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Abstract 

Interactive Computer Games have grown in complexity as the game industry has 

matured into a multi-billion dollar market. As games have grown in complexity, the 

content that is produced for games has grown in both complexity and production cost. 

This has motivated research into Procedural Content Generation. It is generally 

thought that developments in Procedural Content Generation has the potential to 

reduce costs of content production in game development. However, currently 

Procedural Content Generation is primarily concerned with the playability and usability 

of generated content. There is little research that investigates the player’s perception 

of generated content. The goal of this research is to evaluate the perceived immersion 

of a game developed utilizing Procedural Content Generation. A game called Vektor 

was designed and implemented for this study. Two variants of the game were 

produced. One of those variants featured levels designed by a human designer. The 

other variant featured levels that were evolved using a genetic algorithm. The 

immersion scores of each variant was recorded from participants who played on of the 

game variants using a questionnaire. Statistical analysis was used to identify where 

significant differences in immersion occurred.  



 
 

1 Introduction 

Interactive computer games have grown from a niche market to a multi-billion dollar industry 

(Williams, 2002). Today, video games can be seen as another part of media in contemporary 

culture (Squire, 2002). As the industry has grown and expanded, the complexity of games and 

their development have expanded alongside it. While games used to be simple 2D adventures 

like that of Pong, today they feature complex 3D virtual worlds and characters. Games have 

even be called art (Smuts, 2005), and there are numerous examples of games with novel 

systems and set ups that would be identified as such. 

 

However as the games have become more complex, the resources needed to make them have 

increased as well (Edwards, 2006) and it is not unusual for contemporary games to have 

million dollar budgets. There is also considerable risk in the production of video games, 

limiting the ventures studios make in the production of the video games. 

 

One of the significant causes of the increased expense is the production of game content. As 

the complexity of the games have increased, the intricacies of game content has increased as 

well. To produce good game content, designers often need to iterate several times over their 

work to ensure quality content. This makes the production of games an intense and time 

consuming process. 

 

In game research, Procedural Content Generation (PCG) has arisen to answer this problem. 

While there are numerous examples of commercial games that already use PCG, they usually 

feature simple PCG methods, and they are highly specialised to the game in question, limiting 

the universal application of the method. Examples of advanced PCG in commercial games are 

rare, although that may change in the near future.  

 

It is generally thought that use of advanced methods can improve PCG‘s ability to produce 

content of a higher quality. These advanced methods may include Artificial Intelligence and 

Evolutionary Computation. The desired goal is to produce systems that can autonomously 

produce content of the same or higher quality than human designed content, and that these 

systems would be universal between different game designs. This would enable the 

production costs of games to go down allowing more and broader ventures in the industry. 

PCG could also augment the creativity of human designers, enabling more affordances in the 

designs and scopes of games. 
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However, to a large extent, current research into PCG is primarily concerned with the technical 

feasibility of the methods investigated. The research typically addresses whether the content 

is technically playable and usable in the games they are produced for. There is little research 

that investigates the impact of PCG in terms of how the players perceive the generated 

content and how it impacts the game playing experience. Even if the content is technically 

feasible, would it contribute positively to the games perceived enjoyment by players?  

 

This is an important question. In order for the goals of PCG research to be realised, the 

produced content needs to be enjoyable, as well technically feasible. Content that is generated 

needs evoke a sense of presence in the player. Presence (Singer & Witmer, 1998) refers to the 

experience of being in a virtual environment while physically situated in another. Presence 

itself relies on the interplay between involvement and immersion. Measurement of this is 

subject to the experience of player however, and is thus a subjective measure. 

 

The complexity of the human designed content needs to be matched in these respects. This 

research is therefore intended to undertake a preliminary evaluation of the impact of using 

PCG on the game playing experience. In particularly, it uses the concept of immersion as 

defined by Weibel & Wissmath (2011), as a measure of the quality of the game playing 

experience. Would the use of an evolutionary based PCG method contribute to the perceived 

immersion of a game? 

 

To evaluate this, this research conducts a game play test with human participants, in which 

they play a game with levels designed by either a human or a PCG method. The participants 

are not informed of the version of the game that they are playing. The game in question was 

developed for this research, and is called Vektor. It is a top down shooter developed with the 

Unity game engine (Unity, 2016). The game has been intentionally designed to test the 

hypnosis established in this research. Participants fill out a game immersion questionnaire 

taken from research in evaluating players perceived immersion of a game (Brown & Cairns, 

2004a). The results are then compared to evaluate the immersion of each of the two variants 

of the game. 

 

The rest of this thesis is structured as follows. Chapter 2 provides an overview of the research 

literature related to the use of AI in games in general, and specifically to the use of PCG in the 

game design process. Chapter 3 outlines the methodological stance of this thesis, including a 

description of the experimental design of the evaluation phase. Chapter 4 describes the 

implementation of both the game developed in this study and the details of the approach to 
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PCG utilised. Chapter 5 presents the results from the playtesting evaluation and finally Chapter 

6 concludes the thesis. 
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2 Literature Review 

This research outlined in this thesis specifically relates to the evaluation of the 

perceived immersion in a game that has been developed utilizing elements that are 

procedurally generated through the use of an evolutionary computation technique. As 

such, this work is situated in the context of utilising computational intelligence 

approaches in the game design process. This in itself in an even wider context of game 

design theories and practice, some of which utilise artificial intelligence or 

computation intelligence techniques embedded in the game or supporting the design 

process. There is a variety of literature and pre-existing research that cover these areas 

and this chapter reviews research that is related to this research to provide an 

appropriate context to justify and support the current study. 

 

2.1 Games and Design 

It may not be apparent to observers who are not familiar with the culture and industry 

surrounding games, that the various systems that comprise a computer game need to 

be carefully designed. This is not surprising, as it has been noted that the field of game 

design has “drifted along under the radar of culture, producing timeless masterpieces 

and masterful time-wasters without drawing much attention to itself” (Lantz, 2004, p. 

x). Game design does not just consider technical contexts, but also incorporates a 

human computer interaction context that considers issues such as flow (Chen, 2007; 

Csikszentmihalyi & Csikszentmihalyi, 1992), immersion (Brown & Cairns, 2004b) and 

engagement (Boyle, Connolly, Hainey, & Boyle, 2012) in the production of player-

centric experiences. As a result, an entire discipline has emerged centred around the 

design of games, focused on how games work and how game systems influence 

players. The design of the game can make or break its success and specific examples of 

successful or failed games have been analysed to identified particular design features 

or decisions that influenced the reception of the game (Rollings & Morris, 2003).  

 

The video game industry has grown dramatically over the past decade, cutting into 

traditional media in participation and revenues as it becomes part of mainstream 

media culture (Connor & Gavin, 2015; Williams, 2002). The game development 

industry is increasing in complexity, with both physical and economic interactions 
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between hardware and software (Nichols, 2014). Video games have driven the 

evolution of computer hardware and multiplayer games in particular created an 

insatiable demand for better graphics systems (Kushner, 2002), and the resulting 

diversity and capability of hardware has produced a dynamic market which produces 

more games that utilise these advances (Jörnmark, Axelsson, & Ernkvist, 2005). Such a 

market creates demands on game development companies to produce increasingly 

complex games to maintain their market share. Game design has therefore become a 

challenging activity and there is a need for game design schemata that guide designers 

to understanding how their design choices influence the player experience that results 

from the game. The following section details the schema that was used in the 

development, execution and discussion of this research.  

 

2.1.1 Mechanics Dynamics, Aesthetics Framework 

Interactive computer games are comprised of a series of systems that operate the 

game in response to player input. What these systems are and how they interact with 

the player varies considerably between games. Two games can have completely 

different systems, yet still be well received by an audience. Because of the many 

possible permutations of these systems in games, classifying which are commonly 

‘good’ and ‘fun’ is an impossible task. Yet, as it will be discussed, thinking in these 

terms is a mistake and adds to the confusion and difficulty in analysing games media. 

Instead, the MDA framework (Hunicke, LeBlanc, & Zubek, 2004) proposes that game 

systems are looked at through three lenses, which emphasizes how the systems work 

together and contribute toward the desired game experience. 

 

The MDA framework is a framework for the analysis and design of games that 

postulates that all the parts of a game systems contribute to the whole game 

experience, and the better the systems are designed around each other, the more 

coherent the end user experience becomes. The design of the all the systems of a 

game should be well thought out and contribute to the designer’s desired experience. 

 

The framework formalizes a schema for relating the systems of the game to the end 

user experience by breaking the game into three components, Mechanics, Dynamics 

and Aesthetics.   
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Mechanics refers to the base systems that operate the game. All the code, game logic, 

math, and even properties of the game play elements, are considered to be mechanics 

of a game in this schema. This is because each of things either are a defined set of 

rules or follows a set of rule that govern how things behave in the game.  

 

The behaviour that emerges from these mechanics are referred to as Dynamics. 

Dynamics are the run time behaviour of the mechanics. Although mechanics puts 

emphasise on the systems and rules in a mechanics sense, Dynamics is focused on how 

the system of a game playout over time. While the math of a game character’s 

movement would be considered a mechanic, the dynamic of the game character’s 

movement would be how the math would manifests over time. It is important to 

understand this distinction.  

 

It is not accurate to evaluate a game based on its perceived ‘fun’. Two games may have 

different systems, yet they may both be considered ‘fun’. Instead of looking to the 

players perceived ‘fun’ to evaluate the systems in a game, it is more meaningful to 

understand the experience the systems of the game produce. Aesthetics is the 

emotional response a player may have to a game’s system. Aesthetics are essentially 

how the Dynamics feel to the player. Instead of being on linear dimension between 

‘good’ and ‘bad’, the Aesthetics lens is concerned with what systems create what 

emotional responses, as there are a variety of emotional responses a game can 

produce.  

 

This framework will be used as the game design schema for this research. This is 

important, as conclusions about the results of data will not be meaningful without a 

design schema to contextualize the outcome. This seems to be lacking in other 

research into PCG methods, as usually the technical feasibility is the focus of the 

research. It is recognised in this research that design feasibility needs to be considered. 

How does the PCG method fit into the design of a game, and how does the design of 

the game, influence the implementation of the PCG method. MDA was chosen 

because, while it is simple, it provides an effective schema for designing and analysing 

games through an interactive approach.  
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2.2 Artificial Intelligence and Games 

Given that interactive video games deal with virtual worlds and virtual characters, it 

would not be a giant leap to assume that the latest computer games feature advanced 

AI that has been developed in the field of computer science. Unfortunately, this is not 

the case and a recent review of the state of the art in AI in games (Bourassa & Massey, 

2012) concluded that: 

 

“Commercial games, which might be expected to be at the vanguard of AI 

development, are not. The reality is that the video game industry, 

naturally, holds the gamer experience as the highest priority, and all game 

design decisions are made in that context. Consequently, commercial game 

development has focused on the environment of the game: graphics and 

character models. The impact is that AI research by the video game 

industry is meagre and only a small portion of the computational resources 

in a game are allotted to AI.” (Bourassa & Massey, 2012, p. iii) 

 

Most triple A (AAA) games on the market today feature simple smart systems for the 

behaviour of its characters. In fact it is rare to find games that employ advanced AI 

systems that have been developed in academia, such as neural networks and Genetic 

Algorithms. In fact, the term ‘Artificial Intelligence’ has a distinct meaning in games 

that is different than Computer Science research. AI in games usually refers to systems 

that govern the behaviour of the virtual characters (Yannakakis, 2012), but those 

systems are not considered real AI in comparison to the computer science research. 

 

This due to a multitude of factors, however the most apparent is that relatively 

advanced AI systems go beyond the scope for what is required for the development of 

engaging virtual characters in games. Game developers are more interested in creating 

an engaging experience for the player (their consumer) than experiment with cutting 

edge smart systems (Woodcock, 2000). This perspective is not unjustified due to the 

challenges of game production. The complexity of implementing such academic AI 

systems into a game, and a means to control their impact on the design of a game, is 

not a trivial matter, and usually the cost in doing so overshadows the perceivable 

benefits (Yannakakis, 2012). Tradition solutions would typically include approaches 
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such as pathfinding, rule based systems, finite state machines, behaviour trees and 

goal planning (Yue & de-Byl, 2006). Such approaches are usually good enough for 

developers as they offer robust control of autonomous characters with enough 

flexibility to create a desired experience. 

 

That being said, in recent years there has been a push for more interaction between 

the two communities, game developers and game/AI researchers (Yannakakis, 2012). 

Research into the use of novel AI in games is increasing (Yannakakis & Togelius, 

2015a), and may find its ways into the commercial game industry. Video games have a 

variety of systems in which the use of the novel AI are applicable. While the industry 

has settled with A* and Behaviour Trees for character AI, other systems of a game may 

benefit from the advent of advanced AI. AI can be used in the process of making a 

game, where the developers and design can offload process in the production of the 

game to autonomous systems. 

 

2.2.1 AI in commercial games 

Although this research is not concerned with the development of advanced NPC AI, the 

game that was produced for this research did implement methods that are commonly 

used in commercial games. This was to achieve a game that can be indicative of a 

standard game one might find in the industry. Because of this, two methods, 

Behaviour trees and A* pathfinding will be discussed as they are used in the developed 

game. 

 

2.2.1.1 Behaviour Trees 

Behaviour trees have become a standard method for controlling NPC/AI behaviour in 

the game industry. Behaviour trees can be thought as a tree of behaviours, where each 

leaf is an action and nodes are logic gates, which control when leafs are accessed 

under specific conditions. Like a Finite State Machine, the behaviours are defined 

individually in nodes. The difference, which makes behaviour trees better at handling 

game AI and scaling as more behaviours are added, is that the behaviours are 

organized hierarchically, and conditions for how behaviours transitions to other states 

are not defined in the behaviour, but rather in the nodes that string behaviours 

together. (Isla, 2005; Simpson, 2014) 
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Earlier games with AI driven characters would rely on finite state machines, or some ad 

hoc method similar to a state machine, to control the behaviour of the character. As 

games have become more complex, and the character’s interaction with the virtual 

environment and the player more intricate, the complexity of the character’s AI 

systems have become more challenging to implement. Finite state machines (or the ad 

hoc method a game developer would employ), while effective at managing discrete 

states of behaviour, become problematic to use as, more states are added to the AI’s 

behaviour repertoire. This is because transitions between states must be defined in 

each state (which means that each state must have knowledge of other states). As 

more state are added to the system, more definitions between states need to be 

implemented. This increases the complexity involved and becomes more prone to 

error. Finite State Machines, hence, are not effectively scalable in the context of game 

AI development. 

 

Behaviour trees alleviate this design pattern bottleneck by organizing the behaviours 

that the character can partake into a tree graph structure. Like a normal tree structure, 

there are edge nodes, known as leafs, and regular nodes that other nodes are attached 

to. Leaf nodes contains specific actions an NPC can perform, while regular nodes at as 

the logic gates of the behaviour tree.  

 

These nodes all return a value upon inspection, Success, Failure or Running. Depending 

on the type of node, the value returned will dictate will proceed to the next node or 

return up the tree. 

 

2.2.1.2 A* and Pathfinding 

The second method that has found widespread use in the game industry is the A* 

search algorithm for pathfinding. Ever since virtual characters needed to walk around 

walls and obstacles to arrive at the players’ location, (or whatever location is specified 

by the designer) game developers have required a means for the characters to 

navigate from one point to another, both effectively and efficiently (Cui & Shi, 2011).  
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Pathfinding simply refers to a means in which a system finds a path from point A to 

point B in a given space. Almost all games, from First Person Shooters to Role Playing 

Games requires some sort of pathfinding for the virtual characters to navigate the 

virtual world. In these virtual spaces, there are a variety of obstacles due to the 

configuration of the space. Pathfinding must be able to find paths around these 

obstacles, so the virtual characters can interact with the player and other characters 

without becoming stuck behind a wall.  

 

Early solutions to this would include Dijkstra’s algorithm and Best First Search. 

Dijkstra’s algorithm is a classic solution to pathfinding and is always able to find the 

shortest path between two points. The caveat to this is that it is a costly algorithm to 

perform and is not efficient enough to run in real time. This may not be a problem for 

applications where performance cost is not an issue, however for games, where a path 

needs to be computed in real time, this is not desirable. Dijkstra tends to search 

outward from the source in all directions. Eventually it lands on goal and path is found. 

 

Best First Search (BFS) can be considered the opposite of Dijkstra. The key difference is 

that BFS choses nodes that are projected to be closer to the goal via a Heuristic 

function, instead of evaluating the cost from the source. This speeds up the process of 

finding a path as BFS searches nodes in the direction of the goal. However, as the 

configuration of the search space becomes complex, BFS cannot guarantee the 

shortest path. Because of this, even though it is faster than Dijkstra, it is also not 

adequate for the demands of video games. 

 

A* can be thought of as combination of Dijkstra and BFS. Unlike the methods above, 

A* uses both the cost from the source and the projected distance to the goal to direct 

it search.  The weight of the two scores, the cost from the source and the projected 

distance to the goal, can be scaled back and forth to produce Dijkstra or BFS, if it is 

known that the search time is tolerable or if the search space is not too complex and 

computation time is short.  

 

Because of this A* is widely used for pathfinding in games, as it finds a path that 

usually is very close to the shortest path in a viable time frame. It should be noted that 
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specific implementations of A* use optimizations that are appropriate for the 

developed game at hand. However, the search strategy that defines A* makes it a 

popular method to use. 

 

2.2.2 AI Assisted Game Design 

The development of a game is not a trivial undertaking (Blow, 2004). The production of 

a game employs many people, from its conception, through development and to 

distribution. Even post launch support is a demanding job. Many professions 

contribute to the development of a game, from 3D artist to music composers. 

Computer programmers, although usually the foundation of a game, are not the only 

profession the development of a game relies on. Entire skill sets have emerged from 

the advent of game development and the game industry. 

 

Because of this, the cost in developing games has become significant (Folmer, 2007). 

Even relatively small game projects, which gaming cultures refer to as Indie game (due 

to the circumstances of the movements inception), is an expensive undertaking for the 

individuals involved. There are many moving parts, not only in the game, but also in 

the process in which games a developed and designed, that contribute to the high cost 

of development. 

 

With cost of game development so high, processes in the game design/development 

process can be inspected to consider how to find efficiencies. Whilst strategies such as 

community development (Arakji & Lang, 2007) address challenges related to time, 

there is also a growing interest in the use of AI based design tools and procedural 

generation of game content (Hendrikx, Meijer, Van Der Velden, & Iosup, 2013). If the 

use of AI in the design process can elevate the manpower in design/development 

process of games, the cost of game development can come down.  

 

AI assisted game design (AI AGD) is concerned with development of tools that utilize 

AI, which can support and assist with game design process (Yannakakis & Togelius, 

2015a). However, there is a lack of use of any design tools in the game industry 

(Nelson, 2011), let alone AI based tools. This is despite the fact that it has been noted 

that AI tools have the potential to not only help explore large game design spaces, but 
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also help develop new player experiences (Eladhari, Sullivan, Smith, & McCoy, 2011). 

The use of AI in game design is not restricted to content, and it is important to make 

distinction between game content and the game itself (Togelius, Nelson, & Liapis, 

2014).  For example, games can be designed explicitly through the use of recombinable 

mechanics (Nelson & Mateas, 2008) and generative mechanics (Zook & Riedl, 2014). 

Such approaches allow games to be created with little or no input from the human 

designer. Whilst such approaches are of interest, the main area relevant to this work is 

where there is a tool that supports rather than replaces the designer. 

 

Many examples of AI assisted game design can be found in the literature, for example 

Smith, Nelson & Mateas (2009) describe the use of AI in the play testing of levels that 

provide insight to the designer as to what the player experience might be. Similarly, 

Nelson (2011) looks at how game metrics can also be generated without players to 

understand game artefacts. Other approaches look at the automated generation of 

storyboards as a tool for the game designers to help communicate the design intent to 

the game developers (Pizzi, Lugrin, Whittaker, & Cavazza, 2010).   

 

The majority of AI based design tools discussed in the literature relate to the creation 

of content, either independently from or in conjunction with the designer. For 

example, Tanagra (G. Smith, Whitehead, & Mateas, 2011)  acts as mixed initiative level 

design tool, developed to aid a human designer in the development of game levels for 

a 2D platformer. Instead of automating the process of the level development, it 

instead helps a level designer as they are making levels for the game. The tool suggest 

potential designs based on the current design laid out by the designer, and can also 

generate the rest of the level if desired by the designers. It can run fast enough so that 

this functionality can be performed in real time, a key requirement if human designers 

is actively making the level. It does by this using concepts of Reactive Planning and 

Numerical Constraints in its implementation. While we will not go into detail, the 

system uses notions of player rhythm to map gameplay bits between the actual levels 

content and the system internal understanding of the game’s design.  

 

Another example of AI Assisted Game Design is the Sentient Sketchbook (Togelius, 

Yannakakis, & Liapis, 2013). While this tool is also focused on assisting the level design 
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process, it uses different methods to do so. It is also designed around a strategy game. 

In this case, the designer develops an abstraction of the level as a series of tiles that is 

later turned into a more detailed map. While the tool also suggests generated map 

designs, it also reports other gameplay properties of the game level back to the 

designer, so the designer can ascertain properties of the gameplay quickly. Generated 

maps are produced from a two population GA, one focusing on the novelty search and 

the other on constraint optimization. Novelty search is concerned with maintaining 

high diversity in a population, as candidate content, while not the fittest in a 

population, may contain information that may be of value. 

 

Many examples of AI assisted game design address procedurally generated content. 

However, the intent of the approach can be used to make a distinction between 

approaches.  Procedural Content Generation (PCG) is concerned with the development 

of systems that can to some degree automate the content production process. AI AGD 

is concerned with leveraging those systems to aid the design process. As PCG is core to 

the research in this thesis, the following section discusses approaches to PCG in more 

detail.  

 

2.3 Procedural Content Generation 

The rising cost of the game development has already been identified as an issue of 

concern. One of the areas of research that has significant potential to address this 

contemporary problem is Procedural Content Generation (PCG). In its simplest form, 

PCG refers to algorithmic creation of game content with limited to no user input 

(Togelius, Kastbjerg, Schedl, & Yannakakis, 2011).  Although all game content creation 

is instantiated through some form of algorithm, PCG is concerned with means of 

creating content that are more autonomous in nature, where the users is only 

indirectly involved in the process. 

 

The key term here is content, with examples in the literature of PCG being applied to 

all types of game content. The accepted definition of the term relative to computer 

games, is that all things which are contained in the game can the thought of as 

content. The games levels/environment (Compton & Mateas, 2006), the assets used in 

the game (Dragert, Kienzle, Vangheluwe, & Verbrugge, 2011), 3D models (Yoon & Kim, 
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2012), textures (Ebert, 2003), sounds and music (Farnell, 2007), components in the 

game, items, quests (Dormans, 2010), and even the structure of the content itself, the 

narrative of, or derived from, the game (Fernández-Vara & Thomson, 2012).  

 

Because there are many different permutations of game systems, PCG systems are 

usually designed for the specific game it is being developed for, even if the underlying 

method can be applied universally. As such, PCG systems are usually designed around 

the specific design and affordances of the game. Because the design of PCG systems 

are specific, the content needs to be successful in the context of the game it is being 

developed for. This sets PCG apart from other endeavours such as generative art, as 

there is specific schema in which the content will be consumed by a player. As an 

example, a level should be expected to be finished within a reasonable time. If the 

generated content cannot fur fill this criteria successfully, then the method used to 

produce it can be deemed to not be successful. 

 

The obvious aim for the development of PCG is to alleviate the need for manual 

content production. One of the most costly processes in game development is the 

production of game content. Automating this process would help reduce the cost of 

game development. This is not to say that game content producers would not be part 

of the game development process. The PCG system itself still needs to be designed, 

the content still needs to be evaluated, automatic evaluation needs to be trained or 

designed. The use of PCG systems in the content production process could enable 

human designers more affordances, and contribute to a higher quality product that 

can be achieved with solely manual production. 

 

PCG, while an active area of research, have been used successfully in games over the 

last few decades. There is a significant body of literature related to PCG, with 

applications such as generating cave and maze systems (Ashlock, Lee, & McGuinness, 

2011; Boggus & Crawfis, 2009; Johnson, Yannakakis, & Togelius, 2010), level maps 

(Togelius, Preuss, & Yannakakis, 2010a), cities (Greuter, Parker, Stewart, & Leach, 

2003) and through to more conceptual issues such as dynamic difficulty adjustment 

(Jennings-Teats, Smith, & Wardrip-Fruin, 2010). In addition to specific applications, the 
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literature contains a number of articles that survey the literature (De Carli, Bevilacqua, 

Pozzer, & Cordeiro d’Ornellas, 2011; Hendrikx, Meijer, Van Der Velden, & Iosup, 2013).  

 

As outlined by Togelius, Shaker, & Nelson (Togelius, Shaker, & Nelson, 2016), the ideal 

visions for the field of Procedural Content Generation are the following:  

 

1) Multi-level, multi-content PCG, a generator that is able to produce content of any 

type, in accordance with a specific game design. 

2) PCG-based game design: a game in which the PCG systems are crucial to the 

design of a game, instead of just filling the role of content generation. 

3) Generating Complete Games: instead of the PCG systems being a part of a game, 

or a part of a game design, PCG systems that are able to produce complete games 

themselves, based on a set of inputs from a designer. This includes the design of a 

game as well. 

 

The above are ideal goals for what can be potentially be achieved in the field of PCG. 

While currently it may not be possible to achieve these goals, it is important to have 

goals to work towards. The properties of PCG systems that can considered desirable 

are following. Speed, Reliability, Controllability, Expressivity and diversity, Creativity 

and believability. Also, there are a series of dimensions are that are common to all 

permutations of PCG methods: 

 

 Online vs Offline: When the content is generated relative to the runtime of the 

game 

 Necessary versus optimal: Does the content need to be correct in the design of the 

game 

 Degree and dimensions of control: how much control does the designer have over 

the generated content. 

 Generic versus Adaptive: is the PCG method adaptive to the player 

 Stochastic versus deterministic: how random vs deterministic the content 

generator is 

 Constructive versus Generate-and-test: Is the content constructed once  or over 

multiple iterations, or is it rejected as regenerated based on an evaluation 
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 Automatic generation versus mixed authorship: How much of the content is 

generated vs how much of it is authored by another designer. 

 

Traditional approaches to PCG utilise a number of techniques or theoretical 

frameworks, such as L-systems (Dormans, 2010) or other space based approaches 

(Bourke & Shier, 2013), statecharts (Dragert et al., 2011) and petri nets (Lee & Cho, 

2011), along with an emergence of declarative approaches (Smelik, Tutenel, de Kraker, 

& Bidarra, 2011) or those using techniques such as answer set programming (A. M. 

Smith & Mateas, 2011). However, one of the dominant trends in recent years is the 

growing interest in search based or evolutionary based approaches to PCG. 

 

2.3.1 Search Based PCG 

Recently the distinction between general PCG methods and Search Based PCG has 

been identified. While the taxonomy above covers all forms of PCG, Search Based is 

specific to methods that employ evolutionary computation and other metaheuristic 

techniques. 

 

As defined by Togelius, Yannakakis, Stanley, & Browne (2011), PCG methods that fall 

under search based PCG, are distinct in that they feature an evaluation function that 

grades content instead of accepting or rejecting it, and proceeding instances of 

generated content are based of content that received good grades. These two 

concepts, an evaluation/fitness function and using information from well graded 

instances in new instances, are typical of Evolutionary Computation (EC) approaches. 

PCG methods that utilize EC therefore fall into this category of Search Based PCG. 

However, Search Based PCG is not only limited to methods that employ EC. It is noted 

that EC techniques are over represented in Search Based PCG (this research included). 

 

Search Based PCG should not be confused with standard Generate and test PCG 

methods. Search Based PCG is a subset of Generate and test PCG, where content is 

graded instead of accepted/rejected. 
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2.3.1.1 Metaheuristic Search Algorithms 

The fundamental premise of search based PCG is the utilisation of some form of search 

algorithm that explores the solution space automatically, through the use of an 

evaluation function that guides the algorithm in the discovery of new solutions. 

Traditional search algorithms would typically use gradient based information that 

requires an evaluation function that is differentiable. Such approaches are limited in 

their applicability, and even direct search methods like standard hill-climbing are 

prone to convergence in local optima (Yuret & De La Maza, 1993). Most search based 

PCG approaches therefore use some form of metaheuristic based global search 

algorithm. 

A wide variety of such algorithms exists, including Genetic Algorithms (Goldberg, 

1989), Simulated Annealing (Kirkpatrick, Gelatt, Vecchi, & others, 1983), Tabu Search 

(Glover, 1990) and Particle Swarm Optimisation (Eberhart & Kennedy, 1995) to name 

but a few. Various studies have been conducted that compare the relative 

performance of such algorithms on different problems (Connor & Shah, 2014; 

Elbeltagi, Hegazy, & Grierson, 2005; Eberhart & Shi, 1998; Evins, 2013; Ingber & Rosen, 

1992; Connor & Shea, 2000). These studies, and many more in the literature, do not 

provide any insight into any consistent performance benefit that can be attributed to a 

particular algorithm. This suggests that the choice of algorithm is perhaps less 

significant than how the problem is represented for the algorithm to explore. In this 

study, a genetic algorithm has been utilised as the base metaheuristic. This decision 

was based on the ease of conceptualising the search approach, the popularity of the 

approach in existing PCG approaches (Mourato, dos Santos, & Birra, 2011; Ong, 

Saunders, Keyser, & Leggett, 2005; van der Linden, Lopes, & Bidarra, 2014) and also 

the possibility further exploring interactive genetic algorithms (Cardamone, Loiacono, 

& Lanzi, 2011; Kruse & Connor, 2016) where the fitness function is replaced through 

interaction with the designer. 

 

2.3.1.2 Content Representation and Search Space 

Search Based PCG systems, situated around evolutionary computation, stochastic 

optimization and metaheuristics, are concerned about how the content possibilities 

are represented. Search based PCG systems conceptualize the possibilities of potential 

content as being a search space. This is similar to how Genetic Algorithms conceptually 
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search an undefined space. Instances of the content represent a point in that search 

space. In this context, how a point in the search space is represented is of significant 

interest. The representation is referred to as the genotype. The corresponding 

instance of content, the phenotype. 

 

Genotypes can fall between a direct encoding or an indirect coding.  

There are two extreme specifications a genotype implementation can be. Direct 

encodings or indirect encodings. Direct encodings are, direct. A direct representation 

of a maze level, could be 2D dimensional array storing the value of each tile of the 

maze. An indirect encoding might be a random seed, from which maze is generated. 

While direct encodings are computationally simple to implement, they are heavy on 

memory as they usually store most of the data that would be instantiated to construct 

the content. Indirect encodings on the other hand, would have a smaller memory 

footprint. However indirect encodings are very computationally specialized.  

 

An important principle in the design of genotypes is that it has high locality. This 

means that small changes in the encoding results is small changes of the phenotype 

and thus its position in the search space. Another principle is that the encoding can 

represent as many interesting solutions as possible. We will call this search breadth, as 

a term was not ascribed by (Togelius, Yannakakis, et al., 2011). 

 

Even though direct encodings are more memory intense, it is easier to maintain high 

locality and search breadth, due to being direct. It is harder to maintain high locality 

and search breadth in indirect encodings. 

 

An example of different representations: (Frade, de Vega, & Cotta, 2010) evolved 

terrains for a game that were represented as expression trees. As an expression tree, it 

is clearly an indirect encoding of the content it represents. (Togelius, Preuss, & 

Yannakakis, 2010b) generated maps RTS. Their representation details the positions of 

bases and resources as X and Y coordinates. This is direct. However, other features of 

the maps are represented indirectly. Positions, standard deviations and heights of 

several two-dimensional Gaussians are evolved, and the height of the terrain at each 

point is calculated based on those. As such the representation contains direct 
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elements and indirect elements. These are examples of different content 

representation. 

 

2.3.1.3 Evaluation Functions 

As previously described, search based PCG utilize evaluation functions is an automated 

approach. Like fitness functions in GAs, SB-PCG evaluation functions evaluate and 

grade instances of content. How to grade an instance of content and for what reasons 

is not a trivial question. There are many features that determine what makes content 

‘good’, and these features vary wildly with the design of a game. Quantifying what 

these features are is huge undertaking, and will not be attempted here. Evaluation 

functions can fall into three categories: 

 

 Direct Evaluation functions: takes direct measurements of the content, and grades 

the content based on specifications by a designer. Theory driven functions have 

specifications derived from intuition and/or some qualitative theory. Data driven 

on the other hand derived from recorded data about game content and their 

effect on player experience. 

 Simulation-Based Evaluation Functions: candidate content is simulated to 

determine its grade. The simulation usually involves artificial agents in place of the 

players. Static Simulation based evaluation functions, feature agent that do not 

change over the course of the simulation. Dynamic simulation, features agents 

that do change over the course of the simulation 

 Interactive evaluation Functions: incorporates real players into the evaluation 

process. Data about the player’s response can either be recorded explicitly, 

through questionnaires about the game experience, or implicitly, from the 

monitoring the players behavioural and physiological responses. 

 

Revisiting the two earlier examples; Frade et al. (2010) featured a direct, theory driven 

evaluation function that scored the content based the largest connected area of flat 

terrain. While (Togelius et al., 2010b) had a collection of evaluation functions, both 

direct and simulation based. They both are motivated by gameplay considerations, 

using A* in the process. As such they are also considered theory driven. 
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This research ultimately falls into search based procedural content generation, as a 

genetic algorithm that evolves game levels are developed and implemented into a 

game.  

 

2.3.2 Experience-Driven PCG and user evaluation 

This research undertakes user evaluation. However it is not the first instance where 

user evaluation of generated content is under taken. The following examples discussed 

here fall into the category of Experience-Driven Procedural Content Generation 

(Yannakakis & Togelius, 2015b). ED-PCG, as it is abbreviated to, incorporates notions of 

affective computing into PCG, where the emotional effect on the player is 

incorporated into the framework. One of the components of ED-PCG, is the Player 

Experience Model, a function modelling the relationship between the content and the 

resulting player experience. While this player model can be constructed from theory, 

the aim is to use data of players responses recorded from plays session. This data can 

be collected and used in various ways. 

 

Raffe, Zambetta, Li, & Stanley (2015) created a system that utilized multiple 

evolutionary processes to generate personalized content. Players would initially play 

randomly generated levels. On the completion of a level, they rated the content, and 

then choose if they want offspring of the level to be generated or randomly generate 

another level. Their ratings would influence and train the player model. 

 

Pedersen, Togelius, & Yannakakis  (2010) used Infinite Mario Bros (and open source 

Super Mario Bros clone with generatd levels) to collect data from data from players 

and train a player experience model, which would then be further used in the 

generation of subsequent levels. Pairwise emotional preferences were recorded via a 

survey after an instance of gameplay. 

 

Roberts & Chen (2015) proposed Learning-Based Procedural Content Generation, a 

PVG framework utilizing machine learning methods. Using an open source version of 

Quake, a prototype of the system was developed and a subsequent online user test 

was conducted. Unlike the previous examples, the content generator was trained by 

an expert before the user test. 
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While these examples may layout outside the scope of this research, they do conduct 

user evaluation of the generated content, which is the main similarity to this study. 

However, the data is used to inform the Player Experience Model. They do not feature 

a comparison of player response between content designed by a human and 

generated content. Examples of the comparisons between human content and 

generated content were not found. Interestingly, Pedersen, Togelius, & Yannakakis  

(2010) and Roberts & Chen (2015) used games that are well known in computer game 

culture. The users may have known the original game and may have known the nature 

of the study. This implication will be discussed in section 3.3.4. 

 

2.4 Summary 

This chapter has reviewed some of the literature related to game design, the use of AI 

in both games and the game design process, and specifically procedural content 

generation. It can be seen that the use of AI in games is limited because game design 

companies are focused on the final player experience (Bourassa & Massey, 2012) and 

that the process of game design is becoming both more complex and more costly 

(Edwards, 2006). Procedural content generation is seen as one means by which the 

time and cost of game development may be reduced, and it has also been noted that 

PCG has the potential to create new gameplay experiences (G. Smith, Gan, Othenin-

Girard, & Whitehead, 2011). Given that player experience is the key driver for game 

development companies, there is surprisingly little research that evaluates whether 

procedural content generation makes an impact on player experience. The research 

described in this thesis makes an attempt to fill this gap. 
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3 Methodology 

3.1 Research Objective 

PCG is in active area of research in the game AI research community. However, 

although significant progress has been made in developing PCG methods, it is argued 

here that there is little empirical evidence to support whether these methods are 

effective. Technical feasibility seems to usually be the focus of the research. The design 

feasibility, in relation to player’s engagement, is not usually the focus of the research.   

 

The aim of this research is to fill this gap by evaluating the potential of a PCG method, 

namely a genetic algorithm, in comparison to human designed content via an 

immersion rating. This is important because, to fulfil the goal of offloading the content 

creation process onto autonomous or semi-autonomous systems, these systems need 

to produce game content that is as good as or better than content designed by a 

human. To achieve this not only requires methods that can produce content, but also 

design the content to be engaging to players. Without evaluating the content 

produced by PCG methods, the effectiveness of the PCG method is thus unknown.  

 

As such the research question is as follows; what affect does the inclusion of a PCG 

method have on the perceived immersion of a game? 

 

3.2 Research Methodology 

This study is experimental in nature, as it involves testing the immersion produced by 

two different game variants and utilising statistical significance testing to identify 

whether there is any difference in the degree of immersion experienced by the two 

groups of participants. This study draws upon elements commonly associated with a 

positivist research paradigm, in particular the dependence on quantifiable 

observations that lend themselves to statistical analysis.  

 

However, this study is not strictly positivist in its nature. Ontologically the positivist 

paradigm is concerned with establishing causal relationships which necessarily reduces 

people and their behaviours to variables. In the case of this research, an attempt is 

made to isolate a relationship between the spatial configuration of a game and the 
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immersion a player experiences. However, video games are not truly fixed entities and 

the individuality of the player cannot be ignored. There are many different types of 

video games, and many different ways people interact with them. How people interact 

and engage with a video game is unique and various wildly. To some extent, the role of 

the player can be controlled through managing the demographic of the participants in 

the study. But there are simply too many factors that influence the way a group of 

players could react to the same game. This study therefore combines quantitative data 

collection with qualitative observations of the game play experience in order to 

provide insight into the effectiveness of PCG. It is not expected that the outcome of 

the research will give a definite answer about the effectiveness of PCG. This due to 

multiple factors of the subject of this study. 

  

The following section outlines the underlying experimental design that underpins this 

research. 

 

3.3 Experimental Design 

3.3.1 MDA Framework and the use of PCG 

As discussed previously, the MDA framework (Hunicke et al., 2004) is a framework that 

is useful for the analysis and design of games. In this research, this framework is used 

to discuss how the use of a PCG method could potentially impact the immersion rating 

of the game.  

 

As outlined in the previous chapter, the MDA framework breaks games and game 

related media down into three distinct lenses: Mechanics, Dynamics and Aesthetics (of 

Play). Using these lenses to analyse or design games, it becomes easier to understand 

how the rules of the game effect the overall experience and how the different systems 

in game relate to each other.  

 

Mechanics refers to the rules of the game. This includes not only the game logic, what 

happens when different game elements interact, but also the specific rules and maths 

that govern the games physics and other systems.  
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Dynamics refers to the runtime behaviour of the aforementioned rules. How does the 

physics dictate the movement of the characters? What scenario and complexity 

emerges from the interaction between game elements? These are examples of 

dynamics.  

 

Finally, there is the Aesthetics, and this really implies a consideration of the Aesthetics 

of Play rather than the visual language of the game environment. In this sense, 

Aesthetics can be considered as the emotional response to the aforementioned 

dynamics. How does the movement of the player’s character feel? How does the 

player respond to the game elements?  The Aesthetics in a game also determines what 

type of game it is fundamentally. The cohesion between the various dynamics in the 

game, contributes to what the aesthetic is, and whether or not the aesthetic is 

communicated clearly and matches the expectations of the player, or not.  

 

With these three lenses, it becomes easier to for game designers to design games and 

game researcher to understand games, as the relationship between the games 

systems and the game experience becomes more tangible to understand with the use 

of this framework.  

 

This research evaluates the use of GA generated levels and what immersion ratings GA 

generated content is able achieve from such a method. Falling into the category of 

PCG, it would seem that the use of GA level generation would not affect the Mechanics 

of the game, since it is related to the generation of content and does not govern any 

runtime systems in the game. However, although the PCG system here governs offline 

content generation, it still has a tangible effect on the mechanics of the game. 

  

It is argued that game mechanics also covers the spatial configuration of the content 

that the game uses as an environment. In the same sense that poorly designed 

mechanics would negatively impact the game as a whole, a space that is poorly 

designed would also negatively affect the game experience. While this can be 

described as bad level design, it is depended on the relationship between the spatial 

configuration and the design of the game.  
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A game space is not bad in of itself, until it is engaged with from the player via the 

mechanics of the game. If the game was designed to emphasize the use of a cover in a 

combat scenario, a space that does not have cover would be considered poorly 

designed. However, if the game was designed to emphasize the use of movement, 

strafing and dodging, a space with too much cover would slow the movement down 

and be detrimental to the design goal of the game. In both cases the space is not 

designed for the other systems of game, and contributes to a lack of cohesion of the 

game dynamics, which in turn, undermines the desired aesthetics of the game. 

 

In this sense, the design of contiguous space the game uses as its environment can be 

considered a mechanic, as its layout has a tangible effect on dynamics of the game, 

and hence the aesthetics. A poorly designed space is a space that is not designed 

around the mechanics of the game, and will contribute to a lack of cohesion between 

the various game systems. On this level, the design of the space is unlikely to 

dramatically change the dynamics of the game, and instead contributes to the 

cohesion of spatial related game mechanics/dynamics. But the games contiguous 

space should still be thought of in these terms, because there is still a possibility that 

the design of the space may have a significantly change on the dynamics of the game, 

without lessening the cohesion of the game systems. This is one of the methods level 

designers are able to use to differentiate different parts of the game, and to create a 

variety of experiences in a single game even though the rules of the game may remain 

constant. 

 

Since the GA generates levels for the game, it must be acknowledged that GA 

implementation would affect the mechanics of the game, even if it does not execute 

during the runtime of the game. In this context, this research is essentially evaluating 

whether or not the collection of game mechanics (which includes the spatial 

mechanics of GA generated levels) that construct the game, is cohesive enough to 

make an immersive experience. The notion of immersion will be discussed in section 

3.3.2. 

 

For this research, it is intend to evaluate how effective GA’s are for content generation 

relative to human designed content. A comparison between the immersion of GA 
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generated content and the immersion of human design content is needed. For this 

reason, this research has been designed to evaluate the immersion between levels 

designed by a human, and levels generated by our GA implementation.  

 

A single game has been implemented in this study, with two variants. The game itself 

is a basic top down shooter. The design of the game is outlined in detail in section 4.1. 

The game is 2D, but is played from a top down perspective. The goal is to navigate the 

game’s environment until the level’s end is reached. Along the way there are a variety 

of non playing characters that are hostile to the player. The player must overcome 

these characters in order to progress. 

 

There will be two variants of this game. In the first variant, the levels that the game 

uses, would have been designed by human level designers. In the second variant, the 

levels are generated by a level GA implementation. These two variants are then used 

in a play test experiment, where participants are assigned a version of the game to 

play, but not informed of which version they are playing. The details of the experiment 

are detailed in a later section. 

 

As a game has been developed specifically for this research, it is stressed that 

comparisons between the outcomes of these two variants are only related to the 

game in this research and the specific PCG method used.  

 

In the MDA schema established earlier, the game variants can be described as having 

most of the mechanics consistent between them, with the exception of the game 

environment. In the GA implementation variant, the game level is generated by a 

genetic algorithm. In the human designed variant, the levels are designed by a human 

being. The only mechanic that changes, is the spatial configuration between each 

variant. 

 

This leaves us with the following potential outcomes, in regards to the design of the 

game. The GA game variant is more immersive than the human designed variant, 

meaning that the mechanics of the GA generated levels are designed well with existing 

mechanics of the game its self. Or the opposite, the GA game variant is less immersive 
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than the human designed variant, meaning that the GA is unable to produce levels that 

have mechanics that work well with the rest of the game. Lastly there is a third 

outcome. The GA variant produces levels with the same immersion as the human 

designed levels, which implies that either GAs are able to produce levels that work well 

with the existing game, or humans are unable to produce levels that are more 

immersive that the GA.  

 

This outcome may also imply that the mechanics of GA generated levels change the 

dynamics of the game without lessening the cohesion of the game dynamics, resulting 

in a game that is equally immersive to the player but for different reasons than the 

human designed game. It should be noted that it is not expected that this will be the 

case, due to the scale of the differences between the two game variants. As discussed 

earlier, the differences in the design of the space are more likely to contribute to the 

cohesion between game dynamics, rather than create unintended, but cohesive, game 

dynamics. If such an outcome is the case, it would be difficult to describe the nuances 

as to why.  

 

3.3.2 Game Immersion Questionnaire 

The previous section discussed that that this research is to evaluate the success of a 

set of game mechanics which featured a PCG method. To measure this there is a need 

to evaluate how successful the overall aesthetic is in the context of MDA. If the 

mechanics of the game are cohesive, the game’s aesthetic will be sufficient enough to 

produce an emotional response.  

 

However, because a video game is a form of media, interactive media in this case, this 

gameplay aesthetic becomes harder to quantify, especially if you consider the role the 

GA takes in the overall design of the game. It must also recognize that game play 

aesthetic is not simply a measurement of “fun”. In the MDA framework, aesthetic aims 

to describe the type of experience/emotional response the game contains or aims for. 

Not all games are about the same subject, and the design of games various quite 

wildly. However, two games that have different designs might be equal in “fun”. Note 

that this may be misleading to those who are not familiar with game 

research/culture/development. As such this thesis will refer to the “Aesthetic” as 
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“emotional response”, as that essentially describes this component of the MDA 

framework. 

 

As such, an alternative way to measure the success of a game is needed. For this 

research, player immersion was chosen to be evaluated to measure the success of the 

game variants. Throughout this research, mention of the notion of immersion has 

been made in relation to the success of the game. As identified by Jennett et al. (2008) 

“The notion of absorbing and engaging experiences is not a new concept”. The ability 

to identify specific qualities of a game that tell us about the success of the experience 

would be of great value to the game development community and game design 

researchers alike, as such measurements would inevitably contribute to the success of 

game development and game research. Game testers and game researchers desire an 

identification of these qualities for obvious reasons. 

 

However, because video games are a media, and subject to interpretation, identifying 

such potential qualities in games are difficult. This is important to this research 

because the goal is to evaluate how successful a GA generated game level is in a 

specific set of game mechanics. Hence, a measurement is needed to accurately 

evaluate the game variants. Due to the scope of this research, identifying such 

qualities is beyond this scope, as the implementation and success of the GA is the 

primary concern. Because of this, a Game Immersion Questionnaire will be used as it 

has already been developed and available from the existing literature (Jennett et al., 

2008). This questionnaire was developed for the purpose of evaluating the immersive 

experience of a game.  

 

The notion of immersion itself is not well defined; despite the wide spread use of the 

term in the game industry and game media. While it has been identified that it does 

indeed occur when playing games (Brown & Cairns, 2004a; Haywood & Cairns, 2006), 

the specific attributes that contribute to such a state, is still in the process of the being 

studied. In Jennett et al.’s work, the term immersion has a specific definition, relating 

to other notions; Flow (and its subset, GameFlow), Cognitive abortion and Presence, as 

well as the ground work laid out by (Brown & Cairns, 2004a).  
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These ideas all overlap in areas, but are all related to the process of being engaged 

playing video games in some way. Flow, (and by extension GameFlow), describes the 

process by which “people become so absorbed in their activities that irrelevant 

thoughts and perceptions are screened out”. GameFlow is specific interpretation of 

this notion for purpose of being applied to video games. Cognitive absorption (CA) is 

concerned with how people become deeply involved with software. Cognitive 

absorption is applicable to video games as games are a form of software. Presence 

describes the physiological state of being in a virtual environment. Since games 

typically involve simulated virtual worlds, presence are applicable to video games. 

These three notions are all applicable to the measurement of video games, however 

Jennett et al. (2008) identifies that these notions do not cover all aspects of games and 

may not be an accurate measure of the success of games. Pulling from the parts that 

overlap and are universally applicable between these ideas, Jennett et al. (2008) 

establishes immersion as a potential measure of the quality of a video game.  

Immersion is described by Jennett et al. as:  

 

“immersion clearly has links to the notion of flow and CA and all three use 

things like temporal dissociation and awareness of surroundings as 

indicators of high engagement. However, immersion is concerned with the 

specific, psychological experience of engaging with a computer game. This 

need not be the most optimal experience, often falling far below being a 

fulfilling experience, nor even representative of a person’s general 

experience of playing games. Immersion rather is the prosaic experience of 

engaging with a videogame. The outcome of immersion may be divorced 

from the actual outcome of the game: people do not always play games 

because they want to get immersed, it is just something that happens. It 

does seem though from previous work that immersion is key to a good 

gaming experience”. (Jennett et al., 2008, p. 642) 

 

In this study, the assumption is made that a game with a relatively high immersion 

rating can be correlated with an effective game design. This assumption seems 

reasonable, as the term immersion is referenced commonly in video game media and 

culture, as a quality of a well-designed game. 
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 This means that the systems that comprise the game are cohesive with each other. If 

this were the case with the GA game variant, it would mean that the GA 

implementation is successful, in the sense that it is sufficiently successful with the 

other systems in the game. The immersion rating of the game will be used as a proxy 

to evaluate the cohesion of the design of game variants. Game design in this sense 

refers to not only the rules and systems of the game, but the design of the content as 

well, which would be levels in this study. This is how the success of the GA 

implementation will be evaluated using a set of human designed levels as a 

benchmark.  

 

The questionnaire that has been utilised from the work described is described in 

Appendix A, however for the purpose of the current research it was decided to not 

utilise the final question of the questionnaire that explicitly referenced the concept of 

immersion using a 1-10 scale, which differed from the other questions that are based 

on five point Likert scales. The version of the questionnaire used in this research 

therefore consisted of 30 questions. Those 30 questions evaluate the following 

qualities of the player’s experience; (e.g. To what extent did you feel you were focused 

on the game?), temporal dissociation (e.g . To what extent did you lose track of time?), 

transportation (e.g . To what extent was your sense of being in the game environment 

stronger than your sense of being in the real world?), challenge (Did you find the task 

too difficult?), emotional involvement (Did you care if you won or lost?), and 

enjoyment (Did you like the task?). The immersion score/rating, is calculated by the 

sum of the all the answers. 

 

3.3.3 Hypothesis 

The play test experiment conducted by this research will only use one measure. The 

immersion rating from the questionnaire. Hence there will be a set of immersion 

ratings from the participants. However, since the play testers are unknowingly 

assigned one of two variants, there will be two sets of data. The first is the immersion 

rating of the human designed game variant, where the levels featured in the game 

were designed by a human level designer. The second is the immersion rating of the 

GA game variant. This variant uses levels that have been generated in part by the 
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Genetic Algorithm. This will be outlined in the implementation section. Accordingly, 

the null hypothesis is as follows; the immersion ratings between the two game variants 

will not be significantly different.  

 

Either the GA is able to produce levels of sufficient immersion to match the human 

design levels, or humans are unable to create levels that are more immersive than GA 

generated levels. Or, due to the mechanics of the game, the difference in quality 

between human designed levels and GA generated levels does not significantly impact 

immersion rating/score of the game. The alternative hypothesis would be; the will be a 

significant difference between the immersion ratings of the two game variants.  

 

In this hypothesis there are two outcomes. The GA game variant receives a rating 

higher than the human designed variant. The human designed variant receives an 

immersion rating higher than GA game variant. The implications of these outcomes are 

less ambiguous. If the human variant has a higher immersion rating then the GA 

variant, then the GA implementation is not able to produce levels have similar or 

higher quality than human design levels, and future work would require notions off 

good design incorporated into the GA implementation. Or the reverse to true, the GA 

is able to produce levels of a higher quality, which puts into question the need for 

human level designers. 

 

The one-way analysis of variance (ANOVA) is used to determine whether there are any 

significant differences between the means of the two groups. This approach is 

common in game immersion studies (Denisova & Cairns, 2015) and the one-way 

ANOVA is considered a robust test against the normality assumption, which ensures 

that it performs reasonably when data is non-normal (skewed or kurtotic 

distributions). 

 

3.3.4 Experimental Structure 

As described earlier, to evaluate the immersion ratings of the game variants, game 

play tests were conducted with participants. This was used to generate data needed to 

assess the success of the GA implementation against human designed levels. In total, 

twenty participants were recruited to take part in the study.  
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Although there is no restriction on who was eligible to participate, participants who 

are familiar with video games were targeted in the recruitment process. This was to 

counteract the correlation between peoples previous experience with video games 

and their current immersion with video games, which has been identified in the 

research literature (Brown & Cairns, 2004a). 

  

Participants were recruited from the local game development community, as well as 

game design students at AUT University, as the demographics of these communities 

are familiar with games. An announcement was made informing people that the study 

was being undertaken, and individuals who interested in participating, after 

approaching the announcer, was given a participation form. Individuals whom filled 

out the form and indicated that they were interested, were coordinated with to 

organize a time for a play test. 

 

In informing potential participants about the study, the true nature of the study was 

not revealed to the participants. This was to avoid participant’s potential expectations 

adding noise to the data, or biasing the results. The rational for doing this is that, it has 

been identified that a player’s pre-existing expectation can influence the players actual 

experience of a game (Denisova & Cairns, 2015).  

 

Denisova & Cairns investigated two groups of the people playing a game called “Don’t 

Starve”, a survival themed game. The first group of participants were told the game 

featured “Adaptive AI”, were in truth the game did not. While the second group acted 

as the control and were not given this fiction before playing the game. The results 

from this study showed that the first group had a higher immersion rating. This 

demonstrates that that the player’s pre-existing expectations does indeed influence 

the experience they have.  

 

For this study, this outcome was not desired as the game does indeed involve an AI 

related system for the generation of levels. If players knew that they were playing a 

game that featured levels generated by a GA, it would potentially bias their 

experience. Instead, participants were simply told that the study was concerned with 
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evaluating game dynamics, and what game mechanics lead to what dynamics. 

Although it was somewhat based on the MDA framework, it is vague enough to avoid 

seeding specific expectations about the game experience. 

 

The play test experiment itself was carried out in a dedicated game room. The game 

was displayed on a living room television that is indicative of a casual gaming 

environment. The participants were seated on a couch in front of the TV. The 

participants were given an Xbox One Controller to use to play the game. This was 

chosen as it was easy to implement support for this controller and its design is 

standard and well known in the game industry.  

 

When participants arrived for the play test, they first had to fill out a prequestionnaire. 

This questionnaire was designed to generate demographic data about the participant. 

As well as age and gender, the questionnaire asked questions about people experience 

with video games and their gaming habits. This was important because it has been 

identified that people’s previous experience with games shapes their current game 

experience (Brown & Cairns, 2004a), thus it was important to record this with their 

immersion ratings. 

 

Once the prequestionnaire was completed, the participant was seated in front of the 

TV that displays the game, and was handed the controller. The researcher then runs 

the game. Since the game runs off a computer instead of dedicated game console 

there is brief window of time where the player is able to see the operating system and 

the shortcuts used to run each game variant. To maintain the illusion that the play test 

is not related to PCG and/or EC, each shortcut is titled theta and zeta from the Greek 

alphabet. Only the researcher knows which shortcut corresponds to which game 

variant, and the wording of the shortcuts implies that they are simply different 

versions from the development process, (alpha and beta a used to describe different 

phases of game development progress) while far enough down the alphabet to not 

immediately recognised by most. The procedure of determining which game variant 

was used is simple. Every second participant plays the human designed version.  
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The researcher explained that if there was any uncertainty while playing the game, the 

participant were allowed to ask questions (although over the course of the entire 

study only 2 to 3 question were asked, which is a good indicated as it means that the 

game conveyed enough information on its own). The run time of the play test was 

limited to around 30 minutes, although if the participant finished all levels before that 

the play test would finish. The first level in the game would always be an in game 

tutorial to explain how to play the game. Participants were advised to pay attention to 

the tutorial to ensure that they are able to play the game properly, and not at noise to 

the data.  

 

Once the play test was finished, the participant would then fill out the Game 

Immersion Questionnaire described in section 3.3.2. 
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4 Implementation 

To evaluate the hypothesis, a PCG method and an accompanying game have to both 

be instantiated to be used in the experiment. This chapter cover the implementation 

of both the game used in this research and the GA PCG method developed to test. 

 

4.1 Vektor 

The game developed for the thesis is a simple 2D top down shooter similar in 

appearance to the game Hotline Miami (Dennaton Games, 2012), where the player 

must navigate a labyrinth and find the end of the level. Along the way, there are a 

variety of NPCs (Non-Player Characters) that engage the player in a hostile manner. 

The player must successfully evade and/or overcome these hostile NPC’s and find the 

end of the level after which they will proceed to the next level. 

 

The game was designed to be simple and straight forward while indicative of a basic 

game one might find on the market. While game design is always changing due to 

trends in the video game industry, for the purpose of this thesis, a standard game 

design was all that was necessary. 

 

The game, named Vektor, was not given any fiction, or narrative to contextualise the 

gameplay, as, for the purpose of the research, only immersion derived from gameplay 

and the GA generated content’s effect on the aforementioned gameplay is important 

to the hypothesis. Any possible effect of immersion from the design of a narrative or 

the visual aesthetic is not desired, as it could potentially interfere with the immersion 

of the game and the variants. Because of this, the game can be described as an 

abstract game, where the use of basic shapes and symbols are used to communicate 

the purpose of gameplay elements, without invoking any emotional relationships 

between entities in the game, relative to peoples past experiences. While this design 

itself would have an effect on immersion, any configuration of the game design would 

effect immersion. This design ensures, that as many aspects between the two variants, 

apart from level topology, remain consistent and that the only differences that may 

effect immersion are due to the different methods in the development of the variants, 

human designed levels and GA generated levels. 
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A screenshot of the game is shown in Figure 1. 

 

Figure 1: Screenshot of the game Vektor 

 

4.1.1 Objective of the game 

As mentioned above, the objective of the game is to find the goal of each level. While 

it can be argued that this would constitute a narrative, there is no explicit narrative as 

to why the player must find the goal. Most games have an explicit objective of some 

kind. Narrative derived from gameplay cannot be counteracted, and is not of concern. 

The player starts at a predetermined location, usually chosen from the level designer. 

When the player reaches the goal, the game proceeds to the next level, where the 

player, again must find the goal.  

 

Although the objective of the game is to arrive at the levels goal, the path from the 

start location to the goal location it is not guaranteed to always initially be reachable. 

In almost all instances of the game, the path from the start location to the goal 

location is obstructed by colour coded doors, which can only be opened by the 

corresponding coloured key. The player must find these keys, which, on acquisition, 

allows the corresponding doors to be opened. This gameplay element was chosen to 

encourage the players to explore the space and backtrack once they have found the 

key, so that the game has more opportunities to allow encounters with hostile NPCs 

and pickups. It is also an established gameplay mechanic, as well received games such 

as Wolfenstein 3D, Doom and Quake (all of which were well received) employed this 

mechanic in their single player components (ID software, 1992; ID software, 1993; ID 

software, 1996).  
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This mechanic is also well established in level design, although it will not always be 

represented as finding keys of the same colour (a lot of new games use a scenario 

instead of the collection of a corresponding key as the motivation of the player, 

however the gameplay is still the same, an area is blocked off from the player and the 

player must reach/find something to enable access to that area).  

 

Hostile NPC are also distributed throughout the levels in the game. NPCs are 

characters that act as a gameplay element. Hostile NPCs are characters that engage 

the player in a hostile manner. Because of this they act as obstacles that the player 

must overcome. There are a variety of NPC types, each of whom has unique behaviour, 

differentiating the challenge in different parts of the level. They will be explained later 

in this section. When hostile NPCs are successful in performing a hostile action (when a 

projectile actually hits the player), the player’s health is decreased by the appropriate 

amount. If the player’s health falls below 0, the game is reset and the player has to 

start again at the beginning of the level they failed in. 

 

4.1.2 Player 

The player has a standard set of abilities that one would expect from most games. 

Because the game is a 2D Top Sown Shooter, the player can move in any direction, up, 

down, left, right, and any variation in-between. The view of the game is a top down 

perspective, as if the virtual camera is held up by a crane looking down. To reinforce 

the lack of narrative, the player is represented using an abstract icon as shown in 

Figure 2 

 

Figure 2: Image of the player in the game 

 

As well as being able to move in any direction the player can focus their direction at 

any angle, regardless of the player’s current movement direction. The focus direction 
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(aim direction) will determine the direction that projectiles are fired at. If the player is 

not actively aiming (if the right stick of the controller, commonly used for aiming in 

games, is not being used), the aim direction is by default focused in the direction the 

player is moving. The player also has the ability to lock their aim onto a hostile NPC 

(provided the NPC is within a certain range), allowing them to focus on strafing and 

avoiding fire without having to aim. Although on paper, this addition sounds like it 

would compromise the design of the game, in practice it was a necessary feature to 

ensure the accessibility of the game. This point will be discussed in section 6.1.3.  

 

The player is able to fire projectiles in the aim direction, the player’s primary method 

of overcoming the hostile NPCs. The behaviour of the projectiles is determined by the 

active weapon the player has selected at the time the player chooses to fire. The 

player has access to three types of weapons, provided the player has picked them up 

and they have enough ammo for the selected weapon. 

 

 Machine Gun: A standard weapon that continuously fires individual projectiles, 

with a fast fire rate. 

 Shotgun: This weapon fires a spread of projectiles at the same time. However, the 

projectiles have a shorter range than the weapon described above. 

 Laser: Will charge when the player fires and will continue to charge as long as the 

player is holding the fire button. After a given amount of the time, the laser will 

fire, dealing a higher amount of damage as the weapons above. However, due to 

the fire rate and the charging time, it is harder for the player to successfully 

connect shots with the desired target. 

 

The icons used to represent these weapons are shown in Figure 3, and their firing 

patterns shown in Figure 4 with the top pattern being the machine gun, the middle 

pattern the shotgun and the lower pattern the laser. 
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Figure 3: Image of weapons from the game 

 

 

 

 

Figure 4: Examples of different Weapons being fired 

 

As well the as the ability to move and the ability to fire projectiles, there are a variety 

of pickups the player can interact with. The set of pickup types are relatively straight 

forward and standard in most games. Pickups augment the properties of the player in 

some way. Colour coded keys mentioned above are the first example of pickups, 
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allowing the player to progress though the corresponding coloured doors. There are 

also weapon pickups, enabling the use of the corresponding weapon for the remainder 

of the level. Ammunition pickups increase the ammunition count for the 

corresponding weapon. Finally, Health pickups restore a portion of the player’s health. 

The icons used for the various keys and ammunition pickups are shown in Figure 5. 

 

              

Figure 5: Images of Key and Ammo pickups in the game 

 
4.1.3 Hostile NPCs 

There are variety of hostile NPC that are distributed throughout a level. As discussed 

previously, NPCs are characters that act as a gameplay element, while not being 

controlled by other human players. Hostile NPCs are characters that engage the player 

in a hostile manner, like moving toward the player to perform a hostile action or firing 

projectiles at the player. Because of this they act as obstacles that the player must 

overcome, either though evasion or taking out the Hostile NPCs with the players own 

weapons. There are a variety of NPC types, each of whom has unique behaviour, and 

each type has a subset of different variants. There are five NPC types. 

 

1) Zombie: As the name suggest, this type behaves like a zombie. When the player 

is perceived, the NPC will move towards the player, as if it was a zombie. When 

the zombie collides with the player, it will apply damage to the player’s health 

and it will immediately die. The zombie also has the least amount of health 

compared to the other types. Names of hostile NPC are not shown in the game. 

This is named zombie simply to describe the behaviour during the development 

of the research and the game. 

2) Charger: This type is similar to the zombie, in the sense that when it perceives 

the player, it will move towards the player. However, once it is at a certain 

range to the player, it will begin a “charge”. It will move at a faster rate, 
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however only in a straight line and only for a certain amount of time, after 

which it will wait a moment and then turn around and repeat its behaviour. If 

the player is hit while the NPC is in the Charge state, damage will be dealt to 

the player. Depending the variant of the Charger, the NPC will only be 

vulnerable while in the charge state. 

3) Turret: As the name suggest, this type acts as a turret. It will stay still and shoot 

at the player while the player is in range. Depending on the variant, the NPC 

may fire a machine gun or a laser weapon. 

4) Moving Turret: This type shares its behaviour with the type above, with the 

exception that if the player moves out of range or out of sight, it will pursue the 

player until the player is in range/sight again. 

5) Trooper: The type is designed to be most difficult to overcome. When it 

perceives the player, it will pursue the player until in range. Once in range, it 

will fire its weapon, and also strafe around the player, making it difficult to hit. 

The trooper is essentially the conceptual equivalent to the player. Depending 

on the variant, the trooper will either be using a machine gun or shotgun, and 

the strafe speeds and timings will be varied. 

 

The various enemies are shown in Figure 6, with the types being ordered from left to 

right following the number sequence from the above list. 

 

 

Figure 6: Image of enemies in the game 

 

 

The behaviours outlined above are controlled by behaviour trees (Simpson, 2014), a 

well-established algorithm for controlling characters in games in the industry. 
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4.1.4 Game Design and PCG evaluation 

The design described above was deliberately developed to aid in researching the main 

hypothesis of this research. While it may not sound like the game’s design may have a 

tangible impact of the success of the research, the relationship between the design of 

a game and PCG systems is in truth important. As it has been established in chapter 3, 

this research evaluates what immersion ratings emerge from a set of game mechanics 

that include a GA generated levels. 

 

For this research to be effective, the design of the game mechanics have to enable the 

design of content produced by a PCG system to influence immersion. This would allow 

the hypothesis stated in chapter 3 to be tested to determine whether there is a 

significant difference between the immersion ratings of the two game variants. Again, 

on paper, this may not sound important, as one may argue that regardless of the 

specific design, there would always be reliance on the design of the content. However, 

it is conceivable for the design of the game mechanics to alleviate the impact of the 

design of the content, which is generated by a GA generated levels in this research.  

 

In the interaction between the player and the game, it is conceivable that there are 

three things that can influence the perceived immersion. The first is the player. The 

immersion due to the players’ previous experiences and expectations is hard to 

minimize. The second and third is the mechanics of the game and the content of the 

game. The mechanics can have an effect on the immersion of the game and the 

content can have an effect on the immersion of the game. It is conceivable that the 

mechanics may create more immersion than the content, or the opposite, the content 

creates more immersion then the mechanics. It was discussed that design of content 

can be considered a mechanic of the game in section 3.3.1 as its design effects the 

dynamics. As such the various mechanics of game can create more immersion then the 

mechanics of the content. If the content is poorly designed, the mechanics can offset 

this. If the game mechanics are poorly designed, then the well-designed content can 

offset this as well. Consider the following example.  

 

Diablo (Blizzard North, 1996), is an action Role Playing Games where the player 

explores a dungeon filled with hostile monsters and features randomly generated 
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dungeons. However, the combat mechanics of the game significantly lessens the 

impact of the contiguous space of the dungeons on the active game play. In the game, 

when the player clicks on enemy characters, the player character will walk over to the 

enemy and the play an attack animation. At the same time, the health property of the 

enemy will diminish in accordance with the player’s characters’ prowess. The player 

cannot dodge out of the way of arrows, or parry blows, or jump off walls for a special 

attack.  

 

In this sense the combat is representational, which is common in Role Playing Games. 

In a single combat encounter, the contiguous space of the environment does not have 

a meaningful impact on the game as the combat mechanics of the game do not 

leverage the environment. In the case of Diablo, the mechanics elevates the need for 

carefully thought spatial configuration. This is not to say that levels do not have an 

impact on the game, because other properties of the game, like the pacing would 

potentially impact the games immersion. However, we need to be aware of this 

relationship between the design of the game, and the content for which whatever PCG 

systems are used to produce it. A PCG system could in theory generate option content, 

and the game design could completely alleviate the need for it to be designed well. 

 

For this research, game levels have been generated through the use of a genetic 

algorithm. Because the PCG system deals with levels, whether or not it is successful is 

based on the spatial configuration of the level that is produced. Hence, we need a 

game design where the contiguous space has a tangible effect on the immersion rating 

of the game. For this reason, a top down shooter game was implemented, as the 

mechanics of firing and avoiding projectiles necessitates the use of cover and having 

enough room to evade.  

 

The perspective of the Top Down Shooter also simplifies the design space for this 

research while maintaining the complexity required to accurately test the hypothesis. 

In contrast, had a 2D platformer game been chosen, pathfinding that takes into 

account distances between platforms would have to be implemented, an unnecessary 

complexity. Having the game world directed horizontally along the screen would make 

the structure of the GA to specific to a specific game design. Similarly, a 3D first person 
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shooter would increase the complexity of the game to the point where it would be too 

big for the scope of the research, as game development is very time consuming and 

skill intensive practice. 

 

4.1.5 Vektor and MDA 

While MDA is situated as an iterative approach, it still provides an effective schema for 

the discussion of games. As Vektor was designed for the evaluation of players’ 

perceived immersion, its design needed allow the interaction between the content and 

the player to an extent. As the PCG method produces game levels, the design needs to 

require that the spatial configuration of the levels effects the immersion. This is why a 

Top down shooter design was chosen. The mechanics of firing weapons, avoiding 

projects, avoiding enemies, is intended to put emphasis on the use of the environment 

and movement though that environment. The dynamics hence, is to emphasize 

movement, either out of the way of projectiles, around an enemy, or behind cover. 

This should, in theory, put emphasis on the layout of the space, whether there is 

enough space or enough cover. 

 

4.2 Genetic Algorithm Implementation 

Although the concepts behind a genetic algorithm are general and applies to serval 

potential search spaces, often a specific implementation is required for the search 

space at hand. This research is no exception and involves the implementation of the 

fitness function and mutation function that are specialized for the search space 

defined by the goal of creating playable levels. It is common for custom 

implementations of various functions in GA to be devised. However, it was found that 

using a standard crossover function was actually viable for the study. This section will 

detail the implementation of the GA used to generate levels for the GA variant. 

 

4.2.1 Chromosome Representation 

All Genetic Algorithms start with generation of a population. Each “individual” of this 

population represents a position/solution in undefined search space. We refer to them 

as a Chromosome, a packet containing information that specifies a solution. Search 

spaces are not always literally defined as a search space. Chromosomes are usually not 

a literal x and y coordinate.   
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The search space consists of all possible configurations of a game level. In Vektor a 

level is comprised of a series of tiles, arranged in a grid along a rectangular shape. Such 

a level, with additional gameplay elements added, is shown in Figure 7.  

 

Figure 7: Level generated by a genetic algorithm 

 

A tile can either be a wall, shown as a blue square, or a void, which represents an open 

space. Although contemporary games have levels designed as set pieces, where the 

complexity of the contiguous space is parallel to the real world and the level is 

implemented as another art assert/3D model, older games usually resorted to a tile 

system to store the level data. This had the benefit of storing large worlds in small 

amount of space, and enabled developers to reuse environment assets without 

breaking player immersion at the time. There are contemporary games that use tile 

systems, but these games are rare in the triple A game industry as they do not usually 

satisfy players expectations of triple A games. More typically, such games use more 

complex, object based representations. A tile based implementation was chosen for 

this research for the reason stated above, and because it simplified the search space.  

As such the chromosome consists of; 

 

 A one dimensional set of Booleans. This set would contain all the values for the 

tiles in the level.  
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 Two integer variables, width and height, which is used to interpret the 1D set 

above as 2D grid of cells. Levels are not limited to perfectly squared dimensions. 

 

This chromosome is mapped to a level by reading the values of the tile set, and 

instantiating walls when the wall value is found. Void tiles need not to be instantiated 

as they are unoccupied. The start of the level is always assumed to be at the start of 

the tile set, and the end of the level is always assumed to be at the end. Therefore, the 

start of the level is always in the bottom left of the level and the end is always at the 

top right. As the beginning and end is always assumed, the chromosome is not 

required to store that information. An example of this chromosome representation 

and the resulting level is shown in Figure 8. 

 

Figure 8: An example of the mapping between the chromosome and a level 

 
4.2.2 Population Generation 

In order for the Genetic Algorithm to function, it needs an initial population to act on. 

The generation of that initial population is just as important as the other operations in 

the GA. The implementation in this thesis uses a specific population generation 

function. 

 

Initially we experimented with having each cell of the level randomized to either a wall 

or a space/void with a 0.5 probability. However, this proved to create levels that were 
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too chaotic. Even though the levels were technically playable (you could reach the end 

from the start), there were features that would severely compromise the clarity of the 

research. Almost all pathways the players could move through was limited to width of 

1 cell, meaning that the pathway would only be as wide as the player. There would be 

many divergent paths, which ultimately lead to a dead end. While multiple paths and a 

degree of divergence in level design could be identified as features that players might 

want in today games, the reality is such diverged qualities of a level would be desired 

with moderation by the designers. Using random level generation, there was simply 

too much divergence. It appeared to be hard to navigate which produces a different 

experience in terms of flow. This can be seen as a potential flaw with the fitness 

function, which will be detailed in a following section. What will be said here, is that 

defining a fitness function that would take completely a random generated level, and 

making it playable and navigable would be significantly complex. To maintain simplicity 

this responsibility is shared by the generation function. 

 

For the reasons above, it was decided to devise another generation function. Instead 

of randomly assigning each cell to a wall or a void, generating a series of rectangles 

with a random position and size inside the bounds the level, in accordance to the 

levels dimensions and the desired aspect ratio between reachable space the rest of the 

level, was found to be a more stable and controllable method. The cells in the level 

that lay within the rectangle were set to void, while the rest of the cells are be set to a 

wall. This generation function is referred to as the “falling rectangle” function, as it 

analogues to throwing rectangular shapes into a space, and using their resting place to 

devise the configuration of the level. The operation of the falling rectangle function 

can be controlled by a user, with the following series of variables; 

 

 𝑃 Population: the initial population of levels generated. 

 𝑤𝑟𝑚𝑖𝑛 Rectangle Minimum Width: this is the minimum width in level cells/tiles a 

rectangle can be instantiated at.     

 ℎ𝑟𝑚𝑖𝑛 Rectangle Minimum Height: this is the minimum height in level cells/tiles a 

rectangle can be instantiated at.   

 𝑤𝑟𝑚𝑎𝑥 Rectangle Maximum Width: this is the maximum width in level cells/tiles a 

rectangle can be instantiated at.      
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 ℎ𝑟𝑚𝑎𝑥 Rectangle Maximum Height: this is the maximum height in level cells/tiles a 

rectangle can be instantiated at.      

 𝑅 Desired Space Ratio: this is a percentage representing the desired ratio between 

the space that can be reached from the begging of the level, and the total cell/tile 

of the level as a whole. This will also be discussed in the fitness function.      

 𝑂 Rectangle Overlap Percent: this is a percent that represents the addition 

rectangles that will be added to the amount of rectangles that is used to generate 

the level. This will be explained shortly.      

 

These variables are used in an equation which determines how many rectangles are 

used in the generation of a level. The user who is instantiating the GA can change the 

values of these variables to control the outcome of the level generation. The following 

equation is used to calculate the number of rectangles used (𝑛𝑟): 

 

𝑛𝑟 = (
𝑛𝑐 × 𝑅

𝑎𝑝
) × (1 +  𝑂) 

Equation 1 

 

𝑅  And 𝑂 are the Desired Space Ratio and Overlap Percent described above 

respectfully, however the two new variables, 𝑛𝑐  and 𝑎𝑝 have yet to be described. 

These are defined as: 

 𝑛𝑐  is the total number of cells in the level, where 𝑛𝑐 = 𝑤𝑖𝑑𝑡ℎ × ℎ𝑒𝑖𝑔ℎ𝑡 

 𝑎𝑝 is the projected average of rectangles in cell/tiles.  

 

Before the rectangles are generated, the average size of rectangles is not known, but it 

can be guessed. The following equation is used to calculate the projected average size 

of rectangles: 

 

𝑎𝑝 = (
𝑤𝑟𝑚𝑎𝑥

2
) × (

ℎ𝑟𝑚𝑎𝑥

2
) 

Equation 2 
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Note that overlap percent is increased by one (1 +  𝑂) and then multiplies the rest of 

the equation(
𝑛𝑐 × 𝑅

𝑎𝑝
). This is because its role is to add additional rectangles to the level 

generation process. The following pseudo code describes the process in which levels a 

generated from the falling rectangle function. 

 

𝑛𝑟 = (
𝑛𝑐×𝑅

𝑎𝑝
) × (1 +  𝑂) // we calculate the number of rectangles 

Create Set population // create the set for the population 

 

loop 𝑃 times // we run the loop for 𝑃 times 

    Create level with 𝑤𝑖𝑑𝑡ℎ and ℎ𝑒𝑖𝑔ℎ𝑡 

    Initialize all level.cells to WALL 

  

    loop 𝑛𝑟 times // we run the loop for the 𝑛𝑟 times  

 

        Create rectangle, with RandomX in bounds of level 

         RandomY in bounds of level 

         RandomWidth between 𝑤𝑟𝑚𝑖𝑛 and 𝑤𝑟𝑚𝑎𝑥 

         RandomHeight between ℎ𝑟𝑚𝑖𝑛 and ℎ𝑟𝑚𝑎𝑥

   loop for each (level.cell in bounds of rectangle) 

       level.cell = VOID 

    add level to population set 

 

For the final implementation of the GA, the generation function described above was 

used to generate the initial levels in each population. This population would then be 

subject to other operations that are used in a GA, fitness evaluation, selection, 

crossover, and mutation. 

 

4.2.3 Fitness Function and Selection 

4.2.3.1 Fitness Function 

The fitness function that was devised in the research operates on the assumption that 

a good level has a specific ratio between space that can be traversed and the total size 

of the level.  Also, a level that can be completed, the player can reach the end from the 

beginning, is assumed to be necessary. With these two criteria; the space ratio, and 

the playability of the level as a whole, a fitness function is able to score levels 

appropriately. Using this fitness function it was possible to generate a series of levels 
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that were all playable and had interesting features. This section details the 

implementation of the fitness function. 

 

The first criteria, the space ratio, was briefly described in the previous section. It is the 

ratio between cells/tiles that are reachable from the beginning of the level, and the 

total amount of the cells the level contains. The total amount of cells is calculated from 

width and the height (width * height). This level space ratio is compared against the 

desired space ratio, which is the between ratio between the space and the level size 

that is desired by the user instantiating the GA. The difference between the space ratio 

and the desired ratio gives us the ratio error, which we can use to manipulate the final 

score. The math for this will be discussed later in this section. 

 

The second criterion is the playablility of the level. If a player can reach the end of the 

level from the beginning the level is deemed playable. Although this also true for the 

random level generate described previously, the ability to navigate and the find the 

end is also a quality of the playability level. However, as described, this functionality is 

shared by both the fitness function and the generation function.  

 

Levels that are playable are deemed better then levels that are not playable. However, 

just because a level is not playable, does not mean it should be discarded. While it may 

appear that levels are that are not playable should be discarded, doing this may 

prevent the population from arriving at a potential solution. It is not guaranteed from 

the falling rectangle function described above that a level is playable when initially 

generated. However, unplayable levels may already hold information that could enable 

it be playable in a future generation. So if all the levels in a generation are not 

playable, it is necessary to identify features that show that a level may be closer to 

being playable than others. 

 

This is where most of the complexity of the fitness function rests, in scoring levels that 

are not yet playable. While the space ratio error is easy to calculate, the second criteria 

is more complex to calculate, as it involves searching the levels space multiple times to 

conduct measurements of a levels features. 
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The first step in doing this, is to identify the “main” space of the level. Here we are 

defining a space as a contiguous arrangement of void/unoccupied cells. The main 

space, is the largest contiguous arrangement in the level as shown in Figure 9. 

 

 

Figure 9: Level with main space highlighted 

 

This is accomplished by using a part of Dijkstra pathfinding algorithm. While Dijkstra 

pathfinding is designed to find a path from point A to point B along a series of nodes, 

the search strategy to accomplish this, adding each adjacent node to a list representing 

searched space, allows a list of nodes of a space to be build. Most measurements 

about the level a focused on features of the main space. Other spaces are ignored. 

Devising a fitness function that would evaluate properties of all the spaces would be 

too complex, or at least unnecessary and beyond the scope of this research. However, 

other spaces could become part of the main space in later generations from crossover 

and mutation.  

 

The space ratio error is based off the size of the main space to the rest of the level. 

This is because the main space is being treated as the space that is expected to be 

traversed by a potential player. In early generations, the main space is not guaranteed 

to be reached from the beginning. However, this is accounted for in other parts of the 

fitness function. 
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𝑑𝑚 

After we have the main space, we then identify the start space and end space. These 

are the spaces that contains the start and end locations. This gives us three spaces; the 

main space, the start space and the end space. This is shown in Figure 10. 

 

 

Figure 10: Level with the start (green) and end (red) spaces highlighted 

 

Then we calculate the longest possible distance that is possible in the level based on 

the height and width of the level, as shown in Figure 11. This measurement is assigned 

to the term 𝑑𝑚. This is demonstrated in Figure 11. 

 

 

Figure 11: The levels longest possible distance 

 



53 
 

𝑑𝑒 

𝑑𝑠 

After this we then calculate how close the main space is to the start 𝑑𝑠 and end 𝑑𝑒. 

This is done by evaluating the Euclidean distance from each cell in the main space to 

the start/end cell as illustrated in  Figure 12. The shortest distances that are found 

are assigned to the terms. 

 

    

 Figure 12: The shortest distance between the start/end and the main space  

 
Once we have these spaces identified, we can start making measurements of the level. 

Each measurement is assigned to a unique score. After all the measurements are 

taken, their scores are added together in the following equation. 

 

𝑠𝑓 = 𝑠𝑠𝑠 +  𝑠𝑒𝑠 +  𝑠𝑠𝑑 + 𝑠𝑒𝑑 + 𝑠𝑤 

Equation 3 

 

Each of the terms in the equation above corresponds to a specific measurement about 

the relationships between the level, main space, start space and end space. Each term 

is calculated by a different equation or is assigned a value if a condition is meet. Each 

of these terms are defined briefly as: 
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 𝑠𝑠𝑠 is the score of the start space. The start space score is how close the start 

space is to connecting to the main space. 

 𝑠𝑒𝑠 is the score of the end space. The end score is the score of how close the end is 

to connecting with main space. This is the inverse of the 𝑠𝑠𝑠 

 𝑠𝑤 is the score of the whole space. Unlike the above, this is not assigned to an 

equation. Instead, depending a condition, it will be assigned either 0 or 100 

 𝑠𝑠𝑑 is the score of how close the main space is to the start space 

 𝑠𝑒𝑑 is the score of how close the main space is to the end space 

The descriptions above are a brief overview of what each term represents. However, 

the equations that are used for these terms are more complex. Below is a detailed 

description of how these terms are assigned. 

 

Both 𝑠𝑠𝑠 and 𝑠𝑒𝑠 are assigned from similar equations. However, before they are 

assigned, a condition is checked. That condition is weather the main space contains 

the start or end, respectively. If that condition is true, then the terms are assigned 30 

instead of the result of the equation. The following equations are used in the event 

that the condition is false. Note that the condition is checked independently for each 

space. 

 

𝑠𝑠𝑠  =  20 × (
𝑑𝑓𝑠

𝑑𝑠
⋀1)2 

Equation 4 

𝑠𝑒𝑠  =  20 × (
𝑑𝑓𝑒

𝑑𝑒
⋀1)2 

Equation 5 

 

The new terms in these equations is 𝑑𝑓𝑠 and 𝑑𝑓𝑒. These are the furthest Euclidian 

distances found in each space. Figure 13 demonstrates this in the start space, where 

𝑑𝑓𝑠 is assigned. 𝑑𝑓𝑒 is assigned similarity, but from the end space instead. 
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Figure 13: Portion of level, Start Space search, blue arrow is the longest distance in the 

space, 𝑑𝑓𝑠 

 

𝑠𝑤 represents the score of the whole space. This term is not assigned by an equation. 

Instead, it is either assigned 100 if the main space contains the start node and the end 

node. If that condition is false, then it is assigned to 0. This was devised to elevate 

levels that have both start and end reachable from the main space, and hence are 

playable. 

 

𝑠𝑤 = 100 𝑜𝑟 𝑠𝑤 = 0 

Equation 6 

 

The last two terms, 𝑠𝑠𝑑and 𝑠𝑒𝑑represent the scores of the how close the main space is 

to being connected to the start space and end space respectively. They are the scores 

of the distances from the start/end space to the main space. The following equations 

describe how they are calculated. 

𝑠𝑠𝑑 = 20 × (1 −
𝑑𝑠

𝑑𝑚
)

2

 

Equation 7 

   𝑠𝑒𝑑 = 20 × (1 −
𝑑𝑒

𝑑𝑚
)

2

 

Equation 8 
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Although the terms 𝑑𝑠 and 𝑑𝑒 describe the shortest distance between the main and 

start/end respectively, 𝑠𝑠𝑑 and 𝑠𝑒𝑑 are the scores of those distances, As such, they are 

not direct. If the main space already contains the start and/or end, this equation will 

be maximized.  

 

Once the terms described above are calculated, they are added together with the 

simple Equation 3. The resulting term, 𝑠𝑓 is the final score before being multiplied by 

the space ratio error. Once the final score is calculated we then progress to the space 

ratio error.  First we must calculate the actual space ratio (𝑟𝑎) of the level. 

 

𝑟𝑎 =
𝑛𝑟𝑐

𝑛𝑐
 

Equation 9 

 

Remember from Equation 1 that 𝑛𝑐  is the number of cells in the level and is equal 

to (𝑤𝑖𝑑𝑡ℎ × ℎ𝑒𝑖𝑔ℎ𝑡). 𝑛𝑟𝑐 is the number of reachable cells in the main space. Once we 

have the actual space ratio we can then calculate the space ratio error (𝑅𝑒). The 

equation is squared to punish levels with a high space ratio error. 

 

𝑅𝑒 = |𝑅 − 𝑟𝑎|2 

Equation 10 

 

Once the space ratio error is calculated, the score from equation is multiplied to 

produce the final score which is assigned to the level by the fitness function. The 

following equation does this. 

 

𝑠 = 𝑠𝑓 × (1 − 𝑅𝑒) 

Equation 11 

 

𝑠 is the score that is assigned to the level. However, if the start and/or end is occupied 

by a wall cell, then the 𝑠 is assigned -10000. This is to ensure that if mutation does 

effect the start cell or the end cell, that the level is devalued significantly so that its 
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information does not effect the future generations. The following pseudo code will 

give an overview of the steps described above. 

 

main_space = largest space in level 

start_space = space of the start 

end_space = space of the end 

 

𝑑𝑚 = maximum possible distance in level 

𝑑𝑠 = shortest dist between main_space and start_space 

𝑑𝑒 = shortest dist between main_space and end_space 

 

if (main_space does not contain start) 

    𝑑𝑓𝑠 = longest distance in start space 

    calculate(𝑠𝑠𝑠) 

else 

    𝑠𝑠𝑠 = 30 

 

if (main_space does not contain end) 

    𝑑𝑓𝑒 = longest distance in end space 

    calculate(𝑠𝑒𝑠)  

else 

    𝑠𝑒𝑠 = 30 

 

if (main_contains start and end) 

    𝑠𝑤 = 100 

else 

    𝑠𝑤 = 0  

calculate (𝑠𝑠𝑑) 

calculate (𝑠𝑒𝑑) 

 

calculate(𝑠𝑓) 

calculate(𝑟𝑎) 

calculate(𝑅𝑒) 

calculate(𝑠) 

if (the start or end is blocked) 

    𝑠 = -10000 

return s 
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4.2.3.2 Selection 

Once the population has been scored by the fitness function, the individuals in the 

population are ready to mate in order to produce the next generation. However, to 

ensure that the principle of “survival of the fittest” is followed there needs to be a 

function that selects pairs of individuals for crossover, where the selection is in some 

way weighted or biased towards the most fit individuals. This is the selection function. 

In this research, a roulette wheel selection method was used.  

 

First the function starts by getting the sum of the fitness scores of the entire 

population. Then, the score of each individual is normalized against the sum of the 

entire population. Each individual is given the percent of their original fitness score in 

the whole population. Assuming the population is ordered from highest to lowest, the 

function then iterates over the population. For each individual, the population is 

iterated over again. A probability is cast from the normalized fitness score. If it is true, 

then those two individuals are selected for crossover. The function then proceeds to 

next individual. 

 

4.2.4 Crossover Function 

Once individuals are selected for crossover, the contents of their chromosomes need 

to be exchanged. The Crossover function is responsible for this. Between two parent 

chromosomes, the crossover function uses information from each to construct two 

new children. Often the crossover function is uniquely specified for the search space at 

hand. 

 

A standard crossover function was chosen and implemented for this research.  After 

two chromosomes are selected, a random number between 0 and 𝑛 of the level cells is 

selected. We will refer to this as the index position. The new chromosome will inherit 

all of the cells from before the index position from parent A, and after index position, 

cells are inherited from parent B. The function then repeats on the same parents, and 

creates a second child chromosome, except the parents are reversed, so before the 

index position cells are inherited from parent B, and after, cells are inherited from 

parent A. This is to ensure that the population remains constant. It also allows 

potential good features of a level to not be lost in the process, as the index position is 



59 
 

random. The by-product of this is that the crossover function cuts the level 

horizontally. While this may not be ideal for a GA developed with an emphasis on the 

layout of contiguous space, it does surprisingly work, without artefacts that hinder the 

search for viable solution. 

 

The following pseudo code describes the steps above: 

 

new_population // we have a new population to fill 

 

Parant_A // the first parent 

Parant_B // the second parent 

 

index_pos = random number between 0 and Parant_A.cells.Length // 𝑛 

 

loop 2 times, with 𝑖 as index  

    currentParentA // temporary first parent reference 

    currentParentB // temporary second parent reference 

 

    if ( 𝑖 == 0 ) 

        currentParentA = Parant_A 

        currentParentB = Parant_B 

    else 

        currentParentA = Parant_B 

        currentParentB = Parant_A 

  

    child_level // create a child level 

 

    loop for each ( 𝑛 cells in child_level), with 𝑗 as index 

        if ( 𝑗 < index_pos ) 

            child_level.cells[ at 𝑗 ] = currentParentA.cells[ at 𝑗 ] 

    else 

            child_level.cells[ at 𝑗 ] = currentParentB.cells[ at 𝑗 ] 

 

    new_population add level_child 
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4.2.5 Mutation Function 

Lastly, after the crossover occurs between two chromosomes, the child is subjected to 

the mutation function. Mutation allows new features to be added the population, 

remove features that may be harmful, or adjust a feature that may be close to being 

desirable. Note that mutation is random in accordance with a probability. The 

Mutation Function should not target specific information in the chromosome, or adjust 

information towards a desirable end. Regardless, mutation in the natural world allows 

species to adapt to the environment, and in a GA, allows chromosomes a chance to get 

closer to the desired solution in the absence of desired features. 

 

The Mutation Function utilised in this research was devised with a notion of 

contiguousness. This is to say that it operates on the contiguous arrangement of cells. 

Due to the nature of a level being a contiguous arrangement of tiles, this seems 

appropriate. Unlike a standard mutation function, where each element of a 

chromosome is given the chance to mutate, this contiguous mutation function selects 

a space at random and mutates the edge of that space. This allows spaces in the level 

to expand or contract in a mutation operation. This may allow rooms to connect, 

become two separate rooms, or carve a hallway over time. However, the GA did still 

allow a chance for a standard mutation to occur, where all the elements of the 

chromosome are given a probability to mutate. 

 

Not all children will experience mutation. The mutation function is only applied if the 

mutation probability is cast and passes. In the event that it does, a mutation will occur 

and a random mutation probability is cast. As mentioned earlier, there is a chance a 

standard mutation occurs. This was intended so that mutations may occur to cells that 

are not part of a space, or not along an edge of a space. However, the probability of 

this is small, so it has a small chance of occurring. In the event that did does occur, 

each cell/chromosome element is given a probability to mutate, which switches the 

cell. 

 

If the probability for random mutation fails, then the function proceeds to the 

contiguous mutation instead. The contiguous mutation function selects a cell at 

random, and finds the space containing that cell. If the cell is not associated with a 
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space, the contiguous mutation function is repeated on another cell, until a cell which 

is part of a space is found. This concept is illustrated in Figure 14.  

 

                  

Figure 14: Space selected for mutation 

 

Once the space is retrieved the function proceeds to the next step. There are two 

different operations the mutation function can perform on a space. Add to the space; 

make it bigger, or subtract from the space; make it smaller. Based on a probability, it 

will do one or the other. To add to a space, the outer edge of the space is retrieved. 

The outer edge are all the wall cells that surround the space, as shown in Figure 15.  

 

 

Figure 15: Outer edge of space 

 

The outer edge of the space provides a set of candidate cells that can be mutated. 

Initially, a cell is chosen at random and its type change from WALL to VOID, as shown 

in Figure 16. 
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Figure 16: Mutation on cell (in yellow) in outer edge 

 

Following the change of the initial cell, further cells may be mutated based on a 

probability. This is repeated each time on a random cell from the original set of outer 

edge cells. This continues until there are no more cells to mutate or the probability 

test fails. 

 

To remove from a space, the steps above are repeated, but instead of getting the 

outer edge, the inner edge is retrieved. Figure 17 shows the inner edge of the same 

space.  

 

Figure 17: Inner edge of space 

 

An inner edge are all the VOID cells that are along the edge of the space. Instead of 

being mutated to a VOID, it is mutated to WALL. This will cause the space to subtract. 

  

Mutation is not limited to one space. After a space is mutated, a probability is cast that 

another space is mutated. If the probability passes, then steps above a repeated on 
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another random space. However, a single space cannot be mutated multiple times in 

the same mutation function.  The follow pseudo code gives an overview of the steps 

above. 

 

mutation prob // the probability for mutation 

random mutation prob // probability for random mutation 

random mutation cell prob // probability for cell to mutation in 

                          // random mutation 

 

contig mutation volume prob // probability another space will be  

                               // mutated 

contig mutation add prob // probability a space will be added to 

contig mutation edge prob // probability another cell in the edge will 

                          // be mutated 

 

function AddToSpace( space ) // space to be mutated 

{ 

    outerEdge = get outer edge cells from space 

    loop if ( contig mutation edge prob ) at least once 

 

        rand_cell = random cell in the outerEdge 

        if ( rand_cell has already mutated ) 

            continue 

                             

        rand_cell = VOID 

} 

function RemoveFromSpace( space ) 

{ 

    innerEdge = get inner edge cells from space 

    loop if ( contig mutation edge prob ) at least once 

    

        rand_cell = random cell in the innerEdge 

        if ( rand_cell has already mutated ) 

            continue 

                             

        rand_cell = WALL 

} 
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function randomMutation() 

{ 

    loop for each ( cell in level ) 

        if (random mutation cell prob ) 

            switch cell 

} 

function contigMutation() 

{ 

      loop if ( contig mutation volume prob ) at least once 

     

        loop if ( space has not been mutated ) at least once 

         

            rand_index = random between 0 and n 

            if ( rand_index space has already been mutated) 

                continue             

             

            if ( rand_index points to a cell that is not a VOID) 

                continue 

             

            space = space of rand_index 

 

            if ( contig mutation add prob ) 

                function AddToSpace( space to be mutated ) 

             

            else 

                function RemoveFromSpace( space to be mutated ) 

} 

 

if (mutation prob) 

    if (random mutation prob) 

        function randomMutation() 

    else // since the random mutation failed,  

         // we will perform a contiguous mutation 

        function contigMutation() 

 
 

4.2.6 GA Gameplay elements 

The GA implementation described over the previous sections only evolved level 

topology. It does not evolve, or place gameplay elements in the level. This was 

intention to keep the GA relatively simple. In this research, gameplay element refers to 
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any instance of game logic, such health pickups, weapons and enemy placements. As a 

consequence, game play elements have to be hand placed after the generation of the 

levels. 

 

4.2.7 GA in PCG Taxonomy 

As a PCG method has been created for this research, it needs to be situated in the 

taxonomy described in section 2.3. Evidently it is offline. The GA is executed prior to 

the runtime of the game. The content produced by the GA is necessary. The level 

needs to be playable. The user has various control over the GA fitness function, 

mutation function, and falling rectangle function. For the fitness function the user can 

only control desired aspect ratio. However, for the falling rectangle function the user 

can control following; 

 Width 

 Height 

 Min rectangle width  

 Min rectangle height 

 Max rectangle width 

 Max rectangle height 

 Population 

 Overlap percent 

Note these were described in the equations in section 4.2.2.  

 

The various probabilities of the mutation function can be controlled by the user. These 

dimensions of control all relate to the functionality of the GA. The user does not have 

control over any aspect of the level design. Once the GA is instantiated by the user, the 

user does not have any control.  

 

The content produced by the GA can be identified as generic. There is no input from 

the player, or any information about player behaviour. As this the GA is a search 

algorithm, it falls under search based procedural content generation, which is a subset 

of Generate and Test.  
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While the generation of the topology of levels is automatic, because the GA is unable 

to place game play elements, which is hand placed after the generation of the level, 

this PCG methods falls under mixed authorship. 

 

4.3 Human Designed Levels 
The previous section has outlined the implementation of the Genetic Algorithm used 

to generate game levels for the evaluation. In addition, to support the comparative 

aspect of the research, a number of human designed game levels were also developed. 

 

These levels were developed for the human variant of the game. Game design 

students were recruited to design levels for the game. They were instructed to make a 

level to the best of their ability, using the game play elements that were already 

implemented in the game. To ensure that they understood the design of the game, the 

designers were given a copy of the game as a unity project file (Unity, 2016).  The 

designers were only able to design levels and not change the underlying code of the 

game. 

 

The level designers were also instructed in the use of a level editor that was 

implemented with the game. The level editor was needed so that a game level could 

be constructed intuitively, while maintain the level as an arrangement of tiles. Unity’s 

default scene editor is not designed for level design. As such a customized level editor 

was developed. This level editor allows the placement of tiles along grid. Figure 18 

displays a screen shot if this level editor in Unity. 
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Figure 18 Screenshot the level editor with the tutorial level open 

 
This was done to avoid a potential bias on part of the researcher who implemented 

the GA. There may be a bias if the individual whom implemented the GA also designed 

the levels. 

 

4.4 Summary 

This chapter has outlined the implementation details of the game developed to aid the 

research, along with consideration of the methods used for generating levels both 

procedurally and through the recruitment of human designers. Whilst not a formal 

output of this research, the development of the game mechanics and the game level 

editor was a significant effort that was necessary to ensure that the play testing 

evaluation was genuinely based around identifying differences that arose from the 

different spatial layout of the levels. The results of the playtesting are presented in the 

next chapter.  
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5 Results  

This chapter will outline the data that was recorded from the play tests experiment. As 

previously discussed in section 3.3.2, participants that were recruited for the study 

were asked to fill out a pre-participant questionnaire, then proceed to play the game 

for approximately 30 minutes, after which they would fill out a post- play immersion 

questionnaire. The pre-questionnaire provides data about the participants’ previous 

experience with games, which is important when examining the immersion 

questionnaire.  

 

5.1 Participants 

A total of 20 participants were selected for the study and randomly assigned a game 

variant to play. Immediately prior to play testing, demographic and game playing 

experience was collected using the pre-participation question given in Appendix A. 

Figure 19 shows the age range of all of the participants. 

 

 

Figure 19 Age of participants 

 

Figure 20 shows the gender distribution of all of the participants. 
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Figure 20 Participant gender distribution 

 

Figure 21 shows the gaming experience of all of the participants. 

 

 

Figure 21 Participant gaming experience 

 

Figure 22 shows how frequently the participants played video games. 
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Figure 22 Participant playing frequency 

 

Figure 23 shows the typical duration of a game play session for the participants. 

 

 

Figure 23 Participant session duration 

 

During the playtesting sessions it was noted that a number of the less experienced 

gamers were experiencing difficulties with the controller and navigating through the 

game. 
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It was therefore decided to do a post-hoc pruning of the data to remove participant 

data from the analysis for those participants not playing video games at least an hour 

per week. 

 

5.2 Playtesting groups 

Following the post-hoc pruning, data was available for 7 players who played the 

human designed game levels and 9 players who had played the PCG levels. A further 

demographic analysis of the groups was conducted to show that the compositions of 

the groups were roughly comparable. Figure 24 shows the ages of each group. 

 

 

Figure 24 Comparison of ages in groups 

 

Figure 25 shows the gender distribution of the groups. 
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Figure 25 Comparison of gender distribution in groups 

 

Figure 26 shows the gaming experience of the two groups. 

 

 

Figure 26 Comparison of gaming experience in groups 

 

Figure 27 shows the frequency that participants in each group were playing video 

games. 
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Figure 27 Comparison of playing frequency in groups 

 

Figure 28 shows the typical length of a gaming session for each of the two groups. 

 

 

Figure 28 Comparison of session duration in groups 

 

Whilst there are some minor variations between the two groups, they are sufficiently 

close to be considered a homogenous mix of active gamers, and as a result the 

likelihood of bias being present in the data as a result of differences between the two 

groups is low. 
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5.3 Total Immersion Analysis 

Total immersion is a concept previously used by Denisova & Cairns (2015) where the 

responses of participants in the Immersive Experience Questionnaire (IEQ) are simply 

summed to produce a total score for the participant. To facilitate this, the data 

captured using the IEQ was adjusted so that all questions resulted in a score of 5 being 

the best score. The results for each participant for questions 5, 7, 8, 9, 17 & 19 in the 

IEQ were flipped to the corresponding value if the scale was reversed (e.g. a 2 

becomes a 4, a 5 becomes a 1). Figure 29 shows an analysis of total immersion for the 

data. 

 

 

Figure 29 Comparison of total immersion 

 

This figure shows that in general that the total immersion of players of the PCG variant 

is lower than that of players of the human designed variant. This is confirmed by the 

data relating to the plots shown in Table 1. 

 

Table 1 Total immersion descriptive statistics 

 Human PCG 

Mean 112.14 94.56 

Median 114.00 89.00 

Range 82.00 – 132.00 75.00 – 119.00 

Interquartile Range 97.00 – 124.00 81.00 – 110.00 
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Both the mean and median scores of the PCG group are lower than that of the group 

who played human designed levels. The difference in mean scores between the two 

groups is 18, and the difference in median scores is 25. This can be placed into context 

by considering the number of questions in the questionnaire, and as such a typical 

difference between individuals of each group might be 1 point on the 5 point Likert 

scale for just over half the questions. Whilst this difference is small, there is still a need 

to formally address the null hypothesis through the use of statistical significance 

testing. This can be achieved using a one sided analysis of variance (ANOVA), an 

approach previously used by Denisova & Cairns (2015). 

   

Table 2 shows the summary data generated for the ANOVA testing. 

 

Table 2 ANOVA summary data 

 

Count Sum Average Variance 

PCG 9 851 94.55556 249.7778 

Human 7 785 112.1429 296.1429 

 

Table 3 shows the ANOVA outcomes generated by using the Excel single factor ANOVA 

analysis. 

Table 3 ANOVA results 

Source of Variation SS df MS F P-value F crit 

Between Groups 1217.9206 1 1217.9206 4.5167 0.0518 4.6001 

Within Groups 3775.0794 14 269.6485 

   Total 4993.0000 15         

 

Based on an α-value of 0.05, this shows that there is no statistically significant 

differences between group means as determined by one-way ANOVA (F(1,14) = 

4.5167, p = 0.0518). This is somewhat contrary to the data presented in Table 1 and 

Figure 29 where a clear difference is visible, suggesting firstly that the actual 

distribution of values is not sufficiently distinct for the differences to be clear. It also 

suggests that the sample size may not be sufficiently large for there to be high 

confidence in the outcomes. 
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Given that the p-value is only marginally greater than the α-value, and that the F-value 

is smaller than Fcrit, the outcomes of the ANOVA are definitely borderline, as might be 

expected from the visual interpretation of Figure 29. It is therefore important to not 

over-stress the outcomes of the statistical analysis, particularly given the limited 

sample size. 

 

Whilst the one-way ANOVA is considered a robust test against the normality 

assumption, which implies that it tolerates violations to its normality assumption 

rather well, this robust only applies to skewed or kurtotic distributions. In particular, 

with small sample sizes, platykurtosis can have a profound effect.  

 

To confirm the null hypothesis, a non-parametric Kruskal-Wallis test is conducted. The 

Kruskal-Wallis test statistic is approximately a chi-square distribution. Based on the 

significance level of α = 0.05, and the number of degrees of freedom is df = 2 - 1 = 1, 

the rejection region for this Chi-Square test is R = {X2: X2 > 3.841. The H statistic ( X2) 

is calculated to be H = 4.045 > R (= 3.841). It is then concluded that the null hypothesis 

is rejected. Similarly, the p-value is p = 0.0443, and since p = 0.0443 < 0.05, it is 

concluded that the null hypothesis is rejected.  

  

The outcomes of the Kruskal-Wallis test contradict that of the ANOVA, however the P-

value is still close to the α-value which suggests again a borderline outcome in terms of 

statistical significance. It is possible that some contribution to the outcomes being 

borderline are related to the aggregation of the questionnaire results into a single 

measure of total immersion, therefore the following section analyses the 

questionnaire responses at a higher level of granularity to identify any hidden detail. 

 

5.4 Detailed Questionnaire Analysis 

The Immersive Experience Questionnaire (see Appendix B) consists of 30 questions 

and the box plots in Figure 30 show an analysis of individual question responses.  
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Figure 30 Comparison of individual question responses 

 

The descriptive statistics of the responses to each question are presented in Table 4. 
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Table 4 Summary of questionnaire results by question  

 PCG     Human 

 Mean Median SD     Mean Median SD 

Q 1 3.89 4.00 1.10    Q 1 4.43 5.00 0.73 

Q 2 4.11 4.00 0.99    Q 2 4.14 4.00 0.99 

Q 3 2.89 3.00 0.99    Q 3 4.00 4.00 0.76 

Q 4 3.22 3.00 0.63    Q 4 4.71 5.00 0.45 

Q 5 2.56 2.00 1.34    Q 5 3.43 4.00 1.05 

Q 6 3.78 4.00 1.23    Q 6 4.71 5.00 0.70 

Q 7 2.89 2.00 1.29    Q 7 3.57 4.00 0.49 

Q 8 3.67 4.00 1.15    Q 8 4.00 4.00 1.07 

Q 9 3.89 4.00 1.20    Q 9 4.43 5.00 0.90 

Q 10 3.56 4.00 1.07    Q 10 3.71 4.00 1.03 

Q 11 3.22 3.00 1.23    Q 11 3.57 4.00 1.05 

Q 12 3.11 3.00 1.10    Q 12 3.43 3.00 0.49 

Q 13 2.89 3.00 1.45    Q 13 3.71 4.00 0.88 

Q 14 3.11 4.00 1.37    Q 14 4.00 4.00 1.07 

Q 15 3.78 4.00 1.13    Q 15 3.86 4.00 0.64 

Q 16 2.44 3.00 1.17    Q 16 2.71 2.00 1.28 

Q 17 4.44 5.00 0.83    Q 17 4.57 5.00 0.73 

Q 18 3.11 3.00 0.87    Q 18 4.00 4.00 0.93 

Q 19 2.00 2.00 0.82    Q 19 2.71 2.00 1.28 

Q 20 3.22 3.00 1.03    Q 20 3.43 3.00 0.90 

Q 21 3.22 4.00 0.92    Q 21 3.00 3.00 1.07 

Q 22 1.78 2.00 0.79    Q 22 2.43 2.00 0.90 

Q 23 2.78 3.00 0.92    Q 23 4.14 4.00 0.64 

Q 24 3.56 4.00 1.26    Q 24 4.71 5.00 0.70 

Q 25 3.11 3.00 1.10    Q 25 3.29 3.00 1.28 

Q 26 2.78 3.00 1.55    Q 26 2.86 3.00 1.36 

Q 27 2.67 3.00 0.47    Q 27 2.71 2.00 1.28 

Q 28 3.44 3.00 0.50    Q 28 4.29 5.00 0.88 

Q 29 2.67 2.00 0.82    Q 29 3.29 3.00 0.70 

Q 30 2.78 3.00 0.92    Q 30 4.29 5.00 0.88 

 

In terms of the mean responses to each question, the data related to participants 

playing the human designed game variant is consistently at least equal to that for 

participants playing the procedurally generated levels. The one exception to this is for 
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Q21 (“How well do you think you performed in the game?”). In terms of the median 

responses, a number of questions have produced data that is comparable. These 

include Q2, Q8, Q10, Q12, Q14, Q15, Q17, Q20, Q22, Q25 and Q26. Of these questions, 

of particular interest are Q2 (“To what extent did you feel you were focused on the 

game?”), Q22 (“To what extent did you feel emotionally attached to the game?”) and 

Q25 (“Were you in suspense about whether or not you would win or lose the game?”) 

where the standard deviation of the data related to the procedurally generated level is 

equal to or smaller than that of the data related to the human designed variant. This 

suggests that there is more coherence and agreement in the responses to these 

questions. 

 

To be able to further confirm where there are similarities between the responses of 

the two groups, a one-way ANOVA has been conducted on the responses for each 

individual question. This analysis is presented in full in Appendix B, and Table 5 

presents the P-values for each test.  

 

Table 5 ANOVA P-values for responses to individual questions 

Question ANOVA P-value  Question ANOVA P-value 

Q 1 0.3122  Q 16 0.6866 

Q 2 0.9535  Q 17 0.7693 

Q 3 0.0375  Q 18 0.0873 

Q 4 0.0002  Q 19 0.2247 

Q 5 0.2064  Q 20 0.7009 

Q 6 0.1137  Q 21 0.6821 

Q 7 0.2340  Q 22 0.1720 

Q 8 0.5887  Q 23 0.0072 

Q 9 0.3686  Q 24 0.0598 

Q 10 0.7832  Q 25 0.7878 

Q 11 0.5829  Q 26 0.9214 

Q 12 0.7370  Q 27 0.9245 

Q 13 0.2344  Q 28 0.0404 

Q 14 0.2071  Q 29 0.1566 

Q 15 0.8789  Q 30 0.0077 
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Based on an α-value of 0.05, analysis of these p-values suggests that there is a 

statistically significant difference between the responses from the two groups for Q3 

(“How much effort did you put into playing the game?”), Q4 (“To what extent did you 

lose track of time?”), Q23 (“To what extent were you interested in seeing how the 

game’s events would progress?”), Q28 (“How much would you say you enjoyed playing 

the game?”) and Q30 (“Would you like to play the game again?”).  

 

Cross-referencing these questions to the descriptive statistics in Table 4 would suggest 

that the human designed game levels have achieved a higher level of immersion in the 

dimensions related to these questions when compared to the procedurally generated 

game. Whilst the median and mean for other questions are higher for the human 

designed game players, the spread of responses to these questions is such that the 

difference is not statistically significant. 

 

5.5 Discussion of Results 

The outcomes observed from the results above need to discussed and put into context 

in order to identify the value and significance of the outcomes.  

 

5.5.1 Genetic Algorithm 

First, it should be noted that these results are related to a specific implementation of a 

Genetic Algorithm that produces game levels, in relation to the implemented game 

itself, and should not generalised for the PCG methods at large. The specific fitness, 

crossover, mutation and evaluation functions that have been implemented are what is 

being examined here.  

 

In this research, the fitness function, which was responsible for selecting the best 

levels, only looks at; whether the level is playable, and the ratio between space and 

the total area of the level. In conjunction with the falling rectangle function, the GA is 

able to generate levels that can be completed. In its current implementation though, 

the GA implemented here cannot achieve an immersion score equal or higher than 

levels designed by a human. 
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The notions that formed these two functions assume that the ability to complete a 

level and the ratio between the space the level’s dimensions are qualities of good level 

design. This is just an assumption in this research. In a broader context that takes into 

consideration player experience and game design, these qualities may be outweighed 

by other qualities of the level. These qualities are subject to the specific game design in 

question. 

  

In light of this outcome, it can be anticipated that the success of a PCG method would 

implement from a mapping between game design and a positive player experience. 

The results from this research highlights the importance of this. In this case there is no 

mapping between player experience and good level design. To describe this in the 

schema established in section 4.1.4, there is no effective mapping between the current 

game design of this research and engaging spatial mechanics, implemented in the 

fitness function of the GA. 

 

5.5.2 Observation of differences between PCG content and Human content 

In discussing these results, it would be a disservice to not visually examine the actual 

levels from the variants. Figure 31 shows a level from each variant, with (a) being the 

procedurally generated level and (b) being the human designed level.  

 

  

(a) (b) 

Figure 31 Sample levels 
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As it can be seen, the design between the GA variant and the human variant is quite 

different. There is a striking difference in the way things are laid out between the two. 

This can be seen as the GA starts at the bottom left, and moves towards the top right, 

a limitation of the current implementation of the GA. While the human level starts at 

the top and through a maze, delivers the players to the end on the right.  

 

The first obvious feature is that the GA level is generally chaotic while the human level 

is straightforward. Specifically, hallways are not always straight and rooms are not 

usually well defined. There is also noise, instances where tiles or gaps may seem 

misplaced. Regardless of the improvement between the random level generator and 

falling rectangle generator, there still are chaotic features of the level.  

 

The human designed level has clear intent in its design. There are clear distinctions of 

different parts of the level. Hallways are straight and rooms are well defined. The 

topology is not too noisy in relation to the GA variant. 

 

While the GA does provide opportunities for different rooms and hallways, and for 

gameplay elements to be placed in interesting configurations, its chaotic features may 

make all of these features feel meaningless to a player. From this observation, the 

main features that are evident, is noise; the perceived misplacement of tiles, and the 

lack of distinction; ambiguity between hallways and rooms. However, it remains hard 

to ascertain directly why the human variant had the higher immersion rating.  

  

5.5.3 Individual Questions 

As described in the results section, four questions were more consistent in identifying 

the human variant as more immersive. Those questions were: 

 

 Q3 (“How much effort did you put into playing the game?”) 

 Q4 (“To what extent did you lose track of time?”) 

 Q23 (“To what extent were you interested in seeing how the game’s events would 

progress?”) 

 Q28 (“How much would you say you enjoyed playing the game?”) 
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The questions in the original paper by Jennett et al (2008) were organized into 

sections. Basic Attention ranges from question 1 – 4. Both Q3 and Q4 fall into this 

section. This implies that GA variant failed to hold attention in comparison to the 

human variant. 

The noise identified earlier may be responsible for this. As the excess of noise in the 

level may result in the level feeling undirected and natural. The human variants may 

direct the users’ attention via the placement of the topology, while, the “natural” 

effect of noise may influence users to not regard those aspects of the topology. 

 

Q23 is related to emotional involvement. The entire game was designed to avoid this 

by remaining abstract. Regardless, it appears that the human variant was able to 

achieve this to a higher degree than the GA variant. As this is the case, a quality in the 

human designed levels that is currently not in the generated content may be 

responsible for this.  Perhaps this is due to structured nature of the human designed 

variant. Players could be lead in direction throughout the levels due to the placement 

of level topology, thus, influencing the insuring series of the events. At the very least, 

this could be argued to be some sort of narrative. The lack of distinction may also be 

responsible for this, as the human variants tendency to use room and hallways in the 

layout of the level, may contextualise the game to in some respect. 

 

The last question can be seen as a one of the summary questions in the questionnaire 

as it relates to general enjoyment. It would not be a leap to assume that the GA variant 

was less enjoyable than the human variant, both from the results and the discuss of 

the questions above. 

 

While these questions identify the most apparent instances where the human variant 

may achieve a higher immersion, the resulting discussion is ultimately speculation.  
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6 Conclusion 

This research has evaluated the effect of a Procedural Content Generation method on 

the perceived immersion of a game. A relationship between the use of a PCG method 

implemented in this research, and the immersion rating of the game has been 

identified. The results analysed from the play test experiment shows that the human 

levels of the game had a higher immersion rating than the levels produced by the PCG 

method. However, acknowledging the limitations of the sample size, the difference 

between the total immersion of the two groups was not found to be statistically 

significant using a one-way ANOVA test. 

 

A game was designed and implemented for this study. Two variants of the game were 

produced. One of those variants featured levels designed by a human designer. The 

other variant featured levels that were evolved using a specific genetic algorithm 

implementation. In this regard, this thesis represents a significant undertaking and one 

of the first attempts to consider how procedurally generated content is received by 

play testers in comparison to equivalent non-procedurally generated content. As such 

it makes a significant contribution to the existing literature in this field. 

 

To arrive at the conclusion stated above, the scores of the individual questions in the 

player immersion questionnaire had to be examined. The average sum immersion 

scores between the human variant and the PCG variant is not of significant difference 

to identify a relationship. Examining the individual questions revealed a significant 

difference in favour of the human variant of the game. 

 

This indicates that the PCG generated levels is not able to produce levels that can 

achieve the same level of immersion as the levels featured in the human game variant. 

This identifies an inverse relationship between the PCG method implemented in this 

and the perceived immersion of the game. However, this study was conducted with a 

small sample size. A larger sample size may confirm the outcome identified here. 

 

6.1 Potential Limitations 

There are a range of the limitations in this research that need to be noted. 
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6.1.1 Play test experiment 

As it has been mentioned, there are a variety of factors from the play test experiment 

that can be considered limitations of the research. The amount of the participants is 

the first obvious limitation. The sample size of the study is small. In examining the 

results from this research this needs to be considered. Recruiting and organizing 

individuals for a 30 minute play test in the scope of this research was the primary 

cause of this.  

  

The amount of time for the play test is may be another limitation. Participants were 

only given roughly 30 minutes to play. Although, depending on the state of the game, 

participants were allowed to play for a bit longer if they were close to finishing. This 

was done to ensure their experience of the game was not interrupted. However, some 

participants were able to finish the game in the 30-minute period. 30 minutes may not 

be long enough to ensure the immersion rating is accurate. In this case, to evaluate the 

immersion rating with higher clarity, a longer play test time would be needed.  

The scope of this research limited the play time to 30-minutes. 

 

6.1.2 Limitation in the GA 

The GA implementation only evolves level topology. Game play elements (picks up, 

doors, keys, enemies) are hand placed after the generation of a successful solution. 

This is intentional. Research into utilizing player experience in the PCG is beyond the 

scope of this study. As such, for the clarity of the research, it was decided that only the 

level topology would be evolved. In this context, the immersion rating differential is 

only indicative of the level topology of the generate content. However, it needs to be 

noted that human placed game play elements would have an effect on the immersion 

rating of the variants. As both game variants have human placed game play elements 

however, the clarity of this research should not be compromised.  

 

The human designed levels were able to start from any position and end at any 

position. GA levels could only start at the bottom left and end at top right. This 



86 
 

limitation on the GA, or the freedom for the human designer, could be argued to 

influence the clarity of the research. 

 

The fitness function in the GA evaluated multiple measurements and then combined 

them into a single score. The various weighing on each score was assigned an arbitrary 

value. While this is not considered ideal, the scores where kept proportional to their 

criteria as much as possible. While the fitness function was able to produce playable 

levels, the arbitrary weights may limit the clarity of evaluating this PCG method. More 

elaborate GAs, such as a multi-objective GA, may solve this limitation. 

 

 

6.1.3 Clarity of game design 

To evaluate the hypothesis with clarity, the game design would need to be 

approachable to a variety of players. If the design was too difficult, even if it is the 

same over both variants, other unintentional variables may be introduced into the 

experiment, or pre-existing variables exacerbated. While there may already be a 

multitude of factors that cannot be controlled in a study of this nature, there may be 

an ideal game design that can minimize these factors to an extent.  

 

As such, the design of the game that is to be tested, needs to be carefully considered 

in a study of this nature. The game that was developed for this research was intended 

to be straightforward, using a simple perspective and a simple objective. However, it 

may be the case that the design of Vektor in this study was not situated closer to that 

ideal. Section 4.1 described the game design of Vektor, but nuances that are not easily 

described may also affect the design with regards to this approachability. 

 

6.1.4 Game Design understanding across variants 

To avoid a bias in the design of the levels, different individuals were responsible for 

the design of the human variant levels. The designer of the GA did not design levels for 

the human variant. This was done to avoid a bias on part of the researcher. A 

limitation of the current implementation of the GA, is that it only evolves level 

topology. Gameplay elements were added in after the generation of the level by the 

designer of the GA, as he was responable . The designers of the human variant were 
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not responsible for this. This means that the understanding of game design behind 

both variants are different. This may influence the clarity of the research. 

 

6.2 Future Work 

The limitations associated with this work should not detract from the contribution this 

thesis makes, indeed in many cases the limitations arise as a direct result of pragmatic 

choices made to ensure the work could be completed in a feasible timescale. The 

limitations are therefore an indication of directions for future work. 

 

The immersion ratings for the GA variant were slightly lower than the immersion 

ratings from the human variant. The exact reasons for this outcome are hard to 

ascertain.  

 

Discussion as to why this is the case, may identify notions about aspects of the 

produced levels (from both variants) that can be explored in later research.  

 

There are also refinements and improvements that can be made to the Genetic 

Algorithm developed in this research. Player experience research and discussion about 

game design can inform future research. 

 

6.2.1 Design of the GA 

The assumptions about level design that formed the fitness function and falling 

rectangle function was not able to create levels with an equal or higher immersion 

rating then that of a human designer. 

 

Expanding these assumptions to include more accurate notions of immersive level 

design would be a natural continuation of this research. The obvious first approach 

would be to incorporate ideas from player experience research into these 

assumptions. The questionnaire that was used originates from that research area, but 

was only used to measure the perceived immersion.  

 

Refinement could be made to Genetic Algorithm implemented in this research. The 

current implementation of the fitness function may not treat all levels that are close to 
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having a playable space the same. As the function scores how close the main space is 

to the start and end using Pythagoras, spaces along the middle line might be given a 

higher score then the spaces that are along edges of the levels. This may exclude levels 

that are just as playable because their spaces are more along the edge.  

 

The crossover in the GA implementation is standard, and was not designed from 

notions of contiguousness, like the rest of the GA. While different crossover 

implementations were designed, all of them were too destructive toward the 

population of game levels to be evaluated. Game levels were that evolved were unable 

to become playable as features of the levels that could contribute to the playability 

would be overwritten during the crossover operation. So a standard crossover function 

was implemented as it was able to evolve playable game levels. Implementing a 

crossover function that incorporates notions of contiguousness is still of interest, as 

the game levels are fundamentally a contiguous arrangement of topology.  

 

This research only evaluates the PCG method implemented here, and hence the results 

can only be applied to the particular game and PCG method implemented in this 

research. Performing the same evaluation on other PCG and EC methods would be 

considered an interesting continuation of this research. 

 

Currently the GA as a whole only evolves the topology of the game level. Gameplay 

elements, like enemies and pickups, are hand placed in the level after it is evolved. 

Expanding the GA to evolve levels with game play elements would be a continuation of 

this research. It is anticipated that this would expand the GA implementation 

considerably. 

 

6.2.2 Game Design Schema and PCG 

However, player experience is not the only area of research that would inform this 

goal. There is a larger academic discussion about what games are, and how best to 

describe them. The MDA framework (Hunicke et al., 2004), is a part of that discussion. 

While the MDA framework was helpful for contextualising the role of the GA in the 

design of Vektor, it remains difficult to accurately describe the nuances in the GA 
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variant and human variant without resorting to speculation. This is no fault of the MDA 

framework, it provides a novel schema for the design and analysis of games. 

 

The goal of PCG would benefit from a formal schema that can accurately describe 

games. The ability to account for the nuances in game design would inform the 

conception and design of PCG systems and allow them to target specific aspects in the 

interaction between the player and the game. 

 

In section 5.5.2, the two features visually observed between the GA level and the 

human level, was how the human levels could communicate a distinction between 

different areas simply from its topology and the amount of the noise in the level. 

Accounting for these features in future GA or PCG implementations would be of value. 

Controlling the amount of noise in the generation process so that there is a balance is 

one notion that can be examined.  

 

The other notion, is how to make areas of the level feel distinct and defined without 

an explicit definition. While ‘hallways’ and ‘rooms’ was used to discuss this in section 

5.5.2, this approach may be limiting, as it defines aspects of a level against a pre-

existing structure, while a level is simply a contiguous arrangement of topology. 

Potential configurations that do not conform to pre-existing structures would not be 

conceived. While the falling rectangle function in this research does have a defined 

shape, mutation and crossover do not, and changes to levels through generations have 

the potential to significantly change the shape over time. 

 

6.2.3 AI assisted game design with GA method 

While the current GA implementation resulted in lower immersion, it is able to 

produce game levels that are playable. As the difference in immersion between the 

two variants are relatively small, there is potential to use this method in conjunction 

with human authorship to a larger extent. This would situate the method toward AI 

assisted game design. 
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6.2.4 Further testing 

The sample size for this study was due to the small scope of the research. Pursuing 

other avenues for testing the two variants is one way to counter this limitation. As the 

game developed for this research was made with the Unity game engine in the year 

2016 (Unity, 2016), the game can easily be compiled to a web format and put online. 

This can generate much more data then conducting an onsite play test. This may be a 

good option to confirm the results here. 

 

6.3 Summary 
This research has evaluated the effect of a Procedural Content Generation method on 

the perceived immersion of a game.  

 

A game was developed for a play test experiment, in which participants played two 

variants of a game. A human designed variant and a PCG designed variant. The PCG 

variant uses a specific genetic algorithm implementation that produces playable games 

levels. 

 

Using a player immersion questionnaire, the immersion scores of each game variant 

was recorded. It was found that the human variant had on average a higher immersion 

rating. However, there was not a significant difference between the two groups. On 

further examination of individual questions from the questionnaire, a significant 

difference was found in favour of the human variant. The PCG method was not able to 

produce levels that had an equal or higher immersion score then the human variant. 

Because of this, an inverse relationship between the specific PCG method used in this 

research and the perceived immersion of the game has been identified. However, the 

sample size was small and further research may clarify this outcome to a larger extent.  
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Appendix A: Evolved Levels and Human Levels 

A.1 Human Designed Level Maps 
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A.2 Procedurally Generated Level Maps 
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Appendix B: Questionnaires 

B.1 Pre-Participation Questionnaire 

 

SECTION 1: PERSONAL DETAILS 

1.1 Please indicate your age range 

  18-21  26-30  36-40 

  22-25  31-35  41-50 

  50+   

  

1.2 Please indicate your gender 

  Male  Female 

 

 

SECTION 2: GAMING EXPERIENCE 

2.1 How many years have you been playing video games? 

  0-2  3-4  5-6 

  6-8  8-10  10+ 

  

2.2 What platforms do you play on? Choose all that apply. 

  Xbox One  PS3  PS4 

  Xbox 360  Wii  Wii U 

  PC  Other (Please 

specify) 

 

  

 

2.3 How often do you play video games? 

  Daily  Weekly   Monthly 

  Rarely  Never  

  

2.4 How long do you play games in each play session? 

  0-15 minutes  15-30 minutes  30-60 minutes 

  1-2 hours  2-3 hours  3+ hours 

  

2.5 To what extent do you enjoy playing video games? 

 Not at all    Very Much 

 1 2 3 4 5 

      
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2.6 Do you play more than one game? 

  Yes  No  

  

2.7 What game are you currently playing the most? 

    

  

2.8 What genres of games are you most familiar with? Choose all that apply. 

  Action  Shooter  Action-Adventure 

  Adventure  Role Playing  Simulation 

  Strategy  Sports  Arcade 

  Mystery  Other (Please 

specify) 

 

2.9 What is your favourite genre of game? Choose just one. 

  Action  Shooter  Action-Adventure 

  Adventure  Role Playing  Simulation 

  Strategy  Sports  Arcade 

  Mystery  Other (Please 

specify) 

 

  

 

2.10 What is your favourite game of all time? 
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B.2 Participation Questionnaire 

 

Please answer the following questions that relate to your game playing experience. 

 

1 To what extent did the game hold your attention? 

 Not at all    A lot 

 1 2 3 4 5 

      

  

2 To what extent did you feel you were focused on the game? 

 Not at all    A lot 

 1 2 3 4 5 

      

  

3 How much effort did you put into playing the game? 

 Very little    A lot 

 1 2 3 4 5 

      

  

4 To what extent did you lose track of time? 

 Not at all    A lot 

 1 2 3 4 5 

      

  

5 To what extent did you feel consciously aware of being in the real world whilst 

playing? 

 Not at all    Very much so 

 1 2 3 4 5 

      

  

6 To what extent did you forget about your everyday concerns? 

 Not at all    Very much so 

 1 2 3 4 5 

      
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7 To what extent were you aware of yourself in your surroundings? 

 Not at all    Very aware 

 1 2 3 4 5 

      

  

8 To what extent did you notice events taking place around you? 

 Not at all    A lot 

 1 2 3 4 5 

      

  

9 Did you feel the urge at any point to stop playing and see what was happening 

around you? 

 Not at all    Very much so 

 1 2 3 4 5 

      

  

10 To what extent did you feel that you were interacting with the game 

environment? 

 Not at all    Very much so 

 1 2 3 4 5 

      

  

11 To what extent did you feel as though you were separated from your real-world 

environment? 

 Not at all    Very much so 

 1 2 3 4 5 

      

  

12 To what extent did you feel that the game was something you were 

experiencing, rather than something you were just doing? 

 Not at all    Very much so 

 1 2 3 4 5 

      
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13 To what extent was your sense of being in the game environment stronger than 

your sense of being in the real world? 

 Not at all    Very much so 

 1 2 3 4 5 

      

  

14 At any point did you find yourself become so involved that you were unaware 

you were even using controls? 

 Not at all    Very much so 

 1 2 3 4 5 

      

  

15 To what extent did you feel as though you were moving through the game 

according to you own will? 

 Not at all    Very much so 

 1 2 3 4 5 

      

  

16 To what extent did you find the game challenging 

 Not at all    Very difficult 

 1 2 3 4 5 

      

  

17 Were there any times during the game in which you just wanted to give up? 

 Not at all    A lot 

 1 2 3 4 5 

      

  

18 To what extent did you feel motivated while playing? 

 Not at all    A lot 

 1 2 3 4 5 

      
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19 To what extent did you find the game easy? 

 Not at all    Very much so 

 1 2 3 4 5 

      

  

20 To what extent did you feel like you were making progress towards the end of 

the game? 

 Not at all    A lot 

 1 2 3 4 5 

      

  

21 How well do you think you performed in the game? 

 Very poor    Very well 

 1 2 3 4 5 

      

  

22 To what extent did you feel emotionally attached to the game? 

 Not at all    Very much so 

 1 2 3 4 5 

      

  

23 To what extent were you interested in seeing how the game’s events would 

progress? 

 Not at all    A lot 

 1 2 3 4 5 

      

  

24 How much did you want to “win” the game? 

 Not at all    Very much so 

 1 2 3 4 5 

      

  

25 Were you in suspense about whether or not you would win or lose the game? 

 Not at all    Very much so 

 1 2 3 4 5 

      
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26 At any point did you find yourself become so involved that you wanted to speak 

to the game directly? 

 Not a lot    Very much so 

 1 2 3 4 5 

      

  

27 To what extent did you enjoy the graphics and the imagery? 

 Not at all    A lot 

 1 2 3 4 5 

      

  

28 How much would you say you enjoyed playing the game? 

 Not at all    A lot 

 1 2 3 4 5 

      

  

29 When interrupted, were you disappointed that the game was over? 

 Not at all    Very much so 

 1 2 3 4 5 

      

  

30 Would you like to play the game again? 

 Definitely not    Definitely yes 

 1 2 3 4 5 

      

  

 

. 
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Appendix C: ANOVA Results for individual questions 

 

Anova: Single Factor (Q1) 

    SUMMARY 

     Groups Count Sum Average Variance 

  Column 1 9 35 3.888889 1.361111 

  Column 2 7 31 4.428571 0.619048 

  

       ANOVA 

      Source of Variation SS df MS F P-value F crit 

Between Groups 1.146825 1 1.146825 1.099457 0.312151 4.60011 

Within Groups 14.60317 14 1.043084 

   

       Total 15.75 15         

 

Anova: Single Factor (Q2) 

    SUMMARY 

     Groups Count Sum Average Variance 

  Column 1 9 37 4.111111 1.111111 

  Column 2 7 29 4.142857 1.142857 

  

       ANOVA 

      Source of Variation SS df MS F P-value F crit 

Between Groups 0.003968 1 0.003968 0.003528 0.953474 4.60011 

Within Groups 15.74603 14 1.124717 

   

       Total 15.75 15         

 

Anova: Single Factor (Q3) 

    SUMMARY 

     Groups Count Sum Average Variance 

  Column 1 9 26 2.888889 1.111111 

  Column 2 7 28 4 0.666667 

  

       ANOVA 

      Source of Variation SS df MS F P-value F crit 

Between Groups 4.861111 1 4.861111 5.280172 0.037502 4.60011 

Within Groups 12.88889 14 0.920635 

   

       Total 17.75 15         
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Anova: Single Factor (Q4) 

    SUMMARY 

     Groups Count Sum Average Variance 

  Column 1 9 29 3.222222 0.444444 

  Column 2 7 33 4.714286 0.238095 

  

       ANOVA 

      Source of Variation SS df MS F P-value F crit 

Between Groups 8.765873 1 8.765873 24.62261 0.000209 4.60011 

Within Groups 4.984127 14 0.356009 

   

       Total 13.75 15         

 

Anova: Single Factor (Q5) 

    SUMMARY 

     Groups Count Sum Average Variance 

  Column 1 9 23 2.555556 2.027778 

  Column 2 7 24 3.428571 1.285714 

  

       ANOVA 

      Source of Variation SS df MS F P-value F crit 

Between Groups 3.000992 1 3.000992 1.755222 0.20644 4.60011 

Within Groups 23.93651 14 1.709751 

   

       Total 26.9375 15         

 

Anova: Single Factor (Q6) 

    SUMMARY 

     Groups Count Sum Average Variance 

  Column 1 9 34 3.777778 1.694444 

  Column 2 7 33 4.714286 0.571429 

  

       ANOVA 

      Source of Variation SS df MS F P-value F crit 

Between Groups 3.453373 1 3.453373 2.846612 0.113711 4.60011 

Within Groups 16.98413 14 1.213152 

   

       Total 20.4375 15         
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Anova: Single Factor (Q7) 

    SUMMARY 

     Groups Count Sum Average Variance 

  Column 1 9 26 2.888889 1.861111 

  Column 2 7 25 3.571429 0.285714 

  

       ANOVA 

      Source of Variation SS df MS F P-value F crit 

Between Groups 1.834325 1 1.834325 1.546726 0.234042 4.60011 

Within Groups 16.60317 14 1.185941 

   

       Total 18.4375 15         

 

Anova: Single Factor (Q8) 

    SUMMARY 

     Groups Count Sum Average Variance 

  Column 1 9 33 3.666667 1.5 

  Column 2 7 28 4 1.333333 

  

       ANOVA 

      Source of Variation SS df MS F P-value F crit 

Between Groups 0.4375 1 0.4375 0.30625 0.58872 4.60011 

Within Groups 20 14 1.428571 

   

       Total 20.4375 15         

 

Anova: Single Factor (Q9) 

    SUMMARY 

     Groups Count Sum Average Variance 

  Column 1 9 35 3.888889 1.611111 

  Column 2 7 31 4.428571 0.952381 

  

       ANOVA 

      Source of Variation SS df MS F P-value F crit 

Between Groups 1.146825 1 1.146825 0.863055 0.368627 4.60011 

Within Groups 18.60317 14 1.328798 

   

       Total 19.75 15         
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Anova: Single Factor (Q10) 

    SUMMARY 

     Groups Count Sum Average Variance 

  Column 1 9 32 3.555556 1.277778 

  Column 2 7 26 3.714286 1.238095 

  

       ANOVA 

      Source of Variation SS df MS F P-value F crit 

Between Groups 0.099206 1 0.099206 0.078687 0.783187 4.60011 

Within Groups 17.65079 14 1.260771 

   

       Total 17.75 15         

 

Anova: Single Factor (Q11) 

    SUMMARY 

     Groups Count Sum Average Variance 

  Column 1 9 29 3.222222 1.694444 

  Column 2 7 25 3.571429 1.285714 

  

       ANOVA 

      Source of Variation SS df MS F P-value F crit 

Between Groups 0.480159 1 0.480159 0.316045 0.582884 4.60011 

Within Groups 21.26984 14 1.519274 

   

       Total 21.75 15         

 

Anova: Single Factor (Q12) 

    SUMMARY 

     Groups Count Sum Average Variance 

  Column 1 9 28 3.111111 1.361111 

  Column 2 7 23 3.285714 0.571429 

  

       ANOVA 

      Source of Variation SS df MS F P-value F crit 

Between Groups 0.12004 1 0.12004 0.117378 0.736985 4.60011 

Within Groups 14.31746 14 1.022676 

   

       Total 14.4375 15         
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Anova: Single Factor (Q13) 

    SUMMARY 

     Groups Count Sum Average Variance 

  Column 1 9 26 2.888889 2.361111 

  Column 2 7 26 3.714286 0.904762 

  

       ANOVA 

      Source of Variation SS df MS F P-value F crit 

Between Groups 2.68254 1 2.68254 1.544386 0.234378 4.60011 

Within Groups 24.31746 14 1.736961 

   

       Total 27 15         

 

Anova: Single Factor (Q14) 

    SUMMARY 

     Groups Count Sum Average Variance 

  Column 1 9 28 3.111111 2.111111 

  Column 2 7 28 4 1.333333 

  

       ANOVA 

      Source of Variation SS df MS F P-value F crit 

Between Groups 3.111111 1 3.111111 1.75 0.207078 4.60011 

Within Groups 24.88889 14 1.777778 

   

       Total 28 15         

 

Anova: Single Factor (Q15) 

    SUMMARY 

     Groups Count Sum Average Variance 

  Column 1 9 34 3.777778 1.444444 

  Column 2 7 27 3.857143 0.47619 

  

       ANOVA 

      Source of Variation SS df MS F P-value F crit 

Between Groups 0.024802 1 0.024802 0.024091 0.878868 4.60011 

Within Groups 14.4127 14 1.029478 

   

       Total 14.4375 15         
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Anova: Single Factor (Q16) 

    SUMMARY 

     Groups Count Sum Average Variance 

  Column 1 9 22 2.444444 1.527778 

  Column 2 7 19 2.714286 1.904762 

  

       ANOVA 

      Source of Variation SS df MS F P-value F crit 

Between Groups 0.286706 1 0.286706 0.169715 0.686604 4.60011 

Within Groups 23.65079 14 1.689342 

   

       Total 23.9375 15         

 

Anova: Single Factor (Q17) 

    SUMMARY 

     Groups Count Sum Average Variance 

  Column 1 9 40 4.444444 0.777778 

  Column 2 7 32 4.571429 0.619048 

  

       ANOVA 

      Source of Variation SS df MS F P-value F crit 

Between Groups 0.063492 1 0.063492 0.089457 0.769263 4.60011 

Within Groups 9.936508 14 0.709751 

   

       Total 10 15         

 

Anova: Single Factor (Q18) 

    SUMMARY 

     Groups Count Sum Average Variance 

  Column 1 9 28 3.111111 0.861111 

  Column 2 7 28 4 1 

  

       ANOVA 

      Source of Variation SS df MS F P-value F crit 

Between Groups 3.111111 1 3.111111 3.37931 0.087328 4.60011 

Within Groups 12.88889 14 0.920635 

   

       Total 16 15         
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Anova: Single Factor (Q19) 

SUMMARY 

     Groups Count Sum Average Variance 

  Column 1 9 18 2 0.75 

  Column 2 7 19 2.714286 1.904762 

  

       ANOVA 

      Source of Variation SS df MS F P-value F crit 

Between Groups 2.008929 1 2.008929 1.61373 0.224675 4.60011 

Within Groups 17.42857 14 1.244898 

   

       Total 19.4375 15         

 

Anova: Single Factor (Q20) 

    SUMMARY 

     Groups Count Sum Average Variance 

  Column 1 9 29 3.222222 1.194444 

  Column 2 7 24 3.428571 0.952381 

  

       ANOVA 

      Source of Variation SS df MS F P-value F crit 

Between Groups 0.167659 1 0.167659 0.153716 0.700913 4.60011 

Within Groups 15.26984 14 1.090703 

   

       Total 15.4375 15         

 

Anova: Single Factor (Q21) 

    SUMMARY 

     Groups Count Sum Average Variance 

  Column 1 9 29 3.222222 0.944444 

  Column 2 7 21 3 1.333333 

  

       ANOVA 

      Source of Variation SS df MS F P-value F crit 

Between Groups 0.194444 1 0.194444 0.175 0.682052 4.60011 

Within Groups 15.55556 14 1.111111 

   

       Total 15.75 15         
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Anova: Single Factor (Q22) 

    SUMMARY 

     Groups Count Sum Average Variance 

  Column 1 9 16 1.777778 0.694444 

  Column 2 7 17 2.428571 0.952381 

  

       ANOVA 

      Source of Variation SS df MS F P-value F crit 

Between Groups 1.667659 1 1.667659 2.071655 0.172042 4.60011 

Within Groups 11.26984 14 0.804989 

   

       Total 12.9375 15         

 

Anova: Single Factor (Q23) 

    SUMMARY 

     Groups Count Sum Average Variance 

  Column 1 9 25 2.777778 0.944444 

  Column 2 7 29 4.142857 0.47619 

  

       ANOVA 

      Source of Variation SS df MS F P-value F crit 

Between Groups 7.337302 1 7.337302 9.865091 0.007221 4.60011 

Within Groups 10.4127 14 0.743764 

   

       Total 17.75 15         

 

Anova: Single Factor (Q24) 

    SUMMARY 

     Groups Count Sum Average Variance 

  Column 1 9 32 3.555556 1.777778 

  Column 2 7 33 4.714286 0.571429 

  

       ANOVA 

      Source of Variation SS df MS F P-value F crit 

Between Groups 5.286706 1 5.286706 4.193233 0.059827 4.60011 

Within Groups 17.65079 14 1.260771 

   

       Total 22.9375 15         
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Anova: Single Factor (Q25) 

    SUMMARY 

     Groups Count Sum Average Variance 

  Column 1 9 28 3.111111 1.361111 

  Column 2 7 23 3.285714 1.904762 

  

       ANOVA 

      Source of Variation SS df MS F P-value F crit 

Between Groups 0.12004 1 0.12004 0.075302 0.787775 4.60011 

Within Groups 22.31746 14 1.594104 

   

       Total 22.4375 15         

 

Anova: Single Factor (Q26) 

    SUMMARY 

     Groups Count Sum Average Variance 

  Column 1 9 25 2.777778 2.694444 

  Column 2 7 20 2.857143 2.142857 

  

       ANOVA 

      Source of Variation SS df MS F P-value F crit 

Between Groups 0.024802 1 0.024802 0.01009 0.921412 4.60011 

Within Groups 34.4127 14 2.45805 

   

       Total 34.4375 15         

 

Anova: Single Factor (Q27) 

    SUMMARY 

     Groups Count Sum Average Variance 

  Column 1 9 24 2.666667 0.25 

  Column 2 7 19 2.714286 1.904762 

  

       ANOVA 

      Source of Variation SS df MS F P-value F crit 

Between Groups 0.008929 1 0.008929 0.009309 0.924506 4.60011 

Within Groups 13.42857 14 0.959184 

   

       Total 13.4375 15         
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Anova: Single Factor (Q28) 

SUMMARY 

     Groups Count Sum Average Variance 

  Column 1 9 31 3.444444 0.277778 

  Column 2 7 30 4.285714 0.904762 

  

       ANOVA 

      Source of Variation SS df MS F P-value F crit 

Between Groups 2.786706 1 2.786706 5.099326 0.040426 4.60011 

Within Groups 7.650794 14 0.546485 

   

       Total 10.4375 15         

 

Anova: Single Factor (Q29) 

    SUMMARY 

     Groups Count Sum Average Variance 

  Column 1 9 24 2.666667 0.75 

  Column 2 7 23 3.285714 0.571429 

  

       ANOVA 

      Source of Variation SS df MS F P-value F crit 

Between Groups 1.508929 1 1.508929 2.24053 0.156637 4.60011 

Within Groups 9.428571 14 0.673469 

   

       Total 10.9375 15         

 

Anova: Single Factor (Q30) 

    SUMMARY 

     Groups Count Sum Average Variance 

  Column 1 9 25 2.777778 0.944444 

  Column 2 7 30 4.285714 0.904762 

  

       ANOVA 

      Source of Variation SS df MS F P-value F crit 

Between Groups 8.953373 1 8.953373 9.653881 0.007723 4.60011 

Within Groups 12.98413 14 0.927438 

   

       Total 21.9375 15         

 

 

 


