
Map Compression for a RFID-Based Two-Dimensional Indoor Navigation
System

Tsung-Chun Tsai

A dissertation submitted to Auckland University of Technology in partial
fulfilment of the requirements for the degree of Master of Computer and

Information Science (MCIS)

2008

School of Computing and Mathematical Sciences

Primary Supervisor: Dave Parry

ATTESTATION OF AUTHORSHIP

“I hereby declare that this submission is my own work and that, to the best of my

knowledge and belief, it contains no material previously published or written by

another person nor material which to a substantial extent has been accepted for

the award of any other degree or diploma of a university or other institution of

higher learning, except where due acknowledgement is made”.

Tsung-Chun Tsai

2008

 i

TABLE OF CONTENTS

 Page

ACKNOWLEDGEMENTS ... iii
ABSTRACT... iv
LIST OF TABLES...v
LIST OF FIGURES ... vii

Chapter 1: Introduction ..1

1.1 Background ...1
1.2 Motivation ..2
1.3 Organization of dissertation ...3

Chapter 2: Literature Review ...5

2.1 Introduction..5
2.2 Challenge and approach of location and navigation5
2.3 Location representation method ..7
2.4 RFID technology..11
2.5 Compression technique...12

2.5.1 LZW ...12
2.5.2 Huffman ...16
2.5.3 Fractal compression...19
2.5.4 MPEG ..22
2.5.5 Wavelet compression...24
2.5.6 Comparison ...28

2.6 Review of location representation..31

Chapter 3: Methodology...35

3.1 Selection of methodology ..35
3.2 Design science ..35

3.2.1 Concept and discussion...35
3.2.2 Design ...37

3.3 Experimental testing ..38
3.3.1 Concept and discussion...38

 ii

3.3.2 Design ...39

Chapter 4: Theoretical Fundamental of the Research.................................41

4.1 Distance...42
4.2 Angle ...46
4.3 Navigation..49

Chapter 5: Experimental Methodology and Results59

5.1 Experiment 1: Distance and angle...60
5.2 Experiment 2: Navigation...75

Chapter 6: Discussion and Conclusion ..86

6.1 Conclusion...86
6.2 Discussion ...87
6.3 Strengths and Limitations ..90
6.4 Future research directions...91

REFERENCES ...92

APPENDICES ..98

 iii

ACKNOWLEDGEMENTS

I wish to express my gratitude to my supervisors, Dr. Dave Parry and Dr. Russel

Pears, for their patience, support, guidance and advice throughout this research.

I would like to thank my wife Linda, my daughter Jasmine, my parents in and

family in Taiwan, and my parents-in-law in China for their support, patience and

love in the process of completing this work.

Sincere thanks are also extended to helpful friends, participants and all staff of

the School of Computing and Mathematical Science for their kindness and

encouragement during my studying period at the Auckland University of

Technology.

 iv

ABSTRACT

Radio frequency identification (RFID) tags can be used to identify a location and

some can store a limited amount of data. They have been proposed as a

method of storing a distributed map of an area, where a central map is not

practical because of infrastructure or security concerns.

In order to navigate between a set of RFID tags in a space, location information

can be stored on the tags themselves. However, because of memory

constraints, it is not practical to store copies of a complete map on every tag.

Use of compression techniques is a way to solve the issue of the RFID memory

space limitation. The purpose of this study is to implement a compression

scheme including the wavelet compression technique on map compression for a

RFID based 2-dimensional navigation system and evaluate its performance.

Previous work related to wavelet compression technology and location

representations were reviewed to explore the background of this study from prior

research findings. The methodology of this study is design science study and

its testing method is experimental testing. The compression techniques

adopted were combined with a navigation scheme to study whether the

technique could support movement between various tag layouts. A number of

experiments were carried out and the efficiency of this technique in a test

environment is calculated.

 v

LIST OF TABLES

Table 1 The five stages of implementation of Huffman tree17

Table 2 Eight encoding stages of Fractal compression in quad-tree
partitioning (Poobal and Ravindranm, 2005) ..21

Table 3 Three decoding stages of Fractal compression in quad-tree
partitioning (Poobal and Ravindranm, 2005) ..21

Table 4 The summary of the MPEG video bit-stream (Marshall, 2001)23

Table 5 The three steps of wavelet compression (Weisstein, n.d.)24

Table 6 The comparison of the compression technologies in section 2.5.1
to 2.5.5...30

Table 7 The content of the map in each tag ..32

Table 8 Design science research guidelines ..36

Table 9 The percentage of the error in resolution for each distance for Tag1
..65

Table 10 The percentage of the error in resolution of distance, and the AVG
of and the STDEV of % error in resolution for fifteen different groups of
random number ..67

Table 11 The original size of the distance data, the size of the distance data
by using Wavelet compression technique and the size of the distance data
by using Zip compression technique for each of seventeen testing tags..68

Table 12 The percentage of the error in resolution for each angle for Tag1
..71

Table 13 The percentage of the error in resolution of angle, and the AVG of
and the STDEV of % error in resolution for fifteen different groups of
random number ..73

 vi

Table 14 The original size of the angle data, the size of the angle data by
using quadrant compression technique and the size of the angle data by
using Zip compression technique for each of seventeen testing tags
..74

Table 15 The movement to each Tag, and the SUM and the % EXCESS of
the navigation..81

Table 16 The result of ten navigations ...82

Table 17 The movement to each Tag, and the sum and the accuracy of the
navigation...84

Table 18 The result of ten navigations for second set of random number.85

 vii

LIST OF FIGURES

Figure 1 A spherical coordinate system (Answer.com, spherical coordinate
system, n.d.) ..8

Figure 2 Cartesian coordinate grid (3-D) (Wikipedia, Cartesian with grid,
2008) ..8

Figure 3 Cartesian coordinate grid (2-D) ...9

Figure 4 The representation of angle and distance in 2-dimensional system
...9

Figure 5 An example of the environment of experiment (Mehmood, Kulik, &
Tanin, 2007)..11

Figure 6 The compression algorithm of LZW (Nelson, 1989)13

Figure 7 The output of LZW compression (Nelson, 1989)..............................14

Figure 8 The decompression algorithm of LZW (Nelson, 1989)....................15

Figure 9 The output of LZW decompression (Nelson, 1989).15

Figure 10 The input file (VIAS Encyclopedia, 2005)...17

Figure 11 Huffman tree (VIAS Encyclopedia, 2005). ..18

Figure 12 The MPEG video bit-stream (Marshall, 2001)..................................24

Figure 13 The 2-D image wavelet transform (Olivier, n.d.)26

Figure 14 An example of tags in an indoor environment31

Figure 15 The relationship between resolution and distance32

Figure 16 The neighbour tags of S1 in different distance resolutions (3
levels only)...42

 viii

Figure 17 Haar Wavelet Coefficient Tree of S1 ...45

Figure 18 Haar Wavelet Coefficient Tree of the first two neighbour groups
..46

Figure 19 The neighbour tags of S1 (4 different resolution levels only) and
the angle ranges of each level ...47

Figure 20 An example of twenty-six tags are deployed in an area:
twenty-five stored distances, angles and labels in each tag.........................50

Figure 21 The angle range of each NN tag for Tag B51

Figure 22 The angle range of each NN tag for Tag D52

Figure 23 The angle range of each NN tag for Tag J53

Figure 24 The angle range of each NN tag for Tag L.......................................53

Figure 25 The angle range of each NN tag for Tag N54

Figure 26 The angle range of each NN tag for Tag O55

Figure 27 The angle range of each NN tag for Tag I ..55

Figure 28 The angle range of each NN tag for Tag R56

Figure 29 The angle range of each NN tag for Tag S.......................................57

Figure 30 The angle range of each NN tag for Tag W57

Figure 31 The route of the navigation ..58

Figure 32 Flowchart of the production of experimental data61

Figure 33 Haar Wavelet Tree for Tag1: total of 17 tags including Tag1.......62

Figure 34 ranTags.txt ...63

 ix

Figure 35 The distance, angle and label of each neighbour tags of Tag1
(sorted by distance) ...64

Figure 36 The saved storage space of distance data from nearest distance
group to farthest distance group for Tag1 ..66

Figure 37 The original angle data of Tag1 ...70

Figure 38 The converted angle data of Tag...70

Figure 39 The saved storage space of angle data from nearest distance
group to farthest distance group for Tag1 ..72

Figure 40 Flowchart of finding next tag ...76

Figure 41 The navigation output file for Tag1...77

Figure 42 The example of current position Tag A, the destination Tag B,
and the mean value for NN tags (C, D and E) for Tag A..................................78

Figure 43 The hops in the navigation of T16 to T5 ..80

Figure 44 The hops in the navigation of T4 to T11 ..83

 1

Chapter 1: Introduction

1.1 Background

Radio-frequency identification (RFID) is a wireless system to identify

persons or objects automatically via radio waves. At the moment, RFID

systems are becoming a core technology and applied by many enterprises

for the purpose of identifying persons or objects, providing better inventory

tracking and handling, and enhancing the quality of information and

business process in a supply chain. An indoor navigation system is one

of the applications of RFID which has been commonly proposed e.g. to

overcome the lack of ability for visually impaired people, or for robotic

navigation. As stated by Kulyukin, Gharpure, Nicholson and Pavithran

(2004), the critical barrier for most visually impaired people to improving

their quality of life is the lack of ability to navigate in new spaces which

limits them to access to buildings. For instance, Kulyukin et al apply RFID

technology in robot-assisted indoor navigation which gives a warning for

the users when they encounter barriers. However, the technology of

RFID is not without problems in this regard, as one of the major issues is

the lack of storage space of RFID tag (e.g. a common data storage space

of a passive RFID tag is 100 bytes). Therefore, the major objective of my

study is to study and address the issue of location storage using RFID by

using compression technology in order to successfully apply RFID

technology in an indoor navigation system. The basic philosophy behind

the compression is the procedure of encoding data using fewer bits in order

to reduce large amounts of information to some which can be stored in a

tag.

 2

1.2 Motivation

A RFID navigation system based movement between set points requires

information about the relative location of these points. However, an actual,

complete map of these points may not be practical. A complete map

stored centrally may be difficult because of infrastructure issues. For

example, a central map implies access to that map wherever the person

navigating is located. While this may be possible where there is e.g.

wireless access to a network, this access comes at a cost of increased

infrastructure. There may also be security or privacy issues, or the

arrangement of items in the space may be changing rapidly. One

alternative is for the map to be stored as a distributed set of data on the

RFID tags themselves – for example encoding the location of the tag and its

neighbours. However, if a map is to be stored on the RFID tags, the limited

amount of data space makes a complete map impossible to store. On the

other hand, using compression techniques is the way to overcome the limit

of the size of memory in RFID tags. The main area of interest is the way in

which a system could be set up so that the parts of the map contained on

each RFID tag looses resolution according to the locality - that is the map

gets less precise depending how far away from the tag you are. As a result,

the goal of my study is to study the research question: “How can a space

efficient method of data storage using distributed data be used for

navigation?” As mentioned above, I believe that the concept of an indoor

RFID navigation is worth further investigation and has vast scope for

future development.

 3

Essentially, this work deals with the situation where two constraints apply:

1. A central map is not available to the navigating person

2. A central map, or at least precise location information about the

tag –group being used, is available when the tags are being loaded

with the navigation information.

Although this may seem somewhat odd, this situation could occur e.g. in the

situation of wool bales being stored in a shed. As the bales are being

dumped, their location is recorded and compressed relative location

information stored onto the tags attached to the bales. When a user then

wants to recover the bales they use a very simple tag reader and computing

device to navigate between them. Similarly “private” maps, which

accessible only to people with access to the RFID tag information can be

created.

More generally, compression techniques for distributed map storage may be

of interest for very large collections of objects, e.g. a set of RFID location

markers that cover a whole town, where the tags are added to add detail to

a new space without updating the entire map.

1.3 Organization of the dissertation

This study is organized into the following chapters:

Chapter 2 provides a literature review of challenge and approach of location

based navigation, the location representation method which includes

Cartesian coordinate grid, latitude and longitude, and spherical coordinate

 4

system, RFID technology, several compression techniques, including LZW,

Huffman, fractal compression, MPEG and wavelet compression, and the

relevance to location and navigation.

Chapter 3 contains the concept, discussion and design of the selection of

methodology of this study which includes design science and experimental

testing.

Chapter 4 presents the theoretical fundamental of the research, including

distance, angle and navigation.

Chapter 5 presents two experiments which are distance and angle, and

navigation as well as descriptions of the algorithms and schemes.

Finally, chapter 6 provides the conclusion, discussion, strengths and

limitations of this study as well as the suggestions of future research

directions.

 5

Chapter 2: Literature Review

2.1 Introduction

In this section, the challenge and the approach of the location based

navigation is firstly discussed and then the existing location representation

methods are described which focuses on the concept of each location

representation method. The RFID technology is discussed thirdly which

includes a brief description, its approaches and advantages of location

based navigation, and the issues. A brief description is given of

compression techniques focused on LZW, Huffman, fractal compression,

MPEG and wavelet compression as well as a description of the existing

successful domain and the efficiency. In the comparison, all the

techniques are compared through their strengths and weaknesses. Finally,

the relevance to location and navigation will be discussed.

2.2 Challenge and approach of location based navigation

Current location models can be classified into geometric or symbolic models.

In geometric model, it specifies a location as an n-dimension coordinate.

In symbolic model, it is a logical location which uses real-world entities to

describe the location space. Both of the models provide the location

information to identify a specified place. Moreover, the location based

navigation is more complex than describe a location. It provides a route

which includes several locations for user to navigate from one point to the

destination. A map, which is the most commonly component in a location

based navigation system for guiding user. Bessa, Coelho and Chalmers

(2004) mention the next generation of maps should provide a more realistic

 6

representation of our world, a high quality 3D representation for the location

based navigation. However, the location navigation application which

contains a high quality 3D location representation has several issues such

as the size of the display, the accurate of location representation, the size of

storage space for the map and the cost (Bessa et al., 2004). The pixel of

the display has been increased and the size storage device has been

decreased by the recent technology. As a result, the cost is an issue

comes with the new technology which needs to be taken into consideration.

For the accurate of location representation, Global Positioning System

(GPS) seems like is the way to solve this issue, which provides an absolute

location to the user. GPS systems are popular nowadays but it cannot be

used in the indoor environment. From other researches, there are many

different ways can be implemented in the indoor navigation system and

even some of them are the hybrid systems. For instance, Hub, Diepstraten

and Ertl (2003), and Gryazin, Krassi and Tuominen (2003) mention use of

WLAN technology, Hub, Diepstraten, and Ertl (2005) mention use of Wi-Fi

technology, Feldmann, Kyamakya, Zapater and Lue (2003) mention use of

Bluetooth technology and so on. Nevertheless, numbers of these

technologies are complex to implement in indoor navigation system

because the required devices and the assistant technologies, as well as

some of these technologies are too expensive to use. In the other hand,

the location representation is the most important element for any of location

based navigation system. Bessa et al. (2004) indicate that the location

based navigation application require a well formed representation of spatial

knowledge. As a result, the location representation method is described in

the next section.

 7

2.3 Location representation method

Location representation is a fundamental function in the navigation system.

The users only can recognise their current position and go to the unknown

destinations from this information. Therefore, the efficiency and

compatibility of a navigation system relies on the capability of the location

representation. As Keys-Mathews (1998) mentions the location can be

presented as the absolute location or relative location. In the absolute

location, the location can be presented as an estimated location or a street

address. The most common application of absolute location is GPS which

receives the precise location of user that is located and transmitted by

satellites. On the other hand, Korkea-aho and Tang (2002) mention the

relative location is a particular types of describing position which the location

is represented relative to other object. As Keys-Mathews states “relative

locations are described by landmarks, time, direction or distance from one

place to another and may associate a particular place with another.” The

location is often presented by using a Cartesian coordinate grid, latitude and

longitude, and spherical coordinate system (Figure 1). In a Cartesian

coordinate grid, the Figure 2 presents the concept of the Cartesian

coordinate grid which its location data contains three numbers x, y, z that

are used to describe a 3D location and the 2D location that only use x and y

to present which is presented in Figure 3. Because of dealing with the 2D

case in this study, Figure 4 presents distance and angle in a polar

coordinate system which is a 2D coordinate system. In latitude and

longitude, the location contains two numbers which are used for resenting

the latitude and longitude of the global location. In the spherical coordinate

system, it uses the similar concept as the Cartesian coordinate grid but it is

 8

used to describe the location on the spherical object.

Figure 1 A spherical coordinate system (Answer.com, spherical coordinate

system, n.d.)

Figure 2 Cartesian coordinate grid (3-D) (Wikipedia, Cartesian with grid,

2008)

 9

Figure 3 Cartesian coordinate grid (2-D)

Figure 4 The representation of angle and distance in 2-dimensional
system

Bessho, Kobayashi, Koshizuka and Sakamura (2007) mention GPS has

been used in the recent years, and has already been made available on

mobile phones. However, it has some limitations such as the accuracy and

applicability. Furthermore, the need to have line-of-sight to the satellites of

the GPS navigation system means it only can be used in outdoor

environment. In this study, I am interested in an indoor navigation system.

 10

Therefore, when the location representation method can only be used in the

outdoor environment, this method is not useful for this study. Furthermore,

the GPS uses latitude and longitude to represent its location. This method

can be used to indentify the absolute location which the error can be

controlled to less than 1-2 metres. However, latitude and longitude

represent the global location which sometimes is less meaningful for

presenting the indoor location, where walls and other obstructions are

relatively small. In fact, maps of buildings may have errors relating to

absolute coordinates at the same level as the error due to the GPS. Relative

location, within a bounded space is more suited to indoor navigation, as

higher resolution can be obtained with smaller data usage. As stated in

Mehmood, Kulik and Tanin (2007), and Willis and Helal’s (2004) papers,

they both use grids to represent the location. In this method, the indoor

environment is made up by a grid. As a result, it only requires x-coordinate

and y-coordinate, and then the location can be represented. They mention

the accuracy of the use of the grid depends on the dimensions of the grid.

According to this, this method is simple and the designer can control the

accuracy of the system as well as it performs like a latitude and longitude

system for indoor navigation system. In Mehmood, Kulik, and Tanin’s

paper, the accuracy of their grid location representation method is high.

However, from the Figure 5, it can be seen that their experiment is only set

up in an extremely small environment. As a result, the grid location

representation method should be re-designed in order to suit this study and

present the accurate location information to the users.

 11

Figure 5 An example of the environment of experiment (Mehmood,
Kulik, & Tanin, 2007)

2.4 RFID technology

RFID is a wireless system to identify persons or objects automatically via

the radio waves. An RFID system consists of a tag which is known as a

transponder and a reader which is known as a transceiver. RFID features

non-line-of-sight and non-contact readability (Zhou, Liu & Huang, 2007).

The RFID reader can detect the existed tags within a certain range. As a

result, in the research of Toshifumi (2005), and Kulyukin, Gharpure,

Nicholson and Osborne (2006) both use passive RFID tags as landmarks to

remind the mobile robot its position and determine next movement based on

the ID information and a map of tags. There are two types of RFID tags

which are active tags and passive tags. The cheapest passive tag

nowadays costs less than 10 cents which can be used to reduce the cost of

the system. As Renaudin, Yalak, Tomé and Merminod mention (2007)

RFID technology has advantages in cost. According to above, RFID

technology has several common advantages while it is applied to the

location navigation system, such as low cost, quickly identifying and

locating each reference object by retrieving the unique ID code, location

 12

information stored in the reference object using a transceiver and the

line-of-sight is important for accurate distance measurement. However,

RFID technology also contains a number of issues, such as the privacy

issue, security issues and the size of storage issue. Because of a reader

sends a query to a tag via the radio waves are invisible that is so difficult to

identify which reader reads a particular tag. As Kim, Lee and Kim (2006)

mention�Location threat is that individuals carrying unique tags can be

monitored and their location revealed.” As mention above, the passive tag

is cost less than active tag. However, there is a limitation in the size of the

storage of the passive tag. Compression is the reduction in size of data in

order to save space or transmission time. As Moffat (1990), and

MANZOOR and IJAZ (2008) mention compression technique is useful

because it helps reduce the consumption of expensive resources.

Therefore, the following section will be focused on the different compression

techniques.

2.5 Compression technique

2.5.1 LZW

In 1984, T. A. Welch published Lempel-Ziv-Welch (LZW) which is a

lossless data compression algorithm (Welch, 1984). It is an

improvement of a dictionary coding algorithm - LZ-78. LZW is used for

high-performance disk controllers in hardware. This algorithm has

been widely used when it became the standard compression utility in

UNIX systems. Furthermore, the format of GIF image implements the

LZW as part of the compression algorithm. As a result, the LZW has

 13

been widely employed from this stage. Wu, Lonardi and Szpankowski

(2006) mention other successful uses of LZW are it is used in the

“V.42bis modem standard, TIFF images and PDF formatted

documents.” Moreover, Nelson (1989) also states the two successful

domains of the LZW which are the “file transfers over phone lines and

archival storage.” Wu et al. indicate that this algorithm is unexpectedly

simple. In LZW algorithm, the single codes are replaced by the

character strings. However, this algorithm does not analyse these

single codes and it only adds the new character string into a table of

strings. As a result, the design of this algorithm is intended to be fast

to run the whole compression process and it is not generally the optimal

compression algorithm because it carries out only a limited analysis of

the input data.

In the compression part of this algorithm, the LZW compression

algorithm is shown in Figure 6(Nelson, 1989).

Figure 6 The compression algorithm of LZW (Nelson, 1989)

According to Nelson, a test of the algorithm presents that LZW always

intents to produce codes for strings that are already known (in the string

 14

table already) and when a new code is produced each time, then a new

string is also joined to the string table. The Figure 7 shows the

examination and its result of compression which is taken by Nelson.

Figure 7 The output of LZW compression (Nelson, 1989)

From this test, Nelson mentions when a new string starts to join to the

string table each time and a code is produce, the string table fills up

quickly. Furthermore, when the input is redundant, the output will be

five code substitutions with seven characters. As a result, if we use 9

bit codes as the output, the 20 character input string is going to

decrease to a 14.2 byte output string. However, Nelson also point out

the limitation of the compression of LZW. For instance, the example of

his test is chosen to express code replacement carefully. However, in

the real world situation, the compression generally does not start while a

sizable string table has not been built which means that the

compression generally starts when at least one hundred bytes are read.

In the decompression part of this algorithm, the LZW decompression

algorithm is shown in Figure 8 (Nelson, 1989).

 15

Figure 8 The decompression algorithm of LZW (Nelson, 1989).

From the LZW decompression algorithm, it shows that the efficiency of

this algorithm is the string table does not have to pass to the

decompression code. The string table is used for decompression can

be built at the same time that the compression table is build which the

data is used is the input stream. Nelson indicates that this

performance is possible because “the compression algorithm always

outputs the string and character components of a code before it uses it

in the output stream.” As a result, the compressed data is not

encumbered with taking a huge string table. The Figure 9 shows the

examination and its result of decompression which is taken by Nelson.

From the result, an important point is that the output string is identical to

the input string from the LZW algorithm.

Figure 9 The output of LZW decompression (Nelson, 1989).

 16

2.5.2 Huffman

Chen, Zhang, Cao and Feng (2007) mention Huffman coding is one of

the most important types of the lossless methods and its scheme was

published by D. A. Huffman in 1952. Furthermore, the Huffman coding

algorithm is widely used in the compression of image video and text.

He, Zhang, Shen and Geng (2007) indicate that Huffman coding

algorithm “has also been shown to be one of the most leading methods

dealing with the data compression.” Furthermore, the Huffman coding

has often been used as a support method to some other compression

algorithms recently. For instance, DEFLATE algorithm and multimedia

codecs such as JPEG, MP3, MPEG2, and MPEG (Chen, Pai, & Ruan,

2006).

In the Huffman coding algorithm process, the known data is passed

twice. In the first pass, it gathers the statistic information of the

passed on data and calculates to build a tree. In the second pass, all

the codes are encoded and passed on correspondingly. Furthermore,

a tree is build by using Huffman coding algorithm in the first pass. In

the beginning of the first pass, a symbol and its possibility are held in

each node. According to Chen et al.’s (2006) article, the

implementation of the Huffman tree includes four stages which are

shown in the Table 1.

 17

Table 1 The five stages of implementation of Huffman tree

The Figure 10 and Figure 11 show an example of Huffman coding

compression which is based follow the steps of Table 1. Figure 10 is

the file that is going to encode which only contain characters and Figure

11 is the Huffman tree which is generated from this file. On the other

hand, the decoding process of Huffman coding algorithm is very simple.

First, begin with the first bit of the stream and one uses the continuing

bits from the tree to decide the next step is go right or left in the

decoding tree. A character is decoded while a leaf of a tree is reached.

Therefore, the decoding character is placed into the output stream and

the next bit of input stream is the first bit of the next character.

 Figure 10 The input file (VIAS Encyclopedia, 2005)

The stages of Huffman tree

Stage 1 The two probable lowest free nodes or trees are joined to one tree.

Stage 2
It forms a parent node. The parent nod is allocated to the sum of these two child

nodes assigns to this parent node.

Stage 3
One of the child nodes is designated as the path taken from the parent node when

decoding the value 0 and other is set to the value 1.

Stage 4 A repetition of stages 1 to 4. It stops while only one tree left.

 18

 Figure 11 Huffman tree (VIAS Encyclopedia, 2005).

The effective compression ratio and simple algorithm are the main

advantages of Huffman coding algorithm. He et al. (2007) mention the

most important goal in some of the audio and video compression

system applications is the real time performance. However, when

these applications try to decode the Huffman encoded bit stream, it can

be a key obstruction. In contrast, the characteristic Huffman code

algorithm in general is formed by the structure of a binary tree and it

gradually turns into a sparse tree because this binary tree grows from

the root. The enormous memory space wasting is normally caused by

this. As a result, when we use Huffman coding algorithm to discover a

symbol, it might result in a long search process. On the other hand,

VIAS Encyclopedia (2005) mentions “Assertions of the optimality of

Huffman coding should be phrased carefully, because its optimality can

sometimes accidentally be over-stated.” For instance, the

mathematics coding does not involve an integer number of bits used to

encode for each source symbol so it usually has preferable

 19

compression ability than Huffman coding algorithm. Furthermore,

when the inputs are not allocated autonomously, LZW algorithm seems

to be more efficient. According to this, the efficiency of Huffman coding

relies mainly on encompassing a well estimation of the right possibility

of the value of each input.

2.5.3 Fractal compression

Barnsley and Jacquin (1998) mention the fractal compression that

sometimes is also called fractal image compression which is introduced

in 1987. Initially, fractal compression is the production of the research

iterated function systems. Davis (1998) mention the method of fractal

compression technique is used to perform the compression is very

different from other standard transform coder-based techniques.

Moreover, the form of the fractal compression method images is very

simple which a wide-sense fixed random procedure draws all the

vectors. Therefore, as Davis states “they store images as quantized

transform coefficients.” Furthermore, Jacquin (1992) indicates that in

the block coders of fractal compression method, “the image redundancy

can be exploited efficiently by the self-transformability on a blockwise

basis”. Because of they store images as reduction maps of which the

images are close immobile points. Furthermore, iteration of these

maps is used to decode their immobile points Images. As mentioned

by Poobal and Ravindran (2005), the Iterated Function Systems or

Partitioned Iterated Function Systems can be used to perform fractal

compression successfully.

 20

In the efficiency, the common compression ratio of the fractal

compression is up to 50:1. Furthermore, fractal compression method

offers better quality in the high compression ratios. Sayood (2005)

mentions fractal image compression offers same results as the

DCT-based algorithms which includes JPEG. Fisher (1997) states in

some form and some certain ratio, the fractal compression achieves a

low compression times such as the ratio of fractal video compression is

between 25:1 to 244:1 then the processing time will be around 2.4 to 66

sec per frame. This result is by comparing with fractal still image

compression. Furthermore, by compared to the simple gray scale

image, the efficiency of the fractal compression is increased with higher

picture complicacy and depth of the colours. According to above, the

successful domains of fractal compression are image compression and

video compression, and it has numbers of advantages such as

independent resolution, the rate of bit is high, and the speed of the

decompression is also high. However, in Wang, Wu, He and Hintz’s

(2006) article mention “the greatest disadvantage of fractal compression

method “is the high computational cost of the coding phase, which

makes fractal coding cannot compete with other techniques.”

From Poobal and Ravindran’s (2005) article, they indicate the most

common partition method is used in the fractal compression is quad-tree

partitioning which uses block classification to decrease the amount of

the comparisons in process. Furthermore, this method also support

fractal compression achieves simple and fast capability and it performs

on multiple levels of image resolution so it contains the strength of the

 21

multi-resolution decomposition. Poobal and Ravindran mention there

are 8 encoding stages and 3 decoding stages in quad-tree partitioning

which are shown below in Table 2 and Table 3:

In Encoding

Stage 1 Tolerance factor Tmax, is varied from 1, 2, 3…10…

Stage 2
Minimum tree depth m, maximum tree depth M, bits used for scaling factor and

offset factor are fixed as 4, 6, 5 and 7 respectively.

Stage 3
Image is partitioned into four sub-nodes and is compared with domains from

the domain pool D.

Stage 4
The pixels in the domain are averaged, in groups of four so that the domain is

reduced to range size.

Stage 5

The root mean square (RMS) value between the transformed domain pixel

values and the range pixel values is found out as, ,

where n is the number of pixels in the range R.

Stage 6 If the RMS ≥ Tmax and depth ≤ M, repeat the steps 2 to 4.

Stage 7 If the RMS ≤ Tmax , the domain is mapped as W i.

Stage 8 The collection of all such maps is given as where W is the encoded

image.

Table 2 Eight encoding stages of Fractal compression in quad-tree
partitioning (Poobal and Ravindranm, 2005)

In Decoding

(Decoding an image consists of iterating W from any initial image)

Stage 1
For each range Ri, the domain Di that maps is shrunk by two averaging

non-overlapping groups of 2x2 pixels.

Stage 2
The shrunken domain pixel values are then multiplied by si added to oi and

placed in the location in the range determined by the orientation information.

Stage 3
This iteration is done until the fixed point is approximated by maximum number

of iterations.

Table 3 Three decoding stages of Fractal compression in quad-tree
partitioning (Poobal and Ravindranm, 2005)

 22

2.5.4 MPEG

MPEG stands for Moving Picture Expert Group, which is a compression

standard for video processing and it is widely used in multimedia

applications such as VCD and DVD. Jiang, Xia, and Xiao (2006)

mention the lossy compression techniques lead the researches of video

compression because there are two main issues which are the

accessible bandwidth for the most presently practical applications and

the acceptance in the human optical system. Furthermore, it is

important to introduce a particular level of distortion when using the

lossy compression techniques so the best potential efficiency of the

compression can be achieved. The successive standardisation

activities of MPEG are introduced to represent these abilities.

One of the current implantation of the MPEG compression standard is

employed for DVD which the average data rate for it is 3.5 Mbps. By

using this compression method, the changeable bit-rate procedure can

assign more bits for complicated scenes which contain numbers of

actions, when the bits are minimized in static scenes. There are

numbers of MPEG compression standards have been introduced to

public such as MPEG-2, MPEG-4, MPEG-7, MPEG-21, and so on.

Furthermore, the successful domain of these standards is in the

multimedia platforms. However, MPEG-4 moves away from traditional

successful domain of MPEG compression which moves to the

implementation of software image construct descriptors and its goal is to

make the bit-rates in the extremely low range. As Sayood (2005)

mentions the MPEG Layer III algorithm has been extremely successful.

 23

However, it still has some weakness because the limitation has been

designed at the start point. The principle limitation is the requirements

of this algorithm should be backward compatible. However, this

limitation also brings some advantage to the MPEG compression

method such as it has a major development in the capability of the

hardware. As a result, the Advantage Audio Coding has been

approved as a better quality multi-channel choice to the backward

compatible MPEG compression. The summary of the MPEG video

bit-stream is showing in the Table 4 and Figure 12.

Table 4 The summary of the MPEG video bit-stream (Marshall, 2001)

 24

Figure 12 The MPEG video bit-stream (Marshall, 2001)

2.5.5 Wavelet compression

Wavelets are a class of functions used to localize a given function in

both space and scaling. A family of wavelets can be created from a

function . Sometimes it is known as a mother wavelet which is

restricted in and defined over a finite interval. Daughter wavelets

 are then formed by translation (b) and contraction (a).

Weisstein (n.d.) describes this by indicating its three steps which is

showing in Table 5.

Table 5 The three steps of wavelet compression (Weisstein, n.d.)

STEP 1

STEP 2

STEP 3
CALDERÓN'S FORMULA GIVES:

 25

There are a large number of wavelet transforms which the most

common ones are: Discrete wavelet transform (DWT), Wavelet packet

decomposition (WPD), Continuous wavelet transform (CWT), Fast

wavelet transform (FWT), Stationary wavelet transform (SWT), and

Lifting scheme and each suitable for different applications. On the

other hand, wavelet is a useful mathematical tool which is efficient and

theoretically stable for hierarchically decomposing functions. In

addition, the wavelet decomposition of a function is composed of a

coarse overall close with detail coefficients that affect the function at a

range of scales. The wavelet has exceptional compact energy and

de-correlation properties, which can be used to effectively produce

concise representations that exploit the structure of data (Minos &

Phillip, 2004). Moreover, wavelet transforms can commonly be

computed in linear time. In the compression techniques, there are

several ways to identify a wavelet compression which includes from the

scaling function, scaling filter and wavelet function. By indentify from

the scaling function and wavelet function, as Addison (2002) mentions

the wavelet function “is in effect a band-pass filter and scaling it for each

level halves its bandwidth.” Furthermore, in the identification of

wavelet filter, a low-pass finite impulse response filter scaling filter is the

fundamental way to indentify the wavelet which the length is 2N and

sum is 1. Figure 13 shows the 2-D image wavelet transform.

 26

Figure 13 The 2-D image wavelet transform (Olivier, n.d.)

Wavelet transform is an iterative de-correlating process which

decomposes a tile into a series of sub-bands. Each sub-band

comprise tile information limited to a given frequency range. One level

of wavelet decomposition allows creating 4 sub-bands from the

low-pass sub-band obtained during the prior decomposition steps.

From Figure 13, “L” means result of low-pass filtering in a given

direction which is horizontal or vertical and “H” means result of

high-pass filtering in a given direction. The sub-bands 1HL, 1LH, 1HH,

1LL are the result of the wavelet decomposition applied on the complete

tile and sub-bands 2HL, 2LH, 2HH, 2LL are the result of the wavelet

decomposition applied on sub-band 1LL. This procedure classifies the

same frequency range together which allows selectively weighting the

quantization of these data. Each sub-band can go through separate

quantization by a programmable factor for lossy compression.

Bypassing the quantization yields lossless operation. Then, the

 27

consequential quantized sub-bands are divided into smaller blocks

which are separately entropy encoded. This process is achieved by an

adaptive Arithmetic Encoder which is a Modeller and an MQ-coder.

The Modeller tests all bit planes of the present block which start from

the most significant non-zero bit plane. It scans the present bit plane in

a zigzag order with three progresses per plane. It calculates a context

to the present bit in each progress. This context reflects the principal

value of the neighbouring bits. Finally, the adaptive Arithmetic Encoder

encodes each scanned bit using a possibility value obtained from the

connected context. The Arithmetic Encoder brings up to date its

possibility tables after each bit encoding. The Modeller also calculates

compression metrics reflecting the image distortion occupied by

reproducing the block only with its recent encoded part.

Minos and Phillip (2004) mention the success of wavelet compression

technique in reducing large amounts of data has been demonstrated by

numbers of the recent works. They also indicate that the wavelet

compression technique also with an extensive successful history of

signal and image applications. For instance, its successful

applications in the still images are JPEG 2000, ECW, MrSID, SPIHT,

Embedded Zerotrees of Wavelet transforms and Progressive Graphics

File, and successful applications in the video are Dirac, Pixlet, Tarkin,

Rududu, Bink Video, and Motion Compensated Temporal Filtering.

Furthermore, Calderbank, Daubechies, Sweldens and Yeo (1998) state

“Invertible wavelet transforms that map integers to integers have

important applications in lossless coding”. As a result, the wavelet

 28

compression seems like has the strength of the resolution handling on

the integers. As Luo, Li, Li, Zhuang and Zhang (2001) indicate the

advantage of the wavelet transform is a lower resolution signal is

generated with each level of wavelet decomposition and the goal of the

wavelet compression technique is to store data in as little space as

possible in a file. However, there is a major issue in the existing

wavelet compression techniques is the quality of each compressing

result from the same data are very different from these techniques, even

for the same queries on the same values in different parts of the data.

The wavelet compression can be either lossless or lossy and it is only

considered in the form of lossy compression when the certain loss of

quality is accepted. As Ramaswamy, Namuduri, and Ranganathan

(1996) mention the quality of the compression and decompression from

the wavelet compression technique is perfect in the form of lossless.

However, the compression result of all the types of data is not all good

by using wavelet compression. For instance, Marks (2000) indicates

that the momentary signal characteristics are good to be compressed by

using wavelet compression but the periodic, smooth, signals are better

to be compressed by using other algorithms.

2.5.6 Comparison

This section presents the comparison of all the compression techniques

(from section 2.5.1 to 2.5.5). Table 6 represents the type of

compression technique, successful domain, strength and weakness of

 29

each compression techniques which is used to do the comparison with

the requirement and contents of this study. The detailed comparison

will be showed in the section 2.6.

 30

Table 6 The comparison of the compression technologies in section 2.5.1 to 2.5.5

 Type of Compression Successful Domain Strength Weakness

LZW Lossless

� Image.

� Pdf formatted documents.

� File transfers over phone lines.

� Archival storage.

� Fast run. � Limited analysis of input data.

Huffman Lossless

� Support some other compression

algorithms.

� Image video.

� Text.

� The effective compression ratio.

� Simple algorithm.

� Long search process

� When the inputs are not

allocated autonomously, LZW

algorithm is seems to be more

efficient.

Fractal Lossy
� Image.

� Video

� Simple

� The image redundancy can be exploited efficiently by the

self-transformability on a blockwise basis

� Low compression and decompression times in

� higher picture complicacy and depth of the colours

� High computational cost of the

coding phase

� Hard to compete with other

techniques

MPEG Lossy
� VCD

� DVD.
� Make the bit-rates in the extremely low range

� The principle limitation is that the

requirements of this algorithm

should be backward compatible

Wavelet Lossless and lossy

� Still image.

� Video.

� File transfers over phone lines.

� Efficient of resolution handling on the integers.

� Lower resolution signal is generated with each level of wavelet

decomposition.

� Store data in as little space as possible in a file.

� The quality of each compressing

result from the same data are

very different

 31

2.6 Relevance to location and navigation

In this study, the data file which is stored in each RFID tag is a text file and

the data are all numbers. Furthermore, these numbers might contain large

digits in order to show the location accurately. As a result, if we use lossy

compression technique, some digits of the number will become inaccurate

after decompression. According to the work described above, the

compression technique is focused on lossless compression techniques.

On the other hand, the memory space of RFID has a small limit. By

comparing with LZW and Hoffman lossless compression techniques, the

wavelet technique has an advantage in that it can be used to compress a

data as small as possible. Moreover, a map which is stored in a RFID tag

contains two data such as the neighbours’ locations and the resolution of

these neighbours. As shown in the Figure 14, A, B, C, D, E, F, G and H

are RFID tags which are set up in the same floor of a building. In Table 7,

it shows the content of the map in each tag.

Figure 14 An example of tags in an indoor environment

 32

 HIGH RESOLUTION LOW RESOLUTION LOWEST RESOLUTION

TAG A B, C D, E F, G, H

TAG B A, D C, E F, G, H

TAG C A, E B, F D, G, H

TAG D B, E, F G A, C, H

TAG E F B, D, H A, C, G

TAG F E, H D, G A, B, C

TAG G D, F, H E A, B, C

TAG H E, F D, G A, B , C

Table 7 The content of the map in each tag

For instance, in terms of data on A: B and C are high resolution, D and E

are low resolution, and F, G and H are lowest resolution. In terms of

data on F: E and H are high resolution, D and G are low resolution, and

A, B and C are lowest resolution. Figure 15 shows four possible major

types of relationship between resolution and distance.

Figure 15 The relationship between resolution and distance

 33

Line 1 represents the relationship between resolution and distance is

linear which means when the distance is increased, the resolution is

decreased. Line 2 represents the relationship between resolution and

distance is nonlinear which means when the distance is increased, the

resolution is decreased. Line 3 represents the situation where

resolution does not change within a certain distances but the

relationship changes to linear one above a certain threshold. Line 4

represents the relationship like downward steps which means the

resolution undergoes step changes, at different distances. Later this

technique will be used for angle representation

The reason why a changing resolution map is used and needed in this

study is there is a limited amount of memory in RFID, so only a fixed

number of neighbour’s location can be stored in one tag

The wavelet approach as mentioned in the beginning of section 2.5.5,

the filter of the wavelet compression classifies the same frequency

range together. As a result, when the wavelet compression is used,

the low and high resolution data are organized and efficiently

compressed. For this reasons, because of the wavelet approaches,

the wavelet compression technique was chosen for this study. First

approach is the capable of resolution handling on the integers which is

already described above. Second approach is it is to store data in as

little space as possible in a file which is satisfactory to solve the limited

amount of space issue of RFID tags. The third approach is the lower

resolution signal is generated with each level of wavelet decomposition

 34

which means the low resolution map data is not ignored and not lose in

any stage of wavelet compression. The fourth approach is a lossless

compression technique if all coefficients are kept, thus it keeps all digits

of each data so the map data is meaningful and accurate. The fifth

approach is the processing time is fast which the map compression and

decompression can be executed in real time.

 35

Chapter 3: Methodology

3.1 Selection of methodology

There are two methodologies are employed in this study which are design

science and experimental study. Furthermore, the design science as the

core methodology in this study and the experimental study is used as the

testing methodology to generate the experimental result. Therefore, the

concept, the discussion and comparison with other methodologies, and the

design of each methodology are presented.

3.2 Design science

3.2.1 Concept and discussion

In design science paradigm, the understanding and knowledge of a

problem field and its solution are accomplished in the construction and

application of the designed artifact. As Nunamaker, Chen and Purdin

(1990) mention design science is technology-oriented as applied

research which applies knowledge to address practical problems.

Furthermore, according to March and Smith (1995), design science

attempts to serve human intentions by designing and creating things.

Thus, it attempts to understand reality which opposes to social and

natural sciences. March and Smith describe design science outputs as

four types which are constructs, models, methods and implementations.

Moreover, a construct represent a conceptualisation which is used to

express problems within the area and to state their solutions. A model

is a set of statements or suggestions describing relations between the

constructs which specifies situations as problem and solution

 36

statements. A method is an algorithm or a guideline which is employed

to execute a task. An implementation is an instantiated operation on

constructs, models and methods. Furthermore, design science

consists of two basic activities which are building and evaluation.

Table 8 summarises the seven guidelines which should be solved in

some way for design science study to be complete (Hevner, March,

Park & Ram, 2004).

Table 8 Design science research guidelines

Furthermore, the discussion is focused on the reasons of use of design

science as the methodology in this study which is based on the

comparison of design science, survey and case study methodology and

it focuses on their ontology, epistemology, method, and axiology.

Firstly, in ontology, Hevner et al. (2004) mention the ontology of design

science is multiple and contextually situated alternative world-states,

and socio-technology enabled. In ontology of survey, it is a single

reality which is probabilistic and knowable. In ontology of case study, it

 37

is a socially constructed multiple realities. The ontology in this study is

not from any reality and it is based situated alternative world-states. In

epistemology, the design science is known through making, survey is

that objective which is detached from researcher of truth, and case

study is that subjective which the knowledge and values appear from

the interaction of researchers and participants. As a result, this study

is to build a RFID indoor navigation system and the epistemology is

through this creation. In methodology, the design science is measure

an artefact’s impact on the composite system (Hevner et al., 2004), the

survey is quantitative methodology, and case study is qualitative

methodology. This study is a developmental study which is not only

focuses on either quantitative or qualitative. In axiology, the value of

design science is from the creation, understanding, and improvement

which can be controlled, the value of survey is from truth which is a

universal or a prediction, the value of case study is from a description of

the understanding. In this study, the value is from the creative system.

According to above discussion and the concept section, the use of the

methodology in this study is design science.

3.2.2 Design

In design science, there are two fundamental parts of design which are

creating and evaluating the artifact. In the creation of the artifact, the

navigation system includes a map, and a programme. Firstly, a

programme is used to compress and decompress the map will be

written. This programme is based on the wavelet compression

 38

technique which the Java language is employed. Furthermore, a map

which is stored in a RFID tags and it contains the distances of, the

angles of and the labels of its neighbours. On the other hand, I use

experimental study to do the test in order to evaluate the artifact.

Therefore, this part is discussed in the next section 3.3.

3.3 Experimental testing

3.3.1 Concept and discussion

Experimental study supports the scientific method which is a procedure

including, suggesting and testing hypotheses. The first step is to

develop a theory. This theory can be from observations or an

inference from prior research. Then, a hypothesis is composed which

is a statement that can be examined. As Key (1997) states the

experimental study is “an attempt by the researcher to maintain control

over all factors that may affect the result of an experiment. In doing this,

the researcher attempts to determine or predict what may occur”.

Furthermore, the general process of experiment study is one or more

independent variables are conducted to decide their outcome on a

dependent variable and a true experimental design needs an artificial

environment. As Howell (1997) mentions the outcomes of an

experimental study are recognized as the dependent variables which

rely on the action of the independent variable. According to above,

there are numbers of steps in this study which includes identify the

problem, express the hypotheses and realize their consequences,

construction, and perform the experiment. In the discussion, the

 39

reason of the use of experimental testing as the methodology in the

evaluation part of design science is indicated. From Hevner et al.’s

(2004) paper, the author states there are several methods which can be

employed to evaluate the designed artifact such as case study,

analytical and experimental. As a result, this part focuses on the

comparison of these three methods. By using case study method, it is

to study artifact in depth in a specific case. By using analytical method,

it is to demonstrate inherent optimal properties of artifact or provide

optimality bounds on artifact behaviour. In experimental testing

method, it is a controlled experiment to study artifact in controlled

environment for qualities such as usability, accuracy, applicability and so

on. In the testing part of this study, the qualities of a RFID indoor

navigation system are study and examined. In Milella, Vanadia,

Cicirelli and Distante’s (2007) paper, they use experimental testing to

examine their design artifact which supports them to evaluate the

accuracy and efficiency of the artifact. According to above, the

experimental testing is a better testing method which is used in this

study.

3.3.2 Design

In the first part of the experiment, the algorithms are used to reduce the

storage space of distance and angle will be applied for a number of sets

of random number tag and then the efficiency of reduction of the storage

space will be test. In the second part of the experiment, the distance

and angle data sets are used in the first experiment will be applied and

 40

the algorithms for the navigation will also be implemented. Then, the

accuracy and will be tested.

 41

Chapter 4: Theoretical Fundamental of the Research

In this section, the theoretical foundation of the research is discussed which

involves choosing a method for representing relative location that can be stored

on tags, and then used for navigation. The distance, angle and tag label are

three sets of the data which contained in the tags. The distance and angle

occupy most storage space in the tag. Therefore, the schemes of reducing the

size of data for these two data sets are described respectively in section 4.1 and

4.2. Furthermore, the system should be available to navigate after the data

have been stored in each tag correctly. As a result, the method and scheme of

the navigation is also discussed in section 4.3.

The scheme used has the following characteristics:

1. Every tag contains location information about every other tag

2. The further away a tag is from the original tag, the lower the resolution of

the distance and location

3. Relative location is stored as a distance and angle from the tag in

question – effectively a vector.

4. Each tag therefore stores a different set of values.

5. The angle and distance to the nearest neighbour group are stored at the

highest possible resolution

6. When navigating, the user can only move to one of the nearest neighbour

group.

7. Only 2-D data is being stored.

 42

4.1 Distance

In an indoor environment, a number of RFID tags are deployed and each

one is used as a landmark to mark a specific location. Each of tag contains

three sets of data which represent as the distance, angle and label of the

neighbour tags respectively which associate with each other. Assuming

there are 33 tags which have been placed which are denoted as S1 to S33.

For each tag, it is able to calculate the distances between it to all other tags

in order to obtain a list of the neighbour tags, then those distances is sorted

in an increasing order. Furthermore, the process of this navigation system

is: the user inputs the destination and current position tag first then the

system will calculate the next point which is from one of the tags in the

nearest neighbour group that towards to the destination for user to go to.

This process repeats continually until the user reaches the destination.

However, because of the limited memory space of the RFID tag, only a fixed

amount of data can be stored in it. Therefore, it is a limited number of

nearest neighbour (NN) tags that have complete information stored on each

tag. As demonstrated in Figure 16, the centre is the current position tag S1

and the central two circles at full resolution in distance. The outer circle

has the lower resolution by comparing with the central two circles.

Figure 16 The neighbour tags of S1 in different distance resolutions (3

levels only)

 43

The tag S12 is the tag in nearest neighbour group of S1, the S4 and S6 are

the tags in second close neighbour group of S1, S5 is the tag in nearest

neighbour group of S1, and so on. Because of there is only one point will

be generated from the tags that with the full resolution for the next

movement by the system each time. As a result, other tags only need the

approximate value in distance and angle. According to this, all the tags in

the NN group are with full resolution and other tags are in lower resolution

which is compared with the NN group.

The advantages of wavelet compression have already been discussed in

chapter 2. As a result, the wavelet compression method is used to reduce

the size of distance data set. Figure 17 represents the Haar Wavelet

Coefficient Tree of S1. The number 1 to 32 is the coefficients which are

generated from the wavelet compression which can be used to reconstruct

the data of all the tags. For instance, if the data of S12 and S4 need to be

reconstructed, the coefficient 1, 2, 3, 5, 9, and 17 is needed. If the data of

S6 and S5 need to be reconstructed, the coefficient 1, 2, 3, 5, 9, and 18 is

needed. At the bottom of the tree, the reconstructive values of all tags are

shown from the highest resolution to the lowest resolution because the

original list of neighbour tags are compressed in the same way. As

mentioned previously, the data of the low resolution ones can be at a lower

resolution, thus only the certain amount of coefficients is need to be stored.

The coefficient 1, 2, 3, 4, 5, 6, 9, 17, 18, 19 and 20 will be stored.

Therefore, the distance of the tags in the NN group (S12, S4, S6 and S5) can

be exactly reconstructed from those coefficients. However, for the tags in

the second close neighbour group (S18, S7, S9 and S8), the coefficient 19

 44

and 20 have not been stored which means there is one missing value in the

calculation for these tags. Therefore, the reconstructive data of S18, S7, S9

and S8 is fuzzier than the NN group. Furthermore, the distance of the tags

in the third close neighbour group (S2, S11, S3, S17, S19, S33, S25 and S24) can

be reconstructed from these 10 coefficients as well. However, the

coefficient 11, 12, 21, 22, 23 and 24 have not been stored in the tag which

means there are two missing values in the calculation for these tags, so the

reconstructive data of S2, S11, S3, S17, S19, S33, S25 and S24 is fuzzier than the

second close neighbour group. For the tags in the fourth close neighbour

group (S32, S10, S23, S13, S22, S21, S28, S16, S15, S14, S29, S30, S20, S31, S27 and

S26), the coefficient 7, 8, 13, 14, 15, 16, 25, 26, 27, 28, 29, 30, 31 and 32

have not been stored which means there are three missing values in the

calculation for these tags. Therefore, the reconstructive data of the tags in

fourth close neighbour group is fuzzier than the third close neighbour group.

According to above, once all the coefficients for the NN group are stored,

only one coefficient is required for each of other groups. As a result, the

wavelet compression can be used to solve the memory space issue and it

also can be used to achieve another goal which is that the father away a tag

is from any other tag, the lower the distance resolution of the distant tag,

stored on the original tag.

 45

Figure 17 Haar Wavelet Coefficient Tree of S1

 46

4.2 Angle

The wavelet has been used for reducing the data storage space of distance

which is discussed in previous section 4.1. The angles of the neighbour

tags are another large amount of data which is stored in each tag. As a

result, the angle can guide the user move toward the correct direction. In

order to reduce the use of the storing space, the amount of the data and

the size of each single value should be reduced. Is the wavelet

compression technique suitable for this data set? For distance data set,

the data has already been sorted in distance order. Therefore, it is

achievable that the distance resolution is getting fuzzier and fuzzier for the

reconstructive data because one less from the previous level of the

coefficients for each level of resolution is stored. However, for the angle

data set, the data cannot be sorted in such a meaningful way, thus the

order of the data will not match the reconstructive values of distance

data. Moreover, while the wavelet compression algorithm is applied to the

un-sorted angle data set as used on the distance data set, the result will be

different.

Figure 18 represents the part of the Haar Wavelet Compression Tree for

the NN group (A and B) and the second close neighbour group (C and D).

Figure 18 Haar Wavelet Coefficient Tree of the first two neighbour groups

 47

Through the calculation for the second close neighbour group, it can be

seen that the total number of the coefficients is one less from the nearest

neighbour group. Assume that the two original angles are 10 and 310, the

coefficient which is not record is -150, and the storing value for this group is

160. As a result, the original calculation for the first number is 160 + (-150)

and 10, and the second number is 160 - (-150). However, by comparing

160 with the original numbers of this group (10 and 310), the meaning of

the angles have the big different. According to above, the reconstructive

value might not get fuzzier and fuzzier (level by level) in this case, and the

ratio of fuzziness is only depends on the value of each pair of

numbers. Therefore, another method should be considered and applied to

the angle data set.

The new compression technique which is suitable for using in angle data

has been designed which has been given a name “quadrant compression

technique” in this study. Figure 19 represents the neighbour tags of S1

(the first 4 level of angle resolution only) and the angle ranges of each

level.

Figure 19 The neighbour tags of S1 (4 different resolution levels only) and

the angle ranges of each level

 48

Tag A, B, C and D are the tags of the nearest neighbour group, E, F, and G

are the tags of the second close neighbour group, H and I are the tags of

the third close neighbour group, and J is the tags of the fourth close

neighbour group. The angle of each tag is represented by a binary

number (e.g. 00100111). In order to express the angle with the different

resolution from high to low for the neighbour tags, each level group of tags

use the bits which one bit less than previous group. For instance, the

angles of the tags of the nearest neighbour group are represented with the

highest resolution which use the most bits to present the angle, the tags of

the second close neighbour group use the bits which is one bit less than

the most nearest group to present the angle, the tags of the third close

neighbour group use the bits which is one bit less than the second nearest

group to present the angle, and so on. Furthermore, as demonstrated in

Figure 19, the 4 bits binary number is applied in the nearest neighbour

group, so there are 24 = 16 angle ranges which are 0o – 22.5 o, 22.5 o – 45 o,

45 o – 67.5 o, 67.5 o – 90 o, 90 o - 112.5 o, 112.5 o – 135 o, 135 o – 157.5 o,

157.5 o – 180 o, 180 o – 202.5 o, 202.5 o – 225 o, 225 o – 247.5 o, 247.5 o –

270 o, 270 o – 292.5 o, 292.5 o – 315 o, 315 o – 337.5 o and 337.5 o – 360 o

have been used to represent the directions in this group. The number of

bits of the current group is always less than previous one, so the number of

angle ranges of the current group is always half of the previous group

(divide by 21). For instance, in Figure 19, the number of angle range from

nearest neighbour group to the fourth close neighbour group is 16, 8, 4 and

2. As a result, the resolution of the angle is getting fuzzier and fuzzier

from nearest neighbour to the farthest neighbour, as well as the storing

space has been reduced. Thus, it corresponds to the original concept.

 49

4.3 Navigation

The schemes for reducing data storage for the data sets of distance and

angles are discussed in the section 4.1 and 4.2. As a result, the

navigation system is ready to provide the navigational information and to

be used by the users after the RFID tags are deployed and the related data

files are stored. Therefore, the navigation scheme will be described in

this section. There are three steps in the whole processing of the

navigation. Before start to navigate, the user needs to stop at any one of

the existing tags and choose a destination tag from the list of current

position tag. In the first step, the system calculates the mean of the angle

range of the destination tag. In the second step, the system calculates

and finds the next target tag which is in the highest angle range resolution

group that is closest in angle to the destination. In the third step, after the

next target tag is found, the user will move to that tag. The user repeats

the second and third step until the system shows the destination is the next

tag to move to (the destination is in the highest angle range resolution

group of current position tag). As a result, the user only need one more

move from the end of third step, and then the user reaches the destination.

Figure 20 presents an example of twenty-six tags (Tag A – Tag Z) that are

deployed in an area. As a result, there are twenty-five stored distances,

angles and labels in each tag.

 50

Figure 20 An example of twenty-six tags are deployed in an area:
twenty-five stored distances, angles and labels in each tag

In the following paragraph, the steps of navigation will be demonstrated by

using Figure 20. It assumes that the each tag has three NN tags, the

start point is Tag B and the destination point is Tag X. Figure 21

presents the NN tags in the highest angle range resolution group for Tag B

are D, K and C, and the uncertainty of angle of X, D, K and C. The angle

range for X, D, K and C are �XLOW - �XHIGH, �DLOW - �DHIGH, �KLOW -

�KHIGH and �CLOW - �CHIGH. In order to find the next point that is going

to move to, the tag in the NN group that is closest in angle to the

destination tag should be identified. Furthermore, the angle data are the

uncertainty of angle because only the range of angle is displayed which is

converted from a binary number. For instance, the binary number

11100011 means the angle range is 319.22o – 320.62o, 0110 means the

angle range is 135.00o – 157.50o, and 0 means the angle range is 0.00o –

180.00o. The angle binary numbers of all the neighbour tags for each tag

 51

have already been calculated by CalAngleBinary.java (appendix 1) after all

the tags have been deployed which is demonstrated in the previous angle

experiment section. The equation – “(�RangeLOW + �RangeHIGH) / 2” is

used to calculate the mean of each angle range in order to calculate the

angle between each NN tag in the highest angle range resolution group

and the destination. As a result, there are three angles need to be

compared in Figure 21 which are �DMEANBXMEAN, �KMEANBXMEAN and

�CMEANBXMEAN. After the comparison, the angles from smallest to largest

are �DMEANBXMEAN, �KMEANBXMEAN and �CMEANBXMEAN. Therefore, the

tag D is the tag in the highest angle range resolution group that is closest in

angle to the destination tag X which means D is the next tag to move to.

Figure 21 The angle range of each NN tag for Tag B

After moving to Tag D, the process is used to find the next tag to move to in

Tag B should be repeated in Tag D. However, there are two key points

need to be checked before run the process which are whether the

destination is in the highest angle range resolution group of the current

 52

position tag and whether any tag in the highest angle range resolution

group of the current position tag has already been in the route before.

Figure 22 presents the NN tags in the highest angle range resolution group

for Tag D are F, B and J, and the uncertainty of angle of X, F, B and J.

Figure 22 The angle range of each NN tag for Tag D

The Tag B has already been in the route, so this tag is not used in the

comparison. As a result, there are two angles need to be compared

which are �JMEANDXMEAN and �FMEANDXMEAN. The angle �JMEANDXMEAN

is smaller than �FMEANDXMEAN. Therefore, the next tag to move to is Tag

J. The process in the Tag D should be repeated in Tag J. As Figure 23

presents, the NN tags in the highest angle range resolution group for Tag J

are D, L and M, and the angle �LMEANJXMEAN and �MMEANJXMEAN need to

be compared (D has already been in the route). As a result, Tag L is the

next tag to move to.

 53

Figure 23 The angle range of each NN tag for Tag J

As Figure 24 presents, the NN tags in the highest angle range resolution

group for Tag L are J, M and N, and the angle �MMEANLXMEAN and

�NMEANLXMEAN need to be compared (J has already been in the route).

As a result, Tag N is the next tag to move to.

Figure 24 The angle range of each NN tag for Tag L

 54

As Figure 25 presents, the NN tags in the highest angle range resolution

group for Tag N are I, M and O, and the angle �IMEANNXMEAN,

�MMEANNXMEAN and �OMEANNXMEAN need to be compared. As a result,

Tag O is the next tag to move to.

Figure 25 The angle range of each NN tag for Tag N

Figure 26 presents the NN tags in the highest angle range resolution group

for Tag O are N, M and I, and the angle �MMEANOXMEAN and

�IMEANOXMEAN need to be compared (N has already been in the route).

As a result, Tag I is the next tag to move to.

 55

Figure 26 The angle range of each NN tag for Tag O

Figure 27 presents the NN tags in the highest angle range resolution group

for Tag I are H, R and N, and the angle �HMEANIXMEAN and �RMEANIXMEAN

need to be compared (N has already been in the route). As a result, Tag

R is the next tag to move to.

Figure 27 The angle range of each NN tag for Tag I

 56

Figure 28 presents the NN tags in the highest angle range resolution group

for Tag R are S, H and I, and the angle �SMEANRXMEAN and

�HMEANRXMEAN need to be compared (I has already been in the route).

As a result, Tag S is the next tag to move to.

Figure 28 The angle range of each NN tag for Tag R

Figure 29 presents the NN tags in the highest angle range resolution group

for Tag S are U, W and R, and the angle �UMEANSXMEAN and

�WMEANSXMEAN need to be compared (R has already been in the route).

As a result, Tag W is the next tag to move to.

 57

Figure 29 The angle range of each NN tag for Tag S

Figure 30 presents the NN tags in the highest angle range resolution group

for Tag W are U, V and X. As a result, the destination - Tag X is included

in the highest angle range resolution group of Tag W. Therefore, the final

movement is from Tag W to the destination - Tag X.

Figure 30 The angle range of each NN tag for Tag W

 58

According to the whole process of this navigation, the route of the

navigation is B (start) � D � J � L � N � O � I � R � S �

W �X (finish) which is presented in Figure 31.

Figure 31 The route of the navigation

 59

Chapter 5: Experimental Methodology and Results

The theoretical fundamental of the research is already discussed in the

previous section: chapter 4. As a result, the next work is to implement it.

There are two experiments are carried. The experimental methodology and

the discussion of the results are also provided for each experiment.. The first

experiment is the distance and angle experiment which the seventeen locations

of RFID tags are randomly generate. The distance and angle for the sixteen

neighbour tags are calculated for each of tag and the data is sorted by the

distance. Then, the Haar wavelet compression technique is applied on each

tag to compress the distance of its sixteen neighbour tags which generates the

Haar wavelet coefficients. Because of the limitation of the storage space,

there are only eight coefficients are stored in each tag. The distances of the

sixteen neighbour tags are re-calculated by using these eight coefficients in

order to compare with the original distance data and calculate the percentage of

error in resolution of the distance data. For the angle data, the sixteen

neighbour tags in each tag are divided into three different resolution levels

which are eight digits, four digits and one digit. Each of angle data for the

sixteen neighbour tags is converted into binary number. The angles of the

sixteen neighbour tags are converted again from their binary number in order to

compare with the original angle data and calculate the percentage of error in

resolution of the distance data. The second experiment is navigation

experiment. There are two sets of data are used which the first set of data is

same as the data is used in the first experiment and the second set of data is a

new set of random data. There are ten tests of navigation for each set of data.

Each test is assigned an origin tag and a destination tag and there is a Java

programme which is used to calculate the next point to move to from the current

 60

location. After each of the tests, the total moving distance is calculated in

order to calculate the difference and the percentage of the excess from the

actual distance.

5.1 Experiment 1: Distance and angle

It appears reasonable to assume that half the storage space is used for

distance and half for angle, except the label of tag name. Because of

these three types of data are only provided in the navigation system, and

the integer format is used for tag name and the double format is used for

both distance and angle. The average storage space in the passive RFID

tag is approximately one hundred bytes. The size of double format of a

single value can be five to eight bites. Therefore, the usage of the storage

space needs to be managed efficiently. On compressed term, the

scheme for different amount of tags is different. For instance, for one

hundred tags, the amount of memory space are used for the tag label can

be three hundred eighty-seven bits, three hundred eighty-eight bits or three

hundred eighty-nine bits which depends on the number of bits of label of

the current position tag. As a result, the remaining memory space for

distance data and angle data are approximate to fifty bytes. The wavelet

coefficients take approximate to fifteen bytes. Therefore, there are

thirty-five bytes (280 bits) can be used for angle data which uses quadrant

compression technique. If one hundred tags are divided into three

resolution groups which are eight bits, four bits and one bit, it is possible to

have eight tags in eight bits group, eight tags in four bits group and

eighty-four tags in one bit group. However, for the twenty tags, the label

data takes approximate to nine bytes of memory space. As a result, the

 61

remaining memory space approximate to eighty bytes. Thus, the distance

data and angle data both can have more number of tags in the high

resolution groups. Furthermore, Figure 32 presents the procedures for

producing the files of experimental distance, angle and tag label which are

stored in the tags.

Figure 32 Flowchart of the production of experimental data

In the first section of this experiment, the seventeen locations of the tags

which I decide are randomly generated by a java programme –

RandomMap.java (appendix 2). It can be seen that the tags can be

deployed in any location so the locations of the tags are randomly

generated. Furthermore, the seventeen locations are generated, so there

 62

will be sixteen neighbour tags for each tag. As a result, Figure 33

presents the Haar Wavelet Tree for Tag1 which the number 1 to 16

represents the wavelet coefficients which are in five different levels, and N1

to N16 represents the neighbours of Tag1 from the nearest to farthest.

The wavelet coefficients are calculated by WaveletConstruction.java

(appendix 3).

Figure 33 Haar Wavelet Tree for Tag1: total of 17 tags including Tag1

From the left half of tree, it can be divided into three groups which N1, N2,

N3 and N4 are the group 1, N5, N6, N7 and N8 are the group 2, and N9 to

N16 are the group 3. If the resolution of reconstructive values needs to be

less and less, this part of tree can provide three different resolution levels.

In order to achieve this, the coefficient 11 and 12 will not be record for

group 2, and the coefficient 7, 8, 13, 14, 15 and 16 will not be record for

group 3. Furthermore, if there are only nine locations of tags are

randomly generated, they also can be divided into three groups but there

will only two tags in the highest resolution level. According to this, the

testing of seventeen tags has more tags in each resolution group to

examine and compare the change and the affection of the resolution.

Moreover, the seventeen tags is the smallest number that can be used to

 63

generate at least three different resolution groups with at least four tags in

each group. In RandomMap.java (appendix 2) programme, the duplicate

locations will be checked in order to assign a different location for each of

tag. Figure 34 presents the output file of this programme - ranTags.txt

which is the X-axial value and the Y-axial value of each tag.

Figure 34 ranTags.txt

The Calculations.java (appendix 4) is run subsequently in order to

generate the distances and angles between each tag to other tags. There

are seventeen assumed tags are tested in this section, as a result

seventeen output files will be generated by Calculations.java which are

Tag1.txt, Tag2.txt, Tag3.txt and so on. Each of these seventeen output

files contains three columns of data which the third column represents as

tag label, whereas the first column (sorted) and second column are the

distance and the angle of tag (display in the third column), respectively.

For instance, in Tag1.txt, the target tag is tag1, thus the distance and angle

is calculated between tag1 and each remaining sixteen tags. Figure35

presents the distance, angle and label of each neighbour tag of Tag1 which

 64

the row one to row sixteen shows the sorted distances (ascending order)

with the angles between tag1 and tag2 to tag17.

Figure 35 The distance, angle and label of each neighbour tags of Tag1
(sorted by distance)

In this experiment, the Tag1.txt has been chosen and it is used to examine

the efficiency of use of the storage space. For the distance data and

angle data, all the sixteen data from both sets will be retained because the

memory space allows it to do so. The wavelet compression is applied to

the distance data. Because of the storage space and concern of

resolution, there are only eight wavelet coefficients are stored in a file for

Tag1. As showing in the Figure 33 (page 62), from N1 to N4 are the

nearest neighbour (NN) group, from N5 to N8 are the second close

neighbour group, and from N9 to N16 are the third close neighbour group.

The eight coefficients will be stored are coefficient 1, 2, 3, 4, 5, 6, 9 and 10.

According to this, the resolution of the tags is getting fuzzier and fuzzier

because the value of N1, N2, N3 and N4 can be exactly reconstructed, the

value of N5, N6, N7 and N8 is deficiency of one coefficient in the

calculation, and the value of N9, N10, N11, N12, N13, N14, N15 and N16 is

 65

deficiency of two coefficients in the calculation.

The equation – “((|Original Value – Reconstructive Value|) / Original Values) x

100%” is applied for calculate the percentage of the error in resolution for

each distance. Table 9 presents the percentage of the error in resolution

for each distance for Tag1.

Neighbour Number % Error in Resolution

N1 0.00 %

N2 0.00 %

N3 0.00 %

N4 0.00 %

N5 21.31 %

N6 14.94 %

N7 0.24 %

N8 0.24 %

N9 16.33 %

N10 3.27 %

N11 4.11 %

N12 5.98 %

N13 16.52 %

N14 1.59 %

N15 3.63 %

N16 10.70 %

Table 9 The percentage of the error in resolution for each distance for
Tag1

 66

In Table 9, the percentage of the error in resolution for NN group are all

0.00% because the reconstruction values in this group are exactly been

reconstructed without any missing coefficient. The lowest value and

highest value in second close neighbour group are 0.24% and 21.31%.

The lowest value and highest value in third close neighbour group are

1.59% and 16.52%. The saved storage space for each resolution level

group for distance data can be calculate by the equation – “(the number of

saved coefficient x 7)”, because the size of one coefficient is approximate to

seven bits. Figure 36 presents the saved storage space of distance from

nearest distance group to farthest distance group for Tag1. In Figure 36,

the gradient between Group2 and Group3 is bigger than the gradient

between Group1 and Group2 which means the saved storage space of

distance in Group3 is more than Group2. Compare with Figure 15 (page

32) in section 2.6, Figure 36 is similar to Line 3 where resolution is

inversely relation to storage.

�����������	
������
����
�����	�������	����
��������	����	�������
�
�	
����	���	����	�������
�
��
�����������������	
������
����
�����	�������	����
��������	����	�������
�
�	
����	���	����	�������
�
��
�����������������	
������
����
�����	�������	����
��������	����	�������
�
�	
����	���	����	�������
�
��
�����������������	
������
����
�����	�������	����
��������	����	�������
�
�	
����	���	����	�������
�
��
������

�

�

� �

� �

� �

� �

� �

� �

� �

� �

� � 	
 � � � � 	
 � � � � 	
 � �

� ��	�������
�
� ��	�������
�
� ��	�������
�
� ��	�������
�

�
��
��
��
�
�	
��

�
�

��

�
��
��
��
�
�	
��

�
�

��

�
��
��
��
�
�	
��

�
�

��

�
��
��
��
�
�	
��

�
�

��

� �����	� �����	� �����	� �����	 � ��	���	� ��	���	� ��	���	� ��	���	
Figure 36 The saved storage space of distance data from nearest distance

group to farthest distance group for Tag1

 67

Furthermore, the fifteen different groups of random number are generated

for the next examination. As a result, there are fifteen different distance

data of Tag1. Table 10 presents the percentage of the error in resolution

of distance for all sixteen neighbour tags of Tag1 for fifteen different

random number groups from nearest to farthest (N1 to N16), and the

average (AVG) value of and the Standard Deviation value (STDEV) of the

percentage of the error in resolution of all groups within each neighbour.

Table 10 The percentage of the error in resolution of distance, and the
AVG of and the STDEV of % error in resolution for fifteen different groups

of random number

In Table 10, the AVG and STDEV for NN group are both 0.00%. From N6

to N 8 are second close neighbour group and from N9 to N 16 are third

� N1 N2 N3 N4 N5 N6 N7 N8 N9 N10 N11 N12 N13 N14 N15 N16

Group1 0.00% 0.00% 0.00% 0.00% 21.31% 14.94% 0.24% 0.24% 16.33% 3.27% 4.11% 5.98% 16.52% 1.59% 3.63% 10.70%

Group2 0.00% 0.00% 0.00% 0.00% 3.69% 3.43% 3.94% 3.65% 4.81% 3.75% 1.68% 6.09% 31.33% 1.05% 1.53% 18.92%

Group3 0.00% 0.00% 0.00% 0.00% 19.80% 14.18% 8.00% 6.90% 4.27% 1.63% 1.54% 3.96% 15.79% 1.62% 5.28% 8.81%

Group4 0.00% 0.00% 0.00% 0.00% 5.91% 5.28% 14.07% 10.98% 8.96% 5.83% 5.32% 7.51% 7.08% 6.16% 5.12% 14.74%

Group5 0.00% 0.00% 0.00% 0.00% 20.09% 14.33% 2.66% 2.52% 12.07% 4.81% 4.71% 9.43% 18.64% 3.00% 0.06% 15.74%

Group6 0.00% 0.00% 0.00% 0.00% 3.72% 3.46% 13.55% 10.66% 25.28% 4.90% 6.05% 7.92% 13.72% 6.57% 2.68% 17.25%

Group7 0.00% 0.00% 0.00% 0.00% 11.21% 9.16% 3.94% 3.66% 12.51% 0.19% 4.74% 5.95% 10.49% 4.54% 1.58% 13.34%

Group8 0.00% 0.00% 0.00% 0.00% 2.06% 1.97% 3.34% 3.13% 8.57% 7.48% 5.09% 8.66% 5.84% 1.80% 0.34% 7.09%

Group9 0.00% 0.00% 0.00% 0.00% 9.18% 7.76% 8.73% 7.43% 10.80% 0.65% 0.84% 8.71% 25.38% 3.28% 0.69% 19.42%

Group10 0.00% 0.00% 0.00% 0.00% 0.99% 0.97% 3.63% 3.39% 12.43% 1.88% 1.23% 10.44% 28.86% 4.08% 0.27% 21.01%

Group11 0.00% 0.00% 0.00% 0.00% 2.19% 2.10% 8.13% 6.99% 3.84% 0.18% 1.38% 2.07% 22.65% 4.99% 7.37% 13.23%

Group12 0.00% 0.00% 0.00% 0.00% 16.73% 12.54% 7.29% 6.36% 5.07% 0.82% 2.10% 3.37% 16.65% 1.62% 5.57% 9.07%

Group13 0.00% 0.00% 0.00% 0.00% 3.53% 3.30% 0.94% 0.92% 5.13% 0.95% 0.04% 5.53% 25.18% 2.48% 2.63% 12.94%

Group14 0.00% 0.00% 0.00% 0.00% 9.14% 7.73% 3.76% 3.49% 17.74% 5.53% 8.37% 10.05% 9.81% 5.56% 3.01% 14.62%

Group15 0.00% 0.00% 0.00% 0.00% 2.41% 2.30% 2.69% 2.56% 11.52% 4.41% 1.01% 13.46% 15.22% 8.76% 4.76% 20.51%

AVG 0.00% 0.00% 0.00% 0.00% 8.80% 6.90% 5.66% 4.86% 10.62% 3.08% 3.21% 7.28% 17.54% 3.81% 2.97% 14.49%

STDEV 0.00% 0.00% 0.00% 0.00% 7.33% 5.03% 4.18% 3.23% 5.95% 2.35% 2.42% 3.00% 7.77% 2.26% 2.26% 4.38%

 68

close neighbour group. However, the lowest AVG in third close neighbour

group is 2.97% which is lower than all AVG in second close neighbour

group as well as another three AVG values from the third close neighbour

group. The AVG of the resolution from nearest tag group to farthest tag

group is not less and less as well as the STDEV. As a result, the change

of resolution in distance is instable. Furthermore, Table 11 presents the

original size of the distance data, the size of the distance data by using

Wavelet compression technique and the size of the distance data by using

Zip compression technique for each of seventeen testing tags.

Table 11 The original size of the distance data, the size of the distance
data by using Wavelet compression technique and the size of the

distance data by using Zip compression technique for each of seventeen
testing tags

�
Original size of distance data

(byte)

After Wavelet

compression (byte)

After Zip

Compression

(byte)

Tag 1 111 66 182

Tag 2 112 69 184

Tag 3 110 69 184

Tag 4 110 71 184

Tag 5 112 71 185

Tag 6 111 68 182

Tag 7 109 70 185

Tag 8 111 68 181

Tag 9 110 70 182

Tag 10 108 69 185

Tag 11 110 68 187

Tag 12 109 68 184

Tag 13 110 68 184

Tag 14 110 67 186

Tag 15 112 69 187

Tag 16 111 65 187

Tag 17 110 67 184

 69

In Zip compression technique, the reconstructive data is exactly same as

the original data. However, in Table 11 shows the size of the data which

employs the Zip compression technique is increased. On the other hand,

the size of the data which uses the Wavelet compression technique is

decreased. According to this, the size of the data did not reduce using Zip

compression technique which is the opposite of the goal of this study,

although it gets the zero percentage of error in resolution of all the

reconstructive data. The distance section of the experiment has been

described. Therefore, the angle section of the experiment is going to be

discussed in the next.

The seventeen tags which are generated in distance section is used for

angle section, thus the amount of NN tags in angle is same as in distance.

The quadrant compression technique is used for the angle data.

Furthermore, there are three different angle levels are assumed for the

angle data which are eight bits, four bits and one bit. In order to match the

resolution of the distance which is getting more uncertain by each group,

the first four angles are assigned to eight bits, the next four angles are

assigned to four bits, and the last eight angles are assigned to one bit.

According to this, the CalAngleBinary.java (appendix 1) is applied to

convert the original angle data to their binary angle data. Figure 37

presents the original angle data of Tag1 and Figure 38 presents the

converted angle data of the first eight values of Tag1.

 70

Figure 37 The original angle data
of Tag1

Figure 38 The converted angle
data of Tag

The equation – “((|the original angle – the mean of the converted angle range) / the

original angle) x 100%” is applied for calculate the percentage of the error in

resolution for each angle. Table 12 presents the percentage of the error

in resolution for each angle for Tag1. In Table 12 the lowest value and

highest value of the percentage of the error in resolution for NN group are

0.04% and 2.76%. The lowest value and highest value in second close

neighbour group are 0.13% and 7.29%. The lowest value and highest

value in third close neighbour group are 2.92% and 49.72%. Accordingly,

the highest value of the percentage of the error in resolution is increasingly

from NN group to the third close neighbour group.

 71

Neighbour Number % Error in Resolution

N1 0.04 %

N2 2.76 %

N3 0.22 %

N4 0.90 %

N5 0.13 %

N6 0.91 %

N7 4.81 %

N8 7.29 %

N9 35.11 %

N10 10.33 %

N11 49.72 %

N12 48.69 %

N13 16.58 %

N14 2.99 %

N15 43.55 %

N16 2.92 %

Table 12 The percentage of the error in resolution for each angle for Tag1

The saved storage space for each resolution level group for the angle data

can be calculated by the equation – “(the number of saved bit of one tag x the

number of tag in the group)”. Moreover, the number of saved bit of one tag

depends on the difference of the number of bits in one tag between the

current group and the highest resolution angle group. Figure 39 presents

the saved storage space of angle from nearest distance group to farthest

distance group for Tag1.

 72

�����������	
������
����
����������	����
��������	����	�������
�
�	
����	���	����	�������
�
��
�����������������	
������
����
����������	����
��������	����	�������
�
�	
����	���	����	�������
�
��
�����������������	
������
����
����������	����
��������	����	�������
�
�	
����	���	����	�������
�
��
�����������������	
������
����
����������	����
��������	����	�������
�
�	
����	���	����	�������
�
��
������

�

� �

� �

� �

� �

� �

� �

� 	
 � � � � 	
 � � � � 	
 � � �

� ��	�������
�
� ��	�������
�
� ��	�������
�
� ��	�������
�

�
�
�
��
��
�
�	
��

�
�

��

�
�
�
��
��
�
�	
��

�
�

��

�
�
�
��
��
�
�	
��

�
�

��

�
�
�
��
��
�
�	
��

�
�

��

� �����	� �����	� �����	� �����	 � ��	���	� ��	���	� ��	���	� ��	���	
Figure 39 The saved storage space of angle data from nearest distance

group to farthest distance group for Tag1

The obliquity between Group2 and Group3 is more oblique than the

obliquity between Group1 and Group2 which means the total saved

storage space in Group3 is more than Group2. Furthermore, from the

equation of saved space of angle, the two facts that impact on the amount

of saved space are the number of saved bit of one tag and the number of

tag in the group. According to this, the more storage space is saved while

the more number of tag in the lower resolution. Furthermore, the fifteen

different groups of random number are generated in previous section are

also used for the next examination. As a result, there are fifteen different

angle data of Tag1. Table 13 presents the percentage of the error in

resolution of angle for all neighbour tags of Tag1 for fifteen different random

number groups from nearest to farthest (N1 to N16), and the average (AVG)

value of and the Standard Deviation value (STDEV) of the percentage of

 73

the error in resolution of all groups within each nearest neighbour. In

Table 13, from N1 to N4 is the nearest neighbour group, from N5 to N8 are

second close neighbour group and from N9 to N16 are third close

neighbour group. The highest AVG value in group 1 is 1.32% which is

lower than the lowest AVG value 5.54% in group 2. The highest AVG

value in group 2 is 22.50% which is lower than the lowest AVG value

28.90% in group 3. As a result, the resolution becomes lower and lower

from the nearest neighbour tag group to the farthest tag group.

� N1 N2 N3 N4 N5 N6 N7 N8 N9 N10 N11 N12 N13 N14 N15 N16

Group1 0.04% 2.76% 0.22% 0.90% 0.13% 0.91% 4.81% 7.29% 35.11% 10.33% 49.72% 48.69% 16.58% 2.99% 43.55% 2.92%

Group2 0.40% 0.22% 0.18% 0.31% 16.56% 8.58% 0.82% 6.27% 26.10% 44.94% 25.69% 43.62% 14.52% 47.16% 30.74% 28.78%

Group3 0.04% 0.09% 0.56% 1.63% 13.61% 0.40% 2.79% 2.59% 109.50% 19.91% 4.63% 779.77% 27.97% 771.25% 24.03% 55.20%

Group4 0.29% 0.67% 0.34% 0.11% 1.34% 0.38% 0.50% 0.28% 49.58% 389.13% 21.64% 0.67% 33.59% 8.75% 13.51% 15.10%

Group5 0.07% 0.17% 1.25% 0.08% 0.68% 3.67% 5.86% 1.77% 19.27% 44.73% 103.07% 15.25% 37.17% 29.47% 44.10% 14.42%

Group6 0.24% 0.16% 0.18% 4.61% 0.09% 2.91% 1.07% 186.99% 14.58% 24.20% 21.09% 18.99% 8.76% 18.60% 15.33% 13.82%

Group7 0.01% 0.42% 0.01% 0.98% 6.35% 4.99% 0.61% 0.99% 38.02% 40.03% 20.49% 39.33% 17.99% 31.27% 17.90% 39.39%

Group8 0.30% 0.02% 0.07% 0.34% 2.88% 2.38% 37.50% 1.03% 20.29% 12.77% 20.83% 7.55% 15.31% 19.13% 11.71% 13.08%

Group9 0.16% 0.03% 0.00% 0.18% 4.49% 1.68% 2.64% 0.24% 7.22% 0.67% 0.31% 41.32% 0.80% 43.17% 25.85% 34.17%

Group10 0.44% 0.41% 0.34% 0.16% 5.76% 8.51% 1.30% 1.35% 18.48% 23.38% 21.53% 19.23% 18.32% 170.76% 121.13% 55.47%

Group11 0.10% 11.75% 0.30% 6.12% 7.42% 1.37% 6.50% 6.83% 25.47% 124.22% 24.57% 8.38% 644.42% 47.71% 108.00% 15.21%

Group12 0.72% 2.66% 0.05% 0.30% 12.73% 7.85% 9.57% 47.25% 249.38% 111.96% 993.56% 47.40% 161.25% 2.24% 56.79% 41.00%

Group13 0.18% 0.17% 1.48% 0.11% 1.36% 118.87% 4.89% 0.06% 58.26% 14.60% 24.85% 68.92% 13.69% 215.46% 817.43% 83.04%

Group14 0.16% 0.13% 0.01% 0.06% 48.42% 3.58% 4.08% 71.76% 24.31% 21.24% 1.44% 15.57% 17.74% 7.67% 11.61% 10.56%

Group15 0.09% 0.08% 0.04% 0.06% 1.89% 2.26% 0.22% 2.81% 8.57% 21.59% 1.63% 2.01% 4.14% 6.32% 9.02% 11.34%

AVG 0.22% 1.32% 0.34% 1.06% 8.25% 11.22% 5.54% 22.50% 46.94% 60.25% 89.00% 77.11% 68.82% 94.80% 90.05% 28.90%

STDEV 0.19% 3.02% 0.45% 1.83% 12.28% 29.91% 9.24% 49.94% 61.55% 97.65% 251.51% 195.43% 163.77% 197.25% 204.11% 22.36%

Table 13 The percentage of the error in resolution of angle, and the AVG of
and the STDEV of % error in resolution for fifteen different groups of

random number

 74

Furthermore, Table 14 presents the original size of the angle data, the size

of the angle data by using quadrant compression technique and the size of

the angle data by using Zip compression technique for each of seventeen

testing tags.

Table 14 The original size of the angle data, the size of the angle data by
using quadrant compression technique and the size of the angle data by

using Zip compression technique for each of seventeen testing tags

Using Zip compression technique, the reconstructive angle data is exactly

same as the original angle data. However, Table 14 shows using the Zip

compression technique is increases the size of the data required. In the

other hand, the size of the angle data which uses the quadrant

compression technique is decreased. According to this, the size of the

� Original size of angle data (byte)
After quadrant

compression (byte)

After Zip

compression

(byte)

Tag 1 121 88 189

Tag 2 126 88 188

Tag 3 114 88 186

Tag 4 127 88 191

Tag 5 128 88 186

Tag 6 125 88 189

Tag 7 127 88 183

Tag 8 121 88 190

Tag 9 126 88 191

Tag 10 123 88 190

Tag 11 118 88 190

Tag 12 111 88 183

Tag 13 118 88 189

Tag 14 126 88 191

Tag 15 121 88 193

Tag 16 110 88 187

Tag 17 121 88 189

 75

data is successfully reduced by quadrant compression technique which is

one of the most important approaches used in this study.

5.2 Experiment 2: Navigation

The previous section 5.1 discussed the first experiment which includes

distance and angle. As a result, the experiment is ready to carry on for

the navigation section after the data are stored correctly in each tag. In

this section, the algorithm of the navigation for the experiment is described

first and then demonstration of the navigation.

In the navigation section, the most essential part is the algorithm for

detecting the next tag to move to which is in the highest resolution angle

range group that is closest in angle to the destination. Therefore, this

algorithm is described in this section. Figure 40 presents the procedure

for finding next tag. The procedure of this algorithm is implemented in

NextTag.java (appendix 5).

 76

Figure 40 Flowchart of finding next tag

After the next tag to move to is calculated by NextTag.java, the user

accordance with the distance, angle and the tag label from the output file

which is generated by NavigationOutput.java (appendix 6) to move.

Figure 41 presents the output file for Tag1 which is generated by

NavigationOutput.java.

Destination is one of the tags in the

highest angle range resolution group?

FINISH

START

No

Calculate the mean of angle range for destination tag and

all the tags in the highest angle range resolution group.

Find the tag that is closest

in angle to the destination.

Next tag to move to is found.

Yes

Any tag in the highest angle range resolution

group has been to before which also repeats to

move back to any tag that is in the route?

No

All the tags in the

highest angle range

resolution group are

matching this?

Yes

Calculate the mean of angle range for

destination tag and the remaining tags in the

highest angle range resolution group.

No

The destination cannot be reached

from current position tag.

Avoiding back

tracking

Yes

 77

Figure 41 The navigation output file for Tag1

The first step in algorithm is to check whether the destination tag is one of

the tags in the highest angle range resolution group of the current position

tag. If the destination tag matches this criterion, the next tag to move to is

found. However, if it does not match this criterion, the next step is to

check whether any tag in the highest angle range resolution group is been

to before which also repeats to move back to the tag that is in the route.

This process is needed to avoid back tracking. If any tag matches this

criterion, it means that this tag is been to before and no new next tag to

move to so it moves back to the same tag in the route. Furthermore, if all

the tags in the highest angle range resolution group match this criterion,

this means there is no next tag to move to. According to this, the

destination cannot be reached from the current position tag. However, if

there is any number of tags remains, the final step of finding the next tag to

move to is executed. In the final step, the mean of angle range for

destination tag and all the remaining tags in the highest angle range

resolution group will be calculated in order to have exactly angle for the

next calculation. After all the mean values are calculated, the next

 78

calculation is to calculate and find the angle of the tag that is closest in

angle to the destination. As a result, the next tag to move to is found after

this calculation. Furthermore, if there is any remaining tag is in the back

of current position tag which is in the different side from the destination tag.

The calculation for calculating the angle between this tag and destination

tag is different. In this situation, this tag is in the back of the current tag,

so the angle should calculate anti-clockwise while the mean value of the

calculating angle is greater than 180o from the angle of current tag and

destination. For instance, Figure 42 presents the current position tag is A,

the destination is B, and BMEAN, CMEAN, DMEAN and EMEAN are the mean

value for tags B, C, D and E of Tag A. The calculation for the angle

between CMEANA and ABMEAN, DMEANA and ABMEAN, and EMEANA and ABMEAN

are �BMEANACMEAN, �BMEANADMEAN, �BMEANAEMEAN. The calculation

for the angle between CMEANA and ABMEAN, DMEANA and ABMEAN are correct.

However, the correct calculation for angle between EMEANA and ABMEAN

should be calculate anti-clockwise which is �BMEANAEMEAN_2 not �

BMEANAEMEAN_1 because it is more accurately and logically.

Figure 42 The example of current position Tag A, the destination Tag B,

and the mean value for NN tags (C, D and E) for Tag A

 79

The algorithm of navigation is already described. Therefore, in the

following paragraph, the experiment of the navigation is presented. The

data are used in the first example are the existing data which have already

been generated in the previous experiment section. For these seventeen

tags, Tag 16 (T16) is assumed as the origin position and Tag 5 (T5) is

assumed as the destination. The programme is used to generate the next

tag to move to from the current position tag is NextTag.java (appendix 5).

There are three inputs for this programme which are current position tag,

destination tag and the route which has already been travelled (includes

current position tag). Because of the destination is a fixed tag, so the

input for the current position tag needs to be changed after move to new

tag, as well as the route. In the first execution of NextTag.java, the current

position tag is T16 and the already visited list includes: T16. The result of

output shows the next tag to move to is T3. In the second execution of

NextTag.java, the current position tag is T3 and the already visited list

includes: T16 and T3. The result of output shows the next tag to move to

is T11. In the third execution of NextTag.java, the current position tag is

T11 and the already visited list includes: T16, T3 and T11. The result of

output shows the next tag to move to is T8. In the fourth execution of

NextTag.java, the current position tag is T8 and the already visited list

includes: T16, T3, T11 and T8. The result of output shows the next tag to

move to is T10. In the fifth execution of NextTag.java, the current position

tag is T10 and the already visited list includes: T16, T3, T11, T8 and T10.

The result of output shows the next tag to move to is T6. In the sixth

execution of NextTag.java, the current position tag is T6 and the already

visited list includes: T16, T3, T11, T8, T10 and T6. The result of output

 80

shows the next tag to move to is the destination T5. Therefore, the last

movement is move to the destination Tag T5. According to this navigation,

the route for navigating from T16 to T5 is T16 � T3 � T11 � T8 �

T10 � T6 � T5 which is showed in Figure 43.

Figure 43 The hops in the navigation of T16 to T5

Table 15 presents all the tags are recorded in this navigation, the distance

between each movement, the distance between T16 and T5, the difference

between the total distance of the route and the actual distance between

T16 and T5, and the percentage of the access of the navigation. The

equation is used to calculate the percentage of the excess of the

navigation is - “(The difference between actual distance and sum of the distance of

each hop / actual distance) x 100%”. In Table 15, the percentage of the

excess is 12.69, thus it means the difference between the sum of all hops

and actual distance is not very great.

 81

 Movement

T16 0

T3 21.07

T11 19.87

T8 24.16

T10 27.26

T6 13.15

T5 20.69

SUM 126.2

Actual distance

from T16 to T5
111.99

Difference 14.21

% EXCESS 12.69 %

Table 15 The movement to each Tag, and the SUM and the % EXCESS of

the navigation

The navigation will be tested ten more times and each test contains a

different set of origin tag and destination. Table 16 presents the origin tag,

the destination, number of hop in the route, the sum of the movement, the

actual distance between origin tag and destination, the difference between

the sum of the movement and actual distance, and the percentage of

excess of each test for these ten navigations. In Table 16, the lowest

percentage of excess is 1.05% which is in run number 1 and its number of

hop is 3. However, the highest percentage of excess is 188.94% which is

in run number 6 and its number of hop is 6. The number of hop in run

number 9 and 10 are 9 which are both more than run number 6 but their

percentage of excess are both lower than run number 6.

 82

Run Number Origin Tag Destination
Number of Hop

in Route
SUM

Actual

Distance
Difference % EXCESS

1 T12 T15 3 59.77 59.15 0.62 1.05 %

2 T7 T4 4 79.78 75.6 4.18 5.53 %

3 T1 T14 4 87.44 61.72 25.72 41.67 %

4 T15 T7 3 55.53 53.78 1.75 3.25 %

5 T17 T6 4 79.66 66.47 13.19 19.84 %

6 T8 T17 6 162.76 56.33 106.43 188.94 %

7 T11 T2 3 74.76 65.71 9.05 13.77 %

8 T6 T1 4 72.02 55.74 16.28 29.21 %

9 T2 T12 9 205.11 87.64 117.47 134.04 %

10 T14 T16 9 191.35 88.38 102.97 116.51 %

Table 16 The result of ten navigations

In second part of this experiment, another set of seventeen random

numbers are generated for the testing of navigation. Tag 4 (T4) is

assumed as the origin position and Tag 11 (T11) is assumed as the

destination. The NextTag.java (appendix 5) is executed to find the next

tag to move to repeatedly until the output shows the next tag to move to is

the destination tag. Figure 44 presents the route of this navigation which

is T4 � T7 � T3 � T6 � T15 � T6 � T3 � T16 � T10 � T5

� T14 � T11.

 83

Figure 44 The hops in the navigation of T4 to T11

Table 17 presents all the tags are recorded in this navigation, the distance

between each movement, the distance between T4 and T11, the difference

between the total distance of the route and the actual distance between T4

and 11, and the percentage of the excess of the navigation. The equation

is used to calculate the percentage of the excess of the navigation is same

as the previous testing of navigation. In Table 17, the percentage of

excess is 126.42% which is higher than 100%, thus it means this

navigation has too many unnecessary hops in the route which can be seen

in Figure 44.

 84

� Movement

T4 0

T7 6.03

T3 33.99

T6 31.21

T15 18.48

T6 18.48

T3 31.21

T16 31.29

T10 24.67

T5 15.67

T14 29.61

T11 28.6

SUM 269.24

Actual

Distance from

T4 to T11

118.91

Difference 150.33

% EXCESS 126.42 %�

Table 17 The movement to each Tag, and the sum and the accuracy of the
navigation

Furthermore, the navigation will be tested ten more times and each test

contains a different set of origin tag and destination. Table 18 presents

the origin tag, the destination, number of hop in the route, the sum of the

movement, the actual distance between origin tag and destination, the

difference between the sum of the movement and actual distance, and the

percentage of the excess of each test for these ten navigations. In Table

18, the lowest percentage of the excess is 0.78% which his in run number 9,

thus the navigation route is very close to the actual distance. However,

the highest percentage of the excess is 264.32% which his in run number 4

that has fifteen hops in its navigation. In run number 3 and 6, the number

 85

of hop are both 10 but the percentage of the excess is 201.50% for run

number 6 which is much higher than the percentage of the percentage of

the excess in run number 3 which is 148.35%. Furthermore, each of the

navigation tests is successfully complete which means each test finds the

route from the origin tag to the destination tag. However, the percentage

of the excess distance is unstable which has already been mentioned

above. According to this, efficiency of the path finding is also unstable

because it is affected by the deployment of the RFID tags, the origin tag,

the destination tag, the algorithm of finding the next tag to move to and the

algorithm for back tracking avoidance.

Run Number Origin Tag Destination
Number of Hop

in Route
SUM

Actual

Distance
Difference % EXCESS

1 T9 T14 6 182.38 100.29 82.09 81.85 %

2 T7 T2 8 232.19 104.23 127.96 122.77 %

3 T11 T7 10 284.19 114.43 169.76 148.35 %

4 T6 T12 15 361.41 99.2 262.21 264.32 %

5 T16 T4 4 118.6 70.13 48.47 69.11 %

6 T13 T2 10 261.16 86.62 174.54 201.50 %

7 T17 T11 11 287.87 94.22 193.65 205.53 %

8 T12 T15 8 221.49 105.35 116.14 110.24 %

9 T15 T9 3 83.51 82.86 0.65 0.78 %

10 T14 T4 5 139.21 104.07 35.14 33.77 %

Table 18 The result of ten navigations for second set of random number

 86

Chapter 6: Discussion and Conclusion

6.1 Conclusion

As mentioned earlier (section 1.2) the objective of this study is to address

the issue of location storage using RFID by using compression technology

in order to successfully apply RFID technology in an indoor navigation

system. From the experimental results, the distance data storage

required for each tag has been reduced to half of the original size. After

the reconstruction of the distance data, the first four data has percentage of

the error in resolution are all zero which are the nearest neighbour distance

data for each tag. As a result, it can be seen that the distance is stored

efficiently when applying the wavelet compression technique. For the

angle data, the quadrant compression technique has been applied on each

of tag which the storage size has been reduced to one third of the original

data size. After the reconstruction of the angle data, the average of the

percentage of the error in resolution for the first four data from all tags is

around 1% which is the nearest neighbour angle data for each tag. As a

result, it can be seen that the angle has also been stored efficiently.

The navigation experiment involved developing an algorithm to use

compressed data to navigate between data-containing tags. As a result,

the algorithm is used to find the next tag to move to from the current tag

and the method is used to avoid the back tracking are both successfully

designed and implemented in this study. According to this, the goal of this

study is achieved.

 87

6.2 Discussion

The two experiments have been carried in the previous section: chapter 5

which have produced a number of results. However, there are several

results which are not in accordance with the expectation in the beginning of

this study. Accordingly, any of these differences and the findings from the

results of experiments are discussed in this section.

The distance data set is examined in the first part of experiment 1 (section

5.1) which the wavelet compression technique is applied to reduce its

storage size. It expects a smooth change in resolution and storage for the

distance data set but the change of the resolution is not smooth in practice.

As mentioned in the section 4.1, the amount of the coefficient is one less

than the previous group in the calculation for each group. Thus, the

resolution of the distance should be less and less from the closest to

farthest. However, as shown in Table 9 (page 65), the lowest value and

highest value of the percentage of the error in resolution in the second

close neighbour group are 0.24% and 21.31%. The lowest value and

highest value of the percentage of the error in resolution in the third close

neighbour group are 1.59% and 16.52%. According to this, the resolution

for the distance resolution is not become less and less from closest to

farthest neighbour group. It can be seen that the value of each coefficient

in wavelet compression cannot be controlled because the equation to be

used to calculate the coefficient is fixed. Therefore, the percentage of the

error in resolution for each neighbour tag depends on the value of the

missing coefficient of each group. I.e. the distribution of distances in the

dataset will affect the result. In particular, if a group of points that have the

 88

same resolution are widely separated, the percentage error at the

beginning and end of this group will be high, whereas the error of the

central group will be small as the value calculated is close to the mean of

the distance of this group. There is another issue need to be discussed

for the distance data. In this study, the seventeen random location tags

are generated for using in the experiment and I decided the first four

neighbour tags are the highest resolution group (full resolution). However,

if the total tags are 100, is four NN tags are for the navigation? What is

the reasonable and number of NN tags for using to choose the next tag to

move to in navigation? This should be reconsidered and redesigned

carefully and logically, and may be domain-specific, for example in the

case of a system used to map routes through doorways, a relatively lower

number of NN may be appropriate, whereas in areas with higher tag

density in particular areas e.g. finding objects in distinct clusters, a higher

number may be needed.

The angle data set is examined in the second part of experiment 1 (section

5.1) which the quadrant compression technique is applied to reduce its

storage size.. The change of the angle is as we expect which contains a

smooth change in resolution and storage. When designing the storage

system, of the angle data set, the number of the tags in the highest angle

resolution needs to be the same as the number of tags in the highest

distance resolution group. As a result, the number of the tags in the

highest angle resolution is four. In this study, I decided the angles of all

the tags are divided into three groups which are in the resolution of 8 bits, 4

bits and 1 bit. As Table 12 (page 71) shows, the angle resolution

 89

becomes less and less from closest to farthest neighbour group which

matches the concept of design of this study. However, if the amount of

tags is 100, then there are many possible schemes to represent 100 tags.

The angle resolution in each group and the number of group need to be

reconsidered and redesigned while the amount of the tags is changed as

well as while the number of tags in highest distance resolution group is

changed in order to make the use of the storage space efficiently and make

it meaningful for use in the navigation.

After the experiment of the distance and angle, the second experiment is

focused on the navigation. As shown in Table 16 (page 82) and Table 18

(page 85) in section 5.2, the test for all the navigations are successful

which means the destination in each navigation is reachable from the origin

tag of each navigation. Furthermore, because of the geometry of the map

in the experiment, it results in the navigation starting to back track. The

avoidance of back tracking is one of the essential points in the design and

algorithm of the navigation in this study because it stops the navigation

repeating the permanent movement between two tags. As shown in

Figure 44 (page 83), the algorithm of the avoidance of the back tracking is

successfully performed in this navigation system. However, if the amount

of tags is different from this study, the algorithm of the avoidance of the

back tracking for this study might not be suitable. For instance, if the

amount of the tags is 100, its geometry of the map is more complex than

this study (seventeen tags). As a result, if the same algorithm for this

study is applied to an experiment of 100 tags, it might result in multiple

loops or back-tracks around the tags which means the destination is

 90

unreachable. Thus, this kind of navigation system is ineffective in this

case. According to this, the algorithm of the avoidance of the back

tracking should be reconsidered for different experiment while the amount

of the tags is changed. Furthermore, the actual angle of the destination

tag and the mean values of tags in highest angle resolution group is also

another factor which affects the back tracking. For instance, the value is

used in the comparison in the navigation is the mean value of the angle

range. If the destination is in the lowest angle resolution group of the

current position tag, the mean values of the destination is either 90 or 270

depends on which side of the current position tag that the destination is in.

It assumes that the actual angle of the destination is 10 and the mean

values for tags in the highest angle resolution group are 15, 20, 100 and

120. As a result, after the comparison in the navigation, the system will

choose the tag with the mean value of 100 for its next tag to move to which

is much different from the comparison by using the actual value of

destination. If this kind of situation appears several times in navigation, it

will result in too much back tracking which means the percentage of excess

on distance will be very high.

6.3 Strengths and Limitations

There are several strengths and limitations in this study. The simple

navigation system is one of the strengths, thus mean this system is simple

on its design and easy to use. Low cost to implement this navigation

system is another strength because this navigation system only requires a

RFID reader and a number of RFID tags.

 91

There are several limitations in this study. For instance, the two sets of

seventeen random distributed tags are used in the experiment, thus some

particular map have not been generated (e.g. one tag is isolated with other

sixteen tags) which the results might be biased. The amount of tags in the

experiment is one of limitations, thus it means some algorithms might not

be applicable. The back tracking can be seen as a limitation which

increases the percentage of excess on distance in the navigation.

Furthermore, this system has not been applied in real world, thus it

becomes very difficult to predict whether the system can be effectively and

accurately applied to the real case and it also might contain some factors

from the environment which affects to the system.

6.4 Future research directions

As I discussed in the previous section (section 6.3), there are numbers of

limitations that need to be addressed and further studies performed in the

future. For instance, all kinds of particular maps need to be discussed

and applied in the experiment in order to get the results in all kinds of

situations. More experiment as well as more tags need to be involved in

order to get more effective and accurate result. The compression method

for the angle data and the algorithm for the avoidance of the back tracking

are both need to be improved in order to make the total distance in the

navigation is close to the actual distance. In particular the use of a 2d

wavelet compression technique may be appropriate. Furthermore, the

navigation system needs to be deployed in real world in order to solve the

issues in the real world situation.

 92

REFERENCES

Addison, P. S. (2002). The illustrated wavelet transform handbook: applications
in science, engineering, medicine and finance. Bristol: Institute of Physics
Publishing.

Answer.com, spherical coordinate system [Image] (n.d.). Retrieved August 16,
2008, from
http://www.answers.com/topic/coordinate-system?cat=technology

Barnsley, M. F., & Jacquin, A. (1998). Application of recurrent iterated function
systems to images. Visual Comm. and Image Processing, Pro. SPIE 1001(3),
122–131.

Bessa, M., Coelho, A., & Chalmers, A. (2004). Alternate feature location for
rapid navigation using a 3D map on a mobile device. Paper presented at the
2004 3rd Proceedings of the International Conference on Mobile and
Ubiquitous Multimedia, Maryland, USA.

Bessho, M., Kobayashi, S., Koshizuka, N., & Sakamura, K. (2007, August
19-22). A pedestrian navigation system using multiple space-identifying
devices based on a unique identifier framework. Paper presented at 2007
International Conference on Machine Learning and Cybernetics, Hong Kong,
China.

Calderbank, A. R., Daubechies, I., Sweldens, W., & Yeo, B .L. (1998). Wavelet
transforms that map integers to integers. Applied and Computational
Harmonic Analysis, 5(3), 332-369.

Chen, B., Zhang, H. C., Cao, W. L., & Feng, J. H. (2007, August 19-22).
Huffman coding method based on number character. Paper presented at the
2007 International Conference on Machine Learning and Cybernetics, Hong
Kong, China.

 93

Chen, C. Y., Pai, Y. T., & Ruan, S. J. (2006, November). Low power Huffman
coding for high performance data transmission. Paper presented at the 2006
International Conference on Hybrid Information Technology, Cheju Island,
South Korea.

Davis, G. M. (1998). A wavelet-based analysis of fractal image compression.
IEEE Transactions on Image Processing, 7(2), 141-154.

Feldmann, S., Kyamakya, K., Zapater, A., & Lue, Z. (2003). An indoor
Bluetooth-based positioning system: Concept, implementation and
experimental evaluation. Paper presented at the 2003 International
Conference on Wireless Networks, Las Vegas, USA.

Gryazin, E. A., Krassi, B. A., & Tuominen, J. O. (2003, November 27-28). WLAN
technology for indoor positioning and navigation. Paper presented at the
2003 4th International Science Conference on New Information Technologies:
Development and Applications, Taganrog, Russia.

He, Y. J., Zhang, D. L., Shen, B., & Geng, L. F. (2007, October 22-25).
Implementation of fast Huffman decoding algorithm. Paper presented at the
2007 7th International Conference on ASIC, Guilin, China.

Hevner, A. R., March, S. T., Park, J., & Ram, S. (2004). Design science in
information systems research. MIS Quarterly, 28(1), 75-105.

Howell, D. C. (1997). Statistical Methods for Psychology (4th ed.). Boston:
Duxbury Press.

Hub, A., Diepstraten, J., & Ertl, T. (2003). Design and development of an indoor
navigation and object identification system for the blind. ACM SIGACCESS
Accessibility and Computing, 77-78, 147-152.

 94

Hub, A., Diepstraten, J., Ertl, T. (2005). Augmented indoor modeling for
navigation support for the blind. Paper presented at the Proceedings of the
2005 International Conference on Computers for People with Special Needs,
Las Vegas, Nevada, USA.

Jacquin, A. (1992). Image coding based on a fractal theory of iterated
contractive image transformations. IEEE Trans. Image Processing, 1, 18–30.

Jiang, J., Xia, J., & Xiao, G. (2006, April 6). MPEG-2 based lossless video
compression. IEEE Proceedings of Vision-Image and Signal Processing,
153(2), 244-252.

Keys-Mathews, L. (1998). The five themes of geography. Retrieved August 10,
2008, from http://www2.una.edu/geography/statedepted/themes.html

Key, J. P. (1997). Research design in occupational education. Retrieved August
24, 2008, from
http://www.okstate.edu/ag/agedcm4h/academic/aged5980a/5980/newpage2
.htm

Kim, I., Lee, B., & Kim, H. (2006, Feb 20-22). Privacy Protection based on
User-defined Preferences in RFID System. Paper presented at the 8th
International Conference Advanced Communication Technology, Phoenix
Park, Korea.

Kulyukin, V., Gharpure, C., Nicholson, J., & Pavithran, S. (2004). RFID in
robot-assisted indoor navigation for the visually impaired. Proceedings of
the 2004 IEEE/RSJ International Conference on Intelligent Robots and
Systems, 2004(2), 1979-1984.

Kulyukin, V., Gharpure, C., Nicholson, J., & Osborne, G. (2006).
RobotAssisted wayfinding for the visually impaired in structured indoor
environments. Autonomous Robots, 21, 29-41.

 95

Luo, L., Li, J., Li, S., Zhuang, Z., & Zhang, Y. Q. (2001). Motion compensated
lifting wavelet and its application in video. Paper presented at the 2001
Electronic Proceedings of IEEE International Conference on Multimedia and
Expo, Tokyo, Japan.

Manzoor, U., & Ijaz, K. (2008, February 20-22). Optimizing bandwidth usage
and supporting block level synchronization in MultiSync: a multiagent system
for ubiquitous file synchronization Source. Paper presented at 2008 7th
Proceedings of the WSEAS International Conference on Artificial intelligence,
knowledge engineering and data bases, Cambridge, UK.

March, S. T., & Smith, G. F. (1995). Design and natural science research on
information technology. Decision Support systems, 15(5), 251-266.

Marks, S. K. (2000). Joint source/channel coding for mobile audio streaming.
PhD Thesis. University of Melbourne.

Marshall, D. (2001). The MPEG video bitstream. Retrieved August 10, 2008,
from http://www.cs.cf.ac.uk/Dave/Multimedia/node255.html

Mehmood, M. A., Kulik, L., & Tanin, E. (2007). Navigation and interaction in
physical spaces using RFID enabled spatial sensing. The Proceedings of the
5th international conference on Embedded networked sensor systems, 5,
379-380.

Milella, A., Vanadia, P., Cicirelli, G., & Distante, A. (2007, September 4-7).
RFID-based environment mapping for autonomous mobile robot applications.
Paper presented at 2007 IEEE/ASME international conference on Advanced
intelligent mechatronics, ETH Zurich, Switzerland.

Minos, G., & Phillip, B. G. (2004). Probabilistic wavelet synopses. ACM
Transactions on Database Systems, 29(1), 43-90.

Moffat, A. (1990). Design and natural science research on information
technology. IEEE Transactions on Communications, 38(11), 1917-1921.

 96

Nelson, M. (1989). Implementing the PPM data compression scheme. Decision
Support systems, 15(5), 251-266..

Nunamaker, J., Chen, M., & Purdin, T. D. M. (1990). Systems development in
information systems research. Journal of Management Information Systems,
7(3), 89-106.

Olivier, C. (n.d.). IP cores for accelerating JPEG2000. Retrieved August 15,
2008, from
http://www.us.design-reuse.com/articles/6691/ip-cores-for-accelerating-jpeg2
000.html

Poobal, S., & Ravindran, G. (2005, May 13). Analysis on the effect of tolerance
criteria in fractal image compression. Paper presented at the 2005 IEEE
International Workshop on Imaging Systems and Techniques, Niagara Falls,
Ontario, Canada.

Ramaswamy, V. N., Namuduri, K. R., & Ranganathan, N. (1996). Lossless
image compression using wavelet decomposition. 13th International
Conference on Pattern Recognition, ICPR'96(3), 924.

Renaudin, V., Yalak, O., Tomé, P., & Merminod, B. (2007). Indoor navigation of
emergency agents. Retrieved October 24, 2008, from
http://infoscience.epfl.ch

Sayood, K. (2005). Introduction to data compression (3rd ed.). San Fransisco,
USA: Morgan Kaufmann.

Schafer, R. (1998). MPEG-4: a multimedia compression standard for interactive
applications and services. Electronics & Communication Engineering Journal,
10(6), 253-262.

Toshifumi, T. (2005). World map based on RFID tags for indoor mobile
 robots. 2005 Proceedings of the International Society for Optical Engineering,

6006, 600613.1-600613.8.

 97

VIAS Encyclopedia (2005). Huffman coding. Retrieved August 10, 2008, from
http://www.vias.org/encyclopedia/huffman_coding.html

Wang, H., Wu, Q., He, X. J., & Hintz, T. (2006, August 30-01). A novel
interactive progressive decoding method for fractal image compression.
2006 First International Innovative Computing-Information and Control, 3,
613-617.

Weisstein, E. W. (n.d.). Wavelet. Retrieved August 15, 2008, from

http://mathworld.wolfram.com/Wavelet.html

Welch, T. A. (1984). A technique for high-performance data compression. IEEE
Computer, 17(6), 8–19.

Wikipedia , Cartesian with grid [Image] (2008). Retrieved August 16, 2008, from
http://en.wikipedia.org/wiki/Image:Cartesian_with_grid.svg

Willis, S., & Helal, S. (2004). A passive RFID information grid for location and
proximity sensing for the blind user. Retrieved September 27, 2008, from
http://www.cise.ufl.edu/submit/files/file_355.pdf

Wu, Y., Lonardi, S., & Szpankowski, W. (2006, March 28-30). Error-resilient
LZW data compression. Paper presented at the Proceedings of the DCC
2006 Data Compression Conference, Utah, USA.

Zhou, Y., Liu, W., & Huang, P. (2007, April 10-14). Laser-activated RFID-based
indoor localization system for mobile robots. Paper presented at the 2007
IEEE International Conference on Robotics and Automation, Roma, Italy.

 98

APPENDICES

 Page

Appendix 1: JAVA CODE – CalAngleBinary.java...i

Appendix 2: JAVA CODE – RandomMap.java ... iv

Appendix 3: JAVA CODE – WaveletConstruction.java vi

Appendix 4: JAVA CODE – Calculations.java.. ix

Appendix 5: JAVA CODE – NextTag.java ... xiv

Appendix 6: JAVA CODE – NavigationOutput.java xxi

 i

Appendix 1: JAVA CODE – CalAngleBinary.java

import java.util.*;

import java.io.*;

public class CalAngleBinary

{ public static void main(String[] args) {

 double [] anglArray = new double [16];

 int [] anglRanArray = new int [16];

 String [] anglBinArray = new String [16];

 String element;

 int level1Num = 4;

 int level2Num = 4;

 int level3Num = 8;

 int level1Binary = 8;

 int level2Binary = 4;

 int level3Binary = 1;

 int count = 0;

 File fIn = new File("C:\\D_files\\Calculations_Angle\\ran1\\Tag1.txt");

 File fOut = new File("C:\\D_files\\Angle_Binary\\ran1\\Tag1.txt");

 try

 { FileReader fReader = new FileReader(fIn);

 BufferedReader bReader = new BufferedReader(fReader);

 while ((element = bReader.readLine()) != null)

 { anglArray[count] = Double.parseDouble(element);

 count++;}

 bReader.close();}

 catch (Exception e)

 { System.err.println ("Error reading from file");}

 count = 0;

 for (int i = 0; i < level1Num; i++)

 { anglRanArray[count] = AngleRange(anglArray[count], level1Binary);

 anglBinArray[count] = AngleBinary(anglRanArray[count]-1, level1Binary);

 count++;}

 for (int i = 0; i < level2Num; i++)

 { anglRanArray[count] = AngleRange(anglArray[count], level2Binary);

 ii

 anglBinArray[count] = AngleBinary(anglRanArray[count]-1, level2Binary);

 count++;}

 for (int i = 0; i < level3Num; i++)

 { anglRanArray[count] = AngleRange(anglArray[count], level3Binary);

 anglBinArray[count] = AngleBinary(anglRanArray[count]-1, level3Binary);

 count++;}

 try

 { FileWriter fWriter = new FileWriter(fOut);

 BufferedWriter bWriter = new BufferedWriter(fWriter);

 for(int i = 0; i < anglBinArray.length; i++)

 { bWriter.write(anglBinArray[i]);

 bWriter.newLine();}

 bWriter.close();}

 catch (Exception e)

 { System.err.println ("Error writing to file");}

 }

 public static int AngleRange(double currentAngle, int numBits) {

 double ranges = Math.pow(2, numBits);

 double rangeVaule = 360 / ranges;

 double checkRange;

 int anglRange;

 checkRange = 0;

 anglRange = 0;

 for (int i = 0; i < ranges; i++)

 { if (currentAngle > checkRange && currentAngle < (checkRange + rangeVaule))

 { anglRange = i + 1;

 i = (int)ranges;}

 else if (currentAngle == checkRange)

 { anglRange = i + 1;

 i = (int)ranges;}

 checkRange += rangeVaule;}

 return anglRange;}

 public static String AngleBinary(int angle, int length) {

 String temp = Integer.toBinaryString(angle); // change decimal number to binary

 iii

 String temp2 = "0";

 int tempLength = length - temp.length(); // check how many bits miss from the original

binary number

 // add missing bits (0) in front of the binary number

 for (int k = 0; k < tempLength; k++)

 { temp = temp2 + temp;

 }

 return temp;

 }

 iv

Appendix 2: JAVA CODE – RandomMap.java

import java.util.*;

import java.text.*;

import java.io.*;

public class RandomMap{

 public static void main(String[] args){

 double[] xValue = new double[17];

 double[] yValue = new double[17];

 int[] lableValue = new int[17];

 double x_ranNum = 0;

 double y_ranNum = 0;

 String newFormatX, newFormatY;

 int check = 0;

 DecimalFormat df = new DecimalFormat("##0.00");

 File fOut = new File("C:\\D_files\\ranTags15.txt");

 for (int i = 0; i < xValue.length; i++) {

 while (check == 0){

 x_ranNum = Math.random() * 100;

 newFormatX = df.format(x_ranNum);

 x_ranNum = Double.parseDouble(newFormatX);

 y_ranNum = Math.random() * 100;

 newFormatY = df.format(y_ranNum);

 y_ranNum = Double.parseDouble(newFormatY);

 if (i == 0)

 { check = 1;}

 else { check = Search(xValue, yValue, x_ranNum, y_ranNum, i + 1);}

 }

 check = 0;

 xValue[i] = x_ranNum;

 yValue[i] = y_ranNum;

 lableValue [i] = i + 1;}

 // write the values of two arrays into file ranTags.txt

 try

 { FileWriter fWriter = new FileWriter(fOut);

 v

 BufferedWriter bWriter = new BufferedWriter(fWriter);

 bWriter.write("X Y Label");

 bWriter.newLine();

 for(int k = 0; k < xValue.length; k++)

 { newFormatX = df.format(xValue[k]);

 newFormatY = df.format(yValue[k]);

 bWriter.write(newFormatX + "\t" + newFormatY + "\t" + lableValue[k]);

 bWriter.newLine();}

 bWriter.close();}

 catch (Exception e)

 { System.err.println ("Error writing to file");}

 }

 // check any duplicate point

 public static int Search(double[] xArray, double[] yArray, double xKey, double yKey, int

currentLength) { for (int j = 0; j < currentLength; j++) {

 if (xKey == xArray[j] && yKey == yArray[j])

 { return 0;}

 else{}

 }

 return 1;

 }

}

 vi

Appendix 3: JAVA CODE – WaveletConstruction.java

import java.util.*;

import java.io.*;

import java.text.*;

public class WaveletConstruction

{ public static void main(String[] args) {

 ArrayList disArray = new ArrayList();

 ArrayList coeffiArray = new ArrayList();

 int count, tagNum;

 int count2 = 0;

 String element;

 File fIn = new File("C:\\D_files\\Calculations\\ran1\\Tag1.txt");

 File fOut = new File("C:\\D_files\\Distance_Coefficient\\ran1\\Tag1.txt");

 try

 { FileReader fReader = new FileReader(fIn);

 BufferedReader bReader = new BufferedReader(fReader);

 while ((element = bReader.readLine()) != null)

 { if (count2 == 0)

 { count2++;}

 else{ String temp [] = element.split("\\t");

 disArray.add(temp[0]); }

 }

 bReader.close();

 }

 catch (Exception e)

 { System.err.println ("Error reading from file");}

 // calculate wavelet coefficient

 coeffiArray = constructAverage(disArray);

 try

 { FileWriter fWriter = new FileWriter(fOut);

 BufferedWriter bWriter = new BufferedWriter(fWriter);

 bWriter.write((String)coeffiArray.get(0));

 bWriter.newLine();

 vii

 bWriter.write((String)coeffiArray.get(1));

 bWriter.newLine();

 bWriter.write((String)coeffiArray.get(2));

 bWriter.newLine();

 bWriter.write((String)coeffiArray.get(3));

 bWriter.newLine();

 bWriter.write((String)coeffiArray.get(4));

 bWriter.newLine();

 bWriter.write((String)coeffiArray.get(5));

 bWriter.newLine();

 bWriter.write((String)coeffiArray.get(8));

 bWriter.newLine();

 bWriter.write((String)coeffiArray.get(9));

 bWriter.newLine();

 bWriter.close();}

 catch (Exception e)

 { System.err.println ("Error writing to file");}

 }

 public static ArrayList constructAverage(ArrayList alDataItems){

 ArrayList arrCoefficients = new ArrayList();

 ArrayList alTemp = new ArrayList();

 double iWave1, iWave2, iDiff, iAverage = 0;

 int iIndex = 0, iLength = alDataItems.size(), iPos;

 /* while the list length is greater than one */

 while(alDataItems.size() > 1){

 iIndex = 0;

 iPos = 0;

 /* While not the end of the current list */

 while(iIndex < iLength){

 /* Get the numbers of the values to average */

 iWave1 = Double.parseDouble((String)alDataItems.get(iIndex));

 iIndex++;

 iWave2 = Double.parseDouble((String)alDataItems.get(iIndex));

 iIndex++;

 /***/

 /* Calculate the difference and the average */

 viii

 iAverage = (iWave1 + iWave2)/2;

 iDiff = iWave1 - iAverage;

 iDiff = Math.round(iDiff * 10000) / 10000d;

 /* Add Difference between values to coefficent array */

 arrCoefficients.add(iPos, Double.toString(iDiff));

 /* Add average to new list */

 alTemp.add(Double.toString(iAverage));

 iPos++;}

 /* If there is an uneven number of numbers add the last one to the end */

 if((alDataItems.size()%2)!= 0){

 alTemp.add(alDataItems.get(iIndex));}

 /* Replace old list with new list */

 alDataItems.clear();

 alDataItems = (ArrayList)alTemp.clone();

 iLength = alDataItems.size();

 alTemp.clear();}

 iAverage = Math.round(iAverage * 10000) / 10000d;

 /* Add Final average value to front of co-efficient list */

 arrCoefficients.add(0, Double.toString(iAverage));

 return arrCoefficients;

 }

}

 ix

Appendix 4: JAVA CODE – Calculations.java

import java.util.*;

import java.io.*;

import java.text.*;

public class Calculations

{ public static void main(String[] args) {

 ArrayList arrayX = new ArrayList();

 ArrayList arrayY = new ArrayList();

 int count, tagNum;

 int count2 = 0;

 String element;

 String fileFrontNam = "C:\\D_files\\Calculations\\ran1\\Tag";

 String fileFrontNam2 = "C:\\D_files\\Calculations_Distance\\ran1\\Tag";

 String fileFrontNam3 = "C:\\D_files\\Calculations_Angle\\ran1\\Tag";

 String fileFrontNam4 = "C:\\D_files\\Calculations_Label\\ran1\\Tag";

 String fileMidNam;

 String fileEndNam = ".txt";

 String fileName, fileName2, fileName3, fileName4;

 File fIn = new File("C:\\D_files\\ranTags1.txt");

 try

 { FileReader fReader = new FileReader(fIn);

 BufferedReader bReader = new BufferedReader(fReader);

 while ((element = bReader.readLine()) != null)

 { if (count2 == 0)

 { count2++;}

 else{ String temp [] = element.split("\\t");

 arrayX.add(temp[0]);

 arrayY.add(temp[1]); }

 }

 bReader.close();}

 catch (Exception e)

 {System.err.println ("Error reading from file");}

 x

 // calculations

 String [] tempArrayX = (String[])arrayX.toArray(new String[arrayX.size()]);

 String [] tempArrayY = (String[])arrayY.toArray(new String[arrayX.size()]);

 final double[] disCalResults = new double[arrayX.size()-1];

 double[] anglCalResults = new double[arrayX.size()-1];

 int[] labeCalResults = new int[arrayX.size()-1];

 for (int i = 0; i < arrayX.size(); i++)

 { count = 0;

 for (int j = 0; j < arrayX.size(); j++)

 { if (i != j)

 { disCalResults [count] = Distance(tempArrayX[i], tempArrayY[i],

tempArrayX[j], tempArrayY[j]);

 anglCalResults [count] = Angle(tempArrayX[i], tempArrayY[i],

tempArrayX[j], tempArrayY[j]);

 labeCalResults [count] = j + 1;

 count++;}

 }

 Integer [] sortOrder = new Integer[disCalResults.length];

 for(int k=0; k <sortOrder.length; k++){

 sortOrder[k] = k;}

 // sort by distance

 Arrays.sort(sortOrder,new Comparator<Integer>() {

 public int compare(Integer a, Integer b){

 if(disCalResults[b]<disCalResults[a]){

 return 1; }

 if(disCalResults[b]>disCalResults[a]){

 return -1; }

 return 0; }});

 tagNum = i + 1;

 fileMidNam = Integer.toString(tagNum);

 fileName = fileFrontNam + fileMidNam + fileEndNam;

 fileName2 = fileFrontNam2 + fileMidNam + fileEndNam;

 fileName3 = fileFrontNam3 + fileMidNam + fileEndNam;

 fileName4 = fileFrontNam4 + fileMidNam + fileEndNam;

 File fOut = new File(fileName);

 File fOut2 = new File(fileName2);

 File fOut3 = new File(fileName3);

 xi

 File fOut4 = new File(fileName4);

 String rr;

 try

 { FileWriter fWriter = new FileWriter(fOut);

 BufferedWriter bWriter = new BufferedWriter(fWriter);

 FileWriter fWriter2 = new FileWriter(fOut2);

 BufferedWriter bWriter2 = new BufferedWriter(fWriter2);

 FileWriter fWriter3 = new FileWriter(fOut3);

 BufferedWriter bWriter3 = new BufferedWriter(fWriter3);

 FileWriter fWriter4 = new FileWriter(fOut4);

 BufferedWriter bWriter4 = new BufferedWriter(fWriter4);

 bWriter.write("Distance Angle Label");

 bWriter.newLine();

 for(int m = 0; m < anglCalResults.length; m++)

 { bWriter.write(disCalResults[sortOrder[m]] + "\t\t" +

anglCalResults[sortOrder[m]] + "\t\t" + labeCalResults[sortOrder[m]]);

 bWriter.newLine();

 rr = Double.toString(disCalResults[sortOrder[m]]);

 bWriter2.write(rr);

 bWriter2.newLine();

 rr = Double.toString(anglCalResults[sortOrder[m]]);

 bWriter3.write(rr);

 bWriter3.newLine();

 rr = Integer.toString(labeCalResults[sortOrder[m]]);

 bWriter4.write(rr);

 bWriter4.newLine();}

 bWriter.close();

 bWriter2.close();

 bWriter3.close();

 bWriter4.close();}

 catch (Exception e)

 { System.err.println ("Error writing to file");}

 }

 }

 public static double Distance(String curX, String curY, String tarX, String tarY) {

 DecimalFormat df = new DecimalFormat("##0.00");

 String newFormat;

 xii

 double tempCurX = Double.parseDouble(curX);

 double tempCurY = Double.parseDouble(curY);

 double tempTarX = Double.parseDouble(tarX);

 double tempTarY = Double.parseDouble(tarY);

 double calResult;

 calResult = Math.sqrt(Math.pow((tempTarX - tempCurX),2) + Math.pow((tempTarY -

tempCurY),2));

 newFormat = df.format(calResult);

 calResult = Double.parseDouble(newFormat);

 return calResult; }

 public static double Angle(String curX, String curY, String tarX, String tarY) {

 double tempCurX = Double.parseDouble(curX);

 double tempCurY = Double.parseDouble(curY);

 double tempTarX = Double.parseDouble(tarX);

 double tempTarY = Double.parseDouble(tarY);

 DecimalFormat df = new DecimalFormat("##0.00");

 String newFormat;

 double disX = tempTarX - tempCurX;

 double disY = tempTarY - tempCurY;

 double degrees = 0.0d;

 // Calculate angle

 if (disX == 0.0)

 { if (disY > 0.0)

 degrees = 0.0;

 else if (disY < 0.0)

 degrees = 180.0; }

 else if (disY == 0.0)

 { if (disX > 0.0)

 degrees = 90.0;

 else if (disX < 0.0)

 { degrees = 270.0; }

 }

 else

 { if (disX < 0.0){

 degrees = Math.atan(disY/disX) + Math.PI;

 xiii

 // convert to degrees

 degrees = degrees * 180 / Math.PI;

 degrees = 450 - degrees; }

 else if (disY < 0.0){

 degrees = Math.atan(disY/disX) + (2*Math.PI);

 // convert to degrees

 degrees = degrees * 180 / Math.PI;

 degrees = 450 - degrees; }

 else{

 degrees = Math.atan(disY/disX);

 // convert to degrees

 degrees = degrees * 180 / Math.PI;

 degrees = 90 - degrees; }}

 newFormat = df.format(degrees);

 degrees = Double.parseDouble(newFormat);

 return degrees;

 }

}

 xiv

Appendix 5: JAVA CODE – NextTag.java

import java.util.*;

import java.io.*;

import java.text.*;

public class NextTag

{ public static void main(String[] args) {

 ArrayList angBinArray = new ArrayList();

 ArrayList tagLabel = new ArrayList();

 ArrayList dupArray = new ArrayList();

 String desTagLabel = "";

 String currTagLabel = "";

 // Including the current tag (the last position of this array)

 String routeArray [] = {"","","","","","","","","","",""};

 String tempValue, element;

 int count = 0;

 int check = 0;

 int found = 0;

 int nextTag = -1;

 double desXValue, desYValue, currXValue, currYValue;

 double compareAngle = 0.00d;

 double calValue;

 double minValue = 0.00d;

 int min = 0;

 int tempCheck = 0;

 int addCheck = 0;

 int checkNN = 0;

 double tempLow,tempHigh;

 // set up an array to record duplicated tags in route

 for (int i = 0; i < routeArray.length; i++)

 { for (int j = 0; j < routeArray.length; j++)

 { if (i != j && routeArray[i].equals(routeArray[j]))

 { // if the tag is already existing in dupArray, don't record this tag in

checkArray

 for (int k = 0; k < dupArray.size(); k++)

 xv

 { if ((i + 1) < routeArray.length)

 { if (routeArray[i+1].equals((String)dupArray.get(k)))

 { addCheck = 1; } }

 if ((i + 1) >= routeArray.length)

 { addCheck = 1; }}

 if (addCheck != 1)

 { dupArray.add(routeArray[i+1]); }

 addCheck = 0; }}

 }

 String fileName = "C:\\D_files\\Angle_Binary\\ran2\\Tag";

 String fileMidName = currTagLabel;

 String fileEndName = ".txt";

 String fileName2 = "C:\\D_files\\Storing_Tag_Labels\\ran2\\Tag";

 fileName += fileMidName + fileEndName;

 fileName2 += fileMidName + fileEndName;

 File fIn = new File(fileName);

 File fIn2 = new File(fileName2);

 try

 { FileReader fReader = new FileReader(fIn);

 BufferedReader bReader = new BufferedReader(fReader);

 FileReader fReader2 = new FileReader(fIn2);

 BufferedReader bReader2 = new BufferedReader(fReader2);

 while ((element = bReader.readLine()) != null)

 { angBinArray.add(element); }

 while ((element = bReader2.readLine()) != null)

 { tagLabel.add(element); }

 bReader.close();

 bReader2.close();}

 catch (Exception e)

 { System.err.println ("Error reading from file");}

 // Remove the tag in highest angle resolution that has already been in the route

 for (int i = 0; i < dupArray.size(); i++)

 { for (int j = 0; j < 4; j++)

 { if (((String)dupArray.get(i)).equals((String)tagLabel.get(j)))

 { tagLabel.remove(j);

 angBinArray.remove(j);

 xvi

 checkNN++;}}

 }

 // Two strings for storing low angle range value and high angle range value

 String [] rangArray1 = new String [angBinArray.size()];

 String [] rangArray2 = new String [angBinArray.size()];

 // Convert binary numbe of angle into angle range and load values of range into

two arrays

 for (int i = 0; i < angBinArray.size(); i++)

 { String tempRange [] = reconRange((String)angBinArray.get(i)).split(" ");

 rangArray1 [i] = tempRange [0];

 rangArray2 [i] = tempRange [1]; }

 double [] meanArray = new double [4 - checkNN];

 // calaulate the mean for each tag in the highest angle resolution group

 for (int i = 0; i < meanArray.length; i++)

 {meanArray [i] = (Double.parseDouble(rangArray1[i]) +

Double.parseDouble(rangArray2[i])) / 2; }

 count = 0;

 // if all the NN have already in the route, the destination cannot be reached (no

next tag to move to)

 if (checkNN == 4)

 { System.out.println("All the NN tags in the highest angle resolution group

have been in the route.");

 System.out.println("---The destination cannot be reached---");}

 else{

 // first check whether the destination is in the highest angle resolution

group

 // if it is, just go to that tag and then finished.

 while (check != 1)

 { if (desTagLabel.equals((String)tagLabel.get(count)))

 { compareAngle = (Double.parseDouble(rangArray1 [count]) +

Double.parseDouble(rangArray2 [count])) / 2;

 if (count < (4 - checkNN)) //in the highest angle resolution

group

 { found = 1;

 nextTag = count;

 check = 1; }}

 xvii

 if (count == rangArray1.length - 1)

 { check = 1; }

 count++;}

 count = 0;

 check =0;

 if (found == 1)

 { System.out.println("The next tag to move to is destination: Tag "

+desTagLabel); }

 else{ if (compareAngle <= 180)

 { // check any angle of tag is also smaller than 180

 for (int i = 0; i < meanArray.length; i++)

 { if (meanArray[i] < 180)

 { nextTag = i;

 count++;}}

 if (count == 1)

 { System.out.println("The next tag to move to is: Tag " +

tagLabel.get(nextTag)); }

 else if (count > 1)

 { check = 1; }

 else if (count == 0)

 { for (int i = 0; i < meanArray.length; i++)

 { if (i == 0) // Assign the initial value for min and minValue

 { min = 0;

 minValue = Math.abs(meanArray[i] -

compareAngle);

 /* when minValue is greater than 180, the

calculation for angle should

 calculate from current calcaulation tag to

compareAngle (calculate anti-clockwise)*/

 if (minValue > (compareAngle + 180))

 { minValue = 360 - minValue; }}

 else{ calValue = Math.abs(meanArray [i] -

compareAngle);

 /* when minValue is greater than 180, the

calculation for angle should

 calculate from current calcaulation tag to

compareAngle (calculate anti-clockwise)*/

 if (calValue > (compareAngle + 180))

 xviii

 { calValue = 360 - calValue; }

 if (calValue < minValue)

 { min = i;

 minValue = calValue; }}

 }

 System.out.println("The next tag to move to is: Tag " +

tagLabel.get(min));

 } // end of else if (count == 0)

 } // end of if (compareAngle < 180)

 if (compareAngle > 180)

 { // check any angle of tag is also greater than 180

 for (int i = 0; i < meanArray.length; i++)

 { if (meanArray[i] > 180)

 { nextTag = i;

 count++;}}

 if (count == 1)

 { System.out.println("The next tag to move to is: Tag " +

tagLabel.get(nextTag)); }

 else if (count > 1)

 { check = 1; }

 else if (count == 0)

 { for (int i = 0; i < meanArray.length; i++)

 { if (i == 0) // Assign the initial value for min and

minValue

 { min = 0;

 minValue = Math.abs(meanArray[i] -

compareAngle);

 /* when minValue is greater than 180, the

calculation for angle should

 calculate from current calcaulation tag to

compareAngle (calculate anti-clockwise)*/

 if (minValue > (meanArray[i] + 180))

 { minValue = 360 - minValue; }

 }

 else{ calValue = Math.abs(meanArray[i] -

compareAngle);

 xix

 /* when minValue is greater than 180, the

calculation for angle should

 calculate from current calcaulation tag to

compareAngle (calculate anti-clockwise)*/

 if (calValue > (meanArray[i] + 180))

 { calValue= 360 - calValue; }

 if (calValue < minValue)

 { min = i;

 minValue = calValue; }}

 }

 System.out.println("The next tag to move to is: Tag " +

tagLabel.get(min)); } // end of else if (count == 0)

 } // end of if (compareAngle > 180)

 if (check == 1)

 { for (int i = 0; i < meanArray.length; i++)

 { if (i == 0) // Assign the initial value for min and minValue

 { min = 0;

 minValue = Math.abs(meanArray[i] -

compareAngle); }

 else{ calValue = Math.abs(meanArray[i] -

compareAngle);

 if (calValue < minValue)

 { min = i;

 minValue = calValue; }}

 }

 System.out.println("The next tag to move to is: Tag " +

tagLabel.get(min)); }}}

 }

 /**/

 /* Reconstrcture angle ranges function */

 /**/

 public static String reconRange(String binary)

 { int length = binary.length(); ////this one is for the length of the string

 double ranges = Math.pow(2, length);

 double rangeValue = 360 / ranges;

 String tempRange;

 DecimalFormat df = new DecimalFormat("##0.00");

 String newFormat;

 String newFormat2;

 xx

 int decimal = Integer.parseInt(binary,2); // change binary number to decimal

 double rangeStart = decimal * rangeValue;

 double rangeEnd = rangeStart + rangeValue;

 newFormat = df.format(rangeStart);

 newFormat2 = df.format(rangeEnd);

 tempRange = newFormat + " " + newFormat2;

 return tempRange;}

}

 xxi

Appendix 6: JAVA CODE – NavigationOutput.java

import java.util.*;

import java.io.*;

import java.text.*;

public class NavigationOutput

{ public static void main(String[] args) {

 ArrayList coefArray = new ArrayList();

 ArrayList angBinArray = new ArrayList();

 ArrayList labelArray = new ArrayList();

 String element, element2, element3;

 File fIn = new File("C:\\D_files\\Distance_Coefficient\\ran1\\Tag1.txt");

 File fIn2 = new File("C:\\D_files\\Angle_Binary\\ran1\\Tag1.txt");

 File fIn3 = new File("C:\\D_files\\Calculations_Label\\ran1\\Tag1.txt");

 File fOut = new File("C:\\D_files\\Storing_files\\ran1\\Tag1.txt");

 File fOut2 = new File("C:\\D_files\\Navigation_Output_files\\ran1\\Tag1.txt");

 File fOut3 = new File("C:\\D_files\\Storing_Tag_Labels\\ran1\\Tag1.txt");

 try

 { FileReader fReader = new FileReader(fIn);

 BufferedReader bReader = new BufferedReader(fReader);

 FileReader fReader2 = new FileReader(fIn2);

 BufferedReader bReader2 = new BufferedReader(fReader2);

 FileReader fReader3 = new FileReader(fIn3);

 BufferedReader bReader3 = new BufferedReader(fReader3);

 while ((element = bReader.readLine()) != null)

 { coefArray.add(element);}

 while ((element = bReader2.readLine()) != null)

 { angBinArray.add(element); }

 while ((element = bReader3.readLine()) != null)

 { labelArray.add(element); }

 bReader.close();

 bReader2.close();

 bReader3.close();}

 catch (Exception e)

 { System.err.println ("Error reading from file");}

 String [] tempCoefArray = (String[])coefArray.toArray(new

String[coefArray.size()]);

 String [] tempAngArray = (String[])angBinArray.toArray(new

 xxii

String[angBinArray.size()]);

 String [] tempLabeArray = (String[])labelArray.toArray(new

String[labelArray.size()]);

 String [] actuCoefArray = new String [tempAngArray.length];

 String [] naviDisOutput = new String [tempAngArray.length];

 String [] naviAngOutput = new String [tempAngArray.length];

 for (int i = 0; i < actuCoefArray.length; i++)

 { actuCoefArray [i] = "0";}

 actuCoefArray [0] = tempCoefArray [0];

 actuCoefArray [1] = tempCoefArray [1];

 actuCoefArray [2] = tempCoefArray [2];

 actuCoefArray [3] = tempCoefArray [3];

 actuCoefArray [4] = tempCoefArray [4];

 actuCoefArray [5] = tempCoefArray [5];

 actuCoefArray [8] = tempCoefArray [6];

 actuCoefArray [9] = tempCoefArray [7];

 naviDisOutput = reconstructionAll(tempAngArray.length, actuCoefArray);

 for (int i = 0; i < naviAngOutput.length; i++)

 { naviAngOutput[i] = reconRange(tempAngArray[i]); }

 try

 { FileWriter fWriter = new FileWriter(fOut);

 BufferedWriter bWriter = new BufferedWriter(fWriter);

 FileWriter fWriter2 = new FileWriter(fOut2);

 BufferedWriter bWriter2 = new BufferedWriter(fWriter2);

 FileWriter fWriter3 = new FileWriter(fOut3);

 BufferedWriter bWriter3 = new BufferedWriter(fWriter3);

 bWriter.write(" Coefficient | Angle (Binary) Tag Label");

 bWriter.newLine();

 for (int i = 0; i < tempAngArray.length; i++)

 { if (i < tempCoefArray.length)

 { bWriter.write(" " +tempCoefArray[i] + " \t|" + " " +

tempAngArray[i] + " \t\t" + tempLabeArray[i]);

 bWriter.newLine();}

 else{ bWriter.write("\t\t|" + " " + tempAngArray[i] + " \t\t" +

tempLabeArray[i]);

 bWriter.newLine();}}

 bWriter2.write("Distance Angle Range Tag Label");

 bWriter2.newLine();

 for(int i = 0; i < tempAngArray.length; i++)

 xxiii

 { bWriter2.write(naviDisOutput[i] + "\t\t" + naviAngOutput[i] + "\t\t"

+tempLabeArray[i]);

 bWriter2.newLine();

 bWriter3.write(tempLabeArray[i]);

 bWriter3.newLine();}

 bWriter.close();

 bWriter2.close();

 bWriter3.close();}

 catch (Exception e)

 { System.err.println ("Error writing to file");}

 }

 /**/

 /* Reconstrcture distance values function */

 /**/

 public static String[] reconstructionAll(int iNumNodes, String[] coefficientValues){

 ArrayList reconstrucValue = new ArrayList();

 double calcuTemp, tempValue;

 int calcuLevel, leftHalf, rightHalf, calcuCoeffi, calcuChek, temp1, count;

 DecimalFormat df = new DecimalFormat("##0.00");

 String newFormat;

 calcuTemp = Math.log(iNumNodes)/Math.log(2) - 1;

 calcuLevel = (int)calcuTemp;

 leftHalf = iNumNodes / 2;

 rightHalf = iNumNodes / 2;

 int [] coefNum = new int [calcuLevel];

 int [] calcuSymbol = new int [calcuLevel];

 int [] checkNum = new int [calcuLevel];

 temp1 = calcuLevel;

 /* assign value of coefNum and checkNum array*/

 for(int i = 0; i < calcuLevel; i++) {

 calcuCoeffi = 2;

 calcuChek = 0;

 for (int j = 0; j <= i ; j++) {

 calcuCoeffi += Math.pow(2, j); }

 calcuChek += Math.pow(2, temp1);

 coefNum [i] = calcuCoeffi;

 checkNum [i] = calcuChek;

 temp1--;}

 xxiv

 /* assign value of calcuSymbol array*/

 for(int i = 0; i < calcuLevel; i++) {

 calcuSymbol [i] = 0; }

 count = 1;

 /***/

 /* Reconstruction of the left half of value in tree*/

 while (leftHalf != 0){

 tempValue = Double.parseDouble(coefficientValues[0]) +

Double.parseDouble(coefficientValues[1]);

 for (int k = 0; k < calcuLevel; k++) {

 /* add current level number to tempValue*/

 if (calcuSymbol [k] == 0){

 tempValue += Double.parseDouble(coefficientValues[coefNum[k] - 1]);

 }

 else {tempValue -= Double.parseDouble(coefficientValues[coefNum[k] - 1]); }

 /* check the current level number for the next use*/

 /*check next turn of current level is + or -*/

 if (count % (checkNum[k]/2) == 0){

 if (calcuSymbol [k] == 0)

 { calcuSymbol [k] = 1; }

 else {calcuSymbol [k] = 0; }}

 /*check the value of the next turn of current level need to be changed or not*/

 if (count % checkNum[k] == 0){

 coefNum [k] = coefNum [k] + 1; } }

 tempValue = Math.round(tempValue * 1000) / 1000d;

 newFormat = df.format(tempValue);

 reconstrucValue.add(newFormat);

 tempValue = 0;

 count++;

 leftHalf--;}

 count = 1;

 /***/

 /* Reconstruction of the right half of value in tree*/

 xxv

 for(int i = 0; i < calcuLevel; i++) {

 calcuCoeffi = 0;

 calcuChek = 0;

 calcuCoeffi += Math.pow(2, i + 2);

 calcuChek += Math.pow(2, temp1);

 coefNum [i] = calcuCoeffi; }

 /* assign value of calcuSymbol array*/

 for(int i = 0; i < calcuLevel; i++) {

 calcuSymbol [i] = 1; }

 while (rightHalf != 0){

 tempValue = Double.parseDouble((String)coefficientValues[0]) -

Double.parseDouble((String)coefficientValues[1]);

 for (int k = 0; k < calcuLevel; k++) {

 /* add current level number to tempValue*/

 if (calcuSymbol [k] == 1){

 tempValue -= Double.parseDouble((String)coefficientValues[coefNum[k]

- 1]); }

 else { tempValue +=

Double.parseDouble((String)coefficientValues[coefNum[k] - 1]); }

 /* check the current level number for the next use*/

 /*check next turn of current level is + or -*/

 if (count % (checkNum[k]/2) == 0){

 if (calcuSymbol [k] == 0)

 { calcuSymbol [k] = 1; }

 else { calcuSymbol [k] = 0; }}

 /*check the value of the next turn of current level need to be changed or not*/

 if (count % checkNum[k] == 0){

 coefNum [k] = coefNum [k] - 1; }}

 tempValue = Math.round(tempValue * 1000) / 1000d;

 newFormat = df.format(tempValue);

 reconstrucValue.add(iNumNodes / 2, newFormat);

 tempValue = 0;

 count++;

 rightHalf--;}

 String [] temp = (String[])reconstrucValue.toArray(new String[reconstrucValue.size()]);

 return temp; }

 xxvi

 /* Reconstrcture angle ranges function */

 public static String reconRange(String binary)

 { int length = binary.length(); ////this one is for the length of the string

 double ranges = Math.pow(2, length);

 double rangeValue = 360 / ranges;

 String tempRange;

 DecimalFormat df = new DecimalFormat("##0.00");

 String newFormat;

 String newFormat2;

 int decimal = Integer.parseInt(binary,2); // change binary number to decimal

 double rangeStart = decimal * rangeValue;

 double rangeEnd = rangeStart + rangeValue;

 newFormat = df.format(rangeStart);

 newFormat2 = df.format(rangeEnd);

 tempRange = newFormat + " - " + newFormat2;

 return tempRange;

 }

}

