
BUSINESS PROCESS MODELLING

FOR INTERNET OF THINGS

A THESIS SUBMITTED TO AUCKLAND UNIVERSITY OF TECHNOLOGY

IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF PHILOSOPHY

Supervisors

Dr Jian Yu

Dr Alan T Litchfield

February 2018

By

Kusum Pradeepika Ratnayake

School of Engineering, Computer and Mathematical Sciences

Abstract

Business process management is an integral part of a business. Internet of things (IoT)

is an emerging and fast improving technology. Traditional business process models

have not given much attention to IoT. Yet, it has become a necessity to incorporate IoT

systems and components when modelling business processes to obtain the many benefits

IoT offers. Therefore, we aimed to fill this gap by identifying business process modelling

requirements for IoT, i.e. IoT modelling elements and to demonstrate the applicability

of them in a business process model. We identified seven key IoT modelling elements

after deriving them from a typical problem scenario. We investigated the properties of

IoT components in detail, illustrating them in class hierarchy design and describing

common properties in super classes. We extended BPMN 2.0 in designing these IoT

elements and implemented them in an IoT related business process model. We also

developed a web based IoT aware BPMN and XPDL editor tool by extending an existing

BPMN editor. Furthermore, we evaluated the applicability of this IoT aware BPMN

modelling tool with a case study.

2

Contents

Abstract 2

Attestation of Authorship 9

Acknowledgements 10

1 Introduction 11
1.1 Background and Research Objectives . 11
1.2 Research Questions . 15
1.3 Research Contributions . 15
1.4 Thesis Structure . 16

2 Literature Review 17
2.1 Introduction . 17
2.2 Internet of Things (IoT) . 18

2.2.1 History of IoT . 18
2.2.2 IoT Protocols . 19
2.2.3 Middleware Support for IoT . 21

2.3 Business Process Modelling (BPM) . 30
2.3.1 History of Business Process Modelling 31
2.3.2 Business Process Modelling . 32
2.3.3 Business Process Modelling Languages (BPMLs) 36

2.4 BPMN Modelling Frameworks for IoT 41
2.4.1 Framework: uBPMN . 42
2.4.2 Framework: SPU . 44
2.4.3 Framework: BPMN4WSN . 50
2.4.4 Framework: Things of IoT in BPMN 54
2.4.5 Framework: Crowdsourcing . 57
2.4.6 Framework: Event Element for IoT 61
2.4.7 Framework: IoT Devices as Resources 65
2.4.8 Summary . 68

2.5 Conclusion . 73

3

3 Running Scenario and Requirements Derivation 75
3.1 Introduction . 75
3.2 Problem Scenario . 76
3.3 Requirements Derivation . 80

3.3.1 Requirement 1 (R1): Sensor as the Business Process Modelling
Requirement for IoT . 80

3.3.2 Requirement 2 (R2): Actuator as the Business Process Model-
ling Requirement for IoT . 90

3.3.3 Requirement 3 (R3): Reader as the Business Process Modelling
Requirement for IoT . 93

3.3.4 Requirement 4 (R4): Collector as the Business Process Model-
ling Requirement for IoT . 97

3.3.5 Requirement 5 (R5): Event streaming (event stream processing
units) as the Business Process Modelling Requirement for IoT 98

3.3.6 Requirement 6 (R6): Specific data object as the Business Pro-
cess Modelling Requirement for IoT 99

3.3.7 Requirement 7 (R7): Intermediary operation as the Business
Process Modelling Requirement for IoT 100

3.4 Conclusion . 100

4 Implementation of IoT Modelling Elements 101
4.1 Introduction . 101
4.2 Abforce Open Source BPMN Editor . 102

4.2.1 Limitations of the Chosen BPMN Editor and Our Contributions 103
4.2.2 How the Chosen System Works 104

4.3 Our Web Based IoT Aware BPMN and XPDL Editor 106
4.3.1 Software Architecture . 106
4.3.2 IoT Modelling Element Extensions to the BPMN Editor 108
4.3.3 IoT Modelling Elements Extensions To BPMN Meta Model . 110

4.4 Conclusion . 116

5 Case Study and Evaluation 118
5.1 Introduction . 118
5.2 Case Study . 118

5.2.1 Case Study Evaluation . 120
5.3 Capability of the IoT Aware BPMN Editor Tool 121
5.4 Conclusion . 124

6 Conclusion 125
6.1 Summary . 126
6.2 Limitations of the Research . 127
6.3 Recommendations and Further Study 127
6.4 Conclusion . 128

4

References 130

Appendices 135

A XPDL Code of Shipment Monitoring Process 136
A.1 Process Part 1 . 136
A.2 Process Part 2 . 143

B Instructions to use IoT aware BPMN and XPDL Editor 152
B.1 Steps to use IoT aware BPMN and XPDL Editor 152

5

List of Tables

2.1 IoT modelling elements for business process modelling introduced by
each framework . 68

5.1 Comparison of different case studies with their contributions towards
IoT aware process modelling . 122

6

List of Figures

2.1 Relationships between the IoT’s middleware requirements and its infra-
structural and application characteristics. 25

2.2 Design model for event based middleware. 27
2.3 Design model for service oriented middleware. 28
2.4 Design model for database oriented middleware. 29
2.5 Conceptual model of a business process 34
2.6 Business process metamodel . 35
2.7 Ubiquitous fulfil request of time bank system using BPMN extensions

(uBPMN). 43
2.8 Stream processing units (SPUs) as basic building blocks of an event

driven architecture (EDA). 46
2.9 Basic Eventlet structure: Eventlet metadata and Eventlet runtime methods. 48
2.10 Eventlet middleware access via a web service. 50
2.11 Room ventilation process with BPMN extensions, BPMN4WSN. . . . 52
2.12 Graphical process representation of physical entity. 56
2.13 Architecture of runtime environment for crowdsourcing processes with

streaming support. The middleware deploys micro-tasks and manages
events and data. 59

2.14 Completed temperature controlling process model with event extension
of BPMN 2.0. 64

2.15 Dynamic pricing process with the two IoT Devices temperature sensor
and ESL . 67

3.1 Part of a Supply Chain Management process 76
3.2 Problem Scenario process modelled in BPMN 77
3.3 Deliver order sub process in the problem scenario expanded 78
3.4 Inventory checking sub process in the problem scenario expanded . . . 79
3.5 UML class diagram for business process modelling requirements for IoT 81
3.6 Categories of Sensor Types . 83
3.7 Categories of Sensor Characteristics . 85
3.8 UML class diagram for Sensors . 87
3.9 Actuators Categories . 91
3.10 UML class diagram for Actuators . 92
3.11 UML class diagram for Readers . 94

7

4.1 abforce BPMN Editor . 102
4.2 Appearance of our IoT aware BPMN and XPDL editor 104
4.3 Two missing BPMN elements we have added to the system 106
4.4 Software architecture of IoT aware BPMN and XPDL editor. 107
4.5 New IoT modelling elements proposed as extensions to BPMN task

element . 108
4.6 New IoT modelling elements proposed as extensions to BPMN data

element. 109
4.7 BPMN System after our extensions to BPMN task element 110
4.8 BPMN System after our extensions to BPMN data object 111
4.9 XPDL Editor . 112
4.10 BPMN Task class diagram . 115
4.11 PBMN class diagram for ItemAware element 116

5.1 Shipment monitoring IoT process part1 depicted using our extended
BPMN Editor . 119

5.2 Shipment monitoring IoT process part2 depicted using our extended
BPMN Editor . 120

B.1 BPMN and XPDL Editor with a pool 155
B.2 BPMN and XPDL Editor, a start event placed on pool 155
B.3 BPMN and XPDL Editor, how to use a connector 156
B.4 BPMN and XPDL Editor, insert text in an element 156
B.5 BPMN and XPDL Editor, write text on a connector 157
B.6 BPMN and XPDL Editor with corresponding diagram code on XPDL

editor . 157

8

Attestation of Authorship

I hereby declare that this submission is my own work and
that, to the best of my knowledge and belief, it contains no
material previously published or written by another person
nor material which to a substantial extent has been accepted
for the qualification of any other degree or diploma of a
university or other institution of higher learning.

Signature of student

9

Acknowledgements

I would like to thank Dr Jian for accepting to supervise me, for his guidance, patience
and valuable advices throughout this work. Without his support, this thesis would not
exist.

I would like to thank Dr Alan for his help including Latex.

I wish to thank my family for assisting me financially and for motivating me.

I would also like to thank Terry Brydon, Karishma and Jenny from PhD team,
Bumjun Kim for his continuous help in technical issues, Abid Shahzad (PhD student)
for encouraging me to work and AUT security staff for their visits when we work
during weekends.

Finally, I would like to thank AUT as a whole.

10

Chapter 1

Introduction

1.1 Background and Research Objectives

The term, Internet of Things was first introduced by Kevin Ashton around a decade

back. It has been predicted that 50 billion IoT devices would be introduced to the

world by 2020 (Holler et al., 2014) and there would be a trillion IoT devices by

2030 (Gate, 2016). Basic components of IoT are devices, which collect information

such as sensors, identifiers, which recognise the source of data collection, software,

which analyzes collected data and internet for communication. IoT can be taken as a

network connecting physical elements with help of these components. Therefore, in

(Rayes & Samer, 2017), IoT is defined as “IoT is the network of things, with clear

element identification, embedded with software intelligence, sensors, and ubiquitous

connectivity to the Internet”. IoT facilitates physical objects (things), which are uniquely

identifiable to connect via internet and controlled remotely. This connection between

the physical world and virtual world provides the many benefits that IoT can offer.

There are three basic requirements for IoT, namely uniquely identifiable thing, method

to collect information from things, e.g. sensors and the communication capability

and the method of communication. With these requirements in place it should be

11

Chapter 1. Introduction 12

possible to monitor things from anywhere in the world. There are many benefits from

monitoring things remotely over the internet such as checking a patient’s blood pressure

while she is home. Things in IoT include anything and everything such as machines,

people, cars, buildings, trees and animals with connecting devices or capabilities. IoT

can be identified in two ways, which supports humans (HIoT) and which supports

Industries (IIoT). IoT promises many benefits for businesses such as automatic sensing

and analysing products or services and making decisions for automatic action.

Sensor is the mostly used IoT element in the world today. Sensors are used in

a variety of ways such as in agriculture, retailing, manufacturing and transportation

services just to name a few. Among others, RFID (Radio Frequency Identification)

technology has become very popular in IoT applications and used in many ways in

businesses. RFID is a mechanism to capture information from physical objects or things

and use it in RFID based IoT applications. Examples for RFID applications are access

control management where RFID tags embedded in identification badges, passports

containing RFID tags, health care systems, logistics and supply chain management and

animal tracking.

Companies are already using IoT to reduce costs and improve productivity. An

example of a latest IoT application is Workforce Optimization introduced by Bluvision,

owned by HID Global (Global, 2017). This application applies identification and

sensing technologies and detects location awareness of the workforce by using BLE

(Bluetooth Low-Energy), Wi-Fi and Cloud technologies. This simple to implement IoT

application consists of cloud service, portals and Bluetooth enabled smart cards. These

cards are used for physical access as well as for indoor location detection.

When it comes to business processes, Business Process Management (BPM) and

Business Process Management Systems (BPMS) have also been in existence for decades

and they gradually have evolved to where it is today. BPM has its roots in 1980s with

the start of quality thinking (Jeston, Nelis & Davenport, 2008). Then the concept of

Chapter 1. Introduction 13

process thinking started and Business Process Reengineering (BPR) supported this in

early 1990s. BPM emerged to the world as consequence of process orientation, which

was popular in 1990s (Weske, 2012). From process-oriented techniques, it has evolved

to process automation over the subsequent years (Meyer, Ruppen & Hilty, 2015). BPM

is based on the theory that a company needs to go through a certain set of activities

to manufacture its products and BPM improves these processes by organising these

activities. In addition, technologies and concepts adopted by business administration

and computer science have had a major impact on BPM.

As cited in (Van Der Aalst, La Rosa & Santoro, 2016), workflow management

systems (WFM) influenced business process automation in business enterprises leading

to business process reengineering (BPR) in the 1990s. This resulted in the emergence

of commercial WFM systems such as IBM MQ Series Workflow, Staffware and COSA

around 1995. Although, similar systems such as office information (OI) already started

in the late 70s. Office information systems were based on process models and oper-

ational processes of OI systems such as Officetalk and SCOOP were modelled using

Petri nets. These systems and early WFM systems were restrictive and did not provide

much support for management involvement in the processes.

Business process management (BPM) started as an evolution of WFM systems.

WFM systems mainly focus on process automation whereas, BPM aims for wider scope

covering process automation, process analysis, operations management and organization

of work. In addition, BPM aims at business process improvement not necessarily

requiring new technologies. When analysing process models, the management may

come up with a plan to reduce costs and to improve services at the same time. Moreover,

in BPM operational processes are controlled and managed by software systems named

business process management systems (BPMS). BPMS are flexible and can connect

with other technologies such as cloud and mobile as well as some legacy systems.

As cited in (Barros, Gal & Kindler, 2012), most businesses will be process driven

Chapter 1. Introduction 14

by 2020 making business process management to play a major role. A business model

by using a suitable modelling language should represent the business processes. The

modelling languages can range from visual notations, for example, BPMN to more

formal representations such as petri nets, CCS, Pi calculus, etc.

In the traditional business process life cycle, modelling and executing IoT related

processes were not well supported (Sungur, Spiess, Oertel & Kopp, 2013). IoT systems

consist of products with electrical or mechanical parts and act as intelligent systems

connecting software, hardware, control sensors and data storage, etc. in different ways.

This type of processes need to be able to illustrate in business processes.

Therefore, it is beyond question that IoT systems need to integrate in business

processes in order to derive its many advantages. Thus, it is a fundamental requirement

to find out how IoT systems can be modelled in business processes to obtain the benefits

it promises. The objective of this research is to help fill this gap by examining existing

research in this area and contributing to it by identifying the business process modelling

requirements for IoT. We choose existing scholarly articles, which aim to model IoT

systems with business processes by extending BPMN. First, we study and evaluate each

methodology introduced in them. Next, we introduce a problem scenario, which derives

seven business process modelling requirements for IoT (IoT modelling elements). We

design each identified IoT modelling element by extending BPMN 2.0. Moreover, we

practically implement a web based IoT aware BPMN editor by extending an existing

BPMN editor to illustrate the application of these IoT modelling elements. In a case

study, we demonstrate the capability of this editor with an IoT related application

process that models all seven IoT modelling elements identified.

Chapter 1. Introduction 15

1.2 Research Questions

Modelling IoT based systems with business processes is not successfully achieved yet

even though there are existing literature work in this area. Therefore, it will be useful

to address this issue and in addition, to contribute to the existing literature work. This

thesis aims to address the following questions:

• What are the new business process modelling requirements and associated ele-

ments for IoT?

• How to extend BPMN to support modelling these new elements and build a

software tool to support IoT related process modelling?

1.3 Research Contributions

• We identified seven key IoT modelling elements as requirements for business

process modelling for IoT. We derived these elements from a typical problem

scenario in IoT.

• We investigated the properties of IoT components in detail and illustrated in class

hierarchy design, where common properties were described in super classes.

• We designed these IoT modelling elements by extending BPMN 2.0 graphical

model as well as the meta-model and implemented them in an application. We

also implemented a web based IoT aware BPMN editor tool with XPDL editing

capability by extending an existing BPMN modelling tool. Furthermore, we

evaluated this tool using a case study.

Chapter 1. Introduction 16

1.4 Thesis Structure

This thesis consists of five chapters. Literature review is carried out in Chapter 2.

We talk about IoT in more detail in this chapter followed by more information on

business process models and business process modelling for IoT. In the final section

of this chapter, we present BPMN modelling frameworks for IoT. We have chosen

seven frameworks of past researchers who have contributed to this area of work and

describe their work in detail. In Chapter 3, we introduce a running problem scenario

and illustrate its business process model in BPMN 2.0. Using this scenario, we derive

business process modelling requirements for IoT and present them. We identify seven

business process modelling requirements for IoT. They are sensor, actuator, reader,

collector, event streaming, specific data object and intermediary operation. We describe

each of these identified IoT modelling elements in detail and graphically illustrate

categories of each element if applicable. We also divide each element into their sub

elements wherever applicable illustrating in class diagrams with inherited properties. In

Chapter 4, we practically implement a web based IoT aware BPMN & XPDL editor tool

to incorporate these new IoT modelling elements we have identified as business process

modelling requirements for IoT. In Chapter 5, we evaluate our implementation with

a case study. We use this tool to model an IoT related application process in BPMN,

which incorporates all identified IoT modelling elements. We further evaluate this work

by comparing with similar work in the literature. The final chapter, chapter 5 concludes

our work.

Chapter 2

Literature Review

2.1 Introduction

In this chapter, we discuss the literature reviewed. This chapter comprises of five

main sections. Section 2.2 is allocated for describing internet of things in more detail

with its relevance to our research. In section 2.3, we further explore business process

management mainly describing process modelling. In these two sections, we try to

elaborate both areas in more details in trying to be in line with our research interest.

However, our focus is on the last section, section 2.4. In this section, we carry out a

discussion of some chosen scholarly work on business process modelling for IoT. We

have chosen seven BPMN modelling frameworks for IoT. We address each of them in

detail, discussing their work and their contributions to business process modelling for

IoT. In the summary sub section, we use a table to evaluate these frameworks against

the IoT modelling elements they have introduced. In the final section, section 2.5 we

conclude our work.

17

Chapter 2. Literature Review 18

2.2 Internet of Things (IoT)

This section provides further information of IoT and is divided into subsections for

easy reference. First subsection, 2.2.1 provides a brief history of IoT. In the second

subsection, 2.2.2 we discuss IoT protocols and the subsection 2.2.3 is allocated for IoT

technologies. In the final subsection, 2.2.4 we try to describe middleware support for

IoT.

2.2.1 History of IoT

The businesses have been reaping benefits from the Internet since it emerged four

decades ago in 1960s (Howe, 2016). Simultaneously, another technology, which

digitally identify and manage things in the physical world started to emerge. That is the

use of sensors, actuators, electronic tags, etc. to transfer physical world information via

networks. A major difference between the Internet and IoT is that Internet represents

a virtual world of services even though the content is physically stored in real servers.

Whereas, IoT technology facilitates to interact with things in the physical world through

the internet.

M2M (Machine-to-Machine) is a technology connecting devices via a network

allowing communication among them without human interference (Rouse, 2010). M2M

solutions facilitate remote monitoring and managing enterprise assets and the users to

obtain information such as inventory levels. Organizations are embracing IoT solutions

for their business needs for which they mainly depended on M2M solutions. The

factors contributing to this trend are the rising need to obtain information on physical

environment and its activities, technological advancements and improved networking

capabilities and low cost of components, data collection and processing (Rayes &

Samer, 2017).

Chapter 2. Literature Review 19

2.2.2 IoT Protocols

Another important aspect of IoT is its protocols and networking technologies. Some of

them are RFID (Radio Frequency Identification), low power wireless protocols such as

NFC (Near Field Communication) and BLE (Bluetooth Low Energy), LTE (Long Term

Evolution) Advanced, and Wi-Fi Direct (tutorialspoint.com, n.d.).

Radio Frequency Identification

RFID technology works using radio waves, which are a type of electromagnetic waves,

in tracking and identifying RFID tags attached to physical objects. Unlike mechanical

waves, electromagnetic waves can travel through media such as air, space and solid

materials. Electromagnetic waves are similar to waves in the ocean having minimum

wavelength size as a fraction of an atom and the estimated maximum wavelength size

to be bigger than diameter of the planet (NASA, n.d.). RFID technology is capable of

identifying objects, which are located at a distance without the need of line of sight, i.e.

tags can be hidden from sight. Apart from unique identification details, FRID tags are

also capable of storing additional information about the objects they represent. These

tags survive in rough environments such as outdoors, with chemicals, high temperature

and moisture. RFID technology not only can read information on a tag, it also is capable

of measuring environmental conditions such as temperature.

Near Field Communication

NFC is a contactless communication standard with a short range (about up to four

centimetres), based on RF technology (Center, n.d.). NFC technology has its roots in

technologies such as contactless identification and interconnection (Minihold, 2011).

NFC technology enables information exchange between two NFC enabled devices such

as mobile phones, and between a mobile phone with NFC capability and a compatible

Chapter 2. Literature Review 20

contactless smart card with RFID chips or a reader, held within NFC range. Examples

for some NFC based applications are mobile payments, secure logins, access control,

peer to peer data transfer between NFC enabled devices such as smart phones, note

books, cameras, etc. and ticketing.

Bluetooth Low Energy

Bluetooth Low Energy is a power saving version of Bluetooth technology developed

for internet-based devices. Similar to Bluetooth, BLE also uses wireless technology in

connecting with close by devices in its range. BLE allows wireless, short-range commu-

nication between devices with low battery power (Rouse, 2014). Power consumption

during data transfer is an essential feature to consider when choosing a wireless pro-

tocol. BLE has a lower power consumption with a higher range than conventional

Bluetooth (Weekly, n.d.). High-speed data transfer is another feature of BLE needing

only five minutes of connection time to transfer data up to 100 metres. When there is

no data transmission, the chips are in sleep mode and wakes up only when they receive

signals. Some applications of BLE are wearables such as garments, wristbands, smart

watches, shoes, etc.

LTE Advanced

LTE Advanced is a wireless communication technology and it is an advanced and

standard version of LTE technology. It is capable of handling bigger data loads and is

faster true G4 technology. Mobile carriers are eager in using LTE Advanced networks

for mobiles due to its speed and reliability (Dashevsky, 2014)

Chapter 2. Literature Review 21

Wi-Fi Direct

Wi-Fi Direct connects devices directly with each other without a wireless router. This

functions as a P2P (Peer-to-Peer) connection not requiring a wireless router. For

example Roku 3 remote controller (May, 2017) uses Wi-Fi Direct in communicating.

The remote control connects to its own Wi-Fi network rather than to a wireless router

and communicate with each other through the network. With Wi-Fi Direct, it is possible

to connect to a remote wireless printer without its need to join any wireless network.

Some applications of android devices are using its built-in Wi-Fi Direct facility.

Wireless Sensor Networks

Wireless sensor networks are networks of connected devices communicating via wireless

links. These are sensor and actuator networks consisting of spatially distributed sensors

in order to monitor environmental conditions such as sound, temperature, pressure,

etc (Lee & Lee, 2015). It makes it more efficient to track movements, locations and

environmental conditions of objects when WSN works together with RFID technology.

WSN is a popular application in logistics involving transportation of temperature

sensitive products. Other main applications of WSN are tracking systems, wind farms

and systems involving preventive maintenance such as American airline’s preventive

maintenance services where sensors capture 30 terabytes of flight data.

2.2.3 Middleware Support for IoT

Middleware is software connecting the application layer and the operating system, in

which the applications run on. Middleware facilitates communication and data transfer

among distributed applications. A unique feature of that is functions hide the translation

process (azure.microsoft.com, 2017). This feature of hiding technical details facilitates

other IoT application developers who directly are not connected with the specific IoT

Chapter 2. Literature Review 22

application. The distributed nature of IoT applications involving different devices makes

it necessary for middleware for new application development. For example, Global

Sensor Network (GSN). GSN is a middleware platform for integrating heterogeneous

wireless sensor networks. It facilitates sensor networks and data integration providing

services such as sensor data querying, filtering, etc. (Aberer, Hauswirth & Salehi,

2006).

As cited in (Razzaque, Milojevic-Jevric, Palade & Clarke, 2016), in ubiquitous

computing environment, IoT technology brings new challenges to developing IoT

related applications while it may increase prevailing challenges. In such a situation, a

middleware serves as a medium, which ease application development through common

services it offers. A middleware integrates diverse computer and communication devices

and supports interoperability within the applications run on these devices.

According to (Razzaque et al., 2016), four main components of IoT are WSN (wire-

less sensor networks, RFID, M2M (machine to machine) communication and SCADA

(supervisory control and data acquisition). If a middleware to be fully functional, it

should be able to integrate these four technologies to support various applications.

Research on IoT middleware has been emerging since the recent past. However, most

middleware proposed are WSN based and lacking full support for requirements of

IoT applications. For example, such middleware does not support context awareness.

Whereas, middleware proposals for RFID, M2M and SCADA are limited.

The authors propose a middleware for IoT by identifying main characteristics of

IoT and the requirements of middleware for IoT.

Key Characteristics of IoT Infrastructure

• IoT devices generally use low cost computing platforms. In addition to sensors

and embedded devices, IoT needs high end computing devices to perform tasks

such as routing and data processing. Examples for various IoT devices are, high

Chapter 2. Literature Review 23

end computing devices e.g. SCADA front end processor, middle end computing

devices such as onboard computing unit of vehicle for M2M communication, low

end computing devices, wireless sensor and actuator networks and, RFID and

NFC tags and devices.

• As IoT devices varies, the processing, memory and communication capacities

vary as well in different levels according to the device type. For example, these

capacities decrease from high end to low end devices.

• Interactions can happen in IoT applications when objects happen to be in another

object’s range of communication, which leads to spontaneous event generation.

For instance when a smart phone coming to contact with a washing machine

generating an event without user interaction.

• IoT is predicted to be consisting of ultra large scale networks with million or

trillion nodes. Within an IoT environment such as a within a building, thousands

of IoT devices or things can interact with each other. This interaction may result in

large number of event production demanding proper event handling mechanism.

• Many IoT devices such as mobile devices connects through wireless networks

using nodes. These are dynamic networks so the nodes may join or leave the

network at any time. This environment fail to provide suitable infrastructure

resulting unstable networks.

• Context awareness is an important aspect of IoT applications. Huge amounts

of contextual data are collected and stored in context aware IoT applications.

Context awareness can obtain through M2M communication with no need of user

intervention.

• Intelligent devices, things, dynamic networks, systems, web services, SOA, EDA,

Chapter 2. Literature Review 24

etc. of IoT can respond to environments in an independent nature based on the

available context.

• IoT, similar to internet, consists of a distributed network globally as well as locally

within application domain.

Main Characteristics of IoT Applications

• IoT applications extend to number of areas such as logistics, healthcare, smart

environments, etc. needing different requirements and different architectures.

• IoT applications are generally real time e.g. Healthcare applications requiring

real time service making delayed data or service useless.

• Xaas model of IoT is efficient and scalable making sensing as a service in WSNs.

• Interactive nature of IoT applications allowing access for anyone at any time in

anywhere makes IoT applications and networks vulnerable to security attacks.

• Nature of IoT applications collecting individual information such as behavioural

patterns, buying habits, travel, etc. may become a threat to individual privacy.

Requirements for IoT Middleware Support

A middleware connects the applications, operating systems and network communication

layers by providing a software layer between these. In computing, a middleware

typically provides a layer between system software and application software. When

it comes to IoT, there is a huge diversification in system level technology as well as

communication technology and a middleware should support both these aspects. Taking

into account both the infrastructure of IoT and characteristics of IoT already outlined,

some requirements for middleware in supporting IoT is introduced in (Razzaque et al.,

Chapter 2. Literature Review 25

2016). These requirements are two folded, services required of the middleware and

supporting system architecture.

Service Requirements

Service requirements of middleware are divided into two groups, functional and non-

functional requirements.

Functional requirements include, automated resource discovery, proper means to

manage resources and application data such as sense data, managing many events

present in IoT applications and code deployment management.

Non-functional requirements consist of scalability in accommodating expanding IoT

services, real time service availability, reliability in operation of services, availability in

all times, meeting security and privacy requirements, ease of deployment not requiring

any expert knowledge and continuous support and improvement.

Figure 2.1: Relationships between the IoT’s middleware requirements and its infrastruc-
tural and application characteristics.

Source: (Razzaque et al., 2016)

Chapter 2. Literature Review 26

Architectural Requirements

Architectural requirements aim for application development. These include program-

ming abstractions needed for application development e.g. interface level separation

from the code, ease of interoperability of various IoT devices and applications, service

based architecture providing enough flexibility, adaptability to dynamic environments,

context aware architecture, autonomous devices, applications and technology interaction

with no direct user support and lastly, distributed architecture to support geographic-

ally distributed resources. As illustrated in the Figure 2.1, many IoT middleware

requirements identified have some direct relationship with IoT characteristics.

Middleware Frameworks for IoT

There are some existing middleware proposals by past researchers. Based on the

design approach they follow, they may be categorised into different groups, such as

event based, service oriented, VM based, agent based, tuple spaces, database oriented

and application specific (Razzaque et al., 2016). Apart from these, there are hybrid

approaches combining different design approaches.

Event Based Middleware

In event based middleware, interaction among all entities involved is by using events.

This type of middleware is based on publish, subscribe pattern. Events are produced by

the sending application (events producers) and are consumed by the receiving applica-

tion (event consumers). Consumers need to register for events to obtain subscription.

Subscribers are then allowed to access the publisher’s database containing those events.

This is depicted in Figure 2.2.

Chapter 2. Literature Review 27

Figure 2.2: Design model for event based middleware.
Source: (Razzaque et al., 2016)

Service Oriented Middleware

Service oriented middleware facilitates building of software or applications as services.

Features of service oriented computing (SOC), which is based on SOA (Service Oriented

Architecture), such as loose coupling, reusability, composability and discoverability,

provides benefits to IoT applications. Service discovery and composition is more

challenging due to characteristics of IoT. Service oriented middleware ease these

through relevant functionality for deploying, discovery, runtime access of services,

etc. as shown in Figure 2.3. Service oriented middleware also facilitates adaptive

service composition for unavailable services. These middleware can further divide as

standalone middleware for IoT and cloud computing PaaS (platform as a service).

VM Based Middleware

VM based middleware facilitates high level abstractions in programming, adaptability,

management, etc. In addition, it supports transparency of variety of distributed IoT

Chapter 2. Literature Review 28

Figure 2.3: Design model for service oriented middleware.
Source: (Razzaque et al., 2016)

infrastructure. This middleware is designed to support safe application execution en-

vironment. Applications consist of range of modules, which are distributed through

the network. Network nodes contain VMs interpreting the modules. VMs can be cat-

egorised as two types, middleware level and system level VMs. Middleware level VMs,

which connect the operating system and the applications layer provide functionality

such as concurrency to the OS. System level VMs, which act as substitutes for the OS

or replacing it, make resources available for consumption.

Agent Based Middleware

In agent based middleware, applications are separated into modules to provide the

distribution via networks by using mobile agents. The agents while transferring between

nodes maintain the execution states. This feature provides the decentralised design

facilitating some fault tolerance. These software agents can communicate with each

other for data collection and any updates required for applications.

Chapter 2. Literature Review 29

Figure 2.4: Design model for database oriented middleware.
Source: (Razzaque et al., 2016)

Tuple Space Middleware

In tuple space middleware, all members maintain their own local tuple space, i.e. a

repository in the infrastructure. Concurrent access to tuple spaces are possible. A

gateway contains a centralised tuple space containing all tuple spaces. Application

interactions and communication take place through the central tuple space by writing

and reading tuples as necessary.

Database Oriented Middleware

In database oriented middleware, virtual relational database system architecture repres-

ents a sensor network as 2.4 depicts. Applications can retrieve data by querying the

databases using some type of SQL. Complex querying to databases is possible using a

suitable query language. There is ongoing further research in this area focusing on dis-

tributed database systems to facilitate interoperability of systems as cites in (Razzaque

Chapter 2. Literature Review 30

et al., 2016).

Application Specific Middleware

In application specific middleware much importance is given to resource management

for applications. This is achieved through an architecture that attends the requirements

of the application domain by improving the network infrastructure.

2.3 Business Process Modelling (BPM)

Among other reasons, the main reason to model a process is to understand the process

clearly by the people who model it and to make other people who are involved in the

process (process participants) understand it the same way. This knowledge gained

through process modelling is the initial step forward in conducting process analysis,

process redesign and process automation. Further, process modelling highlights issues

so that they can be prevented. In general, a model consists of three characteristics, i.e.

mapping, abstraction and suitability for purpose. The model should be able to map

for what it represents. For example, a building to construct should be able to map for

its miniature model made in timber. A model only illustrates the relevant details of

the object it represents, abstracting irrelevant details. When taken timber model as

an example the model abstracts other materials of the building. The model needs to

serve the purpose it was created for. In timber model example, the model illustrates

the building’s appearance when it will be built and this serves the purpose. Similarly,

when it comes to business process modelling, the purpose of creating the model and the

audience it targets for is vital. Business process modelling mainly serves two purposes,

organizational design, and application system design. Modelling for organizational

design is mainly for communication and knowledge but also serves benchmarking and

improvement. These models are targeted for process owners, managers, and business

Chapter 2. Literature Review 31

analysts. Normally, these models are abstracted from features such as IT related aspects

in order to be comprehended by different stakeholders. Business process models

created for application system design are for automation purposes usually containing

implementation details for creating BPMS or carry out software development. These

models are IT based and systems engineers and developers create these models (Dumas,

La Rosa, Mendling, Reijers et al., 2013).

2.3.1 History of Business Process Modelling

Many people have proposed techniques for process modelling in the past century. For

example, Carl Adam Petri (1926 - 2010) in 1962 introduced Petri nets. Petri nets has a

considerable impact on process modelling due to its graphical representation ability of

the process and for its concurrent event representation feature. In business processes,

many events can take place at the same time so that concurrency is a fundamental

feature in a business process model. Petri nets is the first model, which is capable of

modelling concurrency. Many BPM notations adopt Petri nets token system in their

modelling notations.

The importance of data modelling began in the seventies, for example, the Rela-

tional Model introduced by Edgar F. Codd in 1969 and the Entity Relationship Model

introduced by Peter Chen (published in 1976). In the beginning, information systems

were developed by programming from scratch, including data storage and management.

Later database management systems were used for storing and handling data, and

tools automatically generated user interfaces. Business process management (BPM)

systems are similar to this trend even though process management is a more diverse and

complexed task than data management. BPM systems are for process related tasks.

Workflow management (WFM) systems emerged in mid 1990s and its primary

focus was for automating business processes. Business process management can be

Chapter 2. Literature Review 32

considered as an extension of WFM (Van Der Aalst, 2013). However, WFM systems do

not provide much support for functions such as process analysis and management and

are not adequately flexible. Whereas, BPM systems provide better support than WFM

systems for modelling business processes with its features such as support for business

process intelligence, process simulation, case management, etc. In addition, BPM tries

to improve business processes without essentially needing new technologies. Although

BPM utilize software for operational processes, to control and manage them better.

WFM also started with the same purpose in using software but traditional WFM, in

automating the processes has given little attention to management and humans involved

in the business processes.

Process Aware Information Systems (PAISs) comprise of WFM systems and BPM

systems as well as Enterprise Resource Planning (ERP) systems such as SAP, Oracle,

etc., Customer Relationship Management Systems (CRMS), middleware systems such

as WebSphere and other systems like cash handling, call centre management, rule based

systems. Common features to these systems are that the information systems, which

support these systems, are aware of the processes they support and these processes

possess defined notations. Information systems such as database systems and email

systems also can execute some part of a business process though they are not aware

of the processes they are executing. Therefore, these software systems are not process

aware systems.

2.3.2 Business Process Modelling

Business process models represents business processes. Business process modelling is

based on conceptual models. These models are usually depicted in UML. Figure 2.5

illustrates a conceptual model of a business process adopted from (Weske, 2010).

Business processes comprise of some activities, which contribute towards achieving

Chapter 2. Literature Review 33

business goals. These activities can be categorised as system activities, manual activities

and user interaction activities. System activities are those, which are executed using

a software system without any human involvement such as receiving updated stock

information or bank balance with automated input parameters. Manual activities are

performed without an information system. An example for a manual activity is sending

some items to a business partner. Information systems usually track manual activities

by obtaining the state of the activity such as the acknowledgement of receipt of the

items. Users as well as information systems are involved in user interaction activities.

Knowledge workers using an information system such as entering customer claim

information in an insurance application usually perform these activities. Workflow

management systems ensure the execution of activities in the specified order, in a

business process. In the UML diagram in Figure 2.5, the relationship between the

system workflow and business process are illustrated using association between the

relevant classes. The reason for this is, according to (Weske, 2010) workflow cannot be

taken as a sub class of a business process since it manages a part of a business process.

System activities can be represented in any workflow, i.e. System workflow, Human

interaction workflow. Therefore, those two classes have a direct association between

them in the conceptual model illustrated in Figure 2.5. However, the other two activities

can only be represented in human interaction workflows.

Abstraction Concepts for Business Process Management

In business process modelling, different abstraction concepts are applied to handle

the modelling complexity (Weske, 2010). One such concept that is traditional to

computer science is, horizontal abstraction, which is the separation of modelling levels

to instance, model and meta model levels. Vertical abstraction is another type of

abstraction in which the main process model is divided into sub domains such as

functions, information, organization and IT landscape. These are considered to be

Chapter 2. Literature Review 34

Business Process Activity

Workflow System Activity User interaction Activity Manual Activity

System Workflow Human interaction workflow

Figure 2.5: Conceptual model of a business process
Source: (Weske, 2010)

important for a business process. Further subdomains can be introduced according

to the requirement of the particular business process. Yet another abstraction type

is aggregation, which also handles complexity. In aggregation, in a higher level of

abstraction, elements at lower level of abstraction can be categorized. For example,

order management process consisting of activities such as receiving an order, checking

inventory and order confirmation.

Business functions, Business processes, Activity models and Process models

Business functions provide a higher level representation of an organisations work. A

business function is made up of one or more activity models. An activity model consists

of some common activity instances similar to a process model consisting of process

instances. The actual work of a business process is represented by activity instances for

example an insurance claim process handled by an employee.

A process model comprises of process instances reflecting actual functioning of a

business. Process meta models describe process models. Figure 2.6 illustrates a process

model with its relationships and concepts adopted from (Weske, 2010). A process

Chapter 2. Literature Review 35

Pocess Model

Node Edge

Activity Model Event Model Gateway Model

1

2..* 1..*

2 1..*

Figure 2.6: Business process metamodel
Source: (Weske, 2010)

model consists of nodes and edges. Edges represents the control flow of nodes and the

nodes represent activity models, event models and gateway models.

Business Process Execution Architecture

Business process management systems control the execution of a business process using

a business process model. Business process management systems architecture model

consists of the ‘business process environment, a business process modelling sub system,

a business process model repository, a process engine and a set of service providers. The

business process modelling subsystem creates business process models. It generates the

structure of the business process with activities, operations, etc. The business process

environment triggers the initialisation and execution of the process instances of the

process model. Business process model repository stores the created business process

models. The process engine initializes and controls business process execution. This is

Chapter 2. Literature Review 36

the main component of a business process management system and business process

environment triggers this component. Service providers in this architecture model

provides hosting facilities for applications of business process activities.

Process Orchestrations and Process Choreographies

Process orchestrations describe the business process models containing activities and

relationships performed within a single business organization. In process orchestra-

tions, the process engine controls the processes acting as a centralized agent. In most

cases, businesses collaborate with other businesses carrying out their activities making

interaction among process orchestrations generally through passing messages. Pro-

cess choreographies facilitate to realise these interactions among business to business

collaborations.

2.3.3 Business Process Modelling Languages (BPMLs)

Main forces affecting changes in the business processes are improvements in computing

and communication technologies. Business processes are becoming more and more

complex with cross-organisational business processes and are mainly relying on inform-

ation systems. Therefore, it is of great importance for organisations to have process

modelling techniques to manage their business processes providing visibility into to the

flow of processes and documenting them.

For business process management, the process-modelling notation is very important.

There are number of modelling notations in existence, for example, BPMN, UML,

Petri nets and EPCs. A feature common to all these notations are that a process can be

described in activities and possibly in sub processes. In (List & Korherr, 2006), they

identify these process-modelling notations as business process modelling languages

(BPMLs). Examples of BPMLs are:

Chapter 2. Literature Review 37

UML 2.0 Activity Diagram (AD)

AD started with development of software systems and, is for representing business

processes and their flows in software systems. The main features of this modelling

language is actions and, swim lanes representing roles participating in the process.

Business Process Definition Meta model (BPDM)

This is a product of OMG (Object Management Group). The purpose of BPDM is to

provide a meta model for business processes to support mapping of various tools and

languages. BPDM does not have its own graphical natation but uses UML 2.0.

Business Process Model and Notation (BPMN)

BPMN is developed by BPMI (Business Process Management Initiative) and, main-

tained by OMG (Object Management Group) since the two companies merged (WIKIDEDIA,

2017). BPMN is a graphical notation to represent business processes graphically in

business process models. BPMN can be taken as the standard business process model-

ling notation for business process modelling (Wang, Ding, Dong & Ren, 2006). BPMN

provides the organisations to represent their business procedures graphically and stand-

ardised communication of these business procedures. This graphical notation further

facilitates organizations to understand their business collaborations among external

participants. This allows businesses to quickly adjust to changing circumstances of

their internal business procedures and procedures among external business to business

participants (OMG, 2017). Events, activities and sequence flows or arcs are the three

basic concepts of BPMN (Dumas et al., 2013). The basic symbols of BPMN are events,

activities, gateways and connectors.

BPMN includes the aspects of other modelling languages such as graph based and

petri net based process modelling languages, activity diagrams, UML and event driven

Chapter 2. Literature Review 38

process chains. BPMN supports all abstraction levels in an organization ranging from

business levels to technical levels. Business process models are depicted in business

process diagrams. Business process diagrams consist of modelling elements, set of core

elements and complete elements. Core element set is simple and easy to understand

which facilitates expressing simple business processes whereas, the complete element

set provides additional power in elaborating business processes. There are certain rules

set by the BPMN standard that governs these elements when using them. There is no

restriction on BPMN when using a language to express something in the graph, simple

English is possible depending on the situation. However, at technical level, a suitable

programming language is required for translating the model for execution.

According to the BPMN standard, there are five basic categories of BPMN elements,

flow objects, data, connecting objects, swim lanes and artifacts. Events, activities and

gateways are the flow objects defining the behaviour of a business process. BPMN

‘events’ denote the states of real word occurrences related to business processes. Activit-

ies represent work carried out during a business process. Gateways illustrate the control

flow of split and join behaviour between activities, events and gateways. BPMN pool

element represents a participant such as a business partner in a business process. A

pool consists of swim lanes. Lanes denotes organizational aspects such as a department

within an organization.

BPMN elements under ‘Artifacts’ category represent additional information of

business processes which, according to the BPMN standard are not directly associated

with the sequence flow or message flow of a business process. Elements belonging to

the artifact category are data objects, data stores, groups and text annotations. A data

object mainly represents a process documentation, such as a paper and an electronic

object. Text annotations document some business process part in textural form.

There are four main connecting elements, sequence flow, message flow, associations

and data associations. Connecting elements connect other elements such as flow

Chapter 2. Literature Review 39

elements, swim lanes and artifacts.

Event Driven Process Chain (EPC)

This notation was designed aiming business people to understand and manage business

processes easier. EPC comprises of functions and events where functions handle

business process activities and events are results of processing of functions or events

created by actors external to the model. This is an important and rather an informal

notation for modelling domain aspects of a business process (Weske, 2010). Rather

than technical details or formal aspects, the focus of this notation is on domain concepts

and processes.

This was developed as a part of ARIS (Architecture of Integrated Information Sys-

tems) framework as a modelling approach by August-Wilhelm Scheer. This approach is

generally known as ARIS house consisting of a roof and three pillars. The roof denotes

the entire organisation while the three pillars stand for data, control and functions. Each

section (pillar) consists of three levels of abstractions namely, concept level, architec-

ture level and implementation level corresponding to requirements definition, design

specification and implementation description respectively. Data, control and functions

are modelled in the concept level, which being the highest level of abstraction. This

level considers non-technical requirements of business processes such as business goals.

At concept level, ERDs (Entity Relationship Diagrams) are used to model and express

the data view. In the control view, business processes are modelled and expressed

by using EPCs. In the organisational view, organisational structures are described by

organisational diagrams. The architecture level bridges the gap between the concept

level and the implementation level. The implementation level brings the necessary steps

to realise business processes.

Chapter 2. Literature Review 40

Integrated DEFinition Method 3 (IDEF3)

IDEF3 was developed to serve two purposes, the process schematics, i.e. to model

a process sequence, and object schematics, i.e. to model an object and to represent

state changes in a process. This captures how a process behaves explicitly describing

a process. IDEF3 facilitates different views of organisational procedures. IDEF3 has

two modes of modelling, i.e. process flow description (PFD) and object state transition

description (OSTD). PFD describes actual work situation of a business whereas, OSTD

describes permitted transitions of an object in a process (Aguilar-Saven, 2004).

Petri Nets

This notation is developed for modelling dynamic systems with concurrent and non-

deterministic processes. These are used to workflow modelling. This graphical notation

consists of two main nodes, place and transition. Different states of a system is rep-

resented by places and events or actions (caused by state changes) are represented by

transitions.

Carl Adam Petri in his PhD thesis introduced Petri nets (Weske, 2010). Petri nets

are capable of modelling dynamic systems with a static structure. Petri net illustrates the

static structure whereas, the tokens placed in the nets represents the dynamic behaviour

of the system. Circles in the graph represents places, rectangles represent transitions and

directed arcs represents the connections. Tokens represents the dynamic and concurrent

nature of petri nets. Tokens change their positions according to firing rules while

the petri net structure is fixed. Petri net is very suitable for systems that are with

characteristics such as concurrent, asynchronous distributed, parallel, nondeterministic

or stochastic (Wang et al., 2006). Petri nets as graphical tools are similar to flow charts,

block diagrams and networks.

Chapter 2. Literature Review 41

Role Activity Diagram (RAD)

This notation started as coordination modelling and evolved to business process mod-

elling. This represents external events, roles, activities and interactions. RAD is a

graphically based process modelling language emphasising on individual roles and their

relationships. These roles can be organisational functions, software systems, customers

or suppliers (Aguilar-Saven, 2004).

BPMLs have their own execution languages. BPEL, also known as BPEL4WS is

the common execution language for AD, BPDM and BPMN.

2.4 BPMN Modelling Frameworks for IoT

Emergence of information technology in general made a major impact on business

processes. Now, with Internet of Things (IoT) technology, it forces the companies

to revise their business processes to adapt to this new demand. IoT enables process

design through product enhancement by facilitating physical objects to interact and

communicate with each other leading to new service development (Zancul et al., 2016).

Companies can make use of IoT technology in many business segments to achieve

competitive advantage such as product service systems (PSS). According to (Zancul et

al., 2016), IoT market segment consists of three categories:

• Business to Consumer (B2C) – This is the activity of a business trading between

a business and a single buyer (shopify.co.nz, n.d.) In general, retailer transactions

can be included in this category. For example, connected home, connected car,

smart wearable devices, etc.

• Business to Business (B2B) – This refers to a business dealing between two

companies. Most wholesale transactions fall into this category (investopedia.com,

Chapter 2. Literature Review 42

n.d.). For example a business transaction between a manufacturer and a whole-

saler. Examples for B2B IoT applications are, connected industry, connected

buildings, connected agribusiness, etc.

• Business to Business to Consumer (B2B2C) – This model refers to business

transaction connecting business to business and business to consumer. This

is a collaboration process among participants, resulting beneficial channels of

products and service delivery (techopedia.com, n.d.). Examples for IoT applica-

tions based on B2B2C are, smart cities, smart utilities, etc.

From the existing literature, we have chosen to review seven frameworks. These

frameworks propose some IoT modelling elements for business process modelling by

extending BPMN 2.0.

2.4.1 Framework: uBPMN

This framework (Yousfi, de Freitas, Dey & Saidi, 2016) illustrates how to model

systems based on ubiquitous computing (ubicomp) in business processes. Ubiquitous

computing aims to develop systems, which can adopt easily to dynamic business

environments. Context Awareness and Media Breaks are two major aspects of ubicomp.

When a system comes to a halt while processing, a media break occurs requiring

human intervention to proceed. Ubicomp prevents media breaks by automating the

processes so that they are human independent, improving both speed and quality and

less errors. Context awareness improves business processes by taking into account the

contextual environment in which the business operates. It allows business processes

to collect data from the environment and react accordingly. Context for businesses is

any information that is valuable to the business process. Context collection can be done

by using Ubicomp technologies such as location tracking and activity sensing. Google

Now is an example of a ubiquitous system where it responds to user requests by using

Chapter 2. Literature Review 43

ubicomp technologies such as location tracking and activity sensing. This framework

incorporates ubiquitous computing with business process management and define a

ubiquitous business process.

According to the authors, ubiquitous technologies such as sensors and smart readers

cannot not be represented by BPMN v2.0 alone. Therefore, BPMN is extended to

introduce uBPMN model to represent ubiquitous technologies. Authors think this model

is capable of representing all existing ubiquitous technologies to date. The model

introduces three new task elements, Sensor Task, Reader Task and Collector Task by

extending BPMN Task element and Smart Object by extending BPMN Data Input.

All three tasks inherit BMPN Task attributes and smart object inherits the attributes

of BPMN Data Input class. Sensor Task includes smart sensors, wired and wireless

sensors, and sense contextual information in a business environment. The sensor types

can be categorised into temperature, speed, motion, GPS, etc. Similarly, Reader Task is

a task that uses a smart reader, e.g. bar code, RFID, biometrics. Collector Task is a task

that collects any context, which readers and sensors are not capable of collecting. The

source of contextual information collection is a file, a database or another process.

Figure 2.7: Ubiquitous fulfil request of time bank system using BPMN extensions
(uBPMN).

Source: (Yousfi et al., 2016)

Chapter 2. Literature Review 44

A case study is carried out to show that Ubiquitous computing can be used as a

technique to improve business processes. A time banking information system, where

a certain community exchanges services is used for this purpose. A user of this

system either can be a requestor of a service or the person who undertakes to fulfil

that service. A requester makes a request for a service via this system for a fee. The

fees are in time dollars. When a service has been fulfilled, these dollars are debited

from requesters account to the service provider’s account. In the case study, Fulfil

Request part of the system is used as a ubiquitous business process as depicted in

Figure 2.7. Ubiquitous business process lists the top ten requests by considering

the potential fulfiller’s contextual information such as his current location, type of

request, time it would take to fulfil the request, nature of the current activity, etc. The

recommendation listings are generated by sensing the fulfiller’s GPS coordinates and

the speed and sending them to the system to compute. The request, need a gallon of

milk is recommended for the potential fulfillers based on their context collected. The

time spent on searching for a matching request is minimised and requests are suggested

on the fly based on the user’s current context. For example, if a user is in a supermarket,

his recommendation list will include a request to buy groceries.

2.4.2 Framework: SPU

This paper (Appel, Kleber, Frischbier, Freudenreich & Buchmann, 2014) introduces

IoT element, event streams to business process management systems. Occurrence of

event streams are real world conditions and business processes can be improved by

incorporating these. For example, monitoring temperature of goods while transporting

them to see if the required temperature is maintained throughout the shipment. The

temperature sensor reading continues throughout and this defines the term stream,

which is continuous occurring of new events. New events are created (event producers)

Chapter 2. Literature Review 45

regardless if they are consumed (event consumers) or not. Due to this independence

nature of events occurring, there needs to be a proper technique to distribute events.

Publish/ Subscribe systems are such a common mechanism.

Though single events are common to business process modelling, there is no proper

mechanism to handle streams of events. Therefore, Event Stream Processing Units

(SPUs) are proposed as an integration concept for event stream processing to integrate

with business processes. SPUs can be considered as equivalent to services in a SOA

(Service Oriented Architecture) since it contains Complex Event Processing (CEP)

functionality. Extensions to model SPUs in Event-driven Process Chains (EPCs) and

a mapping between SPUs in EPCs and SPUs in BPMN to illustrate the application of

the concept are proposed. As BPMN 2.0 modelling extension for SPUs, Event Stream

Processing Tasks (ESPTs) are introduced. The project, Software AG ARIS illustrates the

implementation of the EPC and BPMN extensions.

When implementing a business process, it goes through three stages, the design,

execution and the IT infrastructure. In the design phase, the model is designed using

a technique such EPC or BPMN. The model is executed by using a technique such as

Business Process Execution Language (BPEL). IT support is provided by SOA and

work flow management systems. Unlike SOA services, where services have to be

invoked explicitly, SPUs encapsulate reactive business logic and reacts on streams of

events.

To support SPUs at each layer of the model, Event Stream Processing Services

(ESPSs), ESPTs and Eventlets are introduced respectively at business process modelling,

execution and IT infrastructure layer. Mapping between ESPT and Eventlets takes place

at the execution layer. For SOA, services are the main building blocks whereas, for

an Event Driven Architecture (EDA), SPUs are the main building blocks as shown in

Figure 2.8.

EPC is popular for abstract modelling due to its features. BPMN is more powerful

Chapter 2. Literature Review 46

Figure 2.8: Stream processing units (SPUs) as basic building blocks of an event driven
architecture (EDA).

Source: (Appel et al., 2014)

in supporting both abstract and technical process models. Therefore, in Software AG

project, both of them are used. EPC for abstract business models and BPMN for

technical process models. To integrate SPUs with EPC and BPMN, an extension to the

modelling notations is needed to illustrate some features of SPUs as follows:

• Execution semantics: SPUs needs to be stopped after the event completed since

there is no automatic stopping after they started.

• Signalling: This is required for the continuous processing of SPUs.

• Event stream input and output: Event streams are the input for SPUs and output

is specified by the events produced by SPUs.

Event stream modelling can be done by using EPCs functions. An extension to

EPC is required to model SPU in EPC. ESPS to use EPC functions for event stream

processing and, Event Stream Specifications (ESS) to represent input and output in

event streaming are introduced. The Event Stream Processing Unit type represents the

technical part of SPUs.

Chapter 2. Literature Review 47

Order processing example is used to illustrate the application of EPC extension. A

SPU supported by ESPS is used to monitor the environment conditions, i.e. temperature

in a shipment. ESPS initialises an SPU with implicit and explicit completion, which

takes shipment monitoring events as input event screams. Implicit completion ends

when the shipment is completed. Explicit completion is confirmed after the shipment

completion by an additional process step. BPMN is extended to introduce ESSs for

EPCs to show input and output data in event streams, and ESPTs for modelling SPUs.

ESPT’s implicit completion is achieved with a modified conditional sequence flow

whereas, explicit completion is denoted by a dedicated signal. When the process is

completed either explicitly or implicitly, it comes to a stop reflecting a clean shutdown. It

is also possible to model an ESPT with both explicit and implicit completions combined

together.

According to the authors, BPMN events are not suitable for modelling SPUs with

event stream inputs and outputs. Even though BPMN contains task types containing

SPU related features, such as standard service tasks, business rule tasks, loop service

tasks and multiple instance service tasks, SPUs cannot be modelled with those. There-

fore, BPMN is extended for ESPTs. To illustrate the BPMN extension, the shipment

monitoring example already explained is used. In BPMN, ESPT is the shipment monit-

oring SPU. Shipment monitoring SPU receives inputs as streams of monitoring events.

In case of a violation of monitoring conditions, the monitoring SPU sends a message

concurrently indicating the violation, which triggers the exception handling process

with explicit completion. The monitoring ends with a stop signal after the shipment is

over.

For an implicit completion of a shipment, some condition should be matched such

as destination address, which is executed in the SPU. It is possible to model ESPTs with

implicit and explicit completions combined together as well. The default completion is

implicit. However, an explicit completion is triggered if for an instance, the customer

Chapter 2. Literature Review 48

cancels the order. Output event streams of shipment monitoring SPU indicates threshold

violations. On receipt of these events, Report Threshold Violation SPU in turn sends

warning reports by email if violation detection continuous. Reporting SPU completes

explicitly at the shipment arrival, whereas monitoring SPU triggers implicit completion.

Implicit completion is the default termination that takes place when the shipment

completes naturally. However, in case of a shipment cancellation, explicit completion

takes place. If a threshold violation has been detected, the monitoring ends. On

completion of the shipment monitoring ESPT, the goods are discarded and the customer

is reimbursed upon cancellation of the order.

The authors have introduced a model with run time infrastructure to facilitate event

scream processing. Event applets called ‘Eventlets’ are introduced for this purpose.

Runtime engine is extended for integrating business process execution engine. Event

stream processing logic is encapsulated within Eventlests. Figure 2.9 shows a basic

Eventlet structure.

Figure 2.9: Basic Eventlet structure: Eventlet metadata and Eventlet runtime methods.
Source: (Appel et al., 2014)

Sub streams of events in an entity instance is called ‘Sub Stream Attribute’ in

Eventlet metadata, e.g. shipment ID. Meta data also has other information such as

Chapter 2. Literature Review 49

‘completion condition’ for an example, ‘time out’. Eventlets can be created either

implicitly or explicitly. For implicit creation, the middleware makes an Eventlet instance

active for each sub stream attribute (e.g. for each shipment). For explicit instantiation,

Eventlets are being created manually by using a fixed sub stream attribute, e.g. a

particular shipment ID. Eventlet completion is specified implicitly by some condition

or explicitly by a command. In the shipment monitoring example, Eventlets detects

temperature violations. This is achieved by querying a database (at instantiation) and

retrieving temperature information for a certain shipment. Complex event processing

(CEP) queries can also be used for temperature violation detection. Authors state that

Eventlets can process couple of thousand events for a second.

In the case of implicit instantiation, an ‘Eventlet Monitor’ is being created by

the middleware. Eventlet instances are created as and when the events of new entity

instances take place. E.g. ‘new shipment’. Eventlets are identified as ’EsptName’ and

are stored in a repository. Java Message Service (JMS) is used for events distribution

by Eventlet middleware. JMS is capable of handling publish/ subscribe communication.

The model handles attribute value events and XML representation. To facilitate ESPT

execution, the Eventlet middleware is extended. As shown in Figure 2.10, a ‘Command

Bus’ connects and controls the Eventlet middleware and is programed as JMS queries.

‘Eventlet Manager’ has a web service interface, which is a Java Enterprise application.

Thesoftware AG’s ARIS is used as a platform for SPU modelling for EPCs and

BPMN. “ARIS is a business process platform for business process analysis, enterprise

architecture, and governance, risk and compliance.” ARIS supports modelling of pro-

cesses with EPCs and BPMN. The model uses ARIS Design Server 9.0 and the ARIS

Architect 9.0 for SPU modelling in EPCs and BPMN. New notations and connection

attributes for SPU modelling in EPCs and BPMN are introduced. ARIS server is

designed as a central repository for process models and process model components.

Automated execution of business process models is an objective of business process

Chapter 2. Literature Review 50

Figure 2.10: Eventlet middleware access via a web service.
Source: (Appel et al., 2014)

management. Authors believe they have introduced such a model to execute (M2E),

by providing the foundation for M2E by introducing SPUs to encapsulate event stream

processing. The extensions to BPMN facilitate for creating abstract process models

with SPUs. Even though it is possible to map processes with ESPT to BPEL, it does

not support complete mapping. Explicit instantiation and completion of ESPTs can be

mapped to BPEL whereas, ESPTs with implicit instantiation and completion cannot be

mapped to BPEL. Extensions to BPEL is proposed by existing literature to facilitate

this.

2.4.3 Framework: BPMN4WSN

The framework (Sungur et al., 2013), models sensors, actuators and intermediary

operations by incorporating a Wireless Sensor Network (WSN) in business processes

using BPMN. WSN is developed by adding sensors and actuators in a network with

remote sensing and actuating capabilities. A system model is created by scanning the

network. WSN process communicates by means of messages. As authors state, it is

possible to model a WSN with existing BPM standard, but with limitations. A meeting

Chapter 2. Literature Review 51

room ventilation process by using WSN is carried out as an example.

This process uses both sensors and actuators. Room number, start and end times of

the meeting and the desired CO2 level are the system inputs. Once the meeting starts,

sensors continuously detect the CO2 values in the room and the actuators change the

temperature to the predefined input level. The process continues until the meeting ends.

This process is modelled in standard BPMN initially and by extending BPMN as some

aspects of WSN cannot be reflected in standard BPMN. This process with extensions to

BPMN is named as BPMN4WSN. The extensions consist of WSN Task, WSN Pool and

Performance Annotations. These are designed by extending BPMN modelling elements

Service Task, Pool and Groups respectively.

• WSN Task: WSN Task represents the tasks in WSN process and is similar to

BPMN tasks, but consists of additional icons.

• WSN Pool: Processes in WSN are represented by WSN Pools. WSN Pool extends

the BPMN Pool. To distinguish the difference between the standard BPMN Pool

and the WSN Pool, WSN Pools are marked with a WSN icon. WSN Pools

illustrate WSN processes, making it separate from PBMN processes. This makes

it possible to execute the same process simultaneously at different locations inside

a WSN.

• Performance Annotation: This illustrates the performance aspects of the WSN.

BPMN makes it possible to group common attributes in a group. Inheriting

from this, WSN performance goals are defined. This completely satisfies the,

prioritising of performance goals, which is one of the requirements to be met

while modelling WSN.

Figure 2.11 illustrates a room ventilation process modelled using BPMN extensions.

Chapter 2. Literature Review 52

Figure 2.11: Room ventilation process with BPMN extensions, BPMN4WSN.
Source: (Sungur et al., 2013)

WSN has a collection of nodes, which link with each other. These networks are ad-

hoc because it should be possible to add or remove sensors to increase sensing, decrease

coverage or manage power issues. Therefore, to support this dynamic behaviour of

nodes, it is required to access nodes indirect. WSN operations are of two types, i.e.

local action and command action. In local action, the execution of an operation happens

locally at the nodes where they are initiated. Whereas, in command action the execution

takes place at remote nodes. Command actions are of dynamic nature and based on

runtime decisions. E.g. based on a local sensing activity, an actuating can take place in

Chapter 2. Literature Review 53

a remote node by a command. Local action and command action both comes under one

of the categories, sense, actuate or intermediary operation. E.g. sense operation sense

the environment for temperature, and based on the output data, the actuate operation

increase or decrease the temperature. The intermediary operation compares the sensed

value with desired level of temperature and takes the decision to increase or decrease

the temperature.

For these operations, 6-tuples are introduced. They are actionType, isCommandAc-

tion, actionPerformer, outputTarget, targetOperation, and returnOperation. A WSN

application can run on different locations at the same time by using different instances

of the same process. An example would be an air-conditioning system with WSN

covering multiple rooms. WSN application execution is distributed among nodes than

in a single node. This eliminates power failures and reduce power usage. Therefore, it

is required to distinguish the particular node, which execute the WSN process. WSN

nodes are subject to failures due to availability of limited resources such as battery

failures. To overcome these limitations, this application specific behaviour should be

taken into account when modelling BPMN.

WSN consists of event driven operations as well as periodic operations. Event

driven operations take place based on an event’s occurring (consuming lesser power)

whereas, periodic operations happen at a set time. E.g. checking if a door is open. For

example, in the event of opening a closed door, this information is communicated in

an event driven operation. Thus, in periodic operation, it checks if the door is opened

periodically even when it is closed. It should be possible to illustrate both these two

types of operations in a BPMN model. It should also be flexible to make minor changes

to WSN without affecting the model’s stability.

Drawbacks of using standard BPMN for modelling WSN and the benefits of using

BPMN4WSN with BPMN extensions are demonstrated by comparing against each

Chapter 2. Literature Review 54

requirement of WSN. In the extended model, Support for Indirect and Dynamic Ad-

dressing of Nodes is made possible by defining expressions which allows direct, indirect,

static and dynamic access of nodes whereas, in BPMN, only pool names can be used

as attributes to access nodes. Applying extensions, Support and Restrict User to WSN

Operation Categories is fully supported while BPMN has no support for sense, actuate

and intermediary operations. Support for Multiple Instances of the Same Process is

achieved by using tasks in a pool with extensions, whereas standard BPMN processes

are reflected by pools. In BPMN, there is no facility to achieve Distribution of Execution

Logic into WSN, however with extensions; this is possible by using orchestrationPer-

former of WSN Task. Standard BPMN does not support Prioritization of Performance

Goals, while with extensions this is achieved by applying parameters to each task and

also by adding performance goals at run time. Support for Event-driven Actions in

Modelling is achieved through extensions though standard BPMN does not distinguish

between event-driven and periodic tasks. The requirement, Models should be stable

on minor WSN changes is achieved by extended BPMN, although in standard BPMN

changes to WSN can only be accomplished by addition or removable of pools.

2.4.4 Framework: Things of IoT in BPMN

This framework (Meyer et al., 2015) models physical entity or the thing of IoT in a

business process by extending BPMN. A reference model (IoT domain model) defines

the main IoT components that can be mapped with BPMN elements. This model is

referred to as guidance for this work. According to IoT reference model, it should

be possible to transfer the main components of IoT meta-model to a BPMN specific

meta-model to incorporate IoT based modelling into business processes. According this

model, the main building blocks of IoT are:

• The device e.g. temperature sensor, which connects the physical world with

Chapter 2. Literature Review 55

digital word.

• The thing e.g. chocolate, which is a part of the physical environment.

• The native service e.g. sensing and actuating abilities, via which the connection

is established.

• The IoT Service e.g software components for connection.

The example used for modelling IoT elements with business processes is “ A Web

service shall measure the temperature of the physical entity chocolate by means of one

currently available device that is accessible via the Internet”. Three elements of BPMN

Meta model, which are suitable for modelling physical entity in business processes

are identified. They are, Text Annotation, Data Object and Participant. In modelling

physical entity the focus is on two main aspects, i.e. the process modeller’s ability

for graphical representation and machine readable output. While these are the main

requirements, the other requirements include, the physical entity cannot belong to a

message flow or a sequence flow, should not connect to any data association or process

element and inability to assign to any pool or lane.

Text Annotation is a subclass of Artifact.Artifacts in the BPMN standard which

facilitates presenting more information and available at machine-readable model. This is

process related without any effect on the message flow. However, this is not suitable for

representing physical entity. Therefore, in parallel to Text Annotation, a Custom Artifact

class is created by extending the class Artifact. This also come with the disadvantage

that it is assignable to a pool. Data Object is a subclass of ItemAwareElement and is

related to process execution, which is not a feature of the physical entity. Therefore, a

custom Item aware element to represent the physical entity is introduced. Participant

class, which is a subclass of BaseElement in the BPMN standard, is not suitable for

representing the physical entity because it is possible to represent it in a pool and can

Chapter 2. Literature Review 56

also be a part of a message flow. So that, a subclass of Participant is created to represent

the physical entity. However, this still has the limitation of being a part of the message

flow.

An assessment is carried out to find if the BPMN standard elements Text An-

notation, DataObject, Participant and the extended elements CustomArtifact, Custom-

ItemAwareElement and CustomParicipant are satisfying the requirements needed to

represent the physical entity. The Collapsed Pool, which can represent the Participant

element graphically, appears the most suitable. However, this also does not meet the

requirement because it can be linked to a message flow. As a better solution to represent

the physical entity, a complete change to the standard BPMN meta model by introducing

a new element is proposed.

Figure 2.12: Graphical process representation of physical entity.
Source: (Meyer et al., 2015)

A graphical element linked to the BPMN Collapsed Pool as well as a machine

readable element are introduced. Participant subclass (already introduced) but without

extending any BPMN class and also with enhanced features to meet all requirements

of physical entity is proposed. For the graphical representation, BPMN standard,

Chapter 2. Literature Review 57

Collapsed Pool is extended to represent the element Participant. Machine-readable

model is created without confirming to the BPMN standard. This new extension satisfies

the remaining requirement of not being a part of a message flow so that all requirements

needed for representing physical entity are achieved.

Figure 2.12 illustrates the graphical process model, where two separate pools are

used to represent the two participants, physical entity and the IoT process. The item

chocolate denotes the physical entity and the cow symbolises that anything can be taken

as a physical entity.

2.4.5 Framework: Crowdsourcing

This paper (Tranquillini, Daniel, Kucherbaev & Casati, 2015) introduces micro-task

crowdsourcing processes, to BPMN. Crowdsourcing is a way of outsourcing work to

many people (a crowd), on a crowdsourcing platform such as Amazon Mechanical Turk

or CrowdFlower often for a reward in return. These are called crowdsourcing processes,

which comprise of multiple tasks, actors and operations. These micro-tasks can be

completed in parallel making it faster and efficient.

A scenario of reimbursing travel expenses of company employees is taken as an

example in illustrating crowd sourcing processes. The receipts are scanned and uploaded

to an online crowdsourcing platform. A request is sent out for offers to transcribe them

one by one. For each two transcriptions, in another task, the crowd request the workers

to check for their accuracy and to fix if there are any mistakes. A worker needs to handle

two items together at a time since this process takes lesser time. Yet in another task,

the transcribed receipts are categorized into their relevant types such as hotel, flight,

food, etc. A worker handles four transcriptions together since this is even simpler. After

transcription, parallel execution of these two tasks are possible. Upon completion of

this process the admin is notified by an automatic email.

Chapter 2. Literature Review 58

BPMN does not fully support modelling crowdsourcing processes to achieve the

maximum benefits it offers. BPMN model consists of two main constructs, tasks and

control flow connectors. Tasks are automatic, consist with start and end events. Multi

instance tasks, which also have start and end events can execute in either parallel or

sequence. However, the end event occurs only when all instances finished executing.

For crowdsourcing this behaviour of the BPMN tasks is not suitable since multiple tasks

instances needs to be executed in parallel without waiting for an end event. An example

would be to upload a set of images and to label them. These two tasks should run in

parallel. However, with BPMN tasks, the labelling only starts after the image uploading

ends. Therefore, to model crowdsourcing processes, the authors propose an extension

to BPMN.

Authors propose an extension to BPMN by introducing two new elements, crowd

task and a streaming connector. A crowd task consists of some micro tasks collectively

performed by a crowd of people on a crowdsourcing platform. Parallelization benefits

are achieved through streaming the finished micro tasks, while other instances of the

particular crowd task are still executing. Streaming connector supports screaming data

grouping, splitting and multiplication and the data transfer between the process and

crowd tasks. Data screaming is achieved through middleware between BPMN and the

crowdsourcing platform. This monitors micro task end processes and grouping, splitting

and multiplying of completed micro task instances. When these task instances end, the

monitor sends a message to the process engine so that it can start with the next micro

task. Two crowd tasks are connected by streaming connector and they can connect

single or multiple times at run time depending on the data transformation function.

Streaming data transformation function can be of many types, flat, group, split or

multiply. Flat indicates streaming without any data transformation. Group implies to

stream in groups. Split defines to stream as they are without any data transformation

and to separate the output into the elements they were before. Multiply is similar to split

Chapter 2. Literature Review 59

except that the output is copied to separate events.

To transform crowdsource specific modelling aspect to BPMN, the authors consider

three possible methods. First is to create parallel branches, each executing a single

task instance of the crowdsourcing process. Disadvantages of this being that the model

will be unmanageable when there are several tasks available for streaming and can be

expensive. The second option is Multi-instance sub processes. This one overcomes

the issues of first method and is similar in behaviour except that the sub processes are

executed together. The third one is, Non-blocking event sub processes, which limits the

sub processes with a non blocking event sub process. Even though the option three is the

best one, the second option is chosen since the third option is not supported in standard

BPMN. The model transformation logic also helps data transformation functions i.e.

flat, group, split and multiply already explained.

Figure 2.13: Architecture of runtime environment for crowdsourcing processes with
streaming support. The middleware deploys micro-tasks and manages events and data.

Source: (Tranquillini et al., 2015)

Software architecture of the crowdsourcing process is depicted in Figure 2.13. This

software process model of the crowdsourcing process comprises of three parts. The

BPMN engine, which executes the process, the streaming middleware that controls

Chapter 2. Literature Review 60

the events and data transformation, the crowdsourcing platform, Crowdflower, which

handles the micro-task instances. After transforming the process model into an execut-

able model, it is deployed in the BPMN engine. Business process engine executes both

human tasks and machine tasks, while crowdsourcing platform executes the crowd tasks.

User interface design is handled inside the crowdsourcing platform. The platform also

enables programming access via APIs.

The extensions to BPMN model are implemented in a case study. Three templates to

use in Crowdflower are created. These templates accept input data and outputs the results

needed by the processes. The process evaluated by testing three times with streaming

and another three times without streaming by uploading forty receipts manually. This

highlighted the streaming benefits. With streaming, within ten minutes, 90 percent

of receipts of all three crowd tasks are completed whereas, only transcription level is

completed without streaming. Moreover, with streaming the first receipt completes all

three tasks in a couple of minutes while without streaming it takes about one hour and

30 minutes to complete the first receipt.

However, with screaming it takes more time to complete all of the receipts when

all receipts without streaming gets completed faster. According to existing research,

the reason for this being the users in a crowdsourcing platform tend to select first

two pages of micro tasks. This can be considered as a disadvantage. Furthermore,

for some last micro task instances, the final stage is not completed specially for the

receipts with streaming. In addition, there are some disadvantage to the implementation.

Sub processes cannot be introduced at run time so that at design time this should be

accommodated for. It is possible to divide streaming connectors into branches although

it is not possible to re-connect them. Only BPMN related processes can be controlled

whereas, how tasks are handled inside the crowdsourcing platform is beyond control.

Therefore, for example, the instances when a few micro tasks not completed is not

controlled. These disadvantages should be insignificant compared to the advantages of

Chapter 2. Literature Review 61

crowdsourcing.

2.4.6 Framework: Event Element for IoT

Authors in this paper (Chiu & Wang, 2015) state that BPMN events can represent IoT

aspects better though many researchers focus on BPMN elements other than events

when extending BPMN 2.0 for business process modelling for IoT. Majority of the

work is based on extending BPMN elements activity, pool or lane, artifact, etc. This

work extends BPMN element event for business process modelling for IoT.

According to BPMN 2.0 definition, an event is something that takes place during

a process lifecycle usually triggering an action or result. This behaviour of events are

closely related to IoT applications but traditional BPMN 2.0 events are not adequate

enough for representing IoT related processes. Characteristics of IoT are evaluated for

the purpose of finding out the requirements for extending BPMN element, event.

As event either triggers something or results something, most IoT based scenarios

represent characteristics of events. For example, when air conditioning a room, once

all conditions become true for starting the air conditioner, the process will start and an

actuator turns on the air conditioner. Two types of IoT architectures are considered for

the modelling example of events. ‘Cloud centric IoT’ where all IoT elements such as

sensors, actuators and services are connected to each other in the cloud by providing a

web service interface to internet. The second architecture is an ‘IoT gateway’ based, in

which, sensors and actuators register to the IoT gateway initially and communicate with

each other afterwards. The authors in theit modelling example uses the IoT gateway

based architecture.

Nine BPMN event element extension requirements are identified through eight

weaknesses in BPMN lacking support for business process modelling for IoT.

• Entity based concept – process modelling should adhere with entity based concept.

Chapter 2. Literature Review 62

In a simple IoT aware process for an air-conditioning a room, the start event

triggers simply when the room temperature is at a certain predefined value but as

the process continuous, the sensors monitor the room temperature. Therefore, at

design phase, some entity will define the start event and at run time, the control

will pass to sensors.

• Distributed execution – processes should be capable of distributing their execution

among many devices. IoT based processes can run on multiple gateways with

collaboration among them. In an IoT application of air conditioning a room, the

room is located at gateway 1 and the air conditioner is controlled by gateway 2

making the two gateways communicate with each other.

• Interactions – IoT aware business processes introduce two more interactions,

device interactions and service interactions. For example, temperature is detected

by a temperature sensor or obtaining average temperature by a web service.

• Distributed data – IoT applications may distribute data over many data storages.

For example, temperature sensors located in a room and to obtain the average of

all, the data should be collected from all sensors concurrently.

• Scalability – sensors and actuators in an IoT application may increase or de-

crease for some reason such as due to a failure in the device, requiring a control

mechanism to handle these situations.

• Availability/ mobility – In IoT applications, sensors, actuators and physical

objects should be able to move freely. For an example, the process of temperature

detecting by sensors start only when a person move into the room.

• Fault tolerance – a business process heavily relies on availability of devices,

services and the communication technology. In an IoT application, device availab-

ility is not always certain. Faults can occur due to two reasons, unstable networks

Chapter 2. Literature Review 63

and faults of devices such as sensors and actuators. This makes two requirements,

fault tolerance of network crashing and faulty devices.

• Quality of information – Quality levels of the information provided by the devices

and services to business processes should be in certain levels of accuracy. In an

IoT application, required accuracy level of information differs, depending on the

context.

BPMN conditional event, message event and error event are extended to represent

three new events and a new event to represent location is introduced. The event definition

is also extended to facilitate the above identified requirements, entity concept, fault

tolerance and quality of information.

BPMN conditional start event extension is considered more suitable for representing

situations of IoT related processes such as collecting data from devices or physical

entities (i.e. temperature at a certain value), status of a device or physical entity such as

fault in a sensor and total number of devices or physical entities, for example number of

cars exceeding a certain level in a car park.

The BPMN message event is extended to explain the interactions among process

engines better. Two main interaction types are catch and throw, i.e. receiving a message

from a process and sending a message to another process. For example in an IoT

scenario, a message is passed from one IoT gateway to another when the temperature

is at a certain value to start air conditioning a room. Extension of BPMN error event

facilitates fault tolerance of IoT devices such as the actuator realizing some fault with

an air conditioner while trying to start it and reporting to maintenance staff in a message.

The new event created for location better represents the IoT location awareness feature.

Location event represents situations such as position of a device or a physical entity and

moving of a device or a physical entity. Event definition extension covers the entity

concept, fault tolerance levels and information quality.

Chapter 2. Literature Review 64

Figure 2.14: Completed temperature controlling process model with event extension of
BPMN 2.0.

Source: (Chiu & Wang, 2015)

A sample IoT application models a temperature control process, which uses the

introduced IoT modelling elements. This process starts when there are two start events

that are satisfied, i.e. at least one person in the room and the room temperature is

between a predefined range of values. When the conditions are true, the start event

fires and gateway of the room sends a message to another gateway, which controls

the window closing to request to close the windows. Once the first gateway receives

the confirmation of window closure from the second gateway, the control is passed to

an actuator to turn the air conditioner on. If the air conditioner is faulty, a message

is passed to the maintenance staff for repair. The fans are turned on concurrently by

Chapter 2. Literature Review 65

another actuator task. This process is illustrated in Figure 2.14.

2.4.7 Framework: IoT Devices as Resources

This paper (Meyer, Ruppen & Magerkurth, 2013) addresses integrating IoT devices with

native software components as a new resource type in business processes as no sufficient

attention is given to this area by past researchers. An IoT reference model defines the

main building blocks of IoT. They are the physical entity or thing (e.g. flower), device

(e.g. sensor), native service (e.g. sensing capability provided by the device’s software)

and IoT service (e.g. web service interface). The authors adhere to this in their work.

IoT integration can add value to business solutions such as ERP systems and they try to

integrate IoT with ERP systems. ERP systems are based on planned business processes

with human resources, whereas IoT comprises of vast number of devices as resources

based on web and constantly reacting to dynamic environment and adapting processes

accordingly. As traditional business processes do not provide the facility to model

IoT aware processes directly, this work attempts to integrate IoT devices as resources

in business processes and build an IoT aware business process model. In trying to

represent IoT devices and native services as resources in IoT aware process models,

the authors come up with some contributions. They are, analyse and identifying IoT

domain concepts, illustrate IoT device and software components in a swim lane and a

resource model, integrate a general semantic model, extend the graphical model and

test the graphical model in practice by extending a business process modelling tool.

In introducing the process model, authors propose extensions to BPMN 2.0 notation

to include IoT devices and native software components. There are two challenges.

First, the BPMN specification does not speak about IoT devices or native services.

Second, there are two types of resources, IoT device and its native services, which are at

different levels, are to be dealt with at the same time. BPMN standard does not facilitate

Chapter 2. Literature Review 66

concurrent dealing of different resources at different levels in a process model.

Unlike physical entity, an IoT device is a process performer like a human user who

is a direct participant in the process. The other process resource is the native service or

the software component of the device. In the graphical model, a separate pool represents

IoT Process with one lane for normal processes and another lane containing IoT Device.

IoT Device lane consists of a Sensing Task.

In the BPMN 2.0 machine-readable model, the authors have introduced four new

classes trying to be in consistent with BPMN 2.0 standard, by overcoming the challenges

they faced when positioning them. A new class IoTDevice is introduced as a sub class

by extending the Lane class. Lane is a sub class of BaseElement so that the class,

IoTDevice inherits all attributes and associations of the class BaseElement. The class

ResourceRole is extended introducing a new class named NativeService under the

class Performer to represent the device’s software resources. Since Performer is a

sub class of the class ResourceRole inheriting attributes and model associations of the

parent class, the new class, NativeService inherits all those features as well. Third

new class, IoTParameterDef is introduced in parallel to IoTDevice and this is used for

parameter definitions by IoTDevice class. This class contains two attributes, name and

extParameterRef. The attribute extParameterRef is used for referencing the parameters

since those are not stored in BPMN model. The final new class, IoTAssignment is used

for defining the resource assignment of IoT device and native services. The process

model consists of both graphical and machine-readable aspects and it uses IoT as well

as non IoT process tasks.

The authors carry out an implementation by extending a web based editor tool

to illustrate a modelling example in practice. Figure 2.15 illustrates this process. A

dynamic pricing process of an item in a store is modelled as an example. This application

uses the two extensions to BPMN 2.0, IoT device and native service. This process

is modelled by using a BPMN editor, which was extended to incorporate these IoT

Chapter 2. Literature Review 67

Figure 2.15: Dynamic pricing process with the two IoT Devices temperature sensor and
ESL

Source: (Meyer et al., 2013)

modelling elements. This example uses a flower, an orchid as a perishable good in a

store and its quality is monitored by measuring the temperature and its price fluctuates

according to the measured temperature, i.e. if the temperature is high, the price on

an electronic shelf label (ESL), automatically is reduced. This example uses two IoT

devices, a temperature sensor to measure the temperature of the flower and an actuator

to increase or reduce the price accordingly. The IoT services or the native services

in this scenario are measure temperature and update price. The process model uses a

separate pool for representing physical entity, i.e. flower. The pool icon cow is borrowed

from a past research in representing this. Both IoT devices, the sensor and the actuators

are kept in two separate lanes and the normal process is in a separate lane of the same

pool.

Chapter 2. Literature Review 68

2.4.8 Summary

Table 2.1 illustrates each framework we reviewed in the literature against IoT mod-

elling elements they proposed for business process modelling. This table is adapted

from (Chang, Srirama & Buyya, 2015).

IoT mod-
elling
elements

uBPMN SPUs BPMN4
WSN

Things
in

BPMN

Crowd-
sourcing

Event
Ele-

ments

IoT
Devices

Sensor 3 3 3 3 3

Actuator 3 3 3 3

Reader 3

Collector 3

Event
streaming
task

3

Intermediary
operation

3

Specific
data object

3 3

IoT device
and native
services

3

Crowd-
sourcing
task

3

Location
awareness

3

Physical en-
tity

3 3

Frameworks: (1).uBPMN - (Yousfi et al., 2016), (2).SPUs - (Appel et al., 2014), (3).BPMN4WSN -
(Sungur et al., 2013), (4).Things in BPMN - (Meyer et al., 2015), (5).Crowd-sourcing - (Tranquillini et
al., 2015), (6).Event Elements - (Chiu & Wang, 2015), (7).IoT Devices - (Meyer et al., 2013).

Table 2.1: IoT modelling elements for business process modelling introduced by each
framework

uBPMN (Yousfi et al., 2016) framework incorporates ubiquitous technologies into

business processes. This models IoT elements sensor, reader, actuator and smart

object by extending BPMN element task and data input respectively, without changing

BPMN concepts and reflecting the additions in BPMN meta model. The case study,

Chapter 2. Literature Review 69

‘time banking’ application process models the extended BPMN elements, sensor task,

collector task and smart object. The system is deployed both web based and as a mobile

app using the same web services.

The case study covers a scenario where people trade services in favour of money

and tries to demonstrate the advantages of incorporating ubiquitous technologies with

BPMN. The request lists presented to service providers are filtered with most suitable

requests based on his location (context-awareness), time to fulfil request, etc. For an

example, the request for ‘gallon of milk’ is included in the list of request provider who

is already in a supermarket. Carrying out an implementation using the process model

and conducting some tests distinguishes this study. However, the reader task introduced

has not been incorporated in the process model and the implementation tests are limited

to test cases.

Event stream processing in framework SPU (Appel et al., 2014) using event stream

processing units (SPUs) introduces a concept for continuous reading of stream of events

using sensors. The example illustrates how a shipment monitoring SPU, which receives

streams of events as input would measure temperature during shipment to keep it under

threshold limits and signal temperature violations if there are any. The process can

terminate with either explicit completion by a given condition or implicit completion

or the combination of both. In case a violation is detected, the exception handling

process is called which, brings the process to an end explicitly. The customer can cancel

the order with a refund rather than receiving spoiled or damaged goods. This result

in maintaining business reputation and customer satisfaction. The process model is

executed as well. However, the model comes with some technical limitations such as

BPEL presently does not support implicit insanitation and completions of event stream

processing tasks (ESPTs).

Real world interactive situations represented through events are closely related to

IoT. Therefore, this work would immensely benefit in modelling IoT related business

Chapter 2. Literature Review 70

processes.

Moreover, at the execution layer of the business process implementation, the authors

introduce EDA (event driven architecture) for SPUs. This can be considered important

since IoT related business applications being interactive with the environment through

devices such as sensors and reacting to event streams are not well supported by web

services and SOA (Barros et al., 2012). This is due to two reasons. Primary reason

being that the web services are based on request respond mechanism which is pull

based whereas IoT based applications mainly require push based mechanism due to its

reactive nature to occurrence of environmental events, etc. Second reason is that web

services hide the middleware they run on.

BPMN4WSN (Sungur et al., 2013) uses BPMN to integrate sensors and actuators

to a business process model by means of a wireless sensor network. The goal is to

bridge the gap between technical experts who desire to build WSN and the domain

experts who design business processes. The application demonstrates a meeting room

ventilation process with WSN. Upon starting the meeting, the sensors continuously

detect the CO2 levels in the meeting room and reports until the meeting is over. The

actuators adjust the temperature level to a desired level, which was a predetermined

input to the process at start. The process was modelled with standard BPMN and by

extending BPMN illustrating how sensors, actuators and intermediary operations can

be incorporated into BPMN. With extensions, the process became simpler and more

efficient.

However, there is some possibility that this extension to BPMN could result in some

confusion among domain experts. The model comes with some limitations as well.

It is a challenging and a difficult task to create WSN since development requires low

level programming languages. Some extensions to the model, e.g. the way pools are

used in expressing processes can create confusion when understanding standard BPMN

elements. Moreover, BPMN4WSN is not platform independent since the tool can only

Chapter 2. Literature Review 71

generate code for sensors based on the open source operating system for IoT, Contiki

OS. The model is not tested enough in practical environments, though it is to be tested

in areas such as logistics and predictive maintenance in the future.

The framework, Things of IoT in BPMN (Meyer et al., 2015) demonstrates how

the thing of IoT or the physical entity can be better reflected in business processes.

For representing physical entity with BPMN, three elements of BPMN model, text

annotation, data object and participant are selected. When these elements could not

satisfy all identified requirements in representing physical entity, each base class is

extended to create custom classes. A test result indicates that custom participant class

(collapsed pool) as most suitable for representing the physical entity in the standard

BPMN. (This information would become useful for someone who would want to model

physical entity without extending BPMN.)

Since this does not fully satisfy all requirements in representing physical entity, a

fundamental change to the BPMN meta model is proposed. That is a separate graphical

element linked to BPMN collapsed pool and, a machine readable element extending

the participant subclass. In the graphical representation of the physical entity, the

symbol ‘cow’ indicates that the physical entity can be a living being. This proposal is

argumentatively viable except for the extensions are not conforming to BPMN standards

and the consequences could be considerable.

Crowdsourcing (Tranquillini et al., 2015) framework proposes an extension to

BPMN to accommodate crowdsourcing processes. A practical example of receipts

feeding to a crowdsourcing platform demonstrates that streaming crowd tasks are more

efficient than non-streaming tasks. Therefore, BPMN extensions are applied to model

streaming crowd task processes.

Tasks and control flow connectors of standard BPMN is initially considered for

modelling crowdsourcing processes. BPMN tasks has clearly defined start and end

Chapter 2. Literature Review 72

events and facilitate the runtime execution of multi-instance tasks in parallel or sequen-

tial. Crowdsourcing requires task instances to run in parallel. Even though the BPMN

tasks have parallel execution, their end events limits obtaining the streaming benefits

from crowdsourcing because one task has to end for the other to start.

Task instance streaming for micro-task crowdsourcing is a useful technique for

business processes. However, this is platform dependent as it is only tested on open-

source BPM platform, Activiti, and only a few micro tasks are used. The authors intend

to stress test with some thousands of micro tasks and carry out experiments to find out

the reasons for some micro tasks taking a long time to finish.

Authors in Event Element for IoT (Chiu & Wang, 2015) extend BPMN element

event to facilitate business process modelling for IoT. The argument is that events reflect

the characteristics of IoT better. As extensions to BPMN three event elements and

one new modelling element representing location are introduced. The new events are

conditional event, message event and error event. Context awareness is an important

feature in IoT applications, therefore the new location event can be considered as an

important addition. The modelling example uses all BPMN event extensions proposed

as IoT modelling elements. For modelling the sample application process, an actuator

task modelled by existing research was borrowed to use with the event extensions

introduced, making the process more complete.

The framework, IoT Devices as resources (Meyer et al., 2013) proposes two ex-

tensions to BPMN 2.0, IoT device and the native service of IoT reference model. The

extensions are illustrated in both graphical model and machine-readable model. The

example models a sensor and an actuator as an IoT device. Though there is a statement

of ERP system integration, the sample process model is not adequate in illustrating

the IoT application in ERP systems. However, the authors have gone to an extend to

practically implementing the modelling extensions to a BPMN editor, which we have

not come across elsewhere in our literature review. A sensor task and an actuator task

Chapter 2. Literature Review 73

are added to the editor’s toolkit as BPMN extensions. Existing BPMN editors already

provide a pool and lanes and labelling each lane accordingly. The separate pool uses in

representing physical entity contains the icon cow that is borrowed from a past literature

work.

Overall, one common limitation in most works are that the models are not tested

enough to see how their extensions would affect the standard BPMN, and the domain

experts who design the business model. However, it is apparent that all have contributed

in representing IoT modelling elements in business processes one way or the other.

In comparison, we introduce more IoT modelling elements and model them in our

case study example. Moreover, we extend an existing web based BPMN editor to

incorporate all modelling elements we have proposed as extensions to BPMN and an

extra element, physical entity. We demonstrate the capability of our editor by practically

modelling these elements in an IoT related process using this tool. Moreover, this

editor incorporates an XPDL editor and we extend this XPDL editor as well to include

our extensions. We generate XPDL code to store our IoT related business process

model. Only one work (Meyer et al., 2013) has practical extended a BPMN editor tool.

However, the extensions are limited to two new task elements, sensor and actuator and

no specific method of storing and distributing the model, which we do through XPDL

as already mentioned.

2.5 Conclusion

This chapter considered some literature related to business process modelling for IoT

and mainly dedicated to discuss IoT modelling frameworks. We reviewed seven chosen

IoT modelling frameworks, which integrate IoT modelling elements into business

processes. We discussed each work in detail empathising on their contributions for

business process modelling for IoT. Overall, they have identified IoT modelling elements

Chapter 2. Literature Review 74

sensor, actuator, reader, collector, event streaming, intermediary operation, specific

data object, physical entity and, location awareness, crowdsourcing, IoT device and

native service representation in business process models. In the summary section, we

compared each framework with IoT modelling elements introduced by them in a table.

Furthermore, we discussed each work by critically reviewing and highlighting the

contributions.

Chapter 3

Running Scenario and Requirements

Derivation

3.1 Introduction

This section consists of four subsections. In section 3.2, a running problem scenario is

introduced. A part of supply chain management is taken as the problem scenario, mainly

highlighting the inventory part of it. This example can be considered as a typical work

scenario, which is capable of covering the key aspects of IoT modelling elements. The

business process model of the problem scenario is modelled and illustrated in BPMN.

In section 3.3, we identify requirement elicitation of business process modelling

for IoT. We derive business process modelling requirements for IoT using the problem

scenario introduced in the previous sub section. We identify seven new IoT modelling

elements as business process modelling requirements for IoT, which answers our

first research question. We propose UML class diagrams to better illustrate these

requirements with their attributes and relationships. Requirements, which are illustrated

as UML classes, are further broken down into sub classes wherever applicable. As we

have found different groups of characteristics for certain requirements, we categorise

75

Chapter 3. Running Scenario and Requirements Derivation 76

Deliver Goods

Receive GoodsPurchase Order

Supplier
Order Delivery

Customer (Inventory
Management)

Figure 3.1: Part of a Supply Chain Management process

these and illustrate in diagrams highlighting common and shared features among these

categories. Subsection 3.4 concludes our work.

3.2 Problem Scenario

IoT can affect the whole process of supply chain management, i.e. the manufacturing,

transportation, warehousing and selling (Sun, 2012). The problem scenario we introduce

in this section is based on part of supply chain management and the flow of the process

is as follows.

A company’s inventory control system triggers a purchase order request to the

purchasing department when the stock reaches its re-order levels. Upon receiving this

request, the purchasing section in turn issues purchase orders to selected suppliers with

relevant re-order quantities. Once the suppliers receive these orders, they deliver the

goods. This process is illustrated with symbols in Figure 3.1. The overall process is

modelled in BPMN and illustrated in Figure 3.2. BPMN element Text Annotation is

used to explain the IoT technology integration in each sub process of this scenario. The

sub processes are expanded to demonstrate the use of IoT modelling elements in each

of them. The business process modelling requirements for IoT are identified by using

Chapter 3. Running Scenario and Requirements Derivation 77

C
us

to
m

er

Pu
rc

ha
si

ng
In

ve
n

to
ry

Su
p

p
lie

r

Inventory Checking Update Stock

Stock at Re-Order Level

Request Re-Order

Receive Goods

Receive Order request Deliver GoodsProcess Order

Process Re-Order

Stocktaking using
Barcode Scanners and

RFID Readers

Goods in transit
tracked by using Cloud
GPS Technology

Figure 3.2: Problem Scenario process modelled in BPMN

R1.. Rn as identifiers. Each requirement is explained in detail in the next section.

Stocktaking can be conducted in several methods. A hand held device with a built-in

barcode scanner and a RFID reader can read inventory in a store using barcodes or RFID

tags. The device is programmed to store item information such as item code, description,

location, and quantity. For reading stocks with barcodes, the barcode scanner is taken to

a location in the store and scans the location barcode and each container of items in the

location with barcodes. Quantity for each item category is fed to the device. Once all

items are counted, the device it taken close to a PC in the store, which is programmed to

scan nearby devices so that the information stored in the hand-held device is transferred

to the inventory database stored in the PC updating the stock levels. Products with

RFID tags can be read at once, which are in the working radius and update the inventory

Chapter 3. Running Scenario and Requirements Derivation 78

Su
pp

lie
r

Receive Order request

<R1: Sensor>
Sense Temperature

<R5: Event screams>
Environment condition events

SPU monitor
environment

conditions

<R2: Actuator>
Decrease

Temperature

<R2: Actuator>

Increase Temperature

<R6: smart object>
Cloud GPS

SPU detect issues

<R5: Event screams>
Deviation events

SPU detect violations

Report Issues

Inform normal
delivery

Prepare Delivery

Deliver Order

Process Order

Goods in Transit

Figure 3.3: Deliver order sub process in the problem scenario expanded

Chapter 3. Running Scenario and Requirements Derivation 79

C
us

to
m

er

Arrange Inventory
Check

Complete Inventory
Check

<R3 Barcode Reader>
Scan Barcodes

<R3: RFID Reader>
Read RFID

<R6: Smart Objects>

Barcodes

<R6: Smart Objects>
RFID tags

Receive Order

Update Stock

<R4: Collector>
Collects Re-order Level

Information

Request Re-Order

<R7: Intermediary

operation>
Decide on re-order

At Re-Order Level

Inventory Checking

Figure 3.4: Inventory checking sub process in the problem scenario expanded

database the same way. Similarly, when a truckload of items with RFID tags arrive at

the store, the full load can be read at once using RFID technology and update the stock

levels.

When the stock reaches their re-order levels, this automatically indicates by retriev-

ing information from the inventory database and the inventory control system can issue

re-order requests to the purchasing department for the items at their re-order levels.

The BPMN diagram for Inventory checking sub process is expanded and illustrated in

Figure 3.4. The purchasing department selects suitable suppliers, generate, and send

purchase orders to those suppliers with relevant re-order quantities.

Chapter 3. Running Scenario and Requirements Derivation 80

Upon receiving purchase orders from the customer, the supplier in turn will deliver

goods. RFID technology together with Cloud based GPS will track and monitor the

goods in transit for traffic conditions, etc., affecting the transit time. Temperature sensors

will continue to check for environment conditions during the shipment to maintain the

quality of goods in transit. The BPMN diagram for the sub process, Deliver order is

expanded and shown in Figure 3.3.

Once the customer receives the goods, stocktaking as already described, takes place

updating the stock levels in the database.

3.3 Requirements Derivation

In this section, we explain the seven new business process modelling requirements for

IoT identified by using the problem scenario introduced in the previous sub section.

The requirements are linked to the sub processes modelled in BPMN, and illustrated

in Figure 3.3 and Figure 3.4. Each requirement is explained first by introducing the

requirement, followed by its uses in applications and finally, describing in what stages

of the problem scenario it is being used.

In Figure 3.5, class diagram for business process modelling requirements for IoT is

illustrated.

3.3.1 Requirement 1 (R1): Sensor as the Business Process Model-

ling Requirement for IoT

Sensors are popular in IoT systems. Sensors collect context information from the

environment acting as input transducers. (Vladimer, 2015) states that “A sensor

transforms interesting, useful energy into electrical data". Camera and microphone in a

smart phone are examples of simple sensors. Sensors detect events or changes such as

Chapter 3. Running Scenario and Requirements Derivation 81

BP modelling Requirements for IoT

Sensor

Intermediary Operation

Reader

Actuator

Specific Data Object Event Streaming

Event stream processing

Collector

Source/ target for sequence flow

Physical entity representation in BPMS

Range
Accuracy
Sensitivity
Selectivity

Response and Recovery Time
Resolution

Linearity
Precision

Hysteresis

Calibration

Noise
Drift

Name: String

Active/ Passive
Simple/ Smart

Event stream functionality

Read Range
Processor Capacity
Wireless Information Tracking
Capturing Information

System Response Time

Speed

Saturation
Efficiency
Strain
Stress
Force

Deadband

Id: string

Raw context data processing

IsCollection: Boolean
Documentation
ExtensionDefinitions
ExtensionValues

Reusability

Source/target of a message flow

Atomic activity

Encapsulate application logic
Event stream logic

Figure 3.5: UML class diagram for business process modelling requirements for IoT

Chapter 3. Running Scenario and Requirements Derivation 82

temperature, heat, sound, pressure and motion in the physical environment and provide

relevant outputs. Most of them produce digital, mostly electrical outputs by taking

analog inputs often requiring analog to digital converters. They collect data from any

location at any time and transmit them real-time via IoT networks (Rayes & Samer,

2017).

Sensors can be active and passive. In active sensors, the signals they produce are

reflected back to the sensors themselves, whereas passive sensors react to signals they

receive such as sounds and heat. Example for active sensors are radar, GPS, x-ray and

infrared and passive sensor examples are electric, heat, chemical and photographic

(mpls.com, n.d.).

Sensors can also be categorised as simple or smart. Smart sensors are a type of

sensors and, at their minimum, they comprise of a sensor, microprocessor and some

communication connectivity. They process the inputs they take from their environments

before releasing them as outputs (Rouse, 2015). Smart sensors provide additional

functionality such as filter duplicate data and notify IoT gateway upon meeting specific

conditions, thus needing certain programming logic in the sensors (Rayes & Samer,

2017). Smart sensors are an important part of IoT applications, particularly in business

applications such as supply chain management (O’Donnell, 2017). Among other uses,

these sensors have three main purposes, namely identifying items, locating them and

measuring environment conditions. Sensors of this category detect the status of products

being shipped throughout the shipment process and report any deviation in temperature

or quality via messages. What is more, sensors with help of Cloud GPS services detect

any delays or unexpected incidents in transportation in advance so that prompt decisions

are feasible.

Retailers in their businesses use proximity sensors to trace customer movement

and promote products by sending discount coupons to their phones. In the same way,

sensors have become very useful in transporting goods. In agriculture, sensors such

Chapter 3. Running Scenario and Requirements Derivation 83

Temperature sensors

Light sensors
GPS receivers
Vehicle on-board
diagnostics
Files

Product-specific data

A

C
B Water quality sensors

Chemical/ smoke and gas sensors

Flow sensors
Imaging sensors
Noise sensors
Air pollution sensors

Speed sensors

Proximity and
displacement sensors
Pressure sensors
Level sensors
IR / infrared sensors

Moisture and
humidity sensors

Figure 3.6: Categories of Sensor Types

Chapter 3. Running Scenario and Requirements Derivation 84

as pressure sensors, temperature sensors and water quality sensors are used. Pressure

sensors are used to detect the water flow through pipes and reduce water wastage and

temperature sensors measure the temperature of plants, soil and water. Similarly, in

manufacturing sensors are used for quality management by incorporating them in the

machines so that if there is any change in the required quality levels, the sensors will

detect them e.g. temperature sensors measure the temperature of machines.

In the problem scenario we introduced in subsection two, temperature sensors of

smart sensor category are used to detect temperature in the environment while shipment

is on its way from the supplier to the customer. Sensors keep monitoring temperature to

maintain the quality and condition of the goods while transportation and any violations

are reported back to suppliers by using Cloud GPS technology.

There are various types of sensors, which can be used in IoT applications. (Rayes &

Samer, 2017) categorises sensors into eleven types. They are temperature sensors, pres-

sure sensors, flow sensors, level sensors, imaging sensors, noise sensors, air pollution

sensors, proximity and displacement sensors, infrared sensors, moisture and humidity

sensors, and speed sensors. Sensor characteristics they identify are data filtering, min-

imum power consumption, compact, smart detection, high sensitivity, linearity, dynamic

range, accuracy, hysteresis, limited noise, wide bandwidth, high resolution, minimum

interruption, higher reliability and ease of use. According to (Tracy, 2016) sensor types

for many IoT use-cases are temperature sensors, proximity sensors, pressure sensors,

water quality sensors, chemical/smoke and gas sensors, level sensors and IR sensors.

(Biron & Follett, 2016) identifies sensors as, temperature sensors light sensors, mois-

ture sensors, GPS receivers, vehicle on-board diagnostics, files, and product-specific

data. (bootcamplab.com, 2017) describes sensor characteristics as range, drift, sensitiv-

ity, selectivity, resolution, response and recovery time, linearity, hysteresis, calibration,

full-scale output, precision and accuracy. Whereas, according to (Kalantar-Zadeh, 2013)

sensor characteristics are accuracy, precision, repeatability, reproducibility, stability,

Chapter 3. Running Scenario and Requirements Derivation 85

Accuracy
Sensitivity
Resolution
Linearity
Hysteresis
Range Repeatability

Reproducibility
Stability
Error
Minimum detectable signal

Calibration Curve

A

C
B

Sensitivity
Resolution
Linearity
Hysteresis
Full-Scale Output
Accuracy

Data Filtering
Minimum power
consumption
Compact
Smart Detection
Wide Bandwidth
Minimum Interruption
Higher reliability
Ease of use

Noise

Drift
Calibration
Selectivity
Response and
recovery time
Precision

Figure 3.7: Categories of Sensor Characteristics

Chapter 3. Running Scenario and Requirements Derivation 86

error, noise, drift, resolution, minimum detectable signal, calibration curve, sensitivity,

linearity, selectivity, hysteresis, measurement range, and response and recovery time.

Categories of sensor types are shown in Figure 3.6. Circle A denotes (Rayes & Samer,

2017), B - (Tracy, 2016) and C - (Biron & Follett, 2016). Temperature sensors are

common to all three references. Moisture and humidity sensors are shared by (Rayes

& Samer, 2017) and (Biron & Follett, 2016) whereas, proximity and displacement,

pressure, level IR or infrared sensors are common to (Rayes & Samer, 2017) and (Tracy,

2016).

Sensor characteristics common to three of the references are accuracy, sensitivity,

resolution, linearity, hysteresis and range. The characteristics, drift, calibration, selectiv-

ity, response and recovery time and precision are common to (bootcamplab.com, 2017)

and (Kalantar-Zadeh, 2013) whereas, the characteristic noise is shared by (Rayes &

Samer, 2017) and (Kalantar-Zadeh, 2013). Therefore, these common characteristics are

chosen to represent sensor attributes.

• Range/ dynamic range/ span - Sensing range within which, the sensor works well.

This range produces accurate and meaningful output (with an acceptable error).

• Accuracy - How correct the sensor output is compared with its true input value.

For example if an oxygen gas sensor records 21.1 percent in a room with 21

percent oxygen level, it is more accurate than if it shows 22 percent.

• Sensitivity - The change in sensors output to the measured change in its input.

• Selectivity - The sensor’s capability in selecting and differentiating the target to

measure among other interfering targets. For example, a sensor for oxygen gas

should not respond to other gases such as carbon dioxide or nitrogen dioxide.

• Resolution - Signal fluctuation of a sensor detected at its minimum. Minimum

change in the target input will reflect a detectable change in the output signal.

Chapter 3. Running Scenario and Requirements Derivation 87

Sensor

Sensing activity()

Temperature Sensor

Proximity Sensor

Long functional life

​Moisture & Humidity Sensor

Sensing region

IR or Infrared Sensor

Wavelength region

Pressure Sensor

High reliability

Level Sensor

High repeatability

Light Sensor
Range
Accuracy
Sensitivity
Selectivity

Linearity
Response and Recovery Time

Precision

Hysteresis
Calibration

Noise
Drift

Resolution
Interface type

Active/ Passive
Simple/ Smart

Anticipated use

Photo-voltaic/ photo-
emissive
Photo-resistor/ photo-
conductor

High reliability

Nominal range
No physical contact

Operative range Long life span
Direct conversion from
pressure to electrical signal

Active area
Stability

Adaptability
Liquid level detection
Long life span
High reliability

Stability
Interchangeability

Figure 3.8: UML class diagram for Sensors

Chapter 3. Running Scenario and Requirements Derivation 88

Any noise in the signal can affect resolution.

• Response and recovery time - Response time of a sensor is the time taken to

produce a stable output or the output reaches a certain percentage such as 95

percent. Recovery time is the opposite.

• Linearity - The proportion of the sensor’s output for its input values. A sensor

maintaining constant sensitivity for its range is a linear sensor.

• Hysteresis - The difference between sensor’s output readings for the same inputs.

• Calibration - Sensor should calibrate against known measured input to determine

that its output is correct.

• Precision - The sensors ability of producing the same results repeatedly for a

given input under the same conditions.

• Noise - Unnecessary fluctuations in the sensor’s output signal when the measuring

inputs are stable.

• Drift - Gradual change in sensor’s signal levels while input remains unchanged.

This is an undesired change, which can result in errors.

The category chart of sensor characteristic is shown in Figure 3.7. Circle A refers to

the characteristics introduced by (Rayes & Samer, 2017), B refers to (bootcamplab.com,

2017) and C refers to (Kalantar-Zadeh, 2013).

Taking all sensor types into consideration, sensor types common to at least two of

the categories are chosen. In addition, light sensors are included due to its importance

in IoT applications. For example, (education.rec.ri.cmu.edu, n.d.) states that robots use

light sensors to detect the "current ambient light level". According to (Vyas, 2008) light

sensing robots use the light sensors for their movements, to decide if to move left, right

Chapter 3. Running Scenario and Requirements Derivation 89

or straight according to the light. Sensor characteristics common to at least two groups

of characteristics are chosen as sensor properties. Figure 3.8 illustrates a UML class

diagram for chosen sensor types and sensor properties. According to (coep.vlab.co.in,

2011), temperature sensor characteristics are

• Interface type – for example 15C.

• Anticipated use – what it is used for, for example heating or cooling a system.

Whereas, according to (coep.vlab.co.in, 2011) temperature sensor characteristics in-

cludes stability and interchangeability. (Mathas, 2012) states that light sensors can be

separated into two groups.

• Photo-voltaic or photo-emissive which generates electricity once illuminated.

• Photo-resistor or photo-conductor which changes its electrical properties in some

way

(OMRON, 2017) defines Object detection without touch and longer service life

as two of the features of proximity sensors. (wikipedia, 2017) states that proximity

sensors have a nominal range in which they detect objects, high reliability, no physical

contact between the sensor and the object being sensed and long functional life due to

no mechanical parts and no physical contact. According to (T.L.YeoT.SunK.T.V.Grattan,

2008) moisture and humidity sensors have a sensing region as a feature and (Yamazoe &

Shimizu, 1986) defines operative range as another feature. According to (panasonic.biz,

n.d.) pressure sensors have high reliability and long life due to lack of mechanical

parts and have the ability of direct conversion from pressure to an electrical signal

IR or Infrared sensor characteristics are stability, active area and wavelength region.

(Kazuma Maekawa, 2017) defines dynamic level detection as a characteristic of level

sensors and (Yao, 2017) defines adaptability, long life, high reliability, high repeatability

as level sensor characteristics.

Chapter 3. Running Scenario and Requirements Derivation 90

3.3.2 Requirement 2 (R2): Actuator as the Business Process Mod-

elling Requirement for IoT

Actuators are the opposite of sensors where actuators act as output transducers in IoT

applications. According to (Vladimer, 2015), “an actuator transforms electrical data

into interesting, useful energy”. Example of simple actuators are loudspeaker and

display screen of a smart phone. Sensors collect data through sensing activity and send

to a control system, which in turn makes a decision based on the sensing data and sends

to an actuator to take action. (Rouse, 2017) defines an actuator as a "mechanism for

turning energy into motion" and based on the energy source actuators use to generate

motion, they can be divided into four groups. They are:

• Pneumatic actuators, which generate motion using compressed air.

• Hydraulic actuators, which generate motion with the help of liquid.

• Electric actuators, which generate motion by an external power source like battery

power.

• Thermal actuators, which generate motion by a source of heat.

(Rayes & Samer, 2017) defines actuators as certain types of motors, which control

or perform some action in a system by converting data or energy to action. In an IoT

system, actuators take action or control an IoT system by making use of collected data

through sensing or by other means. For an example, an actuator increases or decreases

temperature in an air-conditioned room depending on sensor readings for required levels

of cooling. Some types of actuators are electrical actuators, mechanical linear actuators,

hydraulic actuators, pneumatic actuators and manual actuators. (wdc65xx.com, 2016)

categorises actuators into five main types. They are hydraulic, pneumatic, electrical,

thermal or magnetic and mechanical. According to, (Biron & Follett, 2016) actuators

are lights, valves, motors and commands.

Chapter 3. Running Scenario and Requirements Derivation 91

Lights
Valves
Motors
Commands

Manual Thermal or Magnetic

Electrical
Hydraulic
Pneumatic
Mechanical

A

B
C

Figure 3.9: Actuators Categories

Figure 3.9 shows the three categories of actuator types. Circle A denotes the actuator

types by (Biron & Follett, 2016) and circle B and C represent the actuator types by

(wdc65xx.com, 2016) and (Rayes & Samer, 2017) respectively. The types common to

at least two categories are chosen to represent actuator types.

According to (wikipedia.org, 2017), some actuator features are:

• Speed - Speed at no load pace.

• Force - Force capability of the actuator.

As some actuator characteristics, (Parker, 2006) identifies the following:

• Saturation - Maximum output capability without taking input, into consideration.

• Deadband - An input region closer to zero where the output is at zero.

Chapter 3. Running Scenario and Requirements Derivation 92

Actuator

Actuating activity ()

Electrical

Precision control

Hydraulic

Considerable force

Mechanical

High reliability

Pneumatic

Accuracy

Unpowered
Hydraulic power

Valve operation suitability

System Response Time

Speed

Saturation
Efficiency
Strain
Stress
Force

Deadband

Acceleration

Quickly networkable and
programmable
Immediate feedback
Motion control
Less noise
No environmental hazards

High force applications
High horsepower

Simplicity
Low cost
Lightweight
Minimal maintenance
Quick response time
Conversion of pressure into
force

Load and drive force ability

Energy source

Figure 3.10: UML class diagram for Actuators

According to (Huber, Fleck & Ashby, 1997) some performance characteristics of

actuators are:

• Force and displacement - force and displacement requirements of a task.

• Stress - The force applied per unit across an area of an actuator.

• Strain - The nominal strain an actuator produces.

• Efficiency - The ratio of work output to energy input in an cyclic operation.

According to (Gonzalez, 2015), some features of electrical actuators are highest

precision control positioning, quickly programmable and networked, fast feedback

facility for diagnostics and maintenance purposes, complete control over motion profiles

(and possibility of encoders for controlling velocity, torque, position and force applied),

Chapter 3. Running Scenario and Requirements Derivation 93

less noise and no environment hazards due to lack of fluid leaks. (wdc65xx.com, 2016)

mention that use of hydraulic power, ability to apply considerable force and limited

acceleration are a few characteristics of hydraulic actuators and (Gonzalez, 2015)

states that applicability for high force applications and possession of high horsepower

include hydraulic actuators characteristics. (wdc65xx.com, 2016) states that quick

response time, conversion of pressure into force as pneumatic actuator features and

according to (Gonzalez, 2015) they are, simplicity, precise linear motion by resulting

accuracy, low cost, lightweight and least maintenance. According to (wdc65xx.com,

2017), mechanical actuators possess the characteristics such as they are not powered,

ability of specific load and drive force, mainly use for operation of valves and high

reliability.

Figure 3.10 shows the UML class diagram for actuators. In the problem scenario

we introduced, actuators are used to maintain the quality of goods by maintaining their

required temperature levels while transporting them from supplier to customer.

3.3.3 Requirement 3 (R3): Reader as the Business Process Model-

ling Requirement for IoT

Readers are also input devices in IoT systems. They collect actual input data, which are

to be transformed into an electronic form to be transferred via a network in order to be

made available for use. Two important features of readers are automatic identification

and automatic data capture (Journal, 2017), i.e. automatic identification of objects

and obtaining information about them without any human mediation. Famous types

of readers are Barcode Readers and RFID readers. According to (atlasrfid.com, 2017)

some of the common features of readers are:

• Read rate – The rate at which the things can be read.

Chapter 3. Running Scenario and Requirements Derivation 94

Reader

Accuracy

Reading activity ()
Output results ()

Efficiency
Read range
Read rate

RFID Readers

Line of sight not needed

Read/ write/ modify/ update

High security

Barcode Readers

Line of sight required
Decoding capability

Read onlyHigh read rate

Processing capability

Reliability
Speed
Security

Line of sight requirement
Event triggering capability
Read only/ read-write capability

Wireless information tracking

Event triggering
Fast response time

Response time

Automatic data capture

Contact reading/ non-contact reading
No event triggering

Unique Identification

Non-contact Reading

Automatic identification

Figure 3.11: UML class diagram for Readers

• Line of sight requirement – If the item to read is required to position in a specific

direction.

• Read and write capability – The ability to read and write or read only.

• Event triggering – The ability to trigger an event such as opening a door.

• Security – The ability to protect data such as encryption and to remove data after

use.

Figure 3.11 illustrates the UML class diagram for Readers.

Chapter 3. Running Scenario and Requirements Derivation 95

RFID readers

RFID has its advantages over bar codes due to its unique identification feature. RFID

technology facilitates automatic identification of objects by use of radio waves, generally

with help of serial numbers to uniquely identify objects. RFID reader and a tag make a

RFID system. The tag consists of a microchip and an antenna. (Journal, 2017). The

chip contains the information about the item it is attached to. The antenna receives and

returns radio waves from the reader. Readers also contain an antenna, which sends out

radio signals to the tags and receives returning signals from the tags. Readers capture

unique identification information of the items the tags are attached to. In certain types,

the reader possesses the ability to write information on the tags. The reader’s software

finally passes the item information to the back end system for processing and storage

(redbeam.com, 2015).

Active RFID tags contain batteries to power their chips to send signals to the reader.

Whereas, passive tags do not contain batteries. They receive power from the reader’s

electromagnetic signals, which power the tag’s antenna. Semi passive tags contain

battery power to run the chips though they communicate by obtaining power from the

readers. (Journal, 2017). According to (atlasrfid.com, 2017), direct line of sight of

items is not a requirement for RFID readers for reading. The items within the read

range is sufficient. In addition, there is high security and event triggering, i.e. triggering

an event as such as opening a door, is possible.

RFID has variety of uses in the world. Injectable RFID chips can be inserted in

animals and used for livestock and wildlife tracking and also in patients who are unable

to communicate to trace their medical history and information. RFID technology is used

in many large retail companies in the word, such as fashion industry. They make use

of this technology to benefit their businesses. This reduces time spent on stocktaking,

making the process more accurate and finally guaranteeing customer satisfaction. By

Chapter 3. Running Scenario and Requirements Derivation 96

using a hand-held RFID reader, large items of stock can be counted at once saving time

spent on stock taking as visible contact and line of sight of items is not a requirement

for RFID readers. As a result of accurate stock taking, out of stock situations can be

prevented. What is more, RFID tags can be attached to products to make it much easier

to differentiate them according to their sizes, colours, etc. This makes stock taking

accurate and losing the chances of ordering the wrong items when stock reaches the

re order levels. Moreover, searching for a particular item such as a different size of

the same brand in the back room where items are stored, while a customer waits in the

show room becomes much quicker and easier using this technology, due to its unique

identification feature. Furthermore, tamper-proof RFID technology is used to safeguard

security sensitive items such as aircraft life jackets and valuable products.

Barcode Readers

Barcodes contain different information. Generally, there are three parts. First part

contains the information of the country of manufacture, second part comes with the

manufacture information and the final part consists of product information (Woodford,

2016). There are different types of barcode readers. Pen type readers use the light and

a photo device as the technology in reading barcodes (TalTec, 2017). It reads as the

reader passes through the barcode. The attached photo device measures the barcodes

with the help of the light for the widths and the spaces in them. CCD (charge coupled

device) readers contain hundreds of sensors attached to it. Each sensor consists of a

small photo device, which measures the barcodes using light. Camera based barcode

readers consist of a tiny video camera to read barcodes. The camera captures an image

of the barcode and decodes it by using digital image processing techniques. Generally,

barcode readers should be in line of sight of the bar-coded item in order to read it

(redbeam.com, 2015). According to (streetdirectory.com, 2017), barcode readers can be

categorised into two main categories, they are:

Chapter 3. Running Scenario and Requirements Derivation 97

• Contact readers – These are generally hand held devices and the barcodes should

touch the reader or come close contact with the reader for reading.

• Non-contact readers – These are opposite to the above where it is not required for

the barcode to be close to the reader to read the code. These readers generally

consist of a moving laser light beam.

Barcode technology offers automatic product identification and is famous in invent-

ory management systems. They are simple and cheaper to use than RFID technology.

Barcodes are used throughout supply chain management such as for inventory counts,

receiving inventory, order picking and warehouse transfers. Barcode technology can be

used alone or together with RFID technology in certain parts of supply chain manage-

ment for better accuracy. For example, when RFID readers read boxes of items at once,

the same boxes with bar-coded labels containing item counts of items inside the boxes

can be compared with each other for accuracy.

3.3.4 Requirement 4 (R4): Collector as the Business Process Mod-

elling Requirement for IoT

Collectors are input devices of IoT applications where they collect information from

various resources. According to (Yousfi et al., 2016), collectors are used to collect

context information apart from sensors and readers, unusually form databases, files

or output of processes. Data collections from collectors are stored temporarily in

data objects or permanently in data stores depending on the requirement. In the work

of (Yousfi et al., 2016), collectors are represented by extending BPMN task and inherits

the attributes of BPMN activities. According to (Model, 2011) some attributes of

BPMN activities are atomic activity, re-usability, source or target for a sequence flow

and source or target of a message flow.

Chapter 3. Running Scenario and Requirements Derivation 98

In the problem scenario we have introduced, when the stock reaches their re-

order levels, collectors automatically collect re-order level information from inventory

database and issue re-order requests to purchasing department. Moreover, in purchasing

section collectors are used to retrieve supplier information from supplier database to

select suitable suppliers to send requests for stock.

3.3.5 Requirement 5 (R5): Event streaming (event stream processing

units) as the Business Process Modelling Requirement for

IoT

Events are inputs to IoT applications. Events can be single events or streams of events.

Generally, in IoT systems events are represented as streams of events. Event streaming

is continuous occurring of new events over a time period. For example, continuous

reading of temperature sensors to track temperature changes in a shipment to monitor

and maintain the quality of goods in transit. (Appel et al., 2014) in their work introduce

SPUs (Event Stream Processing Units) for processing new events. SPUs process events

as they occur and process continuous occurring of new events by streams rather than

single events. Events are produced in an independent nature without any knowledge of

their consumption. Therefore, the following can be derived as SPU attributes.

• Processing continuous occurring of events – SPUs are used to process events as

streams as and when they occur.

• Event streaming functionality – SPUs contain functionality for event streaming.

• Event streaming logic – SPUs contain and process application logic.

• Encapsulate application logic – SPUs encapsulate event stream processing logic

enabling a smooth transition between different layers.

Chapter 3. Running Scenario and Requirements Derivation 99

SPUs introduced in (Appel et al., 2014) is used in our problem scenario, to process

event streams produced by temperature changes during the shipping of goods from

customer to supplier. Shipment is monitored for temperature conditions to maintain

the quality of goods by use of temperature sensors. Temperature sensors continue

to read temperature as streams of events during the shipment of goods from supplier

to customer. Monitoring temperature as streams of events as new events continue to

occur, any deviations to the required temperature levels of goods can be detected and

eliminated.

3.3.6 Requirement 6 (R6): Specific data object as the Business Pro-

cess Modelling Requirement for IoT

These are the input data or things in an IoT application such as RFID tags, Bar Codes,

Magnetic stripes, etc. In (Yousfi et al., 2016), authors name specific data Object

as smart object and define it as data collection by either sensors or readers such as

RFID readers and Barcode readers. According to them, smart object inherits the

attributes of BPMN DataInput element. In (Goumopoulos, Kameas & Hellas, n.d.),

smart objects are seen as important components connecting the physical world and

digital world by providing information on their physical environments. According to

(Model, 2011) attributes of BPMN DataInput element are, Name (type: string) and

IsCollection (type: boolean). DataInput element inherits the attributes and associations

of BaseElement and ItemAwareElement. BaseElement contain the attributes, Id (type:

string), Documentation, ExtensionDefinitions and ExtensionValues. ItemAwareElement

contains the attribute isCollection (type: boolean = false). Furthermore, DataInput

element has features such as they may have incoming Data Associations.

In our problem scenario, we relate specific data Objects to barcodes and RFID tags

attached to items of stock enabling accurate stock taking.

Chapter 3. Running Scenario and Requirements Derivation 100

3.3.7 Requirement 7 (R7): Intermediary operation as the Business

Process Modelling Requirement for IoT

After receiving input, Intermediary operation performs some processing inside an IoT

application before passing output. According to (Sungur et al., 2013), intermediary

operations receive data from outside, do some computation within the system and

send data to outer world. For example, in a wireless sensor network system, interme-

diary operation takes sensory temperature level as input to decide if the temperature

of an air-conditioned room is maintained within the required level (Sungur et al.,

2013). (Tranquillini et al., 2012) name this as data operators and state that it should be

useful to apply some computations on data while in transmission before outputting the

results. Therefore, intermediary operation can be taken as an element responsible for

raw context data processing.

In the problem scenario we introduced, the intermediary operation is used to decide

on re-order if certain items are at their re-order levels (after checking the inventory

database).

3.4 Conclusion

In this chapter we identified seven IoT modelling elements as requirements for business

process modelling for IoT. These are sensor, actuator, reader, collector, event streaming,

intermediary operation and specific data object. We derived these requirements from a

problem scenario based on an IoT aware business application, i.e. part of supply chain

management. We modelled this process using BPMN 2.0. Each identified requirement

was further elaborated in detail. Class diagrams were used for some cases illustrating

the hierarchy and inherited properties.

Chapter 4

Implementation of IoT Modelling

Elements

4.1 Introduction

In chapter three, we identified seven IoT modelling elements as business process

modelling requirements for IoT. In this Chapter, we design those elements as extensions

to BPMN 2.0 and implement them using a web based BPMN editor tool. For this

purpose, we develop a web based IoT aware BPMN editor with XPDL capabilities by

extending an existing software system to include new IoT modelling elements. We

add these IoT modelling elements to the toolkit of the editor inside the relevant BPMN

category. We introduce the new IoT modelling elements sensor, actuator, reader,

collector, intermediary operation, event stream processing as Task elements under

BPMN Activities in this system. We add IoT modelling element, specific data object as

smart object to the BPMN Data and Artifacts category. Furthermore, we introduce three

new IoT modelling elements, input event stream, output event stream, (as data objects)

and physical entity, and include them in BPMN Data and Artifacts group. Section

4.2 introduces the BPMN editor we chose to extend. In section 4.3, we describe our

101

Chapter 4. Implementation of IoT Modelling Elements 102

extended web based IoT aware BPMN Editor and section 4.4 concludes our work.

Figure 4.1: abforce BPMN Editor

4.2 Abforce Open Source BPMN Editor

In looking for an open source BPMN editor for extending to include IoT modelling

elements, we searched the internet. We used google search engine and searches in

GitHub for this purpose. After experimenting with few editors, we decided to extend

‘abforce/BPMN-Editor’, which we found after searching GiTHub for ‘BPMN Editors’.

This one was the best out of the few good editors our search resulted and this was best

suited for our requirements. In addition to BPMN modelling facility, it incorporated

XPDL code editing capabilities. We did not find any other open source web based

BPMN editor with these capabilities. This editor had a clear, working codebase and a

Chapter 4. Implementation of IoT Modelling Elements 103

link to a demo unlike most editors that resulted the GitHub search we carried out.

This is a web based BPMN editor tool, which is a working system with cross

browser and cross platform capabilities. This also comprises of an XPDL editor, which

creates XPDL code for BPMN diagrams. This allows the facility to save the diagrams

and load them again. The editor’s toolkit is located at the left side of the screen. The

toolkit comprises of all required BPMN 2.0 elements except for ‘sub process’ under

BPMN ‘Activities’ and ‘data store’ which belongs to the BPMN category, ‘Data and

artifacts’ (We have added them later). The BPMN elements in the toolkit of the system

are categorised into six groups and are displayed in tabs making it clearly visible and

easily navigated. The BPMN diagram drawer provided at the right side has ample space

for BPMN graphs. The XPDL editor access is provided by clicking on a button at the

top right side of the screen. XPDL editor appears as a popup window.

This system is developed by using jQuery, svg.js, CodeMirror and vkBeautify. The

system demo can be found at http://abforce.github.io/demo/xpdleditor/main.html and

the source code to this editor is located at https://github.com/abforce/BPMN-Editor.

Figure 4.1 shows the selected BPMN editor for BPMN elements extension.

4.2.1 Limitations of the Chosen BPMN Editor and Our Contribu-

tions

The web based BPMN editor we chose to extend, only lacks the BPMN elements ‘data

store’ under ‘Data and Artifacts’ and ‘sub process’ of ‘Activities’. In our extensions to

the BPMN editor, we have added these two elements. In addition, in the original system,

adding descriptions to the objects under ‘Data and Artifacts’ section does not work, i.e.

the text added to the objects does not stick. We corrected this as well in our extension.

Moreover, the XPDL editor was not originally programmed to create code for items in

the ‘Data and Artifacts’ section. We extended the code to include this section as well so

Chapter 4. Implementation of IoT Modelling Elements 104

that the complete diagram can be translated to XPDL for storing and distributing.

There are few minor limitations still exist in the system such as no multiple pool

representation, limiting only to a single pool with multiple lanes. Therefore, representing

business to business collaborations with process choreographies are not possible. In

addition, when a pool consists of two or more lanes, each lane cannot be individually

labelled, only the pool can have a common label. It is also not possible to resize any

modelling element in this system.

Figure 4.2: Appearance of our IoT aware BPMN and XPDL editor

4.2.2 How the Chosen System Works

Following are the instructions to use abforce BPMN Editor for BPMN diagrams.

• Choose a single, double, triple lane pool or a pool with four lanes by clicking on

the required object under ‘Swimlanes’.

• To use a ‘task’ element under ‘Activities’ section, you have to click on it and drag

Chapter 4. Implementation of IoT Modelling Elements 105

it to the pool or lane on screen. The same process is to follow for the elements

under ‘Events’, ‘Gateways’ and ‘Data and Artifacts’ sections.

• To use a ‘connector’ element under ‘Connectors’, click on it (it gets heighted),

move the cursor to one of the two objects you want to connect with each another.

The object changes its colour to yellow. Click on the object and drag the cursor

to the other object you want to connect it. To deselect the connector, click on the

connector (selected) in the toolkit again.

• To add text to an element, double click on it and a text area window will appear.

Write on it and click on ‘Set’ button on it so that the text area will disappear and

the written text would appear on the object. ‘Cancel’ button is to discard any

change and exit the text area window. To modify what is already written, follow

the same steps.

• To delete any element, right click on it and select the ‘Delete’ option from the

menu, which will appear. This will delete the selected object and any associations

as well. Make sure to deselect any connector elements if already selected from

the ‘Connectors’ tab and is being highlighted since this will prevent the menu

appearing on right click.

• There is an XPDL Editor, which can be opened by clicking on the XPDL button

on the top right side of the screen. XPDL Editor creates the XPDL (XML Process

Definition Language) code to store the diagram drawn and, which translate the

code into diagrams as well. Therefore, to save a BPMN diagram, the code inside

the XPDL editor should be saved into a file and to load the diagram back, the

same code should be copied back to the editor.

Chapter 4. Implementation of IoT Modelling Elements 106

4.3 Our Web Based IoT Aware BPMN and XPDL Ed-

itor

We extended the above mentioned BPMN and XPDL editor to facilitate business process

modelling for IoT with BPMN. We have extended BPMN 2.0 modelling elements in

introducing our IoT modelling elements into the editor’s toolkit. The BPMN elements

in this toolkit are divided into six categories, swimlanes, activities, events, gateways,

connectors and, data and artifacts. We have introduced six new IoT modelling elements

to BPMN ‘Activities’ and four new IoT modelling elements to ‘Data and Artifacts’.

Figure 4.2 shows the appearance of our IoT aware BPMN system.

Collapsed sub process Data store

Figure 4.3: Two missing BPMN elements we have added to the system

The following two BPMN elements are not available in the original system and we

have added them to our new system. Figure 4.3 shows these two new elements.

• Collapsed sub process under ‘Activities’

• Data store under ‘Data and Artifacts’.

4.3.1 Software Architecture

Figure 4.4 depicts a high-level software architecture of the system. This IoT aware

BPMN modelling tool comprises of both graphical representation of BPMN process

Chapter 4. Implementation of IoT Modelling Elements 107

Web based BPMN & XPDL Editor

BPMN diagramming tool

BPMN Editor

Tool kit to create diagrams

XPDL Editor

XPDL code generation

Swimlanes/ Pools

Single lane pool
Double lane pool
Triple lane pool
Four lane pool

Activities

Normal Task
Collapsed sub Process
Sensing Task
Actuating Task

Events

General Start
General End
General Intermediate
Timer Start

Gateways

Gateway
Gateway And
Gateway Xor (event)
Gateway Xor (data)

Swimlanes/ Pools

Annotation
Group
Data Object
Data store

Connectors

Default Sequence Flow
Conditional Sequence Flow
Message Flow
Normal Sequence Flow

Reading Task
Collecting Task
Intermediary Task
Event stream processing task

Terminate
Rule Start
Rule Intermediate
Rule End
Multiple Start
Multiple Intermediate
Message Start
Message Intermediate
Message End
Link Start
Link Intermediate
Link End
Error Intermediate
Error End
Compensation Intermediate
Compensation End
Cancel End

Gateway Or
Gateway Complex

Association W Arrow
Association

Smart Object
Input Event Stream
Output Event Stream
Physical Entity

XPDL code editing/ loading

XPDL editor interface

Interface for graphics

Figure 4.4: Software architecture of IoT aware BPMN and XPDL editor.

models as well as storing them using XPDL code. There are six categories of BPMN

modelling elements. The first category, swimlanes/ pools contains four modelling

elements, single lane pool, double lane pool, triple lane pool and four lane pool. Ele-

ments under the category, activities are, normal task, collapsed sub process, sensing

task, actuating task, reading task, collecting task, intermediary task and event stream

processing task. The category events, consists of the elements general start, general

end, general intermediate, timer start, terminate, rule start, rule intermediate, rule end,

multiple start, multiple intermediate, message start, message intermediate, message

end, link start, link intermediate, link end, error intermediate, error end, compensation

intermediate, compensation end and cancel end. Gateways category includes gateway,

gateway and, gateway xor (event), gateway xor (data), gateway or, and gateway com-

plex. Elements under connectors are default sequence flow, conditional sequence flow,

message flow, normal sequence flow, association w arrow and association. Data and

artifacts category has the modelling elements, annotation, group, data object, data store,

Chapter 4. Implementation of IoT Modelling Elements 108

Actuating TaskSensing Task
Reading Task

Collecting Task Intermediary Task Event stream processing Task

Figure 4.5: New IoT modelling elements proposed as extensions to BPMN task element

smart object, input event stream, output event stream and physical entity. In Figure 4.4,

our corrections to the system depicts in blue coloured text whereas, our extensions to

the system denotes text in red colour.

4.3.2 IoT Modelling Element Extensions to the BPMN Editor

We extended the editor’s toolkit with BPMN 2.0 modelling elements to facilitate busi-

ness process modelling for IoT. As extensions to BPMN task element under ‘Activities’,

we have proposed six new task elements namely, sensing task, actuating task, read-

ing task, collecting task, intermediary task and event stream processing task. These

elements comprise of special icons to distinguish and identify them and their names

are written below the icons. The new task elements we have introduced to this BPMN

system are shown in Figure 4.5. As a guidance for sensing task, reading task, collecting

task, we referred to the works of (Yousfi et al., 2016), (Meyer et al., 2015) and (Sungur

et al., 2013), where they all extended BPMN task element to represent sensor as IoT

modelling element for BPMN. In introducing actuating task element, we referred to

the works of (Meyer et al., 2015) and (Sungur et al., 2013). In each study, they have

Chapter 4. Implementation of IoT Modelling Elements 109

extended BPMN task element. We followed the existing literature work of (Appel

et al., 2014) in introducing the event stream processing task element to BPMN. In

introducing intermediary task, we referred to the contribution made by the scholarly

work of (Sungur et al., 2013).

Smart Object Input Event Stream Output Event Stream Physical Entity

Figure 4.6: New IoT modelling elements proposed as extensions to BPMN data element.

We also have extended BPMN data object and introduced three new data objects, to

the toolkit under ‘Data and Artifact’ category. They are smart object, input event stream

object and output event stream object. Figure 4.6 illustrates these new extensions. We

referred to the existing works of (Yousfi et al., 2016) and (Appel et al., 2014) for these

extensions. These data objects have their unique symbols to distinguish them from

BPMN data object.

We proposed an additional element to editor’s toolkit to represent physical entity.

It is represented by the symbol, ‘perishable goods’. This element can contain text

to describe what it represents (writable). We are inspired by the work of (Meyer et

al., 2015), where they represent the physical entity ‘chocolate’ with the symbol of a

‘cow’ as a separate participant. All icons used in this system are borrowed from the

internet. Figure 4.7 and 4.8 illustrate the new BPMN editor with our extensions to

BPMN elements. We also extended the XPDL editor to reflect our extensions to the

system so that BPMN diagrams with our extensions (IoT modelling elements) can be

stored in a file and loaded back through the editor. Figure 4.9 illustrates the XPDL

Chapter 4. Implementation of IoT Modelling Elements 110

Figure 4.7: BPMN System after our extensions to BPMN task element

editor with its corresponding BPMN diagram in the background.

4.3.3 IoT Modelling Elements Extensions To BPMN Meta Model

In BPMN meta model, we illustrate our proposed IoT modelling element extensions to

BPMN 2.0. Sensing task, reading task, collecting task, actuating task, event stream pro-

cessing task and intermediary task are introduced by extending BPMN task element. So

that they inherit the properties of its parent class, BPMN Activity’s attributes and model

associations. In proposing these modelling elements as extensions to BPMN standards,

we considered extending BPMN Service Task since it appears most appropriate for such

extensions as these can be taken as services, e.g. sensing physical elements. However,

according to (Yousfi et al., 2016), BPMN Task is the most suitable for integrating

these IoT modelling elements into the BPMN Meta model. This is in accordance with

the BPMN standards. The authors have performed extensive research in representing

ubiquitous technologies by extending BPMN standards. Therefore, we took the same

Chapter 4. Implementation of IoT Modelling Elements 111

Figure 4.8: BPMN System after our extensions to BPMN data object

approach. The BPMN 2.0 class diagram for BPMN 2.0 Task (Model, 2011) element

with our modifications to it is illustrated in Figure 4.10. The proposed IoT modelling

elements we have added as extension to BPMN 2.0 are coloured in light blue in the

diagram. A brief explanation of these new modelling elements is given below.

Sensing Task

The Sensing Task is to use a sensor, which obtains contextual information in a business

environment. Sensors can be wired, wireless or smart (Yousfi et al., 2016). The Sensing

task takes the shape of a rectangle with rounded corners and is similar to BPMN Task

element in appearance. Its name is written below a special icon to distinguish it from

other task elements. As shown in Figure 4.10, the Sensing Task inherits the attributes

and model associations of the BPMN element, Activity. The attribute, ‘implementation’

describes the sensing technology implementation.

Chapter 4. Implementation of IoT Modelling Elements 112

Figure 4.9: XPDL Editor

Actuating Task

The Actuating Task is for actuators to perform some operation in the system depending

on input values such as contextual information obtained from sensors. Actuators also

take the same shape as BPMN Task element, a rectangle with rounded corners. This

has an additional symbol and the name written below it to separate it from similar task

elements.

Reading Task

The Reading Task is for the purpose of using a smart reader such as barcode reader,

RFID reader, biometrics reader, etc. This also is similar to BPMN Task, a rectangle

with rounded corners. A special icon at the right bottom corner indicates that it is a

reader task with the name written below it.

Chapter 4. Implementation of IoT Modelling Elements 113

Collecting Task

The Collecting Task is to collect any other contextual information which the Sensing

Task and Reading Task are incapable of collecting. The source of collection is usually

from a database, a file or an outcome of a process. Collecting Task also takes the

shape of BPMN Task, which is a rounded cornered rectangle. An icon symbolizing the

collecting task is placed in the bottom right corner with its name right below.

Intermediary Task

The Intermediary Task is to represent intermediary operation, which takes information

as input, perform some action on it such as making a decision and output the resulting

data. Similar to other task elements, this also takes the same shape as BPMN Task, a

rectangle with rounded corners. A special icon is inside at the right bottom corner with

the name written below it to identify this task element.

Event Stream Processing Task

In BPMN, Stream Processing Units (SPUs) are modelled as Event Stream Processing

Tasks (Appel et al., 2014). An Event Stream Specification (ESS) explains a stream of

events and ESSs are used as input and output of Event Stream Processing Tasks. Event

Stream Processing Tasks are also similar in appearance to BPMN Tasks and consisted

of rectangles with rounded corners. The name is written below a particular symbol to

distinguish it from other similar task elements.

Our proposed additions to BPMN ‘Data and Artifacts’ section namely smart object,

input event stream object are output event stream object are extensions to BPMN DataIn-

put and DataOutput objects respectively. Figure 4.11 shows the BPMN 2.0 ItemAware

class diagram with our proposed extensions to the BPMN standards. The proposed IoT

Chapter 4. Implementation of IoT Modelling Elements 114

modelling elements we have added as extension to BPMN 2.0 are coloured in light

blue in the diagram. Smart object and input event stream object inherit BPMN Data

Input attributes and associations, whereas, output event stream inherits the attributes and

associations of BPMN Data Output. The four new modelling elements are described

briefly below.

Smart Object

Smart Object is to use contextual data collected by either Reading Task or Sensing

Task. This is similar to BPMN Data Object in shape with two rectangles inside, a small

rectangle overlapping a slightly larger one to symbolize it and differentiate it from

BPMN Data Object. This inherits the attributes and model associations of BPMN Data

Input.

Input Event Stream

Input Event Streams act as inputs to Event Stream Processing Tasks. Events occur

as streams and are continuous inputs. This has the shape of BPMN Data Object with

an unfilled arrow above waves to symbolize it. This inherits the attributes and model

associations of BPMN Data Input.

Output Event Stream

Output Event Streams are opposite to Input Event Streams taking resulting events out

of Event Stream Processing Tasks. This also takes the shape of BPMN Data Object

with a symbol of a filled arrow above waves to differentiate it. This element inherits the

attributes and model associations of BPMN Data Output.

Chapter 4. Implementation of IoT Modelling Elements 115

Physical Entity

Physical Entity can be anything reflecting the ‘thing’ of IoT. According to (Meyer et al.,

2015), “A thing is an identifiable, separable part of the physical environment, which

is of particular interest for a business process”. Physical Entity is introduced to meet

the requirements that cannot be covered by existing BPMN elements. In our system,

Physical Entity is symbolized as perishable goods but irrespective of the symbol it

represents anything including a living being.

Activity
(from Activities)

isForCompensation : Boolean

InputOutputSpecification
(from Data)

startQuantity : Integer
completionQuantity : Integer

0..1 0..1
+ioSpecification

SendTask
(from Activities)

implementation : String

ServiceTask
(from Activities)

implementation : String

ManualTask
(from HumanInteraction)

BusinessRuleTask
(from Activities)

implementation : String

Task
(from Activities)

ReceiveTask
(from Activities)

implementation : String
instantiate : Boolean

UserTask
(from HumanInteraction)

implementation : String

ScriptTask
(from Activities)

scriptFormat : String
script : String

SensingTask
(from Activities)

implementation : String

ActuatingTask
(from Activities)

implementation : String

ReadingTask
(from Activities)

implementation : String

CollectingTask
(from Activities)

implementation : String

IntermediaryTask
(from Activities)

implementation : String

EventStreamProcessingTask
(from Activities)

implementation : String

Figure 4.10: BPMN Task class diagram

The website link to our IoT aware BPMN editor is https://pradeerat.github.io/IoT-

aware-BPMN-Editor/ and the source code link is https://github.com/pradeerat/IoT-

aware-BPMN-Editor.

The instructions to use our IoT aware BPMN editor is given in Appendix B

Chapter 4. Implementation of IoT Modelling Elements 116

BaseElement
(from Foundation)

id : String

DataState
(from Data)

name : String

1

0..1

+dataState

ItemAwareElement
(from Data)

ItemDefinition
(from Common)

itemKind : ItemKind
structureRef : Element
isCollection : Boolean

<<enumeration>>

ItemKind
(from Common)

Physical
Information

Property
(from Data)

name : String

DataInput
(from Data)

name : String
isCollection : Boolean

DataOutput
(from Data)

name : String
isCollection : Boolean

DataStore
(from Data)

name : String
capacity : Integer
isUnlimited : Boolean

DataStoreReference
(from Data)

DataObject
(from Data)

isCollection : Boolean

DataObjectReference
(from Data)

*

0..1

+itemSubjectRef

*1
+dataObjectRef

*0..1

+dataStoreRef

SmartObject
(from Data)

isCollection : Boolean

InputEventStream
(from Data)

isCollection : Boolean

OutputEventStream
(from Data)

isCollection : Boolean

Figure 4.11: PBMN class diagram for ItemAware element

4.4 Conclusion

In this chapter, we have discussed the implementation of the seven IoT modelling

elements we identified in chapter 3, as business process modelling requirements for

IoT. We implemented them using an IoT aware BPMN and XPDL editor which we

built using an existing editor by adding IoT aware capability in to it. We designed them

by extending BPMN 2.0 and added them to the editor’s toolkit under relevant BPMN

element categories. We illustrated the system architecture showing where our extensions

fitted in to the system. We added ten new IoT modelling elements to the system as

proposed extensions to BPMN 2.0. Apart from the seven identified IoT modelling

elements in chapter 3, we added three additional IoT modelling elements, input event

stream object, output event stream object and physical entity. The IoT modelling

Chapter 4. Implementation of IoT Modelling Elements 117

elements Sensing Task, Actuating Task, Reading Task, Collecting Task, Intermediary

Task, event stream processing Task and Smart Object represent the identified IoT

modelling requirements, sensor, actuator, reader, collector, intermediary operation, event

stream processing and specific data object respectively. We illustrated our extensions to

BPMN meta model in class diagrams. We also extended the XPDL editor incorporated

in the original BPMN editor to facilitate our extensions. In Appendix B, we provided

detailed instructions to use our IoT aware BPMN editing tool.

Chapter 5

Case Study and Evaluation

5.1 Introduction

In this section, we conduct a case study in evaluating the capability of our web based

IoT aware BPMN and XPDL editor. In section 5.2, we take an IoT aware shipment

control scenario as a case study and model this shipment control process in BPMN

2.0 using our IoT aware BPMN and XPDL editor tool. This process model depicts

perishable goods in transit and it includes the IoT modelling elements we introduced to

the editor. We graphically illustrate this process in a diagram. We create XPDL code

for this process as well and provide it in the appendix. Section 5.3 further qualitatively

evaluates our IoT aware BPMN and XPDL editor by comparing it with related works

and section 5.4 concludes our work.

5.2 Case Study

In evaluating the capability of our extended BPMN editor tool, we have conducted a

case study. We have modelled an IoT aware shipment control process for monitoring

the quality of perishable items while on shipment.

118

Chapter 5. Case Study and Evaluation 119

Figure 5.1: Shipment monitoring IoT process part1 depicted using our extended BPMN
Editor

Part one of this process depicts goods of perishable nature are in transport. Tem-

perature sensors continue to detect the temperature of these items. Threshold value

of the temperature that has to be maintained throughout is obtained from a database

connected to the cloud. Decision to increase or decrease the temperature is based on the

prevailing temperature value. If the temperature exceeds the required temperature level,

the control is passed to actuators to reduce it to the desired threshold level. In case of

temperature being below the required level, the actuators will increase it to the desired

level.

Part two of the shipment process illustrates monitoring of shipment to track physical

location of the goods by using cloud GPS. The location is informed to the supplier.

Apart from that, event stream processing technique is used to maintain quality of goods

in transit. Streams of input events monitor shipment for environmental conditions. If

events exceeding the required conditions are detected, the shipment is cancelled and the

customer is notified, otherwise the normal shipment process continues.

Chapter 5. Case Study and Evaluation 120

Figure 5.2: Shipment monitoring IoT process part2 depicted using our extended BPMN
Editor

5.2.1 Case Study Evaluation

By conducting this case study, we demonstrate that the IoT modelling elements we

have proposed as business process modelling requirements for IoT can be represented

in this scenario and practically modelled in BPMN using the extended BPMN editor

tool. We produce screen shots of this process as well as a machine executable version

of the process in XPDL code. We also provide a web link to our IoT enabled BPMN

editor. In this example, we include all IoT modelling elements we have proposed as

business process modelling requirements. This IoT aware business process modelling

scenario is depicted in Figures 5.1 and 5.2. The corresponding XPDL code is shown in

Appendix A.

Chapter 5. Case Study and Evaluation 121

5.3 Capability of the IoT Aware BPMN Editor Tool

In this section, we examine the capability of our web based BPMN editor tool compris-

ing of IoT modelling extensions by comparing it with BPMN modelling frameworks

for IoT we have studied under the literature review in chapter 2. We compare their

work with ours. In chapter 3, we identified seven IoT modelling elements as business

process modelling requirements for IoT. In Table 5.1, we show how many of these IoT

modelling elements each project has introduced. As we can see, none of those projects

introduced as many IoT modelling elements as we do to facilitate business process

modelling for IoT. As illustrated in the Table 5.1, our case study consists of all these

elements. Further, we practically extend a web based BPMN editor tool to include

these IoT modelling elements and illustrate how this case study example is practically

implemented by using this editor tool.

Except for one work in the literature we reviewed, there is no evidence that any of

others have extended a BPMN editor in practice. Authors (Meyer et al., 2013) in their

framework, have extended a web based BPMN editor to include their IoT modelling

elements as extensions to BPMN 2.0. However, they provide only a screen shot of the

editor illustrating their IoT application process as an example, with no web address to

the tool as further evidence. What is more, they only added two new task elements as

extensions to their editor tool, representing sensor and actuator modelling elements.

Whereas, we have added ten new modelling elements (including physical entity) to

our IoT aware BPMN editor. Further, they have provided no evidence of a method

to store and upload or distribute BPMN modelling diagrams or executables as we

do. In addition, their IoT example, ‘dynamic price update process’ is not adequate in

illustrating the modelling process as our case study example does.

bpmn is considered to be the standard file extension for BPMN files which store and

distribute BPMN diagrams (filext.com, 2018), although this extension is not supported

Chapter 5. Case Study and Evaluation 122

Case Study IoT modelling ele-
ments/ IoT modelling
requirements

IoT application pro-
cess

BPMN
Editor
Exten-
sion

XPDL
Editor

uBPMN (Yousfi et
al., 2016)

sensor (R1), reader
(R3), collector (R4),
smart object (R6)

Time banking sys-
tem process

No Evid-
ence

No Evid-
ence

SPUs (Appel et al.,
2014)

event streaming
task(R5), specific data
object(R6)

Shipment monitor-
ing process

No Evid-
ence

No Evid-
ence

BPMN4WSN
(Sungur et al.,
2013)

sensor (R1), actuator
(R2), intermediary op-
eration (R7)

A room ventilating
process

No Evid-
ence

No Evid-
ence

Things in BPMN
(Meyer et al., 2015)

sensor (R1), actu-
ator(R2), physical
entity

A process represent-
ing physical entity

No Evid-
ence

No Evid-
ence

Crowdsourcing
(Tranquillini et al.,
2015)

crowdsourcing task
and streaming con-
nector

Crowdsourcing pro-
cess of reimbursing
company travel ex-
penses

No Evid-
ence

No Evid-
ence

Event Element for
IoT (Chiu & Wang,
2015)

sensor (R1), actu-
ator(R2), location
aware element, event
definition

Temperature
control process

No Evid-
ence

No Evid-
ence

IoT Devices as re-
sources (Meyer et
al., 2013)

IoT Device (sensor
(R1), actuator (R2)),
native service

Dynamic price up-
date process

Extends
BPMN
Editor to
include
two
elements

No Evid-
ence

Our Case study sensor (R1), actuator
(R2), reader (R3),
collector (R4), event
streaming task(R5),
smart object (R6),
intermediary operation
(R7), physical entity

Quality control pro-
cess of goods in
transit

Extends
BPMN
Editor
to in-
clude ten
elements

BPMN
Editor
incorpor-
ates an
XPDL
Editor

Table 5.1: Comparison of different case studies with their contributions towards IoT
aware process modelling

by famous BPMN editors such as ‘Visio’. However, BPMN editors such as bpmn.io (ht-

tps://demo.bpmn.io/) and Yaoqiang BPMN Editor (https://sourceforge.net/projects/bpmn/)

Chapter 5. Case Study and Evaluation 123

use ‘bpmn’ file extension and their files are interchangeable. These files are written in

XML. Whereas, XPDL (XML Process Definition Language), (fileinfo.com, 2011) is con-

sidered to be the widely acceptable standard for storing and distributing BPMN diagrams

or the process definitions ((xpdl.org, 2018), (bizagi.com, 2018), (healthcareworkflow,

n.d.)). According to (Wang et al., 2006), XPDL is introduced as a common file inter-

change format for BPMN. Some BPMN editors such as bizagi (http://help.bizagi.com/process-

modeler/en/index.html?import_from_xpdl.htm) supports XPDL for importing and ex-

porting BPMN diagrams. In our system we import and export BPMN diagrams via

XPDL editor using XPDL coding. None of the above literature work has addressed

this area of storing and distributing BPMN files and none of them has implemented an

XPDL editor.

According to (Thakur, n.d.), feasibility is the evaluation of performance of a

software project or a tool. Feasibility of a software can be categorized in to three types in

general. They are economic feasibility, operational feasibility and technical feasibility.

From these three types, more relevant to our system is the operational feasibility.

Operational feasibility is that the software system should meet user requirements and

solve business problems. In evaluating our web based BPMN editor, we have shown

that this system meets user requirements as well as solve business problems. Technical

feasibility speaks about the technology in use and its underline resources such as

software and hardware of the system. Our BPMN editor is web based so that this can be

accessed merely with a PC and an internet connection. (Gediga, 2002) states usability

as the main evaluation criteria of a software system. Our web based BPMN editor

extension reflects this feature with its ease of use and error free properties.

Chapter 5. Case Study and Evaluation 124

5.4 Conclusion

In this chapter, we conducted a case study with the purpose of evaluating our IoT aware

web based BPMN and XPDL editor we introduced in the previous chapter. We took

a shipment control process of transporting perishable items as an IoT aware business

application scenario. We modelled this process with BPMN in our editor using the IoT

modelling elements we introduced to the editors toolkit. We illustrated this graphical

process and we provided the XPDL executable code generated of this process. We

further evaluated our editor tool by comparing with similar work.

Chapter 6

Conclusion

Internet of things is a rapidly evolving technology in the world today. It is not an

exaggeration to state that people and industry at large are already reaping the many

benefits it offers. We see it in use in everyday life. IoT covers vast range of applications

such as smart homes, smart cities, connected health, connected car, smart retail, etc.

When it comes to industrial applications, IoT technology is largely used in supply chain

management and agriculture, monitoring a product from its manufacturing stage to

distribution. Examples of some other industries with IoT applications are airline, health-

care, retailing, energy, pharmaceutical, insurance, media and entertainment. Companies

use business process models to depict their business processes making it efficient in

managing the activities in different applications. Business process management systems

are used to manage these applications. Modelling notations such as BPMN illustrates

the process models so that everyone involved in the business hierarchy would under-

stand the process. When IoT technology is involved in a certain business application,

there should be a way to integrate the IoT aspects in to the process model. This makes

it a necessity to investigate the methods to achieve this.

Therefore, this leads to finding out business process modelling requirements for IoT,

in other words, IoT modelling elements that can represent IoT aspects in a business

125

Chapter 6. Conclusion 126

process model. This motivated us in conducting this research and we came up with

seven requirements or IoT modelling elements for business process modelling for IoT.

This answers our first research question. We designed these elements by extending

BPMN 2.0. In answering our second question, this further motivated us to carry out

an implementation where, we practically extended a web based BPMN editor tool to

add these modelling elements. We have introduced ten IoT modelling elements into our

extended BPMN editor including physical entity as an IoT modelling element.We have

evaluated our work in a case study by modelling these IoT elements in an IoT related

business application process in BPMN and illustrating it by using our extended BPMN

editor. We also compared our work with similar work found in the literature.

6.1 Summary

Chapter one of this thesis contained the thesis introduction. We dedicated chapter two

for our literature review where we addressed the chosen literature work of past scholars,

which are relevant to our work. Even though we had already talked about IoT and BPM

in the introduction chapter, we tried to address these areas a little bit further in related to

our work. We described IoT, business process models and BPMN modelling frameworks

for IoT. In the summary sub section of the same section, we analysed and evaluated

each framework with IoT modelling elements they had introduced. In chapter three,

we tried to identify business process modelling requirements for IoT. We introduced a

problem scenario of an IoT related business process and derived those requirements. We

modelled this IoT application process by using BPMN 2.0, and used Visio modelling

tool for illustrating the model. This was a part of a supply chain management system

involving as many IoT modelling elements as it was possible to incorporate with it. We

took each element into account and did some intensive research in finding out different

categories and their features. We depicted those in diagrams including class diagrams

Chapter 6. Conclusion 127

wherever applicable. In chapter four, we designed the IoT modelling elements we had

found out as requirements for business process modelling, by extending BPMN 2.0.

Next, we carried out an implementation of practically extending a web based BPMN

and XPDL editor to facilitate adding those IoT modelling elements. In chapter, five we

carried out a case study to evaluate our IoT aware BPMN modelling tool. We modelled

an IoT related business process with BPMN, which comprised of the modelling elements

we introduced. The model was illustrated by using our extended BPMN editor tool,

which also generated XPDL code to store the model.

6.2 Limitations of the Research

We have extended BPMN 2.0 in proposing IoT modelling elements trying to adhere

with BPMN standards and referring to similar work. Yet, this model is not tested in

a practical environment to be certain that there are no consequences on the BPMN

standards due to these extensions. Moreover, we have not implemented our model in a

software system and carried out any testing. Due to the limited period of research, there

was not enough time to enhance these areas.

6.3 Recommendations and Further Study

Internet of Things is a vast subject area, which demands attention from researchers due

to its importance and usage in everyday life of people and businesses as a whole. Further

research on this area will only contribute to its growth and efficient use. Therefore, we

encourage further research on business process modelling for IoT mainly focussing on

illustrating IoT aspects of business application in process models. We did not find any

BPMN editor tool incorporated with IoT modelling elements available in the internet.

There are existing research in extending BPMN 2.0 for modelling IoT elements with

Chapter 6. Conclusion 128

business processes. Therefore, we suggest researchers to consider practically extending

BPMN modelling tools if possible and depict their models using their own tools. In

addition, the BPMN editor we have extended is available via GitHub as an open source

project so that anyone who would be interested in improving it further is encouraged

to do so. URL to the source code: https://github.com/pradeerat/IoT-aware-BPMN-

Editor. It is web based and is available free for modelling IoT aware business processes

using BPMN 2.0. URL to the website: https://pradeerat.github.io/IoT-aware-BPMN-

Editor/. This editor incorporates many if not all, important IoT modelling elements

as extensions to BPMN 2.0. We suggest people to use this for modelling IoT based

business applications as a start so that they can develop something better overcoming

any weakness in this.

6.4 Conclusion

Internet of Things technology promises a new and improved market domain for busi-

nesses while it tends to serve people better in the future. In IoT, internet combines real

world physical objects with the virtual world. In other words, IoT technology makes it

possible to connect physical entities via internet. This includes human beings, who are

connected through wearables with IoT aware features. This connection offers major

benefits to humans as well as businesses. It is going to reshape human activities as

well as the industry operations in a major way. Benefits to humans for example is that

a doctor can distantly monitor the health condition of a patient through a wearable

such as an IoT enabled wristwatch, when the patient is out of his home. One such

example, which benefits a business, would be to track a vehicle in a parking spot, which

did not make a payment. These two applications are examples of IoT aware business

applications. Organisations in managing their businesses use business process models in

illustrating their business processes. They use notations such as BPMN to model them

Chapter 6. Conclusion 129

so that everyone involved in the process from all hierarchical levels could understand it.

Unfortunately, not enough attention is given yet to integrate these IoT related business

applications in to business process models. In other words, business process modelling

for IoT aspects in business applications are not well supported by existing process

modelling notations. Therefore, it is a vital requirement to take necessary actions to

support reflect IoT aspects such as location awareness, sensing, reading and actuating

activities, etc. in business process models as we have addressed in our research.

References

Aberer, K., Hauswirth, M. & Salehi, A. (2006). Global sensor networks (Tech. Rep.).
Aguilar-Saven, R. S. (2004). Business process modelling: Review and framework.

International Journal of production economics, 90(2), 129–149.
Appel, S., Kleber, P., Frischbier, S., Freudenreich, T. & Buchmann, A. (2014). Modeling

and execution of event stream processing in business processes. Information
Systems, 46, 140–156.

atlasrfid.com. (2017). A question we are asked often: ’when is rfid better than
barcodes?’ [Internet web page]. Retrieved from http://www.atlasrfid
.com/jovix-education/auto-id-basics/rfid-vs-barcode/

azure.microsoft.com. (2017). What is middleware? [Internet web page].
Retrieved from https://azure.microsoft.com/en-in/overview/
what-is-middleware/

Barros, A., Gal, A. & Kindler, E. (2012). Business process management: 10th interna-
tional conference, bpm 2012, tallinn, estonia, september 3-6, 2012, proceedings
(Vol. 7481). Springer.

Biron, J. & Follett, J. (2016). The edge of the iot [Internet web page]. Retrieved from
https://www.oreilly.com/ideas/the-edge-of-the-iot

bizagi.com. (2018). Import diagram from xpdl [Internet web page].
Retrieved from http://help.bizagi.com/process-modeler/en/
index.html?import_from_xpdl.htm

bootcamplab.com. (2017). Sensor characteristics [Internet web page]. Retrieved from
https://www.bootcamplab.com/sensor-characteristics/

Center, F. N. R. (n.d.). Introduction to nfc [Internet web page]. Retrieved from
http://www.centrenational-rfid.com/introduction-to
-nfc-article-132-gb-ruid-202.html

Chang, C., Srirama, S. N. & Buyya, R. (2015). Mobile cloud business process
management system for the internet of things: Review, challenges and blueprint.
arXiv preprint arXiv:1512.07199.

Chiu, H.-H. & Wang, M.-S. (2015). Extending event elements of business process
model for internet of things. In Computer and information technology; ubi-
quitous computing and communications; dependable, autonomic and secure
computing; pervasive intelligence and computing (cit/iucc/dasc/picom), 2015
ieee international conference on (pp. 783–788).

coep.vlab.co.in. (2011). Characterize the temperature sensor (rtd) [Internet web page].

130

http://www.atlasrfid.com/jovix-education/auto-id-basics/rfid-vs-barcode/
http://www.atlasrfid.com/jovix-education/auto-id-basics/rfid-vs-barcode/
https://azure.microsoft.com/en-in/overview/what-is-middleware/
https://azure.microsoft.com/en-in/overview/what-is-middleware/
https://www.oreilly.com/ideas/the-edge-of-the-iot
http://help.bizagi.com/process-modeler/en/index.html?import_from_xpdl.htm
http://help.bizagi.com/process-modeler/en/index.html?import_from_xpdl.htm
https://www.bootcamplab.com/sensor-characteristics/
http://www.centrenational-rfid.com/introduction-to-nfc-article-132-gb-ruid-202.html
http://www.centrenational-rfid.com/introduction-to-nfc-article-132-gb-ruid-202.html

References 131

Retrieved from http://coep.vlab.co.in/?sub=33&brch=91&sim=
421&cnt=1

Dashevsky, E. (2014). Faq: How is lte-advanced different from regular lte?
[Internet web page]. Retrieved from https://www.pcworld.com/
article/2083981/faq-how-is-lte-advanced-different
-from-regular-lte.html

Dumas, M., La Rosa, M., Mendling, J., Reijers, H. A. et al. (2013). Fundamentals of
business process management (Vol. 1). Springer.

education.rec.ri.cmu.edu. (n.d.). What is a light sensor [Internet web page].
Retrieved from http://education.rec.ri.cmu.edu/content/
electronics/boe/light_sensor/1.html

fileinfo.com. (2011). .xpdl file extension [Internet web page]. Retrieved from
https://fileinfo.com/extension/xpdl

filext.com. (2018). .bpmn file [Internet web page]. Retrieved from http://filext
.com/file-extension/BPMN

Gate, P. (2016). Iot (internet of things): A short series of observations [pt 1]:
Introduction i& definition [Internet web page]. Retrieved from https://
parasam.me/2016/05/19/iot-internet-of-things-a-short
-series-of-observations-pt-1-introduction-definition/

Gediga, G. (2002). Evaluation of software systems [Internet web page].
Retrieved from https://www.researchgate.net/publication/
228721200_Evaluation_of_software_systems

Global, H. (2017). Hid global launches new indoor positioning services for
workforce optimization [Internet web page]. Retrieved from https://www
.hidglobal.com/press-releases/hid-global-launches-new
-indoor-positioning-services-workforce-optimization

Gonzalez, C. (2015). What’s the difference between pneumatic, hydraulic,
and electrical actuators? [Internet web page]. Retrieved from http://
www.machinedesign.com/linear-motion/what-s-difference
-between-pneumatic-hydraulic-and-electrical-actuators

Goumopoulos, C., Kameas, A. & Hellas, P. (n.d.). Smart objects as components of
ubicomp applications.

healthcareworkflow. (n.d.). Xpdl 2.2 bpmn 2.x and eclipse based editor.
Holler, J., Tsiatsis, V., Mulligan, C., Avesand, S., Karnouskos, S. & Boyle, D. (2014).

From machine-to-machine to the internet of things: Introduction to a new age of
intelligence. Academic Press.

Howe, W. (2016). A brief history of the internet [Internet web page]. Retrieved from
http://www.walthowe.com/navnet/history.html

Huber, J., Fleck, N. & Ashby, M. (1997). The selection of mechanical actuators
based on performance indices. In Proceedings of the royal society of london a:
Mathematical, physical and engineering sciences (Vol. 453, pp. 2185–2205).

investopedia.com. (n.d.). Business to business - b to b [Internet web page]. Retrieved
from http://www.investopedia.com/terms/b/btob.aspl

http://coep.vlab.co.in/?sub=33&brch=91&sim=421&cnt=1
http://coep.vlab.co.in/?sub=33&brch=91&sim=421&cnt=1
https://www.pcworld.com/article/2083981/faq-how-is-lte-advanced-different-from-regular-lte.html
https://www.pcworld.com/article/2083981/faq-how-is-lte-advanced-different-from-regular-lte.html
https://www.pcworld.com/article/2083981/faq-how-is-lte-advanced-different-from-regular-lte.html
http://education.rec.ri.cmu.edu/content/electronics/boe/light_sensor/1.html
http://education.rec.ri.cmu.edu/content/electronics/boe/light_sensor/1.html
https://fileinfo.com/extension/xpdl
http://filext.com/file-extension/BPMN
http://filext.com/file-extension/BPMN
https://parasam.me/2016/05/19/iot-internet-of-things-a-short-series-of-observations-pt-1-introduction-definition/
https://parasam.me/2016/05/19/iot-internet-of-things-a-short-series-of-observations-pt-1-introduction-definition/
https://parasam.me/2016/05/19/iot-internet-of-things-a-short-series-of-observations-pt-1-introduction-definition/
https://www.researchgate.net/publication/228721200_Evaluation_of_software_systems
https://www.researchgate.net/publication/228721200_Evaluation_of_software_systems
https://www.hidglobal.com/press-releases/hid-global-launches-new-indoor-positioning-services-workforce-optimization
https://www.hidglobal.com/press-releases/hid-global-launches-new-indoor-positioning-services-workforce-optimization
https://www.hidglobal.com/press-releases/hid-global-launches-new-indoor-positioning-services-workforce-optimization
http://www.machinedesign.com/linear-motion/what-s-difference-between-pneumatic-hydraulic-and-electrical-actuators
http://www.machinedesign.com/linear-motion/what-s-difference-between-pneumatic-hydraulic-and-electrical-actuators
http://www.machinedesign.com/linear-motion/what-s-difference-between-pneumatic-hydraulic-and-electrical-actuators
http://www.walthowe.com/navnet/history.html
http://www.investopedia.com/terms/b/btob.aspl

References 132

Jeston, J., Nelis, J. & Davenport, T. (2008). Business process management: Prac-
tical guidelines to successful implementations. 2008, nv. USA: Butterworth-
Heinemann (Elsevier Ltd.).

Journal, R. (2017). Frequently asked questions [Internet web page]. Re-
trieved from http://www.rfidjournal.com/site/faqs#Anchor
-What-59125

Kalantar-Zadeh, K. (2013). Sensors: an introductory course. Springer Science &
Business Media.

Kazuma Maekawa, e. a. (2017). Dynamic level-detecting characteristics of
external-heating-type mgb2 liquid hydrogen level sensors under liquid level
oscillation and its application to sloshing measurement [Internet web page].
Retrieved from http://ieeexplore.ieee.org/stamp/stamp.jsp
?arnumber=7792351&tag=1

Lee, I. & Lee, K. (2015). The internet of things (iot): Applications, investments, and
challenges for enterprises. Business Horizons, 58(4), 431–440.

List, B. & Korherr, B. (2006). An evaluation of conceptual business process modelling
languages. In Proceedings of the 2006 acm symposium on applied computing (pp.
1532–1539).

Mathas, C. (2012). Light sensors: An overview [Internet web page]. Re-
trieved from https://www.digikey.com/en/articles/techzone/
2012/sep/light-sensors-an-overview

May, S. (2017). Roku 3 review [Internet web page]. Retrieved from
http://www.techradar.com/reviews/audio-visual/
av-accessories/roku-3-1203038/review

Meyer, S., Ruppen, A. & Hilty, L. (2015). The things of the internet of things in bpmn.
In International conference on advanced information systems engineering (pp.
285–297).

Meyer, S., Ruppen, A. & Magerkurth, C. (2013). Internet of things-aware process
modeling: integrating iot devices as business process resources. In International
conference on advanced information systems engineering (pp. 84–98).

Minihold, R. (2011). Near field communication (nfc) technology and measurements.
White Paper, 6.

Model, B. P. (2011). Notation (bpmn) version 2.0. OMG Specification, Object
Management Group.

mpls.com. (n.d.). Iot - sensor and actuator [Internet web page]. Retrieved from
http://ip-mpls.com/iot-sensor-and-actuator/

NASA. (n.d.). Anatomy of an electromagnetic wave [Internet web page]. Retrieved
from https://science.nasa.gov/ems/02_anatomy

O’Donnell, J. (2017). How smart sensors are transforming the internet of things
[Internet web page]. Retrieved from http://internetofthingsagenda
.techtarget.com/opinion/How-smart-sensors-are
-transforming-the-Internet-of-Things

OMG. (2017). Object management group business process model and notation [Internet
web page]. Retrieved from http://www.bpmn.org/

http://www.rfidjournal.com/site/faqs#Anchor-What-59125
http://www.rfidjournal.com/site/faqs#Anchor-What-59125
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7792351&tag=1
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7792351&tag=1
https://www.digikey.com/en/articles/techzone/2012/sep/light-sensors-an-overview
https://www.digikey.com/en/articles/techzone/2012/sep/light-sensors-an-overview
http://www.techradar.com/reviews/audio-visual/av-accessories/roku-3-1203038/review
http://www.techradar.com/reviews/audio-visual/av-accessories/roku-3-1203038/review
http://ip-mpls.com/iot-sensor-and-actuator/
https://science.nasa.gov/ems/02_anatomy
http://internetofthingsagenda.techtarget.com/opinion/How-smart-sensors-are-transforming-the-Internet-of-Things
http://internetofthingsagenda.techtarget.com/opinion/How-smart-sensors-are-transforming-the-Internet-of-Things
http://internetofthingsagenda.techtarget.com/opinion/How-smart-sensors-are-transforming-the-Internet-of-Things
http://www.bpmn.org/

References 133

OMRON. (2017). Proximity sensors [Internet web page]. Retrieved from https://
www.ia.omron.com/support/guide/41/introduction.html

panasonic.biz. (n.d.). Introduction & features - pressure sensors [Internet web page].
Retrieved from https://www3.panasonic.biz/ac/ae/service/
tech_support/fasys/tech_guide/pressure/index.jsp

Parker, J. (2006). Sensor and actuator characteristics [Internet web
page]. Retrieved from http://www.crcnetbase.com/doi/pdfplus/
10.1201/9781420037241.ch11

Rayes, A. & Samer, S. (2017). Internet of things—from hype to reality. Springer.
Razzaque, M. A., Milojevic-Jevric, M., Palade, A. & Clarke, S. (2016). Middleware for

internet of things: a survey. IEEE Internet of Things Journal, 3(1), 70–95.
redbeam.com. (2015). What’s the difference between barcode and rfid? [Inter-

net web page]. Retrieved from http://www.redbeam.com/rfid-vs
-barcode/

Rouse, M. (2010). machine-to-machine (m2m) [Internet web page]. Re-
trieved from http://internetofthingsagenda.techtarget.com/
definition/machine-to-machine-M2M

Rouse, M. (2014). Bluetooth low energy (bluetooth le) [Internet web page]. Re-
trieved from http://internetofthingsagenda.techtarget.com/
definition/Bluetooth-Low-Energy-Bluetooth-LE

Rouse, M. (2015). Smart sensor [Internet web page]. Retrieved
from http://internetofthingsagenda.techtarget.com/
definition/smart-sensor

Rouse, M. (2017). Actuator [Internet web page]. Retrieved from http://
internetofthingsagenda.techtarget.com/definition/
actuator

shopify.co.nz. (n.d.). Business-to-consumer (b2c) [Internet web page]. Re-
trieved from https://www.shopify.co.nz/encyclopedia/
business-to-consumer-b2c

streetdirectory.com. (2017). Barcode scanners - types, features and benefits [Internet
web page]. Retrieved from http://www.streetdirectory.com/
travel_guide/116493/hardware/barcode_scanners___types
_features_and_benefits.html

Sun, C. (2012). Application of rfid technology for logistics on internet of things. AASRI
Procedia, 1, 106–111.

Sungur, C. T., Spiess, P., Oertel, N. & Kopp, O. (2013). Extending bpmn for wireless
sensor networks. In Business informatics (cbi), 2013 ieee 15th conference on (pp.
109–116).

TalTec. (2017). How a barcode reader works [Internet web page]. Retrieved
from http://www.taltech.com/barcodesoftware/articles/
how_barcode_reader_works

techopedia.com. (n.d.). Business to business to consumer (b2b2c) [Internet web
page]. Retrieved from https://www.techopedia.com/definition/
23169/business-to-business-to-consumer-b2b2c

https://www.ia.omron.com/support/guide/41/introduction.html
https://www.ia.omron.com/support/guide/41/introduction.html
https://www3.panasonic.biz/ac/ae/service/tech_support/fasys/tech_guide/pressure/index.jsp
https://www3.panasonic.biz/ac/ae/service/tech_support/fasys/tech_guide/pressure/index.jsp
http://www.crcnetbase.com/doi/pdfplus/10.1201/9781420037241.ch11
http://www.crcnetbase.com/doi/pdfplus/10.1201/9781420037241.ch11
http://www.redbeam.com/rfid-vs-barcode/
http://www.redbeam.com/rfid-vs-barcode/
http://internetofthingsagenda.techtarget.com/definition/machine-to-machine-M2M
http://internetofthingsagenda.techtarget.com/definition/machine-to-machine-M2M
http://internetofthingsagenda.techtarget.com/definition/Bluetooth-Low-Energy-Bluetooth-LE
http://internetofthingsagenda.techtarget.com/definition/Bluetooth-Low-Energy-Bluetooth-LE
http://internetofthingsagenda.techtarget.com/definition/smart-sensor
http://internetofthingsagenda.techtarget.com/definition/smart-sensor
http://internetofthingsagenda.techtarget.com/definition/actuator
http://internetofthingsagenda.techtarget.com/definition/actuator
http://internetofthingsagenda.techtarget.com/definition/actuator
https://www.shopify.co.nz/encyclopedia/business-to-consumer-b2c
https://www.shopify.co.nz/encyclopedia/business-to-consumer-b2c
http://www.streetdirectory.com/travel_guide/116493/hardware/barcode_scanners___types_features_and_benefits.html
http://www.streetdirectory.com/travel_guide/116493/hardware/barcode_scanners___types_features_and_benefits.html
http://www.streetdirectory.com/travel_guide/116493/hardware/barcode_scanners___types_features_and_benefits.html
http://www.taltech.com/barcodesoftware/articles/how_barcode_reader_works
http://www.taltech.com/barcodesoftware/articles/how_barcode_reader_works
https://www.techopedia.com/definition/23169/business-to-business-to-consumer-b2b2c
https://www.techopedia.com/definition/23169/business-to-business-to-consumer-b2b2c

References 134

Thakur, D. (n.d.). What is feasibility study? types of feasibility. explain feasibility study
process [Internet web page]. Retrieved from http://ecomputernotes
.com/software-engineering/feasibilitystudy

T.L.YeoT.SunK.T.V.Grattan. (2008). Fibre-optic sensor technologies for
humidity and moisture measurement [Internet web page]. Retrieved
from http://www.sciencedirect.com/science/article/pii/
S0924424708000836

Tracy, P. (2016). Many sensor types for the many iot use cases [Internet web
page]. Retrieved from https://www.rcrwireless.com/20161206/
internet-of-things/sensor-iot-tag31-tag99

Tranquillini, S., Daniel, F., Kucherbaev, P. & Casati, F. (2015). Bpmn task instance
streaming for efficient micro-task crowdsourcing processes. In International
conference on business process management (pp. 333–349).

Tranquillini, S., Spieß, P., Daniel, F., Karnouskos, S., Casati, F., Oertel, N., . . . oth-
ers (2012). Process-based design and integration of wireless sensor network
applications. Business Process Management, 134–149.

tutorialspoint.com. (n.d.). Internet of things [Internet web page]. Retrieved from
https://www.tutorialspoint.com/internet_of_things/
internet_of_things_tutorial.pdf

Van Der Aalst, W. M. (2013). Business process management: a comprehensive survey.
ISRN Software Engineering, 2013.

Van Der Aalst, W. M., La Rosa, M. & Santoro, F. M. (2016). Business process
management. Springer.

Vladimer, M. (2015). Sensors, actuators and iot [Internet web page]. Retrieved from
https://www.linkedin.com/pulse/sensors-actuators-iot
-mike-vladimer

Vyas, S. A. (2008). Light sensing robot [Internet web page]. Re-
trieved from https://www.researchgate.net/publication/
293825043_Light_Sensing_Robot

Wang, W., Ding, H., Dong, J. & Ren, C. (2006). A comparison of business process
modeling methods. In Service operations and logistics, and informatics, 2006.
soli’06. ieee international conference on (pp. 1136–1141).

wdc65xx.com. (2016). What are actuators and different types of actuators? [Internet
web page]. Retrieved from http://wdc65xx.com/lessons/what-are
-actuators-and-different-types-of-actuators/

wdc65xx.com. (2017). Types of actuators and their applications and uses [Internet
web page]. Retrieved from http://www.thomasnet.com/articles/
pumps-valves-accessories/types-of-actuators

Weekly, E. (n.d.). Energy-efficient wireless protocols for wearables [Internet web
page]. Retrieved from https://www.electronicsweekly.com/
market-sectors/embedded-systems/energy-efficient
-wireless-protocols-wearables-2014-08/

Weske, M. (2010). Business process management: concepts, languages, architectures.
Springer Publishing Company, Incorporated.

http://ecomputernotes.com/software-engineering/feasibilitystudy
http://ecomputernotes.com/software-engineering/feasibilitystudy
http://www.sciencedirect.com/science/article/pii/S0924424708000836
http://www.sciencedirect.com/science/article/pii/S0924424708000836
https://www.rcrwireless.com/20161206/internet-of-things/sensor-iot-tag31-tag99
https://www.rcrwireless.com/20161206/internet-of-things/sensor-iot-tag31-tag99
https://www.tutorialspoint.com/internet_of_things/internet_of_things_tutorial.pdf
https://www.tutorialspoint.com/internet_of_things/internet_of_things_tutorial.pdf
https://www.linkedin.com/pulse/sensors-actuators-iot-mike-vladimer
https://www.linkedin.com/pulse/sensors-actuators-iot-mike-vladimer
https://www.researchgate.net/publication/293825043_Light_Sensing_Robot
https://www.researchgate.net/publication/293825043_Light_Sensing_Robot
http://wdc65xx.com/lessons/what-are-actuators-and-different-types-of-actuators/
http://wdc65xx.com/lessons/what-are-actuators-and-different-types-of-actuators/
http://www.thomasnet.com/articles/pumps-valves-accessories/types-of-actuators
http://www.thomasnet.com/articles/pumps-valves-accessories/types-of-actuators
https://www.electronicsweekly.com/market-sectors/embedded-systems/energy-efficient-wireless-protocols-wearables-2014-08/
https://www.electronicsweekly.com/market-sectors/embedded-systems/energy-efficient-wireless-protocols-wearables-2014-08/
https://www.electronicsweekly.com/market-sectors/embedded-systems/energy-efficient-wireless-protocols-wearables-2014-08/

References 135

Weske, M. (2012). Business process management architectures. In Business process
management (pp. 333–371). Springer.

WIKIDEDIA. (2017). Business process model and notation [Internet web
page]. Retrieved from https://en.wikipedia.org/wiki/Business
_Process_Model_and_Notation

wikipedia. (2017). Proximity sensor [Internet web page]. Retrieved from https://
en.wikipedia.org/wiki/Proximity_sensor

wikipedia.org. (2017). Actuator [Internet web page]. Retrieved from https://
en.wikipedia.org/wiki/Actuator

Woodford, C. (2016). Barcodes and barcode scanners [Internet web
page]. Retrieved from http://www.explainthatstuff.com/
barcodescanners.html

xpdl.org. (2018). Xml process definition language (xpdl) [Internet web page]. Retrieved
from http://www.xpdl.org/

Yamazoe, N. & Shimizu, Y. (1986). Humidity sensors: principles and applications.
Sensors and Actuators, 10(3-4), 379–398.

Yao, J. (2017). Function and characteristics of photoelectric liquid level sensor
[Internet web page]. Retrieved from https://www.linkedin.com/
pulse/function-characteristics-photoelectric-liquid
-level-sensor-yao

Yousfi, A., de Freitas, A., Dey, A. K. & Saidi, R. (2016). The use of ubiquitous
computing for business process improvement. IEEE Transactions on Services
Computing, 9(4), 621–632.

Zancul, E. d. S., Takey, S. M., Barquet, A. P. B., Kuwabara, L. H., Cauchick Miguel,
P. A. & Rozenfeld, H. (2016). Business process support for iot based product-
service systems (pss). Business Process Management Journal, 22(2), 305–323.

https://en.wikipedia.org/wiki/Business_Process_Model_and_Notation
https://en.wikipedia.org/wiki/Business_Process_Model_and_Notation
https://en.wikipedia.org/wiki/Proximity_sensor
https://en.wikipedia.org/wiki/Proximity_sensor
https://en.wikipedia.org/wiki/Actuator
https://en.wikipedia.org/wiki/Actuator
http://www.explainthatstuff.com/barcodescanners.html
http://www.explainthatstuff.com/barcodescanners.html
http://www.xpdl.org/
https://www.linkedin.com/pulse/function-characteristics-photoelectric-liquid-level-sensor-yao
https://www.linkedin.com/pulse/function-characteristics-photoelectric-liquid-level-sensor-yao
https://www.linkedin.com/pulse/function-characteristics-photoelectric-liquid-level-sensor-yao

Appendix A

XPDL Code of Shipment Monitoring

Process

A.1 Process Part 1

<XPDL:WorkflowProcess Id="P0" Name="IoT Process"
AccessLevel="public">
<ProcessHeader>
<Created>Thu Jan 11 2018 18:14:30 GMT+1300
(New Zealand Daylight Time)</Created>
<Description>Place your description here</Description>
</ProcessHeader>
<Activities>
<Activity Id="A2" Name="Measure Temperature">
<RouteAct ActivityType="sensor"/>
<Implementation>
<No/>
</Implementation>
<TransitionRestriction>
<Join Type="AND">
<TransitionRefs>
<TransitionRef id="L13"/>
<TransitionRef id="L22"/>
</TransitionRefs>
</Join>

136

Appendix A. XPDL Code of Shipment Monitoring Process 137

</TransitionRestriction>
<Performers>
<Performer></Performer>
</Performers>
<NodeGraphicsInfos>
<NodeGraphicsInfo BorderColor="0,0,0" FillColor="255,255,255"
Height="91" Width="119" LaneId="S1">
<Coordinates XCoordinate="109" YCoordinate="95"/>
</NodeGraphicsInfo>
</NodeGraphicsInfos>
</Activity>
<Activity Id="A3" Name="Obtain Threshold value">
<RouteAct ActivityType="collector"/>
<Implementation>
<No/>
</Implementation>
<TransitionRestriction>
<Join Type="AND">
<TransitionRefs>
<TransitionRef id="L14"/>
<TransitionRef id="L23"/>
</TransitionRefs>
</Join>
</TransitionRestriction>
<Performers>
<Performer></Performer>
</Performers>
<NodeGraphicsInfos>
<NodeGraphicsInfo BorderColor="0,0,0" FillColor="255,255,255"
Height="91" Width="119" LaneId="S1">
<Coordinates XCoordinate="305" YCoordinate="94"/>
</NodeGraphicsInfo>
</NodeGraphicsInfos>
</Activity>
<Activity Id="A4" Name="Make decisiom">
<RouteAct ActivityType="intermediary"/>
<Implementation>
<No/>
</Implementation>
<Performers>
<Performer></Performer>
</Performers>
<NodeGraphicsInfos>
<NodeGraphicsInfo BorderColor="0,0,0" FillColor="255,255,255"

Appendix A. XPDL Code of Shipment Monitoring Process 138

Height="91" Width="119" LaneId="S1">
<Coordinates XCoordinate="508" YCoordinate="95"/>
</NodeGraphicsInfo>
</NodeGraphicsInfos>
</Activity>
<Activity Id="A5" Name="Increase Temperature">
<RouteAct ActivityType="reader"/>
<Implementation>
<No/>
</Implementation>
<Performers>
<Performer></Performer>
</Performers>
<NodeGraphicsInfos>
<NodeGraphicsInfo BorderColor="0,0,0" FillColor="255,255,255"
Height="91" Width="119" LaneId="S1">
<Coordinates XCoordinate="884" YCoordinate="6"/>
</NodeGraphicsInfo>
</NodeGraphicsInfos>
</Activity>
<Activity Id="A6" Name="Reduce Temperature">
<RouteAct ActivityType="reader"/>
<Implementation>
<No/>
</Implementation>
<Performers>
<Performer></Performer>
</Performers>
<NodeGraphicsInfos>
<NodeGraphicsInfo BorderColor="0,0,0" FillColor="255,255,255"
Height="91" Width="119" LaneId="S1">
<Coordinates XCoordinate="890" YCoordinate="185"/>
</NodeGraphicsInfo>
</NodeGraphicsInfos>
</Activity>
<Activity Id="E7">
<Event>
<XPDL:Start Trigger="None"/>
</Event>
<NodeGraphicsInfos>
<NodeGraphicsInfo BorderColor="0,0,0" FillColor="255,255,255"
Height="42" Width="41" LaneId="S1">
<Coordinates XCoordinate="9" YCoordinate="120"/>
</NodeGraphicsInfo>

Appendix A. XPDL Code of Shipment Monitoring Process 139

</NodeGraphicsInfos>
</Activity>
<Activity Id="E8">
<Event>
<XPDL:Terminate Trigger="None"/>
</Event>
<NodeGraphicsInfos>
<NodeGraphicsInfo BorderColor="0,0,0" FillColor="255,255,255"
Height="42" Width="41" LaneId="S1">
<Coordinates XCoordinate="1243" YCoordinate="112"/>
</NodeGraphicsInfo>
</NodeGraphicsInfos>
</Activity>
<Activity Id="G9">
<Route GatewayType="XOR_Data"/>
<TransitionRestrictions>
<TransitionRestriction>
<Split Type="XOR_Data">
<TransitionRefs>
<TransitionRef id="L17"/>
<TransitionRef id="L18"/>
</TransitionRefs>
</Split>
</TransitionRestriction>
</TransitionRestrictions>
<NodeGraphicsInfos>
<NodeGraphicsInfo BorderColor="0,0,0" FillColor="255,255,255"
Height="40" Width="40" LaneId="S1">
<Coordinates XCoordinate="700" YCoordinate="122"/>
</NodeGraphicsInfo>
</NodeGraphicsInfos>
</Activity>
<Activity Id="G10">
<Route GatewayType="XOR_Data"/>
<TransitionRestrictions>
<TransitionRestriction>
<Join Type="XOR_Data">
<TransitionRefs>
<TransitionRef id="L19"/>
<TransitionRef id="L20"/>
</TransitionRefs>
</Join>
</TransitionRestriction>
</TransitionRestrictions>

Appendix A. XPDL Code of Shipment Monitoring Process 140

<NodeGraphicsInfos>
<NodeGraphicsInfo BorderColor="0,0,0" FillColor="255,255,255"
Height="40" Width="40" LaneId="S1">
<Coordinates XCoordinate="1137" YCoordinate="113"/>
</NodeGraphicsInfo>
</NodeGraphicsInfos>
</Activity>
<Activity Id="D11" Name="">
<RouteData DataType="Database"/>
<Implementation>
<No/>
</Implementation>
<TransitionRestriction>
<Split Type="AND">
<TransitionRefs>
<TransitionRef id="L23"/>
</TransitionRefs>
</Split>
</TransitionRestriction>
<Performers>
<Performer></Performer>
</Performers>
<NodeGraphicsInfos>
<NodeGraphicsInfo BorderColor="0,0,0" FillColor="255,255,255"
Height="65" Width="50" LaneId="S1">
<Coordinates XCoordinate="363" YCoordinate="297"/>
</NodeGraphicsInfo>
</NodeGraphicsInfos>
</Activity>
<Activity Id="D12" Name="Perishable Goods">
<RouteData DataType="PhysicalEntity"/>
<Implementation>
<No/>
</Implementation>
<TransitionRestriction>
<Split Type="AND">
<TransitionRefs>
<TransitionRef id="L22"/>
</TransitionRefs>
</Split>
</TransitionRestriction>
<Performers>
<Performer></Performer>
</Performers>

Appendix A. XPDL Code of Shipment Monitoring Process 141

<NodeGraphicsInfos>
<NodeGraphicsInfo BorderColor="0,0,0" FillColor="255,255,255"
Height="65" Width="50" LaneId="S1">
<Coordinates XCoordinate="114" YCoordinate="293"/>
</NodeGraphicsInfo>
</NodeGraphicsInfos>
</Activity>
</Activities>
<Transitions>
<Transition Name="" From="E7" Id="L13" To="A2">
<Condition Type="Normal Sequence"/>
<ConnectorGraphicsInfos>
<ConnectorGraphicsInfo FillColor="0,0,0"
Style="No_Routing_Splines"/>
</ConnectorGraphicsInfos>
</Transition>
<Transition Name="" From="A2" Id="L14" To="A3">
<Condition Type="Normal Sequence"/>
<ConnectorGraphicsInfos>
<ConnectorGraphicsInfo FillColor="0,0,0"
Style="No_Routing_Splines"/>
</ConnectorGraphicsInfos>
</Transition>
<Transition Name="" From="A3" Id="L15" To="A4">
<Condition Type="Normal Sequence"/>
<ConnectorGraphicsInfos>
<ConnectorGraphicsInfo FillColor="0,0,0"
Style="No_Routing_Splines"/>
</ConnectorGraphicsInfos>
</Transition>
<Transition Name="" From="A4" Id="L16" To="G9">
<Condition Type="Normal Sequence"/>
<ConnectorGraphicsInfos>
<ConnectorGraphicsInfo FillColor="0,0,0"
Style="No_Routing_Splines"/>
</ConnectorGraphicsInfos>
</Transition>
<Transition Name="Temperature < Threshold value" From="G9"
Id="L17" To="A5">
<Condition Type="Normal Sequence"/>
<ConnectorGraphicsInfos>
<ConnectorGraphicsInfo FillColor="0,0,0"
Style="No_Routing_Splines"/>
</ConnectorGraphicsInfos>

Appendix A. XPDL Code of Shipment Monitoring Process 142

</Transition>
<Transition Name="Temperature > Threshold value" From="G9"
Id="L18" To="A6">
<Condition Type="Normal Sequence"/>
<ConnectorGraphicsInfos>
<ConnectorGraphicsInfo FillColor="0,0,0"
Style="No_Routing_Splines"/>
</ConnectorGraphicsInfos>
</Transition>
<Transition Name="" From="A5" Id="L19" To="G10">
<Condition Type="Normal Sequence"/>
<ConnectorGraphicsInfos>
<ConnectorGraphicsInfo FillColor="0,0,0"
Style="No_Routing_Splines"/>
</ConnectorGraphicsInfos>
</Transition>
<Transition Name="" From="A6" Id="L20" To="G10">
<Condition Type="Normal Sequence"/>
<ConnectorGraphicsInfos>
<ConnectorGraphicsInfo FillColor="0,0,0"
Style="No_Routing_Splines"/>
</ConnectorGraphicsInfos>
</Transition>
<Transition Name="" From="G10" Id="L21" To="E8">
<Condition Type="Normal Sequence"/>
<ConnectorGraphicsInfos>
<ConnectorGraphicsInfo FillColor="0,0,0"
Style="No_Routing_Splines"/>
</ConnectorGraphicsInfos>
</Transition>
<Transition Name="" From="D12" Id="L22" To="A2">
<Condition Type="AssociationW"/>
<ConnectorGraphicsInfos>
<ConnectorGraphicsInfo FillColor="0,0,0"
Style="No_Routing_Splines"/>
</ConnectorGraphicsInfos>
</Transition>
<Transition Name="Threshold value" From="D11" Id="L23" To="A3">
<Condition Type="Association"/>
<ConnectorGraphicsInfos>
<ConnectorGraphicsInfo FillColor="0,0,0"
Style="No_Routing_Splines"/>
</ConnectorGraphicsInfos>
</Transition>

Appendix A. XPDL Code of Shipment Monitoring Process 143

</Transitions>
</XPDL:WorkflowProcess>

A.2 Process Part 2
<XPDL:WorkflowProcess Id="P0" Name="IoT Process"
AccessLevel="public">
<ProcessHeader>
<Created>Thu Jan 11 2018 18:49:15 GMT+1300
(New Zealand Daylight Time)</Created>
<Description>Place your description here</Description>
</ProcessHeader>
<Activities>
<Activity Id="E2">
<Event>
<XPDL:Start Trigger="None"/>
</Event>
<NodeGraphicsInfos>
<NodeGraphicsInfo BorderColor="0,0,0" FillColor="255,255,255"
Height="42" Width="41" LaneId="S1">
<Coordinates XCoordinate="8" YCoordinate="68"/>
</NodeGraphicsInfo>
</NodeGraphicsInfos>
</Activity>
<Activity Id="E3">
<Event>
<XPDL:Terminate Trigger="None"/>
</Event>
<NodeGraphicsInfos>
<NodeGraphicsInfo BorderColor="0,0,0" FillColor="255,255,255"
Height="42" Width="41" LaneId="S1">
<Coordinates XCoordinate="1265" YCoordinate="226"/>
</NodeGraphicsInfo>
</NodeGraphicsInfos>
</Activity>
<Activity Id="A4" Name="Monitor goods in transit">
<RouteAct ActivityType="process"/>
<Implementation>
<No/>
</Implementation>
<Performers>
<Performer></Performer>
</Performers>

Appendix A. XPDL Code of Shipment Monitoring Process 144

<NodeGraphicsInfos>
<NodeGraphicsInfo BorderColor="0,0,0" FillColor="255,255,255"
Height="91" Width="119" LaneId="S1">
<Coordinates XCoordinate="101" YCoordinate="44"/>
</NodeGraphicsInfo>
</NodeGraphicsInfos>
</Activity>
<Activity Id="A5" Name="Obtain current coordinates">
<RouteAct ActivityType="reader"/>
<Implementation>
<No/>
</Implementation>
<TransitionRestriction>
<Join Type="AND">
<TransitionRefs>
<TransitionRef id="L14"/>
<TransitionRef id="L27"/>
</TransitionRefs>
</Join>
</TransitionRestriction>
<Performers>
<Performer></Performer>
</Performers>
<NodeGraphicsInfos>
<NodeGraphicsInfo BorderColor="0,0,0" FillColor="255,255,255"
Height="91" Width="119" LaneId="S1">
<Coordinates XCoordinate="277" YCoordinate="43"/>
</NodeGraphicsInfo>
</NodeGraphicsInfos>
</Activity>
<Activity Id="A6" Name="Inform location">
<RouteAct ActivityType="subProcess"/>
<Implementation>
<No/>
</Implementation>
<Performers>
<Performer></Performer>
</Performers>
<NodeGraphicsInfos>
<NodeGraphicsInfo BorderColor="0,0,0" FillColor="255,255,255"
Height="91" Width="119" LaneId="S1">
<Coordinates XCoordinate="460" YCoordinate="42"/>
</NodeGraphicsInfo>
</NodeGraphicsInfos>

Appendix A. XPDL Code of Shipment Monitoring Process 145

</Activity>
<Activity Id="A7" Name="Check for environmental conditions">
<RouteAct ActivityType="eventstreams"/>
<Implementation>
<No/>
</Implementation>
<TransitionRestriction>
<Join Type="AND">
<TransitionRefs>
<TransitionRef id="L16"/>
<TransitionRef id="L28"/>
</TransitionRefs>
</Join>
</TransitionRestriction>
<Performers>
<Performer></Performer>
</Performers>
<NodeGraphicsInfos>
<NodeGraphicsInfo BorderColor="0,0,0" FillColor="255,255,255"
Height="91" Width="119" LaneId="S1">
<Coordinates XCoordinate="461" YCoordinate="207"/>
</NodeGraphicsInfo>
</NodeGraphicsInfos>
</Activity>
<Activity Id="A8" Name="Report violation">
<RouteAct ActivityType="eventstreams"/>
<Implementation>
<No/>
</Implementation>
<TransitionRestriction>
<Join Type="AND">
<TransitionRefs>
<TransitionRef id="L18"/>
<TransitionRef id="L29"/>
</TransitionRefs>
</Join>
</TransitionRestriction>
<Performers>
<Performer></Performer>
</Performers>
<NodeGraphicsInfos>
<NodeGraphicsInfo BorderColor="0,0,0" FillColor="255,255,255"
Height="91" Width="119" LaneId="S1">
<Coordinates XCoordinate="838" YCoordinate="134"/>

Appendix A. XPDL Code of Shipment Monitoring Process 146

</NodeGraphicsInfo>
</NodeGraphicsInfos>
</Activity>
<Activity Id="A9" Name="Continue delivery">
<RouteAct ActivityType="eventstreams"/>
<Implementation>
<No/>
</Implementation>
<Performers>
<Performer></Performer>
</Performers>
<NodeGraphicsInfos>
<NodeGraphicsInfo BorderColor="0,0,0" FillColor="255,255,255"
Height="91" Width="119" LaneId="S1">
<Coordinates XCoordinate="841" YCoordinate="275"/>
</NodeGraphicsInfo>
</NodeGraphicsInfos>
</Activity>
<Activity Id="A10" Name="Cancel Delivery">
<RouteAct ActivityType="process"/>
<Implementation>
<No/>
</Implementation>
<Performers>
<Performer></Performer>
</Performers>
<NodeGraphicsInfos>
<NodeGraphicsInfo BorderColor="0,0,0" FillColor="255,255,255"
Height="91" Width="119" LaneId="S1">
<Coordinates XCoordinate="1022" YCoordinate="133"/>
</NodeGraphicsInfo>
</NodeGraphicsInfos>
</Activity>
<Activity Id="G11">
<Route GatewayType="XOR_Data"/>
<TransitionRestrictions>
<TransitionRestriction>
<Split Type="XOR_Data">
<TransitionRefs>
<TransitionRef id="L18"/>
<TransitionRef id="L19"/>
</TransitionRefs>
</Split>
</TransitionRestriction>

Appendix A. XPDL Code of Shipment Monitoring Process 147

</TransitionRestrictions>
<NodeGraphicsInfos>
<NodeGraphicsInfo BorderColor="0,0,0" FillColor="255,255,255"
Height="40" Width="40" LaneId="S1">
<Coordinates XCoordinate="669" YCoordinate="233"/>
</NodeGraphicsInfo>
</NodeGraphicsInfos>
</Activity>
<Activity Id="G12">
<Route GatewayType="XOR_Data"/>
<TransitionRestrictions>
<TransitionRestriction>
<Join Type="XOR_Data">
<TransitionRefs>
<TransitionRef id="L21"/>
<TransitionRef id="L22"/>
</TransitionRefs>
</Join>
</TransitionRestriction>
</TransitionRestrictions>
<NodeGraphicsInfos>
<NodeGraphicsInfo BorderColor="0,0,0" FillColor="255,255,255"
Height="40" Width="40" LaneId="S1">
<Coordinates XCoordinate="1183" YCoordinate="227"/>
</NodeGraphicsInfo>
</NodeGraphicsInfos>
</Activity>
<Activity Id="D24" Name="">
<RouteData DataType="InputEvent"/>
<Implementation>
<No/>
</Implementation>
<TransitionRestriction>
<Split Type="AND">
<TransitionRefs>
<TransitionRef id="L29"/>
</TransitionRefs>
</Split>
</TransitionRestriction>
<Performers>
<Performer></Performer>
</Performers>
<NodeGraphicsInfos>
<NodeGraphicsInfo BorderColor="0,0,0" FillColor="255,255,255"

Appendix A. XPDL Code of Shipment Monitoring Process 148

Height="65" Width="50" LaneId="S1">
<Coordinates XCoordinate="635" YCoordinate="16"/>
</NodeGraphicsInfo>
</NodeGraphicsInfos>
</Activity>
<Activity Id="D25" Name="Monitoring events">
<RouteData DataType="InputEvent"/>
<Implementation>
<No/>
</Implementation>
<TransitionRestriction>
<Split Type="AND">
<TransitionRefs>
<TransitionRef id="L28"/>
</TransitionRefs>
</Split>
</TransitionRestriction>
<Performers>
<Performer></Performer>
</Performers>
<NodeGraphicsInfos>
<NodeGraphicsInfo BorderColor="0,0,0" FillColor="255,255,255"
Height="65" Width="50" LaneId="S1">
<Coordinates XCoordinate="369" YCoordinate="294"/>
</NodeGraphicsInfo>
</NodeGraphicsInfos>
</Activity>
<Activity Id="D26" Name="GPS Satellite">
<RouteData DataType="SmartObject"/>
<Implementation>
<No/>
</Implementation>
<TransitionRestriction>
<Split Type="AND">
<TransitionRefs>
<TransitionRef id="L27"/>
</TransitionRefs>
</Split>
</TransitionRestriction>
<Performers>
<Performer></Performer>
</Performers>
<NodeGraphicsInfos>
<NodeGraphicsInfo BorderColor="0,0,0" FillColor="255,255,255"

Appendix A. XPDL Code of Shipment Monitoring Process 149

Height="65" Width="50" LaneId="S1">
<Coordinates XCoordinate="311" YCoordinate="209"/>
</NodeGraphicsInfo>
</NodeGraphicsInfos>
</Activity>
</Activities>
<Transitions>
<Transition Name="" From="E2" Id="L13" To="A4">
<Condition Type="Normal Sequence"/>
<ConnectorGraphicsInfos>
<ConnectorGraphicsInfo FillColor="0,0,0"
Style="No_Routing_Splines"/>
</ConnectorGraphicsInfos>
</Transition>
<Transition Name="" From="A4" Id="L14" To="A5">
<Condition Type="Normal Sequence"/>
<ConnectorGraphicsInfos>
<ConnectorGraphicsInfo FillColor="0,0,0"
Style="No_Routing_Splines"/>
</ConnectorGraphicsInfos>
</Transition>
<Transition Name="" From="A5" Id="L15" To="A6">
<Condition Type="Normal Sequence"/>
<ConnectorGraphicsInfos>
<ConnectorGraphicsInfo FillColor="0,0,0"
Style="No_Routing_Splines"/>
</ConnectorGraphicsInfos>
</Transition>
<Transition Name="" From="A6" Id="L16" To="A7">
<Condition Type="Normal Sequence"/>
<ConnectorGraphicsInfos>
<ConnectorGraphicsInfo FillColor="0,0,0"
Style="No_Routing_Splines"/>
</ConnectorGraphicsInfos>
</Transition>
<Transition Name="" From="A7" Id="L17" To="G11">
<Condition Type="Normal Sequence"/>
<ConnectorGraphicsInfos>
<ConnectorGraphicsInfo FillColor="0,0,0"
Style="No_Routing_Splines"/>
</ConnectorGraphicsInfos>
</Transition>
<Transition Name="" From="G11" Id="L18" To="A8">
<Condition Type="Normal Sequence"/>

Appendix A. XPDL Code of Shipment Monitoring Process 150

<ConnectorGraphicsInfos>
<ConnectorGraphicsInfo FillColor="0,0,0"
Style="No_Routing_Splines"/>
</ConnectorGraphicsInfos>
</Transition>
<Transition Name="" From="G11" Id="L19" To="A9">
<Condition Type="Normal Sequence"/>
<ConnectorGraphicsInfos>
<ConnectorGraphicsInfo FillColor="0,0,0"
Style="No_Routing_Splines"/>
</ConnectorGraphicsInfos>
</Transition>
<Transition Name="" From="A8" Id="L20" To="A10">
<Condition Type="Normal Sequence"/>
<ConnectorGraphicsInfos>
<ConnectorGraphicsInfo FillColor="0,0,0"
Style="No_Routing_Splines"/>
</ConnectorGraphicsInfos>
</Transition>
<Transition Name="" From="A9" Id="L21" To="G12">
<Condition Type="Normal Sequence"/>
<ConnectorGraphicsInfos>
<ConnectorGraphicsInfo FillColor="0,0,0"
Style="No_Routing_Splines"/>
</ConnectorGraphicsInfos>
</Transition>
<Transition Name="" From="A10" Id="L22" To="G12">
<Condition Type="Normal Sequence"/>
<ConnectorGraphicsInfos>
<ConnectorGraphicsInfo FillColor="0,0,0"
Style="No_Routing_Splines"/>
</ConnectorGraphicsInfos>
</Transition>
<Transition Name="" From="G12" Id="L23" To="E3">
<Condition Type="Normal Sequence"/>
<ConnectorGraphicsInfos>
<ConnectorGraphicsInfo FillColor="0,0,0"
Style="No_Routing_Splines"/>
</ConnectorGraphicsInfos>
</Transition>
<Transition Name="" From="D26" Id="L27" To="A5">
<Condition Type="AssociationW"/>
<ConnectorGraphicsInfos>
<ConnectorGraphicsInfo FillColor="0,0,0"

Appendix A. XPDL Code of Shipment Monitoring Process 151

Style="No_Routing_Splines"/>
</ConnectorGraphicsInfos>
</Transition>
<Transition Name="" From="D25" Id="L28" To="A7">
<Condition Type="AssociationW"/>
<ConnectorGraphicsInfos>
<ConnectorGraphicsInfo FillColor="0,0,0"
Style="No_Routing_Splines"/>
</ConnectorGraphicsInfos>
</Transition>
<Transition Name="Events exceeding threshold value"
From="D24" Id="L29" To="A8">
<Condition Type="AssociationW"/>
<ConnectorGraphicsInfos>
<ConnectorGraphicsInfo FillColor="0,0,0"
Style="No_Routing_Splines"/>
</ConnectorGraphicsInfos>
</Transition>
</Transitions>
</XPDL:WorkflowProcess>

Appendix B

Instructions to use IoT aware BPMN

and XPDL Editor

B.1 Steps to use IoT aware BPMN and XPDL Editor

• The left side toolbox consists of the tabs, Swimlanes , Activities, Events, Gate-

ways, Connectors, Data and Artifacts.

• To open any tab in that toolbox, click on the required tab once.

• To start drawing a diagram, select a single lane or multiple lane pool (depending

on the requirement) from the Swimlanes tab of the toolbox by clicking on the

particular pool icon once. This will make it appear on the editor/ editing space at

the right side. Figure B.1 illustrates this.

• If you want to place a start Event on the pool for example, move the cursor to that

element, drag, and drop it on the pool on the editor as shown in Figure B.2. The

same steps should be followed for elements under Activities, Gateways and Data

and Artifacts.

152

Appendix B. Instructions to use IoT aware BPMN and XPDL Editor 153

• You can adjust the positon of these elements in the pool by dragging and moving

to replace them on the pool.

• Now, if you want to connect a ‘sensing task’ for example with the start event,

place the element on the pool following above steps and connect each other by

using a connector under ‘Connectors’ from the toolbox.

• For this, click on the particular connector icon and it will be highlighted. The

cursor icon will turn to “+”sign. When you move the cursor to each element, their

colour will change to ‘yellow’. Now when you click on one element and drag the

cursor to the other, the two elements will get connected by the chosen connector.

Figure B.3 shows this.

• To deselect the chosen connector you need to click on it again at the toolbox so

that the highlighting disappear. If you do not remove the selection, you cannot

move any element on the pool in the editor.

• An element cannot be removed while a connector is chosen and being highlighted.

• To remove an element from the diagram, deselect any connector selections as

already mentioned. Right click on the element you want to delete and this will

bring a popup menu with ‘Delete’ as an option in it. When you select delete

option, this will delete the element as well as any associations it has.

• To add text to any element, for example to add text to ‘sensing task’ from

‘Activities’ as shown in Figure B.4, double click on the element and a text area

window will appear on screen. Type text and click on the button ‘Set’. Click

on ‘Cancel’ button to discard the text. Same steps to be followed in editing any

written text on an object.

Appendix B. Instructions to use IoT aware BPMN and XPDL Editor 154

• To write text on a connector, the same steps as above should be followed and text

will appear on the connection as shown in Figure B.5.

• To use XPDL editor, click on the ‘XPDL’ button on top right side of the screen.

This will bring a window with XPDL code in it if there is any element or a

diagram present as shown in Figure B.6 or a blank screen.

• Copy this code to a file to save the diagram.

• To load the diagram again later, open the editor and paste the code on XPDL

editor window that comes with a black screen and click on apply button. The

diagram will appear on screen.

• It should be noted that when loading a diagram to the editor via XPDL code,

the BPMN editor diagram drawer should be empty, i.e. there should not be any

element present on screen including a ‘pool’ element. Once the website is loaded,

simply open the XPDL editor that comes with a blank screen and paste the code

there and click on ‘Apply’ button.

Appendix B. Instructions to use IoT aware BPMN and XPDL Editor 155

Figure B.1: BPMN and XPDL Editor with a pool

Figure B.2: BPMN and XPDL Editor, a start event placed on pool

Appendix B. Instructions to use IoT aware BPMN and XPDL Editor 156

Figure B.3: BPMN and XPDL Editor, how to use a connector

Figure B.4: BPMN and XPDL Editor, insert text in an element

Appendix B. Instructions to use IoT aware BPMN and XPDL Editor 157

Figure B.5: BPMN and XPDL Editor, write text on a connector

Figure B.6: BPMN and XPDL Editor with corresponding diagram code on XPDL editor

	Abstract
	Attestation of Authorship
	Acknowledgements
	Introduction
	Background and Research Objectives
	Research Questions
	Research Contributions
	Thesis Structure

	Literature Review
	Introduction
	Internet of Things (IoT)
	History of IoT
	IoT Protocols
	Middleware Support for IoT

	Business Process Modelling (BPM)
	History of Business Process Modelling
	Business Process Modelling
	Business Process Modelling Languages (BPMLs)

	BPMN Modelling Frameworks for IoT
	Framework: uBPMN
	Framework: SPU
	Framework: BPMN4WSN
	Framework: Things of IoT in BPMN
	Framework: Crowdsourcing
	Framework: Event Element for IoT
	Framework: IoT Devices as Resources
	Summary

	Conclusion

	Running Scenario and Requirements Derivation
	Introduction
	Problem Scenario
	Requirements Derivation
	Requirement 1 (R1): Sensor as the Business Process Modelling Requirement for IoT
	Requirement 2 (R2): Actuator as the Business Process Modelling Requirement for IoT
	Requirement 3 (R3): Reader as the Business Process Modelling Requirement for IoT
	Requirement 4 (R4): Collector as the Business Process Modelling Requirement for IoT
	Requirement 5 (R5): Event streaming (event stream processing units) as the Business Process Modelling Requirement for IoT
	Requirement 6 (R6): Specific data object as the Business Process Modelling Requirement for IoT
	Requirement 7 (R7): Intermediary operation as the Business Process Modelling Requirement for IoT

	Conclusion

	Implementation of IoT Modelling Elements
	Introduction
	Abforce Open Source BPMN Editor
	Limitations of the Chosen BPMN Editor and Our Contributions
	How the Chosen System Works

	Our Web Based IoT Aware BPMN and XPDL Editor
	Software Architecture
	IoT Modelling Element Extensions to the BPMN Editor
	IoT Modelling Elements Extensions To BPMN Meta Model

	Conclusion

	Case Study and Evaluation
	Introduction
	Case Study
	Case Study Evaluation

	Capability of the IoT Aware BPMN Editor Tool
	Conclusion

	Conclusion
	Summary
	Limitations of the Research
	Recommendations and Further Study
	Conclusion

	References
	Appendices
	XPDL Code of Shipment Monitoring Process
	Process Part 1
	Process Part 2

	Instructions to use IoT aware BPMN and XPDL Editor
	Steps to use IoT aware BPMN and XPDL Editor

