.4%) 366 (36.6%) 1000 

Number of audio segments 2936 (83.8%) 569 (16.2%) 3505 
  

 

Figure 4-12 shows a mixed audio file and its segments. In total there are 20 segments 

extracted using the two-phase segmentation method. Of those 20 segments all but one 

are classified correctly. While this is a good result for classification, it is not so good for 

visualization purposes. When an audio file is visualized a template image will be 

selected from the database that matches each audio segment's class. Therefore even one 

incorrect classification will result in a visualization which has an anomalous image (see 

Chapter 5 for a more detailed discussion of the selection of template images and 

subsequent visualization). 
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Figure 4-12: An example of an audio file that is incorrectly classified. 

 

It maybe that if new class detection was used for classification of the segments the 

incorrectly classified segment would be marked as uncertain. Therefore the 1000 audio 

files were again segmented and classified but this time using the new class detection 

method with the uncertain criterion (Subsection 4.5.4). If this method is used 93% of 

the incorrectly classified segments are now correctly classified as uncertain. However a 

new problem was discovered in using this new class detection approach. Some 
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segments that were correctly classified and assigned a definitive class were now 

assigned to that class but also marked as uncertain. This resulted in 40% of the 

previously correctly classified audio files, with all segments correctly classified, now 

posing problems for the visualization phase because a segment was marked as 

uncertain. User input is required to indicate whether the audio segment belongs to a 

class or is a new class of audio file and also to indicate how to handle that segment in 

the visualization. Another alternative is to remove uncertain segments from the 

visualization of the audio by default or to increase the transparency of visualization 

elements to indicate the uncertainty of each element. Neither of these options is entirely 

satisfactory. However, as the database evolves the uncertain audio files will eventually 

form a cluster and therefore a class and the visualization will become more 

representative of the mixed audio files.  

 

There are a number of ways in which this process could be improved. These are 

discussed below. 

 

One possibility is to alter the NFLd new class threshold. Experiments were undertaken 

with the automatically determined threshold increased by 25%. This threshold is based 

on the pre-segmented mixed audio file feature set. Of the incorrectly classified audio 

files 83% of them were marked as uncertain. For the correctly classified audio files only 

16% now have segments marked as uncertain. This would make user intervention to 

indicate the classification of an uncertain file more reasonable because the number of 

segments marked as uncertain is significantly lowered. Ideally an approach that 

minimizes user input should be employed if possible. 

 

Another option would be to perform a general classification first without new class 

detection. A nearest neighbour check may then be performed to check for anomalous 

classification results. For example in Figure 4-12 the third to last segment is classified 

to class number seven but this appears to be inconsistent when its nearest neighbours 

are considered. If the surrounding segments are all classified to 13 and the anomalous 

segment duration is short, then it seems likely that the segment has been misclassified. 

This segment could be automatically detected and then classified using the new class 

detection method. If the segment is marked as uncertain it is removed from the 

visualization of the audio files. An alternative to removing the segment would be to 

perform a neighbourhood classification. In neighbourhood classification a single 
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segment on either side of the anomalous segment and the anomalous segment would be 

combined. The classification could then be performed on the mean audio features for 

the combined segments. If the segment is a terminal segment in the audio file the 

neighbourhood might be considered to be the nearest segment. 

 

The third option would be to perform general classification, then check the entire audio 

segment sequence using a nearest neighbour check to identify anomalous classification 

results. If an anomalous segment is found, neighbourhood classification is performed to 

determine whether or not the classification is correct. 

 

All of these possible solutions should mitigate the problem of having a large number of 

segments being classified as uncertain and should reduce the level of user intervention 

required. 

 

To test the neighbourhood classification strategy three typical mixed sound audio files 

were selected from the incorrectly classified audio files. First the audio files were 

segmented using the standard two phase segmentation method. Then these segments 

were classified using the general classification method. The consistency of each 

segment was checked by comparing it with the class assigned to each of its nearest 

neighbours. When a potentially incorrectly classified segment was detected it was 

classified using the neighbourhood classification method. For all three files a correct 

classification was achieved. In the case of the mixed audio file shown in Figure 4-13 the 

second segment was identified as an anomalous classification. This segment was 

combined with the first and third segments in the files and the mean features used to 

reclassify the second segment. Neighbourhood classification resulted in the second 

segment being correctly classified. The nearest neighbour check followed by a 

neighbourhood classification seemed a promising approach therefore the remaining 

incorrectly classified mixed sound audio files were processed using this approach.  

 

A segment is defined as anomalous if its duration is less than 20% of the total duration 

of the input audio file and the segments on both sides belong to the same class. For a 

terminal segment (the last segment in the file or the first), if its nearest two neighbour 

segments belong to the same class, or if the terminal segment is shorter than 1/3 of its 

nearest neighbour segment, it is also identified as an anomalous segment. When an 

anomalous segment is found it is reclassified using the neighbourhood classification 



method. We found that only 29.3% of the incorrectly classified audio files are classified 

correctly. When examining the segments and the original audio file it became evident 

that the files that do classify well using the neighbourhood classification method have 

an incorrect terminal segment (either at the start or end of the audio file). The others 

which are positioned between two audio files are more difficult to identify as an 

anomalous segment if the previous segment and the next segment are from different 

classes. To identify an anomalous sound there needs to be a pattern of consistency in 

classification of the neighbouring files. For example (Figure 4-13), where the fifth to 

last segment in reality belongs to class 12, is classified to class 10 but is not identified 

as an anomalous segment using our method. If we examine the previous segment its 

class is 10 and the next segment after it is given as 12. So such a segment is not marked 

as anomalous because when scanning the segments the fifth to last segment appears to 

be a natural boundary between two sounds. 

 

 
Figure 4-13: Incorrectly classified middle segment that is not identified as anomalous. 

 

Of the 1000 mixed audio files tested we noted that 3% of the audio files have more than 

one segment incorrectly classified and 1% have only one segment incorrectly classified. 

We deducted that the reason that these segments are incorrectly classified is due to the 

segmentation of the audio file. Because the threshold of silence is determined by the 

mean of two sounds half of the noise period is segmented to the first sound, and the rest 

to the second sound. When classification takes place the noise may then end up being 

treated as "signal" if the signal-to-noise ratio (SNR) is low. Another reason may be that 

some of the incorrectly classified segments are of a relatively long duration and 
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although they are terminal segments they have comparable durations to their neighbours 

and are not recognized as anomalous segments. 

 

In a further experiment the incorrectly classified audio files were checked for segment 

classification consistency and then any identified segments were processed using new 

class detection classification. In this case the automatically detected threshold for new 

class detection is used and 93% of these identified segments are reported as uncertain. 

The user may then choose how to handle these uncertain segments for the purposes of 

visualization. When the classification segments that are marked as uncertain in new 

class detection are considered to be correctly classified the overall classification 

accuracy achieved using this method is 98%. We argue that this method provides an 

accuracy of classification that will lead to accurate audio visualization. 

 

4.8   Chapter Summary 
 

This chapter describes an improved audio classification method for general sounds. It 

differs from the previously reported methods in two ways. Firstly a new feature set has 

been developed that has a unique combination of audio features. Secondly our method 

can handle the classification of audio files that belong to a new class.  

 

Previous methods have calculated the feature set as an average of all the segments in an 

input audio file, and classified without new class detection so they are not suitable for 

heterogeneous audio files. For the purposes of audio visualization, a pre-classification 

step has been introduced that segments the audio files prior to classification. We have 

found that although the segmentation and the classification methods developed in this 

work outperform previously reported methods even when used in combination they are 

not sufficient for accurate audio visualizations. And indeed even segmentation 

combined with classification using new class detection was not sufficient to produce 

reliable audio visualizations. Therefore we added an additional processing step whereby 

the first classification results are examined automatically for inconsistencies and any 

anomalous segments are reclassified using the new-class-detection method with an 

uncertain criterion. This method proved to be very accurate and was sufficient for audio 

visualization. The next two chapters describe two possible methods for audio 

visualization namely, time mosaics and video textures respectively. 



Chapter 5 
Visualization Approach 1- 

Time Mosaics 

 

 

This chapter presents a time mosaic approach to the visualization of audio files. The 

visualization is referred to as a time mosaic because it is comprised of several image 

tiles that match the time sequences of the audio clips in the audio files that they 

represent.  

 

In the proposed audio visualization system, the generation of time mosaics takes place 

in the third module: the time mosaic generation module. Time mosaic generation occurs 

after the segmentation of the audio files (Chapter 3) and the subsequent classification of 

the segments or audio clips (Chapter 4).  

 

The resultant time mosaic image provides a visual representation of the component 

sounds (audio clips) in the input audio file and simultaneously illustrates the 

corresponding audio properties which have been subjected to image processing filters 

driven by audio characteristics such as power, pitch and signal-to-noise ratio. Where the 

input audio file is comprised of a single sound it is represented by a single image that 

has been subjected to filtering. Heterogeneous audio files are represented as a seamless 

mosaic image along a time axis where each component image in the mosaic maps 

directly to a discovered component sound.  

 

The first section of this chapter introduces the framework of the module. In the second 

section, the existing research on the representation of audio features by visual features 

and the techniques needed to generate time mosaics is reviewed. Then a specific audio 

database, called VisualData, is introduced to fully test the module. After this the 

processing of template images based on the audio properties of visual-audio feature 

relationships, which will be used to generate image tiles for the resultant final mosaic 
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image, are discussed. The method for combining the resulting image tiles is given in 

Section 5.6. Some resultant images are presented to demonstrate how this module and 

the audio visualization system work. It is then proposed that time mosaics can be 

adapted for other uses, such as audio database navigation, and this is discussed at the 

end of this chapter. 

 

5.1   The Framework for Time Mosaic Generation 
 

Figure 5-1 illustrates the framework of the time mosaic generation module. The input 

audio clips for this module are sounds (segments/clips) identified by the segmentation 

module. Their corresponding template images are selected from the pre-built 

audio/image database on the basis of the result of the classification for the segments. 

For each audio clip, the audio features are extracted and then used to select image filters 

that are applied to the corresponding template image. This results in an image tile for 

each sound in an audio file. Then all the image tiles are merged together to produce the 

resultant image or time mosaic. 

 

 
Figure 5-1: Framework for the time mosaic generation. 

 

Figure 5-2 gives an example of a time mosaic that arises as a result of simply putting the 

template image tiles in the order of the corresponding audio clips in an input audio file. 

The input audio file is the example file presented in Chapter 3: Figure 3-8 which 

contains five audio clips. After classification, it is determined that the middle three 

audio clips (see the audio signal below the dog image in Figure 5-2) belong to the same 

class so they are combined automatically and represented by a single image tile. 

However, in this simple form of time mosaics the audio signal under each image tile 
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must be scaled to the width of the image tile and therefore does not illustrate the 

duration of the corresponding audio clip. Furthermore, the discontinuity between two 

template image tiles is obvious and the overall resultant image does not appear to be a 

single image. 

 

 
Figure 5-2: Image tiles placed according to their corresponding time sequences. 

 

 
Figure 5-3: Blended image mosaic generated with image tiles of the same size. 

 

Figure 5-3 shows another visualization of the same input audio file as in Figure 5-2. 

This result is generated using the blended image mosaic method, reported in Section 

5.5, which produces seamless image tiles. Compared with Figure 5-2, the image shown 

in Figure 5-3 is more suitable for presenting a visual representation of an audio file 

using a single image. The blending indicates that the visualization is of a single mixed 

sounds audio file rather than a series of individual distinct sound audio files. Moreover, 

because the seamless merging eliminates the edges between image tiles it is suitable for 

representing a silence period between two adjacent sounds, and accommodates images 
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of different sizes. The size of the images represents the different duration of the sounds 

(for example see Figure 5-7 and Figure 5-10). 

 

Figure 5-3 depicts a typical result mosaic generated by this module. The intent is to use 

the mosaics as an aide in the navigation of a database of audio files. In addition, audio 

features are simultaneously represented through image features that have been filtered 

so that they can represent audio features (e.g. noise ratio and power). As a new form of 

audio representation, time mosaics offer a novel way to browse and edit audio files.  

 

5.2   Literature Review: Image Processing 
 

Audio visualization is a cross-disciplinary topic which is closely related to audio 

processing, visual perception, cognitive psychology and image processing. The related 

work reviewed here is arranged in the following order with commonly used visual and 

acoustic features introduced first. The association of colour and sound is discussed next 

as colour is the most widely used visual feature for acoustic representation. This is 

followed by a discussion of the literature on the audio-visual mapping relationships 

used in our image-tile generation process. Finally, research that investigates techniques 

used for merging images is reviewed. 

 

For general sounds, there are several acoustic features such as amplitude, duration, 

rhythm, fundamental frequency, harmonic, modulation and noise to be considered. 

Some of them, such as loudness and pitch, can be more easily perceived by humans than 

others. On the other hand some audio features cannot be readily recognized by most 

people so it would be meaningless to try to represent them for non-professional users. 

There are, however, many visual features available for the visual representation of audio 

features, for example, colour, contrast, size, shape, texture, hue, transparency, blur, and 

diffuseness. 

 

Associations between acoustic and visual characteristics have been extensively studied. 

The work reported support, the possibility of visualizing audio files using images. We 

propose that these well accepted acoustic and visual character associations can be 

adapted for our audio visualization method. Existing studies show that some visual and 

auditory features can inspire similar cognitive experiences [168]. The most widely 

studied topic is the relationship between colour and music and has been discussed by 



many artists over the centuries. Newton [169] reported the first scientific attempt at 

colour and music association when he described the Colour Music Wheel. Wu and Li 

proposed several methods for generating music from image features [168]. Similar work 

has been done by Mao et al [170], who proposed mapping relationships between 

painting and music and who developed rules for the production of music from images. 

The mapping of audio/image features has been used for other applications, e.g. pitch 

was mapped to colour by Caivano [171], and Giannakis and Smith associated saturation 

with loudness [4]. Giannakis et al. [172] surveyed the auditory-visual associations used 

to generate music using visual features and Giannakis developed a method for 

evaluating auditory visual mappings [173].  

 

Margounakis and Politis proposed a method for converting images to music [174]. In 

their method the relationship between perceptual aspects of images and sounds was 

illustrated, and this provided clues for the audio visualization system proposed in this 

thesis. They proposed a mapping matrix of chromatic synthesis which is shown in 

Figure 5-4. 

 

 
Figure 5-4: The mapping matrix of chromatic synthesis [174]. 

 

An approach called "chromatic bricks" was invented to describe how an image can be 

mapped to sound by Politis et al. [9]. "Chromatic bricks" mapped colour to melody by 

connecting musical entities and optical wavelengths (RGB values).  

 

From studies of the association between colour and music it is now known that the 

feeling associated with a given colour may vary from one individual to another. Ghinea 

and Chen pointed that "auditory-visual associations are primarily based on subjective 

judgements rather than on empirical evidence" [175]. Kaya and Epps illustrated the 

relationship between colour and emotion using experiments performed with college 
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students [16]. They tested the responses of ninety-eight college students to five principle 

hues, five intermediate hues and three achromatic colours. They found that their 

subjects had different attitudes towards the same colour. For example, blue elicited 

relaxation, calmness, happiness, comfort, peace and hope for some people. But for 

others, it was associated with depression; it made them feel blue. Feelings associated 

with other visual features can also be person dependent. This makes sound visualization 

difficult. A possible solution to this problem is to use a legend in an audio visualization 

system, so that viewers have a guide to the meaning the image's features are intended to 

convey. Customization by users to adapt preferred mappings is another solution. 

 

Besides the audio-visual feature relationship selection, there are other issues related to 

the representation of audio files by images. Because an audio file may contain more 

than one sound, image merging needs to be considered to allow the representation of 

audio files with mixed sounds. When the images for all the audio clips are processed, 

using their corresponding acoustic features, they need to be merged together to generate 

the final image result.  

 

Research about merging one or more individual images and image segments together to 

form a new single image is directly related to image and video compositing [176]. There 

are a number of methods for carrying out image based synthesis. Patch-based 

approaches are commonly used in texture synthesis algorithms [177] [178] [179]. Patch-

based approaches work by copying small regions of pixels from a source texture so that 

when these regions are stitched together they give the same visual impression as the 

original texture [176]. The output texture need not be the same shape or size as the 

source. 

 

An image mosaic is another method used to merge different image tiles. Image/video 

mosaics and texture images are all variations of the image merging concept. There are 

various types of mosaics that could be adapted to the proposed visualization purpose, 

such as automatically generating video mosaics [180], jigsaw image mosaics [181] and 

Escherization [182]. The image tiles used in jigsaw image mosaics [181] can be of any 

shape, unlike traditional photo-mosaics that are limited to rectangular tiles. A process 

for making an Escher-like tiling of the plane from tiles that resemble a user-supplied 

goal shape has been reported by Kaplan and Salesin [182]. This has been extended to 

more complicated cases in dihedral Escherization [183]. The types of mosaics discussed 
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above could be useful for audio visualizations because they allow the seamless merging 

of image tiles that are either regular or irregular in shape. The seamless merging of 

image tiles in our time mosaics is relatively straightforward because the image tiles in 

the proposed audio database query system are always of regular, rectangular shape. 

 

There are two fundamentally different techniques for creating mosaics. The first relies 

on detecting features in the scene and matching them across multiple frames. This 

approach works well on man-made objects that contain many straight edges and 

corners, but fails in natural scenes because the features are not so clearly defined. The 

second approach directly minimises the discrepancies in intensities between pairs of 

images. This approach is well suited to natural scenes because it does not require any 

easily identifiable features and is statistically optimal [184].  

 

Poisson image editing [185] is an alternative algorithm that could be used for 

visualizing the mixed sound audio files in this project. It has been used for seamless 

editing of image regions by pasting a selected region from a source image onto a target 

image. It blends the colours of edges between the selected region and its target region to 

eliminate discontinuities and to generate a seamless image result. Similar results can be 

obtained using other algorithms such as multi-resolution splines [186]. But, by 

comparison with the multi-resolution spline method, Poisson image editing uses an 

elegant mathematical formulation and is easier to use [187]. Although Jia et al. [187] 

pointed out that the Poisson image editing method may generate unnatural blurring at 

the edges, this is not important in time mosaic generation because we believe that 

blurred edges should not lead to any misunderstanding of the visualization result. For 

computing efficiency and quality of blending, Poisson image editing was employed in 

the time mosaic generation module presented in this chapter. 

 

There is another possible way in which an image tile can be placed into a bigger image 

and that is to regard an image tile as an element texture of a big image. Generally, 

image textures can be regarded as the subset of all images that exhibit spatial 

stationarity, meaning that the image is composed of repeating visual patterns. A 

considerable amount of research has been applied to the generation of texture images 

from real image exemplars using optimization [188], graph cuts [179], parallel 

processing [189], simplicial complexes [190] and simple Markov models [191]. De 

Bonet's approach [192] [193] was extended to multiple input samples to image-varying 
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textures by Bar-Joseph et al. [194]. A texture synthesis approach has not been used in 

this thesis, though it may be the subject of future work for audio visualization. 

 

5.3   Audio/Image Database for Testing 
 

A well-built audio-image database is a key component for testing this module and is 

also required for other components of the audio visualization system. The MuscleFish 

database [1] [98], which has been used as a standard non-musical sound database for the 

experiments reported in the segmentation and classification modules, is not entirely 

suitable for testing the time mosaic generation module. This is because some of the 

audio files in MuscleFish are too broadly classified. In the "animals" class, for example, 

there are nine sounds that belong to six different kinds of animal namely: cats (kittens), 

chickens, dogs, ducks (and geese), horses and pigs. Such a set cannot be meaningfully 

represented by a single archetypical template image. Therefore in order to fully test this 

time mosaic generation module and the whole audio visualization system, a new 

database named VisualData (Table 5-1) that is based on the MuscleFish database, has 

been built. The new database, VisualData, inherits some classes from MuscleFish. 

Those classes in MuscleFish that are not suitable for time mosaic testing have been 

replaced by new classes in VisualData. The audio files in the new-built classes have 

been downloaded from websites with freely available files [195] and [52]. For example, 

the audio files in the class "Bird" in VisualData are sounds from birds other than duck 

and rooster. These new audio files have been converted into the same format as the 

audio files in MuscleFish: 8-bit ISDN μ-law encoding with a sampling frequency of 

8000Hz.  

 

The VisualData training set has 611 audio files classified at a more suitable granularity 

for audio visualization (time mosaics). A comparison of the ontological structures of the 

databases MuscleFish and VisualData, with Nc being the number of sounds in each 

class, is given in Table 5-1. To fully test the visualization of audio files using 

VisualData, the accuracies of segmentation module and classification module in the 

proposed audio visualization system were also tested using the VisualData database (see 

Chapters 3 and 4). Table 5-2 summarizes findings about the accuracies of segmentation 

and classification of databases VisualData and MuscleFish from the segmentation 

module and classification module. The segmentation accuracy was tested using the 2-

phase Euclidean method with feature set PercCeps8. The classification accuracy was 



tested using the feature set PercCeps8+ZCR and the NFL method. The details of the 

feature set and experiments that measure the accuracy of segmentation and 

classification for MuscleFish and VisualData have been reported in Chapters 3 and 4.  

 

Table 5-1: Comparison of MuscleFish and VisualData Ontological Structures. 
 
 

MuscleFish Classes  Nc  VisualData Classes Nc 

Alto trombone 13 Alto trombone 13 

Bells 7  Bells 14 

Cello (bowed) 47  Cello (bowed) 47 

Oboe 32  Oboe  32 

Telephone 17  Telephone  66 

Tubular Bells 20  Tubular Bells 20 

Violin (bowed) 45  Violin (bowed) 45 

Violin (pizz) 40  Violin (pizz) 40 

Animals 9  Bee 36 

Crowds 4  Bird 16 

Female Voice 35  Cat 46 

Laughter 7  Cow 79 

Machines 11  Dog  17 

Male Voice 17  Duck 18 

Percussion 99  Frog 99 

Water 7  Rooster 23 

Total 410  Total 611 
 
  

 

Table 5-2: Accuracies for the segmentation and classification for MuscleFish and VisualData. 
 
 

 VisualData MuscleFish 

Segmentation accuracy 92.8% 96.6% 

Classification accuracy 89.5% 90.2% 
  

 

By comparison with MuscleFish, VisualData contains an additional 210 audio files 

(49% more audio files) and this increases the difficulty of segmentation and 

classification. In the case of both of these databases there is considerable overlap 

between classes, and therefore the more audio files there are in the database the less 

accurate the segmentation and classification processes are expected to be.  
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The experiments in this chapter test not only the time mosaic generation module but the 

whole audio visualization system. Any audio input is processed in the segmentation 

module, the classification module and the time mosaic generation module. The result 

for any audio input is therefore a time mosaic image. 

 

Each class in the database has a template image which is manually selected once for the 

database and can represent the content of all the audio files in the class. When the audio 

features are extracted and the audio-visual feature relationships are defined, for any 

audio file, an image based on its template image is generated using image processing 

filters driven by the audio features of the file. The details of how this is done, and how 

the audio-visual feature relationships can be adjusted if required, are discussed in 

Section 5.4. Sets of audio-image pairs are stored in the database, together with their 

classification and training information. This comprises a library that associates sounds 

with archetypal images. 

 

The experiments reported in the following sections were based on the VisualData 

database and were undertaken to test the time mosaic generation module and to 

investigate the contribution that the time mosaic approach could make to our audio 

visualization system. 

 

5.4   Image Tile Generation 
 

As discussed in Section 5.2, it is possible to connect audio features and visual features 

and this is fundamental for the generation of image tiles. The goal of image tile 

generation in time mosaics is to generate tiles for sounds and at the same time convey 

information about as many useful audio features as possible. This is achieved by using 

audio features to drive the image filters. The function described in this section is the 

generation of an image tile for a given audio clip using the template image for the audio 

clips class. 

 

The audio features and their corresponding visual features need to be selected when the 

system is built. The mappings of the features to filters are set as defaults but can be 

altered by the user if required. As mentioned in the literature review, there are more 

than 50 commonly used audio features. Some of these features such as pitch and power 

are easily perceived by humans while others which have no metaphorical analogues in 
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human audio perception, such as bandwidth and MFCCs are strictly used for audio 

analysis. Therefore only subsets of these audio features are mapped to image filtering 

operations. 

 

The image processing operations are employed to produce distinctive images for a new 

given audio clip for the purpose of visualizing the audio input. At the same time, the 

function of image tile generation in this module should generate images for individual 

audio files within the same class for navigation purposes as this is another potential 

usage for the audio visualization system.  

 

5.5   Interpretable Audio Features 
 

There are many audio features that determine the way humans perceive sound. In the 

proposed audio visualization system, the audio features Power, Pitch and Signal-to-

Noise Ratio (SNR) are used for visualization so that viewers can grasp the character of 

the audio clip. A discussion of each of the audio features is as follows: 

 

• Power is perhaps the simplest feature of an audio clip. It is related to the 

perceived loudness of a sound. The higher the volume (amplitude), the higher 

the power of the sound, and the louder a human will understand it to be. 

• Pitch is another feature that listeners can readily comprehend. In the field of 

music analysis, pitch perception is often thought of in two dimensions, pitch 

height and pitch chroma [196]. But for casual users, it may be sufficient to know 

that an audio clip with a high pitch sounds high and shrill, while a low pitched 

sound is deep and soft [197]. Acoustics research indicates that pure sinusoids 

sound sharp and very low frequencies sound flat, compared to a purely 

logarithmic relationship [198]. As the aim is to let viewers grasp the difference 

between pitches at a glance, the system needs only to visualize differences 

within classes. The precise values of the pitches are not required. 

• The Signal-to-Noise Ratio (SNR) can also be perceived by the human ear. It 

can be defined as the clarity of the signal. For example, poorly recorded audio, 

or audio with significant background noise, will have a low signal-to-noise ratio. 
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Correspondingly, there are visual features that may be mapped to the described audio 

features, such as image brightness and contrast, the depth of colour and the "noise" (or 

degree of blur) in an image. 

 

5.6   Audio-Visual Feature Mapping 
 

When considering an audio feature to visual feature mapping it is worth considering the 

dimensionality of those features [199]. It could be argued that an n-dimensional audio 

feature should be mapped to an n-dimensional visual feature and that this might 

improve user comprehension of the sound visualization. For example timbre can be a 

three dimensional audio feature it might make sense to map each dimension of timber to 

a colour channel. One abstract audio visual approach to timber, known as TimbreGrams 

[8] actually uses this specific feature mapping. The multi-dimensional properties of 

audio and visual features also make a multi-dimensional representation possible. 

However the use of combined multidimensional features in three dimensional space 

might result in visual cues that conflict with each other and confuse the user. In this 

work we elected to focus on two dimensional images and video for audio visualization. 

Moreover due to the novel and exploratory nature of this work we opted to use a simple 

set of one dimensional feature mappings. These default audio-visual feature mappings 

are as follows (Figure 5-5): 

1. Brightness to Pitch 

2. Colour Depth to Power 

3. Size to Duration 

4. Image Noise to SNR 

 

It would be simple to extend the image and audio feature sets and to provide a means 

for the user to explicitly over-ride the default mapping with his or her own preferences. 

This customisation option seems sensible due to the subjective nature of human 

perception of audio and visual features. 

 

The top row of Figure 5-5 illustrates how the audio SNR affects the visual noise ratio. 

The blue signal under the row of images denotes the pure audio signal for each sound 

clip. The red wrapping around the signal denotes noise added to the clear audio signals 

with varying degrees of white Gaussian noise added to the image. From left to right the 



audio files generated have increasing background noise with the far left image 

representing the pure starting audio file. Accordingly, the images become fuzzy to 

represent this change in the signal-to-noise ratio of the input audio file.  

 

 

Figure 5-5: Legend for visualized features in the audio visualization system. 

 

Brightness values for the template image are also linearly scaled to fit the pitch of an 

input audio as is shown in the second row of Figure 5-5. The template image represents 

an audio clip with the average pitch of the class. The audio sounds high and shrill when 

the pitch is high, so the image is set to be brighter for such sounds and darker for lower 

pitched ones. The pitch comparison is made strictly within classes. For example, the 

pitch of a bees' buzz is always higher than an oboe's sound, but it would not convey 

additional information to set the brightness of bees to always be very high and the 

brightness of oboes to be always very dark. Therefore, the visual representation of pitch 

is made to be relative within the same class so that, for example, the viewer can 

interpret a bright picture of a dog as being a relatively high pitched dog bark. Of course 

a legend is also required here to provide a sense of the level of brightness and thus the 

pitch of the audio. 
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Audio power refers to the degree of "loudness" or the volume of a sound. The higher the 

power value, the more easily it can be sensed. The colour depth of the image represents 

the power of the audio clip so that as a sound's power fades, so does the colour in the 

image that represents it. The third row of Figure 5-5 shows this relationship. 

 

In addition to the above relationships, the size of an image is used to represent the 

duration of the audio clip as shown in the bottom row of Figure 5-5.  

 

To generate an image tile, a template image is processed in four steps based on the four 

properties discussed above. 

 

5.7   Image Tile Generation 
 

When given an audio clip and its class in the database, the pre-selected audio features 

are extracted and then compared with the feature values of the files in the same class in 

the database. The generation of image tiles is processed on the template image 

according to the legend discussed above, which is the same for audio files in the pre-

built database and for the new audio input. 

 

Suppose the template image I represents class A, which audio clip a belongs to. Given 

an audio clip Ai in the class A its audio features are denoted as . The audio features 

for the given audio clip are 

A
i

v
r

avr . The steps taken to generate an image Ioutput for the given 

audio a are detailed as follows. 

 

The audio features used in the proposed audio visualization system are , a
pitchv
r a

powerv
r , 

 and its duration. Signal-to-noise ratio is a concept defined as the ratio of a signal's 

power to the noise power corrupting the signal. It compares the level of a desired signal 

(such as music) to the level of background noise. The higher the ratio, the less obtrusive 

the background noise is. Here its inverse (Noise-signal-ratio)  is used to represent 

the noise level of the background to audio. 

a
SNRv
r

a
NSRv
r
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Calculating the brightness scale parameter 

 

The brightness of the template image is used as the standard to represent the median 

pitch of a class. When the pitch of the given audio clip is higher than the median pitch 

of the class, the resulting image is brighter than the template image. For the audio clip 

with pitch lower than the median pitch of the class, the resulting image is darker than 

the template. The brightness is calculated as follows: 

))vminvmedian(),vmedianvmax((max

)vmedianv(*5.0
brightness

A
pitch

A
pitch

A
pitch

A
pitch

A
pitch

a
pitch

rrrr

rr

−−

−
=  (E 5-1) 

Where  is the pitch value of audio clip a; and mediana
pitchv
r A

pitchv
r , max , and minA

pitchv
r A

pitchv
r , 

are the median, maximum and minimum values of the pitch values in class A. The 

constant value 0.5 was determined experimentally and was found to give the best visual 

results. A value of greater than 0.5 results in a washed out image where the brightness 

level is too high and therefore the brightness may occlude the other visual audio 

property cues that are encoded in the image. A value of less than 0.5 results in a limited 

range of brightness, thus visualizations of similar audio in the same class are not 

distinguishable. The adjusted image is then calculated using a processing function 

available in MATLAB brighten(h, brightness), where h is the template image and 

brightness determines the intensities in the colour map of h.  

 

Calculating the ColourDepth parameter 

 

The ColourDepth scale is calculated in 3 stages: 

1.    The audio clip is normalized to set the maximum amplitude value equal to 1, 

producing Normal(a). Then the power value is calculated as max . a
powerv
r

2.      Normal(a) is scaled to 0.01×Normal(a) to calculate the power value as min A
powerv
r . 

This value is chosen empirically because low amplitude is not easily heard by the 

human ear. When the sound has an amplitude of 0.01×Normal(a) or a lesser 

amplitude, we use minimum colour to represent it. 

3.      Colour depth is defined as the number of colours that are used in the colour map 

of an image. The colour depth ranges from a maximum of 28 to a minimum of 22. 

The colour depth scale is calculated as: 
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A new colour map, Ioutput, is generated by using minimum variance quantization on 

ColourDepth as described in Subsection 5.2.2.  

 

Representing the audio noise-to-signal ratio 

 

 
Figure 5-6: Algorithm to represent the audio noise-to-signal ratio. 

 

Three algorithms were designed here for representing different levels of Noise-to-Signal 

Ratios (NSR) from very clean to very noisy, as shown in Figure 5-6. Note that a
NSRv
r  is 

the NSR for audio clip a. To represent the NSR of a given audio clip, not only is 

independent Gaussian noise added to the template image, but also white point noise for 

very noisy audio files. Furthermore, a degree of blurring is introduced for extremely 

noisy audio files. Each of the three filtering processes is calculated as follows: 

1.   Independent white Gaussian noise is added to Ioutput. If  is less than the 

maximum NSR max

a
NSRv
r

A
NSRv
r  in the class it belongs to, it is the only form of visual 

"noise" that is added. The white Gaussian noise has a mean of zero, with a 

variance of:  

avmax

a
NSRv

15.0NoiseScale r

r

×=

NSR  
(E 5-3) 

2.  After adding independent white Gaussian noise, white points are added when a
NSRv
r

 

is between 1 to 1.5 times max A
NSRv
r . The number of white points is defined by:  
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3.  The image is blurred by using a 7 * 7 Gaussian low-pass filter if  is larger 

than 1.5 * max .  

a
NSRv
r

A
NSRv
r

Together, the three filters introduce a wide range of distortion in the final image. 

 

Resizing the output image by audio duration 

 

Image size is used to represent the duration of the audio clip. An image tile is resized 

according to its corresponding audio clip. 

 

The longer the audio lasts, the larger its image size. In order to be able to display 

multiple timeline mosaics simultaneously, the maximum width of a component image is 

set to be 512 pixels and the smallest width is 128 pixels. The 128 pixel width 

corresponds to 0.125s and the maximum width (512 pixels) is for 8s. If an audio clip is 

less than 0.125s, it is set to 0.125s (128 pixels for width). When an audio clip is longer 

than 8s, it is set to be 8s (512 pixels) for width estimation. For an audio clip with 
A
duration

a
duration vAminv

rr
≤ , the image size is scaled linearly between the smallest and largest 

size depending on the audio's duration. By setting the maximum and minimum 

durations for width calculation it can be ensured that the image is always sufficiently 

clear. When two audio clips have similar durations, the widths of their image tiles are 

similar after linear scaling. 

 

After these four stages, an image tile is generated to represent the given audio clip. All 

the image tiles are generated independently. 

 

5.8   Mosaic Time-Line Generation 
 
When the image tiles have been generated for all the audio clips in a given audio file, 

following the steps discussed in Section 5.4, the next process is to merge the image tiles 

together into one image or time mosaic.  

 

It is not practical to assume that all audio clips have the same duration in a general 

audio file. The sizes of template images are not always the same either. Take the audio 
 114



file used in Figure 5-2 and Figure 5-3 as an example. As discussed in Section 5.1, the 

audio shape does not effectively show the durations of the audio clips. If the template is 

scaled according to duration, the sizes of image tiles will be different. Simply putting 

the image tiles side by side according to their time sequences would result in an image 

such as those shown in the top set of images in Figure 5-7. 

 

 

 

Figure 5-7: Result of image tiles with width of each image used to represent its corresponding audio clip 
duration. 

 

In this module, the output image consists of rectangular images of different sizes 

(different widths and heights). The challenge is to merge differently sized images 

without significant information loss in any of the component images that form the final 

mosaics. Constructing a blended mosaic image is therefore appropriate since the image 

sizes will vary, given that embedded audio clips are of varying lengths. Blended image 

mosaics solve the problem since smaller images can be embedded into a larger image 

background. 
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Poisson image editing [185] is an effective approach for seamless image composition in 

the gradient domain. The new image is created by pasting a region from a source image 

onto a target image. To construct a time-line mosaic from the component images 

Poisson image editing [185] is employed to fuse the separate images together without 

significantly altering the content of each region.  

 

The optimization process seamlessly inserts new content into a subset, Ω, of an existing 

image, h. It computes a new image, f, whose gradient,  f, within Ω is closest to the 

gradient   g, taken from a second image, g. The original boundary, ∂Ω, of region Ω from 

h is also used as a constraint to ensure that the region Ω blends with the surrounding 

image, h. The final image constrains an interpolation of the boundary conditions, ∂Ω, 

inwards while conforming to the spatial changes of the guidance field from g as closely 

as possible within Ω. The minimization problem is written as: 

∫∫ ∇−∇
2

f
gfmin

Ω  
with Ω∂Ω∂

= hf  (E 5-5) 

The reader is directed to Pérez et al. [185] for the discretization of the problem and for 

suggested iterative solvers. Using Poisson image editing, any two images with the same 

height can be merged seamless to one image (see Figure 5-3). 

 

For those image tiles with different heights, there will be holes at the top and bottom of 

the smaller image (see the empty regions on the top and bottom of image dog and image 

cat). These holes must be padded in an unobtrusive way. 

 

 
Figure 5-8: Background texture generation. 
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To achieve this, the stages depicted in Figure 5-8 are followed to generate the final 

image. In this mosaic image there are three tiles (A, B and C) and their sizes are shown 

in the figure. Their resultant image should be the output image at the right of Figure 5-8. 

The height of the resultant image will be the same as the highest image tile, which is 

image tile A in this example. Tile A does not require padding and is placed directly into 

the output mosaic. Heights of tiles B and C are smaller and require varying degrees of 

padding. For this, the highest tile (A) is selected to generate a seamless background 

texture to pad the smaller tiles. As most of the important information within our 

archetypal images is in the centre, padding image A is conservatively scaled to 90% of 

its original size and the result is integrated into the original tile A with Poisson blending 

to generate additional, low-content padding. This process repeats 10 times. The final 

image A* has the same size as the original image A. The content of the A* image is the 

padding texture that was generated from the edges of the original image. 

 

If the width of the background texture image A* is bigger than the width of the 

processed image tile, the left and right boundaries are cut and merged to generate a 

background image (see note (2) in Figure 5-8). This is based on the assumption that the 

important information is in the middle of the image. When the processed image tile is 

wider than the generated background image, the width of the background texture image 

A* is then scaled to fit the width of each image tile. The A1* is used for the background 

texture for image B and the A2* is used for C. Tile B is then merged into the middle of 

A1* with Poisson blending to generate the image for tile B′. When all the image tiles are 

padded, they are merged seamlessly by Poisson image editing in the order of their time 

sequences. 

 

The audio file in Figure 5-2 and Figure 5-3 is employed to show how the background 

image is generated and how to merge the image tiles to the final resultant image. The 

input audio of the first example includes a long bird sound, three short dog barks and a 

relatively long meow of a cat. Note that the power or amplitude of the sounds cannot be 

read directly from the signal because the audio clips are normalized to show their 

shapes. This is necessary for audio clips with small amplitudes. 

 

After segmentation, the input audio file is separated into five audio clips each 

containing only one sound. The three dog's barks are separated into three clips each 

containing only one sound. After classification, the classes that the audio clips belong to 



are known and the template images for each audio clip have been selected. From the 

durations of the audio clips, the template image for bird is scaled to the maximum size 

(512 pixels of the width) and the template image for dog is scaled to the minimum size 

(128 pixels of the width). The aim of generating a background texture image is to pad 

up the smaller images so that the image tiles are the same height. The bird template 

image is selected to generate background texture image because it is the highest one of 

the scaled template images.  

 

 
Figure 5-9: Steps for background texture image generation. 
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The background texture image is generated following the ten steps illustrated in Figure 

5-9. The first step is to form a core image by scaling the image to 90% of the original 

size. It is then merged into the middle of the original image, which is called the target 

image. Poisson image editing is used for merging the core image and the target image. 

The resultant image of the first step is used as the target image in the second step, which 

is used to accommodate the core image (scaled 90% of the size of core image in step 1). 

After repeating the process ten times, the resultant image contains a much smaller 

object compared with the original image. If there are boundaries around the object in the 

image, the boundaries are widened in the resultant image so that it can be used as a 

background texture image. If the bird is regarded as the object in the template image, 

when the resultant background image is compared with the original template image, the 

background above the bird in the template image is extended to a larger area and the 

object (the yellow bird) is zoomed out to the middle of the resultant background texture 

image.  

 

After generating the background texture image (shown in Figure 5-9), Figure 5-10 

shows how it is used to pad the smaller images to form image tiles of the same height. 

Two strips are cut from the background texture image then merged together using 

Poisson image editing. The width of the two strips is determined by the width of the 

scaled template image. When they merge together, the resulting new background strip 

has the same width as the template image. The last step is the generation of an image 

tile by merging the scaled template image into the middle of the background strip. The 

images in the middle (L) of Figure 5-10 show the generation of an image tile for the 

dog's barks in the example audio file. The images on the right are for the cat's image tile 

generation. When all the image tiles are generated (padded to the same height) as shown 

in the bottom left image of Figure 5-10, Poisson image editing is employed again to 

merge them together side by side. The bottom right image is the final result and 

represents the audio file bird-dog-cat. This result indicates what sounds are included in 

the given audio file and their duration, but it has not yet been subjected to image 

filtering. 

 



 

Figure 5-10: Generation of time mosaic images for the audio in Figure 5-2. (Top: Background texture 
image from Figure 5-9. Middle (L): Generation for image tile-dog. Middle (R): Generation for image tile-
cat. Bottom (L): Three separated image tiles. Bottom (R): Resultant time mosaic image. 

 

5.9   Template Image Selection 
 

The techniques used in image tile generation and time mosaic merging were discussed 

in Section 5.5 and Section 5.6. But a good resultant image for a single sound, or a time 

mosaic image for an audio file containing multiple sounds, requires not only practical 

mosaic generation techniques but also suitable template images. In other words, the 

quality and appropriateness of the template images in the database partly determine the 

quality of the final results.  

 

The requisites for a good template image include many factors such as the colour, the 

contrast of the image, the position of important information (objects), and whether the 
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image can completely describe the class it represents. If a template image cannot 

represent an audio file, the resultant time mosaic image will not be accurate and 

meaningful. 

 

 

Figure 5-11: Bird-dog-cat example with alternate template images. 

 

 

Figure 5-12: Bird-dog-cat example with alternate template images. 

 

Figure 5-11 and Figure 5-12 are two time mosaic images for the same sound but are 

generated using different template images. If we compare the dog sounds image tile in 

the three mosaic generation results (Figure 5-10, Figure 5-11 and Figure 5-12). The first 
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two use the same template image. In these two results, because the most important 

information (the dog) of the template image of class "dog bark" is very close to the left 

edge, part of the audio clip is not clearly represented. The dog image tile in Figure 5-12 

is very clear and unabridged because the object (dog) is in the middle of the template 

image. Another example is the image tile for cat in Figure 5-10 and Figure 5-11. 

Although the object (cat) is in the middle, it occupies most of the template image. When 

merging it with background texture image, the colour of the object is changed (because 

of the Poisson image editing process) as well as the shape of the object. But the size of 

object in a template image cannot be very small just because it represents a very short 

audio clip. The object must be able to be seen clearly even when the template is scaled 

to a very small size.  

 

The best size of the object in a template image is one where it occupies approximately 

90% of the image, which means the object has 5% of the image as outer edge. This 

enables the viewers to see the object clearly. At the same time, when it is merged into a 

background texture image to form an image tile, the edges around the object can merge 

with the background image to prevent loss of object information. When the template 

image is used to generate the background image, the edges can be merged together, over 

the 10 steps described in Section 5.8, to form a background image with the object 

removed (see the background texture image in Figure 5-11 and Figure 5-12). The 

background image in Figure 5-10 is not ideal because the object (bird) occupies most of 

image. The background around the bird is not big enough to produce a good background 

image for the other two image tiles.  

 

So that the viewer can see each object clearly, the object and background should have 

an obvious contrast (like the image tiles in Figure 5-12). The template image, dog, in 

Figure 5-10 and Figure 5-11 does not produce an optimal result because the object 

colour is similar to the background colour. 



 

 

Figure 5-13: Hierarchical structure of the VisualData for template image selection. 

 

When merging more than one image tile, if the background colours (boundaries around 

the main object) of the image tiles are similar, they will result in a harmonious image. In 

reality it is unlikely that the dissimilar sounds will occur together in the same audio file. 

For example, it would be very unusual for a duck's sound to be followed by a period of 

violin playing. We make an assumption that it is more likely that related sounds will 

occur together in an audio file. Therefore, in a large database containing various kinds 

of sounds, the template images can be selected by adopting a hierarchical point of view 

as shown in Figure 5-13. There are three classes in the higher level in the hierarchically 

structured VisualData. They can be divided into 16 sub-classes which are used in the 

audio visualization system. This hierarchical structure can be used to guide the selection 

of template images for more homogeneous time mosaics. When selecting a template 

image for a sub-class belonging to the class "animal", consideration should also be 

given to template images for other sub-classes belonging to this class because there is a 

high possibility that template images belonging to the same class will appear together. If 

all the template images of the classes belonging to the class "animal" have very similar 

background, when they were merged together the resultant time mosaics would have 

homogeneous backgrounds. 
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5.10   Experimental Results 
 

In Section 5.5 and Section 5.6, the selection of suitable template images and the process 

of time mosaic generation have been discussed with an example. The detailed processes 

are also demonstrated using the same audio file, the "bird-dog-cat" example. But the 

results in Figure 5-10, Figure 5-11 and Figure 5-12 were generated from template 

images without filtering. In this section, a set of experimental results obtained using not 

only template images but also image filtering driven by acoustic features, are discussed. 

The template images in Figure 5-12 have been shown to be more suitable for 

visualization using time mosaics so they are used for further experiments in this section: 

 

template images

bird

dog

cat

 

Figure 5-14: Bird-dog-cat example with filtering. 

 

Figure 5-14 is a result generated using both the template image and the audio features of 

each audio clip. In comparison with Figure 5-12 (without filtering) and with the 

template images, Figure 5-14 contains a visualization that shows that the cat's meow 

includes significant background noise; it is quite blurry. The noise ratio of the bird's 

sound is lower than the cat's sound and the sound of the dog has the lowest noise ratio 

of the three. Therefore the image of the dog is the sharpest and that of the cat is the most 

blurred. The legend in Figure 5-5 or the template images in Figure 5-14 can be used to 

evaluate the visual cues in the time mosaic shown in Figure 5-14. The pitch of the bird's 

sound can be visually recognized as relatively low, in its class, because the image tile is 

very dark when compared with the corresponding template image. The colour depth of 

the bird's sound image tile is also lower than that of its corresponding template image 

tile. Therefore it can be concluded that the audio power is low when compared with the 
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average power values for that class of audio files. It can also be concluded that the pitch 

values of the dog's bark and cat's meow are similar to the average pitch value in their 

respective classes because neither image tile is obviously brighter or darker than the 

template images.  

 

Similarly, comparing Figure 5-14 and Figure 5-15, it is possible to determine visually 

which image and thus audio clip is noisier ( for example the cat tile Figure 5-14 is 

noisier that the cat tile in Figure 5-15), which has a higher pitch (the cat tile in Figure 

5-15 is brighter than that in Figure 5-14) and which has a higher power value (the colour 

depth in the bird tile in Figure 5-14 is very low compared with the bird tile in Figure 

5-15). 

 

template images

bird

dog

cat

 

Figure 5-15: Time mosaic image for an audio file different from that in Figure 5-14. 

 
 

Figure 5-15 is a time mosaic image for another audio file containing bird song, dog bark 

and cat meow. To enable it to be easily compared with the visualization of a very 

similar mixed sound audio file (Figure 5-14), the duration of the components sounds 

and the audio file have been setup so that they are the same. By comparing the image 

tiles in the resultant time mosaics with the template images, the user may identify that 

the pitch of the cat sound is high because the image tile of cat is very bright. 

Additionally, the noise ratio in the bird is higher than the other two sounds in Figure 

5-15, but it is not as noisy as the cat image tile shown in Figure 5-14. By comparing the 

time mosaics in Figure 5-15 and Figure 5-14, it can be ascertained which audio clip has 

the greatest background noise, which has a higher pitch and which has greater volume.  
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template images

frog
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Figure 5-16: Frog-bee-cow example. 

 

template images

frog

bee

cow

 

Figure 5-17: An audio file containing sounds from class "bee", "cow" and "frog". 

 

 
Figure 5-18: An audio file containing duck and rooster sounds. 
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Figure 5-16, Figure 5-17 and Figure 5-18 show three further examples of the 

visualization of randomly generated audio files, and Figure 5-19 shows an example with 

five detected sound clips. Figure 5-20 and Figure 5-21 give two examples of the 

visualization of randomly generated audio files for music. Figure 5-20 contains three 

music clips: oboe, trombone and cello, and Figure 5-21 has violin and oboe sounds. 



 

 

Figure 5-19: A time mosaic of five images representing five different sounds. 

 

 

Figure 5-20: A time mosaic for an audio file containing three distinct instrument sounds                   
(oboe, trombone and cello). 

 

 

Figure 5-21: A time mosaic for a music audio file containing a violin and oboe sounds. 
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5.11   Limitations 
 

The main limitation of the time mosaic module is in the selection of template images 

and the quality of the pre-built database. The template images of the classes partly 

determine the quality of the results. From the time mosaics generated, it is clear that the 

colour and contrast of the image, the position of important information and whether or 

not the image can completely describe the class it represents are basic requirements for 

being a good template image. 

 

When the template images are well selected, the success of the time mosaic module 

depends on the accuracy of the segmentation and classification modules. An incorrect 

segmentation and classification result may lead to spurious results under certain 

conditions. This effect has been minimized by employing the uncertain criteria in 

classification to identify audio segments that may not belong to an existing class in the 

ontology. These segments may then be removed from the visualization result or the user 

may choose to allocate a class to the file. If the file is classified into a new class a 

template image must also be selected for that class. 

 

 

Figure 5-22: Incorrect segmentation and classification produce an incorrect result. 

 

Figure 5-22 illustrates an incorrect visualization result because of the incorrect 

segmentation and classification of the audio input. The sound file contains a cat-frog-

frog sequence of sounds. The three sounds were segmented to four audio clips. Then the 

middle two segments were incorrectly classified as belonging to the cow class. Because 

the two middle segments were classified to the same class they were combined for 
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visualization. The duration of the entire input audio file is used to determine the width 

of the resulting image. Three other visual features (brightness, colour depth and "noise" 

or blur) for the resultant image were determined using the audio properties calculated 

for each of the three segments. So the resulting time mosaic, Figure 5-22, is generated 

using three image tiles with each tile's brightness, colour depth and blur filtered by 

using the corresponding segments audio properties. In this case the anomalous "cow" 

sounds are not found using the nearest neighborhood check for two reasons; firstly the 

cat and frog terminal segments both have a relatively long duration and are therefore 

considered to be correct and secondly because the middle two segments are of the same 

class and duration they would be considered to be correct. Additionally the "cow" 

segments are not marked as uncertain when using new class detection because their 

NFLd is well below the threshold for new class detection. Therefore Figure 5-22 shows 

the worst possible outcome for visualization of a mixed sound audio files, an incorrect 

visualization where the user has been given no indication that the visualization may not 

be correct. However it is important to note that this would occur only approximately 1% 

of the time. Ideally of course we would wish for 100% accuracy but given the well 

reported difficulties associated with audio segmentation and classification we consider 

this to be a good result. 

 

If an audio file contains an audio clip that doesn't belong to any class in the database, 

the system can recognize it using new class detection and the uncertain criterion. 

Therefore the system can notify the user that the accuracy of audio visualization is 

questionable. 

 

Also, due to limited screen space, the durations of audio clips may not be represented 

correctly. As was discussed in the image tile generation section, when the duration of 

any audio clip is shorter or longer than the pre-set time limitations, the resultant time 

mosaic image cannot show their relative durations correctly. 

 

5.12   Other Usages for Time Mosaics 
 

The time mosaic method can be used for purposes other than visualizing audio input, 

such as navigating an audio database and querying an audio database. 

 

 



Navigation for audio database 

 

Figure 5-23 illustrates a class in the database where each class, based upon a fixed and 

pre-determined ontology, contains a single manually chosen template image. The 

template image for the class in this example is shown top-left. The remaining images 

that are associated with each audio file in the class are automatically generated by the 

system using the template and each file's audio properties. The differences in audio 

features between the audio files in a class determine the different visual features of their 

corresponding images. As new audio files are added to the database, the audio is 

analyzed and a new representative image is produced.  

 

 
Figure 5-23: Images representing audio files in the "dog" class from the VisualData database.              

The label under each image gives the name for each audio file. 

 

The Figure 5-23 gives an example that would allow for quick visual scanning of a class 

in an audio database using images generated by the audio visualization system. From 

the images, viewers can identify different properties and select the sound that they 

require. For example, one can easily recognize that the images for audio files "Dog-1", 

"Dog-2" and "Dog-3" are darker than the rest which means their pitch values are lower 

than the rest of the audio files. The three audio files (Dog-1, Dog-2 and Dog-3) appear 

to be the same visually. This is because they are relatively acoustically similar in terms 
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of the audio features pitch, power and SNR when compared with the other files in the 

class. The duration of the audio files are not shown in this image. To find differences in 

audio features between Dog-1, Dog-2 and Dog-3 further analysis, additional to the 

image tile visualization, is required. The same applies to other properties, for example, 

the audio file "dogbark9" contains the greatest amount of background noise. We 

propose therefore that at a glance, viewers could visually scan the selected audio files 

and that this visualization could aide in the selection of an appropriate audio file. 

 

Using different audio-visual feature relationships 

 

The audio-visual feature relationships can be defined by users according to their specific 

requirements. This makes the application of the audio visualization flexible. For 

example, in the time mosaics presented in this chapter, the pitch determines the 

brightness and power is related to colour depth. If colour depth is used for pitch and 

brightness for power, the resultant time mosaic image for audio in Figure 5-14 will 

appear as shown in Figure 5-24.  

 

If a viewer is provided with an appropriate legend, it should be possible to recognize 

from the resultant images that the pitch for audio clip bird is relatively low in the class 

and its power value is at an average level in its class. 

 

 
Figure 5-24: Filtered bird-dog-cat example with different mapping relationships. 
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5.13   Summary 
 

This chapter described the time mosaic generation module in the audio visualization 

system. The module processes the output audio clips and their template images from the 

segmentation and classification modules, and results in a seamlessly constructed time 

mosaic image by positioning the image tiles along the time axis according to their time 

sequences.  

 

Viewers can assess the audio properties in the sound sequences from the visual filtering 

operations. As a key module in the proposed audio visualization system, the time 

mosaic module generates the resulting images for any input audio files. It may also 

provide a useful way of quickly scanning audio query results and navigating an audio 

database through browsing.  

 

The time mosaic module could also be adapted to other applications by employing some 

professional audio features for specific presentations according to users' demands. 

Therefore when compared with the input audio files, the resultant images could be made 

to convey features other than those that are perceptible. 

 

 



Chapter 6 
Visualization Approach 2-

Video Texture 

 

 

This chapter presents an approach to the visualization of sound using video texture and 

video filtering. The method of visualizing audio files is extended from the use of static 

images to the use of videos. Instead of using static images to represent an audio clip, 

video components are employed. An output video is composed of video components 

representing audio clips derived from the audio file. These video components are 

generated by applying video texture techniques to template videos. The visualization of 

audio files with video textures is suitable for lengthy input. 

 

Video texture mosaics are a useful enhancement to the time mosaic approach to audio 

visualization. As mentioned in the framework of the audio visualization system (Section 

2.2), image mosaics are used to initially represent audio files. Then, if users are 

interested in an image or require more information about the audio file, the video 

texture mosaic can be played by selecting the relevant tile in the image mosaic. If all the 

image tiles in an image mosaic result are selected, a video texture mosaic result for the 

entire audio file will be played. We propose that video texture mosaics provide users 

with more time-based information than a time mosaic. 

 

This chapter begins by describing the advantages of using video frames as an alternative 

to static images for audio visualization. There is then a review of video texture 

techniques and how these can be used to generate video components of sounds. The 

term video texture component refers to a piece of video texture which is generated to 

represent a period of audio input and that corresponds to an image tile in its time 

mosaic. Different types of video texture mosaics and the methods used to generate them 

are discussed. Lastly, some examples are given and the video texture generation module 

tested in the context of the audio visualization system.  
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The audio file and template video pair for the experiments in this chapter that represent 

a dog barking were recorded by myself and feature Dr. Stephen Brooks' accommodating 

beagle Fred. The remaining, freely available, video templates (some of which contain 

watermarks) employed were downloaded from the iStockVideo website [200] and some 

of the audio files were downloaded from the Comparasonics website [201].  

 

6.1   Limitations of Image Mosaics 
 

In Chapter 5 of this thesis a novel approach to the visualization of audio files using 

seamless image mosaics along a time axis, was presented. Each component image in the 

mosaic was mapped directly to a discovered component sound and was subjected to 

image processing filters driven by specified audio characteristics. A component sound, 

used to generate a time mosaic, was either a single audio segment or a sequence of 

combined audio segments where the sequence of segments belonged to the same class. 

Using time mosaics, viewers are able to scan an image mosaic to discover visual content 

and thus determine audio properties. Although image mosaics enable users to view the 

audio content they have some drawbacks: 

1. Some acoustical qualities are inherently dynamic and cannot be represented by 

individual static images. For example, an image of a violin can convey that the 

sound is related to that of a violin. But the violin can be bowed or plucked and a 

single static image cannot necessarily effectively convey the way in which the 

violin is being played. 

2. In time mosaics, a component image is subjected to image processing filters 

driven by the mean values of specific audio characteristics derived from its 

corresponding component sound. The audio properties cannot be well illustrated 

in a mosaic if the characteristics change rapidly.  

3. When the duration of audio clips in a given input audio are quite different (e.g. 

one is fifteen seconds of handclap and another is three minutes of music) the 

image components (tiles) in the corresponding image mosaic maybe either too 

small to be recognized, or cannot show the duration accurately when the size of 

the image tiles are pre-defined. As seen in the top image in Figure 6-1, there are 

two short audio clips and one long audio clip in the input audio. If the template 

images are scaled according to the real durations of the audio clips, two images 

are very small and difficult to see clearly (see Result (A) in Figure 6-1). To avoid 



the image tiles being too small to be seen clearly, the minimum size of image tiles 

can be pre-set. However, the image tile for a longer audio clip may be too large to 

fit the computer monitor if the image tiles are scaled according to the real 

durations of the audio clips they represent. If both the minimum and maximum 

size of image tiles is set, the problem then is that the resulting image components 

do not show the real durations of the corresponding audio clips. 

4. Image mosaics do not adequately represent the ideas inherent within 

hierarchically structured databases. It is difficult to represent a hierarchically 

structured database within a single image. Traditionally, the parent/child 

relationships have been visualized using tree-like representations [202] [203] 

[204]. These representations are significantly limited by screen real-estate. 

 

 
Figure 6-1: Image mosaic generation when the durations of the component audio clips are different;             

(T): Input audio with three audio clips and their corresponding template images; Result (A): Template 
images scaled to the actual clip durations. Result (B): A set range for template image scaling. 
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Video is a potential approach to visualizing audio. Video carries more information than 

a single image while at the same time holding the viewers' interest. When compared 

with image mosaics, videos have the following advantages: 

1. Video displays dynamic motions that cannot be adequately captured by a single 

static image. A short video can record an entire motion and thereby enable the 

viewer to avoid misunderstandings that could occur if only a static image was 

viewed. For example, it can clearly separate a violin bowing sound from violin 

pizz. 

2. Video contains a series of frames. This feature of video could be useful when 

attempting to identify and illustrate any changes over time. Users may be able to 

select key changes in an audio to "summarize" the audio, and to map these audio 

characteristics to certain frames in a video. Therefore by comparison with the 

original audio, the video may be shorter and yet show how the audio 

characteristics change over time. 

3. Representation of duration via video run time is both more flexible and more 

accurate than its representation by image size. 

 

Moreover, videos have been noted to be particularly suitable for natural phenomena 

[205] or motion, which are difficult to represent with a single image. In an audio 

visualization system there may be a large proportion of audio files that belong to the 

category of natural phenomena or that need to be described by motions. Because of 

these advantages, video is a compelling alternative approach to audio visualization. But 

we have to acknowledge that using template video also has some potential limitations. 

A video template must have a finite duration so it is unlikely to fully represent a long 

audio clip. Moreover, a video template may contain an entire motion with audio signal 

and silence periods. The audio signal is only part of the whole motion, simply repeating 

the video template will not always provide a good representation of an audio clip. For 

these reasons the idea of using video texture was explored. 

 

Video texture is a technique, that uses a given short video clip to generate an infinite 

amount of video [206].Video textures can be considered to be, an extension of image 

textures [179] and a subset of all images that exhibit spatial stationarity. An image 

texture is composed of repeating visual patterns. Similarly a video texture has repeating 

visual patterns because it is generated by re-using frames from a video. We regard video 

texture as a suitable representation for sound files because a video texture can be 
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endlessly generated from a set of key frames, providing a varying stream of images 

from single or multiple videos. Additionally, video textures can accurately represent 

dynamic content without any obvious discontinuity in transitions. This unique aspect of 

video texture offers greater flexibility and visual richness than a single image or the 

sequence of images a video can provide.  

 

There are other advantages associated with using video textures. For example, they can 

be used in place of digital photos to infuse a static image with dynamic qualities and 

explicit action. A single picture or image is static, a video can be dynamic but is finite, 

whereas a video texture maybe dynamic and either finite or infinite. Whenever a video 

is played, it shows exactly the same sequence of frames. Even if a video has a 

repeatable loop and it is played continuously, it is replayed in the exact same sequence 

of frames. For a video texture, although the individual frames may be repeated from 

time to time, the video sequence as a whole does not have to be repeated. 

 

Video texture also addresses the problem of temporal discontinuities that is observed 

when a video clip is looped, and then goes further to convincingly produce a 

continuously varying video stream that can extend as long as necessary. This is 

accomplished by locating a number of plausible "loop back frames" within the video 

sequence and then randomly looping back or continuing as each loop back point is 

encountered when the video is played back.  

 

Video texture, as a new type of infinitely varying media, has advantages over both static 

images and video. It is similar to video in representation and has the potential to address 

the drawbacks associated with video and provide a novel way of visualizing audio. 

 

6.2   Video Texture Literature Review 
 

Video textures are defined as repeating dynamic visual patterns [206] [207] [208] [209] 

[210]. They take the form of infinitely varying sequences of images extrapolated from a 

video of finite duration. The output video can provide a varying stream of images, 

which may come from one input video or different input videos.  

 

Video textures were developed as an extension of earlier work on Video Rewrite (VR) 

[37]. VR techniques were used to generate videos of human mouth movements driven 
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by speech. The mouth images were stitched into background footage using a morphing 

technique. VR segments and matches the audio to the visual images by identifying 

spoken phonemes. 

 

The use of video texture has recently been extended into applications, including 

Panoramic Video Textures [211], Animated People Textures [212] [213], Stochastic 

Motion Textures [214], Editable Dynamic Textures [215] [216], Video Mosaics [180], 

and Controllable Video Sprites [217]. Video texture generation is a sample-based 

method, that models true video clips and synthesizes new video sequences [206] [179] 

[215] [191] [194] [218]. Soatto, Doretto and Wu used a limited sample to express 

infinite information [207]. They also used a similar method for editing and synthesizing 

dynamic textures using image-based rendering [216], in which the spatial frequency 

content of the sequence is edited, modified or reversed. This algorithm is especially 

good for generating dynamic textures of natural phenomena such as flowing water, 

steam and smoke. While this method provides a potential approach for an audio/video 

visualization system it limits the type of audio files that could be visualized. Because 

the input is a sequence of limited images this technique is unsuitable for representing 

multiple motions or dynamics and therefore could only be used for a small subset of 

audio. In a similar approach, Lai and Wu [218] proposed an algorithm for directional 

temporal texture synthesis. Their work presented a novel temporal texture synthesis 

algorithm which only needs a single static texture image as input to synthesize temporal 

textures that approximate true video clips and generate infinite length sequences with 

semi-regular characteristics. This algorithm is also limited in its application because it 

can only be used to generate a video when the input is a static texture image. Therefore 

the resultant video is more limited in terms of motion and dynamics than a video that is 

generated using video input [206].  

 

Auto-regressive processes were used by Campbell et al. for video texture generation 

[209]. The video texture generated using their methods may contain images that have 

not been presented in the sequence of original frames. Video textures with new frames 

can also be synthesized using wavelets in the algorithm [219]. New frames, based on 

wavelet coefficients derived from the decomposition of a set of pixel values of 

neighbouring frames, were constructed. Accordingly, new video textures were obtained 

by appending synthesized frames. Flow-based video synthesis and editing [215] capture 

the motions of textured particles in the input video along user-specified flow lines. This 
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technique can warp the textures along the input flow lines and synthesize textures over 

the edited flow lines to build virtual landscape animations. All three techniques generate 

new video frames. However, in our audio visualization system the original video should 

contain all the frames needed to represent the audio input and we should not require the 

generation of new video frames. Therefore these algorithms were not employed in our 

audio visualization system. 

 

Celly and Zordan synthesized video textures of people by rearranging the original 

frames from a database of source footage videos [212]. Their approach is not employed 

in our video textures module because their approach needs a database of source videos 

classified using data motifs, which is especially good for human movements. Data 

motifs are used to identify the movements of repeated sequences. An example of this is 

a video of people performing yoga where the video classified according to yoga asana 

(pose) sequences. In our visualization system most classes only contain one motif or 

theme and therefore it is unlikely that the use of data motifs for classification and video 

texture generation would be required. 

 

Bar-Joseph, et al. [194] analyzed whole input signals and constructed hierarchical multi-

resolution analysis trees, called MRA trees. They transformed the newly statistically 

merged MRA trees back into signals, yielding output textures. However, this technique 

concentrates more on the texture synthesis than a meaningful video result. It is good for 

automatically generating movie clips of natural dynamic phenomena such as waterfalls, 

fire flames, or a school of jellyfish. In the generated video, the objects move 

continuously but the movements are small and repetitive. In our audio visualization 

system many of the audio files need to be represented using large, specific, directional 

motions. If we applied the technique of Bar-Joseph et al. it would most likely result in 

flickering in the generated video texture. While this method may be suitable for 

representing some classes of audio files in our system it will not provide a generally 

applicable solution. 

 

Graph cuts have also been used to synthesize 2D and 3D textures [179]. In synthesizing 

temporal textures, the input videos were concatenated with optimal seams, which were 

irregular 3D cut surfaces. They allowed for interactively merging images but did not 

provide a smooth transition between frames when rendering the video. Our proposed 

video texture generation method will not allow for editing of the object or the texture in 
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frames of the template video. It should not be required because the template videos will 

be carefully selected and will therefore represent the content of all sounds in the class. 

However, in the future there might be cases where there is no suitable template video 

for a class in the database and in such cases this approach may be employed to generate 

videos because it allows for editing of the video frames and may therefore provide a 

better representation of the audio content. 

 

Other related areas of research are video analysis [220] and querying [221] [222] [223]. 

It may be possible to perform audio searches or queries using the corresponding video 

textures of audio files by adopting these methods but the audio search functionality falls 

outside the scope of this thesis. An important component of this branch of research is 

the development of effective similarity measures between video sequences [224] [225] 

[226]. Similarity measurement between video sequences would be important if there is 

more than one template video for a class in the audio database because the output video 

texture does not need to be generated from a single template video. However for this 

thesis we only have one template per class so none of these methods have been 

employed. Other issues include effective indexing and recognition [227] which can be 

employed in the post-processing of video texture results for the audio input. The 

resultant video textures can be summarized or indexed by this method. This is perhaps 

an alternative for future work.  

 

We suggest that video texture offers greater flexibility and visual richness compared to 

a single image or sequence of images. The video texturing technique can analyze and 

maintain plausible internal loops for multiple image regions of a video. For example, 

two children playing on a swing set in a video can be considered independent of one 

another, therefore multiplying the variations possible for video texture playback [206]. 

When generating video textures users can even produce video sprites and animate 

moving video objects together. Video textures can be used to produce very compact 

videos by varying the number of loops (and frames) in the video sequence. Moreover 

video texture is not limited to the content of a video template; we can apply the idea of 

video sprites to our system thereby allowing objects to be added or removed from the 

template frames.  

 

In conclusion, for our audio visualization system, we believe that video texture is a 

valuable supplement to image mosaics, as a more detailed way of representing audio 



 141

files. The following section discusses the role of the video texture module in our audio 

visualization system. 

 

6.3   Video Texture Generation 
 

In this section the video texture generation method is described. Firstly the framework 

of this module is presented. This is followed by a description of a simplified video 

texture generation method. For better adaption to the proposed audio visualization 

system, a modified method is then proposed for the generation of the video texture. 

Then the limitations for template video selection and the number of frames in the 

resultant video texture clip are discussed in this section. Finally, the matching of audio 

features to video features is discussed.  

 

6.3.1   The Video Texture Module Framework 
 

The data input to the module is the set of audio clips that were produced by the 

segmentation module (Chapter 3). The template video for each segment is selected by 

the classification module (Chapter 4) in the same way as described for time mosaic 

image template selection. The outputs from this module are video textures representing 

the given input audio clip. The outputs include video texture components for audio 

segments and a video texture mosaic for the whole audio input. A video texture 

component represents the audio segment or audio segments that are represented by a 

single image tile in its corresponding time mosaic. A video texture maybe played when 

the viewer selects its related time mosaic image tile. The full video texture representing 

the entire audio file may be played when the entire time mosaic is selected.  

 

Time mosaics and video textures differ in the way in which they represent the audio 

file. A time mosaic image visualizes only the signal segments. If the audio file contains 

silence periods, they are removed in the segmentation process. One of the advantages of 

audio visualization using video texture is that the output can visualize time-based audio 

features. The video texture should include both signals and silence periods to be an 

accurate representation of the audio file. Moreover, the resultant video texture mosaic 

should have the same duration as the audio input so viewers can view the content and, at 

the same time, listen to the audio file. Therefore the visualized audio clips in our video 

texture mosaics are different from those visualized in time mosaics because the video 



texture is generated for the original audio file. The segmentation and classification steps 

are still required in order to select the correct video templates that are need to build the 

video texture. 

 

 

 
Figure 6-2: Difference between audio clips visualized by time mosaic module and video texture module. 

 

 

Figure 6-2 illustrates how the complete audio file is visualized by a video texture. In 

this example the audio input contains two distinct sounds (coloured black and blue 

respectively). The sound from the first class has three signal segments (segments 1, 2 

and 3) and three silence segments (segments 5, 6 and 7). The second sound has two 

silence segments (segments 8 and 9) and its signal component is segment 4. Segment 7 
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and segment 8 are adjacent and both are silence segments so they are removed by the 

segmentation module. Therefore the output of the segmentation module contains only 

four signal segments (segments 1, 2, 3 and 4). The classification results for these 

segments will show that the first three segments belong to the same class (class i) which 

is different from the class of segment 4 (class k). Segments 1, 2 and 3 are combined and 

represented by one image tile in the time mosaic. But for the video texture module, the 

silence segments are re-introduced as shown in the right images in Figure 6-2. Segments 

5, 6 and 8 are directly added in. This is simple because their adjacent segments either 

belong to the same class or are a terminal segment. However, segment 7 is a more 

complex situation as it has been split in two during the segmentation process. The first 

part of 7 is combined with the previous segment 6, and the second part is combined with 

the next segment. Splitting the silence segment between two different sounds can avoid 

making one adjacent sound too lengthy and the other adjacent sound too short. 

Moreover, incorrect separation of the silence segment will not lead to an incorrect 

visualization. Because the spectral power value for a silence segment is quite limited, 

the colour depth of frames representing a silence segment is always very low. So the 

content of a visual frame representing a silence segment is not as critical as for a signal 

segment. Additionally we present, later in the chapter, a method by which the motion of 

the object in the video texture also represents silence and this further mitigates the issue 

of silence segmentation.  

 

Figure 6-3 illustrates the framework of the video texture generation module. The 

duration of the audio input and the template video determine if a newly generated video 

texture is needed. If the duration of a template video is longer than that of the audio 

input, a portion of the template video can visually represent the given audio. So the 

output of the video texture module does not necessarily need to be a newly generated 

video because in such a case the video template itself is sufficient. The video texture 

module calculates the number of frames it requires, based on the audio files duration, 

and compares it with the number of frames in the template video. When a template 

video has more frames than is needed to represent the audio input, a subset of the 

template video is randomly selected from the template video. Otherwise when the 

template video is not long enough, an output video is generated using video texture 

techniques. There are a number of different methods for generating video texture 

components. They are discussed in the subsections that follow. 
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Figure 6-3: Video textures generation method based on random transition. 

 

6.3.2   Video Texture Generation Based on Random Transitions 
 

Schödl's video texture generation method [206] is comprised of three steps: analysis, 

synthesis and rendering. The first step, analysis, finds fundamental video loop subsets, 
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transition loops, based on the frame similarities. The second step generates a sequence 

of frames based these transition loops. Video texture synthesis is then based on a 

dynamic programming table for optimal loops for any duration. The total computational 

complexity for the dynamic programming table method is O(L2N2), with a space 

complexity of O(LN), where L is the maximum loop length and N is the number of 

transitions being considered. The rendering step mitigates any discontinuities in the 

frame sequence that was determined in the synthesis step.  

 

For our purposes, it is not necessary to follow every detail in Schödl's method [206] 

strictly because in our system we choose our video carefully, and our video is always 

continuous. Some of the processing in Schödl's method was designed to accommodate 

non-continuous video with abrupt changes and is not required. Therefore a simplified 

video texture technique is proposed for this module that has its foundation in Schödl's 

method.  

 

The proposed novel video texture generation method consists of a template processing 

block and a video texture synthesis block (Figure 6-3). The first block processes the 

template video to find fundamental video transition frame loops and produces a list of 

transition frames. The number of frames in the output is determined by the input audio 

clip using equation E6-1. This frame number is fed into the video texture synthesis 

block, together with the transition list. Based on these inputs, a sequence of frames is 

generated from the second block.  

 

The extraction of a transition list for template video frames employs the method used by 

Schödl [206], based on the frame similarity calculation. The first step is to calculate the 

frame-to-frame distance, which produces a matrix Dij, based on Euclidean distance 

between any two video frames i and j. To preserve the dynamics of the motion a 4×4 

diagonal kernel matrix with weights (1, 4, 6, 4) is used as a filter on the distance matrix 

Dij to produce matrix Dij'. The final step is designed to avoid dead ends by adding the 

future cost of each frame to the existing frame sequence. Along with this iteration step, 

the cost of a transition i is propagated forward to all the frames which are able to do this 

transition. So the transitions which lead to no graceful exit are eliminated and only the 

potential graceful transitions remain. After anticipating the future cost of a transition, a 

final transition cost matrix is calculated as Dij''. After this step, the possibility of each 

transition is mapped through an exponential function and only the transitions with small 



future cost and graceful exit will have high probability values. The probability of the 

transition is calculated as P". The fundamental loops (possible transitions), based on P", 

are found then stored in the output of the template processing block. The list of 

transition frames is saved together with the template video in the database for later use.  

 

In this list of transition frames, if frame i to frame j is a possible transition then frame i 

is after frame j in the template and frame i+1 and frame j are sufficiently similar (so 

there is no obvious jump if frame j is played after frame i). When a video plays to frame 

i, the system can either play frame i+1, or "jump" back to frame j after frame i. In the 

transition list, a frame i may have more than one transition frame.  

 

A video stream is a sequence of frames, and each frame is a static image. In the 

resultant video, a frame represents a certain segment of an input audio signal. To 

generate a video texture that has the same duration as the audio clip and the same frame 

rate as the template, the number of frames is determined by the duration of the audio 

input and the input video (frame rate), according to the following equation: 

sec/number_frame_templatedurationnumber_frame input ×=  (E6-1) 

If the number of frames for the output video has been calculated to be n, then this 

number n, together with the transition frame list from the template processing block, is 

the input of the video texture synthesis block. There are three functions needed in the 

simplified video texture synthesis method:  

randFrm is a function to randomly select a frame between two given frames 

(including the two given). It is used to generate start and end frames, and to 

select next frame for the end frame if there is more than one choice in the 

transition list. 

transFind checks whether or not an input frame can transit to other frames from 

the transition list. If the frame can transit to other frames, the function returns 

the index of the given frame. Otherwise, the function tries to find a frame which 

meets the following three requirements: 

1. it can transit to other frames 

2. it is located after the input frame in the template video 

3. any frame between the input and output frame cannot transit to other 

frames  
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If there is no frame meeting all three requirements, the output frame index is 0. 

crsFrm generates a new frame using a cross-fading method. It returns a frame 

generated from two input frames and a coefficient. The resulting frame is used to 

eliminate the sudden jumps in video texture generation. Although the most 

similar frame pairs are chosen as the best transitions in video texture generation, 

some discontinuities cannot be totally avoided because the frame pairs may still 

have significant differences. Hence the result of crsFrm is inserted between any 

transition frames to mitigate the discontinuities.  

 

 

Figure 6-4: Cross-fading method from Frame A to Frame B. 

he combination of video texture components and will be 

iscussed in Section 6.4. 

dominant conten

 

The cross-fading method, that is used to smooth the transitions, is illustrated in Figure 

6-4. The jump between frame A and frame B can be replaced by a gradual blend, such 

as the three frames in Figure 6-4. When frame A transforms to a completely different 

frame B, three middle frames are produced to avoid sudden discontinuities. These three 

frames are generated by interpolating the RGB colours of corresponding pixels in order 

to smoothly transition between frame A and frame B. Cross-fading is used in both video 

texture generation and t

d

 

The coefficient t, as part of the input, determines which of the two input frames has 

t in the resultant frame. The resultant frame is calculated by 

B)t(At ×−+× 1 . Values of t can be 0.75, 0.5, and 0.25, depending on the position of 

the frame in the transition. If the frame number of a template is more than 30, which 

means the template lasts more than one second, each transition will have three cross-

fading frames (t=0.75, 0.5, and 0.25). When the template video is less than one second, 

only one cross-fading frame is needed for any transition (t=0.5). 
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In the synthesis part of video texture generation, functions randFrm and transFind are 

used to find a start frame and an end frame from the template video. The randFrm is 

used to choose a start frame number from the first half of template frames. After 

obtaining the start frame, the end frame is found between the start frame and the end of 

the template video. This randomly selected end frame fi may not be able to transit back 

so it is not a suitable choice to be the end frame. The function transFind is employed to 

find the suitable frame fj which, of the transferable frames, is the closest frame to fi. 

From the description of transFind, fj = fi if fi is able to transit back.  

 

Figure 6-5 is the pseudo code for video texture synthesis. Suppose the frame number of 

the template is m, and the frame number for the resultant video texture component is n:  

1. When m>n, which means the template video has more frames than what is needed 

for the output, the random frame selection function randFrm is used to generate a 

start frame number i from one to the frame (m-n). Then frames between i and 

(i+n-1) are output video.  

2. When m≤n, there are not enough frames for the output video. In this case the 

output video is generated by the video texture technique. Simplified video texture 

synthesis is performed according to the following steps:  

a. Set 0 to the frame number k of the output video. Generate random start 

frame s by using randFrm. 

b. Generate end frame e by using randFrm and transFind. Frames between 

the start and end frame are appended to the output video. k=k+e-s+1. 

c. If k<n, obtain transition frames for end frame e from the transition list. If 

there is more than one transition frame, select one randomly. Suppose the 

transition frame is i, set it be the new start frame s=i. 

d. Generate cross-fading frames based on frame e and frame s. If there are 

more than 30 frames in the template, three frames with coefficient values 

0.75, 0.5, and 0.25 are generated and appended to the output video. When 

the template frame number is less than 30, one frame with t=0.5 is generated 

and appended instead of three frames.  

e. If the frames after the new start frame in the template are more than the 

frames needed by the output video these frames are appended to the output 

video. Otherwise, repeat the steps b, c, d and e until the output video has 

enough frames. 



Pseudocode for “video textures generation”  
n: Frame number for the output video clip 
m: Frame number for the template video 
r: CALL randFrm() 

 
Set outputVideo to Empty 
IF n < m  

  startFrm = randFrm(1,m-n) 
  output = template(startFrm: startFrm+n-1) 

ELSE 
  Set FrmNum = 0; 
  REPEAT 
   startFrm = randFrm(1,m) 

crosFrm = crsFrm(output(FrmNum), Frm(startFrm)); 
   append crosFrm to output; 
   IF (m-startFrm)>(n-FrmNum) 
    append template(startFrm:n-FrmNum) to output 
    FrmNum = n 
   ELSE 
    REPEAT 
     endFrm = randFrm(startFrm+1:m) 
     endFrm = transFind(endFrm) 
    UNTIL (endFrm > 0) 
    append template(startFrm:endFrm) to output 
    FrmNum = FrmNum + (endFrm-startFrm)+1; 
   END IF 
  UNTIL FrmNum>= n 

END  
Figure 6-5: Pseudo code for video texture synthesis based on random transitions and three functions. 

 

There is no rendering step in this video texture generation method. As Schödl noted 

[206], video texture generated by random play has quite poor results with many visible 

jumps and discontinuations. By inserting the cross-fading frames between transition 

frames, and selecting the template video carefully, this problem is mitigated and the 

resultant video textures are improved.  

 

6.3.3 Adaptive Video Texture Generation Method Based on Audio 
Matching 

 

The video texture generation method based on random transitions discussed in the 

preceding section can create a unique, continuous and interesting video clip for a given 

audio file. But the method requires that all motions in the template video are able to 

represent the input audio. In other words, any small piece of sound in the class should 

be represented by the template video correctly and accurately. For example, in a 
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template video for class "speech", all frames should be able to represent speech. If a 

video clip for face is used as the template, the mouth in the face should keep moving. 

But in any speech there may be short breaks between sentences. Although in the 

segmentation module and the classification module, these short silence periods have 

been removed, they will be included in the input for the video texture generation 

process. The inclusion of silence periods is required to ensure that the video texture and 

its corresponding audio are of the same duration and are synchronised.  

 

For the silence periods within an audio clip, the template video cannot generate suitable 

representative video frames, especially when the silence duration is long in comparison 

with the duration of the sentences. Moreover, silence periods between two adjacent 

audio clips pose difficulties for visualization with video textures. The silence period 

needs to be either split into two pieces at the middle, and each piece joined to its 

neighbouring audio clip, or be represented by cross-fading frames generated from the 

edge frames of the two video texture components for the audio clips. But neither of 

these two methods works properly in practice. If the silence piece is joined to the audio 

clip, the template cannot represent the silence correctly. But representing a silence 

period by frames generated by cross-fading of the last frame in the preceding video 

textures clip and the first frame in the following one is not suitable either. When the two 

neighbouring audio clips belong to different classes and the content of the video frames 

is quite different, the cross-faded frames become blurred and meaningless. 

 

This section presents an adaptive approach to derive video textures from template 

audio/video sets. Compared with the normal video texture generation method, this 

approach better suits the audio visualization system because its resultant video clip can 

represent both audio signals and acoustical silence periods. The difference between 

normal video texture generation and the adaptive method is that in the adaptive method, 

the input video contains not only video frames but also corresponding audio (sound and 

acoustical silence). 

 

If the output video has the same duration as the input audio, the number of frames can 

be calculated by the equation E6-1 from both audio input and the frame rate of the video 

template. As with the simplified video textures method, this method also uses a template 

processing block and an input audio processing block. The best frames can be found to 



represent a given audio because there is an additional audio matching block included in 

our system that compares audio features in order to find the best matched segments. 
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Figure 6-6: Framework for adaptive video textures generation method. 

 

Figure 6-6 depicts the framework for the adaptive video texture generation method. The 

upper portion of Figure 6-6 shows how the video template is processed. For an input 

template file which is comprised of video/audio pairs, the audio part is separated into 

the same number of frames as the video of the template. Then the template is separated 

into segments based on silence detection of the audio frames. Their corresponding video 

frames in the template video are separated into video segments; each video clip has the 

same duration as the associated sound clip. Finally, the video frames for each segment 

are processed to generate a transition list for future video texture synthesis. The 

transition list is generated in the same way as discussed in the simplified video texture 

generation method of Subsection 6.3.2. To make sure a video segment (a sequence of 

video frames) can be used to generate an interesting video texture component, it needs 

to have a certain number of frames. In the audio visualization system, it is pre-

determined that 30 frames, (one second) is the shortest video segment for video texture 

generation. The audio feature vector of each sound clip in the template is calculated, and 

this is used to match the new input audio clip in the processing of input audio. 
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Here there is an audio feature match step between the target audio segment and template 

audio segment, to find the best matched video frames. After finding the suitable video 

frames, the last step is generating video texture output using the simplified video texture 

method described in Subsection 6.3.2. Figure 6-7 gives an example of a result from the 

template processing block where the audio file is of a dog barking. 

 

 
Figure 6-7: Example of a template processing result. 

 

Both the audio and the visual components of the template are separated into frames. The 

frames for the audio component are named AudioF, and VisualF is the name for the 

visual part of the template. AudioF and VisualF are associated so that each AudioF can 

be represented by its corresponding VisualF. 

 

The result of the template processing block is a file that contains information for the 

audio-video pairs after audio segmentation based on silence detection and extraction of 

the fundamental frame loops. The four components for the template processing result 

are shown in Figure 6-7: the number of audio clips, their starts/ends, their audio feature 

vectors, and their transition frame lists.  

 

The audio feature vector used is a normalized twelve feature vector comprised of the 

Total Spectrum Power, Brightness, Bandwidth, Pitch, ZCR and 8 order Mel Frequency 

Cepstral Coefficients (MFCCs). This is the same procedure as that described in the 
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segmentation chapter. For each feature, the values of the audio frames are mapped to the 

range [0, 1] so that each feature has the same weight in the distance calculation. 

 

In the given example of a dog bark, the silence detection finds three audio clips in the 

template audio. The first and the third are silence periods and the second is a signal clip. 

Because the first silence clip is shorter than one second, the corresponding video frames 

are not used for video texture generation, and will therefore not be shown in the result. 

An example input audio is given in Figure 6-8. This example is used for the following 

discussion on how the audio match block finds suitable frames and generates a video 

texture to represent a given audio file. 

 

 
Figure 6-8: An example input audio file (dog barking). 

 

When the example audio input was segmented using silence detection thirteen segments 

were found (Figure 6-8 (bottom)). The signal clips are marked as clip one to clip six, 

and the remaining clips are periods of silence.  

 

In the audio matching step, there are three possible methods which could be used to find 

suitable video frames for an audio piece: frame-based likelihood, feature vector curve 

similarity and nearest neighbouring feature vector. The frame-based likelihood method 

separates input audio clips into frames and extracts the audio feature vectors for each 

frame. Then, for each frame, it finds a frame from the template that has the most similar 

audio features. The feature vector curve similarity method not only considers a single 
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frame, but also the dynamics of audio features. It can be considered to be an audio 

feature curve fitting in high-dimensional audio feature space. The nearest neighbouring 

feature vector method extracts audio features that are based on audio clips instead of 

frames. It then finds the nearest audio vector (by Euclidean distance) from the template.  

 

The template file in Figure 6-7 and the signal clip five of the input audio file in Figure 

6-8 are used to show why the two methods, frame-based likelihood and feature vector 

curve similarity, are not suitable for audio matching. Adaptive video texture generation 

based on the audio matching method requires that an input audio segment is visualized 

by the most acoustically similar segments in the template. If a segment in the audio 

input contains sound signals, it is represented by the signal frames in the template. The 

frames of a silence period in the template are used to represent the silence segments in 

the audio input. Although the frame-based likelihood and feature vector curve similarity 

methods can meet these requirements, the resultant video textures either flicker or do 

not acoustically match the audio input. Only the nearest neighbouring feature vector 

method is suitable and can be employed to find suitable video frames for audio pieces in 

the audio matching block of our proposed method for the visual representation of audio. 

 

Frame-based likelihood method 

The Frame-based likelihood method represents an audio input by matching each frame 

in it with the frames in the template. The given audio input is separated into frames 

InputF of the same duration as AudioF. Audio features are extracted for the AudioF and 

InputF. Each InputF can find a most similar frame from the AudioF using Euclidean 

distance. For an InputF IFi, suppose its most similar AudioF is AFi, which has an 

associated VisualF VFi. When compared with other VisualF, VFi should be the best one 

to represent IFi. When all the best VisualF are found and connected using the sequence 

of their corresponding AudioF, they generate a video to represent the audio input. The 

assumption in this method is that in the template, the video frame can successfully 

represent its corresponding audio signal, and the content of a given input audio file 

could also be represented with the template video. If a video frame is not needed for the 

given input audio, its corresponding audio signal should not appear.  

 

We also note that this method depends on the continuity of audio feature vectors. 

However, the audio feature vectors for adjacent audio frames are not always continuous 

for video dynamics.  



1 2 3 4 5

6                          7                          8                          9                         10

11                         12                 13      14   15
 

Figure 6-9: Frame images from the template video. 

 

1(10) 2(101) 3(101) 4(25) 5(16)

6(16)               7(12) 8(24)  9(38) 10(101)

11(101)         12(101) 13(101) 14(101) 15(24)  
Figure 6-10: Resultant frames by Frame-based likelihood method. The numbers X(Y) where X is the 

frame number in the given input audio file and Y is the frame number in the template which has the 
closest audio features to the frame in the template. The black arrows and red circles show the 
incontinuity between frames. 

 

Figure 6-9 contains frames for the signal clips in the template. They are continuous and 

represent a dog barking. Moreover, these frame images are continuous with both object 

motion and the position. When the template video frames shown in Figure 6-9 are 

played, the dog stays in the same position. From frame 1 to frame 4, it raises its head. 

The dog barks from frame 5 to frame 9. Then it barks again from frame 15. The frames 
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are therefore considered to be continuous and to represent whole motions. The resultant 

video should have similar quality. However the frame-based likelihood method does not 

give satisfactory results (see Figure 6-10) and produces discontinuities in position and 

motion.  

 

Figure 6-10 shows the frames extracted using the frame-based likelihood method for 

signal clip 5 of Figure 6-8. The audio frames are from 1 to 15. The numbers of their 

corresponding frames (best matched audio frames) in the template are marked in the 

brackets together with the video frames in Figure 6-10. From the frame numbers and the 

frame images, it can be seen that there are a number of obvious jumps between adjacent 

frames. These are illustrated by arrows in the figure. Frames 4 and 5 show the same 

motion (dog barking) but the dog is in a different position in each frame (this difference 

is highlighted using red ovals). These frames although placed sequentially in the video 

texture are clearly from two different motions within the template video. Connecting 

these frames will cause the video to flicker. The quality of the template can be compared 

with the quality of the sequence of fifteen frame images for a similar audio piece shown 

in Figure 6-9 by examining the discontinuities that are apparent between adjoining 

frames. If the frames in Figure 6-10 are played, the transition from frame 1 to frame 2 is 

discontinuous because the dogs in the two frames are in different positions. This 

discontinuity can lead to an obvious flicker. Frames 2 and 3 do not change as they are 

exactly the same. Then the transition from frames 3 to 4 has a discontinuity in both the 

object's position and the object's motion (the dog in frame 3 is silent and in frame 4 it is 

barking). The frame 4 to frame 5 transition results in a flickering due to the abrupt shift 

in the object's position. If we consider the transition between two adjacent frames, a 

discontinuity exists in eight of the transitions (Figure 6-10). The remaining six 

continuous transitions exist because the adjacent frames are exactly the same. Same 

frames do not represent a motion so ideally they should be avoided in video texture 

generation. The video texture result illustrated in Figure 6-10, generated using frame-

based likelihood, does not produce continuous video texture and this method is 

therefore not suitable for our visualization. 

 

Feature vector curve similarity method 

The feature vector curve similarity method is used to resolve the problem of sudden 

jumps that exists in the frame-based likelihood method. The main idea behind this 

method is the ability to retain the dynamics of the audio/video frames by matching a 
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sequence of frames instead of a single frame. It is equivalent to a polygonal discrete 

curve fitting in high-dimensional audio feature space. The input audio (InputF) is 

separated into frames and the audio features of each frame are extracted using the same 

methods as was employed in the frame-based likelihood method. The dimension of 

audio feature space is the same as the number of audio features selected for matching. 

The audio feature vector for each frame in either the video template (AudioF) or the 

audio input (InputF) is a point in this high-dimensional audio feature space.  

 
The sequence of audio feature vectors for all frames in the template (AudioF) forms a 

discrete curve in the audio feature space, which is called the source curve. Again the 

template is the original video VisualF with its original, concurrently recorded audio 

AudioF. The audio input, InputF, is separated into sections each containing a number of 

user defined frames. A comparison between a section of InputF (target curve) and a 

sliding window section along the AudioF source curve is performed using a curve fitting 

method in audio feature space (Figure 6-11). In our experiment, we used sections that 

were comprised of ten frames each of 0.033 second duration (30 fps). The sliding 

window on the source curve was also 30 fps giving it the same size as the target curve 

sections. The feature vectors of each 30 fps section also form a discrete curve in the 

high-dimensional audio feature space. Combining these section curves forms an audio 

feature vector curve called the target curve. 

 

The aim of this method is then to find the best matching section on the source curve so 

that the most appropriate portion of video is chosen to represent that section of the input 

audio file (InputF). This best matching piece of curve is called the matched curve in this 

feature vector curve similarity method. In this approach we use the Fréchet distance 

[228] [229] to measure the similarity between the two curves taking into consideration 

the location and order of the points on the curves. So the matched curve has the 

minimum Fréchet distance to the target curve when it is compared with any other curve 

section from the source curve. An example of the distance between two curves is 

illustrated in Figure 6-11.  

 



feature 2

feature 1

0.5

 
Figure 6-11: 3D feature vector curve similarity distance calculation. 

 

This figure is illustrated in three dimensional feature space for clarity. The blue curve 

represents a target curve and the source curve is in red. Suppose the section target curve 

starts at jth frame in the audio input curve and the frame number in the target curve is 

m+1 (from frame j to frame j+m in the audio input curve). Then the Fréchet distance 

between the target curve and a piece of source curve (starting at point k) is the sum 

of the Euclidean distances between corresponding points in the target curve and the 

source curve:  

kD

∑ ++=
m

)ik,ij(k dD
=0i

 E6-2 

where  is the Euclidean distance between the point j+i on the target curve to 

the point k+i on the source curve and k is the start point of the sliding window along the 

source curve. The sliding window starts at the first point on the source curve and moves 

along the source curve, the values of Dk form a curve of the Fréchet distance between 

the target curve and each section on the source curve. The minimum Fréchet distance 

value gives the starting point on the source curve for the best matched section of the 

target curve (

)ik,ij(d ++

Figure 6-12). 

 
 158



 
Figure 6-12: Similarity distance curve of feature vector curve similarity. 

 

The template video (VisualF and AudioF) and audio input file (InputF) used in this 

experiment is the same file as was used to evaluate the frame-based likelihood method. 

In this example, there are 150 frames in the source curve and ten frames in the target 

curve. In the matched curve, there are 141 points. The remaining points in the source 

curve are not used because there are not enough frames in the target curve (the target 

curve must always be shorter than the source curve). The start of the matched curve in 

this template is frame 75 because the minimum Fréchet distance occurs at frame 75. 

However, the corresponding video frames in the template (video frame 75 to video 

frame 85) are not appropriate for the input audio piece, where a dog is barking, because 

these video frames show motions that represent silence (e.g. the dog's head moves but 

the mouth does not).  

 

To give a clear idea of the difference, the magnitudes of the audio feature vectors in the 

target curve and source curve are illustrated in Figure 6-13. Although the curves in 

Figure 6-13 cannot represent the location of the curves in high-dimensional audio 

feature space, they can at least illustrate the silence period and the signal period. The 

absolute magnitude of a frame in a silence period is not zero because some audio 

features are scaled to non-zero values after normalization (see the discussion of 

normalization in audio segmentation in Section 3.5). The blue line in Figure 6-13 

represents InputF the section of the target curve that is being matched to the source 

curve. The red line represents the source curve and from frame 40-120 clearly shows a 

silence period in the source curve but the target curve clearly is not composed of silence 

but instead has two distinct audio signals. This means that the section of video chosen to 
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represent the target curve section InputF will not be representative of the sounds in the 

audio as discussed in the preceding paragraph. 

 

 
Figure 6-13: Absolute length for audio feature vectors in template and target audio piece. 

 

From what discussed above, this method does not work for the following three reasons: 

 The absolute magnitudes of the value target curve (see the blue curve in Figure 

6-13) show that if the input audio file is divided into small pieces of fixed duration, 

it is not practical to ensure that each piece contains a single and complete sound. 

 If each of the signal pieces mentioned above contains a short period of signal in 

the template but with different duration, there is a high possibility it will be 

matched incorrectly because their audio feature vector numbers are different. 

 It is hard to find a suitable size for any given signal piece. 

 

Therefore, although it seems that the feature vector curve similarity method can 

preserve dynamics and find the best matched audio piece from the template, this method 

cannot always locate the suitable video frames successfully. Another method is required 

to find the matched audio piece by the audio feature similarities from the template. The 

method should be able to solve the discontinuity problem in the frame-based likelihood 

method and the inability to locate audio pieces by the feature vector curve similarity 

method.  

 

Audio Match using Segments 

Only the audio matching based on segmentation method is able to find the most suitable 

frames from the template. This method contains several processes including 

segmentation, audio matching and video texture generation method (discussed in 6.3.2).  
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Figure 6-14: An example of visualizing audio with video textures. 

 

To make the resultant video texture smoother and more continuous, the method 

described in 6.3.2 is modified. The example in Figure 6-8 is used to illustrate the details. 

For the audio input, the first video texture component is generated for silence clip 7, 

which is the first audio clip found using segmentation based on silence detection. A 

video texture component is generated from the silence clip in the template (Figure 6-7). 

It is the first component for the final resultant video texture. After this component, a 

video texture component is needed to visualize the second segment of the audio input, 

which is marked as signal clip 1 in Figure 6-8. To make these two components 

transition smoothly, the last frame of the preceding video texture component should be 

similar to the first frame in the following video texture component. Two adjoining 

segments, silence clip 7 and signal clip 1 in Figure 6-8, are used as examples to explain 

the way a smooth transition between video texture components is achieved. Suppose the 

last frame of the video texture component for segment silence clip 7 is frame i. When a 
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video texture component for signal clip 1 is generated from the signal clip frames in the 

template, the most similar frame j to frame i is found using Euclidean distance. This 

frame j is selected to be the start of the video texture component for signal clip 1 in the 

audio input. When a cross-fading frame is inserted between them the two components 

can transit without a visible jump. Following this rule, any video texture component 

starts with a frame that is the most similar to the end frame of the video texture 

component in front of it. 

 

Figure 6-14 shows a video texture generated using this method. The sound segments are 

denoted by the audio clip indicator at the bottom of the image with representative 

images of the video file extracted from the template video/audio pair at the top of Figure 

6-14. 

 

This adaptive method can be extended to multiple sounds in the template video/audio 

too. For example, the template for class "baby's laugh" can include a sound of "baby 

laugh" and a different sound "baby giggle". Figure 6-15 is an example with only baby's 

laugh in the input audio file. After segmentation, there is only one audio clip in the 

input sound. So the result is one video texture component generated using the closest 

audio clip in the template audio/video pair.  

Template video/audio

Input audio

Result

…... …... …... …...

…... …... …...

…... …... …... …...

 
Figure 6-15: Single sound input result. 
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6.3.4   Template Video Limitations 
 

In the preceding subsections, the discussion is based on the assumption that the input 

template videos are suitable for video texture generation. But not all videos can be used 

as templates for the generation of video texture. In addition, some audio files are not 

suitable for representation by video textures. This section and Subsection 6.3.5 will 

discuss the requirements for, and limitations of, video texture generation.  

 

Video textures leverage a finite set of video clips to generate a non-repeating and 

infinite stream of video. The template videos determine the quality of the final resultant 

video texture. Typically the new video sequence is generated by re-sequencing frames 

from the finite video source in such a way that the perception of the transitions between 

two sequences is minimized. Phillips and Watson [230] pointed out that the key 

problem of video texture generation is transition frame detection. Video texture 

techniques work only if suitable transition frame pairs can be found in the input 

template video. The transition frames must look similar enough, in other words, the 

motions in the video must be periodic or quasi-periodic. Otherwise the results either 

have illogical changes in motion, or have obvious abrupt jumps (not smooth between 

transitions). The quality of the resultant video texture clips relies on the similarity 

between the transition frame pairs selected from the original video, and the 

completeness of motions. A sequence of frames representing a complete motion, which 

means that the first frame and the last frame are similar and can be used as transition 

pairs, is named a fundamental loop in video texture generation. 

 

Because of the requirements of appropriate transition frames, not all videos are suitable 

for producing video textures. The selection of suitable input video for video texture 

generation has been discussed by Phillips and Watson [230]. They pointed out that 

suitable input video should have large dynamic details and at the same time have 

enough transition frame pairs to enable the formation of the fundamental loops in the 

video. A proper candidate for video textures can be described by its distance matrix 

between frames. The distance matrix is generated in the way described by Schödl [206] 

and discussed in Section 6.3.2. To view the distances between frames, the distance 

matrix is scaled to a grey value image. Figure 6-16 gives some examples of input video 

structures which are possible candidates for the generation of video textures. 

 



 
Figure 6-16: Structures of input videos which are suitable for video textures generation. 

 

Case 1 in Figure 6-16 has a single motion which makes smooth transition video 

textures, but the content is limited and simple (e.g. the clock sequence in [206]).  

 

Case 2 includes key frames which are marked "similar frames" in the figure. The video 

has multiple motions with each motion starting and ending at a key frame. Video texture 

components based on this kind of video can be smooth and the resulting contents are 

better than those from case 1. But in the resultant video texture sequence, a transition 

only happens when a motion is finished, so a transition can not happen until a motion is 

completed.  

 

Case 3 has a complicated structure. There is no global key frame for all the motions. 

Each motion is a loop of frames and the transition frame pairs may be located at any 
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position of a fundamental video loop. In other words, there are overlapping frames 

between motions. This kind of video is ideal for generating various interesting video 

textures. 

 

Figure 6-17 has two structures that are not suitable for video texture generation. The left 

image shows the distance between frames from which there is no obvious loop. This 

may happen when the motion in the template video does not repeat itself, or there are 

some transition frame pairs but these frames are too limited. The left image of Figure 

6-17 is a similarity map of frames in a video that has no suitable transition pair. Each 

frame in it has to be followed by the next frame in the video. As discussed above, if 

there are no transition frame pairs, a video texture cannot be generated. The right image 

in Figure 6-17 is a distance matrix that has multiple fundamental video loops but these 

loops are separated. Smooth transitions are possible in any single loop but there is no 

global transition for the whole video. Because no two loops have a transition frame pair 

there can be no smooth transition between loops. When the video plays to the last loop, 

it will only transit within the frames of the last fundamental loop. In other words, the 

video texture result will be limited to a certain set of frames. 

 

 
Figure 6-17: Structures of video frames which are not suitable for video textures generation. 

 

When the input video contains only small detail movements, which always have a 

homogeneous similarity map, it is also not suitable for video texture generation because 

the transition frame pairs will be too numerous. The results tend to be similar to a 

random re-ordering of the input video frames. Figure 6-18 gives an example for such a 

video containing only similar frames. The left image represents the distance matrix of 
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the frames. There is no clear structured motion within it. This distance matrix map 

shows that there is no good transition for video texture generation. If the frames are 

compared with a totally blank frame (as in the distance map at the right in Figure 6-18) 

the distances between each pair of frames are very small. Any two frames are similar 

enough to be a transition frame pair. The resultant video textures would look as though 

it had been generated from a single image because users would not be able to 

differentiate among frames. 

 

 
Figure 6-18: Random structure of input video. 

 

When a video has a an inappropriate structure for being a video texture template, as 

discussed above, the possible transition frame for any frame in it is 0. In other words, 

none of them can "transit back".  

 

Besides the existence of transition frame pairs, the quality of the template video is also a 

factor that needs to be considered. Not only the resolution and frame size, but even 

some minor factors can affect the quality. When the audio/video database is built, 

whether or not the content of a video can thoroughly represent all the sounds in the class 

is also an important criterion.  

 

With the limitations discussed above, the template video should have multiple dynamics 

(different motions) and, at the same time, enough transition frame pairs.  
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6.3.5   Video Texture Clip Duration 
 

The input audio file needs to be suitable for video texture generation. To generate 

interesting and meaningful video texture components the input audio clips represented 

by those components must be appropriate. If any of the audio clips in the input file are 

very short, the video texture component for this audio clip would be also very short 

unless users manually extended the output video texture. But extending short sounds 

leads to misrepresentations of actual sound length in the input audio. Moreover, because 

of the video texture generation techniques, the cross-fading frames would make up the 

majority of the video texture components. This is not a desirable result for the proposed 

audio visualization system. Hence an empirical length of 30 frames is the minimum 

duration for visualization. Only sounds lasting more than 1 minute (30 frames) are 

suitable to be represented by video texture. If an audio clip has a sufficient duration 

(more than one second) a video texture, based on the template of the class the audio clip 

belongs to, is generated to represent that audio clip. For the sounds that are very short 

(e.g. less than 20 seconds), video texture is not suitable. In the audio visualization 

system, a template image such as that mentioned in the Time Mosaics chapter is 

employed instead of video texture to represent a very short audio clip. 

 

In the preceding subsection the process of calculating the number of frames needed in 

the resultant video texture component for an input audio clip was discussed. The output 

video texture lasts the same time as the audio input. However, when the audio input 

lasts a long period and the audio features do not change frequently, it takes a long time 

to visually scan its video texture but there is little change in the image. To be more 

flexible, the video texture method can be used to visually "summarize" the audio input. 

For example, using one frame in the resultant video texture to represent a piece of audio 

file which would otherwise have more frames. The number of frames needed in the 

output video depends on the various requirements of different purposes. The 

"summarized" video texture can visually illustrate the time-based audio features in a 

shorter period. 

 

6.3.6   Mapping Audio Features 
 

Because the video can be treated as a sequence of frames, which are the same as images, 

the audio feature mapping can use the same method as that used in time mosaics. Time 
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mosaics differ from video textures, in that adjacent audio segments that are classified 

into the same class are combined and represented by a single image tile in the time 

mosaic. In this case the calculated audio features for the sound are the average of the 

combined segments. For video texture generation for each frame in the output video the 

audio features are calculated from the corresponding piece of the audio file. The video 

frame and audio sequence are matched using time. In visualization by video textures, 

the audio properties change with time so that a sequence of feature vectors can be 

mapped to a sequence of frames. 

 

Each of the frames in the output video texture is subjected to image processing filters 

which are driven by the characteristics of the corresponding audio piece. When users 

view the video texture component they can simultaneously view the audio content and 

the audio features changing over time. 

 

Three perceptual audio features, power, pitch and signal-to-noise ratio, the same as 

those used in time mosaics chapter, are mapped to image processing filters for frames of 

the generated video texture to further convey aspects of the input audio file.  

 

6.4   Blended Video Texture Mosaic Generation  
 

The preceding section proposed methods for video texture component generation for an 

input audio clip. For those audio inputs which have only one audio clip, the resultant 

video texture components are the final results from the video texture generation module 

in the audio visualization system. But if the audio inputs are separated into more than 

one audio clip by the segmentation module, their video texture components are 

generated separately. This section discusses different ways to combine these video 

texture components so that the resultant output video for the input audio can be more 

efficient when users visually scan it. These methods utilize the basic ideas integral in 

time mosaic generation. Therefore we have coined the name video texture mosaic to 

represent the output of the video texture module. A video texture mosaic is the output of 

the video texture generation module in the audio visualization system when the audio 

input has more than one audio clip. 

 

 

 



6.4.1   Parallel and Sequential Video Texture Mosaic Generation Methods 
 

Once all audio clips have been detected and their respective video texture components 

have been identified, playing those video texture components in the same sequence as 

their corresponding audio clips results in an output that is of the same duration as the 

input audio file. This is illustrated in (A) and (B), Figure 6-19. 
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Figure 6-19: Combination of video texture components. 

 

As all sounds in the audio input were visualized by separated video texture components, 

the final resultant video texture should allow viewers to view all these components at 
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one time. To achieve this, a frame in a video texture component for a sound is treated as 

an image tile in a dynamic Time Mosaic. When frames are selected from all the video 

texture components, each for one sound, they can be combined using Poisson image 

editing [185] to form a frame for the final resultant frame. The position of a frame of the 

original video texture component in the resultant video frame is determined by its 

corresponding audio clip's sequence. Figure(C) in Figure 6-19 illustrates the structure of 

a frame in a resultant video texture mosaic and an example is given in Figure 6-20. 

When any frame is viewed, users can visually scan the different contents in the audio 

input.  

 

 
Figure 6-20: A frame generated from three individual frames using Poisson image editing. 

 

The resultant video can be made either parallel or sequential (see Figure 6-19 (D) and 

(E)). For the parallel case video texture components run simultaneously, like playing all 

the components at the same time in different windows. The first frame in the resultant 

video is composed from the first frames of all the video texture components. Then the 

second frame is generated from all the second frames accordingly. When the frames of a 

single component run out, its last frame is used to generate the rest of the frames needed 

in the resultant video. 

 

For an input audio clip, suppose the component video texture number is n, and the 

frames in these components are called component frames. Each frame in the final video 

is called a target frame, which should be generated by n component frames from the 

component video textures. For a parallel video result, the target frame i is generated 

using the ith frame from all the component video textures. For those component video 

textures which have only j frames and j < i, the last frame is used to generate target 
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frames after frame j. The resulting parallel video plays all the components of the video 

texture at the same time independently.  

In the case of sequential video texture mosaics, each target frame in the final output 

video is also generated by n component frames from the component video textures. The 

difference between this and parallel video is that the component video textures are 

played one after another according to their corresponding sound time position in the 

input audio. It is as though all the component video textures are opened at different 

windows but at any time only one component is playing. Only when the frames in the 

current video texture component run out, the frame of the next video texture component 

begins to change.  

 

Although the target frames have all the component frames from the component video 

texture, only one of them changes from target frame i to i+1. So the duration of the 

output video is the same as that of the input audio file. 

 

To summarize, if all the component video textures play at the same time, the result is a 

parallel blended video mosaics video. In the sequential blended video mosaics, although 

all the video texture components are shown in each frame of the final result, only one of 

them plays at each time and which one is playing is determined by the time sequences 

of their corresponding audio clips in the given audio input. 

 

Figure 6-21 and Figure 6-22 are results for the same audio input. The former depicts the 

parallel blended video mosaics results. Figure 6-22 shows the sequential blended video 

mosaics results. The audio input has three different sounds: bird chirping, dog barking 

and kitten meowing. The sound clips are denoted by three grey progress bars with a red 

slider showing the position in the audio that the frame is representing. Figure 6-21 

shows three frames of the parallel blended video mosaics result and Figure 6-22 shows 

three frames from the sequential blended video mosaics result. Both results are seamless 

blended video mosaics showing all component video textures at the same time but all 

video texture components play at the same time in the parallel video result and the 

sequential one plays only one component video texture at each time point. 

 

With the parallel video result, viewers require a relatively shorter period (time for the 

longest component audio) to view all the component sounds. With the sequential video 

result, only one video texture component is running at a time so it takes longer to view 



it but users can hear the audio and view the visual representations for all the sound clips 

in the audio input at the same time.  
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Figure 6-21: Parallel blended video mosaics results with audio features; Each component video texture 
plays at the same time. 
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Figure 6-22: Sequential blended video mosaics results with audio features; Each Component video 
texture plays one after another. 
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6.4.2   Blended Video Texture Mosaic for Hierarchical Databases 
 

This subsection presents how the blended video texture mosaic can be used for 

hierarchically structured databases. It improves the hierarchically structured database 

visualization and solves the problem of size limitation that comes from the computer 

screen. None of the video and video texture results presented previously in this chapter 

can convey audio files classified in a hierarchical ontology. One possible way of 

conveying hierarchical structures is tree maps. Time mosaics and video texture mosaics 

could be presented in a similar tree structure, however they are limited by screen real 

estate.  

 

Video components provide the possibility of visually representing a hierarchically 

structured database. Some components representing audio clips belonging to the same 

parent class in an upper level can be grouped together and played in a sequence. For the 

visualization of a hierarchical database, video texture components are combined in a 

different way than previously discussed. Figure 6-23 shows how to combine the video 

texture components for a hierarchical database. The video texture components for the 

same class in a higher level are conjoined sequentially and treated as one. The resultant 

video is combined using the method previously described. The resultant video could be 

parallel or sequential. 

 

 



 
 

 

Figure 6-23: Combination of video texture components for a hierarchical database. 
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Figure 6-24 gives an example of the visualization of audio using video components. The 

upper-left image is a hierarchical schema of a hierarchically structured database and the 

lower-left image is a given input audio which contains speech and laughter. The left 

image is used to represent laughter. The left images in the video texture frames may 

belong to different classes in the lower level, but all of them belong to the same laughter 

class in the upper level. Accordingly the right images in the upper level are from the 

speech class.  

 

 
Figure 6-24: Visualization using a hierarchically structured database and video components. 

 

Figure 6-25 shows a parallel blended video mosaics result for an audio input that 

contains six different audio clips belonging to classes "Laughter→Child", 

"Laughter→Female", "Laughter→Child", "Speech→Male", "Speech→Female" and 

"Speech→Male". The first three belong to the same parent class “Laughter” and the last 

three belong to the parent class "Speech". So the video texture components from the 

same parent class are connected one after another to generate a new video texture 

component for a class in the upper level of the hierarchically structured database. Then 

the resultant video texture mosaic is generated applying the method discussed in the 

preceding subsection (Subsection 6.4.1).  
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Figure 6-25: A parallel blended video texture mosaic result for sounds from two parent classes. The 
component video textures play independently but simultaneously. 

 

When video texture mosaics are generated for audio inputs which have multiple sounds 

belonging to different classes, the image size of each sound in the resultant blended 
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frame will be limited due to the size of the computer monitor. We can solve the 

limitation of screen size utilizing classes at a higher level of a hierarchically structured 

database. Super class video textures are used to represent adjacent sounds that classify 

to a descendant class in a video texture mosaic. By selecting mosaic tiles the user may 

mine deeper into the hierarchy to find a more accurate representation of the areas of 

interest.  

 

6.5   Summary 
 

This chapter presented the methods used in the video texture generation module of the 

audio visualization system. The inputs of this module are the audio clips and their 

corresponding classification results; just the same as for time mosaics generation 

module. To generate accurate and meaningful video textures, appropriate template 

videos are required for the classes in the audio database. The result from this video 

texture generation module is a video texture for audio input containing a single sound or 

blended video texture mosaics for input audio files containing heterogeneous sounds 

belonging to different classes. The result can be either of the same duration or shorter 

than the audio input. Each frame in the resultant blended video texture mosaics contains 

image elements for all the sound clips in the audio input, allowing viewers to scan the 

content of a heterogeneous input audio file. At the same time, the acoustic 

characteristics are illustrated over time by using the selected audio properties to drive 

the image processing filters on the frames.  

 

The novel adaptive video texture generation method was introduced in this chapter to 

further extend the general video textures by using acoustically similar detection to 

produce a resultant video texture that is more accurate in visualizing the audio input.  

 

Video textures inherit the advantages of video such as capturing motions, and at the 

same time, acquire the merits of time mosaics. They improve on the time mosaics 

approach by presenting the audio characters over time. If an image tile in a time mosaic 

represents more than one audio segment, its visual features are driven by the mean 

values of these audio segments. However a frame of a video texture visualizes only 

audio features of the audio segment it represents. A video texture allows viewers to 

identify a segment with certain properties from an audio file (such as a relatively noisy 

segment from an audio file). In the proposed audio visualization system, for those audio 



 179

files which are not suitable to be visualized by a single image, the video texture method 

generates interesting video that illustrates their audio properties. 

 

Moreover, the blended video texture mosaic is suitable for the visualization of mixed 

sounds from a hierarchically structured audio database. It enables viewers to see the 

relationship between superior and subordinate classes in a hierarchical structure. Video 

texture mosaics solve the problem of representing audio files that contain many 

different sounds on a screen of limited size by representing sounds by frames along a 

time continuum instead of by a static image. The relationship of sounds in a 

hierarchically structured database can be represented clearly because the video texture 

components can be grouped appropriately to generate the video texture mosaics, 

 

The video texture generation module and the time mosaics module form the 

visualization capability in the audio visualization system presented in this thesis. The 

resultant video texture of an audio file can be played when viewers select all the image 

tiles in its time mosaic result. If users choose one image tile in the resultant image 

mosaics, the generated video texture for its corresponding audio segment or segments 

will be played. Time Mosaics and Video Texture Mosaics are complementary and 

alternative visualization methods, and make the visualization system more flexible.  
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Chapter 7 
Summary and Future Work 

 

 

This final chapter firstly summarizes the research undertaken for each module of the 

audio visualization system presented in the thesis. Following this the limitations of the 

system and possible solutions for overcoming these limitations, are discussed. Finally, 

some possible directions for future research that may contribute to audio visualization 

and related areas are outlined. 

 

7.1   Summary 
 

The goal of this research was to design a system that could visualize the content and 

audio properties of audio files containing general sounds. None of the existing audio 

visualization systems meet this requirement. Existing audio visualization systems are 

limited to particular types of sounds, such as music or speech.  

 

An audio visualization system requires three essential components: audio segmentation, 

audio classification and the representation of audio features by visual features. The first 

two components are discussed in Chapter 3 and Chapter 4. The last topic is separated 

into two modules, meaningful image generation discussed in Chapter 5, and video 

texture generation discussed in Chapter 6. 

 

How our novel system meets the requirements is reviewed here by revisiting and 

addressing the research questions below: 

 

1. Can we design a system to visualize heterogeneous audio inputs? 

a. Can we separate the different sounds and represent the contents accurately? 

b. How can we combine images or video to represent the content of a digital 

audio file? 
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2. Is it possible to develop an audio classification method that classifies general 

sounds accurately enough to allow for visualization of an audio file? 

3. Is it possible to classify an unknown sound by integrating an adaptive new-class 

detection method into an audio classification method? 

4. How can we construct an image or image sequence that represents a digital audio 

file? 

c. How can features of audio files be mapped to the features of images? 

d. How can we combine images to form a sequence that is representative of a 

digital audio file?  

5. How can we synthesize new video sequences that map accurately to the content 

and sequence of a digital audio file? 

6. Can meaningful images and video textures be automatically generated for digital 

audio files? 

 

Before sounds in an audio database can be visualized they must first be accurately 

classified. A lack of accuracy of classification would result in inconsistent visualization 

of sounds and a consequent lack of utility. Audio segmentation and classification are the 

foundations of any system for visualizing audio input. 

 

The first three research questions have been successfully addressed through the 

development of a novel accurate audio segmentation method and an adaptive audio 

classification with new class detection. 

 

The system must first be able to separate different sounds within an audio file according 

to its audio properties. Our segmentation module contains a novel two-phase method for 

the segmentation of general audio input. In the segmentation experiments for audio files 

from two different audio databases reported in Chapter 3, it is shown that the two-phase 

audio segmentation method provides significantly better accuracy than any of the 

previous methods.  

 

Once the audio input is separated into homogeneous sounds, their contents need to be 

classified automatically. This is the main task of the classification module. Our 

classification process is based on the NFL classification method as this had been 

reported in the literature as being the most accurate. To improve classification 

performance, a novel method was developed to detect any sounds falling outside the 
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existing classes in the training set. This provided the classification module with the 

additional function of new-class-detection so that it could not only classify sounds 

belonging to existing classes but could also manage those new sounds that were out of 

the scope of existing classes. This method avoids potential classification errors and 

makes the audio visualization system more flexible and practical. 

 

The effectiveness of the audio segmentation and classification modules functioning in 

combination is tested and reported in Chapter 4. These two processes when used in 

combination with uncertainty detection in the classification module, significantly 

improve accuracy by reminding users about potential classification mistakes and result 

in a system of audio processing that has the level of accuracy necessary for reliable 

audio visualization. By combining segmentation and classification we have a system 

that processes the audio file so that we may visualize mixed-audio files and previously 

unknown audio or sounds that either fit into the audio file ontology or are a new type of 

sound.  

 

The visualization of audio input was achieved in two different ways in this research: by 

static images and by video textures. 

 

Question four relates to the ways in which image features can be mapped to audio 

features and how a sequence of images can be generated in seamless manner to 

represent and audio file. These issues were explored in the development of a new 

visualization technique called time mosaics. 

 

The first method results in an audio input being visualized by a time mosaic image that 

contains image tiles corresponding to the different sounds in the audio file. The selected 

audio properties of the audio input are used to drive image processing that controls 

visual features so that the resultant image represents certain selected audio properties.  

 

The second method for sound visualization results in video textures and is particularly 

suited for illustrating lengthy audio files and audio files from a hierarchically structured 

audio database. It is also more accurate in its ability to represent time-based audio 

properties. The novel adaptive video texture generation method reported in this thesis 

provides a solution to research question 5. 
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Our audio visualization system is designed for general sounds. The types of sounds are 

determined with respect to the audio database which is used as the training set for the 

system. After the training process, the system is able to work independently for any 

given audio files. The system can create novel results for various kinds of audio inputs: 

short or lengthy input; single sound or multiple sounds input; sounds belonging to 

existing classes of the training set or to new classes.  

 

The image mosaic generation module contains processes for visualizing given audio 

files by static images. With the seamless merging of image tiles for each type of sound 

in the audio input, the contents of an audio input are visualized and the mean audio 

properties of each audio segment are illustrated by visual features.  

 

The video texture module is used to show the time-based audio features more clearly. 

With the adaptive video texture generation method, the generated output video texture 

can best match the input audio contents.  

 

The research reported in this thesis contributes a system for visualizing general audio 

files and is a significant advance over previously reported audio visualization systems. 

Furthermore, the component audio segmentation and classification methods used at 

various stages of processing could be adapted to other similar applications. We believe 

that this thesis presents the most comprehensive and generalizable audio segmentation, 

classification and visualization system developed to date.  

 

7.2   Limitations 
 

There remain some limitations of our system, which may lead to spurious results under 

certain conditions. An inaccurate visualization can occur when one of the sounds within 

an audio input is too low in volume for the system to identify. Figure 7-1 illustrates this 

limitation. The sound file contains a cat-bird-dog sequence of sounds. The bird sound 

amplitude in this file is too low for our segmentation method to detect and results in a 

time mosaic with only two component images. 

 



 

 

Figure 7-1: Three sounds misrepresented as two images tiles. 

 

Another possible error can occur in situations where sounds overlap. Figure 7-2 shows 

an audio signal that consists of a cat's meow and a bird sound in which there is a period 

of overlap between them. The segmentation failed to separate the 2 sounds, resulting in 

the sound file being treated as a single sound and classified as a rooster for which a 

single image was produced. This form of error cannot be entirely avoided as it depends 

on the nature and quality of audio inputs. 

 

 

Figure 7-2: Overlapping audio signals producing an incorrect result. 

 

The audio visualization system reported here partly relies on a mapping of sound to 

image features and the human perception of the changes in the combined image 

features. Although there have been a large number of studies about the relationships of 

audio features and visual features, there is relatively little work about the perception of 

them. What we do know is that perceptions of both the audio features and visual 

features are affected by factors such as the cultural backgrounds of the people forming 

the associations as well as physiological considerations. Because of the subjective 

nature of the perception of audio and visual features and of video texture results, 

evaluation of the quality of resultant time mosaic images or video textures may be 

culturally dependent. We aimed to mitigate this problem by designing a system that 

gives users the ability to state their own preferred audio-visual relationships by 

overriding the mapping relationships between audio features and visual features.  
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Moreover, with a legend to illustrate the mapping relationships the user is supplied with 

a point of reference to aide perception of differences in image features. The extent to 

which these features overcome the issue of individual differences in perceptual 

associations would have to be tested in usability studies and is left to future work. 

 

Another limitation of our current audio visualization system lies in possible conflicts 

between visual features. For example, even with the legend, users may have difficulties 

in distinguishing the visual noise and the colour fading in a resultant time mosaic image. 

It is also not known how much a visual feature must change before a viewer is able to 

perceive a difference. For example, when we add visual noise to two images to 

represent the NSR of two audio files, can the viewers perceive the differences between 

the two images? Though, it should be noted that as the differences become smaller, their 

importance also diminishes.  

 

7.3   Future work 
 

In this section some ongoing work is discussed. Some of this work is directed towards 

improved audio visualization and some is more relevant to the improvement of the 

performance of a single module. 

 

7.3.1   Audio Segmentation and Classification 
 

We explored many audio features in our audio segmentation and classification modules 

and they performed well, but a comprehensive investigation of all possible feature 

choices and feature combinations has not been undertaken. In the implementation of the 

audio segmentation module and the classification module, the importance of each 

feature is equally weighted. It is unlikely this would be the case for all audio databases 

or audio classes. Therefore, an adaptive weighting of the distance vectors of the audio 

feature set would be worth exploring as a way of optimizing the accuracy of the 

segmentation and classification methods. 

 

Similarly, we have used the best reported parameter sets in the literature and it would be 

worth exploring other possible parameters for our system. Other parameters have not 

been evaluated. 



 

There are a number of ways that the audio classification method might be improved and 

the following experiments might be worthy avenues of investigation. The threshold for 

a parameter was detected linearly in our classification method (Section 4.4.4). If there 

are two parameters, the parameter space is divided into squares. For three parameters 

space, it is separated into cuboids etc. However, there are other possibilities for dividing 

the parameter space that might be worth exploring. 
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Figure 7-3: Fold-line division for the uncertain criterion 

k it would be worth attempting to separate the clusters with alternate 

ethods.  

 

For example, NFLd and NCCd may create the parameter space shown in Figure 7-3 (top 

left). In this case the space is separated into four using a fold-line. The other three 

images in Figure 7-3 show three other possibilities for separating parameter space using 

fold-lines. The separation of parameter space depends on the training process. Each 

audio file results in two points in the high-dimensional parameter space after LOFO and 

LOCO experiments. For all the audio files, the points from LOFO generate a cluster and 

those from LOCO generate another cluster in the parameter space. The separation of 

two clusters depends on their location in the parameter space and their distribution. In 

future wor

m
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the training set to a deeper hierarchical structure is worth further 

xploration.  

7.3.2   Audio Visualization  

om the original size of the 

age tiles, important information on the tiles may be lost. 

 

 

One more possible improvement for the new-class-detection algorithm lies in the audio 

feature space selection. In this module, the best feature set for general classification is 

adapted to new class detection directly. This is not necessarily optimal for detecting 

new classes but it is sufficient for the image to audio matching required for our system. 

In future work, to achieve the most accurate results, several audio feature spaces should 

be compared for the new-class-detection training process. Additionally, changing the 

structure of 

e

 

 
There are formats that could be explored for the visualization of audio features other 

than those reported in Chapter 5, such as showing contours of the audio clips (Figure 

7-4 (L)). Wave shapes, or contours of audio clips, play an important role when the 

sound is lengthy because other audio features are mean values of the whole sound. 

When two sounds have similar audio features, but different durations, their wave shapes 

can help to show the differences. The wave shapes of audio clips are sometimes more 

sensitive to changes in sound. For example, the audio in Figure 7-4 (L) has three 

component sounds each of different amplitude. The differences between the volumes of 

the three audio clips may be too small to be visualized by visual features such as colour 

depth. Their durations are the same so the heights of the image tiles are the same. If the 

image tiles were resized according to the corresponding amplitudes of the sounds this 

would either make their widths different (which represents the duration) or distort the 

shape of the image tiles. If the edges were cut directly fr

im

 
Figure 7-4: Audio visualization: (L) with wave shape illustration; (R) using curve shapes. 
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 curve is used to make the matching edges 

of the adjacent image tiles the same height.  

 

 

Figure 7-4 (R) illustrates a possible solution for merging image tiles, with different 

heights, without using a background image. A

 

     

Figure 7-5: 3D audio visualization: (L) cylinder mapping; (R) Z-values mapped to feature. 

inders could be used as a 

isual mapping to audio features such as power or amplitude. 

ould be a useful direction for further work on the time 

osaic visualization concept. 

 

 

Figure 7-5 shows two alternative 3D visualizations for the input audio illustrated in 

Figure 5-12 in Chapter 5. Using 3D is one possible approach to visualizing audio files 

that have a large number of same-sound pieces in a clip where the sounds belong to the 

same class but their audio features are different. From left to right, the cylinders show 

the audio sequences. Then from the top to the bottom in each cylinder, the sound pieces 

are shown sequentially. Z-values of the cylinders could also be used to visualize other 

audio features Figure 7-5 (R) and the radius of the small cyl

v

 

In the audio visualizations generated for this research we used realistic photo images for 

the class templates. We were interested in being able to utilize the richness of 

information within a realistic image to explore potential audio visualization approaches 

and to present a view of the sound. However it may be that approaches such as non-

photorealistic rendering of the template images or the use of iconic images as templates 

may also be effective in conveying the class of the sound. Additionally the simplicity of 

the image may make user perception of the differences in image features when filters 

are applied easier than when a photo is used as a template image. Usability studies of 

these alternative approaches w

m

 



Another approach could be one where the audio clips are represented by image elements 

instead of by whole image tiles. The image elements for audio clips could be placed in 

one background image. The resultant images might appear like those shown in Figure 

7-6. They contain multiple overlapping image icons on a white background. In this way, 

the audio clip numbers are visualized and their duration can be represented by the size 

of the elements. Different elements indicate different classes of audio files.  

 

 
 

 
Figure 7-6: Using image elements to represent audio clips. 

 

Figure 7-7 shows another alternate representation that uses small icon elements for 

small audio pieces in time. In the resultant image, opacity can be used to represent the 

relative volume of each sound at any point in time so the resultant image is suitable for 

overlapped sounds. 

 

 
Figure 7-7: Element mosaic time-lines result. 

 

Figure 7-6 and Figure 7-7 give examples of using non-realistic, iconic images instead of 

realistic images. If non-realistic images were found to be very suitable for certain 

classes or purposes, then computer animation techniques might also be worth exploring 

in order to enhance audio visualization. 

 

The video texture generation method developed in this thesis could also be utilized in 

other application spaces. For example, in speech visualization the template could be 

extended to include specific vocabularies (Figure 7-8). This work then goes beyond 
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general audio visualization and closer to the notion of employing video rewrite for 

speech visualization.  
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Figure 7-8: Schematic diagram of the speech visualization. 

 

Other applications for the visualization of audio input by video textures could be 

investigated, such as audio file editing. The editing could be undertaken with simple 

image manipulation by the user, such as dragging and dropping, cutting and pasting 

images, to rearrange sound sequences remove sounds and add sounds to an audio file. 

Scaling an image icon, or image object, could result in an increase in volume of its 

corresponding sound relative to the other sounds in the file. Such an editing tool would 

remove the need for manual point detection and splicing of audio segments using audio 

signal displays.  

 

7.4   User Studies 
 

User studies will play an essential role in the future development of this audio 

visualization system. Controlled user studies with observational software to capture user 

interaction could assist in refining the system and designing new audio visualizations.  
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A number of complex issues regarding user perception will have to be resolved for the 

best audio-visual feature mappings and visual representations for audio to be designed. 

These issues raise research questions such as: 

• Which types of representation could best be used to represent abstract sounds?  

• Which types of representation could best be used to represent concrete sounds?  

• What is the limit of human perception for feature mapping? In other words what is 

the maximum number of features that can be meaningfully mapped?  

• Does the use of template image legends assist in user comprehension of the audio 

visualizations?  

• How does mapping the dimensionality of features affect human perception of the 

visualization of audio?  

• What is the range of perception of the visual features in an image?  

• Which combinations of visual features aide user comprehension and which 

combinations conflict and confound the user's comprehension?  

• What is the affect of conflicting visual features on the user's ability to interpret a 

sound visualization?  

• Can the user gain information from a mapping of conflicting audio features to 

conflicting visual features? 

• How complicated can the visualizations get before they can no longer be rapidly 
scanned? 

 

In addition there are the issues around user tasks. For a non expert user of an audio 

database there is the problem of the time required in order to learn how to interpret a 

visual representation of an audio. Most non-professional users would expect an 

intuitive, easy to learn system and do not wish to invest significant amounts of time 

learning how to interpret and use the system. User studies could be designed to evaluate 

the speed and accuracy of users in browsing and searching for a specific sound within 

the database. For professional users the visualization system may speed up audio query 

and navigation. Comparative user studies with the performance of professional systems 

could be undertaken to discover whether professionals are assisted by such audio 

visualizations.  
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Appendix A 
Audio feature extraction 

 

 

This appendix gives a brief introduction to commonly used audio features. The 

techniques used to extract audio features used in this audio visualization system are then 

detailed.  

 

Introduction 
 

Audio features can be defined as either physical, acoustical and perceptual features [1] 

or dynamic features, such as timbre [2] [3]. For the purposes of audio visualization we 

are only interested in perceptual features. There are more than fifty commonly used 

perceptual and acoustical features [4]. The features that have proved most useful in 

audio segmentation and classification of general sounds are listed below: 

• temporal features 

 volume root mean square  

 volume dynamic ratio 

 silence ratio 

 frame energy 

 zero crossing ratio 

• spectral features  

 centroid 

 bandwidth 

 four sub-band energy ratios 

 pitch 

 salience of pitch 

 first two formant frequencies 

 first two formant amplitudes 

 



Feature extraction is as defined the process in which raw samples of an audio signal are 

converted into a sequence of feature vectors [5]. The way in which audio features are 

extracted from the file varies. Some features are extracted in the time domain, some in 

the frequency domain, and some (such as pitch) may be calculated in either the time or 

the frequency domain. 

 

It is common for these features to be used in combination and in our system we 

combine some of these features with the 8 order MFCCs [6]. MFCC is a compact 

representation of an audio spectrum that takes into account the non-linear human 

perception of pitch, as described by the Mel scale [3]. MFCC is particularly useful for 

analyzing complex music due to its low-dimensional, uncorrelated and smoothed 

representation of the log spectrum, its ability to discriminate between different spectral 

contents [7] and its ability to discard 18 differences due to pitch evolution. For the audio 

visualization system MFCC is favoured over cepstrum coefficients [8] because MFCC 

approximates the human auditory system's response more closely.  

 

Audio feature extraction 
 

In the first step of the feature extraction phase, the signal is differentiated (pre-

emphasized) by calculating the difference between succeeding samples  
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nS 1nnn SSd −−=  (A-1) : 

A tapered window function is applied to each block to minimize the discontinuities at 

the beginning and end of the frames. The window could be any type of function that 

cuts a short segment from the signal. We use the Hamming window function [9]. If Ns 

is the number of samples in the window the Hamming window hn is defined as: 

)
1N

n2cos(46.054.0h
s

n −
π

−=  (A-2) 

A key assumption in the measurement of the characteristics of an audio signal is that the 

signal can be regarded as stationary over an interval of a few milliseconds. Given this 

assumption, the signal is divided into frames of a size comparable to the variation 

velocity of the underlying acoustic events. The number of sample points in a frame is 



called frame size. In our system we adopted a 16 ms frame size as discussed in Chapter 

3. 

 

The next step is to perform a standard Fast Fourier Transform (FFT) [10]. The result of 

the Fourier transform is Fω is a Hermitian symmetric function at ω/2. Only the 'real 

part' of Fω is used to extract the audio features. 

 

The logarithmic spectral power P was calculated according to equation A-3 where ω0 is 

set to ω/2 (half sampling frequency). The logarithmic spectral power is employed 

because it has been reported to give better results, for audio processing, than spectral 

power itself.  

∫
ω

ωω=
0

0

2 d)(FP  (A-3) 

We used another audio feature used was the logarithmic subband power Pj. The 

frequency spectral power is divided into four subbands with intervals of [0 (ω0/8)], 

[(ω0/8) (ω0/4)], [(ω0/4) (ω0/2)] and [(ω0/2) ω0]. Four values, one per interval, of Pj.are 

calculated according to equation A-4 where Lj and Hj are the lower and upper bounds, 

respectively, of subband j. 

)d)(Flog(P
jH

jL

2
j ∫ ωω=  (A-4) 

The brightness audio feature is a frequency centroid and was calculated according to 

equation A-5.  

∫
∫
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ω
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Bandwidth is calculated as the square root of the power weighted average of the squared 

difference between the spectral components and the frequency centroid (A-6). 

CW
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The number of audio signals crossing the zero in one interval is defined as the zero-

crossing rate (ZCR) and is a useful feature for noise recognition in simple audio files. 

Essentially it gives an approximate measure of the signal's noisiness. ZCR is computed 

according to equation A-7 where the sign function is 1 for positive x[n] and –1 for 

negative x[n] while N denotes the frame size. 

⎩ <−⎩ < 0x10x1 ⎨
⎧ ≥

=⎨
⎧ ≥

=

+×= ∑
−

=

0x1
)x(sign

0x0
)x(u

)))]1n(X(sign))n(X(sign[u
N
1)n(ZCR

1N

0n
 (A-7) 

 

Pitch refers to the auditory sensation of the highness of the tone, but the term will be 

used here to mean fundamental frequency (F0). Pitch can be measured during the 

production of a voiced sound, and is traditionally expressed in Hertz (Hz). Pitch 

estimation is a mature and complex subject that has been addressed with many different 

approaches in digital signal processing [11]. However, although pitch estimation is 

considered a mature topic, there is no single pitch estimator with perfect performance in 

the analysis of all kinds of sounds. Several articles report evaluation results of the most 

popular implementations and present comparisons between their performances [12] [13] 

[14] and [15]. We employed the Linear Predictive Coding (LPC) synthesis the details of 

which can be found in [16].  

 

To calculate the MFCCs, feature vectors, of a frame of audio signal we followed the 

procedure reported by Xu et al. [17]:  

1. Take the Fourier transform of (a windowed excerpt of) a signal.  

2. Map the powers of the spectrum obtained above onto the Mel scale, 

using triangular overlapping windows.  

3. Take the logs of the powers at each of the Mel frequencies.  

4. Take the discrete cosine transform of the list of Mel log powers, as if it 

were a signal.  

5. The MFCCs are the amplitudes of the resulting spectrum.  

 

The parameters for MFCC calculation that we employed are now detailed. The power 

coefficients are filtered using a triangular bandpass filter bank. The filter bank consists 
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of K = 19 triangular filters. These filters have a constant mel-frequency interval, and 

cover the frequency range of 0~ 8000 Hz. The Mel frequency mel(f) is related to the 

common linear frequency f according to the following equation: 

)f1(log*2595)f(mel 10 +=
700  (A-8) 

Mel frequency is proportional to logarithmic linear frequency and is employed in favour 

of the linear frequency because it more closely maps to human subjective aural 

perception. 

 

The MFCCs are computed using equation A-9, where Sk(k = 1, 2, · · ·K) is the output of 

the filter banks and N is total number of samples. 

Nn ,...2,1=

KknS
K

C
K

k
kn ]/)5.0(cos[)(log2

1
−= ∑

=

π  (A-9) 

 

Noise-to-signal ratio (NSR) of sounds is visualized in this thesis so the extraction of 

NSR is also needed. NSR extraction is problematical and no one comprehensive 

solution has been found. Hirsch and Ehrlicher's method "Hirsch histograms" [18] was 

employed in this thesis to estimate the NSR. Hirsch histograms were firstly introduced 

for noise estimation in speech recognition.  
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