

Implementation of the CUSUM Algorithm
on FPGA for Transient Signal Detection

Li Kang

A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS
FOR THE DEGREE OF MASTER OF ENGINEERING (ME) IN THE

DEPARTMENT OF
ELECTRICAL AND ELECTRONICS ENGINEERING

Auckland University of Technology

JANUARY 2012

SUPERVISOR: Dr. Hamid GholamHosseini

Acknowledgement

First and foremost, I would like to thank my supervisor, Dr. Hamid GholamHosseini,

for his constant guidance, valued advice and continuous support during the time of my

master study. He has been always available and highly supportive throughout this study.

I also want to thank my family for the endless love, invaluable support and

encouragement through the years.

Many thanks go out to J.Huang for his helpful advice, understanding and

encouragement when he was working as my technical support during the first part of

this study.

I am grateful for the research environment and the substantial resources provided by the

School of Engineering of AUT University that enabled me to gain extensive practical

experience through the experimental work performed.

Abstract

Radio transient signals are non-periodic and discrete obtained from high energy

physical processes in space. One of the most challenging issues in transient signal

detection is the speed and accuracy with which a signal can be detected. The target for

this design is selecting appropriate detection algorithm and minimize time consumption.

Gene. S [1] and P.A. Fridman [2] proposed the use of Cumulative Sum (CUSUM)

algorithm for transient signal detection capable of meeting the necessary requirements.

However, as ordinary software-based programs are unable to handle large scale

sampling of signals, the current research focuses on implementing the CUSUM

algorithm on Field Programmable Gate Array (FPGA) which is a specific integrated

circuit within the field of semi-customised circuits that can greatly enhance the speed of

detection and analysis.

In this research, standard deviation was used in CUSUM algorithm as the threshold to

determine whether the detection signal is out of range (abnormal signal). The author

chose a top-down design method to split the CUSUM algorithm into several sub-

modules including parallel module, standard deviation module and delay module. These

modules were implemented one by one using a hardware description language (Verilog)

and link together to achieve to the objective of the project. During the design process

the author analyzed the problems found within the design and selected appropriate

solutions. The CUSUM core uses pipeline processing architecture, with an incubation

period of only 128 ns (64 clock cycles). After being compiled and verified, it was

shown the design was successful. A detection speed of 64 ns per sampling group was

achieved via implementation on an Altera Cyclone IV device with a clock speed of 50

MHz. Furthermore, the author then analyzed the power consumption and discusses the

power consumption in the context of multi-core application. The analyzed result shows

the power consumption of a single CUSUM core to be only 136.75mW.

Finally, the findings of the design process are summarised with the author presenting

suggestions for further improvement. The improvement proposed is based on two key

aspects: coding design and multiprocessor operation.

Table of Contents

I

Table of Contents

Chapter 1 Introduction .. 1

1.1 Background of Research Radio Transient ... 1

1.2 Project Description... 3

1.3 Related Works .. 5

1.4 Research Aims and Objectives .. 8

1.5 Thesis Structure ... 8

Chapter 2 Transient Signal Detection ... 9

2.1 Literature Review... 9

2.1.1 Signal Processing Method... 9

2.1.2 Statistical Method ... 10

2.2 CUSUM Algorithm .. 12

2.2.1 CUSUM Equation ... 12

2.2.2 Threshold Selection .. 13

2.3 Computer Simulation ... 16

2.4 Summary .. 18

Chapter 3 FPGA Implement Platform .. 19

3.1 Introduction to FPGA .. 19

3.2 Altera FPGA .. 20

3.2.1 Altera Device Family .. 20

3.2.2 Comprehensive Development Suite .. 21

3.3 Cyclone IV Devices and Development Board ... 21

3.4 Altera SOPC Builder.. 21

3.4.1 Nios II Processor ... 22

3.4.2 Avalon Switch Fabric ... 25

Table of Contents

II

3.5 Mega function .. 26

3.5.1 ALTMULT_ADD Function.. 27

3.5.2 ALTSQRT Function ... 29

3.6 Summary .. 31

Chapter 4 Power Consumption ... 32

4.1 Altera Power Optimize Methods ... 34

4.2 Power Consumption of Multi-Core System ... 37

4.3 Summary .. 41

Chapter 5 Methodology and Design Flow .. 42

5.1 FPGA Design Principles .. 42

5.2 FPGA Design Operations .. 44

5.2.1 Ping-Pong Operation ... 44

5.2.2 Serial to Parallel Conversion .. 45

5.2.3 Pipeline Operation .. 46

5.3 Data acquisition ... 47

5.4 FIFO Module Design ... 48

5.4.1 Synchronous FIFO Design .. 49

5.4.2 Asynchronous FIFO Design ... 51

5.5 SP_MEAN Module Design.. 53

5.6 Standard Deviation Module Design ... 54

5.7 CUSUM Module Design.. 57

5.8 SRAM Module Design .. 58

5.9 Module Assembly .. 59

5.10 Discussion Blocking and Non-blocking Operation in Design 61

5.11 Discussion Synchronous Reset and Asynchronous Reset ... 63

5.12 Summary .. 65

Chapter 6 Verification and Evaluation ... 66

Table of Contents

III

6.1 Testbench Description ... 66

6.2 ModelSim Tools... 69

6.3 SP_MEAN Module Verification.. 69

6.4 Standard Deviation Module (SD_TOP_32) Verification .. 73

6.5 CUSUM Module Verification.. 76

6.6 Top Module Verification ... 79

6.7 Summary .. 80

Chapter 7 Conclusions and Future Work ... 81

Appendix A CUSUM Module Verify Data ... 84

Appendix B Top Module Verification Plot ... 85

Appendix C CUSUM Core .. 86

Appendix D Thesis on CD-ROM .. 91

Appendix E Journal Paper ... 92

List of References .. 93

List of Figures

VI

List of Figures

Figure 1-1 Energy spectrum for radio transients [4] .. 2

Figure 1-2 Development of TREAD in New Zealand [3] .. 4

Figure 1-3 Antenna-Sensor [3] .. 4

Figure 1-4 Field Programmable Gate Array ... 6

Figure 1-5 Architecture Diagram of HPC .. 7

Figure 2-1 CUSUM test implementation in Signal Processing [2] ... 13

Figure 2-2 Standard Deviation in Normal Distribution .. 15

Figure 2-3 Simulated pulse with additive Gaussian noise [2] .. 17

Figure 2-4 Simulated pulse with additive Gaussian noise [2] ... 17

Figure 2-5 Simulated pulse with additive Gaussian noise [2] .. 18

Figure 3-1 Nios II Processor Block Diagram [41] ... 22

Figure 3-2 Example of a Nios II Processor System [41] ... 25

Figure 3-3 Avalon Switch Fabric Block Diagram [41] ... 26

Figure 3-4 ALTMULT_ADD ports shows in MegaWizard Plug-In Manager 28

Figure 3-5 ALTMULT_ADD Unit ... 29

Figure 3-6 ALTSQRT ports in MegaWizard Plug-In Manager ... 30

Figure 3-7 ALTSQRT Unit ... 30

Figure 4-1 Power Consumption Components [54] ... 32

Figure 4-2 Transistor Leakage Diagram [49] ... 33

Figure 4-3 Typical Static Power Consumption of Cyclone IV E FPGAs 34

Figure 4-4 Static Power Summary ... 35

Figure 4-5 Amount of Slack per Unit Delay .. 35

List of Figures

VII

Figure 4-6 Programmable Power Technology .. 36

Figure 4-7 Power Comparison between Stratix III FPGAs and Virtex-5 37

Figure 4-8 Selectable Core Voltage of Cyclone IV Devices .. 38

Figure 4-9 Fitter Setting .. 39

Figure 4-10 PowerPlay Early Power Estimator ... 40

Figure 4-11 Power consumption with Multi-Core System .. 41

Figure 5-1 Ping-Pong Flow Chart ... 44

Figure 5-2 Serial to Parallel Conversion ... 45

Figure 5-3 Pipeline Operation ... 46

Figure 5-4 Dual SRAM Operation ... 48

Figure 5-5 Read/Write Enable Flag .. 49

Figure 5-6 Linear Feedback Shift Register ... 50

Figure 5-7 Verilog Implementation of LFSR ... 51

Figure 5-8 Empty Flag Generation ... 53

Figure 5-9 Full Flag Generation ... 53

Figure 5-10 Block Diagram of SP_MEAN Module ... 54

Figure 5-11 MUTI_ADD_BASE module ... 55

Figure 5-12 SD_TOP_32 Module Reuse ... 55

Figure 5-13 SD_TOP_32 Module Parallel Processing ... 56

Figure 5-14 Structure of Pipeline Adder ... 56

Figure 5-15 Thresholds in coordinate system ... 58

Figure 5-16 Connections between FPGA and SRAM .. 58

Figure 5-17 C Language Design Structure ... 59

Figure 5-18 Pipeline Structure of Design Module .. 61

Figure 5-19 Stratified Event Queue ... 62

List of Figures

VIII

Figure 5-20 Blocking (left) and Non-Blocking (right) assignment .. 63

Figure 5-21 Synchronous Reset with RTL View .. 64

Figure 5-22 Asynchronous Reset with RTL View .. 64

Figure 6-1 Structure of a Testbench and Design under Verification 66

Figure 6-2 Functional Verification Paths .. 67

Figure 6-3 ModelSim Interface .. 69

Figure 6-4 Verification of SP_MEAN Module with Sequential Numbers 71

Figure 6-5 Verification of SP_MEAN Module with Random Numbers 72

Figure 6-6 Standard Deviation Module Verification ..74

Figure 6-7 Standard Deviation Module Verification with Output Delay................................75

Figure 6-8 CUSUM Module Manually Verification..76

Figure 6-9 CUSUM Module Verification...78

Figure 6-10 TOP Module Verification...79

List of Tables

VI

List of Tables

Table 3-1 Resources on DE2 – 115 Development Board .. 21

Table 3-2 Operations Supported by Nios ALU .. 23

Table 3-3 List of Megafunctions .. 27

Table 3-4 Resource Usage for Single ALTMULT_ADD .. 29

Table 3-5 Resource Usage for Single ALTSQRT Unit. .. 31

Table 4-1 Power Compared with Selectable Core Voltage ... 36

Table 4-2 Power consumption with Multi-Core System .. 41

Table 5-1 Truth Table of LFSR .. 51

Table 5-2 Truth Table of Gray Code ... 52

Table 6-1 Result Comparison .. 70

Table 6-2 Result Comparison .. 73

List of Equations

VII

List of Equations

2-1: ... 12

2-2: ... 13

2-3: ... 14

2-4: ... 14

2-5: ... 16

2-6: ... 16

4-1: ... 33

5-1: ... 44

5-2: ... 50

5-3: ... 54

7-1: ... 82

Statement of Originality

VIII

Statement of Originality

I hereby declare that this submission is my own work and that, to the best of my

knowledge and belief, it contains no material previously published or written by another

person nor material which to a substantial extent has been accepted for the qualification

of any other degree or diploma of a university or other institution of higher learning,

except where due acknowledgment is made in the acknowledgments.

 _____________________ (SIGNED)

 _____________________ (DATE)

Acronyms and Abbreviations

IX

Acronyms and Abbreviations

ASIC: Application Specific Integrated Circuit

ALU: Arithmetic Logic Unit

ADC: Analog Digital Converter

A/D: Analog-to-Digital

CPLD: Complex Programmable Logic Device

CPU: Central Processing Unit

CWT: Continuous Wavelet Transform

CUSUM: Cumulative Sum

DSP: Digital Signal Processor

DWT: Discrete Wavelet Transform

DMA: Direct Memory Access

EPE: Early Power Estimator

FPGA: Field Program Gate Array

FIFO: First In First Out

GSR: Global Set/Reset

HPC: High performance computing

IP: Intellectual Property

IRQ: Interrupt Request

KAREN: Kiwi Advanced Research and Education Network

LE: Logic Element

Acronyms and Abbreviations

X

LPM: Library of Parameterized Module

LFSR: Linear Feedback Shift Register

LUT: Look up Table

LAB: Logic Array Block

LOFAR: Low Frequency Array

MHz: Mega Hertz

mW: Milliwatts

Ns: Nanosecond

OCWT: Over Complete Wavelet Transform

PC: Personal Computer

PCI: Peripheral Component Interconnect

RTL: Register Transfer Level

RRAT: Rotating radio transients

RAM: Random Access Memory

SKA: Square Kilometre Array

SKS: Sigle Kernal Simulation

SRAM: Static Random Access Memory

SDRAM: Synchronous Dynamic Random Access Memory

SOPC: System on a Programmable Chip

TREAD: Transient Radio Emission Array Detector

TB: Terabyte

VDHL: Very High Speed Integrated Circuit Description Language

Chapter 1 Introduction

1

Chapter 1 Introduction

Radio transients are non-periodic, discrete signal, obtained from high energy physical

processes in space. This includes solar flares, supernovae, pulsars, quasars and active

galaxies. Other speculations include evaporating black holes, colliding neutron stars and

a number of unknown events. The detection of radio transient presents a challenge due

to their short and non-periodic nature, as well as the high risk of misdetection [1]. To

undertake their detection requires the backend of radio telescopes to be equipped with

the appropriate hardware and software. Generally, a de-dispersion procedure is used to

improve detectability and test the property of the signal. However, due to the large scale

of the signal from outer space, the computational demands of this method appear

insufficiently robust [2]. Therefore, a new improved algorithm and method for detecting

transient signals is developed.

1.1 Background of Research Radio Transient

Radio transients are energetically charged atomic particles. About 89% of radio

transients are simple protons or hydrogen nuclei, 10% are helium nuclei or alpha

particles, and 1% consists of the nuclei of heavier elements. Solitary electrons (much

like beta particles, although their ultimate source is unknown) constitute much of the

remaining 1% [4]. This variety of particle energies reflects the wide variety of sources.

Figure 1-1 shows the energy spectrum for radio transients. The axis stands for the

cosmic ray flux and y coordinate stands for particle energy. The flux for the lowest

energies (yellow zone) are mainly attributed to solar cosmic rays, intermediate energies

(blue) to galactic cosmic rays and highest energies (purple) to extragalactic cosmic rays.

http://en.wikipedia.org/wiki/Proton�
http://en.wikipedia.org/wiki/Helium�
http://en.wikipedia.org/wiki/Alpha_particle�
http://en.wikipedia.org/wiki/Alpha_particle�
http://en.wikipedia.org/wiki/Electron�
http://en.wikipedia.org/wiki/Beta_particle�

Chapter 1 Introduction

2

Figure 1-1 Energy spectrum for radio transients [4]

Transient radio emissions in space have been recognized as one of the key factors in the

discovery of new objects and phenomena. In radio astronomy, a transient radio emission

can be defined as a non-periodic short burst of electromagnetic radiation. Emissions

with duration of less than a few seconds are often referred to as fast transients, and those

with duration longer than a few seconds are referred to as slow transients. A number of

astronomy phenomena are known to produce transient emissions. One well known

phenomenon is the sun, which can continuously produce radio transients from 10 ms to

week-long storms. The cause of a solar transient is the occurrence of activity on the

surface of the sun, such as thermal radiation or plasma emission. Detecting and

researching these transients can lead to greater understanding of the relations between

stars, with radio telescopes (such as LOFAR (Low Frequency Array) and SKA (Square

Kilometre Array)) extending our opportunities for detecting transients [5].

Several types of transients have been recognized. Gamma-ray burst is one of them. It

has been observed that Gamma-ray has a short wave length emission, high

electromagnetic energy and strong penetrability. In space, Gamma-ray is produced by

the fusion core of the star [4]. As it cannot penetrate to the earth’s atmosphere, it only

can be detected in space. Gamma-ray was first observed in 1967 by the satellite “Vilas”.

http://en.wikipedia.org/wiki/File:Cosmic_ray_flux_versus_particle_energy.svg�

Chapter 1 Introduction

3

From the early 1970s, scientists have found hundreds of stars and black holes by

analysing various Gamma-ray images provided by different satellites. In the process,

some other mysteries of astronomical phenomena have also been solved, such as the

origin of supernovae and quasars.

Rotating radio transients (RRAT) are sources of short, moderately bright, radio pulses.

First discovered in 2006, RRATs are thought to be associated with rotating magnetized

neutron stars [4]. The general character of pulses from RRATs is short in duration,

lasting from a few milliseconds, with the radio emission from RRATs typically

detectable at less than one second per day. While the analysis of RRATs allows us to

obtain some information about pulsars, it is still unclear exactly how RRAT pulsars and

other sources of radio bursts relate to each other.

Some other types of transient radio activities previously postulated have yet to be

observed or detected. Scientists have predicted that supernova should radiate an

electromagnetic pulse at radio frequencies during their collapse. Black hole vaporization

is another example of transient radiation proposed by theorists. Failure to observe these

transients cannot yet to be used as proof of their non existence. Transient signal

detection is not easy and normally requires different methods of approaches [5].

1.2 Project Description
This project is part of the “Transient Radio Emission Array Detector” project. The

overall project aims to support the establishment of transient radio emission array

detectors in order to facilitate the exploration of electromagnetic phenomena within our

environment both on earth and in space.

Chapter 1 Introduction

4

Figure 1-2 Development of TREAD in New Zealand [3]

Transient radio emission array detectors are currently set up in three locations within

New Zealand. A high performance computer is used to analyse the data detected. Figure

1-2 illustrates the development of TREAD (Transient Radio Emission Array Detector)

in New Zealand [3]. Figure 1-3 shows one of the antenna sensors on the field. Each

sensor element in the array produces tens of MB of raw data each second, generating

several TBytes of data daily. The data is pre-processed to detect pulse-like signals and

then streamed over KAREN (KIWI ADVANCED RESEARCH AND EDUCATION

NETWORK) for further processing and storing [3].

Figure 1-3 Antenna-Sensor [3]

http://wiki.karen.net.nz/index.php/File:Fig_3.jpg�
http://wiki.karen.net.nz/index.php/File:Fig_5.jpg�

Chapter 1 Introduction

5

Dealing with Tbytes of raw data every day is a difficult task. There are generally three

steps to analyze the raw data. The first step is to develop a more accurate and effective

detectable algorithm. The second step implements the algorithm via a software

programme to verify that all the functions work well. The last step is to enhance the

computational speed and signal processing ability.

1.3 Related Works
Recently, most solutions developed have been based on software programs targeted for

general purpose processors. The defects of these platforms are obvious. For example,

these platforms are usually constrained by a fixed number of processors, a limited

operating speed and a fixed bandwidth, and are characterised by high power

consumption. Most importantly, not all the resources on such platforms are used for

transient signal operation, with some parts of the resources consumed by the operating

system and software setup. Therefore, the development of a customised hardware

platform would be the optimal solution. This platform would be used to optimise only

transient signal operation, thereby saving on the cost of other unnecessary components.

In addition, the power consumption of the customised platform would be much lower

than a general purpose computer.

The most common technologies available to achieve this result are the Digital Signal

Processor (DSP), the Application Specific Integrated Circuit (ASIC), and the Field

Program Gate Array (FPGA).

DSP is a particular microprocessor used in fast digital signal processing, and is usually

used to measure, filter and compress continuous real-world analog signals. It is widely

implemented in image and voice processing. Heavy calculations such as floating point

calculation and fast Fourier transformation can be done efficiently via DSP. For the

designer however, it takes a long cycle to develop an algorithm using C or assembly

language, and is not conducive to the rapid algorithm validation and product

development required. Moreover, DSP is limited by its processing frequency and

necessitates the use of a general purpose processor.

Chapter 1 Introduction

6

ASIC is an integrated circuit customised to perform a certain task. It can be divided into

full-custom design and semi-custom design. Full-custom design requires the designer to

complete all aspects of circuit design and takes a lot of time and resources. It has high

flexibility and runs faster than the semi-custom design option. Semi-custom design

allows the designer to select logical cells from standard libraries such as ALU, memory,

data bus, IP Core, etc. As the layout of these logical cells is already complete and fully

tested, the designer can easily complete the system design. The advantages of ASIC

include low power consumption, high operating frequency and high logical density. The

disadvantages are that ASIC systems come with a high design cost and require

specialized designer knowledge. Further, because ASICs are non-reprogrammable, the

design must be finalised before production.

FPGA is a field programmable gate array developed from PAL, GAL, and CPLD

devices. It contains a flexible array of simple interconnected ‘logic cells,’ and

programming these logic cells and their interconnection to creates the digital circuit

(Figure 1-4) [10].

Figure 1-4 Field Programmable Gate Array

FPGA is a specific integrated circuit (ASIC) within the field of semi-customised circuits

that solves the lack of customised circuits and overcomes the existing limitation of gate

numbers. The circuit is designed in hardware description language (Verilog or VDHL)

allowing easy layout and burn to the FPGA chip. FPGAs can be reconfigured at any

Chapter 1 Introduction

7

time, resulting in a lower non-recurring engineering cost and enabling a faster time to

market.

Another important application of FPGA is its function as a co-processor for a High

Performance Computer. High performance computing (HPC) entails the use of parallel

computing systems to solve difficult computational problems. The HPC platform, as

shown in (Figure 1-5), consists of a number of distributed computing nodes (Computer

Node), each node connected by some interconnections and associated with a

reconfigurable computing unit (Configurable ICN) [6]. This architecture provides the

user with greater computational performance than traditional parallel computers.

Figure 1-5 Architecture Diagram of HPC

HPCs can be classified as either Loosely-coupled co-processors or Tightly-coupled co-

processors. A co-processor described as loosely-coupled means that the FPGA plug-in

CPU serial bus and CPUs are connected together via interconnection networks. This

model is commonly found in smaller system CPUs and is characterised by poor parallel

performance due to the serial bus being easily overloaded and the length of time

required transferring data [9]. By contrast a tightly-coupled co-processor means the

FPGA module is directly connected to the interconnection network and delivers great

parallel performance. One downside of this model is that it requires a reasonably

complex network topology [7].

Chapter 1 Introduction

8

However, it seems easier and more reasonable to implement algorithms via FPGAs,

with the design on FPGAs be able to migrate to HPCs or ASICs in most cases. The

remainder of this thesis discusses the design of transient signal detection algorithms

based on the above technologies.

1.4 Research Aims and Objectives

A novel approach of using FPGAs to implement the transient signal detector is

presented in this thesis. The system proposed is based on CUSUM algorithm IP core

design. Algorithms and hardware level optimization have been employed to improve the

performance of transient signal detection and reduce latency. The algorithm was

simulated by ModelSim and implemented via DE2-115 board with Cyclone IV families.

1.5 Thesis Structure
This chapter has introduced an overview of transient signal detection and its possible

applications. A survey of the most common embedded technologies that may be used

for its implementation was subsequently presented. Finally, the aim and objectives of

this research were discussed.

The rest of the thesis is organised as follows. A literature review on transient signal

detection is presented in Chapter 2. The comparison of different algorithms is discussed

in this chapter with the chosen CUSUM algorithm explained in detail.

Chapter 3 gives a general introduction of FPGA technologies. The Altera FPGA, design

tools, Simulation tools and the DE2 115 development board are introduced in detail.

The Mega Core components, which are used in design, are also explained.

Chapter 4 explains the technologies which are used to reduce the power consumption of

Cyclone IV FPGA. The power consumptions of the CUSUM IP core are tested. The

results are further analyzed.

Chapter 5 explores the architecture of CUSUM Core design. Several optimization

methods are presented. These include Pipeline, Ping-Pong, Serial to Parallel, and Cross

Chapter 1 Introduction

9

Clock domain design methods. Finally, the module setup was present as a key point of

this chapter.

Chapter 6 explains the test bench design methodology. ModelSim simulation results are

plotted and Time Sequential Analysis is discussed.

Chapter 7 concludes this research project by summarising the methodology employed

and highlighting the milestones achieved. Finally a discussion of future research that

could be undertaken to extend the current work is presented.

Chapter 2 Transient Signal Detection

9

Chapter 2 Transient Signal Detection

The first section of this chapter will review and discuss the existing solutions of

transient signal detection. The next section will then present CUCUM algorithm

application in transient signal detection. Finally, a conclusion is drawn based on the

topics discussed.

2.1 Literature Review
Transient signal detection can be considered as a complex stochastic model. Any

abnormal signal can affect changes of the model. The aim of detection is to monitor the

difference between input signals with the threshold. Currently, there are two ways to

monitor those changes; one is from the perspective of signal processing, the other is

from a statistical point of view.

2.1.1 Signal Processing Method

Signal processing methods usually transform the sampling signal to a time domain or

frequency domain and observe the changes. In [11], Cornel Loana provides an adaptive

time-frequency method based on the over-complete wavelet transform concepts, which

lead to signal processing on interest frequency bands. This method is based on the

fourth order moment, and is applied for each sub-band, in order to establish the optimal

weight for each sample. The result obtained proves the capability of the proposed

approach to accurately detect a transient signal, when compared with other methods (e.g.

Spectrogram or Standard Wavelet Transform) [26].

The author [11], discovered that the commonly used method, discrete wavelet transform

(DWT) was not well suited to this kind of signal processing problem. From a

mathematical point of view, the discrete wavelet transform (DWT) is generated by the

sampling in time-scale plant of a corresponding continuous wavelet transform (CWT).

Despite the fact that there is an infinite possible discretization of CWT, the term discrete

wavelet transform (DWT) is commonly used to refer to that associated with the dyadic

sampling lattice [27]. In certain analyses it will cause wavelet orthogonal basis and the

Chapter 2 Transient Signal Detection

10

use of orthogonal representation will lose the signal characteristics [12]. In order to

eliminate this drawback, the key factor is the use of a non-dyadic sampling structure,

which in this case is the Over Complete Wavelet Transform (OCWT). This method can

be separated into two stages: the first is to decompose the signal with the linear filter

bank structure. The second stage is to sample the signal issue at the filter bank output.

The author [11] also proposes an irregular sampling procedure for OCWT. Generally,

there are some advantages in adopting an irregular sampling method. The theoretical

reasoning behind the irregular sampling method is detailed later in this work [13]. The

application of irregular sampling in data acquisition is considered a non traditional

approach. This approach requires a more complicated data acquisition process and still

needs to be improved [25].

Melvin J. Hinich [15] has proposed to use bispectral analysis for detecting transient

signals. This method uses a statistic computed from the sample bispectrum of a sampled

record. The key result underlying the method is that the bispectrum of the noise is zero

in a triangle that is a proper subset of the principal domain triangle. The result implies

that the bispectrum based test may detect a weak signal of unknown form which evades

detection by other methods. However, the limitation of this method is the signal’s

frequency band must lie within the interval (0, f) and the duration value T should fall

within some error band [28].

2.1.2 Statistical Method

The aim of the statistical method is to discover the characteristics of the sampled signal.

There are many statistical methods can be used. For example, we know the simplest

technique for testing a signal change is the mean value. While regression analyses can

be used to detect changes, they are not very sensitive to small deviations. The change

detection problem can also be solved by means of a Bayesian analysis [16] when a

mathematical model of the data is available.

The log likelihood ratio method provides another option. Log likelihood ratio is a

powerful and sufficiently generic method of testing model assumptions [1]. It is based

on using a ratio of two probability distribution functions (pdf) to build an indicator upon

which a threshold can be applied. If the ratio exceeds a given threshold, it indicates the

Chapter 2 Transient Signal Detection

11

transient signal has been detected. However, this method needs to know the distribution

to which the sampling belongs.

Generally speaking, statistical methods can be divided into two categories, parametric

and non-parametric. The parametric method is observed via the value of equal size

sampling in the unit time period, while the non-parametric method is observed via

continuous changes of sampling and is determined by whether the sampling follows

statistical distribution or not. The parametric method relies on an assessment of the

overall information (overall distribution, characteristics and variance) to analyze the

sampling feature and can only be used for sampling equivalent intervals. By contrast,

the non-parametric method does not require an assessment of overall information.

Rather, it uses the sampling information to speculate the overall distribution. From a

statistical point of view, the non-parametric method is more suitable for solving

transient detection problems as it does not require the sampling of data from any

particular distribution.

The Mann-Whitney U and the Wilcoxon signed-rank are both non-parametric statistical

methods. The Mann–Whitney U [17] is used for assessing which of two independent

observations have larger values than the other and is one of the most well-known non-

parametric significance tests. The Wilcoxon [18] signed-rank test is used when

comparing two related samples, or repeated measurements on a single sample, to assess

whether their population means differ (i.e. a paired difference test). This method is

based on the assumption that there is no significant difference between the two samples’

overall distribution. The main limitation of these methods is that they were originally

designed for detecting single point changes. By contrast, the Mann-Kendall [19] and the

CUSUM methods are particularly suitable for sequential analysis.

Specifically, the Mann-Kendall method is used to measure the association between two

measured quantities. It is easy to implement and widely used in the analysis of climate

change. CUSUM is a sequential analysis technique typically used for monitoring change

detection [19]. It has several advantages including its relative simplicity, a graphical

interpretation of results, and the ability to detect unusual patterns. It has been

successfully used in fault detection, onset detection, and defect detection in mechanical

systems. Both the Mann-Kendall and the CUSUM tests have particular parameters that

need to be fixed at design-time [24] in order to allow the test to detect changes.

http://en.wikipedia.org/wiki/Paired_difference_test�

Chapter 2 Transient Signal Detection

12

Specifically, the Mann-Kendall test requires setting a level of significance for the test,

while the CUSUM test needs to fix the thresholds in order to detect the possible changes

in statistical behaviour. One of the significant benefits of CUSUM for signal detection is

its stability in the presence of regression behaviour for signal sampling [19]. The

CUSUM test was chosen as the method of implementation for this research due to its

high detection accuracy and real time computation. This chapter introduces the CUSUM

algorithm in detail.

2.2 CUSUM Algorithm

CUSUM is a detection procedure proposed by Page (1954) and Lorden (1971) [20]. It is

a sequential analysis technique in statistical quality control, typically used for

monitoring change detection. As its name implies, CUSUM involves the calculation of a

cumulative sum (making it "sequential").

2.2.1 CUSUM Equation

In this algorithm, a constant reference value is subtracted from the data collected. This

difference is added to the previous difference (the cumulated sum). Usually this average

value is referred to as “M.” The equation is summed as below:

2-1:

 𝑆1 = (𝑋1 − 𝑀)

 𝑆2 = (𝑋1 − 𝑀) + (𝑋2 − 𝑀) = 𝑆1 + (𝑋2 − 𝑀)

 𝑆3 = 𝑆2 + (𝑋3 − 𝑀)

 … … … …

 𝑆𝑛 = 𝑆𝑛−1 + (𝑋𝑛 − 𝑀)

The CUSUM test requires a reference threshold value h. When the value of Sn exceeds

a certain threshold, an abrupt change can be detected.

Figure 2-1 shows the implementation of the CUSUM test in signal processing. The first

part shows random input signals. Second and third part shows the error has been

accumulated. The ascending line conveys that the signal runs higher than the reference

Chapter 2 Transient Signal Detection

13

value while the descending line means the signal runs below this value. The horizontal

line shows the signal runs at the reference status.

Figure 2-1 CUSUM test implementation in Signal Processing [2]

2.2.2 Threshold Selection

Threshold selection is the key point for CUSUM detection. However, there is no fixed

method to detect transient signals. In [1] the author discovered a method in which the

threshold can be derived from Wald Sequential tests on the mean of a normal population.

Assuming that 𝜇1 > 𝜇0, the value of threshold h is equivalent to a sequence of Wald

Sequential tests. The formula can thus be expressed as:

2-2:

 ℎ = −σ12

σ02
 ln α
(µ1−µ0)

Where 𝛼 is interpreted as an approximation of the proportion of samples that trigger

false alarm. This value can also be interpreted as a probability of false alarm in a

traditional sense. If it assumes that the variance σ12 = σ02 , the formula can be rewritten

as:

Chapter 2 Transient Signal Detection

14

2-3:

ℎ = −
lnα

(µ1 − µ0)

As the value of μ1 − μ0 is generally unknown, it can be considered as a parameter that

specifies the maximum value of difference between mean values of noise and signal.

Meanwhile, to select an appropriate denominator for this formula is a complex task,

especially in the context of the unknown character of signal detection. Obviously, the

more closely chosen the value, the more sensitive the CUSUM processing will be.

Another method used to determine threshold value is the Standard Deviation (SD)

method. SD is a method widely used in statistics to measure variability or diversity [21].

It shows the extent of variation offset from the mean or expected value. As it is an

important indicator of precision in statistics it is widely used in quality control. For

example, if there are two groups of data with the same average value, group A has a

larger SD than group B. This means the spread in group A is much larger than in group

B. In other words, a low SD indicates that the data points tend to be very close to the

mean, whereas a high SD indicates that the data points are spread out over a large range

of values [11]. Here SD was selected as threshold value because it can achieve a

relatively fast calculation time with quite accurate results.

The SD of a data set is the square root of its Variance. A useful property of SD that,

unlike Variance, it is expressed in the same units as the data. The SD equation is:

2-4:

Sn = �
∑ (Xi − X�)2n
i=1

N

Here the 𝑋� refers to the mean value of the sampling unit. In transient signal detection, to

find an overall SD is unrealistic, however, one can choose a certain amount of sampling

and use the SD of the sampling as its own threshold. In this design, two times the SD of

each sample set is selected the sample set threshold. The reason for this is explained

below.

http://en.wikipedia.org/wiki/Variance�

Chapter 2 Transient Signal Detection

15

In probability theory, the Normal Distribution is a continuous probability distribution

that is often used to describe real-value random variables that tend to cluster around a

single mean value [22]. The Normal Distribution is considered the most prominent

probability distribution in statistics. There are several reasons for this. First, the Normal

Distribution is very tractable analytically; that is, a large number of results involving

this distribution can be derived in explicit form. Second, the Normal Distribution arises

as the outcome of the central limit theorem, which states that under mild conditions the

sum of a large number of random variables is distributed approximately normally.

Finally, the "bell" shape of the normal distribution makes it a convenient choice for

modelling a large variety of random variables encountered in practice. For this reason,

the Normal Distribution is commonly encountered in practice, and used as a simple

model for complex phenomena [23]. In Normal Distribution, one SD stands for 68% of

overall values and two SD are representative of 95% of overall values. Figure 2-2

shows a plot of normal distribution with each band the width of one SD. In transient

signal detection, if a sampled signal extends over two times the SD this indicates that

the signal is abnormal.

Figure 2-2 Standard Deviation in Normal Distribution

The choice of the size of sampling unit is important, because it’s related to detection

accuracy. The standard error equation below expresses the relation between sampling

size and standard error [29].

http://upload.wikimedia.org/wikipedia/commons/8/8c/Standard_deviation_diagram.svg�

Chapter 2 Transient Signal Detection

16

2-5:

𝜎 =
1
√𝑁

 × 𝑆𝑛

This equation reflects the degree of dispersion of samples. The smaller of standard error

means the samples close to overall average value, otherwise the samples appears more

discrete. Obviously, more samples are chosen in each sampling unit more closer to

overall standard deviation. In practical, sampling size normally choose around 50. Here,

the author chooses 32 samples as a sampling unit in design. The main reason is reduced

the incubation period for sampling data processing, details will explain in Chapter 6.

2.3 Computer Simulation
The initial simulation framework was developed by Gene Soudlenkov [1] based on

MATLAB ®7.9.0. Simulation of transient signals was achieved by mixing a pulse of

the desired noise with the result plotted in the time domain. A simulation was

undertaken for three cases, each making the detection increasingly more difficult. The

difficulty was increased by increasing the Signal to Noise Ratio (SNR). Where σsignal2

and σnoise2 represent variance of the signal and noise, the calculation of SNR is:

2-6:

SNR = 10 log10
σsignal2

σnoise2

Where σsignal2 and σnoise2 are variance of the signal and noise. This simulation approach

provides well controlled signal shaping and can be accommodated for a wide variety of

signal mixes. Three cases simulations are shown as below

Chapter 2 Transient Signal Detection

17

Figure 2-3 Simulated pulse with additive Gaussian noise SNR = 2dB, pulse onset =

0.18 sec, pulse duration = 0.38 sec [2]

Figure 2-4 Simulated pulse with additive Gaussian noise SNR = -26dB, pulse onset =

0.18 sec, pulse duration = 0.38 sec [2]

Chapter 2 Transient Signal Detection

18

Figure 2-5 Simulated pulse with additive Gaussian noise SNR = -32dB, pulse onset =

0.18 sec, pulse duration = 0.38 sec [2]

2.4 Summary
Different algorithms were discussed in this chapter with the CUSUM algorithm

explained in detail. In comparison with other transient detection algorithms, the

CUSUM algorithm was shown to achieve a relatively faster speed with reasonably

accurate results. For this reason the CUSUM algorithm was chosen for this design.

Chapter 3 FPGA Implement Platform

19

Chapter 3 FPGA Implement Platform

The CUSUM algorithm was implemented using an Altera Cyclone II FPGA

development board. The FPGA based system was developed under Quartus ® 10.1 and

simulated by ModelSim ® 6.6 software. An overview of the FPGA and Mega Function

core is given in this chapter. The implementation is then presented.

3.1 Introduction to FPGA

The Field-Programmable Gate Array (FPGA) is a semiconductor device that can be

programmed after manufacturing. As it overcomes the restrictions of any predetermined

hardware function FPGA allows the designer to program product features and functions,

adapt to new standards, and reconfigure hardware for specific applications, even after

the product has been installed in the field - hence the name "field-programmable."

FPGA can implement any logical function that an application-specific integrated circuit

(ASIC) can perform but with the additional ability to update the functionality after

shipping, which offers advantages for many applications.

Compared to ASICs, FPGAs offer many design advantages, including:

• Rapid prototyping

• Shorter time to market

• The ability to re-program in the field for debugging

• Lower NRE costs

• Long product life cycle to mitigate obsolescence risk

Unlike previous generation FPGAs using I/Os with programmable logic and

interconnects, today's FPGAs consist of various mixes of configurable embedded

SRAM, high-speed transceivers, high-speed I/Os, logic blocks, and routing. Specifically,

an FPGA contains programmable logic components called logic elements (LEs) and a

hierarchy of reconfigurable interconnects that allow the LEs to be physically connected.

Chapter 3 FPGA Implement Platform

20

It can configure LEs to perform complex combinational functions, or merely simple

logic gates like AND, XOR. In most FPGAs, the logic blocks also include memory

elements, which may be simple flip-flops or more complete blocks of memory.

Altera [30] and Xilinx [31] are two major manufacturers in the current FPGA market.

They take over 80% of the market share, with Xilinx alone representing over 50% [32].

Other manufacturers include Lattice Semiconductor [33], Actel [34], SiliconBlue

Technologies [35], Achronix [36] and QuickLogic [37].

3.2 Altera FPGA
The Altera Company is the world’s pioneer of FPGA solutions and was founded in

1983. Altera combines reprogrammable logic technology with software tools,

intellectual property (IP), and design services to provide high-value programmable

solutions worldwide. Its reprogrammable solutions deliver fast time to market and other

significant advantages over costly, high-risk ASIC development and digital signal

processors [38]. Altera’s products have been widely used in many end markets

including the automotive industry, the audio and video equipment industry, and the

computer industry, as well as the storage, medical equipment, military, and

telecommunications industries [39].

3.2.1 Altera Device Family

There are three series of FPGAs manufactured by Altera; Cyclone, Arria and Stratix.

Cyclone ® series FPGAs are the industries least expensive, most power efficient

FPGAs, ideal for high-volume, cost-sensitive applications. Comparably, the Arria ®

series FPGAs provide an optimal balance of performance, power, and price for mid-

range transceiver-based applications. Stratix ® FPGAs are the industry's highest

bandwidth, highest density FPGAs and ideal for high-end applications and are designed

for high performance products.

Considering the advantages of lowest cost, most efficient use of power and high-volume,

the Cyclone ® series FPGAs are in general better suited for applications. A Cyclone IV

development kit with a Cyclone® IV EP4CE115F29C7 device was therefore selected

for the design.

http://www.altera.com/products/devices/stratix-fpgas/about/stx-about.html�

Chapter 3 FPGA Implement Platform

21

3.2.2 Comprehensive Development Suite

Altera’s comprehensive development suite includes Quartus II, a customized version of

ModelSim, Nios II Embedded Design Suite and DSP Builder. Numerous design features,

including various design entry, scripting support, incremental compilation, SOPC

Builder, MegaWizard plug-in manager, I/O pin assignment analysis, Quartus II

integrated synthesis, rapid recompile, third-party design entry and synthesis, and basic

compilation flow are offered in Quartus II to accelerate the design process. ModelSim is

used for the functional simulation of the design. Nios II Embedded Design Suite

includes a collection of cutting-edge software tools, utilities, libraries and drivers to help

bring the design to market within a short time. DSP Builder allows the designer to

implement high-performance DSP functionality on FPGAs by using Matlab ® Simulink

as the modelling, simulation and implementation environment.

3.3 Cyclone IV Devices and Development Board
All the experimentation of this research work is implemented on a DE2- 115 board to

verify its function. The main elements in all FPGAs are Logical Elements (LEs),

Memory Blocks, DSP blocks, PLLs and User I/Os. Table 3-1 shows a summary of

resources on Cyclone IV device.

Table 3-1 Resources on DE2 – 115 Development Board

Cyclone IV Device EP4CE115F29C7
Logical Element (LEs) 144,480
Embedded Memory (Kbit) 3,888
Embedded Multipliers (18
x 18)

266

General Purpose PLLs 4
User I/O Bank 8
User I/O 528

3.4 Altera SOPC Builder
SOPC Builder (System on a Programmable Chip Builder) is Altera software that

automates the connection of soft-hardware components to create a complete computer

system that runs on any of its various FPGA chips [40]. SOPC Builder incorporates a

library of pre-made components (including the flagship Nios II soft processor, memory

http://en.wikipedia.org/wiki/Altera�
http://en.wikipedia.org/wiki/Field-programmable_gate_array�
http://en.wikipedia.org/wiki/Nios_II�
http://en.wikipedia.org/wiki/Soft_processor�
http://en.wikipedia.org/wiki/Memory_controller�

Chapter 3 FPGA Implement Platform

22

controllers, interfaces, and peripherals), as well as an interface for incorporating

customised components.

The SOPC Builder defines and adds custom components or selects from a list of

provided components. By connecting multiple modules together to create a top-level

HDL file called the SOPC Builder system, the SOPC Builder generates a system

interconnect fabric that contains the necessary logic to manage the connectivity of all

modules in the system. Interconnections are made though the Avalon bus with bus

arbitration, bus width matching, and even clock domain crossing, all handled

automatically when SOPC Builder generates the system. A GUI is the only additional

tool required to configure the soft-hardware components (which often have many

options), and to specify the bus topology [40].

3.4.1 Nios II Processor

The Nios II processor is a 32-bit embedded soft core processor [41]. This core allows

users to add or remove features on a system-by-system basis to meet price or

performance goals. A configurable soft-core processor enables us to add or remove

features on a system-by-system basis to meet price or performance goals. Figure 3-1

shows a block diagram of the Nios II processor core.

Figure 3-1 Nios II Processor Block Diagram [41]

http://en.wikipedia.org/w/index.php?title=Avalon_bus&action=edit&redlink=1�
http://en.wikipedia.org/wiki/Clock_domain_crossing�
http://en.wikipedia.org/wiki/GUI�
http://en.wikipedia.org/wiki/Bus_topology�

Chapter 3 FPGA Implement Platform

23

There are three different levels of Nios II processors. Differentiated as Nios II/e

(economy), Nios II/e (standard), and Nios II/f (fast), they are designed for cost-

sensitivity, medium-performance and performance-critical processing respectively. The

following discussion outlines the major components of the Nios II processor [41].

I. Arithmetic Logic Unit (ALU)

The main component of the Nios II processor is the arithmetic logic unit (ALU).

The ALU operates by taking one or two inputs from a register and storing the

result back in the register. The ALU supports the data operations described in

Table3-2.

Table 3-2 Operations Supported by Nios ALU

Category Details
Arithmetic The ALU supports addition, subtraction, multiplication, and

division on signed and unsigned operands
Relational The ALU supports the equal, not-equal, greater-than-or-equal, and

less-than relational operations on signed and unsigned operands.
Logical The ALU supports AND, OR, NOR, and XOR logical operations.
Shift and
Rotate

The ALU supports shift and rotate operations, and can shift/rotate
data by 0 to 31 bit positions per instruction. The ALU supports
arithmetic shift right and logical shift right/left. The ALU supports
rotate left/right.

II. Instructions

The instructions in the Nios II processor are 32 bits long. In addition to the

machine instructions that are executed directly by the processor, the Nios II

instruction set includes a number of pseudo instructions that can be used in

assembly language programs. The Assembler replaces each pseudo instruction

with one or more machine instructions. There are three types of instruction

formats: I-type, R-type and J-type.

 I-type – Five-bit fields A and B are used to specify general purpose

registers. A 16-bit field IMMED16 provides immediate data which can

be sign extended to provide a 32-bit operand.

 R-type – Five-bit fields A, B and C are used to specify general purpose

registers. An 11-bit field OPX is used to extend the OP code.

Chapter 3 FPGA Implement Platform

24

 J-type – A 26-bit field IMMED26 contains an unsigned immediate value.

This format is used only in the Call instruction.

III. Interrupts (IRQ)

The Nios II architecture supports 32 internal hardware interrupts. The processor

core has 32 level-sensitive interrupt request (IRQ) inputs, “irq0” through “irq31,”

providing a unique input for each interrupt source. IRQ priority is determined by

software. The architecture supports nested interrupts. The software can enable

and disable any interrupt source individually through the “ienable” control

register which contains an interrupt-enable bit for each of the IRQ inputs.

IV. Memory

The Nios II architecture supports cache memories on both the instruction master

port (instruction cache) and the data master port (data cache). Cache memory

resides on-chip as an integral part of the Nios II processor core. The size of the

caches can vary from 512 Bytes to 64 KB or omitted because the chosen sizes of

caches will directly affect the execution time of code running on the Nios II

processor. The other type of memory provided by the Nios II processor is

tightly-coupled memory. Similar to cache memory, in that it does not have real-

time caching overhead, such as loading, flushing or invalidating memory,

tightly-coupled memory provides guaranteed low-latency memory access for

performance-critical applications.

In practice, most FPGA designs require the addition of extra logic elements to the

processor system. There are many logic elements provided by SOPC, such as PLL, Tri-

Bridge, and Memory. It is also possible to custom design a component and add it to the

processor. In this way the Nios II processor provides flexibility to add features to the

system. Figure 3-2 shows an example of the Nios II system.

Chapter 3 FPGA Implement Platform

25

Figure 3-2 Example of a Nios II Processor System [41]

3.4.2 Avalon Switch Fabric

Avalon switch fabric is a chip-level communication bus that connects internal modules.

High bandwidths interconnect structure that consumes minimal logic resources and

provides greater flexibility, the main functions provided by Avalon switch fabric are:

address decoding, data-path multiplexing, arbitration, clock domain crossing and

interrupt controller. Figure 3-3 shows a block diagram of Avalon switch fabric.

Chapter 3 FPGA Implement Platform

26

Figure 3-3 Avalon Switch Fabric Block Diagram [41]

Compared with other bus topologies like Wishbone, Avalon Switch Fabric provides a

one-to-one, one-to-many, many-to-one or many-to-many communication mechanism

for systems with multiple masters and slaves. It can also provide multiple channel

communications. While one master is communicating to one slave, other masters can

communicate with other slaves at the same time. In SOPC builder Avalon Switch Fabric

is generated automatically. Users do not need to know anything about its internal

functionality, thereby minimising the development time.

3.5 Mega function

Altera integer arithmetic mega functions provide the convenience of performing

mathematical operations on FPGAs through parameterized functions that are optimized

for Altera device architectures. These functions are customized by configuring

parameters to accommodate the design requirement. Altera integer arithmetic mega

functions are divided into two categories: Library of parameterized modules (LPM) and

Chapter 3 FPGA Implement Platform

27

Altera-specific (ALT) mega functions. Table 3-2 lists the mega functions as described

in the Altera user guide:

Table 3-3 List of Megafunctions

Megafunction Name Function Overview
LPM Mega function (LPM)
LPM_ABS Absolute value
LPM_ADD_SUB Adder/Subtractor
LPM_COMPARE Comparator
LPM_COUNTER Counter
LPM_DIVIDE Divider
LPM_MULT Multiplier

Altera –specific (ALT) Mega
functions

ALTACCUMULATE Accumulator
ALTECC ECC Encoder/Decoder
ALTMEMMULT Memory-based Constant Coefficient

Multiplier
ALTMULT_ACCUM Multiply-Accumulator
ALTMULT_ADD Multiply-Adder
ALTMULT_COMPLEX Complex Multiplier
ALTSQRT Integer Square-Root
PARALLEL_ADD Parallel Adder

In this research project, two Megafunctions are implemented in this design. They are

ALTMULT_ADD and ALTSQRT.

3.5.1 ALTMULT_ADD Function

The ALTMULT_ADD megafunction allows the implementation of a multiplier-adder.

It acts to accept pairs of inputs, multiply the values, and add all pairs together [42]. In

addition, this function offers many variations within a dedicated DSP block circuit. Data

input sizes of up to 18 bits are accepted and as the DSP blocks allow for one or two

levels of 2-input add or subtract operations on the product this function can create up to

four multipliers. Figure 3-4 shows the ports for the ALTMULT_ADD megafunction.

Chapter 3 FPGA Implement Platform

28

Figure 3-4 ALTMULT_ADD ports shows in MegaWizard Plug-In Manager

This megafunction offers the following features:

 Generates a multiplier to perform multiplication operations of two complex

numbers

 Supports data widths of 1– 256 bits

 Supports signed and unsigned data representation format

 Supports pipelining with configurable output latency

 Provides a choice of implementation in dedicated DSP block circuitry or logic

elements (LEs)

 Supports optional asynchronous clear and clock enable input ports

In project design, latency is the key point. Longer latency means more stages of

pipelines and greater resources are required. It also means higher maximum clock

frequency because the circuit in each stage of the pipeline is shorter. For best

performance, one should choose the appropriate megafunction for the design. In this

project 4 x multi-adder units were implemented in the design. Each unit requires 8 DSP

Chapter 3 FPGA Implement Platform

29

(9 bit), 100 LUT and 34 reg. The latency for each unit is 8 clock-cycles. Figure 3-5

shows the single multi-adder unit.

Figure 3-5 ALTMULT_ADD Unit

As a sampling is a 16-bit signed signal, all the widths of the input channels should be setup at

16 bits, and with a signed format. Table 3-4 below shows the resource usage after synthesis.

Table 3-4 Resource Usage for Single ALTMULT_ADD

3.5.2 ALTSQRT Function

The ALTSQRT megafunction implements a square root function that calculates the

square root and remainder of an input [42]. Figure 3-6 shows the ports for the

ALTSQRT megafunction:

Total combinational functions 1,321 / 114,480 (1 %)
Dedicated logic registers 272 / 114,480 (< 1 %)
Device EP4CE115F29C7
Family Cyclone IV E
Total logic elements 1,321 / 114,480 (1 %)
Total registers 272
Embedded Multiplier 9-bit elements 64 / 532 (12 %)

Chapter 3 FPGA Implement Platform

30

Figure 3-6 ALTSQRT ports in MegaWizard Plug-In Manager

The ALTSQRT megafunction offers the following features:

 Calculates the square root and the remainder of an input

 Supports data width of 1–256 bits

 Supports pipelining with configurable output latency

 Supports optional asynchronous clear and clock enable input ports

This module is used to calculate a square root output from the previous step. One should

note that the width of the radical must match the previous output; otherwise this module

will not produce a result. Figure 3-7 shows the ALTSQRT unit.

Figure 3-7 ALTSQRT Unit

Chapter 3 FPGA Implement Platform

31

Table 3-5 below shows the resource usage after synthesis.

Table 3-5 Resource Usage for Single ALTSQRT Unit.

3.6 Summary
An overview of Altera FPGA and its design suite has been presented in this chapter.

Then the system components which include Nios II processor, Avalon Switch Fabric

and Megafunction have been introduced. The performance and resource usage of these

components was presented in detail.

Total combinational functions 571 / 114,480 (< 1 %)
Dedicated logic registers 311 / 114,480 (< 1 %)
Device EP4CE115F29C7
Family Cyclone IV E
Total logic elements 587 / 114,480 (< 1 %)
Total registers 311
Embedded Multiplier 9-bit elements 0 / 532 (0 %)

Chapter 4 Power Consumption

32

Chapter 4 Power Consumption

Many applications require low-power programmable logic solutions. For this reason

many programmable logic vendors have focused on minimizing device power

consumption. There are five different power components that must be considered when

evaluating different FPGAs. Figure 4-1 shows these components.

Figure 4-1 Power Consumption Components [54]

The important power components to consider include power up, configuration, dynamic,

static and sleep power. Power up is the amount of power drawn by the device during

power up. Configuration power refers to the power required during the loading of the

FPGA upon power up. Some FPGA devices offer low-power or sleep modes. In some

cases, this may be different from static power.

It can be seen that besides the sleep mode, the most power consumption is composed of

static and dynamic power. Static power is the power consumed by leakage current. Both

digital and analog logic consume static power; static power is primarily composed of

the quiescent current of the analog circuit based on its interface configuration.

Traditionally, digital logic has not consumed significant static power, but this has

changed with the advent of very small process nodes. Leakage current in digital logic is

now the primary challenge for FPGAs as process geometries decrease. While the move

Chapter 4 Power Consumption

33

to the 60-nm Cyclone IV processor delivers the expected Moore’s law benefits of

increased density and performance, the performance increases can in turn result in

significant increases in power consumption, thereby causing the risk of consuming

unacceptable amounts of power [49]. Figure 4-2 shows the source of static leakage

current.

Figure 4-2 Transistor Leakage Diagram [49]

The sources of static leakage current include sub-threshold leakage (𝐼𝑆𝑈𝐵), gate-include

drain leakage (𝐼𝐺𝐼𝐷𝐿), gate direct-tunnelling leakage (𝐼𝐺), and reverse-biased junction

leakage current (𝐼𝑅𝐸𝑉). The sub-threshold leakage has the dominant impact on static

power. It is sensitive to supply voltage, gate threshold voltage, temperature and channel

length. The sub-threshold leakage can be reduced by reducing the core voltage,

increasing voltage threshold and increasing gate length. Both Gate-induced drain

leakage and gate direct-tunneling leakage have a small impact on static power. They are

sensitive to gate oxide thickness and supply voltage and can be reduced by using dual

gate oxide. The impact by reverse-biased junction leakage current to static power can be

negligible [50].

Dynamic power is the amount of power the device consumes when it is actively

operating. It is the additional power consumed during the operation caused by signals

toggling and capacitive loads charging and discharging. The dynamic power can be

calculated via the following equation:

4-1:

𝑃𝑑𝑦𝑛𝑎𝑚𝑖𝑐 = �
1
2

 𝐶𝑉2 + 𝑄𝑠ℎ𝑜𝑟𝑡 𝐶𝑖𝑟𝑐𝑢𝑖𝑡 𝑉� 𝑓 ∗ 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦

As shown in the equation, the main variables affecting dynamic power are capacitance

charging, supply voltage, and clock frequency. The function activity means the percent

Chapter 4 Power Consumption

34

of circuit that switched each cycle. Dynamic power decreases with Moore's law by

taking advantage of process shrinks to reduce capacitance and voltage. The challenge is

that more circuits are implemented with each process shrink, and the maximum clock

frequency increases. While the power reduction declines for an equivalent circuit from

process node to process node, the FPGA capacity keeps doubling and the maximum

clock frequency keeps increasing[50].

4.1 Altera Power Optimize Methods

Altera has taken significant steps to reduce static power in Cyclone IV FPGAs by

implementing a low power (LP) process technology traditionally used in semiconductor

manufactures for handset components. This has minimized the leakage current for low

static power. The smaller geometries made possible by this advanced process, combined

with architectural optimizations, enable Cyclone IV FPGAs to keep static and dynamic

power consumption to a minimum. The process is enhanced by the use of low-k

dielectrics, variable channel lengths and oxide thicknesses, and multiple transistor

threshold voltages. By using those technologies, the power consumption has been

reduced by up to 25% compared to Cyclone III devices. Figure 4-3 shows the

comparison of static power consumption of Cyclone III and Cyclone IV E devices at

85°C junction temperature. The smallest Cyclone IV E FPGA, the EP4CE6 device,

consumes as little as 38 mW at 85°C, and the largest Cyclone IV E FPGA, the

EP4CE115 device, consumes as little as 163 mW static power at 85°C [51].

Figure 4-3 Typical Static Power Consumption of Cyclone IV E FPGAs

Chapter 4 Power Consumption

35

In the comparative study with similar density devices, Cyclone IV only consumed half

of the static power of Xilinx Spartan devices. Figure 4-4 summarizes the result of the

static power comparison.

Figure 4-4 Static Power Summary

Altera has also introduced a radical and unprecedented method called “Programmable

Power Technology” for reducing power consumption for high-end FPGAs.

Traditionally, all high-performance FPGAs are implemented within a high-performance

fabric where every logic element (LE) provides the maximum performance with a

subsequent high leakage power. Not all the circuits need maximum performance

however in real design. Usually only a small amount of circuits are speed critical and

the rest has excess slack [52]. Figure 4-5 shows a typical excess slack histogram where

the majority of paths have slack and only a few critical paths need the highest

performance logic to meet the timing requirement.

Figure 4-5 Amount of Slack per Unit Delay

Chapter 4 Power Consumption

36

Programmable power technology enables the Stratix III logic fabric to be programmed

at the logic array block (LAB) level to provide high-speed logic or low-power logic,

depending on what is required by the specific logic path [52]. Figure 4-6 illustrates this

technology. The longest path is the timing critical path. The LABs in the timing critical

path receive a high-speed setting, while the rest of the LABs use the low-power setting.

The leakage power of the LABs with a low-power setting is 70% less than that of the

LABs with a high-speed setting. In addition, unused logic elements, digital signal

processing blocks, and memory blocks are set to low-power mode for further power

saving. Programmable Power Technology enables an optimal combination of setting

timing critical logic to high-speed mode for achieving the desired system performance,

while setting the rest of the logic to low-power mode for minimizing leakage current. In

this way the design of Stratix III FPGA consumes as little power as possible.

Figure 4-6 Programmable Power Technology

The core voltage of Stratix III FPGA can be set to 0.9V or 1.1V depending on the

performance requirement. The 0.9V core voltage provides lower dynamic and leakage

power than 1.1V core voltage, while the 1.1V core voltage delivers the highest overall

performance. Dynamic power scales with the square of core voltage, while static power

scales by the power of 2.5 of core voltage - as shown in Table 4-1.

Table 4-1 Power Compared with Selectable Core Voltage

It can be seen that the 1.1V core consumes 33% less dynamic power and 52% less static

power than 1.2V voltage core, while 0.9V voltage consumes 55% less dynamic power

Chapter 4 Power Consumption

37

and 64% less static power. This core voltage supplies all the LABs, memories, and DSP

functions in the core fabric. It is important to select an appropriate core voltage because

the corresponding timing and power model will be used in timing-dependent and power-

dependent analysis and optimization. When selecting the core voltage, the designer

needs to decide on a suitable voltage based on the timing analysis. If the system

performance requirements can be achieved by using 0.9V core voltage, 0.9V core

voltage should be selected because less power will be consumed.

Competitively, by implementing these advantage technologies Stratix III FPGAs

provide an average of 29 percent (at 1.1V) and 45 percent (at 0.9V) lower total power

than the nearest competing FPGA. Figure 4-7 shows the total power advantage seen in

Stratix III FPGAs over Virtex-5.

Figure 4-7 Power Comparison between Stratix III FPGAs and Virtex-5

4.2 Power Consumption of Multi-Core System

Altera provides two kinds of power measurement features; PowerPlay early power

estimator and PowerPlay power analyzer. The PowerPlay early power estimator (EPE)

is a spreadsheet-based analysis tool that enables early power scoping based on device

and package selection, operating conditions, and device utilization. The other option,

PowerPlay power analyzer, is a far more detailed power analysis tool that uses actual

design placement, and routing and logic configuration. This tool can use simulated

Chapter 4 Power Consumption

38

waveforms to very accurately estimate dynamic power. The power analyzer, in

aggregate, usually provides ± 10% accuracy when used with accurate design

information. The PowerPlay power models closely correlate to actual silicon

measurements.

Figure 4-8 Selectable Core Voltage of Cyclone IV Devices

The DE2-115 development board has an EP4CE115F29C7 device on board. The speed

grade of the device is “7” which is relatively fast in the EP4CE115 series. The goal was

to examine the power consumption of the design when combined with these power

saving technologies. The voltage option in the Quartus II software under the operating

setting and condition category can be set to 1.2V or 1.0V. The speed grade of the 1.0V

device however, is slower than that of 1.2V. In Figure 4-8, it can be seen that there are

two kinds of selection for speed grade and voltage. The EP4CE115F29C7 and

EP4CE115F29C8 have the same core voltage (1.2V) but a different speed grade, as do

the devices EP4CE115F29C8L and EP4CE115F29C9L (1.0V).

The PowerPlay Power Optimization option in the Fitter Setting dialog box controls the

configuration of tiles in the high-speed or low-power mode. The Quartus II software

automatically determines which tiles operate in high-speed mode and which operate in

Chapter 4 Power Consumption

39

low-power mode, based on the timing constraint specified for the design. Realistic

timing constraints must be provided for the design to achieve the lowest possible power

consumption. There are three PowerPlay Power Optimization options: Off, Normal

compilation and Extra effort. Figure 4-9 shows the fitter setting selection.

Figure 4-9 Fitter Setting

No netlist, placement or routing optimizations are performed to minimize power when

Off is chosen. The Normal compilation is the default setting. In normal compilation,

tiles are configured in high-speed or low-speed mode depending on the timing

constraints of the design. The rest tiles are configured in low-power mode to reduce the

overall power consumption. This level of power optimization does not have any effect

on the fitting, timing results, or compilation time.

The Extra effort setting performs the functions of the Normal compilation setting, as

well as extra place and route optimizations during fitting to fully optimize the design for

power. Extra effort is applied by the fitter to minimize power consumption even after

timing requirements have been met. The Extra effort setting uses a Value Change Dump

File (.vcd) that guides the fitter to fully optimize the design for power, based on the

signal activity of the design. Signal activities from full post-fit netlist (timing)

Chapter 4 Power Consumption

40

simulation provide the highest accuracy as all node activities reflect the actual design.

The extra effort includes moving the logic closer during placement to localize high-

toggling nets, using routes with low capacitance, and trying to configure more high-

speed mode tiles to low-power mode tiles when possible. Note however this option will

increase the compilation time.

The power consumption of the multi-core systems was measured by the EPE tool as

shown in Figure 4-10. This tool requires the import of the .pof file which is generated

after compilation. The supply voltage was set to 1.2V with the PowerPlay Power

Optimization option set to Normal Compilation. The multi-core system with 2, 4, 6 and

8 cores were complied respectively with the test undertaken at room temperature. The

measured power consumption of FPGA is summarized in Table 4-2.

Figure 4-10 PowerPlay Early Power Estimator

The results in Table 4-2 are plotted in Figure 4-11. The power should track linearly with

frequency and percentage of resources usage. One can see that the power consumption

tracks in an approximately linear fashion with the increase in the number of cores. This

is because the resource utilization is directly proportional to the number of cores. The

difference between the total power and the static power is the I/O thermal power.

Chapter 4 Power Consumption

41

Table 4-2 Power consumption with Multi-Core System

Number of Cores Static Power(mW) Total Power(mW)
1 98.9 136.75
2 99.36 144.8
4 100.25 159.7
8 436.94 484.05

Figure 4-11 Power consumption with Multi-Core System

4.3 Summary

Leading-edge technology is continuously developed in order to maximize the

performance and minimize the power consumption in FPGA devices. The

Programmable Power Technology selectable core voltage enables the lowest possible

power for Altera’s FPGA. Compare with computer based transient detection, it difficult

to say how much energy was saving by using FPGA. That because the computer

processing speed is relatively fast (usually in GHz), while FPGA’s processing frequency

is still in develop. Obviously, if they are running at same frequency, same hardware

resources, FPGA will greatly reduce the power consumption as it doesn’t need to waste

power on software implementation. In a real application, as the transient signal

detection usually needs to run 24 hours a day and 7 days a week, the energy saved by

using FPGA is significant.

Chapter 5 Methodology and Design Flo

42

Chapter 5 Methodology and Design Flow

This chapter explains the overall project design flow. Design principles of HDL are

described in detail with the three primary physical characteristics of a digital design and

its implementation in each module discussed. Methods for architectural optimization in

FPGA are also discussed in this chapter.

In order to properly design the system architecture, the following project roadmap was

established.

1. Understanding and feasibility study of the entire system operation and the

delineation of each functional module.

2. Design of each module with Verilog. Measure performance of each module and

optimize design architecture.

3. Verilog test bench design, simulate each module and observe the results from

ModelSim waveform.

5.1 FPGA Design Principles
There are three important characteristics in digital design: “speed,” “space,” and

“power.” Speed refers to the highest stable frequency that a design module can achieve.

There are three primary definitions of speed: throughput, latency and timing. In the

context of processing data in FPGA, throughput refers to the amount of data that is

processed per clock cycle, and latency refers to the time between data input and

processed data output. The typical metric for latency is time or clock cycles. Timing

refers to the logic delays between sequential elements. A design that does not meet

timing delays the critical path; that is, the largest delay between flip-flops (composed of

combinatorial delay, clock-to-out delay, routing delay, setup timing and so on) is greater

than the target clock period.

In FPGA design, the following criteria should be followed:

Chapter 5 Methodology and Design Flo

43

• High-throughput architectures for maximizing the number of bits per second that

can be processed by the design.

• Low-Latency architectures for minimizing the delay from the input of a module

to the output.

• Timing optimizations to reduce the combinatorial delay of the critical path.

• Adding register layers to divide combinatorial logic structures.

• Parallel structures for separating sequentially executed operations into parallel

operations.

Space refers to the usage of resources in module design, normally counted by flip-flops

and LUT. Selecting the correct topology in design can reduce resource usages. Here,

topology refers to the high level organization of the design. Circuit-level reduction

performed by the synthesis and layout tools refers to the minimization of the number of

gates in a subset of the design and may be device specific. A topology that targets area

is one that reuses the logic resources to the greatest extent possible, often at the expense

of speed. In most cases, it requires a recursive data flow where the output of one stage is

fed back to the input for the same processing. This can be a simple loop that flows

naturally with the algorithm, or it may be that the logic reuse is complex and requires

special controls.

As a design requires high frequency, and a small usage of space is unrealistic, speed and

space become two conflicting aspects of FPGA design. The proper design approach thus

requires meeting the timing requirement while minimizing space. If the design has a

relatively large timing allowance and operates at high frequency, it means the design is

more robust. On the other hand, the less space consumed by the design means the more

function modules per unit space while reducing the cost of the design [44]. Comparing

both aspects of a design, the timing requirement is more important. When they conflict,

speed is a much higher priority. There are a variety of methods that can achieve the

conversion between speed and space, such as module reuse, Ping-pong operation and

Pipe-line operation. The following chapter discusses these methods in greater detail.

The other important physical characteristic of digital design is power. Compared with

ASIC (application specific integrated circuit) design, FPGA is costly, and typically not

well suited to ultralow-power design. Some FPGA vendors offer low power CPLDs

(complex programmable logic device), but these are very limited in size and capability

Chapter 5 Methodology and Design Flo

44

and thus will not always fit an application that requires a respectable amount of

computing power. In CMOS technology, dynamic power consumption is related to

charging and discharging capacitances on gate and metal traces [43]. The general

equation for current dissipation in a capacitor is:

5-1:

𝐼 = 𝑉 × 𝐶 × 𝑓

Where “I” is total current, “V” stands for voltage, “C” stands for capacitance, and “f”

for frequency. In order to reduce the current, we must reduce one of the three

parameters. The capacitance C is related to the number of gates, while frequency f is

directly related to the clock frequency. As the voltage is usually fixed in FPGA design,

the power-reduction should aim at reducing one of these two factors.

5.2 FPGA Design Operations

5.2.1 Ping-Pong Operation

Ping-Pong operation is widely used for data flow control. Figure 5-1 shows the flow

chart of Ping-Pong operation. Input data pass through an input multiplexer and then into

a data buffer storage module. Here, Dual-port RAM is usually used as a buffer. This

system can have multiple buffer modules. In the storage cycle, data will pass into the

first buffer module until it has filled up. The output multiplexer will then switch to the

second buffer module. Meanwhile, the computational module will access the data in the

first buffer through a second multiplexer. The same procedure applies for the second

buffer.

Figure 5-1 Ping-Pong Flow Chart

M

U

X

M

U

X

FIFO_1

FIFO_0 Data

Computation

Module

Chapter 5 Methodology and Design Flo

45

The most important feature of this method is the seamless connection achieved for data

flow through the input and output multiplexers as they switch between each other.

Another feature is the saving of buffer space. It can store the first part of an entire data

flow into one buffer and process the data from another buffer at same time. It also

processes high-speed data flow through a low-speed module.

The difficulty in implementing this method is balancing the data entry speed and

processing time. With the ideal design, when the first buffer is filled up, the data process

in the second buffer is complete. Another challenge with this method is the buffer

design. The buffer setting needs to focus on size and full/empty flags to avoid data

overflow.

5.2.2 Serial to Parallel Conversion

Serial to Parallel conversion is one of the important techniques in processing high-speed

data. It generally increases the throughput by copying the program logic. There are

various methods that can achieve serial/parallel conversion. For some relatively small

designs, shift register can be used to complete the conversion. Figure 5-2 illustrates the

framework of serial/parallel conversion, showing serial data input to FPGA’s internal

shift register, and output of an N-bit wide parallel data.

Figure 5-2 Serial to Parallel Conversion

Generally this operation needs to be clock synchronized. This means the data sampled

during several clock cycles needs to wait another equivalent time period to obtain

Shift Reg_0

Shift Reg_1

Shift Reg_n

N Bit Data
Parallel
Output

Chapter 5 Methodology and Design Flo

46

parallel output. As mentioned in 5.1, serial to parallel conversion is an implementation

that uses space to exchange speed. In FPGA design most of the statements are executed

in parallel - this is the significant difference when compared with C or other languages.

Handling the conversion between serial to parallel well is one of the key features of

FPGA design.

5.2.3 Pipeline Operation

Pipeline here refers to an operation that processes data flow. A pipeline is a systolic

array where all data flow goes in one direction and there is no feedback. Figure 5-3

illustrates the structure of pipeline operation. Pipeline operation can improve system

frequency and is commonly used in high speed signal processes.

Figure 5-3 Pipeline Operation

The basic structure of pipeline operation involves the appropriate connection of one-

way steps. The output of the previous step becomes the input for the next step. A typical

pipeline operation divides the original combinational logic module into several parts.

This means it takes more time to complete the new modules which have the same

function of the previous one. However, the operating frequency of these new modules is

significantly improved, especially in cases where the pipeline operation upgrades the

performance of the design. For example, assume that the previous design needs three

steps to complete one group of data. That means it takes three clock cycles from the

data input to obtain the result. By using pipeline operation, only the first result will take

three clock cycles to complete with the remaining results obtained from each clock

cycle after that. The outcome is an increase in speed of nearly three times.

The key point for pipeline operation design is to arrange reasonable timing sequences

for each step. To avoid data overflow, the size of data flow for each step also needs to

be considered. If the operation time for the first step equals that of the second, the

output of the first step can pass directly to the secondary step. If the operation time for

the first step is less than the second, it will need a buffer to store the output data from

the first step before passing it to the next step. The third issue in arranging timing

Step 1 Step 2 Step 3

Chapter 5 Methodology and Design Flo

47

sequences for pipeline operation is the problem of operation time for the first step being

greater than the second. This requires the use of methods such as module reuse or serial

to parallel conversion to separate data flow, otherwise it will cause a mismatch in data

processing

5.3 Data acquisition

High speed data acquisition systems are generally divided into analog signal

conditioning circuits, analog to digital signal conversion circuits, large capacity memory

trigger circuits, and system timing and control logic units, etc. Generally data

acquisition systems work based on the idea of fast write and slow read, which samples

data by high-speed ADC and stores it to large cache (such as SDRAM), before

uploading to a data processing unit. The data quantity of this form of sampling is

determined by the cache. At present the larger capacity cache are mainly SDRAM,

which generally store dozens of MB. SDRAM is a type of storage that needs frequent

refreshing and requires the clock to synchronize with the read and write operation. As

the sample frequency is faster, the data acquisition system, which is based on SDRAM,

can only collect a little data at one time, thereby restricting the quantity of data sampled.

On the control side, SDRAM needs to be refreshed every few nanoseconds in order to

maintain the stability of the data.

SRAM is another cache option. A storage device that does not require periodic

refreshing, SRAM uses bi-stable latching circuitry to store data. Unlike SDRAM, the

storage addresses in SRAM are independent, and since SRAM does not need refreshing,

the access speed is much faster. Normally, it takes 60~75 ns to access one address for

SDRAM, while it only takes 10 ns for SRAM. The power consumption of SRAM is

also more stable than SDRAM.

Regardless of SRAM’s advantages over SDRAM, neither SDRAM nor SRAM are the

best choice, as explained detail in Chapter 5.4. Accordingly, for this project design, a

high speed, real time data acquisition system based on on-chip memory was chosen.

The on-chip memory is the logic resources that commonly integrated with the processor.

It often used for data cache and instruction storage, serving an interface between the

processor and the off-chip memory. The on-chip memory is controlled through the

Chapter 5 Methodology and Design Flo

48

FPGA with the idea of space-for-speed allowing for high speed, real-time data upload.

Figure 5-4 shows the structure of SRAM operation.

Figure 5-4 Dual SRAM Operation

In this project, the ADC converter connects a large scale of antenna array to the

sampling data. Due to the limitation of the testing environment, random generated data

was used for the entire program testing.

5.4 FIFO Module Design
The FIFO module is related to the reliability and stability of the entire design.

Accessing the FIFO must be managed by this module to ensure that there is no

confliction or overwrite operation. For this project, on-chip memory block is used as a

FIFO to store the temporary data from the ADC device.

On a DE2-115 development board, a Cyclone IV processor supports some M9K on-chip

memory blocks that are used to store the data from the ADC device. These M9K

memory blocks have the following features: 8,192 memory bits per block, variable port

configurations (8192 x 1, 1024 x 8, 512 x 16, etc), independent read/write enable signals,

and two clock enable control signals for each port. Single port and dual port modes are

supported for all blocks. The DE2-115 development board also provides other off-chip

memories such as SRAM, SDRAM. They are all able to be used as cache.

When compared with on-chip memory, off-chip memory has some shortcomings.

Firstly, on-chip memory is single cycle access, with the access for each address fixed.

Off-chip memory has an unstable access time, in some cases it will take two or more

clock cycles to access data that will affect optimization for the compiler. For example,

the SDRAM has an average latency of approximately 20 clock cycles. However, on-

chip memory can be configured to have one clock cycle read latency and zero cycle

write latency. This feature is particularly suitable for high-speed data access. In some

ADC
On-Chip

Memory Output

Chapter 5 Methodology and Design Flo

49

cases, large latency of access off-chip memory will slow down a CPU’s pipeline

operation. Secondly, for most applications, the use of on-chip memory reduces power

consumption by 40% when compared with off-chip memory [45]. By comparison, the

disadvantages of on-chip memory are its size and the number of memory block

limitations.

This project provides two kinds of FIFO design modules, in order to adapt to the ADC

device when working on different clock frequencies. They are respectively synchronous

and asynchronous FIFO. Further details on FIFO are provided in the following chapter.

5.4.1 Synchronous FIFO Design

Synchronous FIFO refers to a read and write operation under the same clock frequency.

This means that their addresses are synchronized. In program design, a counter (cnt) is

usually used to count the number of existing data that cannot be read out. In read only

status the counter will subtract one, while in write only status it will add one. The

counter will remain the same in the case of reading and writing at the same time, or

neither reading or writing.

To ensure the FIFO does not overflow in operation, some flags are used in design. Write

enable (wr_en) and read enable (rd_en) flags indicate the valid operation for writing and

reading. Full (full) and empty (empty) flags are used to protect FIFO from being

overwritten and overread.

In program design, internal read and write enable flags are a self-protection mechanism.

Read enable flags are a combination of an external read enable interface and a non-

empty flag (Figure 5-5). Similarly, the write enable flag is composed of an external

write enable interface and non-full flag.

Figure 5-5 Read/Write Enable Flag

In initial status, full flag should be setup at “1,” which indicates the FIFO is full. If there

is no reading operation and the counter (cnt) equals the depth of the FIFO (depth_fifo),

or the counter is equal to “depth_fifo – 1,” the write enable is still valid and a full flag

 assign read_enable = read_enable && ! empty;
 assign write_enable = write_enable && ! full;

Chapter 5 Methodology and Design Flo

50

should be setup at “1,” otherwise it should be kept at “0.” For empty flags (empty), at

initial status it should be setup at “1,” to indicate the FIFO is empty. If the counter (cnt)

equals “0” or if it equals “1” while read enable is valid, the empty flag should be setup

at “1,” otherwise it should be kept at “0.”

In this design, FIFO is operating at high frequency status. To avoid an unpredictable address

pointer overflow, almost empty (almost_empty) and almost full (almost_full) flags are used

to give early notice for FIFO status. When these flags are triggered, it means the counter is

nearly empty or full but still allowed to read/write a small amount of data.

Address control is relatively simple. When at read enable status, the read address will

automatically carry one step in each clock cycle; the same as the write address operation.

However, from the perspective of logic gate design, the simple “add” operation is

complicated as it involves the “carry” and “flip” operations on the counter and these

operations easily generate glitches in a high-speed circuit. When the FIFO is working at

high frequency status, linear feedback shift register (LFSR) can be adopted. This

approach uses “shift” and “XOR” operations to control FIFO’s address and is simple

and fast.

Linear feedback shift register (LFSR) is a kind of encryption circuit and its widely used

in communication coding field. It can be presented by following equation:

5-2:

𝐺(𝑥) = 𝑔𝑚𝑥𝑚 + 𝑔𝑚−1𝑥𝑚−1 + … + 𝑔1𝑥 + 𝑔0

This polynomial is a primitive polynomial. For example, m = 3 and initial status

G2G1G0 = 001 as the circuit flow chart shows below.

Figure 5-6 Linear Feedback Shift Register

In every clock cycle the output will generate by this circuit. Table 5-1 shows the result.

The character of this circuit is cycling back to start point after seven clock cycles.

G0 G1 G2

Chapter 5 Methodology and Design Flo

51

Table 5-1 Truth Table of LFSR

Status Code Results

0 G2G1G0 001

1 G2G1G0 010

2 G2G1G0 100

3 G2G1G0 011

4 G2G1G0 110

5 G2G1G0 111

6 G2G1G0 101

7 G2G1G0 001

LFSR can be optimized into LUT (Look up Table) in digital design. In the context of

real circuit application this is another element employed to improve the speed. Figure 5-

7 shows the Verilog implementation of the LFSR program.

Figure 5-7 Verilog Implementation of LFSR

5.4.2 Asynchronous FIFO Design

Asynchronous FIFO means read and write operation under different clock frequency or

in same frequency but different clock phase. It needs to compare the read and write

address when generate full/empty flags. However, it cannot compare them directly. That

because they are working under different clock domains. Another reason is the physical

character of address register. Address register usually contains many bits, in case of

“carry” situation it cannot guarantee that all these bits are flip in same time. It needs

/* Generation of read address pointer */
wire read_liearfeedback
assign read_liearfeedback = !(read_addr[8] ^ read_addr[4]);
always @ (posedge clk or negedge rst_n)
 if(rst_n) read_addr <= ‘b0;
 else if (read_enable)
 read_addr <= { read_addr[7], read_addr[6], read_addr[5],
 read_addr[4], read_addr[3], read_addr[2],
 read_addr[1], read_addr[0], read_liearfeedback };

Chapter 5 Methodology and Design Flo

52

time to stabilise. If read clock cycle sampling the write address during stable time, it

will make mistake.

To avoid this defect, this module implements Gray code in design. Gray code is a form

of binary that uses a different method of incrementing from one number to the next.

With Gray code, only one bit changes state from one position to another. Gray code is

the most popular absolute encoder output type because its use prevents certain data

errors which can occur with natural binary during state changes. In program design,

Gray code and binary code can be converted to each other by “XOR” operation. Table

5-2 shows the comparison between binary code and Gray code.

Table 5-2 Truth Table of Gray Code

Number Bin Gray

0 000 000

1 001 001

2 010 011

3 011 010

4 100 110

5 101 111

6 110 101

7 111 100

Gray code cannot generate full/empty signals by a simple “add” operation. To

determine the FIFO status, the read address (read_addr) should first convert to gray

code (read_gray). Then the write clock domain is used to synchronize this read address

(rag_wt_syn) and convert this address to binary code. Finally, the current write address

(write_addr_pl) is allowed to delay for one clock cycle, with the difference between

read address (rag_wt_syn) and write address (write_addr_pl) the status of this FIFO.

The aim of delaying the write address one clock cycle is to ensure it synchronizes with

the read address, because the read address takes one clock cycle to convert to gray code.

An empty flag is set on two conditions (Figure 5-8):

1. Read gray code is equal to write gray code (write_gray = read_gray).

Chapter 5 Methodology and Design Flo

53

2. Only one address is left inside FIFO and read enable is valid (write_gray =

 read_next_gray)

Figure 5-8 Empty Flag Generation

A full flag is set on two conditions (Figure 5-9):

1. Write gray code is equal to the last read gray code (write_gray = read_last_gray).

2.The next write gray code is equal to the last read gray code and write enable is valid

 (write_next_gray = read_last_gray)

Figure 5-9 Full Flag Generation

5.5 SP_MEAN Module Design
As mentioned in section 2.2, the CUSUM algorithm is designed for sequential data

analysis. However, sampling data from an ADC device gives an infinite continuous

signal. To implement a CUSUM algorithm, the sampling signal should be divided into

equal length intervals. In this program design, each interval was set up to contain 32

samplings. The main function of this module was to parallelize the serial input data

from the FIFO module and calculate the average of these samplings.

Chapter 5 Methodology and Design Flo

54

There are 32 samplings of 16-bit registers used in the module, with input data stored in

these registers with each clock cycle. Meanwhile, the cumulative operation is carried

out simultaneously. A 5-bit counter is used to control the amount of input data. Once

completed, the entire data of this interval, plus its mean value, is output in parallel.

Figure 5-10 shows the block diagram of SP_MEAN module.

Figure 5-10 Block Diagram of SP_MEAN Module

This module is a typical application of serial to parallel conversion. Here, speed is the

primary priority, so it consumes more register resources. There is no latency of each

interval output.

5.6 Standard Deviation Module Design
The role of this module is the calculation of the SD as a threshold for a CUSUM

algorithm. Standard deviation is calculated for a finite length of sequential data. In this

case, the number of data was determined by a previous module (SP_MEAN module).

As the amount of data has been determined in a previous module, formula 2.3 can be

expanded as:

5-3:

Chapter 5 Methodology and Design Flo

55

Sn = �
(X0 − X�)2 + (X1 − X�)2 + (X2 − X�)2 + ⋯+ (X31 − X�)2

N

This equation can be split into two parts: cumulative operation and square root

operation. Cumulative operation is completed here by parameterized ALTMUTI_ADD

megafunction. This function has four groups of “MUTI” port and each port contains two

groups of input (figure 3-5). Each input can be expressed as the difference between the

sampling data and the mean value. A square calculation can be done by implementing

the same input for each “MUTI” port. Figure 5-11 shows one group of parameterized

ALTMUTI_ADD functions. The new function is named “MUTI_ADD_BASE” module.

Figure 5-11 MUTI_ADD_BASE module

Each “MUTI_ADD_BASE” module function can complete four groups of input data.

This requires module reuse (Figure 5-12) or module parallel processing (Figure 5-13) in

order to finish thirty-two numbers. Module reuse means the MUTI_ADD_BASE”

module is repeated eight times to complete the calculation. A counter should be added

to control the number of running times.

Figure 5-12 SD_TOP_32 Module Reuse

MUTI_ADD_BASE MUTI_ADD_BASE_0
 (
 .clock0(clk),
 .dataa_0(idin_0 - mean), .dataa_1(idin_1 - mean),
 .dataa_2(idin_2 - mean), .dataa_3(idin_3 - mean),
 .datab_0(idin_0 - mean), .datab_1(idin_1 - mean),
 .datab_2(idin_2 - mean), .datab_3(idin_3 - mean),
 .result(MUTI_ADDR_OUT_0)
);

SP_MEAN

Module

CUSUM
Module

SD_TOP_32
Module

Counter

MUTI_ADD_BASE

SQRT

Module

Chapter 5 Methodology and Design Flo

56

Module parallel processing refers to the parallelized connection of eight

MUTI_ADD_BASE modules to one another. This approach reduces the calculation

time by consuming more resources and is a kind of implementation of the space for

speed method.

Figure 5-13 SD_TOP_32 Module Parallel Processing

However, one needs to analyse the timing in order to determine which approach is more

suitable. It can be seen that it takes 32 clock cycles to get the output from the

SP_MEAN module. In order to maintain the pipeline works well, the running time for

the SD_TOP_32 module must be equal to or less than 32 clock cycles. According to the

timing analysis in the following chapter, the running time for the SD_TOP_32 module

is 8 clock cycles. Clearly, the module reuse method is not suitable here because it takes

65 clock cycles. Comparably, while the module parallel processing consumes more

resources it meets the timing requirement. In this design therefore, the calculation was

done with eight parallelized SD_TOP_32 modules.

The output from each MUTI_ADD_BASE module is added up and divided by the total

numbers. It is then sent to the SQRT module to get the SD. Pipeline design is also

implemented here to minimize the operation of the clock cycle. Figure 5-14 illustrates

the structure of the pipeline adder in the design.

Figure 5-14 Structure of Pipeline Adder

CUSUM
Module

SP_MEAN

Module

SD_TOP_32 Module

SQRT
Module

MUTI_ADD_BASE _0

MUTI_ADD_BASE _3

MUTI_ADD_BASE _7

1

2

3

Chapter 5 Methodology and Design Flo

57

It only takes three clock cycles to add eight outputs together. Division calculation is

achieved via a shift operation. In binary systems, shifting one bit to the left means it

becomes divided by two. In this case, a division of thirty-two can be achieved through

shifting five bits left. In program design, the shifting operation is much faster than

algebraic calculation.

After the above operations, the width of the output data is thirty-three bits. One should

note that the width of the output must match the input of the SQRT module; otherwise

this module will not give a correct result.

5.7 CUSUM Module Design
The aim of the CUSUM module is to detect abnormal signals in each sampling group.

In the system it is used to cumulate the difference between sampled signals with their

corresponding mean value. If the cumulative is more than twice the SD this means the

sampled signal is an abnormal signal. The sampled signal is then output for further

processing. Otherwise, the output port will be pull up to high resistance status.

As the sampling signal is a sign-based signal, the cumulative value may appear as a

negative number. Therefore this module should have the ability to detect either positive

or negative abnormal signals. However, Verilog is a hardware description language that

does not support negative numbers directly, as it cannot be converted to digital circuits.

In computer systems there is a method called “2’s complement” which can be

implemented here [46]. The 2’s complement is a method that encodes negative numbers

into ordinary binary. This method generates a negative number by inverting each bit of

the positive number, then adding one. For example: 011(+3) 100 + 1 = 101(-3).

This method features the use of the highest bit of binary code as its sign bit, where “1”

stands for negative and “0” stands for positive.

In this module, the threshold (2xSD) needs to be converted to negative. By

implementing the 2’s complement method, the code can be written as “assign n_sd_out

= ~(sd_out - 1'b1);” which means the negative threshold is equal to the complement of

the positive threshold minus one. Figure 5-15 illustrates the threshold in coordinate

system.

Chapter 5 Methodology and Design Flo

58

Figure 5-15 Thresholds in coordinate system

5.8 SRAM Module Design
The DE2-115 board has 2MB SRAM memory with 16-bit data width. Featuring a

maximum performance frequency of about 125MHz under the conditions of standard

3.3V single power supply makes it suitable for dealing with high-speed processing

applications that need ultra data throughput. The related schematic is shown in Figure 5-

16.

Figure 5-16 Connections between FPGA and SRAM

The clock frequency of 50 MHZ is synchronous with the Cyclone IV device. The

SRAM data bus is a bi-directional interface that allows writing in or reading out. For the

writing process, data can be directly assigned to the SRAM data bus. For reading, it

needs to pull this data bus to high resistance status; otherwise it will latch the last input.

The SRAM in this design is used to store abnormal signals that come from the CUSUM

module. Here, the SRAM is only designed for validation of data storage. For further

improvement, the abnormal signals could be housed in other storage (such as an SD

Chapter 5 Methodology and Design Flo

59

card). In this way it could achieve off-line analysis, or even pass through those signals

by PCI Express to PC to achieve on-line analysis. Whatever the choice, SRAM can be

used as a good buffer.

5.9 Module Assembly
Module assembly is the key point in digital design. Chapter 5.5, 5.6, 5.7 briefly

introduced the design method for each single module. How to assemble these modules

and have them execute as expected then becomes a critical task. When using C or other

processor, all functions are executed sequentially. As Verilog modules all run in parallel

this means, if stitching these modules simply, they cannot achieve the expected

operating results.

Figure 5-17 illustrates the function setup designed in C language. The first step was to

establish four sub-functions, ALT_MUTI_ADD, SQRT, SP_MEAN and CUSUM. The

next step was to build the function SD_TOP_32 that we can call ALT_MUTI_ADD and

SQRT sequentially. Finally, we set up the main function with which we can call these

three functions (SP_MEAN, SD_TOP_32, and CUSUM) directly.

Figure 5-17 C Language Design Structure

In the main function, C language has already executed the “function call,” “return,” and

other commands to achieve the above functions. As there is no such convenient

terminology in Verilog language it is virtually impossible to achieve the “sequential

operation” in digital design. However, by adding some control signals there is a way to

Chapter 5 Methodology and Design Flo

60

imitate the module sequential operation. For example, one can add a “Start” signal to

activate the first module. Once the first module is completed, it can then generate a

“Done” signal to inform the second module. In this way, these communication signals

can achieve the sequential operation.

In the CUSUM IP core design, the author used two IP cores that parameterized from

Quartus II Mega function. However, most of the IP cores supported by Quartus are

multi-functional and do not provide communication signals such as “Start,” and “Done,”

as these cores do not contain sub module, functional module and control module. They

are therefore only employed in many “always @” statements inside modules to achieve

desired results, which increases the difficulty for sequential operations.

There are two ways to solve this problem. The first way is rewrite two of the IP cores,

adding communication signals. Another way of approaching the issue is to consider a

parallel operation instead of a sequential operation. From the perspective of saving

development time, the author decided to adopt the second method. This method

necessitates the precise knowledge of the execution time for each module in order to

build the pipeline structure via sequential timing. The results obtained by simulation

(provided in Chapter 6) shows there are 32 clock cycles consumed by SP_MEAN

module, 9 clock cycles used by SD_TOP_32 module and another 33 clock cycles used

by the CUSUM module. Obviously, the running times of these three modules are not

equal, meaning that it cannot build the pipeline structure directly, as it will cause a data

hazard when processing old data as new data comes in.

The author found a way to solve this problem that increased the latency for SD_TOP_32

module. The total latency added on the SD_TOP_32 module is 23 clock cycles. This

means although the computing time only consumes 9 clock cycles, the results are being

latched until the 33rd clock cycle. Figure 5-18 shows the pipeline structure of these

modules

Chapter 5 Methodology and Design Flo

61

Figure 5-18 Pipeline Structure of Design Module

Another improvement is adding the DELAY module in this design. The role of this

module is obtained the output from SP_MEAN module, delay 32 clock cycles to

synchronise with SD_TOP_32 module and then passes to CUSUM module. By using

this way, this design can achieve pipeline structure and seamless connection for

input/output data.

5.10 Discussion Blocking and Non-blocking Operation in Design
Blocking and non-blocking operations are the most easily confused structures in both

Verilog and VHDL Languages. It is difficult to understand the difference between them

when they are simulating and synthesizing. Failure to understand where and how to use

the respective languages can lead not only to unexpected behaviour, but also to

mismatches between simulation and synthesis.

In software design, functionality is created by defining operations that are executed in a

predefined sequence. In Verilog design this type of execution can be defined as

blocking. This means that future operations are blocked until after the current operation

has been completed. All future operations are under the assumption that all previous

operations have been completed and all variables in memory have been updated. By

comparison, a non-blocking operation executes independent of order, with updates

SP_MEAN
Module

SD_TOP_32

SQRT
Module

MUTI_ADD_BASE _0

MUTI_ADD_BASE _3

MUTI_ADD_BASE _7

 DELAY_MODULE

CUSUM
Module

Chapter 5 Methodology and Design Flo

62

triggered by specified events, and all updates occur simultaneously when the trigger

event occurs.

Before further analysis of the execution process of blocking and non-blocking

operations, one needs to understand the IEEE Verilog standard stratified event queue.

The stratified event queue, shown in Figure 5-19, includes active events, inactive events,

non-blocking events and monitor events. Obviously, the blocking operation belongs to

active events. Active events refer to events executed in current simulation time. The

non-blocking operation belongs to two events; active events and non-blocking events. It

is the evaluating RHS (right hand side) of the non-blocking operation in active events

that then update the LHS (left hand side) in non-blocking events.

Figure 5-19 Stratified Event Queue

Classical theory establishes that blocking operations should be used in combinational

logic and non-blocking operations should be used in sequential logic [47]. According to

the author’s experience this theory is adhered to in most of cases. However, in some

cases the blocking operation can also used in sequential logic. Figure 5-20 shows a case

that requires an instant result in “always” block. Using the blocking operation can

obtain a result in one clock cycle, while a non-blocking operation needs two clock

cycles. If the timing constraint is only one clock cycle as it is here, it would only use the

blocking operation.

Chapter 5 Methodology and Design Flo

63

Figure 5-20 Blocking (left) and Non-Blocking (right) assignment

In order to meet the timing requirement of the design, the author adopted a blocking

operation in the CUSUM module so as to obtain instantaneous calculation results. By

observing the synthesized RTL view, the author found the result registers were synthesized to

“wire” structure, thus allowing the calculation to be achieved.

5.11 Discussion Synchronous Reset and Asynchronous Reset

In FPGA design, reset can be achieved in two ways; synchronous reset and

asynchronous reset. Synchronous reset means the reset signal is synchronous with the

system clock signal and is triggered at the rising edge of the input system clock.

Asynchronous reset means the reset signal is not synchronous with the system clock and

can reset the system at any time. However, they both have their respective advantages

and disadvantages.

Synchronous reset in FPGA design is often achieved by adding an “AND” gate to the

input signal. Figure 5-21 shows Verilog code and its RTL view. This design is easy to

synthesize to synchronous sequential circuits which greatly benefit the timing analysis,

with the maximum frequency “fmax” normally higher than other reset designs. It also

can filter out the glitches that are higher than the system clock’s frequency because the

reset signal is only activated by the rising edge of the system clock.

Synchronous reset also has some disadvantages. The reset signal must be longer than

the system clock cycle otherwise it cannot be identified by system. One also needs to

consider the side effects caused by clock skew, combinational logic path delay, and

reset delay. Another disadvantage is the logic resource utilization as most logic

resources only have an asynchronous reset port. If using a synchronous reset, the

synthesizer will generate a combinational logic with the input port, which will require

more logical resource.

always @ (posedge clk or negedge rst_n)
……
C = A + B;
D = C + B;
……

always @ (posedge clk or negedge rst_n)
…
case:
0: C <= A + B;
1: D <= C + B;
…..

Chapter 5 Methodology and Design Flo

64

Figure 5-21 Synchronous Reset with RTL View

Asynchronous reset in FPGA design often connects the reset signal to the CLR port.

Figure 5-22 shows its Verilog code and RTL view. The advantages of asynchronous

reset are obvious; compared with synchronous reset, asynchronous reset can save a lot

of logic resources with the global reset port “GSR” easily used in FPGA design. The

defects of asynchronous reset are more serious however, and often appear when the

reset signal is being released. If the reset signal is released near the rising edge of the

clock cycle, this can easily cause the register metastable status.

Figure 5-22 Asynchronous Reset with RTL View

In Figure 5-21, at the rising edge of the clock cycle normally “b” will be equal to “a,”

and “c” will be equal to “b.” Once the reset signal is triggered, “b” and “c” are all equal

to zero. However, one cannot determine when the reset signal will finish, so if the reset

signal recovers faster than the register’s latch edge setup time (Latch edge setup time =

latch edge + hold time), this will cause the register “b” and “c” metastable status.

The author discovered a way to solve this problem in Altera’s System Verilog notes

[48]. That is, asynchronous reset and synchronous release. Figure 5-23 shows the

verilog code and its RTL view.

Chapter 5 Methodology and Design Flo

65

Figure 5-23 Asynchronous Reset and Synchronous Release with RTL View

This method uses the system clock cycle’s rising edge to synchronize the asynchronous

reset signal’s rising edge. The advantage of this approach is the timing analysis tools

which automatically check the relation between the asynchronous reset signal and the

system clock cycle (recovery/removal). This ensures the reset signal’s recover time is

equal to, or greater than, the register’s latch edge setup time. In this design, the author

implemented this reset method to ensure the stability of the core.

5.12 Summary

Firstly, an overview of FPGA design methods was given in this chapter. The author

then described the design process and the design requirements for each module. The

main focus of the chapter was module assembly as it involves the timing sequence

operation. A detailed analysis of module assembly methods was therefore discussed, as

well as the solution of timing sequence operations. Finally, the author analyzed the

Verilog coding style for this design.

Chapter 6 Verification and Evaluation

66

Chapter 6 Verification and Evaluation

This chapter presents the verification process of this work. First, the chapter outlines the

testbench design of the project. The following section covers the ModelSim software in

application. The remainder of the chapter then describes the verification process of the

CUSUM core and outlines the results.

6.1 Testbench Description
The term testbench usually refers to the simulation code used to create a predetermined

input sequence for a design, and optionally to the observation of the response.

Testbench are implemented using System Verilog, but they may also include external

data files or C routines.

Figure 6-1 shows how a testbench interacts with a design under verification (DUV). The

testbench provides inputs to the design and watches any outputs. In the context of the

design, the testbench is effectively a model of the universe with the verification

challenge being to determine what input patterns to supply to the design, and what the

expected output of a properly working design is when submitted to those input patterns.

Figure 6-1 Structure of a Testbench and Design under Verification

Today, in the era of multi-million gate ASICs and FPGAs, reusable intellectual property

(IP), and system-on-a-chip (SoC) designs, verification consumes about 70% of the

design effort. Design teams, properly staffed to address the verification challenge,

include engineers dedicated to verification. The proportion of verification engineers can

Chapter 6 Verification and Evaluation

67

be up to twice the number of RTL designers. Verification is often considered after the

design has been completed, when the schedule has already been ruined, which

compounds the problem. Verification is also the target of the most recent tools and

methodologies which attempt to reduce the overall verification time by enabling

parallelism of effort, higher abstraction levels, and automation.

The basic verification method is functional verification. The main purpose of functional

verification is to ensure that a design implements the intended functionality. As shown

in Figure 6-2, functional verification reconciles a design with its specification. Without

functional verification, one must trust that the transformation of a specification

document into RTL code was performed correctly, without misinterpretation of the

specification’s intent.

Figure 6-2 Functional Verification Paths

Functional verification can be accomplished using three complementary approaches:

black box, white box and grey box. With a black box approach, functional verification

is performed without any knowledge of the actual implementation of a design. All

verification is accomplished through the available interfaces, without direct access to

the internal state of the design or knowledge of its structure and implementation. This

method suffers from an obvious lack of visibility and controllability. It is often difficult

to setup an interesting state combination or to isolate some aspect of functionality. It is

also difficult to observe the response from the input and locate the source of the

problem. The advantage of black box verification is that it does not depend on any

specific implementation. Whether the design is implemented in ASIC, RTL gates or

entirely in software, is irrelevant. The black box functional verification approach forms

a true conformance verification that can be used to show that the particular design

implements the intent of a specification.

By comparison, the white box approach has full visibility and controllability of the

internal structure and implementation of the design being verified. The results can be

Chapter 6 Verification and Evaluation

68

easily observed as the verification progresses, with discrepancies from the expected

behaviour immediately reported. This approach, however, is tightly integrated with a

particular implementation, meaning that changes in the design may require changes in

the testbench. Furthermore, these testbenches cannot be used in gate-level simulations,

or alternative implementations or further redesigns. It also requires detailed knowledge

of the design implementation to know which significant conditions to create and which

results to observe.

Grey-box verification then is a compromise between the aloofness of the black box

verification and the dependence on the implementation of white-box verification. While

the former may not fully exercise all parts of a design, the latter is not portable. As with

black-box verification, a grey-box approach controls and observes a design entirely

through its top-level interfaces. However, the particular verification being accomplished

is intended to exercise significant features specific to the implementation. The same

verification of a different implementation would be successful, but the verification may

not be particularly more interesting than any other black box verification. A typical grey

box test case is one written to increase coverage metrics, with the input stimulus

designed to execute a specific line of code, or create a specific set of conditions in the

design.

Chapter 6 Verification and Evaluation

69

6.2 ModelSim Tools
ModelSim is a powerful HDL simulation tool that allows simulating the inputs of the

modules and viewing both output and internal signals. ModelSim offers VHDL, Verilog

or mixed language simulation. Coupled with the most popular HDL debugging

capabilities in the industry, ModelSim is known for delivering high performance, ease

of use, and outstanding product support.

Model Technology’s award-winning Single Kernel Simulation (SKS) technology

enables transparent mixing of VHDL and Verilog in one design. ModelSim’s

architecture allows platform independent compilation via the outstanding performance

of native compiled code.

Figure 6-3 ModelSim Interface

An easy to use graphical user interface enables the user to quickly identify and debug

problems, aided by dynamically updated windows. Figure 6-3 shows the user’s interface.

For example, selecting a design region in the structure window automatically updates

the source, the signals process and variable windows. These cross-linked ModelSim

windows create a powerful debug environment. Once a problem is found, it can edit,

recompile and re-simulate without leaving the simulator. So, the author uses Modelsim

to verify the design,

6.3 SP_MEAN Module Verification
Before verification, a testbench for the SP_MEAN module was undertaken. The

verification process can be divided into two parts; observation of the timing sequence

and verification of the results. In order to observe the timing sequence efficiently, the

Chapter 6 Verification and Evaluation

70

author used a set of sequential numbers at beginning. Figure 6-4 shows the verification

result. The result shows the conversion of the serial input to parallel output while giving

the mean value for each output group. One can easily see from the timeline cursor on

the figure that each group of output consumed 32 clock cycles. Notably this approach

avoids any unnecessary time delay for each output and reduces the chance of data

missing.

Result verification was undertaken after the timing sequence analysis. The author used

random numbers as input to detect whether the output of the mean value was correct or

not. Figure 6-5 illustrates the returned answers of the result verification. The author

randomly selected a set of outputs (cycled in Figure 6-5) and calculated the result

manually.

Table 6-1 shows the manually calculated result to be the same as the verification result.

It can be considered therefore, that this module met the design requirements.

Table 6-1 Result Comparison

Manually Calculated Result:

ModelSim Result:

Chapter 6 Verification and Evaluation

71

Figure 6-4 Verification of SP_MEAN Module with Sequential Numbers

Chapter 6 Verification and Evaluation

72

Figure 6-5 Verification of SP_MEAN Module with Random Numbers

Chapter 6 Verification and Evaluation

73

6.4 Standard Deviation Module (SD_TOP_32) Verification
The main purpose of the verification of a SD module is to verify its computational time

and calculated result. This module is verified individually and the author used same

input data as previous module (SP_MEAN Module). The verification can be divided

into three steps. First, the author uses a fixed input number to verify its time

consumption and result. Then, the author uses random numbers to increase the

complexity of calculation and examine whether the module can deliver the same

performance or not. Finally, the module adjusted by the timing requirement is verified

as to whether the module meets the design requirements.

Figure 6-6 shows the results. Clearly, it can be seen from the cursor that the time

consumption is 9 clock cycles. In order to assemble pipeline structure, the time

consumption of this module can extend up to 32 clock cycles, as illustrated in Figure 6-

7. The manually calculated results shown in the table below are the same as the verified

results. After several episodes of randomly achieved verification, the author found the

results to be all correct and the time consumption the same. Therefore, it can confirm

that this module meets the design requirements.

Table 6-2 Result Comparison

Manually Calculated Result:

ModelSim Result:

Chapter 6 Verification and Evaluation

74

Figure 6-6 Standard Deviation Module Verification

Chapter 6 Verification and Evaluation

75

Figure 6-7 Standard Deviation Module Verification with Output Delay

Chapter 6 Verification and Evaluation

76

6.5 CUSUM Module Verification
The verification of a CUSUM module aims to verify its detectability and time

consumption. Because this is single module verification it also requires manually

assigned input, as well as the mean and threshold value. The author chooses pervious

data to observe it’s time consumption. One also needs to observe the output signal, once

the input signal exceeds the threshold.

The verification result is shown in Figure 6-9. The threshold is calculated by SD module

which is +/-17580 and the mean is -4046. One can see that the time consumption to

finish a set of input is 32 clock cycles. As observed from the input data, 12 sets of data

are less than the threshold. In Figure 6-10 these data are shown as having a high

impedance status, which means that these pieces of data are normal input signals and do

not need to be output. The remaining data which exceed the threshold are output from

the “DOUT” port. The manually calculated result is plotted in Figure 6-8. From the

graph it can be clearly seen that the accumulated error exceeds the threshold when it has

accumulated to the point of the seventh input data. Two sets of testing results were

matched. After several episodes of random verification, the author found the results to

be all correct with the time consumption remaining at 32 clock cycles with each data

group. This module can therefore be considered to meet the design requirements.

Figure 6-8 CUSUM Module Manually Verification

Chapter 6 Verification and Evaluation

77

Table 6-3 CUSUM Module Manually Verification Result

Chapter 6 Verification and Evaluation

78

Figure 6-9 CUSUM Module Verification

Chapter 6 Verification and Evaluation

79

6.6 Top Module Verification
Top module verification refers to the verifying of the overall function and timing

sequence of the module combined with the SP_MEAN_ Module, SD_TOP_32 Module,

Delay Module and CUSUM Module. Compared with previous verifications, top

module’s verification is more complicated as all the sub-modules are running parallel

when the clock signal is being activated. This requires good coordination between the

sub-modules, as well as the observation of each sub-module’s performance in top

entities after being parameterized. The main task of top module’s verification regards

the latency period of the module. Its success is determined by its ability to achieve

seamless data transfer between sub-modules and thus enable the pipeline design to

achieve the desired results.

Figure 6-10 TOP Module Verification

Figure 6-10 shows the verified result. From internal registers SP_MEAN module output

parallelised data can be seen, with the mean value at the 32rd clock cycle. Here, the

outputs are separated into two groups, one group to pass to SD_TOP_32 module to

calculate the SD, and the other group to send to the Delay Module to meet the timing

requirement. The SD calculation is done at the 64th clock cycle, then sends the result to

the CUSUM module at the same clock cycle. The internal result register has been

Chapter 6 Verification and Evaluation

80

integrated to “wire” status; it does not need any extra clock cycles to drive the result to

the next module. Delay Module passes the data that has been delayed by 33 clock cycles

to the CUSUM Module at same time. At the 65th clock cycle, CUSUM Module outputs

the detecting result. This continues until the 97th clock cycle to finish the detection of

first group of input signals.

It can also be seen that the second group of input signals that enter the SP_MEAN

module are waiting for parallelized processing when the first group of input signals are

in the SD calculating process. The calculation for the first group and parallelized

processing for the second group are completed at same time. This means that at the time

that the second group signals enter the CUSUM Module, the first group signals have

just passed through. Similarly this operation applies for the following groups.

It can be concluded from the above that the entire latency is 64 clock cycles. This means

it will consume 64 clock cycles to process one group of input signals. In this way the

Pipeline structure can achieve a continuous processing flow, avoids wasting clock

cycles, and maximizes processing speed. After observing several groups of sampling

data, it was found that the data could achieve seamless transfer without any missing.

This module can therefore be considered to meet the design requirements.

6.7 Summary
First, this chapter gave an overview of FPGA verification methods. The verification was

summarised based on two aspects; timing sequence analysis and functional analysis. In

the context of these two aspects, the author verified each sub module by using

ModelSim software. Timing analysis sequence results and functional analysis results

were obtained from the waveform. Finally, the chapter concluded with the analysis of

top module verification. All the modules discussed met the design requirements and

performed well.

Chapter 7 Conclusions and Future Work

81

Chapter 7 Conclusions and Future Work

CUSUM algorithm, which was used for transient signal detection, was explained in

detail in Chapter 2. Chapter 4 provided a power analysis for the CUSUM core. With

leading-edge technology being continuously developed to maximize the performance

and minimize the power consumption in FPGA devices, the programmable power

technology and selectable core voltage enabled the lowest possible power for Altera’s

FPGA. The post-programmed power consumption on the Cyclone IV device was only

136.75 mW, which, when compared with PC based detection, points to a significant

energy saving.

 In Chapter 5, the FPGA design methods were outlined and the design requirements and

design process for each sub-module then were explained. At the end of chapter 5, a

detailed discussion of the modules assembly process for the entire CUSUM algorithm

core was presented, together with the problems and solutions encountered within the

design. In chapter 6, the author initially gave a brief explanation of the FPGA

verification process, then proceeded to verify each of the sub-modules, as well as the

top module. The verification waveforms and results were plotted in this chapter which

showed the detection speed to be 64ns (32 clock cycles) for each sampling group and

the pipeline incubation period to be 128ns (64 clock cycles). The results were found to

match the author’s expectations, and the timing sequence met the design requirement.

There are still improvements that need to be made to this system however, in order to

achieve processing several TByte data per day. These improvements can be achieved

via three aspects: coding design, multiprocessor operation, and multi-core operation.

From the perspective of coding design, a memory arbitration module can be designed to

coordinate data transfer between modules. The memory arbitration module could be

implemented in two places. Firstly, as mentioned in chapter 5.2.1, a multiple FIFO

structure could be designed in which the memory arbitration is used to control the

storage of the first part of a data flow into one FIFO, while processing the data from

another FIFO at the same time. Secondly, it can control a multiplexer, and choose to

Chapter 7 Conclusions and Future Work

82

either connect the data from the SP_MEAN module to the SD module, or connect the

data from the SP_MEAN module to the CUSUM module. Employing a memory

arbitration module could further improve the internal logic resource utilization.

Another discussed improvement was the use of multiprocessor architecture to enhance

processing speed. The SOPC Builder was observed to allow users to add custom

instructions to the Avalon Bus and build their own system via the NIOS II processor.

The number of processors in a multiprocessor system was shown to be scalable, with

processors able to be easily added or removed from the multiprocessor system. Avalon

Bus was discussed in terms of its capacity to control the on-chip memories which store

the shared data in the detection process. Further, the workload of detection was shown

to be able seamlessly allocated to any number of processors. The resource limitation of

extending such a multiprocessor system, which is mainly associated with the on-chip

shared memories and logic resources of adding an additional slave processor, is

relatively low. Therefore, more processors are easily added to improve the performance

if more on chip memory is available. One needs to balance the process efficiency

however, with the number of processors. This efficiency ratio is defined as [53]:

7-1:

𝐸 =
𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 𝑢𝑠𝑖𝑛𝑔 𝑜𝑛𝑒 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟

𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 𝑢𝑠𝑖𝑛𝑔 𝑚𝑢𝑙𝑡𝑖𝑝𝑜𝑟𝑐𝑒𝑠𝑠𝑜𝑟 ∗ 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟𝑠

If the computational complexity is not sufficient to have all processors running at the

same time, adding more processors will decrease the performance and also waste

resources.

Another issue that needs to be considered is the use of one NIOS II processor to control

a multi CUSUM core, or the use of multiprocessors to process one CUSUM core.

According to the author’s previous experience researching high performance computing

architecture, the wrong selecting architecture will introduce side effects to the

processing speed. Here, using one NIOS II processor to control multi CUSUM cores

can be considered as a kind of intra-node architecture, while using a multiprocessor to

process one CUSUM core can be considered as a kind of inter-node architecture.

Generally, for small or medium complexity computation, intra-node architecture

achieves higher performance than inter-node architecture. This is due to the

Chapter 7 Conclusions and Future Work

83

communication time required within inter-node architecture, which slows down the

processing speed. If the computational complexity is increased multiprocessor

architecture will deliver improved performance, so there needs to balance these two

forms of computing architecture in the future work.

Appendix A CUSUM Module Verify Data

84

Appendix A CUSUM Module Verify Data

Appendix B Top Module Verification Plot

85

Appendix B Top Module Verification Plot

Appendix C CUSUM Core

86

Appendix C CUSUM Core

CUMULATIVE SUM
Interconnect Matrix

 IP Core

Version 1.0

Appendix C CUSUM Core

87

module TOP_MOD (clk, rst_n, idin, dout);

input clk;
input rst_n;
input [15:0] idin;
output [15:0] dout;

wire [15:0] dout_0, dout_1, dout_2, dout_3,
 dout_4, dout_5, dout_6, dout_7,
 dout_8, dout_9, dout_10, dout_11,
 dout_12, dout_13, dout_14, dout_15,
 dout_16, dout_17, dout_18, dout_19,
 dout_20, dout_21, dout_22, dout_23,
 dout_24, dout_25, dout_26, dout_27,
 dout_28, dout_29, dout_30, dout_31;
wire [15:0] mean;
wire [15:0] sd_out;

SD_TOP_32 SD_TOP_32_LAYER
(
 // Input
 .clk(clk), .rst_n(rst_n), .idin(idin),
 //Output
 .SD_OUT(sd_out), .mean_out(mean),
 .dout_0(dout_0), .dout_1(dout_1), .dout_2(dout_2), .dout_3(dout_3),
 .dout_4(dout_4), .dout_5(dout_5), .dout_6(dout_6), .dout_7(dout_7),
 .dout_8(dout_8), .dout_9(dout_9), .dout_10(dout_10), .dout_11(dout_11),
 .dout_12(dout_12), .dout_13(dout_13), .dout_14(dout_14), .dout_15(dout_15),
 .dout_16(dout_16), .dout_17(dout_17), .dout_18(dout_18), .dout_19(dout_19),
 .dout_20(dout_20), .dout_21(dout_21), .dout_22(dout_22), .dout_23(dout_23),
 .dout_24(dout_24), .dout_25(dout_25), .dout_26(dout_26), .dout_27(dout_27),
 .dout_28(dout_28), .dout_29(dout_29), .dout_30(dout_30), .dout_31(dout_31)
);

CUSUM CUSUM_LAYER
(
 //Input
 .clk(clk), .rst_n(rst_n), .sd_out(sd_out), .mean(mean),
 .idin_0(dout_0), .idin_1(dout_1), .idin_2(dout_2), .idin_3(dout_3),
 .idin_4(dout_4), .idin_5(dout_5), .idin_6(dout_6), .idin_7(dout_7),
 .idin_8(dout_8), .idin_9(dout_9), .idin_10(dout_10), .idin_11(dout_11),
 .idin_12(dout_12), .idin_13(dout_13), .idin_14(dout_14), .idin_15(dout_15),
 .idin_16(dout_16), .idin_17(dout_17), .idin_18(dout_18), .idin_19(dout_19),
 .idin_20(dout_20), .idin_21(dout_21), .idin_22(dout_22), .idin_23(dout_23),
 .idin_24(dout_24), .idin_25(dout_25), .idin_26(dout_26), .idin_27(dout_27),
 .idin_28(dout_28), .idin_29(dout_29), .idin_30(dout_30), .idin_31(dout_31),
 //Output
 .dout(dout)
);
Endmodule

Appendix C CUSUM Core

88

module SD_TOP_32
(
 // Input
 clk, rst_n, idin,
 //Output
 SD_OUT, mean_out,
 dout_0, dout_1, dout_2, dout_3, dout_4,
 dout_5, dout_6, dout_7, dout_8, dout_9,
 dout_10, dout_11, dout_12, dout_13, dout_14,
 dout_15, dout_16, dout_17, dout_18, dout_19,
 dout_20, dout_21, dout_22, dout_23, dout_24,
 dout_25, dout_26, dout_27, dout_28, dout_29,
 dout_30, dout_31
);

input clk, rst_n;
input [15:0] idin;
output [15:0] SD_OUT;
output [15:0] mean_out;
output[15:0]

dout_0, dout_1, dout_2, dout_3, dout_4,
dout_5, dout_6, dout_7, dout_8, dout_9,
dout_10, dout_11, dout_12, dout_13, dout_14,
dout_15, dout_16, dout_17, dout_18, dout_19,
dout_20, dout_21, dout_22, dout_23, dout_24,
dout_25, dout_26, dout_27, dout_28, dout_29,
dout_30, dout_31;

wire [15:0] SD_OUT;
wire [15:0] mean, d_mean;
wire [15:0]

idin_0, idin_1, idin_2, idin_3, idin_4,
idin_5, idin_6, idin_7, idin_8, idin_9,
idin_10, idin_11, idin_12, idin_13, idin_14,
idin_15, idin_16, idin_17, idin_18, idin_19,
idin_20, idin_21, idin_22, idin_23, idin_24,
idin_25, idin_26, idin_27, idin_28, idin_29,
idin_30, idin_31;

wire [15:0]
d_idin_0, d_idin_1, d_idin_2, d_idin_3,
d_idin_4, d_idin_5, d_idin_6, d_idin_7,
d_idin_8, d_idin_9, d_idin_10, d_idin_11,
d_idin_12, d_idin_13, d_idin_14, d_idin_15,
d_idin_16, d_idin_17, d_idin_18, d_idin_19,
d_idin_20, d_idin_21, d_idin_22, d_idin_23,
d_idin_24, d_idin_25, d_idin_26, d_idin_27,
d_idin_28, d_idin_29, d_idin_30, d_idin_31;

Appendix C CUSUM Core

89

SP_MEAN_16 SP_MEAN_16_LAYER
(
 //Input
 .clk(clk), .rst_n(rst_n), .idin(idin),
 //Output
 .mean(mean),
 .dout_0(idin_0), .dout_1(idin_1), .dout_2(idin_2),
 .dout_3(idin_3), .dout_4(idin_4), .dout_5(idin_5),
 .dout_6(idin_6), .dout_7(idin_7), .dout_8(idin_8),
 .dout_9(idin_9), .dout_10(idin_10), .dout_11(idin_11),
 .dout_12(idin_12), .dout_13(idin_13), .dout_14(idin_14),
 .dout_15(idin_15), .dout_16(idin_16), .dout_17(idin_17),
 .dout_18(idin_18), .dout_19(idin_19), .dout_20(idin_20),
 .dout_21(idin_21), .dout_22(idin_22), .dout_23(idin_23),
 .dout_24(idin_24), .dout_25(idin_25), .dout_26(idin_26),
 .dout_27(idin_27), .dout_28(idin_28), .dout_29(idin_29),
 .dout_30(idin_30), .dout_31(idin_31),

 .d_mean(d_mean),
 .d_dout_0(d_idin_0), .d_dout_1(d_idin_1), .d_dout_2(d_idin_2),
 .d_dout_3(d_idin_3), .d_dout_4(d_idin_4), .d_dout_5(d_idin_5),
 .d_dout_6(d_idin_6), .d_dout_7(d_idin_7), .d_dout_8(d_idin_8),
 .d_dout_9(d_idin_9), .d_dout_10(d_idin_10), .d_dout_11(d_idin_11),
 .d_dout_12(d_idin_12), .d_dout_13(d_idin_13), .d_dout_14(d_idin_14),
 .d_dout_15(d_idin_15), .d_dout_16(d_idin_16), .d_dout_17(d_idin_17),
 .d_dout_18(d_idin_18), .d_dout_19(d_idin_19), .d_dout_20(d_idin_20),
 .d_dout_21(d_idin_21), .d_dout_22(d_idin_22), .d_dout_23(d_idin_23),
 .d_dout_24(d_idin_24), .d_dout_25(d_idin_25), .d_dout_26(d_idin_26),
 .d_dout_27(d_idin_27), .d_dout_28(d_idin_28), .d_dout_29(d_idin_29),
 .d_dout_30(d_idin_30), .d_dout_31(d_idin_31)
);

DELAY DELAY_LAYER
(
 //Input Port
 .clk(clk), .rst_n(rst_n), .d_mean(d_mean),
 .d_idin_0(d_idin_0), .d_idin_1(d_idin_1), .d_idin_2(d_idin_2),
 .d_idin_3(d_idin_3), .d_idin_4(d_idin_4), .d_idin_5(d_idin_5),
 .d_idin_6(d_idin_6), .d_idin_7(d_idin_7), .d_idin_8(d_idin_8),
 .d_idin_9(d_idin_9), .d_idin_10(d_idin_10), .d_idin_11(d_idin_11),
 .d_idin_12(d_idin_12), .d_idin_13(d_idin_13), .d_idin_14(d_idin_14),
 .d_idin_15(d_idin_15), .d_idin_16(d_idin_16), .d_idin_17(d_idin_17),
 .d_idin_18(d_idin_18), .d_idin_19(d_idin_19), .d_idin_20(d_idin_20),
 .d_idin_21(d_idin_21), .d_idin_22(d_idin_22), .d_idin_23(d_idin_23),
 .d_idin_24(d_idin_24), .d_idin_25(d_idin_25), .d_idin_26(d_idin_26),
 .d_idin_27(d_idin_27), .d_idin_28(d_idin_28), .d_idin_29(d_idin_29),
 .d_idin_30(d_idin_30), .d_idin_31(d_idin_31),

 //Output Port
 .mean_out(mean_out),

Appendix C CUSUM Core

90

 .dout_0(dout_0), .dout_1(dout_1), .dout_2(dout_2),
 .dout_3(dout_3), .dout_4(dout_4), .dout_5(dout_5),
 .dout_6(dout_6), .dout_7(dout_7), .dout_8(dout_8),
 .dout_9(dout_9), .dout_10(dout_10), .dout_11(dout_11),
 .dout_12(dout_12), .dout_13(dout_13), .dout_14(dout_14),
 .dout_15(dout_15), .dout_16(dout_16), .dout_17(dout_17),
 .dout_18(dout_18), .dout_19(dout_19), .dout_20(dout_20),
 .dout_21(dout_21), .dout_22(dout_22), .dout_23(dout_23),
 .dout_24(dout_24), .dout_25(dout_25), .dout_26(dout_26),
 .dout_27(dout_27), .dout_28(dout_28), .dout_29(dout_29),
 .dout_30(dout_30), .dout_31(dout_31)
);

ALT_MUTI_ADD_SQRT ALT_MUTI_ADD_SQRT_LAYER
(
 //Input
 .clk(clk), .rst_n(rst_n), .mean(mean),
 .idin_0(idin_0), .idin_1(idin_1), .idin_2(idin_2),
 .idin_3(idin_3), .idin_4(idin_4), .idin_5(idin_5),
 .idin_6(idin_6), .idin_7(idin_7),.idin_8(idin_8),
 .idin_9(idin_9), .idin_10(idin_10), .idin_11(idin_11),
 .idin_12(idin_12), .idin_13(idin_13), .idin_14(idin_14),
 .idin_15(idin_15), .idin_16(idin_16), .idin_17(idin_17),
 .idin_18(idin_18), .idin_19(idin_19),.idin_20(idin_20),
 .idin_21(idin_21), .idin_22(idin_22), .idin_23(idin_23),
 .idin_24(idin_24), .idin_25(idin_25), .idin_26(idin_26),
 .idin_27(idin_27), .idin_28(idin_28), .idin_29(idin_29),
 .idin_30(idin_30), .idin_31(idin_31),

 //Output
 .SD_OUT(SD_OUT)
);

endmodule

Appendix D CD-ROM

91

Appendix D Thesis on CD-ROM

The CD-ROM attached to the back provides all the FPGA programme, testbench and

verifications.

Appendix E Journal Paper

92

Appendix E Journal Paper

The paper has been published in:

Hamid GholamHosseini and Kang Li, Implementation of Transient Signal Detection

Algorithm on FPGA. International Journal of Computer Applications (0975 - 8887)

Volume 41 –No.12, March 2012

References

93

List of References

1. G. Soudlenkov, S. Kitave, Two-staged Algorithm for Dispersed Transient Radio
Emission Detection, in Engineering. 2010, Auckland University of Technology:
Auckland. pp. 13.

2. P.A.Fridman (2010). "A method of detecting radio transients." Astronomy &
Astrophysics

 409(2). pp.808-820.

3. Transient Radio Emission Array Detector. 2011 [Retrived 2011 March 10];
Available
from: http://wiki.karen.net.nz/index.php/Transient_Radio_Emission_Array_Dete
ctor.

4. Wikipedia. Cosmic Ray. 2011 [Retrived 2011 April 15]; Available
from: http://en.wikipedia.org/wiki/Cosmic_ray.

5. M. D. Potgieter, M. S. Potgieter, Cosmic Ray Anisotropies in the Outer
Heliosphere. Advances in Space Research, 2007.

6. N. Edwin, A. Paul, High Performance Evolutionary Computing, in US Army
Space and Missle Defense Command (SMDC), Redstone Arsenal, AL. 2006,
HPCMP Users Group Conference, 2006. pp. 6.

7. J. Curreri, S. Koehler, B. Holland, Performance Analysis with High-Level

Languages for High Performance Reconfigurable Computing, in Field-
Programmable Custom Computing Machines. pp. 7.

8. M. Molla, M. Taylor. (2010). Towards a Unified Source-Propagation Model of
Cosmic Rays. International Conference of the Hellenic Astronomical Society

.
424: 98.

9. G. Newby, Hardware Acceleration Prospects and Challenges for High
Performance Computing, in Computer Systems and Applications, IEEE/ACS
International Conference. 2009. pp. 4.

10. J. P. Song, D. Shires, Reconfigurable Computing for High Performance

Computing Computational Science, in DoD High Performance Computing
Modernization Program Users Group Conference. 2008. pp. 9.

11. L. Cornel, Q. Andre, Transient Signal Detection Using Overcomplete Wavelet
Transform and High-Order Statistics. Acoustics, Speech, and Signal Processing,
2003. Proceedings. (ICASSP '03), 2003. 6: VI - 449-52 vol.6, pp. 16.

12. A. Theolis, Computational Signal Processing with Wavelets. 1998: Birkhauser,

Boston.

http://wiki.karen.net.nz/index.php/Transient_Radio_Emission_Array_Detector�
http://wiki.karen.net.nz/index.php/Transient_Radio_Emission_Array_Detector�
http://en.wikipedia.org/wiki/Cosmic_ray�

References

94

13. M. Grochnig, Irregular Sampling of Wavelet and Short Time Fourier

Transforms. 1993(Ronald A. DeVore.).

14. E. Sousa, A. Ghasemi, Collaborative Spectrum Sensing for Opportusitic Access
in Fading Environments, in New Frontiers in Dynamic Spectrum Access
Networks. 2005. pp. 131 – 136.

15. J. Melvin Hinich, Bispectral Based Tests for the Detection of Gaussianity and
Linearity in Time Series. Journal of American Statistical Association, 1988. pp.
657-664.

16. L. Perreaulta, J. Berniera, B. Bobéeb, E. Parent, Bayesian Change-point Analysis
In Hydrometeorological Time Series. Journal of Hydrology, 2000. 235(3-4): pp.
242-263.

17. Wikipedia. Mann–Whitney U. 2011 [Retrived 201 May 15]; Available
from: http://en.wikipedia.org/wiki/Mann%E2%80%93Whitney_U.

18. Wikipedia. Wilcoxon signed-rank test. 2011 [Retrived 2011 May 20];
Available from: http://en.wikipedia.org/wiki/Wilcoxon_signed-rank_test.

19. M. Roveri, A. Cesare, An adaptive CUSUM-based test for signal change
detection in Circuits and Systems, 2006. ISCAS 2006. Proceedings. 2006. pp. 4.

20. Wikipedia. CUSUM. 2011 [Retrived 2011 May 11]; Available
from: http://en.wikipedia.org/wiki/CUSUM.

21. Wikipedia. Standard deviation. 2011 [Retrived 2011 Aug 10]; Available
from: http://en.wikipedia.org/wiki/Standard_deviation.

22. Wikipedia. Normal Distribution. 2011 [Retrived 2011 Aug 10]; Available
from: http://en.wikipedia.org/wiki/Normal_distribution.

23. K. Ashenayi, S. Singh, I. Hoballah, Application of Normal Distribution In
Modeling Global Irradiation 1988, The University of Tulsa & The University of
Wisconsin-Milwaukee: Wisconsin. pp. 470 – 474.

24. S. Kun, Z. Yin, H. Xing, Fundamental of Cumulative Sum Method and its

Application in Measurement Data Processing, in Dept of Measurement and
Control. 2000, He Fei University of Technology: He Fei.

25. H. Aghajan, Y. Pati, T. Kailath, Transient Signal Detection Using High
Resolution Line Detection on Wavelet Transforms, in Signals, Systems and
Computers. 1994 USA. pp. 1114 - 1118.

26. A. Jayaprakasam, V. Sharma, Cooperative Robust Sequential Detection
Algorithms for Spectrum Sensing in Cognitive Radio. Ultra Modern
Telecommunications & Workshops, 2009: pp. 1 - 8.

http://en.wikipedia.org/wiki/Mann%E2%80%93Whitney_U�
http://en.wikipedia.org/wiki/Wilcoxon_signed-rank_test�
http://en.wikipedia.org/wiki/CUSUM�
http://en.wikipedia.org/wiki/Standard_deviation�
http://en.wikipedia.org/wiki/Normal_distribution�

References

95

27. S. Zarrin, T. Joon Lim, Cooperative Quickest Spectrum Sensing in Cognitive
Radio with Unknow Prameters, in Dept. of Electr. & Comput. Eng. 2009, Univ.
of Toronto: Canada, pp. 6.

28. J. Hall, M. Barbeau, E. Kranakis, Detection Of Transient In Radio Frequency
Fingerprinting Using Signal Phase in IASTED International Conference on
Wireless and Optical Communications (WOC). 2003: Banff, Alberta, Canada.

29. H. Dong, L. Yong, Standard Deviation & Standard Error. China Academic
Journal Electronic Publishing House, 2005. 17: pp. 2.

30. Altera Corporation. 2011 [Retrived 2011 Aug 25]; Available
from: http://www.altera.com.

31. Xilinx. 2011 [cited 2011 Aug 25]; Available from: http://www.xilinx.com.

32. Altera and Xilinx Report. [Retrived 2011 Aug 25]; Available
from: http://seekingalpha.com/article/85478-altera-and-xilinx-report-the-battle-
continues.

33. Lattice Semiconductor Corporation. 2011 [Retrived 2011 Aug 25]; Available
from: http://www.latticesemi.com/.

34. Actel Corporation. 2011 [Retrived 2011 Aug 25]; Available
from: http://www.actel.com.

35. SiliconBlue Technologies. 2011 [Retrived 2011 Aug 25]; Available
from: http://www.siliconbluetech.com/.

36. Achronix Semiconductor Corporation. 2011 [Retrived 2011 Aug 25]; Available
from: http://www.achronix.com/.

37. QuickLogic Corporation. 2011 [Retrived 2011 Aug 25]; Available
from: http://www.quicklogic.com/.

38. Alera About Us. 2011 [Retrived 2011 Aug 25]; Available
from: http://www.altera.com/corporate/about_us/abt-index.html.

39. Altera Corporation. 2011 [Retrived 2011 Aug 25]; Available
from: http://www.altera.com/end-markets/end-index.html.

40. Altera Corporation. 2011 [Retrived 2011 Aug 25]; Available
from: http://www.altera.com.

41. Altera Corporation. [Retrived 2011 Aug 25]; Available
from: http://www.altera.com/literature/ds/ds_nios2_perf.pdf.

42. Altera Arithmetic Megafunctions. [Retrived 2011 Aug 25]; Available
from: http://www.altera.com/literature/ug/ug_lpm_alt_mfug.pdf?GSA_pos=1&
WT.oss_r=1&WT.oss=Arithmetic Megafunctions.

http://www.altera.com/�
http://www.xilinx.com/�
http://seekingalpha.com/article/85478-altera-and-xilinx-report-the-battle-continues�
http://seekingalpha.com/article/85478-altera-and-xilinx-report-the-battle-continues�
http://www.latticesemi.com/�
http://www.actel.com/�
http://www.siliconbluetech.com/�
http://www.achronix.com/�
http://www.quicklogic.com/�
http://www.altera.com/corporate/about_us/abt-index.html�
http://www.altera.com/end-markets/end-index.html�
http://www.altera.com/�
http://www.altera.com/literature/ds/ds_nios2_perf.pdf�

References

96

43. S. Kilts, Advanced FPGA Design: Architecture, Implementation. 2007, Hoboken.

44. W. Xu Hua, W. Chen, Altera FPGA/CPLD Design (Advance). 2006, Bei Jing:

Posts Telecom Press.

45. W. Shu Hong, T. Kun, Efficient Utilization of Scratch-pad Memory Banks. 2005,
Tsinghua Unversity: Bei Jing. pp. 4.

46. Wikipedia. Signed_number_representations. 2011 [Retrived 2011 Aug]; 26].
Available from:

http://en.wikipedia.org/wiki/Signed_number_representations.

47. X. Yu Wen, Verilog Digital System Design. 2008, Bei Jing: Bei Jing Aviation
University. pp.477.

48. Altera. System Verilog. 2011 [Retrived 2011 20 Nov]; Available
from: http://www.altera.com/education/training/courses/OHDL1125.

49. Altera. White Paper: Stratix III Programmable Power. 2011 [Retrived 2011 11,
Nov]; Available from:

http://www.altera.com/literature/wp/wp-
01006.pdf?GSA_pos=1&WT.oss_r=1&WT.oss=Stratix III Programmable
Power.

50. Altera. Decrease Total System Costs with Industry’s Lowest Cost,Lowest Power
FPGA. 2011 [Retrived 2011 11, Nov]; Available
from: http://www.altera.com/literature/wp/wp-01113-lowest-system-cost.pdf.

51. Altera. Cyclone IV Programmable Power Technology. 2011 [Retrived 2011 11,
Nov]; Available from:

http://www.altera.com/devices/fpga/cyclone-
iv/overview/power/cyivpower.html?GSA_pos=14&WT.oss_r=1&WT.oss=cyclo
neIV programmable power.

52. Altera. Cyclone IV FPGAs: Optimized for Lowest Power. 2011 [Retrived 2011
11, Nov]; Available
from:

http://www.altera.com/support/software/power/powerplay_faq.pdf.

53. M. Allen, B. Wilkinson, Parallel Programming Techniques and Applications
Using Networked Workstations and Parallel Computers. 2006.

54. Actel Corporation. Power_Comparison_WP, 2011 [Retrived 2011 Aug 25];
Available from: http://www.actel.com.

http://en.wikipedia.org/wiki/Signed_number_representations�
http://www.altera.com/education/training/courses/OHDL1125�
http://www.altera.com/literature/wp/wp-01113-lowest-system-cost.pdf�
http://www.altera.com/devices/fpga/cyclone-iv/overview/power/cyivpower.html?GSA_pos=14&WT.oss_r=1&WT.oss=cycloneIV�
http://www.altera.com/devices/fpga/cyclone-iv/overview/power/cyivpower.html?GSA_pos=14&WT.oss_r=1&WT.oss=cycloneIV�
http://www.altera.com/devices/fpga/cyclone-iv/overview/power/cyivpower.html?GSA_pos=14&WT.oss_r=1&WT.oss=cycloneIV�
http://www.altera.com/support/software/power/powerplay_faq.pdf�
http://www.actel.com/�

	Chapter 1 Introduction
	1.1 Background of Research Radio Transient
	1.2 Project Description
	1.3 Related Works
	1.4 Research Aims and Objectives
	1.5 Thesis Structure

	Chapter 2 Transient Signal Detection
	2.1 Literature Review
	2.1.1 Signal Processing Method
	2.1.2 Statistical Method

	2.2 CUSUM Algorithm
	2.2.1 CUSUM Equation
	2.2.2 Threshold Selection

	2.3 Computer Simulation
	2.4 Summary

	Chapter 3 FPGA Implement Platform
	3.1 Introduction to FPGA
	3.2 Altera FPGA
	3.2.1 Altera Device Family
	3.2.2 Comprehensive Development Suite

	3.3 Cyclone IV Devices and Development Board
	3.4 Altera SOPC Builder
	3.4.1 Nios II Processor
	3.4.2 Avalon Switch Fabric

	3.5 Mega function
	3.5.1 ALTMULT_ADD Function
	3.5.2 ALTSQRT Function

	3.6 Summary

	Chapter 4 Power Consumption
	4.1 Altera Power Optimize Methods
	4.2 Power Consumption of Multi-Core System
	4.3 Summary

	Chapter 5 Methodology and Design Flow
	5.1 FPGA Design Principles
	5.2 FPGA Design Operations
	5.2.1 Ping-Pong Operation
	5.2.2 Serial to Parallel Conversion
	5.2.3 Pipeline Operation

	5.3 Data acquisition
	5.4 FIFO Module Design
	5.4.1 Synchronous FIFO Design
	5.4.2 Asynchronous FIFO Design

	5.5 SP_MEAN Module Design
	5.6 Standard Deviation Module Design
	5.7 CUSUM Module Design
	5.8 SRAM Module Design
	5.9 Module Assembly
	5.10 Discussion Blocking and Non-blocking Operation in Design
	5.11 Discussion Synchronous Reset and Asynchronous Reset
	5.12 Summary

	Chapter 6 Verification and Evaluation
	6.1 Testbench Description
	6.2 ModelSim Tools
	6.3 SP_MEAN Module Verification
	6.4 Standard Deviation Module (SD_TOP_32) Verification
	6.5 CUSUM Module Verification
	6.6 Top Module Verification
	6.7 Summary

	Chapter 7 Conclusions and Future Work
	Appendix A CUSUM Module Verify Data
	Appendix B Top Module Verification Plot
	Appendix C CUSUM Core
	Appendix D Thesis on CD-ROM
	Appendix E Journal Paper
	List of References

