
Auckland University of Technology

Augmented Reality on Mobile Devices

using Both Front and Rear Cameras

by

Tongtong Liu

supervised by

Dr. Minh Nguyen and A. Prof. Wei Qi Yan

A thesis submitted in partial fulfillment of the requirements

for the Master Degree in Computer and Information Science

School of Engineering, Computer, and Mathematical Science

Department of Computer Science

July 2020

http://www.aut.ac.nz
http://www.aut.ac.nz
http://www.aut.ac.nz

Abstract

When people buy sunglasses in the store, it is hard for them to see themselves wearing

sunglasses in the mirror. Besides, if people want to buy glasses online, they can’t try on

the glasses and they don’t know if the glasses fit them well or not. Thus, this thesis pro-

poses a glasses try-on system. Augmented reality has received extensive attention from

researchers in recent years. This paper will discuss the development, application and

challenges of augmented reality. Besides, an augmented reality application is proposed

in this study, and this application is based on mobile devices. In order to improve the

interaction, both front and rear cameras are required in this application. Two glasses

try-on systems are built in this thesis, which are 2D and 3D glasses try-on systems. The

first system is to use the glasses image to implement the try-on system. Users need to

scan a glasses picture and use the system to try on the glasses. The second system is to

use 3D glasses models. The user first scans the QR code, and then the corresponding

3D glasses model will be presented for users to try.

Acknowledgements

In the beginning, I really want to say that Dr. Minh Nguyen, who is my primary su-

pervisor is a very good man. During the project, we did a lot of research together. He

is a very patient and attentive person, under his very patient guidance, I did learn a

lot about the Augmented Reality technology. Absolutely, I cannot finish my job with-

out his guidance. I really want to thank Dr. Minh Nguyen. And I would like to say

the same word to my secondary supervisor, Professor A. Yan WeIQi. Thanks for his help.

iii

Declaration iv

I declare that this article is written by me. This report is my own work. It does not

contain the work of anyone else or materials of other academic articles. No unfair means

are used to finish this thesis.

Signed:

Date: 02/20/2020

Contents

Abstract ii

Acknowledgements iii

List of Figures vii

Abbreviations ix

1 Introduction 1

1.1 Application areas of Augmented Reality 3

1.1.1 Applications for entertainment . 3

1.1.2 Application for education . 4

1.1.3 Medical applications . 6

1.1.4 Applications for E-commerce . 8

1.2 AR challenges . 10

1.3 Research Goals . 11

1.4 Thesis structure . 12

2 Background 13

2.1 Augmented Reality . 13

2.1.1 AR Display technology and devices 13

2.1.2 Markers . 16

2.1.3 Image processing . 17

2.1.4 Methods of AR implement . 18

2.2 Software tools . 20

2.3 AR try-on systems . 21

2.3.1 Virtual 3D garment try-on systems 21

2.3.2 Glasses try on systems . 22

2.3.3 Magic mirror . 26

2.3.4 Try on systems using RGB-D sensors 28

3 The design 30

3.1 Development environment . 30

3.1.1 OpenCV . 30

3.1.2 Unity . 31

3.2 Face detection . 31

3.3 Glasses try-on system by using 2D glasses pictures 35

3.3.1 Glasses detection and image detection 35

3.3.2 Image segmentation . 36

3.4 Glasses try-on system by using 3D glasses models 39

3.4.1 3D head pose estimation . 46

3.4.2 Dlib landmark detection . 47

3.4.3 Define 6 key points of a 3D face model 48

3.4.4 Camera calibration . 49

3.4.5 Euler angle . 55

v

Contents vi

3.5 QR code . 59

3.5.1 QR code structure . 59

3.5.2 QR code decoding . 60

4 The implementation 62

4.1 The data . 62

4.2 QR code generator . 63

4.3 QR code reader . 64

4.4 2D glasses try-on system . 65

4.4.1 Image segmentation . 65

4.4.2 Contour extraction and contour filling 68

4.4.3 Head pose estimation and glasses rotation 70

4.4.3.1 Face rotation . 70

4.4.3.2 Glasses image rotation 70

4.4.3.3 Image scaling . 75

4.5 3D glasses try-on system . 75

4.5.1 3D head location . 76

5 Results and Discussion 78

5.1 Initial Results . 78

5.1.1 Results of 2D glasses try-on system 78

5.1.1.1 Results of glasses image segmentation 78

5.1.1.2 Glasses try-on results . 83

5.1.2 Results of 3D glasses try-on system 85

5.2 Discussion . 88

5.3 Aspects that need improvement . 89

6 Conclusion and Future Works 91

6.1 Conclusion . 91

6.2 Future Work . 92

Bibliography 93

List of Figures

1.1 The first HMD [1] . 2

1.2 The first mobile AR system [2] . 2

1.3 Pokémon GO . 3

1.4 Chess game [3] . 4

1.5 A digital game to learn mathematics [4] 5

1.6 ARLIST system [5] . 7

1.7 Application to assess patients’ ability [6] 8

1.8 A try-on system [7] . 9

1.9 Finger tracking and hand tracking [8] . 10

1.10 Smart and wearable sensors [9] . 11

2.1 Optical combination and video mixing [10] 14

2.2 Hand-held devices [11] . 15

2.3 Glyph headset [12][13] . 15

2.4 HMD [14] . 16

2.5 Template markers . 18

2.6 Barcode markers . 18

2.7 Marker based augmentation . 19

2.8 Location based augmentation . 19

2.9 computer vision based augmentation . 20

2.10 Ties try on picture . 22

2.11 DITTO . 23

2.12 Haar features [15] . 23

2.13 Face features using Haar [15] . 24

2.14 The network structure of SVM . 24

2.15 68 face points . 26

2.16 Magic mirror [16] . 27

2.17 Hairstyle and makeup try on [16] . 27

2.18 Kinect v2 [17] . 28

2.19 Joints of tracked skeleton [18] . 28

3.1 2D and 3D glasses . 30

3.2 Face detection result . 32

3.3 68 dlib landmarks . 33

3.4 Flow chart of 2D glasses try-on system . 35

3.5 TensorFlow detection objects . 36

3.6 Hysteresis thresholding [19] . 39

3.7 Flow chart of 3D glasses try-on system . 40

3.8 3D coordinate system . 41

3.9 Unity coordinates . 41

3.10 World coordinate to camera coordinate system 43

3.11 Rotate the coordinate system around the z axis 43

3.12 Camera coordinate to image coordinate 45

3.13 Image coordinate to pixel coordinate . 45

3.14 Euler angles . 46

3.15 Dlib detection . 47

vii

List of Figures viii

3.16 6 key points in human’s face . 48

3.17 Rotation angle . 58

3.18 The structure of QR code . 59

3.19 Ratio of the black and white intervals . 61

4.1 A website to download 3D glasses models 62

4.2 QR generator . 63

4.3 Selct a category and enter the text . 63

4.4 QR code . 64

4.5 Decode result . 65

4.6 Canny detection results . 67

4.7 Contour extraction results . 69

4.8 Contour filling results . 69

4.9 Bounding Rectangle . 71

4.10 The rotation angle of minAreaRect function 72

4.11 Image rotation around the coordinate origin 73

4.12 Image rotation around an arbitrary point 74

5.1 Glasses 1 . 78

5.2 Glasses 2 . 79

5.3 Glasses 3 . 79

5.4 Glasses 4 . 79

5.5 Glasses 5 . 79

5.6 Glasses 6 . 80

5.7 Segmentation result 1 . 80

5.8 Segmentation result 2 . 80

5.9 Segmentation result 3 . 80

5.10 Segmentation result 4 . 81

5.11 Segmentation result 5 . 81

5.12 Segmentation result 6 . 81

5.13 Glasses images can’t be processed . 82

5.14 False results . 82

5.15 2D glasses try-on result 1 . 83

5.16 2D glasses try-on result 2 . 83

5.17 2D glasses try-on result 3 . 84

5.18 2D glasses try-on result 4 . 84

5.19 2D glasses try-on result 5 . 84

5.20 2D glasses try-on result 6 . 85

5.21 3d glasses try-on results using Levenberg-Marquardt optimization 1 . . . 85

5.22 3d glasses try-on results using Levenberg-Marquardt optimization 2 . . . 86

5.23 3d glasses try-on results using EPnP 1 . 87

5.24 3d glasses try-on results using EPnP 2 . 88

Abbreviations

2D Two-Dimensional

3D Three-Dimensional

AR Augmented Reality

HMD Head-mounted Display

ix

Dedicated to myself

x

1
Introduction

Augmented reality (AR) is a technology which gives us a new way to see, hear, and feel

our environment. As early as the 1960s, AR technology was initially realized. Nowadays,

AR has been truly practical. With the development of the Internet and smartphones,

augmented reality has gained a lot of attention and a huge number of augmented reality

applications are being created recently.

According to [20], AR is a technology that connects the real word with objects that

are created by computers, such as graphics, sounds, videos or other digital information.

Besides, an AR system has three features [1]:

• Combines real objects with virtual objects in a real environment;

• Real and virtual objects are aligned with each other;

• Interactive;

• Three-dimensional.

AR system is not limited by the display devices. There are mainly three types of devices

to show results of AR: Head-Mounted Displays (HMDs), mobile devices and computers.

The first HMD is developed in 1968 (Figure 1.1). It is used to show three-dimensional

images.

1

Abbreviations 2

Figure 1.1: The first HMD [1]

The term ”augmented reality” was firstly presented by Caudell and Mizell in 1992 [21].

In 1993 a GPS-based outdoor system was developed which used spatial audio to provide

navigation for the visually impaired. The first mobile AR system was developed in 1997,

and Feineretal created a prototype mobile system (MARS) to record three-dimensional

information of a building [1]. Today, most modern mobile platforms support AR, such

as tablet computers and mobile phones.

Figure 1.2: The first mobile AR system [2]

Abbreviations 3

1.1 Application areas of Augmented Reality

Augmented reality technologies have been used in various areas, such as entertainment,

education, medicine and automotive industry.

1.1.1 Applications for entertainment

In recent years, AR games have caused a lot of attention. Pokémon GO is a very

popular outdoor game using AR technology and it is a location-based AR game (Figure

3). Players can go different places and catch different creatures which is one of the most

attractive features of this game. Furthermore, this game encourages people to play

outdoors and exercise. The paper [21] took Pokémon GO as an example and presented

that the development of augmented reality (AR) is becoming more commonplace. Giving

users a better experience and interaction with reality is one of the major advantages of

AR. AR is popular in many industries such as e-commerce, promotion and travel and

tourism.

Figure 1.3: Pokémon GO

There are also a lot of indoor AR games. [22] built a mobile AR game based on SIFT

image recognition. This research improved the SIFT algorithm and applied it to the

AR game, which improved the accuracy of the AR system. The paper of [23] designed

an AR robotic shooting game. The players can use body gestures to control the robot

and virtual objects. [3] developed a chess game using AR technique. It uses fingers to

interact with the virtual chess by an RGB-D camera sensor (Figure 1.4).

Abbreviations 4

Figure 1.4: Chess game [3]

In addition to the AR games, some papers have built applications for AR dog. More and

more people in modern society like pets, especially dogs. Some people even treat dogs as

part of their own family. Dogs are the most faithful companions of human beings, and

their company can add a lot of fun to people’s lives. Not only can dogs help reduce the

stress of daily life, but also soothe people when they feel lost. Besides, dog walking can

help people increase their physical activity. The system built in the paper [24] studied

the impact of human-dog interaction on humans. This system uses a head-mounted

device to display the AR dog. Users can play with the AR dog, feed the AR dog and

walk the AR dog. The results of this research prove that the AR dog has some positive

effects on human emotions and behaviors.

The research of [25] also pointed out that the interaction between human and animals

is beneficial to people’s physical and mental health. Despite the benefits of AR animals,

they still have some limitations. One of the biggest limitations is that human can’t

touch the virtual animals. Thus, further studies are needed in systems for AR animals.

1.1.2 Application for education

The study of [26] has shown that AR has the potential to stimulate students’ interest

in learning. As a new technology, AR has many advantages in the educational environ-

ment. Teachers can use AR to improve interaction with students in teaching, thereby

improving students’ learning efficiency. What is more, AR also enables users to see ele-

ments that are not easy to see in the real world, which can help students understand new

knowledge [26]. Especially for preschool education, abstraction and complex concepts

Abbreviations 5

make understanding difficult, which may make young children lose interest in learning.

Therefore the traditional teaching methods should be changed, and AR applications are

beneficial for young children to learn new knowledge.

There are already many AR applications for education. The research [27] claimed that

AR has a great impact on education. The AR application created in this paper is used to

learn the structure of a desktop PC. There are three learning modes in this application.

First, students can learn and observe various parts of the computer. Then the students

can assemble a computer according to the tutorial. If they put a component in the

wrong place, the application will point out their mistakes. Finally, students can take

tests to find out how well they have mastered computer assembly.

The paper [20] developed a foreign language learning application using AR. This appli-

cation is able to recognize a foreign word and show its virtual object on the screen. It

provides a good way for people to learn foreign languages.

The research [28] designed an AR-based gear game. This game used a motion sensing

camera to capture human bone joint points and develop a gear interactive game. It is

a shooting game. Users use their hands to control the gears in the game and use the

gears to control the shooting direction. This game helps increase students’ interest in

learning. Furthermore, It makes fun and helps students learn the scientific concepts of

gears during the interactive process.

The paper [4] created a digital game using AR. This digital game helps users to learn

mathematics.

Figure 1.5: A digital game to learn mathematics [4]

Abbreviations 6

Many students found that it is hard to learn solid geometry. We usually draw 3D shapes

on a 2D plane to understand solid geometry, but this expression is very abstract and

difficult to understand. Therefore, the research [29] has created a system which can show

3D objects in the real 3D world. In addition, students can use their hands to control

3D objects. This system helps students learn and understand solid geometry better.

The study [30] uses an AR application to develop students’ computational thinking.

The logic of computational thinking refers to the logic of computer program operation.

Nowadays our lives can not be separated from computers. Computers can perform tasks

efficiently through simple repetitive tasks, so it is necessary for us to learn computa-

tional thinking. The application designed in this paper is similar to programming toys.

Children use physical cards to form a 3D virtual map. After the map is completed,

children can use a character to test the map. Different maps represent different stories.

Children have to use computational thinking to form their own stories.

1.1.3 Medical applications

Medical imaging has been an important technique in our life. Doctors have the longest

growth cycle in almost all industries. Medical students usually need to learn a lot of

knowledge from books or videos, but they have fewer practical opportunities. Medicine

is a highly practical subject. Only by participating in a large number of clinical practices

can medical students improve their operating skills.

According to the research of [5], medical students are required to take a lot of medical

training, and their training needs to be supported by a lot of resources such as high

definition pictures, care experience for real patients and anatomical manikins. But

these resources and the interaction with students are limited. Thus, AR based medical

training systems are very useful and helpful to improve medical education.

With the development of AR technologies, many research and technology companies

are applying AR technology to surgery. Through AR technology, the 2D medical image

information can be three-dimensionalized, making doctors’ surgical treatment easier and

more accurate.

The paper of [5] described a medical training system called Augmented Reality Envi-

ronment for Life Support Training (ARLIST) system (Figure 1.6). This system uses

regular manikins. There are some sensors that mounted inside the manikins’ body, al-

lowing students to interact with it. Another advantage of this system is that it can

save the resources of corpses and experimental animals. [31] created a medical training

system using AR. This system can detect hands and fingers motions, and gesture input

Abbreviations 7

is the main interaction method. The system can generate three-dimensional objects in

the real world. The AR system created by the paper [32] built a 3D model of the car-

diovascular system. The system enables users to view the location of human organs and

detailed information about the cardiovascular system.

Figure 1.6: ARLIST system [5]

The company EchoPixel founded in 2012 developed an interactive 3D platform that

converts 2D images into 3D images. This platform helps doctors diagnose the internal

organs of patients from various angles. The 3D images can be customized according to

the requirements of the program. Doctors can scale the images. They can also extract

the questionable parts of the images separately or print them out for further research.

Thus, doctors can find and check out the lesions in the patient’s internal organs more

easily.

Augmedics is an Israeli company founded in 2014. This company developed an AR

head-mounted display used for spinal surgery. This device provides surgeons with X-

ray vision during surgery. It allows surgeons to see the anatomy of the patient’s body

through the skin and tissue. This device makes easier, faster and safer surgery.

Besides, there are also many AR applications designed for patients. An Alzheimer’s char-

ity in Australia has launched an app to help patients with dementia, called Dementia-

Friendly Home. This application can help Alzheimer’s patients make their rooms more

livable. Staff at the charity said environmental challenges, visual challenges and memory

challenges are the problems faced by patients with dementia. They developed this app to

allow people with Alzheimer’s to live independently, and help them build self-confidence.

Abbreviations 8

The study of [6] designed an AR game. This game uses hand interaction to assess the

patient’s upper limb motor function.

Figure 1.7: Application to assess patients’ ability [6]

1.1.4 Applications for E-commerce

Augmented reality has been an effective tool for E-commerce in modern life. Many

companies have used AR technology as a tool to present their products, such as Snap

Nike and Adidas. Some cosmetic companies develop magic mirrors using AR. Users can

have virtual facial makeup using AR mirrors, such as different lipsticks and eye shadows

[33].

The study of [34] showed that online shopping has a significant impact on AR technology.

Customers could not try on the products physically during online shopping, but they

can see themselves wearing virtual products by using AR. In this way, consumers can

experience the products they want to buy more realistically. Thus AR is experiencing

huge popularity nowadays.

[34] introduced an AR application called Lify, which enables users to try different clothes

using AR. The use of this application is beneficial to reduce the number of product

returns.

[7] designed a footwear try-on system which allows users to see themselves wearing

different shoes virtually. In their system, an RGB-D camera was used to take depth

Abbreviations 9

images of users. It is helpful to get 3D information of the user’s foot. This system can

identify and track user’s shoes, and display shoe models on the user’s foot.

Figure 1.8: A try-on system [7]

AR brings many conveniences to online shopping and many brands have noticed the

advantages of AR. Zara created an AR application in 2018. When users scan an AR

marker, they will see a model showing them Zara’s costumes. The model will pose,

walk and talk, which will help users better understand Zara’s products. In addition to

enabling AR shopping, this app also has social media sharing capabilities, where users

can take and push holographic images or videos.

Many times when we visit IKEA, we may consider whether the furniture look good in our

home. IKEA developed an AR application in 2014 that can solve this problem. In the AR

application, users can use their mobile phones to scan the surrounding environment and

place 3D furniture models in the surrounding environment. The biggest highlight of the

app is that it can automatically resize according to the size of the surrounding furniture.

For example, if a chair is placed next to a table, the virtual chair will automatically

adjust to the right size to help you judge.

Nike added AR technology to the release and sale of shoes. They hid the limited edition

shoes on the street and used a hunting game like Pokémon GO to make customers find

and buy their favorite limited edition shoes.

L’Oreal, Sephora, Estee Lauder, Shiseido and other beauty brands launched AR makeup.

Besides, an E-commerce enterprise from China called JD.com has added AR makeup

Abbreviations 10

to their application. When users buy lipsticks on JD.com, they can try the lipsticks

virtually by using AR technology.

1.2 AR challenges

Although a lot of AR systems have been developed, there are still some limitations and

challenges. Interaction and tracking between generated objects and real objects are

the major challenges in augmented reality, a lot of work has been done to improve the

system’s performance [35].

The virtual objects in AR must be placed in the same coordinate system as the real

objects [36]. When the camera moves, the 2D projection of the virtual objects on the

screen must move accordingly. According to the research of [37], there are two kinds of

markerless camera tracking methods: image-based and model-based methods. Image-

based tracking method is faster and more stable. [38] used an image-based tracking

method to build an outdoor AR tracking system by using homography. This system

could also be used to measure head rotation. Recently, the tracking methods have been

improved clearly by using markerless model-based tracking techniques.

Hand tracking is one of the major interaction methods. [39] developed an AR system

based on hand gesture recognition. [8] proposed an interactive system based on AR

which has the function of object detection and hand tracking. If the camera detects an

image target, a 3D model will be shown. This system also allows users to interact with

virtual objects by hand tracking.

Figure 1.9: Finger tracking and hand tracking [8]

Besides, many sensors have been considered in order to show a better tracking perfor-

mance, such as mechanical devices, inertial devices, ultrasonic devices, magnetic sensors,

optical sensors, inertial devices, GPS and compass. [9] used wearable sensor networks

Abbreviations 11

in their AR system (Figure 1.9). They developed an intelligent physical rehabilitation

system which combined augmented reality serious games with wearable sensor networks.

This system is used to help patients improve their engagement during physical rehabil-

itation. Moreover, only one camera is used in the AR system of the above literature.

Figure 1.10: Smart and wearable sensors [9]

There are also some limitations of AR. In smartphones, AR can only use limited storage

space, small processing power and a small amount of memory. Another one of the biggest

concern about augmented reality is privacy. People may get stranger information from

AR-enabled image recognition software, and see more private information from their

Facebook, Instagram, Twitter or other online profiles.

1.3 Research Goals

In this research, we will build a mobile application using AR. This system will show a

3D virtual object if the rear camera detects an image target. Therefore, this application

requires image recognition technology. What is more, the front camera could detect

the user’s face and the rotation and location of the user’s head. The virtual object

rotates with the rotation of the human head. Two kinds of glasses try-on systems will

be built in this research. This system can run on mobile devices, and use both front and

rear cameras to improve users’ AR experience. Furthermore, we will compare these two

systems and give improvement.

Abbreviations 12

1.4 Thesis structure

There are five sections in this thesis:

• Chapter 2 introduces the description and methods of AR. The background and

some main technologies of the try-on system are also introduced.

• Chapter 3 introduces the two glasses try-on system and the methods to build these

two systems.

• Chapter 4 shows the try-on results of the two glasses try-on systems. The discus-

sion analyses the results and the pros and cons of the two systems. The improve-

ment of these two systems is proposed.

• Chapter 6 summarizes this thesis and talk about the future development of the

AR try-on system.

2
Background

2.1 Augmented Reality

Augmented reality (AR) is a new technology that combines computer-generated in-

formation with the real world. It is believed that AR comes from the development of

virtual reality (VR), but there are obvious differences between them. VR gives users

a completely immersive effect in the virtual world, which is to create another world;

while AR technology brings virtual information into the user’s real world. Humans can

perceive these virtual information through the sensory organs, such as eyes, nose and

ear. There are some new technologies and methods included in AR, such as multimedia,

3D modelling, real-time tracking and registration. Nowadays, with the declining prices

of the hardware devices, the improvement of image processing technology, and the de-

velopment of the software, the number of AR applications is increasing rapidly. This

section mainly focuses on the technologies and applications to build AR.

2.1.1 AR Display technology and devices

There are two main techniques to visualise AR information which are optical combination

and video mixing [40]. Optical combination refers to generating a virtual object directly

in the user’s surroundings through optical technology. Users can see the 3D AR objects

in the real world. The AR glasses of Microsoft and Google are two examples of optical

combination. On the other hand, there are two steps to create a virtual object in video

mixing:

1. Captures the real environment by video.

13

Abbreviations 14

2. Virtual objects are then added to the video and when the mixing process is finished,

users will be able to see these virtual objects [41].

The HTC Vive VR headset is an example of video mixing. It uses an inbuilt camera to

generate AR objects on the device.

Figure 2.1: Optical combination and video mixing [10]

According to the way users use AR devices, AR display devices can be divided into three

categories, namely hand-held displays, spatial displays, and head attached displays [40].

These AR display devices use various visualization techniques, and these display methods

are suitable for different situations.

1. Hand-held display

Hand-held displays have the features of low cost and easy access, such as mobile

phones and computers. Therefore hand-held displays are more popular than the

other display devices currently. These devices use a mobile camera to display AR

objects. The camera records a video of the real world and then transmits them on

the hand-held device [40]. After that, the video recorded by the camera is merged

with the virtual objects. Finally, users can see the mixed videos in the device.

These devices usually need depth cameras, motion sensors and AR technologies

such as ARKit and ARCore, or WebAR for display.

Although handheld AR is a perspective video, it deserves special mention. The

rise of handheld AR is a turning point in the true popularity of the technology.

ARKit, ARCore, MRKit, and other augmented reality libraries make complex

Abbreviations 15

computer vision algorithms available to anyone. In hand-held AR, people only

need a smartphone to access AR experiences.

Figure 2.2: Hand-held devices [11]

2. Head attached displays

Head attached displays are devices that can be placed on the front of the user’s

head. This kind of device can bring users a more realistic experience. These devices

are further divided into three classifications: retinal display, head-mounted display,

and head projector display.

Retina display can visualize a virtual object at a few centimetres of eyes. It gives

the illusion that the virtual object is in front of the users. This device sends a beam

through a small high-speed laser and simulates a continuous eye scan. Because the

light beam is fast, the retina absorbs enough transmitted images so the brain can

recognize it [40]. There are some AR glasses can achieve retina display, such as

the Glyph headset.

(a) (b)

Figure 2.3: Glyph headset [12][13]

Abbreviations 16

Figure 2.4: HMD [14]

Head-mounted displays (HMDs) appeared in the 1960s, and the word AR has not

even been coined [42]. In these devices, two forms of visualization are available:

optical see-through and see-through video. See-through video is video mixing. In

optical see-through, the real world is first recorded by the camera, then the virtual

image and the real image are integrated into a single composition.

3. Spatial displays

Spatial display is different from hand-held and head attached displays. It is ap-

plied on non-mobile applications. These display devices use large spatially-aligned

optical elements, such as mirror beam combiners and transparent screens [41].

2.1.2 Markers

In the AR devices, the process of the images are divided into two steps:

• Recognition phase;

• Tracking phase.

The aim of the recognition phase is to find out the location of the 3D objects. To

achieve this goal, the AR devices have to recognise the objects in 2D coordinate, and

then assign it a corresponding 3D object [40]. This recognition is based on artificial

markers, marker-based, natural markers or markerless. At first, AR applications were

created on marker-based method, and later on, the markerless approach replaced the

Abbreviations 17

marker-based method. The marker-based method requires a pre-made marker. This

marker could be a QR code or a template card with a certain shape. Then place

the marker in a position and use a camera to detect and recognise the marker. The

information in the marker will be obtained after recognition and the 3D object will be

shown. Normally, marker-based methods are often easier to identify because they often

contrast more sharply with reality. They are more widely used because of their fast

recognition.

2.1.3 Image processing

When we use a marker-based method to implement an AR application, we need four

steps to process the image [43]:

1. Pre-processing;

2. Marker detection;

3. Identification;

4. Computation of location and pose.

To detect a marker, we must identify the borders of the marker. There are two methods

to do the identification. The first one is image delimitation, and the other one is to

search the boundaries in a gray scale image [43]. In the method of image delimitation,

there may be many other objects in the scenario which will affect the identification.

So we need to discard these objects. To achieve this, we have to assign a marker to

each object and then find out the effective marker. The second method has to find the

contour of the objects, assign lines to these contours and extend the lines [40]. This

method is too complicated, so normally we don’t use it.

There are two kinds of markers, which are the template marker and the 2D barcode

marker. The template marker is a symbol which has black and white patterns in the

center.

Abbreviations 18

Figure 2.5: Template markers

The 2D barcode marker also has a black and white pattern, but it has small cells

compared with the template marker. There are two types of 2D barcode marker: binary

data markers and binary ID markers. Binary data markers can store more information,

such as DataMatrix, QR Code and PDF417.

Figure 2.6: Barcode markers

2.1.4 Methods of AR implement

There are three methods to implement AR: marker-based, location-based and computer

vision [44]. At first, some AR systems used two-dimensional markers (sometimes called

trigger images) to show augmentations. In this method, a marker is defined in AR

authoring environment, and the marker is unique to that augmentation.

Abbreviations 19

Figure 2.7: Marker based augmentation

Lately, with the development of mobile AR, more AR applications focus on geographic

and GPS access to display augmentation in the physical environment. The AR game

Pokémon Go is an example of location-based AR.

Figure 2.8: Location based augmentation

Nowadays, the AR applications are more likely to identify some complex 3D objects,

light and shadows.

Abbreviations 20

Figure 2.9: computer vision based augmentation

2.2 Software tools

Several companies offer tool kits to aid developers to create AR applications. This

section will introduce some software tools to develop AR programs. The software tool

kits consist of API, libraries of specialized functions, development systems and developer

user-interfaces.

1. ARToolKit

ARToolkit is an open source AR (augmented reality) SDK. It is a library written

in the C / C ++ language, which makes it easy to write augmented reality applica-

tions. The most difficult part of augmented reality is overlaying the virtual image

onto the user’s viewport in real time and accurately aligning with objects in the

real world. ARToolKit uses video tracking to calculate the camera position and

orientation in real time. It provides fast and accurate marker tracking, allowing

you to quickly develop many newer and more interesting AR programs.

2. OpenGL OpenGL is a graphical interface library. It is a set of specifications for

calling GPU functions, and it mainly defines a series of functions for manipulating

graphics and pictures. It can also draw from simple graphics to complex three-

dimensional scenes.

3. OpenCV

OpenCV is the Open Source Computer Vision Library. It provides a basic algo-

rithm library for image processing and video processing, and also involves some

machine learning algorithms. Such as video noise reduction, tracking of moving

objects, and recognition of targets (such as faces recognition).

Abbreviations 21

4. Relationship of these tool kits

OpenCV focuses on obtaining information from the collected visual images and

uses machines to understand the images; OpenGL uses machines to draw appro-

priate visual images for people to see. ARToolkit relies on OpenCV and OpenGL.

Although large functions can also be achieved with OpenCV, but use ARToolkit

is more convenient and efficient.

2.3 AR try-on systems

Virtual try-on systems has been a hot topic recently. There are already some try-

on systems, especially in 3D garment try-on systems. Nowadays, online shopping is

becoming more and more popular. People don’t need to go out to buy clothes and food.

They can stay at home and shop online. But there is one problem: the clothes they

shop online may not fit them. Many people always find that the clothes don’t fit them

when they receive them. They have to return theses clothes to the seller, which is very

annoying. According to Walker Sands Communications, thirty-five of customers prefer

to shop online if they could virtually try on an item [45]. There is an urgent need for a

virtual try-on system.

2.3.1 Virtual 3D garment try-on systems

A set of studies of clothes try-on system have been done. The paper [46] proposed an

online 3D virtual garment try-on system. A specific 3D body model is created for each

user in the system by using their body information, such as the length of head, neck,

shin, hand and foot. The basic body model is downloaded from Poser [47] and then get

the triangular body model by layering and triangulating the basic body. Then adjust

the shape and size of the triangular model body to generate a specific body for users.

The model of the garment users choose will be generated in different size and color.

Finally, match the body model and the garment model to complete the virtual try-on

system. This is a real-time try-on system and the motion and rotation of the model are

obtained from the image or a video captured by a camera. This method is similar to

the method used in online virtual fitting room [48].

There is a different virtual garment try-on system [49]. They use human body models

and garment images to implement the virtual try-on system. The idea of this system

is to extract garments in a picture using semantic segmentation techniques and match

them to human body models. This system focuses on garment segmentation methods,

Abbreviations 22

and it proposes a method of using recursive convolutional network (RNN) to solve the

image segmentation problem.

The research [50] created a ties try-on system. This research doesn’t build a 3D body

model for the user and they use a simple image. They use the golden ratio to locate the

neck after face detection. According to [51], the golden ratio means the height of the

neck is 0.61 times the height of the face.

Figure 2.10: Ties try on picture

2.3.2 Glasses try on systems

Besides, there are glasses try-on systems also. For example, DITTO and Ray-Ban

Virtual Mirror offers eyeglasses try-on service [52]. DITTO is actually an online glasses

shop. Customers can try on all the glasses sold on the shop.

Abbreviations 23

Figure 2.11: DITTO

In glasses try on systems, face detection is the first problem to be concerned. It aims

to find the face region in an image. Many algorithms have been developed for face

detection, such as LBP (local binary patterns), PCA (Principal Component Analysis)

Haar, HOG (histogram of oriented gradient) and SVM (support vector machine)-based

face detection. LBP is a local feature extraction method [53]. It is used to describe the

local texture characteristics of an image. Moreover, it has significant advantages such

as strong classification ability, high computing efficiency and gray invariance. HOG

describes edge features [54]. Haar uses three kinds of features to describe a picture

which are edge features, line features and center-surround features [15].

Figure 2.12: Haar features [15]

Abbreviations 24

The Haar feature reflects the local changes in image gray to some extent. In face

detection, certain features of a human face can be simply represented by rectangular

features mentioned above. The picture below shows some features of the face using

Haar feature extraction. In the picture, the eyes are darker than the surrounding area

and the nose bridge is lighter than the sides. Similarly, other targets, such as eyes, can

also be represented by some rectangular features.

Figure 2.13: Face features using Haar [15]

SVM-based face detection is a method using machine learning. The picture below is

the network structure of SVM [54]. SVM convert the input vector from low-dimensional

input space to the high-dimensional feature space by nonlinear mapping firstly. Then

SVM will find the hyperplane with the largest interval.

Figure 2.14: The network structure of SVM

Some research use 3D face reconstruction in their glasses try-on system. 3D Morphable

Model (3DMM) is a popular solution of 3D face reconstruction. 3DMM was first created

by Volker Blanz and Thomas Vetter in 1999 [55]. The three-dimensional deformation

model is based on a three-dimensional face database and is constrained by face shape

Abbreviations 25

and face texture statistics. At the same time, the influence of the pose and illumination

factors of the face is considered, so the generated three-dimensional face model has high

accuracy. The 3DMM model is a linear combination of 3D face data objects. Based on

the 3D face representation, we build a 3D deformed face model which is composed of

personal face models. Each face model contains two vectors Si and Ti. In this way, the

new 3D face model can be expressed as:

Smodel = S +
m−1∑
i=1

αisi (2.1)

Tmodel = T +

m−1∑
i=1

βiti (2.2)

Among them, S represents the average face shape model, sir epresents the PCA principal

component of the shape, and αi represents the corresponding coefficient. The texture

model is the same.

Therefore, a new face model can be linearly combined from an existing face model. That

is, by changing the coefficients, different human faces are generated based on the existing

human faces.

Although the first version of 3DMM solved the expression of the face deformation model,

it was obviously insufficient in the expression of facial expressions. In 2014, the Faceware-

House paper proposed and disclosed a facial expression database, which made 3DMM

more expressive [56]. Thus the linear representation of the face model can be represented

as:

Smodel = S +
m−1∑
i=1

αisi +
m−1∑
i=1

βiti (2.3)

Based on the above principles, the face reconstruction problem is transformed into a

problem of calculating α and β. Here is a face photo and we can get the 68 feature point

coordinates X2d(x, y) of the face from there. There are corresponding 68 feature points

X3d(x, y, z) in the BFM (Basel Face Model) model. Based on this information, you can

find the coefficient α and β, and fits the face The model with the face in the photo.

Abbreviations 26

Figure 2.15: 68 face points

The formulas to solve this problem are as follows:

X2d = s ∗ P ∗R ∗ S + t2d (2.4)

Smodel = S +

m−1∑
i=1

αisi +

m−1∑
i=1

βiti (2.5)

Here, X2d is the point where the three-dimensional model is projected onto the two-

dimensional plane, s is the scaling factor, P is an orthogonal projection matrix, R is a

rotation matrix, S represents a three-dimensional face model, t2d and is a displacement

matrix.

There are also other 3D face reconstruction methods. PRNet was used reconstruct a 3D

face model in the study [57]. This study saves 3D face information in a 2D position map

and use a Convolutional Neural Network (CNN) to regress a 3D shape from a single 2D

image. This method is modified in the paper [58]. Their method doesn’t use the 3DMM

face model in CNN algorithm.

2.3.3 Magic mirror

Magic mirror is also a kind of try-on system [16]. People can use the magic mirror to

try different hair styles, makeup, and dressing. Users can find themselves a suitable

appearance in the mirror.

Abbreviations 27

Figure 2.16: Magic mirror [16]

There are two sub-systems in the magic mirror system: magic closet and beauty e-expert

[16]. The magic closet helps users to find their suitable clothing. The beauty e-expert

system is a system for users to try different hairstyles and makeup.

Figure 2.17: Hairstyle and makeup try on [16]

Abbreviations 28

2.3.4 Try on systems using RGB-D sensors

Some studies uses RGB-D sensors to implement the virtual try-on systems. RGB-D

sensors are sensors that can give image depth and color. There are many kinds of RGB-

D sensors, such as Kinect v1, Kinect v2, Asus Xtion PRO LIVE, RealSense and Apple

PrimeSense Carmine. Moreover, some of the smartphones are equipped with depth

sensors [59]. An RGB-D image contains RGB information and depth information of the

image. The depth information of an RGB-D image refers to the distance between the

image plane and the corresponding object in the RGB image. A Kinect v2 sensor is used

in the Kinect-Based try-on system to get the user’s image [59]. This study downloaded

3D clothes models online and then align these models on the 2D body image.

Figure 2.18: Kinect v2 [17]

The Kinect sensor can detect 25 joints of tracked skeleton of the user, and these joints

are used to match 3D clothes models.

Figure 2.19: Joints of tracked skeleton [18]

Abbreviations 29

LiveScan3D is an open source library which has been used for 3D body reconstruction

[18]. It has a feature of low cost. There are four Kinect v2 sensors in LiveScan3D. Each

sensor is connected to a computer. Thus, we can use LiveScan3D to record dynamic

scenes from multiple viewpoints at the same time. We can also clearly record the shape

of objects when they are in motion.

The study [60] proposed a garment try-on system using Kinect V1 Xbox 360 sensor.

The Kinect camera in this study is used to obtain the 3D information of the user’s body.

Besides, Kinect can also detect the user’s pose and skin color.

3
The design

In this chapter, we will discuss the process to build a glasses try-on system in detail.

There are two ways to build the glasses try-on system in this thesis. One method is to

use 2D glasses pictures to complete the try-on system, and the other method is to use

3D glasses models to try on the glasses. This section will explain the implementation

and differences between the two methods in detail.

(a) 2D glasses picture (b) 3D glasses model

Figure 3.1: 2D and 3D glasses

3.1 Development environment

This thesis uses OpenCV library for image processing and uses unity to develop AR

projects. OpenCV is a cross-platform computer vision library which can be used for

image processing, computer vision, and pattern recognition.

3.1.1 OpenCV

OpenCV(Open Source Computer Vision Library) was founded by INTEL in 1999. It

can be used across platforms and can run on Windows, Linux, and Mac OS operating

30

Abbreviations 31

systems. It has the advantages of high efficiency and lightweight. It is mainly written in

C or C ++. The main interface of OpenCV is C ++, but it also provides interfaces for

programming languages such as C-sharp, Python, and MATLAB. A lot of algorithms

about pattern learning and machine processing have been implemented.

OpenCV has a wealth of algorithms for machine vision, from image processing to pattern

recognition, from still images to dynamic video, from two-dimensional planes to three-

dimensional reconstructions, covering most of the application fields Sof machine vision.

And many of its algorithms have been well optimized, coupled with the fact that the

code is basically written in C or C ++ and is completely open, we can transplant its

algorithms, such as to ARM microprocessors, micro-controller systems.

OpenCV provides a good implementation algorithm for basic concepts and theories re-

lated to image processing, such as threshold segmentation, edge extraction, and template

matching. OpenCV is open source and we can go to see and analyze its specific code,

which is very helpful for us to learn the knowledge of image processing.

OpenCV has been widely used. Augmented reality, face recognition, gesture recognition,

motion recognition, motion tracking, object recognition and image segmentation are the

applications areas of OpenCV.

3.1.2 Unity

Unity is a game development platform. A lot of popular games have been created by

Unity, such as Heroes of Warcraft, Kerbal Space Program and Wasteland 2. Unity is

usually used to build projects, such as 2D or 3D games, VR or AR applications, web

front-ends and 3D animation. It can run under Windows and Mac. We can use Unity

to create AR applications and publish them to Windows, Mac, WebGL and Android

platforms.

Due to the visualization and cross-platform development of Unity, most AR recognition

SDK developers have launched plugins for Unity, such as Vuforia. Unity also launched

multiple SDKs that support AR technology, including ARFoundation, ARKit Plugin

For Unity and ARCore Plugin For Unity.

3.2 Face detection

Face detection is the first step for the system. In order to show glasses on people’s face

in the camera, we need to detect some important points in a human face, such as eyes,

Abbreviations 32

mouth and nose. In this thesis, we use OpenCV and Dlib landmark detector for face

detection.

There are two methods to do face detection in OpenCV. The first method is the Haar-

Adaboost algorithm that is most commonly used in face detection. This algorithm is also

used in other object detection. Adaboost is a set of machine learning frameworks. Based

on the given positive samples and sub-samples, train a model for identifying objects such

as positive samples. The essence of this model is a classifier, also known as a cascade

classifier. The second method is based on the HOG + SVM algorithm in OpenCV.

Figure 3.2: Face detection result

Landmark is a technology for extracting facial feature points. The Dlib can detect 68

important points in human’s face which is very useful for this glasses try-on system.

These points in the landmark can be used to extract the eye, mouth and nose area for

fatigue detection, and the nose and other parts can be used for 3D pose estimation.

Abbreviations 33

Figure 3.3: 68 dlib landmarks

Dlib landmark detection is proposed in the research [61]. Their method is based on the

cascade of regressors. First, we need to understand what is a cascade of regressors.

Face alignment problem can be seen as learning a regression function F. The image I is

the input. The output θ is the location of feature points. The face pose could be defined

as follows:

θ = F (I) (3.1)

The cascade of regressors approximates the function F by learning multiple regression

functions f1, ..., fn-1, fn. Then the face pose could be defined as:

θ = F (I) = fn(fn−1(...f1(θ0, I), I), I) (3.2)

θi = fi(θi−1, I), i = 1, ..., n (3.3)

The cascade means that the input of fi relies on the output of fi−1. The learning purpose

of each fi is to approximate the true position of the feature point.

In Dlib, the formula of the cascade of regressors is defined as follows:

Ŝ(t+1) = Ŝ(t) + rt(I, Ŝ
(t)) (3.4)

Among them, st+1 represents the shape of the t-th level regressor, which is a vector

composed of facial landmark coordinates, t represents the number of cascades, I is the

image.

Abbreviations 34

They use the gradient tree boosting algorithm to train each regressor. The relationship

between the initial shape and the real shape is represented by a gradient tree. The fea-

tures extracted from the current image during the input use pixel differences as features

(features are the basis for tree splitting).

The first tree is built in gradient tree, and we need to input N pictures into this tree.

Each picture will fall into one of the leaf nodes. After the whole pictures are completed

(some leaf nodes may not have any pictures, some leaf nodes will have Multiple pictures),

calculate the residual (the meaning of the residual is the difference between the current

shape and the true shape of each picture), average all the residuals in the same leaf

node, and keep it in this leaf. The second tree in gradient tree is based on the first tree,

using residual + picture current shape ≥ current shape to update the current shape.

And so on, to build a whole gradient tree.

The algorithm for the training method is as follows:

The training data is:

(Iπi , Ŝ
t
i ,4S

(t)
i)

N

i=1 (3.5)

The learning rate is:

0 < v < 1 (3.6)

1. Initialise

f0(I, ŝ(T)) = argmin
N∑
i=1

|| 4 S
(t)
i − γ||

2 (3.7)

2. for k=1, ..., K:

• Set for i =1, ..., N

rik = 4S(t)
i − fk−1(Iπi , Ŝ

(t)
i (3.8)

• Fit a regression tree to the rik giving a weak regression function

gk(I, Ŝ
(t)) (3.9)

• Update

fk(I, Ŝ
(t)) = fk−1(I, Ŝ(t)) + vgk(I, Ŝ

(t)) (3.10)

3. Output

rt(I, Ŝ
(t)) = fk(I, Ŝ

(t)) (3.11)

Abbreviations 35

3.3 Glasses try-on system by using 2D glasses pictures

In this section, we will talk about the design using glasses pictures to build the glasses

try-on system. Here is the flow chart for this glasses try-on system:

Figure 3.4: Flow chart of 2D glasses try-on system

3.3.1 Glasses detection and image detection

In this method, users need a glasses picture first. The picture can be taken by camera

or downloaded online. We use a DNN (Deep Neural Networks) model to detect if there

are glasses in the picture. OpenCV 3.3 already has the DNN module. There are three

kinds of framework models in OpenCV DNN module, which are Caffe, TensorFlow and

Yolo. TensorFlow model can identify around 1000 kinds of objects. More importantly,

it can detect glasses. Thus, in this method, we use the TensorFlow model for glasses

detection.

Abbreviations 36

(a) tensorflow label 1 (b) tensorflow label 2

Figure 3.5: TensorFlow detection objects

3.3.2 Image segmentation

There may be many objects in the pictures that detect glasses, but we only need the

information about the glasses. Thus, we need to do image segmentation to remove the

unwanted information in the pictures.

Image segmentation is an effective way to understand images and it is also the first

step to analyse images. As a hot topic of computer vision, a lot of research has been

done on image segmentation. The aim of image segmentation is to find targets and its

background in the picture and separate them. Image segmentation technology has been

highly valued since the 1970s. Although researchers have proposed many methods for

various problems in image segmentation, there is still no universally applicable theory

Abbreviations 37

and method. However, many new ideas, new methods and improved algorithms have

emerged in recent years.

Nowadays, image segmentation is frequently used in medical image analysis, machine

vision, face recognition, satellite image processing and transportation systems [62]. The

aim of image segmentation is to distinguish the targets and background in the image

clearly. There are varieties of segmentation algorithms which are classified as follows

[63]:

• Intensity based methods (such as threshold based method)

• Discontinuity based methods (such as edge detection)

• Similarity (region) based methods

• Clustering methods

• Graph based methods

• Pixon based methods

• Hybrid methods

This thesis will use Canny edge detection method for glasses image extraction. The

edge detection methods are well developed in image processing. In this method, edges

are detected first and then connect all the edges to form the glasses boundaries. There

are mainly four steps for Canny edge detection which are filtering, edge enhancement,

Non-maximum Suppression and Hysteresis Thresholding [64].

1. Filtering

Edge refers to the mutation of gray level or structure in the image. The edge

detection algorithms are mainly based on the difference operation. We usually use

the first or second derivatives for differentiation. In the image, the edge can be

seen as a pixel with a large first derivative or a second derivative with 0. However,

the differentiation is very sensitive to noise, so the noise in the image can easily

affect Canny detection result. We need to use filters to remove the noise in the

image and improve the results of edge detection. This thesis will use Gaussian

filter to reduce the noise.‘

2. Edge enhancement

Edge enhancement is to detect the change in the intensity of the neighborhood of

all the pixels in the image. This algorithm can find the points that have significant

Abbreviations 38

changes in the neighborhood intensity values of the gray points of the image. In

implementation, it can be determined by calculating the magnitude of the gradient.

In this thesis, we will use to Sobel kernel to calculate the edge gradient of the image

[64].

The image is filtered with the Sobel operator in both x and y directions. The Sobel

kernel used in Canny is expressed as follows:

Sx =

−1 0 1

−2 0 2

−1 0 1

 , Sy =

1 2 1

0 0 0

−1 −2 −1

 (3.12)

Then we can get two matrices as a result of Sobel filtering. The edge gradient

G and direction θ of all the points in the image can be found using the following

formula:

G =
√
G2
x +G2

y (3.13)

θ = arctan
Gy
Gx

(3.14)

3. Non-maximum Suppression

It’s hard to say that pixels can be determined as edges only by using gradient

values. The edges detected by the Sobel operator are too thick. Non-maximum

suppression is a kind of edge sparse technology and we use it to refine the edges.

We need to find the point that has the local maximum value. This point is the

edge. Other pixels with non-maximum value are not edges and we need to remove

them from the edges by setting their gray value to 0. In order to remove these

unwanted points, each point in the image is examined to determine if it is the local

maximum in its neighborhood in the gradient direction.

4. Hysteresis Thresholding

The remaining pixels can more accurately represent the actual edges in the image.

However, due to the noise and color changes in the image, there are still some

edges is not the true edges. To improve the accuracy of the edge detection results,

two thresholds of min value (minVal) and max value (maxVal) are used. All edges

whose intensity gradient exceeds max value are determined as edges. The edges

whose intensity gradient is less than the min value are not determined as edges

and they will be removed. The judgment is whether it is based on its continuity; if

it is connected to a pixel that is a ”sure-edge” pixel, it is an edge; if it is connected

to a pixel that is not a ”sure-edge” pixel, it is not an edge (discard).

Abbreviations 39

Figure 3.6: Hysteresis thresholding [19]

In the figure above, edge A is larger than the maxVal, which is showing us the

edge A is the true edge. Edge C also is a true edge since it is connected with edge

A even that edge is smaller. But edge B is different, it is not connected with any

true edge, then it can be discarded.

3.4 Glasses try-on system by using 3D glasses models

The idea of this method is that the user scans a QR code and then users are able to see

themselves wearing the 3D glasses in the camera. In this method, we will develop a 3D

application in Unity. Here is the flow chart for this system:

Abbreviations 40

Figure 3.7: Flow chart of 3D glasses try-on system

First, we need to understand Unity’s coordinate system. A 3D coordinate system rep-

resents a three-dimensional space. There are two kinds of 3D coordinate systems, which

are left handed coordinate system and right handed coordinate system. In the left

handed coordinate system, the X axis points to the right, the Y axis moves up and the Z

axis points forward; while the X axis and Y axis of the right handed and the left handed

coordinate system are the same, and Z axis points in opposite direction. OpenCV uses

right hand coordinate. But in unity, we use left handed coordinate.

Abbreviations 41

Figure 3.8: 3D coordinate system

There are four kinds of coordinate systems in Unity, which refer to world space coordi-

nates, screen space coordinates, viewport space coordinates and GUI system.

Figure 3.9: Unity coordinates

1. World space

The left-handed coordinate system of the Unity engine is also called the world

coordinate system. In general, the local coordinates and the origin of the world

coordinate system are coincident. You cannot place all models on the origin of

the world coordinate system, so you need to move the model. When the model is

moved, the local coordinates of the model will be converted into world coordinates.

The process of this movement is to convert the local coordinates of the model into

world coordinates. The process of knowledge conversion is implemented inside the

engine editor. In fact, the points of the model are multiplied by the world matrix.

2. Screen space

The mobile coordinated mobile game developed by Unity often uses the screen co-

ordinate system. The screen coordinates are the commonly used computer screens.

It is in pixels. The origin point is in the lower-left corner of the screen, and the

Abbreviations 42

upper right corner is the point (Screen.Width, Screen.Height). The position of a

point in Z-axis is measured in the camera’s world coordinates. Usually, click the

object on the screen with the mouse, it is the screen coordinates. UI operations

are also based on the screen coordinate system.

3. Viewport space

You can see objects in the virtual world only through the camera. The camera

has its own viewport coordinates, and objects must be converted to viewport

coordinates to be seen. The lower-left corner of the camera’s viewport is (0,0) and

the upper right corner is (1,1). The position of a point in Z-axis is measured in

the camera’s world coordinates. The (0,0) point and the (1,1) point are calculated

by scaling.

4. GUI system

When we are doing Unity game development, we often use GUI to do some tests,

such as displaying a button to control the game. The coordinate system where this

Button is located in the GUI coordinate system. Its origin point (0, 0) is in the

upper left corner. The screen width is Screen.width and the height is Screen.height,

so the coordinates of the lower right corner of the GUI system are: (Screen.width,

Screen.height), which is a two The coordinate system of the dimension, the value

of a point in z-axis is 0.

Next, let’s talk about the transformation relationship between the four coordinate sys-

tems.

• World coordinate to camera coordinate

We see the world with a camera. If the camera is moved anywhere, it could be

able to see anywhere in the world. If the camera is located in a location(tx, ty, tz),

We can say that the camera coordinates are translated with respect to the world

coordinates. The camera may be looking in any direction. We can say that the

camera is rotated relative to the world coordinate system [65]. So we can use

a rotation matrix and a translation vector to represent the relationship between

world coordinates and camera coordinates.

Abbreviations 43

Figure 3.10: World coordinate to camera coordinate system

In the figure above [65], P means a point in world space. R means rotation matrix.

T means translation vector.

The coordinate system transformation of a 3D object can be represented by the ro-

tation transformation of the coordinate system and the translation transformation,

and this is the same with the conversion relationship between the world coordinate

system and the camera coordinate system. Rotate different angles around different

axes to get different rotation matrices.

Figure 3.11: Rotate the coordinate system around the z axis

The transformation can be represented by the following formula:

x = x′cosθ − y′sinθ (3.15)

Abbreviations 44

y = x′sinθ + y′cosθ (3.16)

z = z′ (3.17)

x

y

z

 =

cosθ −sinθ 0

sinθ cosθ 0

0 0 1

x′

y′

z′

 = R1

x′

y′

z′

 (3.18)

Similarly, rotate the coordinate system around the x-axis and the y-axis, and we

can get:
x

y

z

 =

1 0 0

0 cosφ sinφ

0 −sinφ cosφ

x′

y′

1

 = R2

x′

y′

z′

 (3.19)

x

y

z

 =

cosϕ 0 −sinϕ

0 1 0

sinϕ 0 cosϕ

x′

y′

1

 = R3

x′

y′

z′

 (3.20)

Then, we can get the rotation matrix:

R = R1R2R3 (3.21)

Finally we can get the coordinate of point P in camera coordinate:
Xc

Yc

Zc

 = R

Xw

Yw

Zw

 + T (3.22)

Xc

Yc

Zc

1

 =

[
R T

0 1

]
XW

YW

ZW

1

 (3.23)

• Camera coordinate to image coordinate

The transformation from the camera coordinate system to the image coordinate

system belongs to the perspective projection transformation, and it is transformed

from 3D to 2D.

Abbreviations 45

Figure 3.12: Camera coordinate to image coordinate

This transformation can be represented by the following:

Zc

x

y

1

 =

f 0 0 0

0 f 0 0

0 0 1 0

Xc

Yc

Zc

1

 (3.24)

• Image coordinate to pixel coordinate. This transformation is different from the

previous coordinate system transformation. At this time, there is no rotation

transformation, but the coordinate origin position is not the same, and the size is

not the same. Then design the telescopic transformation and translation transfor-

mation.

Figure 3.13: Image coordinate to pixel coordinate

Abbreviations 46

The transformation is represented by the formula:
u

v

1

 =

1/(dx) 0 u0

0 1/(dy) v0

0 0 1

X

Y

1

 (3.25)

3.4.1 3D head pose estimation

Face pose estimation is mainly to obtain the angle information of the face orientation

and position with respect to the camera. The face orientation information obtained in

this research is represented by three Euler angles (pitch, yaw, roll).

Figure 3.14: Euler angles

• Pitch: pitch angle, which means that the object rotates around the x-axis.

• Yaw: yaw angle, which means that the object rotates around the y-axis.

• Roll: roll angle, which means that the object rotates around the z-axis.

There are four steps to calculate the three Euler angles:

• Use face detection and Dlib landmark detection to obtain the 2D locations of n

key points in a face image (n can be defined according to its tolerance for accuracy,

here we select 6 key points).;

Abbreviations 47

Figure 3.15: Dlib detection

• Select 6 key points in a 3D face model. This research defines a 3D face model with

6 key points (left eye, right eye, nose tip, Left mouth corner, right mouth corner

and jaw);

• Camera calibration

• Solve the rotation vector using OpenCV’s solvePnP function;

• Convert the rotation vector to Euler angle.

• Calculate the face location.

3.4.2 Dlib landmark detection

We can use Dlib landmark detector to detect 68 key points in human’s face. According

to the 6 3D points we select above, the 6 2D points should be:

• Nose: points(30)

• Chin: points(8)

• Left eye corner: points(36)

Abbreviations 48

• Right eye corner: points(45)

• Left mouth corner: points(48)

• Right mouth corner: points(54)

3.4.3 Define 6 key points of a 3D face model

In this method, we need to find the 3D locations of the 6 key points selected in a 2D

image. There are two ways to find the 3D locations of the key points. One is to build a

3D face model for the people in the image. The other way is to use a generic 3D face

model. We use the following 3D points in this research [66]:

• Nose (0.0,0.0,0.0)

• Chin (0.0, -330.0, -65.0)

• Left eye corner (-225.0, 170.0, -135.0)

• Right eye corner (225.0, 170.0, -135.0)

• Left mouth corner (-150.0, -150.0, -125.0)

• Right mouth corner (150.0, -150.0, -125.0)

Figure 3.16: 6 key points in human’s face

Abbreviations 49

3.4.4 Camera calibration

The world we live in is three-dimensional, and the photos are two-dimensional, so we

can think of the camera as a function, the input is a scene, and the output is a grayscale

image. The goal of camera calibration is to find a suitable mathematical model and find

the parameters of this model. Then we can use the mathematical model to approximate

the process from the 3D world to the 2D image. This approximation process is called

”camera calibration”. We use simple mathematical models to express complex imaging

processes and find the inverse process of imaging. The camera after calibration can

reconstruct the three-dimensional scene, which is also called the perception of depth.

We have known the 3D locations of the 6 key points and their 2D positions in the

image of the human face. Then 3D-points could be projected on the 2D image. To

find the relationship between the points of a 3D face model in the real world and its

corresponding 2D-points in the image, we have to build a mathematical model of the

camera imaging. These parameters of the mathematical model are camera parameters.

There are two kinds of parameters of the camera, which are intrinsic parameters and

extrinsic parameters. Intrinsic parameters refer to focal length, optical center and radial

distortion coefficients. The rotation and translation of the camera relative to the world

coordinate system are the extrinsic parameters [67]. The focal-length and optical center

can be estimated. In this method, the focal-length is the image width in pixels and the

optical center is the image center [66]. The distortion coefficients are set to zero. Then

we can get intrinsic parameters of the camera. the function below is showing the camera

intrinsic matrix :

k =

fx s x0

0 fy y0

0 0 1

 (3.26)

Among them, fx and fy are the focal lengths. In general, they are equal. Here fx = fy =

image width. x0 and y0 are the main point coordinates (relative to the imaging plane).

In this method, x0 = image width/2 and y0 = image height/2. s is the coordinate axis

tilt parameter, and ideally 0.

The distortion coefficients in this research is defined as:

d =

0

0

0

0

 (3.27)

Abbreviations 50

Extrinsic parameters can be calculated by PnP(Perspective-n-Point) algorithm. When

we know n 3D space points and their projection points in a 2D image, PnP is a problem

of estimating the positions of the points in the camera coordinate system. The PnP

problem has several solutions, such as P3P, EPnP, Direct Linear Transform (DLT) and

Levenberg-Marquardt optimization [68]. This research will use Levenberg-Marquardt

optimization and EPnP to solve PnP problem. The results of these two methods will

be compared.

• Levenberg-Marquardt optimization

In the solution of Levenberg-Marquardt optimization, the rotation matrix and

the translation vector are chosen randomly firstly. Then project the 6 points

in the 3D world space to the 2D image using the selected rotation matrix and

translation vector. Then calculate the errors between the projected points and the

2D coordinate points extracted by the feature point extraction algorithm. Finally,

the rotation matrix and the translation vector could be found by using the iteration

algorithm. The iteration is based on Levenberg-Marquardt optimization and the

optimization is performed by minimizing the function below [69]:

F (x) =
n∑
i=1

f(Mi, k1, k2, p1, p2, Ri, ti) =
n∑
i=1

(udi − uj)2 + (vdi − vi)2 (3.28)

Among them, (udi, vdi) is the projected 2D points. (uj , vi) is the actual coordinates

of the points. k1, k2, p1, p2 are the distortion coefficients, and they are set to zero.

Then we use Levenberg-Marquardt optimization to minimize the function F(x). A

Jocobian matrix is defined follows in Levenberg-Marquardt optimization:

J(xk) =

∂F
∂x0

... ∂F
∂xn

...
∂F
∂x0

... ∂F
∂xn

 (3.29)

The step length for Levenberg-Marquardt optimization is [69]:

dk = −(J(xk)
TJ(xk) + uI)−1J(xk)F (xk) (3.30)

Among them, I is the unit matrix. u is the Levenberg-Marquardt parameter. The

iteration steps are as follows [69]:

1. Set the parameter u and accuracy ε;

2. Calculate F(x) and J(x);

3. Calculate dk, and xk+1 = xk + dk;

Abbreviations 51

4. If F (xk+1) < F (xk) and ||dk|| < ε stop the iteration. If F (xk+1) < F (xk)

and ||dk|| ≥ ε, set u=u/10 and go to step 2;

5. If F (xk+1) ≥ F (xk), set u = 10u and calculate dk, go to step 4.

Finally we can get the extrinsic parameters of the camera.

• EPnP

The EPnP solution was proposed by the paper [70]. Compared with Levenberg-

Marquardt optimization, EPnP is a non-iterative algorithm. There are at least 4

key points used in the EPnP algorithm. The world coordinates of each point are

expressed by a weighted sum of virtual control points. Besides, we use four virtual

control points and theses points must be non-coplanar.

The world coordinates of the key points are:

Pi, i = 1, ..., n. (3.31)

The expressions of the 4 control points are as follows:

Cj , j = 1, 2, 3, 4 (3.32)

The relationship between the key points in the world coordinates and the control

points is as follows:

Pwi =

4∑
j=1

αijC
w
j , with

4∑
j=1

αij = 1 (3.33)

This relationship could also be expressed as follows:

[
Pwi

1

]
=

[
Cw1 Cw2 Cw3 Cw4

1 1 1 1

]
αw1

αw2

αw3

αw4

 (3.34)

The points in camera coordinates could be expressed as:

P ci =
4∑
j=1

αijC
c
j (3.35)

In the formulas above, w means that the points coordinates are expressed in the

world coordinate system, c means that the points coordinates are expressed in the

camera coordinate system, and αij are homogeneous barycentric coordinates.

Abbreviations 52

To increase the stability of the solution, the first control point is the centroid of

the key points, which is:

Cw1 =
1

n

n∑
i=1

Pwi (3.36)

The remaining three points are aligned with the main axis direction. First, we

need to calculate the matrix:

A =

(Pw1)T − (Cw1)T

...

(Pwn)T − (Cw1)T

 (3.37)

Then calculate the three eigenvalues λ1, λ2 and λ3 of ATA. The eigenvectors for

the three eigenvalues are v1, v2, v3. The remaining three points are expressed as:

Cw2 = Cw1 +
√

λ1
n v1

Cw3 = Cw1 +
√

λ2
n v1

Cw4 = Cw1 +
√

λ3
n v1

(3.38)

So far, we know the locations of these 4 control points in the world space, and the

homogeneous barycentric positions of each 3D point. If we can solve the coordi-

nates of the 4 control points in the camera coordinate system, we can calculate

the coordinates of these 3D points in the camera coordinate system, and then we

can solve the camera external parameters.

We have known the 3D key points Pi, the projection of the 3D key points on

the pixel plane Ui(ui, vi), the camera intrinsic matrix K and the scalar projective

parameters wi. We can get:

wi

[
Ui

1

]
= KPi = K

4∑
j=1

aijC
c
j (3.39)

The formula above could also be expressed as:

wi

[
Ui

1

]
=

fx 0 cx

0 fy cy

0 0 1

 4∑
j=1

aij

xcj

ycj

zcj

 (3.40)

Then we can get the following formula:

∑
j = 14(αijfxx

c
j + αij(cx − ui)zcj) = 0∑

j = 14(αijfyy
c
j + αij(cy − vi)zcj) = 0

(3.41)

Abbreviations 53

In the formula above, the homogeneous barycnetric coordinates α, the camera

intrinsic parameters fx, fy, cx, cy, the 2D points (ui, vi) are known variables.

Unknown variables are the positions of these 4 control points in the camera space,

xci , y
c
i and zci . There are a total of 12 unknown parameters. One point can

determine 2 equations. All the points can form a linear equation:

Mx = 0 (3.42)

Among the equation, x represents the 12 unknown parameters and the size of M

is 2n x 12. Then, the solution of the above equation is:

x =
N∑
i=1

βiVi (3.43)

Vi is the right singular vector of M and the corresponding singular value is 0. The

specific solution method is to find the eigenvalues and eigenvectors of MTM , and

the eigenvectors with eigenvalues of 0 are Vi. Note that no matter how many point

pairs, the size of MTM is always 12 x 12. The next question is how to determine

the coefficient β and there are four cases for the question:

1. N=1

x = βV (3.44)

2. N=2

x = β1V1 + β2V2 (3.45)

3. N=3
Lβ = ρ

L = [V1, V2, V3]

β = [β11, β12, β13, β22, β23, β33]

(3.46)

4. N =4
Lβ = ρ

L = [V1, V2, V3]

β = [β11, β12, β13, β14, β22, β23, β24, β33, β34, β44]

(3.47)

At this point, the initial values of β1, β2, β3 and β4 are solved. Then we use Gauss-

Newton to optimize the results. The equation for Gauss-Newton optimization:

Error(β) =
∑

(i,j) s.t. i<j

(||Cci − Ccj ||2 − ||Cwi − Cwj ||2) (3.48)

Abbreviations 54

The control point coordinates in the camera coordinate system are expressed as:

Cci =
4∑
j=1

βjV
[i]
j (3.49)

Among the equation, V i
j represents a vector of 3 elements occupied by the ith

control point in V.

The steps for calculating camera extrinsic parameters are:

1. Calculate centroid coordinates Centroid coordinates in the camera coordinate

system:

P c0 =
1

n

n∑
i=1

P ci (3.50)

Cnetroid coordinates in the world coordinate system:

Pw0 =
1

n

n∑
i=1

Pwi (3.51)

2. Remove centroid

P c =

(P c1)T − (P cc)T

...

(P cN)T − (P cc)T

 (3.52)

Pw =

(Pw1)T − (Pwc)T

...

(Pwn)T − (Pwc)T

 (3.53)

3. Calculate rotation matrix

H = (P c)TPw (3.54)

The SVD(singular value decomposition) for H is:

[UΣV] = SV D(H) (3.55)

The rotation matrix R is:

R = UV T (3.56)

4. Calculate translation matrix t

t = P cc −RPwc (3.57)

Please note, there are four solutions of β. Therefore, the calculation here is

actually performed four times, and the solution with the smallest reprojection

error is finally selected.

Abbreviations 55

3.4.5 Euler angle

The output of the PnP problem includes a rotation matrix and a translation vector.

Here we need to convert the rotation information into Euler angles.

The rotation matrix is one of the representations of object rotation information, and

it is a common representation in OpenCV. In addition to the rotation matrix, there

are Euler angle, Direction Cosine Matrix, Quaternion, and Axis-Angle. Among these

rotation representation methods, matrix rotation and Euler rotation are two more com-

monly used representation methods. Matrix rotation uses a 4X4 matrix to represent a

transformation matrix rotated around an arbitrary axis. While Euler angles define the

rotation order of the object, how many degrees to rotate about a certain axis. Different

rotation orders will lead to different rotation results.

In this section, we will introduce the method of converting the rotation vector to Euler

angle.

There are two methods to convert the rotation vector to Euler angle:

rotationvector → Quaternion→ Eulerangle (3.58)

rotationvector → rotationmatrix→ Eulerangle (3.59)

1. Convert rotation vector to Quaternion

Any rotation in the 3D world can be expressed by rotating around an axis through

a certain angle, which is the Axis-Angle representation method. We can use a

3D vector (x, y, z) to express an axis, and use θ to represent the rotation angle.

Intuitively, a four-dimensional vector (theta, x, y, z) can represent any rotation in

3D space.

Note that the 3D vector (x, y, z) is only used to indicate the direction of the axis,

so a more compact representation is to use a unit vector to indicate the direction

axis, and the length of the 3D vector to represent the angle value theta. In this

way, a 3D vector (theta * x, theta * y, theta * z) can be used to represent any

rotation in 3D space, provided that (x, y, z) is a unit vector. This is how the

rotation vector is represented.

Quaternion is also a commonly used representation of rotation. Assuming that (x,

y, z) is a unit vector in the axis direction, and theta is the angle turned around

Abbreviations 56

the axis, then the quaternion can be expressed as:

q =

cos(θ/2)

xsin(θ/2)

ysin(θ/2)

zsin(θ/2)

 (3.60)

Because the conversion from quaternion to Euler angle formula is simpler, we will

first convert the rotation vector to quaternion. The codes for this conversion are

as follows:

theta = cv2.norm(rotation_vector, cv2.NORM_L2)

q.w = math.cos(theta / 2)

q.x = math.sin(theta / 2)*rotation_vector[0][0] / theta

q.y = math.sin(theta / 2)*rotation_vector[1][0] / theta

q.z = math.sin(theta / 2)*rotation_vector[2][0] / theta

The quaternion to Euler angle conversion formula is as follows:
ϕ

θ

 =

arctan 2(wx+yz)

1−2(x2+y2)

arcsin(2(wy − zx))

arctan 2(wx+yz)
1−2(x2+z2)

 (3.61)

The result of arctan and arcsin is [-π/2, π/2], which cannot cover all Euler angles,

so atan2 is used instead of arctan:
ϕ

θ

 =

atan2(2(wx+ yz), 1− 2(x2 + y2))

arcsin(2(wy − zx))

atan2(2(wx+ yz), 1− 2(x2 + z2)

 (3.62)

The codes for the conversion from Quaternion to Euler anle are:

void quaterniondToEulerAngle(Quaterniond& qua, double& roll,

double& yaw, double& pitch)

{

double m = qua.y * qua.y;

// pitch

double p1 = +2.0 * (qua.w * qua.x + qua.y * qua.z);

double p2 = +1.0 - 2.0 * (qua.x * qua.x + m);

Abbreviations 57

pitch = std::atan2(p1, p2);

// yaw

double y = +2.0 * (qua.w * qua.y - qua.z * qua.x);

y = y > 1.0 ? 1.0 : y;

y = y < -1.0 ? -1.0 : y;

yaw = std::asin(y);

// roll

double r1 = +2.0 * (qua.w * qua.z + qua.x * qua.y);

double r2 = +1.0 - 2.0 * (m + qua.z * qua.z);

roll = std::atan2(r1, r2);

}

2. Convert rotation vector to rotation matrix When calculating coordinate transfor-

mations, a more convenient representation of rotation is the Rotation Matrix. In

3D space, we use a 3x3 matrix to represent the rotation matrix. The calculation

method for converting Euler angles into a rotation matrix is as follows (Assuming

Euler angles yaw, pitch, and roll are ϕ, θ and ψ):

R(ϕ, θ, ψ) = Rz(ϕ)Ry(θ)Rx(ψ)

=

cosϕcosθ cosϕsinθsinψ − sinϕcosψ cosϕsinθcosψ + sinϕsinψ

sinϕcosθ sinϕsinθsinψ + cosϕcosψ sinϕsinθcosψ − cosϕsinψ
−sinθ cosθsinψ cosθcosψ

(3.63)

Among this,

Rz(ϕ) =

cosϕ −sinϕ 0

sinϕ cosϕ 0

0 0 1

 (3.64)

Ry(θ) =

cosθ 0 sinθ

0 1 0

−sinθ 0 cosθ

 (3.65)

Rx(ψ) =

1 0 0

0 cosψ −sinψ
0 sinψ cosψ

 (3.66)

Abbreviations 58

Figure 3.17: Rotation angle

In this method, we can use Rodrigues function in OpenCV to convert a rotation

vector to rotation matrix. This can be implemented by the following codes:

//rotM is the rotation matrix, rvev is the rotation vector

rotM = new Mat(3,3,CvType.CV_64FC1);

Calib3d.Rodrigues(rvec, rotM);

Another name for the rotation matrix is the Direction Cosine Matrix (DCM),

which is more commonly used in the field of gyro mechanics. The origin of the

name DCM is actually another way of expressing three-dimensional rotation with

three angle values in addition to Euler angles. It is assumed that the vector of the

three coordinate axes is I, J, K when the rigid body starts, and The vector of the

three coordinate axes when the target is facing is i, j, k. Then the rotation can be

represented by the angle between the three coordinate axes and the original coor-

dinate axis, as shown in the figure below: The rotation angle could be calculated

by the following codes:

//rotM is the rotation matrix

double x = Math.Atan2(rotM.get(2, 1)[0],

rotM.get(2, 2)[0]);

double y = Math.Atan2(-rotM.get(2, 0)[0],

Math.Sqrt(rotM.get(2, 1)[0] *

rotM.get(2, 1)[0] +

rotM.get(2, 2)[0] *

rotM.get(2, 2)[0]));

Abbreviations 59

double z = Math.Atan2(rotM.get(1, 0)[0],

rotM.get(0, 0)[0]);

x = x * (180 / Math.PI)+180;

y = y * (180 / Math.PI);

z = z * (180 / Math.PI);

Finally, we can use Quaternion. Euler function in OpenCV to convert the rotation

angles to Euler angles, which is as follows:

glasses.transform.rotation =

Quaternion.Euler((float)x,

(float)y, (float)z);

3.5 QR code

3.5.1 QR code structure

Figure 3.18: The structure of QR code

The picture above shows a basic structure of the QR code. From the figure, we can see

that there are 5 parts in the QR code [71]:

1. Position patterns

In the QR code image, the position patterns are placed at three corners. These

patterns are used for the definition of the location, size and angle of the QR code.

Thus, they can help the scanning device to recognize the code quicker.

Abbreviations 60

2. Version information

This area contains the version information of the QR code.

3. Timing patterns

These patterns are represented by two lines. They are used to calculate the coor-

dinate of a symbol [61].

4. Format information

These patterns are used to define the data format encoded in QR code.

5. Alignment patterns

The scanning device can define the perspective distortion of the QR code image

using alignment patterns.

6. Data and error correction keys

The data contains the code to be saved. They are composed of black squares and

lines, which are named as modules. The number of modules can vary depending

on the amount of information.

3.5.2 QR code decoding

This thesis uses OpenCV QR code detector to do the decode. The positioning in opencv

is based on a fixed ratio of the black and white intervals of the position patterns. This

ratio is 1: 1: 3: 1: 1, that is, five horizontal segments with horizontal or vertical scanning

are regarded as part of the positioning pattern.

Abbreviations 61

Figure 3.19: Ratio of the black and white intervals

The steps to positioning a QR code are as follows:

1. A set of center points of the three position patterns are obtained after horizontal

and vertical scanning.

2. The k-means clustering is applied to iterate the three sets into three center points,

then the center points of the position patterns are obtained.

3. The relationship between the angle and the area is used to determine the order of

the center points.

4. Obtain the outer frame of the position patterns using floodfill function in OpenCV.

Determines the bottom left and top right feature points based on the furthest

diagonal distance, and determine the top left feature points based on the distance

relationship.

5. Use the distance to determine the two points in the lower left and upper right

patterns that are furthest from the upper left corner. The previous feature points

intersect to form the lower right corner feature point.

6. Perform perspective transformation.

7. Decoding.

4
The implementation

4.1 The data

This section will introduce the data used in this project. There are two kinds of data

used in this system, which are 2D glasses images and 3D glasses models. 2D glasses

images are downloaded from google picture. There are a lot of glasses images online.

We can search them in google and download.

3D glasses models can be created using a 3D modelling software, such as C4D and MAYA.

Or you can download free glasses models online. There are many free 3D glasses models

online. Here we will give several websites to download 3D glasses models.

• https://free3d.com/3d-models/glasses

• http://www.cadnav.com/3d/Glasses.html

• https://archive3d.net/?tag=glasses

• https://sketchfab.com/tags/glasses

• https://www.turbosquid.com/Search/3D-Models/free/glasses

Figure 4.1: A website to download 3D glasses models

62

Abbreviations 63

4.2 QR code generator

The idea for the glasses try-on system is that when people scan the QR code of a 2D

glasses image or a 3D glasses model, they will see themselves wearing the glasses in the

camera. Thus, we need to create QR codes for 2D glasses images and 3D glasses models

firstly. There are many free QR code generators online. Here we will give an example

to generate a QR code:

1. Find the URL: https://www.the-qrcode-generator.com/

Figure 4.2: QR generator

2. Select a category you’d like to enter, here we use ”FREE TEXT”.

3. Input the text you want to save in the QR generator.

Figure 4.3: Selct a category and enter the text

4. Save the QR code on you device.

Abbreviations 64

Figure 4.4: QR code

4.3 QR code reader

Here are the codes to read a QR code using OpenCV:

// load a QR code image.

Texture2D img = Resources.Load ("QR") as Texture2D;

Mat imgMat = new Mat (img.height,

img.width, CvType.CV_8UC4);

Utils.texture2DToMat (img, imgMat);

Mat grayMat = new Mat ();

Imgproc.cvtColor (imgMat, grayMat, Imgproc.COLOR_RGBA2GRAY);

// Detect

Mat points = new Mat ();

Mat straight_qrcode = new Mat ();

QRCodeDetector detector = new QRCodeDetector ();

bool result = detector.detect (grayMat, points);

//decode

if (result) {

string decode_info = detector.decode (grayMat,

points, straight_qrcode);

Debug.Log (decode_info);

}

Abbreviations 65

The QR code detector result is as follows:

Figure 4.5: Decode result

4.4 2D glasses try-on system

In this section, we will talk about the details to complete the 2D try-on system. To fit

the glasses image to human face, we need to do image segmentation, contour extraction

and filling, head pose estimation and glasses rotation.

4.4.1 Image segmentation

We use canny detection to segment the glasses image, here are the codes for canny

detection:

//canny edge detection

Mat grayMat = new Mat();

Mat edge = new Mat();

//rgbaMat is the original image

Imgproc.cvtColor(rgbaMat, grayMat, Imgproc.COLOR_RGBA2GRAY);

OpenCVForUnity.ImgprocModule.Imgproc.blur(grayMat, edge,

new Size(3, 3));

OpenCVForUnity.ImgprocModule.Imgproc.Canny(grayMat, edge,

Abbreviations 66

100, 300, 3);

The results for image segmentation are:

Abbreviations 67

(a) Original glasses image 1

(b) Edge detection result 1

(c) Original glasses image 2

(d) Edge detection result 2

Figure 4.6: Canny detection results

Abbreviations 68

4.4.2 Contour extraction and contour filling

In the image segmentation section, we use Canny edge detection to find the glasses

edges. But we haven’t extracted the glasses image in the picture. In this section, we use

contour extraction method to further process the picture we got from image segmentation

section.

We use findContour and drawContour methods in OpenCV to get the glasses image.

First, we can use findContour method to extract the glasses contour. Then, we fill the

glasses contour by using drawContour.

The codes for Contour extraction and contour filling are:

//Gaussian filtering

Imgproc.GaussianBlur(edge, edge, new Size(3, 3), 3, 3);

Mat img = new Mat();

Imgproc.threshold(edge, img, 0, 255, Imgproc.THRESH_OTSU);

//find contours of the image

List<MatOfPoint> contours = new List<MatOfPoint>();

Mat hierarchy = new Mat();

Imgproc.findContours(img, contours, hierarchy,

Imgproc.RETR_EXTERNAL,

Imgproc.CHAIN_APPROX_NONE, new Point(0, 0));

//drawcontours

Mat drawImage = Mat.zeros(rgbaMat.size(), CvType.CV_8UC1);

Debug.Log("contoours: " + contours.Count);

//only one contour

double area = Imgproc.contourArea(contours[0]);

Imgproc.drawContours(drawImage, contours, 0,

new Scalar(255, 255, 255), -1);

Abbreviations 69

(a) contour result 1

(b) Contour result 2

Figure 4.7: Contour extraction results

(a) Contour filling result 1

(b) Contour filling result 2

Figure 4.8: Contour filling results

Abbreviations 70

4.4.3 Head pose estimation and glasses rotation

This section will introduce the method to estimate the user’s head pose information.

There are three issues that need to be considered: face rotation, glasses rotation and

glasses image scaling.

4.4.3.1 Face rotation

As people’s face rotation may be flexible, we need to figure out face rotation in a 2D

coordinate system. The rotation can be expressed by the angle between the line where

the two eyes are located and the horizontal direction, which are:

• Left eye coordinates: (x1,y1)

• Right eye coordinates: (x2,y2)

Angle = atan(
x2− x1

y2− y1
)
180

π
(4.1)

4.4.3.2 Glasses image rotation

Glasses rotation refers to rotating the glasses image around a certain point in a 2D

coordinate system. As the glasses may be rotated in the original image, we need to

figure the original glasses rotation firstly. We have figure out the contour of the glasses

in the image in section 3.3.3. In this section, we use the minimum bounding rectangle

to calculate the original glasses rotation.

Abbreviations 71

Figure 4.9: Bounding Rectangle

In the picture above, the green rectangle is a bounding rectangle of the image. The red

rectangle is the minimum bounding rectangle of the image. In this research, we will use

the red rectangle to find the glasses rotation in the original glasses image.

Here we use minAreaRect function in OpenCV. From this function, we can get the center

point, height, width and angle of the minimum bounding rectangle. Note that, in the

minAreaRect function, the width and height of the rectangle are not defined by length.

When the x-axis rotates counterclockwise, the first side of the rectangle that the x-axis

encounters is the width of the rectangle. The other side is the height of the rectangle.

The rotation angle θ is the angle between the x-axis and width of the rectangle. Besides,

The rotation angle is obtained by rotating counterclockwise around the x-axis. So the

angle θ ranges from -90 degrees to 0. Here we need to figure out the correct rotation

angle. We assume that the width of the glasses image should be longer than the height

of the glasses image. In the result of the minAreaRect function, if the width is longer

than the height, the image is rotated counterclockwise and the rotation angle is right.

If the width is shorter than the height, the image is rotated clockwise and the rotation

angle = 90 + rotation angle (rotation angle > 0).

Abbreviations 72

Figure 4.10: The rotation angle of minAreaRect function

The codes to find the original glasses rotation angle are as follows:

//draw the minmum rectangle

MatOfPoint2f contourPoints = new

MatOfPoint2f(contours[0].toArray());

RotatedRect minRect = Imgproc.minAreaRect(contourPoints);

minRectWidth = minRect.size.width;

minRectHeight = minRect.size.height;

//the width of sunglasses > the height of sunglasses

double glassangle=minRect.angle;

if (minRectHeight > minRectWidth)

{

double a = minRectHeight;

minRectHeight = minRectWidth;

minRectWidth = a;

if (glassangle < 0)

glassangle = 90 + glassangle;

}

Debug.Log("glassangle: " + glassangle);

glassCenter = minRect.center;

Debug.Log("min width: " + minRectWidth +

" height: " + minRectHeight);

Abbreviations 73

Then we need to rotate the glasses image to fit the user’s face. The simplest example of

two-dimensional rotation is the rotation around the coordinate origin, as shown in the

following figure:

Figure 4.11: Image rotation around the coordinate origin

In the picture above, the point v(x, y) is the point before rotation, and v’(x’, y’) is the

point after rotation. The rotation angle is θ. The angle φ is the angle between the vector

from point v to the origin point and the x axis. r represents the distance between the

origin point and point v. The expression of the coordinate of point v can be defined as

follows:

x = rcosφ (4.2)

y = rsinφ (4.3)

The coordinate of point v’ is expressed as:

x′ = rcos(θ + φ) (4.4)

y′ = rsin(θ + φ) (4.5)

Then the relationship between point v and point v’ can be represented by the following

formula: [
x′

y′

]
=

[
cosθ −sinθ
sinθ cosθ

]
∗

[
x

y

]
(4.6)

When the image is rotated around an arbitrary point, we need to move the origin point

from the upper left corner to the rotation center (x0, y0) firstly. Then rotate the picture

Abbreviations 74

and the rotation center is the origin point. After the rotation is completed, transform

the coordinate origin to the upper left corner of the rotated image.

Figure 4.12: Image rotation around an arbitrary point

The formula used to rotate point v (x, y) to point v’(x’, y’) is as follows:

[
x′

y′

]
=

[
cosθ −sinθ x0 − x0cosθ + y0sinθ

sinθ cosθ y0 − x0sinθ + y0cosθ

]
x

y

1

 (4.7)

We can define the rotation matrix M as:

M =

[
cosθ −sinθ x0(1− cosθ) + y0sinθ

sinθ cosθ y0(1− cosθ) + x0sinθ

]
(4.8)

In OpenCV, we use the getRotationMatrix2D function to find the rotation matrix M

and use the warpAffine function to get the rotated image. The codes for image rotation

are as follows:

//Calculate the image size after rotation

//The picture is rotated around the center of the glasses image

Rect newRect = new RotatedRect(glassCenter,

new Size(glassesImage.width(),

glassesImage.height()), -angle).boundingRect();

Abbreviations 75

Mat affine_matrix = Imgproc.getRotationMatrix2D(glassCenter,

-angle, 1.0);

//Adjust rotation center to the center of the rotated image,

//otherwise you will get only part of the result

double a = affine_matrix.get(1, 2)[0] +

(newRect.width / 2 - glassCenter.x);

double b = affine_matrix.get(0, 2)[0] +

(newRect.height / 2 - glassCenter.y);

affine_matrix.put(0, 2, b);

affine_matrix.put(1, 2, a);

//Get the rotated image

Imgproc.warpAffine(glassesImage, rotatedImage,

affine_matrix, newRect.size());

4.4.3.3 Image scaling

Image scaling is the last step in the design of the system. After image rotation, we need

to resize the glasses image. Here we use the resize function in OpenCV to scale the

image. (x, y) is the position of the pixel in the original image. The width and height

of the image before rotation are w1 and h1. (x’, y’) is the point after rotation. w2 and

h2 are the width and height of the rotated image. Then the coordinate transformation

formulas in the image are as follows:

x′ = x
w2

w1
(4.9)

y′ = y
h2

h1
(4.10)

4.5 3D glasses try-on system

The implementation of the 3D glasses try-on system is different from the 2D glasses

try-on system. We need to convert the user’s head location from a 2D world to a 3D

world. This section will introduce the methods to calculate the user’s 3D head location.

Abbreviations 76

4.5.1 3D head location

When a person’s head rotates and moves in the camera, we need to find its new position

in the 3D coordinate. This involves the coordinate transformation. If a person’s head

moves, We can get the pixel coordinates of the 6 key points by Dlib detector and we

have defined the world coordinates of these points. But we do not know their camera

coordinates. In this section, we need to calculate the world coordinates of the 6 points.

As we have talked about the conversion of the points from world space to camera space

before. The formula of this conversion is as follows:
Xc

Yc

Zc

1

 =

[
R T

0 1

]
Xw

Yw

Zw

1

 (4.11)

In this formula, (Xc, Yc, Zc) is the camera coordinate of the key point, and (Xw, Yw, Zw)

is the world coordinate of the key point. R is the rotation matrix and T is the translation

matrix. The codes to convert the world coordinate of a key point to camera coordinate

are as follows:

//camera position

Mat cameraPosition = new Mat(3, 1, CvType.CV_64FC1);

//rt is rotation and translation matrix

Mat rt = new Mat(3, 4, CvType.CV_64FC1);

List<Mat> ad = new List<Mat>();

//rotM is rotation matrix

ad.Add(rotM);

//tvec is translation matrix

ad.Add(tvec);

Core.hconcat(ad, rt);

//point is the world position of a key point

cameraPosition = rt * point;

//M is the affine transformation

M.SetRow(0, new Vector4((float)rotM.get(0, 0)[0],

(float)rotM.get(0, 1)[0],

(float)rotM.get(0, 2)[0],

(float)cameraPosition.get(0, 0)[0]));

Abbreviations 77

M.SetRow(1, new Vector4((float)rotM.get(1, 0)[0],

(float)rotM.get(1, 1)[0],

(float)rotM.get(1, 2)[0],

(float)cameraPosition.get(1, 0)[0]));

M.SetRow(2, new Vector4((float)rotM.get(2, 0)[0],

(float)rotM.get(2, 1)[0],

(float)rotM.get(2, 2)[0],

(float)cameraPosition.get(2, 0)[0]));

M.SetRow(3, new Vector4(0, 0, 0, 1));

//set the glasses rotation and position on user’s face

//convert right-handed to left-handed system coordinate

ARM = ARcamera.transform.localToWorldMatrix *

invertYM * transformationM * invertZM;

if (sunglasses != null)

{

ARUtils.SetTransformFromMatrix(sunglasses.transform, ref ARM);

sunglasses.SetActive(true);

}

5
Results and Discussion

5.1 Initial Results

In the next sections, we will show the results we got both from the 2D and 3D glasses

try-on system. Furthermore we will compare these results and discuss their advantages

and disadvantages.

5.1.1 Results of 2D glasses try-on system

This section will show the results of the glasses try-on system using glasses images.

5.1.1.1 Results of glasses image segmentation

Glasses image segmentation is the first and essential part for the 2D glasses try-on

system. Here shows several different glasses pictures segmentation results.

Figure 5.1: Glasses 1

78

Abbreviations 79

Figure 5.2: Glasses 2

Figure 5.3: Glasses 3

Figure 5.4: Glasses 4

Figure 5.5: Glasses 5

Abbreviations 80

Figure 5.6: Glasses 6

The segmentation for these glasses image are as follows:

Figure 5.7: Segmentation result 1

Figure 5.8: Segmentation result 2

Figure 5.9: Segmentation result 3

Abbreviations 81

Figure 5.10: Segmentation result 4

Figure 5.11: Segmentation result 5

Figure 5.12: Segmentation result 6

As we can see from these images, the segmentation results are not perfect. In glasses2

and glasses5, a small part of the background could not be removed. What’s more, there

are some glasses images that can’t be processed by using this segmentation method,

such as the following pictures:

Abbreviations 82

(a) Glasses 7

(b) Glasses 8

Figure 5.13: Glasses images can’t be processed

The segmentation results of those pictures are:

(a) Glasses 7

(b) Glasses 8

Figure 5.14: False results

Abbreviations 83

What these pictures have in common is that the color of the glasses is similar to the

background color.

5.1.1.2 Glasses try-on results

Figure 5.15: 2D glasses try-on result 1

Figure 5.16: 2D glasses try-on result 2

Abbreviations 84

Figure 5.17: 2D glasses try-on result 3

Figure 5.18: 2D glasses try-on result 4

Figure 5.19: 2D glasses try-on result 5

Abbreviations 85

Figure 5.20: 2D glasses try-on result 6

5.1.2 Results of 3D glasses try-on system

1. 3D glasses try-on results using Levenberg-Marquardt optimization

(a) (b)

(c) (d)

Figure 5.21: 3d glasses try-on results using Levenberg-Marquardt optimization 1

Abbreviations 86

The transparency of the glasses could also be changed in Unity and that allows

users to feel more real.

(a) (b)

(c) (d)

(e) (f)

Figure 5.22: 3d glasses try-on results using Levenberg-Marquardt optimization 2

2. 3D glasses try-on results using EPnP

Abbreviations 87

(a) (b)

(c) (d)

(e) (f)

Figure 5.23: 3d glasses try-on results using EPnP 1

Abbreviations 88

(a) (b)

(c) (d)

Figure 5.24: 3d glasses try-on results using EPnP 2

5.2 Discussion

This thesis uses two methods to complete the glasses try-on system. This system uses

the front and rear cameras of the mobile phone. Users use the rear camera to detect a

QR code and the system can load the glasses model according to the QR code. Then

users can see themselves wearing glasses in the front camera. These QR codes can be

shown on magazines. When people see glasses on magazines, they can scan the QR

codes and try on these glasses. This is the advantage of using front and rear cameras in

this system. Both the two glasses try-on methods have advantages and disadvantages.

There are mainly two disadvantages of the 2D glasses try-on system.

1. Selection of the glasses pictures

Users can download glasses pictures online or take a picture of glasses by them-

selves, but there are many limits. Because the selection of the glasses images

is important, and this will directly affect the glasses try on results. Firstly, the

Abbreviations 89

glasses image must be high resolution. Secondly, the background in the picture

and the glasses image should not be too similar. Besides, if users use their own

camera to take glasses photos, the camera must be HD camera.

2. Image segmentation

In this thesis, the image segmentation result for the glasses. In some cases, the

segmentation method used in this thesis can’t remove all the background in the

glasses picture. It is hard to do the segmentation perfectly.

However, the 2D glasses try-on system also has advantages:

1. People don’t need to build 3D glasses models for this system.

2. There isn’t any database to store the 3D glasses models.

Compared to the 2D glasses try-on system, the 3D glasses try-on system need to build a

database to store these 3D glasses models. And users can’t try the glasses that are not

in the system database. But the advantages of the 3D glasses try-on system are more

obvious. Users can see themselves wearing glasses more realistically, and more people

will be happy to use 3D glasses try-on system. The results also show that using EPnP

method in camera calibration gives better and more accurate results.

5.3 Aspects that need improvement

1. The 2D glasses segmentation result need to improve. As we can see from the

glasses segmentation results, there are many problems. In some of the pictures,

the glasses were removed. And a part of the background in the pictures couldn’t

be removed. These problems will give users a bad experience. In order to improve

these results, we can use other segmentation methods. Deep learning is famous

in solving computer vision problems and it can improve the accuracy of image

segmentation effectively. Fully Convolutional Networks (FCN) is an example of

the deep learning method for image segmentation and it is said that FCN is the

first deep learning method used for image semantic segmentation. Semantic image

segmentation enables pixel-level classification. Other image segmentation methods

using deep learning include SegNet, Dilated Convolutions, DeepLab, RefineNet,

PSPNet and Large Kernel Matters.

2. Users must use the existing 3D models in the system.

Abbreviations 90

In the 3D glasses try-on system, users must use the existing 3D models in the

system. They can’t use their own 3D glasses models to try on glasses. And the

3D models in the database are also limited.

6
Conclusion and Future Works

6.1 Conclusion

When people shop glasses online, they can’t try on the glasses and they don’t know if

the glasses fit them or not. When people buy sunglasses in a store, they find that it is

hard to see themselves wearing sunglasses in the mirror. When people read a fashion

magazine, they see the sunglasses and they may want to try on the sunglasses. In order

to solve these problems, this thesis proposed a glasses try-on system using AR technique.

People can put a QR code of the sunglasses on the magazine. The readers can scan the

QR code and try on the sunglasses on their phone. So this thesis develops two glasses

try-on systems: 2D and 3D glasses try-on systems.

In the first system, users can scan a glasses picture or download a picture online, then

use the system to try on the glasses. The system also has functions of glasses detection

and glasses image segmentation. In order to get a good result, the glasses picture must

be in high resolution. What is more, the color of the glasses image and the background

color must be different. It is hard for the system to do the segmentation if their colors

are too similar.

In the second system, users can scan a QR code, can then they will see themselves

wearing glasses in the camera. But the glasses model must be stored in the system.

People can’t use or upload their own 3D glasses models. This system has an advantage

is that people can see themselves in 3D space, which will make users feel more real and

give users a good try on experience.

91

Abbreviations 92

6.2 Future Work

There is two main work to do in the future: improve image segmentation results and

improve the functions of the 3D glasses try-on system.

As we talked in section 4, we need to improve the image segmentation method for the

glasses picture. Nowadays, there are so many advanced learning algorithms that already

applied in image segmentation and they work very well. Some articles have shown that

CNN has a good performance on image segmentation [72][73][74]. In the future, the

research can focus on how to improve the image segmentation result by using deep

learning.

For the 3D glasses try-on system, whether it can be combined with web. This means

that we store 3D glasses models online. Users can upload new 3D models and use them

in the try-on system.

By the way, Augmented Reality Technology is not only suitable for online shopping for

glasses. My project is just a simple AR application for glasses try on. For the future

work, there are so many things we can do, such as we can make a try-on system for the

clothes, accessories and cosmetic. Girls can immediately see what they look like when

they get dressed. For that case, we can design an application for the online shopping

platform, it can make more people apply our products so that they can buy what they

want.

Bibliography

[1] Rick Van Krevelen. Augmented reality: Technologies, applications, and limitations.

04 2007.

[2] Steven Feiner, Blair Macintyre, Tobias Höllerer, and Anthony Webster. A touring

machine: Prototyping 3d mobile augmented reality systems for exploring the urban

environment. volume 1, pages 74–81, 12 1997. doi: 10.1007/BF01682023.

[3] Marios Bikos, Yuta Itoh, Gudrun Klinker, and Konstantinos Moustakas. An inter-

active augmented reality chess game using bare-hand pinch gestures. 2015. doi:

10.1109/cw.2015.15.

[4] Julio Cristian Young, Marcel Bonar Kristanda, and Seng Hansun. Armatika: 3d

game for arithmetic learning with augmented reality technology. 2016. doi: 10.

1109/iac.2016.7905744.

[5] Fabricio Pretto, Isabel Harb Manssour, Maria H. Itaqui Lopes, and Marcio S. Pinho.

Experiences using augmented reality environment for training and evaluating med-

ical students. 2013. doi: 10.1109/icmew.2013.6618311.

[6] Jeffrey Goderie, Rustam Alashrafov, Pieter Jockin, Lu Liu, Xin Liu, Marina A.

Cidota, and Stephan G. Lukosch. [poster] chirochroma: An augmented reality

game for the assessment of hand motor functionality. 2017.

[7] Yu-I Yang, Chih-Kai Yang, and Chih-Hsing Chu. A virtual try-on system in aug-

mented reality using rgb-d cameras for footwear personalization. Journal of Man-

ufacturing Systems, 33(4):690–698, 2014.

[8] Pei-Hsuan Chiu, Po-Hsuan Tseng, and Kai-Ten Feng. Interactive mobile augmented

reality system for image and hand motion tracking. IEEE Transactions on Vehicular

Technology, 67:9995–10009, 2018.

[9] Joao Monge and Octavian Postolache. Augmented reality and smart sensors for

physical rehabilitation. 2018. doi: 10.1109/icepe.2018.8559935.

[10] Etonam Amelessodji, Giulio Di Gravio, Patrick Kuloba, and Jackson G. Njiri. Aug-

mented reality (ar) application in manufacturing encompassing quality control and

maintenance. International Journal of Engineering and Advanced Technology Reg-

ular Issue, 9(1):197–204, 2019. doi: 10.35940/ijeat.a1120.109119.

[11] Inc Prism Visual Software. Mobile devices. URL http://www.prismvs.com/

handheld-devices.php.

93

http://www.prismvs.com/handheld-devices.php
http://www.prismvs.com/handheld-devices.php

Bibliography 94

[12] Dp. URL https://www.amazon.com/dp/B01MQWK336?tag=picclick0f-20&

linkCode=osi&th=1&psc=1.

[13] Jual promo ready glyph avegant..personal theather. URL https://www.

tokopedia.com/avegant/promo-ready-glyph-avegant-personal-theather.

[14] Inspired vr headsets, Nov 2016. URL http://charlesayats.fr/

best-vr-headset/.

[15] Sunitha M. R, Fathima Khan, Gowtham Ghatge R, and Hemaya S. Object detection

and human identification using raspberry pi. 2019 1st International Conference on

Advances in Information Technology (ICAIT), 2019. doi: 10.1109/icait47043.2019.

8987398.

[16] Si Liu, Luoqi Liu, and Shuicheng Yan. Magic mirror: An intelligent fashion recom-

mendation system. 2013. doi: 10.1109/acpr.2013.212.

[17] Xbox one kinect sensor, . URL https://www.gamesmen.com.au/

xbox-one-kinect-sensor.

[18] Andrea Vitali and Caterina Rizzi. Acquisition of customer’s tailor measurements for

3d clothing design using virtual reality devices. Virtual and Physical Prototyping,

13(3):131–145, 2018. doi: 10.1080/17452759.2018.1474082.

[19] Canny edge detection. URL https://docs.opencv.org/3.1.0/da/d22/

tutorial_py_canny.html.

[20] Florentin Alexandru Dita. A foreign language learning application using mobile

augmented reality. Informatica Economica, 20(4/2016):76–87, 2016.

[21] Samrat Nath. Understanding the rise of augmented reality–based apps post-

pokémon go. Interactions: Studies in Communication Culture, 9:319–334, 11 2018.

doi: 10.1386/iscc.9.3.319 1.

[22] Boping Zhang. Design of mobile augmented reality game based on image recogni-

tion. Eurasip Journal on Image Video Processing, 2017(1):90, 2017.

[23] Giovanni Piumatti, Andrea Sanna, Marco Gaspardone, and Fabrizio Lamberti. Spa-

tial augmented reality meets robots: Human-machine interaction in cloud-based

projected gaming environments. 2017. doi: 10.1109/icce.2017.7889276.

[24] Nahal Norouzi, Kangsoo Kim, Myungho Lee, Ryan Schubert, Austin Erickson,

Jeremy Bailenson, Gerd Bruder, and Greg Welch. Walking your virtual dog: Anal-

ysis of awareness and proxemics with simulated support animals in augmented

reality. 2019 IEEE International Symposium on Mixed and Augmented Reality (IS-

MAR), 2019. doi: 10.1109/ismar.2019.000-8.

https://www.amazon.com/dp/B01MQWK336?tag=picclick0f-20&linkCode=osi&th=1&psc=1
https://www.amazon.com/dp/B01MQWK336?tag=picclick0f-20&linkCode=osi&th=1&psc=1
https://www.tokopedia.com/avegant/promo-ready-glyph-avegant-personal-theather
https://www.tokopedia.com/avegant/promo-ready-glyph-avegant-personal-theather
http://charlesayats.fr/best-vr-headset/
http://charlesayats.fr/best-vr-headset/
https://www.gamesmen.com.au/xbox-one-kinect-sensor
https://www.gamesmen.com.au/xbox-one-kinect-sensor
https://docs.opencv.org/3.1.0/da/d22/tutorial_py_canny.html
https://docs.opencv.org/3.1.0/da/d22/tutorial_py_canny.html

Bibliography 95

[25] Nahal Norouzi, Gerd Bruder, Jeremy Bailenson, and Greg Welch. Investigating

augmented reality animals as companions. 2019 IEEE International Symposium on

Mixed and Augmented Reality Adjunct (ISMAR-Adjunct), 2019.

[26] Bimo Sunarfri Hantono, Lukito Edi Nugroho, and P. Insap Santosa. Meta-review

of augmented reality in education. 2018. doi: 10.1109/iciteed.2018.8534888.

[27] Muhammad Zahid Iqbal, Eleni Mangina, and Abraham G. Campbell. Exploring

the use of augmented reality in a kinesthetic learning application integrated with an

intelligent virtual embodied agent. 2019 IEEE International Symposium on Mixed

and Augmented Reality Adjunct (ISMAR-Adjunct), 2019.

[28] Jen-Yang Chen, Chuan-Hsi Liu, Chaur-Heh Hsieh, Shih-Yu Huang, Wen-Kai Wang,

and Bo-Hong Nien. Kinect augmented reality gear game design. 2017. doi: 10.

1109/icasi.2017.7988429.

[29] Rui Cao and Yue Liu. Hand controlar: An augmented reality application for learn-

ing 3d geometry. 2019 IEEE International Symposium on Mixed and Augmented

Reality Adjunct (ISMAR-Adjunct), 2019.

[30] Adson Marques Da Silva Esteves, Andre Luiz Maciel Santana, and Rodrigo Lyra.

Use of augmented reality for computational thinking stimulation through virtual.

2019 21st Symposium on Virtual and Augmented Reality (SVR), 2019. doi: 10.

1109/svr.2019.00031.

[31] Ryosuke Umeda, Mohamed Atef Seif, Hiroki Higa, and Yukio Kuniyoshi. A medical

training system using augmented reality. 2017. doi: 10.1109/iciibms.2017.8279706.

[32] Nurul Shuhadah Rosni, Zahidah Abd Kadir, Megat Norulazmi Megat Mohamed

Noor, Zaidatul Husna Abdul Rahman, and Nurulain Abu Bakar. Development

of mobile markerless augmented reality for cardiovascular system in anatomy and

physiology courses in physiotherapy education. 2020 14th International Conference

on Ubiquitous Information Management and Communication (IMCOM), 2020. doi:

10.1109/imcom48794.2020.9001692.

[33] Mark Yi-Cheon Yim, Shu-Chuan Chu, and Paul L. Sauer. Is augmented reality

technology an effective tool for e-commerce? an interactivity and vividness per-

spective. Journal of Interactive Marketing, 39:89–103, 2017.

[34] Mustafa Atalar and Mahmut Ozcan. New augmented reality application in e-

commerce and m-commerce. 2017. doi: 10.1109/ubmk.2017.8093403.

[35] Ihsan Rabbi and Sehat Ullah. A survey on augmented reality challenges and track-

ing. Acta Graphica Journal for Printing Science Graphic Communications, 24

(1-2):29–46, 2013.

Bibliography 96

[36] Piotr Siekański, Jakub Michoński, Eryk Bunsch, and Robert Sitnik. Catcha: Real-

time camera tracking method for augmented reality applications in cultural heritage

interiors. ISPRS International Journal of Geo-Information, 7(12), 2018. ISSN

2220-9964. doi: 10.3390/ijgi7120479. URL http://www.mdpi.com/2220-9964/7/

12/479.

[37] Eric Marchand, Hideaki Uchiyama, and Fabien Spindler. Pose estimation for aug-

mented reality: A hands-on survey. IEEE Transactions on Visualization and Com-

puter Graphics, 22(12):2633–2651, Jan 2016. doi: 10.1109/tvcg.2015.2513408.

[38] Simon Prince, Ke Xu, and Adrian David Cheok. Augmented reality camera tracking

with homographies. IEEE Computer Graphics and Applications, 22:39–45, 2002.

[39] Dragoş Datcu, Stephan Lukosch, and Frances Brazier. On the usability and effec-

tiveness of different interaction types in augmented reality. International Journal

of Humanâcomputer Interaction, 31(3):193–209, 2015.

[40] Anacleto Correia and Victor Conceica. Survey on augmented reality technologies

for naval training. 2019. doi: 10.23919/cisti.2019.8760962.

[41] Oliver Bimber and Ramesh Raskar. Spatial augmented reality: merging real and

virtual worlds. A K Peters, 2005.

[42] Woodrow Barfield. Fundamentals of wearable computers and augmented reality.

CRC Press, Taylor Francis Group, 2016.

[43] Sanni Siltanen. Theory and applications of marker-based augmented reality. VTT,

2012.

[44] International communication association. In Emerging Mobile Methods: Under-

standing Augmented Reality Technologies as a Methodological Intervention, Stimu-

lus, and Object of Study, pages 1–36, 2017.

[45] The connected consumer and the changing face of commerce. URL https://www.

walkersands.com/resources/the-future-of-retail-2017/.

[46] Zheng Shou, Binqiang Yu, Gang Chen, Hengjin Cai, and Qiaochu Liu. Key designs

in implementing online 3d virtual garment try-on system. 2013. doi: 10.1109/iscid.

2013.46.

[47] The premier 3d rendering animation software. URL https://www.

posersoftware.com/.

[48] Congfeng Jiang and Yinghui Zhao. Govfir: Grid computing based online virtual

fitting room. 2008 International Conference on Computer Science and Software

Engineering, 2008. doi: 10.1109/csse.2008.864.

http://www.mdpi.com/2220-9964/7/12/479
http://www.mdpi.com/2220-9964/7/12/479
https://www.walkersands.com/resources/the-future-of-retail-2017/
https://www.walkersands.com/resources/the-future-of-retail-2017/
https://www.posersoftware.com/
https://www.posersoftware.com/

Bibliography 97

[49] Dongjoe Shin and Yu Chen. Deep garment image matting for a virtual try-on

system. 2019 IEEE/CVF International Conference on Computer Vision Workshop

(ICCVW), 2019. doi: 10.1109/iccvw.2019.00384.

[50] Mert Kaya and Devrim Ünay. Dressboard: An embedded virtual try-on system for

ties and bowties. Journal of Signal Processing Systems, 73(2):143–152, Oct 2013.

doi: 10.1007/s11265-013-0738-2.

[51] Marcus Frings. The golden section in architectural theory. Nexus Network Journal,

4(1):9–32, 2002.

[52] Pedro Azevedo, Thiago Oliveira Dos Santos, and Edilson De Aguiar. An augmented

reality virtual glasses try-on system. 2016. doi: 10.1109/svr.2016.12.

[53] Zheng Jun, Hua Jizhao, Tang Zhenglan, and Wang Feng. Face detection based on

lbp. 2017 13th IEEE International Conference on Electronic Measurement Instru-

ments (ICEMI), 2017. doi: 10.1109/icemi.2017.8265841.

[54] Boping Zhang. Augmented reality virtual glasses try-on technology based on ios

platform. EURASIP Journal on Image and Video Processing, 2018(1), 2018.

[55] Volker Blanz and Thomas Vetter. A morphable model for the synthesis of 3d faces.

Proceedings of the 26th annual conference on Computer graphics and interactive

techniques - SIGGRAPH 99, 1999.

[56] Chen Cao, Yanlin Weng, Shun Zhou, Yiying Tong, and Kun Zhou. Facewarehouse:

A 3d facial expression database for visual computing. IEEE Transactions on Visu-

alization and Computer Graphics, 20(3):413–425, 2014. doi: 10.1109/tvcg.2013.249.

[57] Yao Feng, Fan Wu, Xiaohu Shao, Yanfeng Wang, and Xi Zhou. Joint 3d face re-

construction and dense alignment with position map regression network. Computer

Vision – ECCV 2018 Lecture Notes in Computer Science, page 557–574, 2018. doi:

10.1007/978-3-030-01264-9 33.

[58] Davide Marelli, Simone Bianco, and Gianluigi Ciocca. A web application for glasses

virtual try-on in 3d space. 2019 IEEE 23rd International Symposium on Consumer

Technologies (ISCT), 2019.

[59] Khalil M. Ahmad Yousef, Bassam J. Mohd, and Malak Al-Omari. Kinect-based

virtual try-on system: A case study. 2019 IEEE Jordan International Joint Con-

ference on Electrical Engineering and Information Technology (JEEIT), 2019. doi:

10.1109/jeeit.2019.8717498.

Bibliography 98

[60] Miaolong Yuan, Ishtiaq Rasool Khan, Farzam Farbiz, Susu Yao, Arthur Niswar, and

Min-Hui Foo. A mixed reality virtual clothes try-on system. IEEE Transactions on

Multimedia, 15(8):1958–1968, 2013. doi: 10.1109/tmm.2013.2280560.

[61] Ammar Mohammed Ali and Alaa Kadhim Farhan. Enhancement of qr code capacity

by encrypted lossless compression technology for verification of secure e-document.

IEEE Access, 8:27448–27458, 2020. doi: 10.1109/access.2020.2971779.

[62] Weihang Zhang, Xue Wang, Wei You, Junfeng Chen, Peng Dai, and Pengbo Zhang.

Resls: Region and edge synergetic level set framework for image segmentation.

IEEE Transactions on Image Processing, 29:57–71, 2020. doi: 10.1109/tip.2019.

2928134.

[63] A. M. Khan and Ravi S. Image segmentation methods: A comparative study.

[64] Yong Woon Kim, Ah Reum Oh, Innila Rose J, and Addapalli V N Krishna. Ana-

lyzing the performance of canny edge detection on interpolated images. 2019. doi:

10.1109/ictc46691.2019.8939595.

[65] Satya Mallick. Geometry of image formation, Feb 2020. URL https://www.

learnopencv.com/geometry-of-image-formation/.

[66] Satya Mallick. Head pose estimation using opencv and dlib, Sep 2016. URL https:

//www.learnopencv.com/head-pose-estimation-using-opencv-and-dlib/.

[67] Sadekar Kaustubh and Mallick Satya. Camera calibration using opencv, Feb 2020.

URL https://www.learnopencv.com/camera-calibration-using-opencv/.

[68] Xiao Lu. A review of solutions for perspective-n-point problem in camera pose

estimation. Journal of Physics: Conference Series, 1087:052009, 09 2018. doi:

10.1088/1742-6596/1087/5/052009.

[69] Tian Shao-Xiong, Lu Shan, and Liu Zong-Ming. Levenberg-marquardt algorithm

based nonlinear optimization of camera calibration for relative measurement. 2015

34th Chinese Control Conference (CCC), 2015. doi: 10.1109/chicc.2015.7260394.

[70] Vincent Lepetit, Francesc Moreno-Noguer, and Pascal Fua. Epnp: An accurate

o(n) solution to the pnp problem. International Journal of Computer Vision, 81

(2):155–166, 2008.

[71] . URL http://qr.biz/articles/the_structure_of_qr_code/.

[72] Hu Tao, Weihua Li, Xianxiang Qin, and Dan Jia. Image semantic segmentation

based on convolutional neural network and conditional random field. 2018. doi:

10.1109/icaci.2018.8377522.

https://www.learnopencv.com/geometry-of-image-formation/
https://www.learnopencv.com/geometry-of-image-formation/
https://www.learnopencv.com/head-pose-estimation-using-opencv-and-dlib/
https://www.learnopencv.com/head-pose-estimation-using-opencv-and-dlib/
https://www.learnopencv.com/camera-calibration-using-opencv/
http://qr.biz/articles/the_structure_of_qr_code/

Bibliography 99

[73] Wenxiu Wang, Yutian Fu, Feng Dong, and Feng Li. Semantic segmentation of

remote sensing ship image via a convolutional neural networks model. IET Image

Processing, 13(6):1016–1022, Oct 2019. doi: 10.1049/iet-ipr.2018.5914.

[74] Loretta Ichim and Dan Popescu. Road detection and segmentation from aerial

images using a cnn based system. 2018. doi: 10.1109/tsp.2018.8441366.

	Abstract
	Acknowledgements
	List of Figures
	Abbreviations
	1 Introduction
	1.1 Application areas of Augmented Reality
	1.1.1 Applications for entertainment
	1.1.2 Application for education
	1.1.3 Medical applications
	1.1.4 Applications for E-commerce

	1.2 AR challenges
	1.3 Research Goals
	1.4 Thesis structure

	2 Background
	2.1 Augmented Reality
	2.1.1 AR Display technology and devices
	2.1.2 Markers
	2.1.3 Image processing
	2.1.4 Methods of AR implement

	2.2 Software tools
	2.3 AR try-on systems
	2.3.1 Virtual 3D garment try-on systems
	2.3.2 Glasses try on systems
	2.3.3 Magic mirror
	2.3.4 Try on systems using RGB-D sensors

	3 The design
	3.1 Development environment
	3.1.1 OpenCV
	3.1.2 Unity

	3.2 Face detection
	3.3 Glasses try-on system by using 2D glasses pictures
	3.3.1 Glasses detection and image detection
	3.3.2 Image segmentation

	3.4 Glasses try-on system by using 3D glasses models
	3.4.1 3D head pose estimation
	3.4.2 Dlib landmark detection
	3.4.3 Define 6 key points of a 3D face model
	3.4.4 Camera calibration
	3.4.5 Euler angle

	3.5 QR code
	3.5.1 QR code structure
	3.5.2 QR code decoding

	4 The implementation
	4.1 The data
	4.2 QR code generator
	4.3 QR code reader
	4.4 2D glasses try-on system
	4.4.1 Image segmentation
	4.4.2 Contour extraction and contour filling
	4.4.3 Head pose estimation and glasses rotation
	4.4.3.1 Face rotation
	4.4.3.2 Glasses image rotation
	4.4.3.3 Image scaling

	4.5 3D glasses try-on system
	4.5.1 3D head location

	5 Results and Discussion
	5.1 Initial Results
	5.1.1 Results of 2D glasses try-on system
	5.1.1.1 Results of glasses image segmentation
	5.1.1.2 Glasses try-on results

	5.1.2 Results of 3D glasses try-on system

	5.2 Discussion
	5.3 Aspects that need improvement

	6 Conclusion and Future Works
	6.1 Conclusion
	6.2 Future Work

	Bibliography

