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Abstract

In this thesis, we study the issue of pricing discretely-sampled variance

swaps under stochastic volatility and stochastic interest rate. In particular,

our modeling framework consists of the equity which follows the dynamics

of the Heston stochastic volatility model, whereas the stochastic interest

rate is driven by the Cox-Ingersoll-Ross (CIR) model. We first extend the

framework of [119] by incorporating the CIR interest rate into their Heston

model for pricing discretely-sampled variance swaps. We impose partial

correlation between the asset price and the volatility, and derive a semi-

closed form pricing formula for the fair delivery price of a variance swap.

Several numerical examples and comparisons are provided to validate our

pricing formula, as well as to show the effect of stochastic interest rate on

the pricing of variance swaps.

In addition, the pricing of discretely-sampled variance swaps with full

correlation among the asset price, interest rate as well as the volatility is

investigated. This offers a more realistic model with practical importance

for pricing and hedging. Since this full correlation model is incompliant

with the analytical tractability property, we determine the approximations

for the non-affine terms by following the approach in [55] and present a semi-

closed form approximation formula for the fair delivery price of a variance

swap. Our results confirm that the impact of the correlation between the

stock price and the interest rate on variance swaps prices is very crucial.

Besides that, the impact of correlation coefficients becomes less apparent as

the number of sampling frequencies increases for all cases.

Finally, the issue of pricing discretely-sampled variance swaps under

stochastic volatility and stochastic interest rate with regime switching is

also discussed. This model is an extension of the corresponding one in

[34] and is capable of capturing several macroeconomic issues such as alter-

nating business cycles. Our semi-closed form pricing formula is proven to



achieve almost the same accuracy in far less time compared with the Monte

Carlo simulation. Through numerical examples, we discover that prices

of variance swaps obtained from the regime switching Heston-CIR model

are significantly lower than those of its non-regime switching counterparts.

Furthermore, when allowing the Heston-CIR model to switch across three

regimes, it is observable that the price of a variance swap is cheapest in the

best economy, and most expensive in the worst economy among all.
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Chapter 1

Introduction

1.1 Background

This section is devoted to provide some insights regarding the background of important

aspects in this thesis. Subsection 1.1.1 describes some information on volatility deriva-

tives. Following this section is Subsection 1.1.2 which introduces stochastic interest

rate.

1.1.1 Volatility Derivatives

Basically, volatility derivatives are financial derivatives whose values depend on the

future levels of volatility. A major difference between volatility derivatives and other

standard derivatives lies in the volatility term which not only determines the final

calculation points, but also exists in the payoff formulation. According to Demeterfi

et al. [29], volatility derivatives are traded for decision-making between long or short

positions, trading spreads between realized and implied volatility, and hedging against

volatility risks. Without doubt, these are due to the captivating traits of volatility itself

such as mean-reversion, sensitivity to risks and non-positive relationship with the stock

or indices. The utmost advantage of volatility derivatives is their capability in providing

direct exposure towards the asset’s volatility without being burdened with the hassles

of continuous delta-hedging. This is due to the fact that constant buying and selling

activities in delta-hedging would result in high transaction costs and liquidity issues.

The tremendous spike in the trading volume of volatility derivatives recently can be

related to their importance in providing volatility exposures to market practitioners.

The Chicago Board Options Exchange (CBOE) reported that the average daily trading

volume of futures on its VIX volatility index showed an increasing trend, and climbed

1
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26 percent from 159498 in 2013 to 200,521 in 2014. An increment of 11 percent was also

exhibited by the VIX options in the same period, with the same overall rising pattern

from the year 2006 up to 2014.

Figure 1.1: Average daily trading volume of VIX futures.

Figure 1.2: Average daily trading volume of VIX options.

2



1.1. BACKGROUND

Historically, M. Brenner and D. Galai were the pioneers of trading activities for

volatility derivatives back in 1993 where implied volatilities of at-the-money (ATM)

options were used to develop a volatility index. In the same year, a volatility index

known as VIX was launched by CBOE. VIX offered an alternative for Brenner and

Galai’s approach by focusing on the one-month implied volatilities of S&P 100 index

options. Starting from this point, other countries such as German and Austria also

announced their volatility indexes respectively. By 1996, the trend of trading a class of

volatility derivatives known as the volatility swaps was observed. This was followed by

the trading of variance swaps back in 1998 due to the impact brought by the crash of the

Long Term Capital Management. By 2005, the third generation of variance derivatives

such as options on realized variance, conditional variance swaps and corridor variance

swaps have started to trade actively. Further details regarding the evolution of volatility

derivatives can be found in [22].

Generally, volatility can be measured in three main ways, namely historical volatil-

ity, implied volatility and model-based volatility. Historical volatility is mainly related

to previous standard deviation of financial returns involving a specified time period.

Examples of volatility derivatives written on this historical volatility measure include

variance swaps, volatility swaps and futures on realized variance launched by CBOE.

For the implied volatility, it ascertains the volatility by matching volatilities from the

market with some specific pricing model. The VIX of CBOE estimates this type of

volatility measure of the S&P 500 index. Finally, the model-based volatility is defined

in the class of stochastic volatility models as done in [66, 101] and others.

Volatility derivatives’ transactions involve two main methods known as static repli-

cation and delta hedging. For the static replication, the essential ingredients are con-

tinuum of strikes from market prices, deals occurring only at initial and maturity times,

and existence of futures market. This method is suitable for options insensitive to price

changes by mixing uniform weighting of returns from high and low option strikes. It is

more favourable than the ATM implied volatilities because it does not assume constant

volatility or continuous underlying price process. Moreover, it retains the volatility

responsiveness along the time interval even throughout cases of extreme price changes.

In order to overcome this, the method of delta hedging is proposed. Here, the assump-

tion of continuous semi-martingale is imposed on the underlying futures price process,

whereas the assumption for the volatility does not change from previous. The replica-

tion conducted using the Black model with constant volatility (the hedging volatility)

will produce errors based on the nature of volatility itself which is stochastic. Some

rules are followed in order to determine whether the errors induce profit or loss. A loss

3
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is observed if the hedging volatility is always less than the realized volatility and vice

versa. The ultimate profit and loss for an option can be incurred from daily summation

throughout the option’s lifetime, which reflects the evaluation formula for a variance

swap. The only difference is that delta hedging holds the path-dependence property

since its weights has subordinations with the option’s gamma. Little and Pant [80] sug-

gested using stochastic volatility models or specifying the payment function to relax

the path-dependency property.

In Chapter 2 of this thesis, we will introduce a special type of volatility derivatives,

namely variance swaps. Variance swaps were first launched in 1998 due to the break-

through of volatility derivatives in the market. An extensive review of variance swaps

can be found in [11].

1.1.2 Stochastic Interest Rate

In today’s modern financial world, interest rate and its ever-changing feature is one

of the most debated issues among economists, investors and researchers. This is due

to the fact that it possesses strong influence towards all types of derivative securities.

Dynamics of the interest rate is determined by many factors, and this largely affects all

other financial derivatives which are very responsive towards it. These financial deriva-

tives are defined in [108] as interest-rate derivatives, which range from fixed-income

contracts such as bond options, caps, floors, and swaptions, to more complicated and

path-dependent contracts such as index amortizing rate swap. Basically, the financial

derivatives values are indirectly derived from values of other traded equities, and their

future prices will also be influenced by the future prices of those traded equities. Bank

for International Settlements (BIS) reported 1 that interest rate derivatives dominated

over 82 percent of the total outstanding amount of over-the-counter (OTC) derivatives

in 2010. This value was constructed by 77 percent of swaps, followed by 12 percent of

forward rate agreement and 11 percent of total options respectively.

Factors that influence levels of market interest rate are recognized as expected lev-

els of inflation, general economic activities, current status of surplus or deficit, foreign

exchange market and political stability [51]. Without doubt, the interest rate concept

has long been incorporated into our daily lives. One simple example is an expecta-

tion of money growth with certain rates after depositing money in bank accounts for

some specific period. As for creditors, they would also expect some increase in the

1http://www.slideshare.net/francoischoquet/build-curve-cpt

4



1.1. BACKGROUND

Figure 1.3: Trading volume of interest rate derivatives and the respective
instruments breakdown as in June 2010.

amount received later from the debtors, with certain rates incurred on the borrowed

amount. The greater the term to maturity involved, the greater the uncertainty would

be. Practitioners in the financial and economics world have long realized how crucial

the role played by interest rate is. First, pricing of actuarial commodities or any other

assets in the market is figured out through discounted cash flows calculated until ma-

turity. These discounts would rely on default-free dynamic interest rate, also named

as spot rates. Secondly, interest rate also greatly influences actions taken in businesses

or organizations. The rate of return that could be gained during choosing investment

opportunities offering equal risks would concern interest rate. Moreover, if there are

optional chances that involve different rates but looks promising enough, then the ones

that come out with less interest rate will likely be considered. In addition, the govern-

ment will also be assisted in dealing with pricing issues and choosing debt opportunities

with the least cost, along with other financial policies.

Cox et al. [27] criticized the four prominent theories of the Term Structure of Inter-

est Rates (TSIR) which comprised of the Expectations Hypothesis, Liquidity Preference

Theory, Market Segmentation Theory and Preferred Habitat Theory. They stressed on

5
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the importance of encompassing the uncertainties which later led to investigation of

stochastic interest rate models. Yet, it is undeniable that this goes inextricably with

the real scenarios occurring in the financial and economics world. Perturbations of liq-

uid zero-coupon bond prices, along with insufficiency in their amounts are among the

realities that have to be faced in today’s market. In addition, since the financial world

is full of uncertainties, analysis of the spot rates and forward rates becomes more and

more complicated and hard. There are also many cases in the market where the data

are unclear, indefinite in their boundaries, and not very reliable in order to anticipate

future interest rate. Examples are subjective interest rate expectations and beliefs of

experts, and prices of fixed income securities. Not only that, the dynamics of financial

asset prices also should be given attention to prevent information loss. It is also impor-

tant to ensure that the model chosen to represent the yield curve is capable enough of

including a variety of possible shapes. Hence, it is inherent to model the interest rate

as a random variable since its future value holds the random outcome property which

is not predictable.

Generally, the modeling trend of stochastic interest rate can be seen as develop-

ing from unobservable rates such as spot rates, to market rates regularly practised by

financial institutions. O. Vasicek was the pioneer of the field when he introduced a

general model of interest rate in 1977 by assuming normal distribution for the instan-

taneous short rate, refer to [107]. Since the normally distributed property might result

in negative values for the short rate, Cox et al. [27] (in short, CIR) came up with

non-central chi-square distributed short rate model. However, this model might result

in imperfect fit when calibrated towards the observed TSIR. Thus, Hull and White [69]

(in short, HW) proposed improvements for both the Vasicek and CIR model in 1990.

Unfortunately, the extension for the CIR model was regarded as not fully tractable and

did not ensure perfect fitting during calibration, as pointed out in [15]. Starting from

this point, a methodology which imposed stochastic structure directly on the evolu-

tion of the forward rate curve was introduced in 1992 to avoid arbitrage opportunities.

Known as the Heath, Jarrow and Morton (in short, HJM) model, it can be used to price

and hedge consistently all contingent claims of the term structure, see [65]. Along the

general framework of HJM; Brace et al. [12] further analysed a class of term structure

models with volatility of lognormal type. This market model possessed the advantage

of having observable rates which are quoted by financial markets, compared with spot

rate and forward rate models. In addition, it is also consistent with the Black formulas

currently being practiced.

In this thesis, we apply some stochastic interest rate models to price variance swaps.

6
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Generally, the maturities of most liquid variance swaps are between three months up

to around two years. However, variance swaps traded in indices and more liquid stocks

have maturities around three years, or even up to five years and beyond. An example

of the related market is the Euro Stoxx 50 which is a stock index of Eurozone stocks

designed by STOXX, refer to [2]. Since previous researchers claimed that constant

interest rate is only appropriate for short term maturity financial derivatives, it is

crucial to use stochastic interest rate models when pricing such variance swaps.

1.2 Literature Review

Researchers working in the field concerning volatility derivatives have been focusing on

developing suitable methods for evaluating variance swaps. In this thesis, we shall sep-

arate these methods into two main categories : analytical and numerical approaches.

For the analytical approaches, Carr and Madan [23] combined static replication using

options with dynamic trading in futures to price and hedge certain volatility contracts

without specifying the volatility process. The principal assumptions were continuous

trading and continuous semi-martingale price processes for the future prices. The selec-

tion of a payoff function which diminished the path dependence property ensured that

the investor’s joint perception regarding volatility and price was also taken into consid-

eration. Further, Demeterfi et al. [29] also produced work in the same area by proving

that a variance swap could be reproduced via a portfolio of standard options. The

requirements specified were continuity of exercise prices for the options and continuous

sampling times for the variance swaps. In addition, incorporation of stochastic volatil-

ity into the pricing and hedging models of variance swaps also has been a recent trend

in the literatures. Elliott et al. [37] constructed a continuous-time Markov-modulated

version of the Heston stochastic volatility model to distinguish the states of a business

cycle. Analytical formulas were obtained using the regime switching Esscher trans-

form and price comparisons were made between models with and without switching

regimes. Results showed that prices of variance swaps implied by the regime switching

Heston stochastic volatility model were significantly higher than those without switch-

ing regimes. Grunbichler and Longstaff [54] also developed pricing model for options

on variance based on the Heston stochastic volatility model. One important finding

was the contrast characteristics between volatility derivatives and options on traded

assets. However, it was later noted by Heston and Nandi [67] that specification of the

mean-reverting square-root process is difficult to be applied to the real market. Thus,

the latter proposed a user-friendly model by working on the discrete-time GARCH

7
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volatility process with parametric specifications. This model had the advantage of real

market practicability, as well as the capability to hedge various volatility derivatives

using only single asset. Another interesting study by Swishchuk and Xu [103] focused

on introducing delay into stochastic volatility models which also involved jumps for

pricing variance swaps. This delay is different from the usual filtration definition since

the asset price will be determined by the entire information starting from the inception

point. They also provided techniques to reduce risk via lower bounds for the delay

process. Based on their experiments on the S&P Canada index from 1999-2002, they

concluded that their model resulted in higher pricing based on the higher liabilities

involved. Overall, all of these researchers assumed continuous sampling time, whereas

the discrete sampling is the actual practice in financial markets. In fact, options of

discretely-sampled variance swaps were mis-valued when the continuous sampling were

used as approximations, and produce huge inaccuracies in certain sampling periods, as

discussed in [9, 34, 80, 119].

Recognizing the fact that the continuous sampling evaluation is contrary to the

real market, the focus of research has actuated towards discrete sampling. Besides

ensuring that this condition is fulfilled, researchers also tried to handle the internal

problems commonly occurring in the literature. Carr and Lee [22] addressed the is-

sue of pricing errors in replication strategies up to the third order when at-the-money

(ATM) was used for predicting realized variances. They provided a new formulation

for the implied volatility along with weight functions, and conditioned on sufficient

conditions for approximating volatility swaps which resulted in pricing rates with least

errors. Quite recently, Zheng and Kwok [116] highlighted the importance of utilizing

the joint moment generating function for assessing prices of third generation volatility

products. These gamma swaps, corridor gamma swaps and conditional variance swaps

were tested against the ones on continuous sampling to explore the effects on con-

vergence, sampling intervals and sensitivities. Even though these products exhibited

convergence towards continuous sampling, linearity was not a must. The period speci-

fied in contracts and parameter numbers also influenced the fair strike prices. However,

gamma swaps were not affected by the variations in sampling intervals. Furthermore,

these authors also discussed the diminishing precision problem for short term volatility

derivatives and variance products with nonlinear payoffs. Later on, saddlepoint ap-

proximation formulas were derived in [117] along with conditional saddlepoint method

based on simulation paths. As predicted, the method of Zheng and Kwok worked well

for short time intervals, specially for in-the-money (ITM) options. Also, reasonable

accuracy was achievable by varying through various strikes and interval levels.

8
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In addition to the above mentioned analytical approaches, some other authors also

conducted researches using numerical approaches. Little and Pant [80] explored the

finite-difference method via dimension-reduction approach and obtained high efficiency

and accuracy for discretely-sampled variance swaps. The main tool was the assump-

tion of the local volatility as a known function of time and spot price of the underlying

asset. Furthermore, Windcliff et al. [109] investigated the effects of employing the

partial-integro differential equation on constant volatility, local volatility and jump

diffusion-based volatility products using delta-gamma hedging. Large transaction costs

involved in constant volatility models may result in inefficiency of their delta-gamma

hedging modus. Thus, they suggested that institutions hedging the swaps propose

clients as natural counter-parties to reduce the transaction costs. An extension of the

approach in [80] was made by Zhu and Lian in [119] through incorporating Heston

two-factor stochastic volatility for pricing discretely-sampled variance swaps. Levels

of validity for short periods when using the continuous-time sampling were provided

through significant errors, along with analytical hedging derivations and numerical

simulations. However, a much simpler approach was explored by Rujivan and Zhu [93]

who proved that it was not necessary to include the generalized Fourier transform and

putting in state variable in the previous framework. Their method for solving the par-

tial differential equations consists of applying the Schwartz solution procedure which

fulfilled certain inequalities in order to obtain an affine global solution. Their method

was favourable in terms of being directly related to the conditional variance, skewness

and kurtosis. Another recent study was conducted by Bernard and Cui [9] on analyt-

ical and asymptotic results for discrete sampling variance swaps with three different

stochastic volatility models. Their Cholesky decomposition technique exhibited signifi-

cant simplification compared with the work in the literature. However, the assumption

of constant interest rates by these authors as well as other previous authors involving

variance swaps was unrealistic with the real market phenomena.

In the past three decades, many authors have concentrated on the issue of mod-

elling interest rate and its application in financial derivatives’ pricing using stochastic

approaches. Yet, it is undeniable that this goes inextricably with the real scenarios

occurring in the financial and economics world. Elliott and Siu [36] pointed out that

stochastic interest rate models should be capable of providing a practical realization

of the fluctuation property, as well as adequately tractable. They derived exponential-

affine form of bond prices with elements of continuous-time Markov chains using en-

larged filtration and semi-martingale decompositions. Moreover, Kim et al. [76] showed

that incorporation of stochastic interest rate into a stochastic volatility model gave bet-
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ter results compared with the constant interest rate case in any maturity. They pro-

posed a model which was a combination of the multi-scale stochastic volatility model

in [42] and the Hull-White interest rate model. The call option price approximation

for this mixed model was obtained via derivation of the leading order and the first

order correction prices using Fouque’s multiscale expansion method and operator spec-

ifications for the correction terms. In addition, Grzelak and Oosterlee [55] examined

correlation issues of European products pricing with the Heston-Hull-White and the

Heston-CIR hybrid models. These resulted in big errors for some short-maturity op-

tions which was another drawback of the constant interest rate. Another recent study

by Shen and Siu [97] showed the important effects of both stochastic interest rates and

stochastic volatility with regime switching for pricing variance swaps. Even though

their regime switching approach was capable of incorporating inconsistencies between

different business steps, they only considered continuous sampling approximation and

formulated their variance swap rates in integral form.

In the literature, there has also been a growing number of researchers working in

numerical techniques for pricing financial derivatives involving stochastic interest rates.

For example, both Guo et al. [60], and Haentjens and In’t Hout [62] employed the finite-

difference scheme specializing in the amalgamation of the Heston and the Hull-White

model. The alternating direction implicit (ADI) time discretization scheme was built

up from specifications of boundary conditions and sets of grid points were chosen. The

main difference between these two approaches was the number of stochastic differential

equations involved, since the former authors were concerned with the change of measure

whereas the latter authors did not. Also, the number of experiments considered in [62]

involved a wider range.

The model setup featured in this thesis can be categorized in the class of hybrid

models, which describe interactions between different asset classes such as stock, inter-

est rate and commodities combined together as new. The main aim of these models is

to provide bespoke alternatives for market practitioners and financial institutions, as

well as reducing the associated risks between the underlyings. Newly-found stochas-

tic differential equations according to the types of models considered will be derived.

The evolving number of complex hybrid models featuring various underlyings can be

related to the modernisation of the financial markets today, along with computational

advancements. Some popular examples are the hybridization of equity-interest rate

products, as well as the combination of equity-FX rate models.

Hybrid models can be generally categorized into two different types, namely hybrid

models with full correlations, or hybrid models with partial correlations among the

10
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engaged underlyings. These models are later analyzed using analytical or numerical

approaches according to the techniques and complexities involved. The correlation

issue can be directly linked to the highlighted importance of imposing correlations,

either partially or fully, in the literature. Grzelak et al. [57] and Chen et al. [24]

stressed that correlations between equity and interest rate are crucial to ensure that

the pricing activities are precise, especially for industrial practice. A study done in

[46] on auto-callable securities revealed the effects of correlation between equity and

interest rate in terms of the increment or reduction of the final product prices. The

essentiality of this property was later illustrated for the Heston-Vasicek and Heston-

CIR++ model by imposing indirect correlations through approximations. A detailed

description regarding correlation effects among interest rate, volatility and the equity

respectively can be found in [61] which provided comparisons in terms of graph shapes

and maturity time. According to these authors, the correlation effects between equity

and interest rates were more distinct compared with the correlation effects between

interest rates and volatility.

Hybrid models with partial correlations between asset classes seem to dominate

the field due to less complexity involved. Majority of the researchers focus on either

inducing correlation between the stock and interest rate, or between the stock and

the volatility. Grzelak and Oosterlee [56] overcame the limitations in [55] regarding

interest rate smiles by modeling multi-currency models with smiles for FX rate, do-

mestic and foreign fixed income market, respectively. This was achievable through the

Heston-Libor hybrid model which involved the freezing of Libor rates technique due

to the non-affine property. Results showed that their model is excellent in terms of

producing small errors compared with the original model. Another study focusing on

pricing vanilla options using the Heston-multifactor Gaussian hybrid model was done

in [57], where comparisons with the Schobel-Zhu-Hull-White (SZHW) hybrid model

were made as well. Exploitation on the analytical tractability of Gaussian processes

produced decent fitting to ATM volatility structures, along with closed form solutions

for the caps and swaptions. In contrast, Ahlip and Rutkowski [1] derived a semi-closed

form pricing formula for FX options with Heston stochastic volatility for the exchange

rate and the CIR dynamics for the domestic and foreign interest rates. These authors

also displayed the effects of incorporating the stochastic interest rates and options’ ma-

turity. Furthermore, Ziveyi et al. [121] utilized numerical techniques via sparse grid

quadrature for the pricing of deferred annuity options. An interesting observation was

the ability to obtain closed form formulas which departed from the usual practice of

numerical approximations or Monte Carlo simulation. This was accomplished using

11
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Duhamel’s principle and the method of characteristics. Recently, several authors also

imposed correlations both between the stock and interest rate, and between the stock

and the volatility. An example of analytical technique can be found in [24] where

the Stochastic-Alpha-Beta-Rho (SABR)-HW model was proposed. Even though this

model enjoyed calibration resolution from its inverse projection formula, the calibrated

parameters were only applicable for a single maturity and could not provide a consistent

description of the dynamics. As for numerical approach techniques, the finite-difference

method was employed in [60] along with Alternating Direction Implicit (ADI) scheme

for investigating approximation properties for Heston-Hull-White model. It was con-

cluded that the errors between the solutions of the full scale Heston-Hull-White and its

approximation were fairly small. In addition, only the changes in correlation parameters

between the interest rate and the stock had impact on those errors.

The hybrid models with full correlations between underlyings also attracted atten-

tion for improved model capability. Grzelak et al. [58] and Singor et al. [99] compared

their Heston-Hull-White hybrid model with the SZHW hybridization for pricing infla-

tion dependent and European options respectively. Their techniques differ in the way

that the former applied square-root approximation method in [55], whereas the latter

extended the space vector into one additional dimension. In 2011, some advancements

involving numerical techniques were observed through the ADI scheme and the sparse

grid approach. The Heston-CIR case for American compound type option studied in

[26] and the Heston-Hull-White model used in [62] gave increased accuracy and capa-

bility, as well as improved convergence property. Moreover, an exquisite contribution

in the literature of Heston-CIR model was attained in [48] where closed form solutions

of FX options and basic interest rate derivatives were achieved. Their technique of

modeling the involved random factors of interest rate and the volatility of the exchange

rate under a process of Wishart matrix promised full analytical tractability.

Despite of the relevance of imposing correlations as described above, the attention

should be drawn on the ability of the hybrid models to hold their analytical and compu-

tational tractability. This is not surprising based on their expanded ramification, and

the fact that this is one of the long standing problems in finance. One possible approach

is to implement some modifications in these models’ structure so that the property of

affine diffusion models could be ensured. This framework which was adopted from

[31] guarantees that the state vector would result in closed or nearly closed form ex-

pressions. This is applicable with the aid of the characteristic function obtained from

Fourier transform techniques. Other advantages of affine diffusion models include the

ability to replicate numerous shapes of the term structure, and also provide adequate
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fitting either to the whole or initial term structure, refer to Paseka [87].

The supremacies of incorporating the Markov regime switching techniques into fi-

nancial economics modeling have long been discussed in the past four decades. The

concept of regime switching was first introduced by Goldfeld and Quant [49] in 1973

to characterize parameter changes in nonlinear and non-stationary models. Basically,

a regime switching process involves an unobservable variable in the time-series that

switches among a certain number of states with independent price process for each

state. The switching from one state to another results in a switching probability

which is combined with the joint conditional probability of the current state to produce

joint conditional probability for each future state. These processes are filtered by the

transition probability matrix. The notion of regime switching was later developed by

Hamilton [63] who considered discrete auto-correlated shifts between positive and neg-

ative growth rates in the US post-war business cycles. The author found out that the

Markov regime switching approach succeeded in capturing complex dynamic patterns

in economic transitions. Based on this realization, incorporation of Markov chains into

financial modelling with added adjustability and manageable properties can be seen for

some unsolved problems in interest rate modeling. These include sudden jumps in the

interest rate dynamics due to unpredictable market events, and the cyclical nature of

time-series of interest rates according to the economic cycles.

The first advantage of Markov regime switching could be seen via its efficiency to

capture the nonlinear behavior in market trading. Goldfeld and Quant [49] initiated

this idea based on the vast quantity of work done on identifying nonlinear param-

eterizations and their importance. The regime switching models’ state dependence

on transition probabilities towards lagged level of instantaneous rates, along with the

ability to illustrate the unit root traits of those rates assisted in predicting interest

rates effectively, see [6, 53]. In addition, regime switching models are also proficient

for accommodating financial time-series with time-varying properties through shifting

patterns exhibited between recession and growth states, refer to [36, 63, 100]. Roma

and Torous [90] claimed that some properties of interest rates such as increment at

peak business stages and plunge at trough stages could not be explained by classical

interest rate models. In fact, it is important to ensure that the cyclical nature of time-

series of interest rates is well described in a model which also allows possible structural

changes, such as inclusion of jumps. Moreover, regime switching models also provide

the flexibility which might include the mean-reversion, asymmetric distribution or oth-

ers. Previous studies, e.g., Elliott and Mamon [35], and Elliott and Wilson [38] showed

that the dynamics of interest rates was modeled excellently when the mean-reverting
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level followed a finite state continuous Markov chain. An interesting observation was

noted from the stochastic nature of the business cycle lengths and intensities inherited

from the uncertainties involved in the Markov chain. In addition, the present applica-

bility of the regime switching techniques along with their substantial effects should not

be ignored. Ang and Bekaert [5] proved empirically that neglecting regime switching

for a conditionally risk-free asset incurred more cost which was equivalent to neglecting

overseas investment opportunities. Recent work in Liew and Siu [79] and Zhou and

Mamon [118] also revealed that regime switching models could display some important

observations in the market such as volatility clustering and heavy tail distributions of

returns, as well as replication of irregular yield curve shapes. The authors of [118]

also certified that regime switching models calibrated better and gave more accurate

predictions when compared with their counterparts.

The research work in the literature on option pricing, interest rate modeling as well

as volatility derivatives exposed the immense popularity of the Markov regime switch-

ing technique. For instance, examples are given in evaluating forward starting options

in [89], barrier options in [68], Asian options in [114], American options in [112] and

volatility derivatives in [85, 97]. The prevailing issue identified in all of these papers

is on overcoming the incomplete market environment induced by the uncertainties of

the regime switching. Several techniques proposed in recent work include introduction

of additional securities [115], utilization of Esscher transform [34], and implementation

of minimal martingale measure approach, see [7, 52, 94]. Zhang et al. [115] added

sets of Markov jump assets and ensured that the configuration of the portfolio was

equivalent continuously to guarantee that the market was complete. The main objec-

tive was to initiate new assets with bigger filtration having its own unique equivalent

martingale measure. As for Esscher transform, this time-honored tool can be tracked

back to [45] where the applicability of Esscher transform for price processes modulated

by stochastic processes with stationary and independent increments was suggested.

Pricing formulas for European options were given by characterizing Esscher transform

under the risk-neutral probability measure. This concept was later developed by Elliott

et al. [33] who justified their choice of equivalent risk-neutral measure for European call

options using the Bayes rule and the Girsanov theorem. The essence of incorporating

regime switching for pricing variance and volatility swaps under the Heston stochastic

volatility model was illustrated in [34] and [37]. In fact, these papers conducted ex-

periments on two regimes representing economies in good and bad states. However,

these two papers were distinguished in the sampling type chosen, where the latter con-

centrated on continuous sampling compared to discrete sampling case by the former.
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In addition, Elliott et al. [37] adopted probabilistic and partial differential equation

approach to find the conditional price of the volatility derivatives, whereas Elliott and

Lian [34] derived forward characteristic functions with the aid of Fourier transform.

In contrast, the authors of [7, 52] handled the Markov modulated market by taking

benefit of the minimal martingale measure via local risk minimizing stategy. Prices of

defaultable bonds, variance and volatility swaps were obtained respectively using the

Follmer-Schweizer decomposition which later resulted in solutions of partial differential

equations. Working under the same domain, Salvi and Swishchuk [94] took a different

approach in tackling the problem by using the Fubini theorem and the property of

conditional expectation for pricing covariance and correlation swaps. These result in

approximations which were given at the first order, where daily interpolation was taken

into account.

Integration of Markov regime switching techniques with stochastic interest rate

model is inscribed as a contemporary development in the literature of interest rate

modeling. In this direction, the authors of [36, 100] used the regime switching ap-

proach to extend the Cox-Ingersoll-Ross (CIR), the Hull-White and the Vasicek mod-

els respectively, in order to improve their competencies and practicality. The main

difference between these two papers was that the jump-diffusion structure was incorpo-

rated in the Vasicek model. An exponential affine form of bond prices with elements of

continuous-time Markov chain was derived using enlarged filtration and semi-martingale

decompositions. Results showed that regime switching models are capable of incorpo-

rating jumps and inconsistencies between different business stages. For the Heath-

Jarrow-Morton model, a study was conducted in Elhouar [32] to overcome the model’s

problem of infinite dimensionality. This was done as an extension from the study in

Valchev [105] where only Gaussian models were focused and no finite-dimensional issue

was considered. In [32], the volatility was specified as function of continuous-time finite

Markov chain which led to proofs of finite-dimensional realizations. It was revealed that

a Markov modulated CIR model did not possess any finite-dimensional realization, and

there were only little effects of considering different cases for their separable volatility

assumption. In addition, Futami [43] analysed the effects of partial information on one-

factor Gaussian models for zero-coupon bonds. The regime shift factor was introduced

into partial information by calculating averages of yield curves in full information. An

interesting observation was the transformation of market price of diffusion risk and the

bond’s volatility into stochastic variables.
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1.3 Research Questions

It is clear from the previous background and literature review sections that the following

research questions are still unsolved.

Question 1.1. Consider the variance swaps pricing model with stochastic volatility in

[119]. Can it be extended to a pricing model with stochastic interest rate?

Question 1.2. How can we evaluate discretely-sampled variance swaps as a hybrid

model of stochastic volatility and stochastic interest rate using an approach similar to

that in [119]?

Question 1.3. Consider the hybrid model in [55] which determines approximations

for non-affine terms and gives approximation formulas for pricing European options.

What are the mathematical and economical outcomes for our Heston-CIR hybrid model

for pricing variance swaps?

Question 1.4. Related to Question 1.3, how do we derive a result for our pricing model

with a full correlation structure between the underlyings?

Question 1.5. Consider the volatility derivatives pricing model with stochastic volatil-

ity and regime switching in [34]. How can our pricing model be extended by incorporat-

ing stochastic volatility and stochastic interest rate driven by a continuous-time regime

switching Markov chain?

1.4 Thesis Contributions and Organization

The contributions of this thesis can be expressed in answering the questions given in

Section 1.3. These answers are included in subsequent chapters, which are organized

as follows.

Chapter 2: This chapter is designed to introduce the mathematical preliminaries and

financial terminologies in order to study the research questions proposed previously.

Here, we present some notions and results on stochastic calculus, probability theory

and others, which will be used frequently in Chapter 3 to Chapter 5. In addition,

some financial terminologies are introduced in order to extend simple models into more

complicated scenarios, followed by some aspects regarding numerical simulation in the

last section.

Chapter 3: This chapter investigates models and pricing formulas for variance swaps

with discrete-sampling times. Previous variance swap pricing models did not consider
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the incorporation of stochastic interest rate in their pricing evaluations. We extend

the foundation provided by Zhu and Lian on pricing variance swaps with stochastic

volatility in [119], to a case by incorporating stochastic interest rate. This results

in a hybrid model of stochastic volatility and stochastic interest rate, which provides

solutions to Question 1.1 and Question 1.2. Semi-closed form solutions for the fair strike

values are obtained via derivation of characteristic functions. Numerical experiments

are conducted to illustrate the significance of introducing stochastic interest rate into

pricing variance swaps.

Chapter 4: The intention of this chapter is to evaluate discretely-sampled variance

swaps as a hybrid model of stochastic volatility and stochastic interest rate with a full

correlation structure. In the previous work by Grzelak and Oosterlee in [55], determin-

istic and stochastic projection techniques with nonzero correlation between processes

were proposed to guarantee the affine property for hybrid models. We derive an efficient

semi-closed form pricing formula for an approximation of the fully correlated pricing

model and apply numerical implementation to examine its accuracy. We also discuss

the impact of the correlations among the underlying, volatility and interest rate. This

analysis provides solutions to Question 1.3 and Question 1.4.

Chapter 5: The aim of this chapter is to address the issue of pricing discretely-

sampled variance swaps under stochastic volatility and stochastic interest rate with

regime switching. We first extend the framework of [34] by incorporating stochastic

interest rate into the Markov-modulated version of the stochastic volatility model.

This hybrid model possesses parameters that switch according to a continuous-time

observable Markov chain process which can be interpreted as the states of an observable

macroeconomic factor. This result yields a solution to Question 1.5. Specifically, we

extend the pricing model on variance swaps in Chapter 3 to the regime switching case,

and discuss the outcomes related to the variance swaps pricing values. In addition,

we also explain the economic consequences of incorporating regime switching into the

Heston-CIR model.

Chapter 6: This is the last chapter of the thesis and is devoted to present the con-

clusion and some potential research directions.

1.5 Bibliographic Notes
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Chapter 2

Mathematical and Finance

Preliminaries

In this chapter, some mathematical preliminaries and financial terminologies are in-

troduced. These include basic notations, definitions and many important facts, which

will be used in the subsequent chapters. Section 2.1 gives the mathematical founda-

tions essential for building up the ground knowledge involved. These mathematical

foundations include selected topics on stochastic calculus, probability theory, Markov

chains and others. In Section 2.2, some key concepts in finance are introduced to as-

sist in developing the necessary tools needed. In addition, some details regarding the

Monte Carlo simulation which facilitates model evaluation and validation are described

in Section 2.3.

2.1 Mathematical Techniques

In this section, some mathematical concepts and results which are used in our analysis

are presented. Most of these are taken from [18, 82, 98]. In addition, the notions related

to Markov chains are also described based on [38].

2.1.1 Stochastic Calculus

Stochastic calculus is recognized as the most powerful tool in financial mathematics

based on the assumption that asset prices behave randomly under uncertainties. This

random property may be affiliated as continuous-time, real-valued stochastic processes

with infinite sample paths for each outcome. Each outcome is also assigned with a
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number which results in a random variable X = X(ω) defined for the sample space Ω.

First, we introduce some preliminaries of probability theory, starting with the following

definitions of a σ-field and a probability measure.

Definition 2.1. Let Ω be a non-empty set, and let F be a family of subsets of Ω. F
is called a σ-field provided that

(i) The empty set ∅ belongs to F ;

(ii) If a set A ∈ F , then its complement Ac ∈ F ;

(iii) If a sequence of sets A1, A2, ... ∈ F , then their union
⋃∞
n=1An ∈ F .

The ordered pair (Ω,F) is called a measurable space, and elements of F are called

events.

Definition 2.2. Let Ω be a non-empty set. The σ-field generated on Ω by a collection

of subsets A of Ω, denoted by σ(A), is defined as

σ(A) :=
⋂
{G : A ⊆ G and G is a σ-field on Ω} .

This means that the σ-field generated by A is the smallest σ-field that contains A. The

σ-field generated by the family of all open intervals on the set of real numbers R is

denoted by B(R). Sets in B(R) are called Borel sets.

Definition 2.3. A probability measure P on a measurable space (Ω,F) is a function

that assigns a number in [0, 1] to every set A ∈ F such that

(i) P(Ω) = 1;

(ii) If{An : n ≥ 1} is a sequence of disjoint sets in F , then P(
⋃∞
n=1An)

=
∑∞

n=1 P(An).

For each A ∈ F , P(A) is the probability of A, and the triple (Ω,F ,P) is called a

probability space. An event A is said to occur almost surely (abbreviated as a.s.)

whenever P(A) = 1.

Moving on, we present the notion related to probability spaces, random variables

and other concepts involved.
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Definition 2.4. A function ξ : Ω → R is called F-measurable for a σ-field F on Ω

if ξ−1(B) ∈ F for every Borel set B ∈ B(R). For a probability space (Ω,F ,P), an

F-measurable function ξ : (Ω,F ,P)→ R is called a random variable.

The σ-field σ(ξ) generated by a random variable ξ is given by

σ(ξ) = {ξ−1(B) : B ∈ B(R)},

which implies σ(ξ) ⊆ F . Next, consider two events A,B ∈ F in a probability space

(Ω,F ,P). These events are called independent if

P(A ∩B) = P(A)P(B),

and the conditional probability of A given B is defined as

P(A|B) =
P(A ∩B)

P(B)
.

Two σ-fields G and H contained in F are called independent if any two events A ∈ G
and B ∈ H are independent. Two random variables ξ and η are called independent if

for any Borel sets A,B ∈ B(R), the events ξ−1(A) and ξ−1(B) are independent. If two

integrable random variables ξ, η : Ω→ R are independent, then they are uncorrelated,

i.e., E(ξη) = E(ξ)E(η), provided that the product ξη is also integrable. Finally, a ran-

dom variable ξ is independent of a σ-field G if the σ-fields σ(ξ) and G are independent.

One of the most important concepts in probability theory is conditional expectation.

This concept is explained further by the following definitions and lemma:

Definition 2.5. The conditional expectation of any integrable random variable ξ given

any event B ∈ F such that P(B) 6= ∅ is given by

E[ξ|B] =
1

P(B)

∫
B
ξ dP.

Lemma 2.1. [18] Let (Ω,F ,P) be a probability space, and let G be a σ-field contained

in F . If ξ is a G-measurable random variable and for any B ∈ G,∫
B
ξ dP = 0,

then ξ = 0 a.s..
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Definition 2.6. Let ξ be an integrable random variable on a probability space (Ω,F ,P)

and let G be a σ-field contained in F . The conditional expectation of ξ given G is defined

to be a random variable E[ξ|G] such that

(i) E[ξ|G] is G-measurable;

(ii) for any A ∈ G,

∫
A
E[ξ|G] dP =

∫
A
ξ dP.

Based on Lemma 2.1 and the following Radon-Nikodým Theorem, the existence

and uniqueness of the conditional expectation E[ξ|G] is ensured.

Theorem 2.1. [18](Radon-Nikodým Theorem). Let (Ω,F ,P) be a probability space,

and let G be a σ-field contained in F . Then for any integrable random variable ξ, there

exists a G-measurable random variable ζ such that∫
A
ζ dP =

∫
A
ξ dP

for each A ∈ G.

Some general properties of conditional expectations are listed below:

(i) E[aξ + bζ|G] = aE[ξ|G] + bE[ζ|G] (linearity);

(ii) E [E[ξ|G]] = E[ξ];

(iii) E[ξζ|G] = ξE[ζ|G] if ξ is G-measurable (taking out what is known);

(iv) E[ξ|G] = E[ξ] if ξ is independent of G (an independent condition drops out);

(v) E [E[ξ|G]|H] = E[ξ|H] if H ⊆ G (tower property);

(vi) If ξ ≥ 0, then E[ξ|G] ≥ 0 (positivity).

We now proceed with stochastic process which lies in the core of stochastic calculus.

Definition 2.7. A stochastic process on a probability space (Ω,F ,P) is a family of

random variables X(t) parameterized by t ∈ T , where T ⊆ R. For each ω ∈ Ω, the

function

T 3 t 7→ X(t, ω)

is called a sample path of {X(t) : t ∈ T}.
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When T = N, {X(t) : t ∈ T} is classified as a stochastic process in discrete time (i.e.,

a sequence of random variables). When T is an interval in R (typically, T = [0,+∞)),

{X(t) : t ∈ T} is identified as a stochastic process in continuous-time. Brownian

motions are continuous-time stochastic processes.

Definition 2.8. A stochastic process {W (t) : t ≥ 0} is called a Brownian motion if

the following properties are fulfilled:

(i) W (0) = 0 a.s.;

(ii) {W (t) : t ≥ 0} has independent increments; that is, for 0 ≤ t1 < t2 < ... < tn,

W (t2)−W (t1),W (t3)−W (t2), ...,W (tn)−W (tn−1) are independent;

(iii) for all 0 ≤ s ≤ t,W (t)−W (s) follows a normal distribution with mean 0 and

variance t− s;

(iv) W (t) has continuous sample paths.

Martingales form an important class of stochastic processes. To give a precise

definition of a martingale, we need the concept of a filtration.

Definition 2.9. Let (Ω,F) be a measurable space. A collection {F(t) : t ≥ 0} of

sub-σ-fields of F is called a filtration if F(s) ⊆ F(t) for all 0 ≤ s ≤ t.

This means that F(t) contains all events A that gives us the information at time

t regarding the occurence of A. The number of events A in F(t) will increase as t

increases.

Definition 2.10. A stochastic process {X(t) : t ∈ T} is called a martingale with

respect to a filtration F = {F(t) : t ∈ T} if

(i) X(t) is integrable for each t ∈ T ;

(ii) {X(t) : t ∈ T} is adapted to F, that is, X(t) is F(t)-measurable for each t ∈ T ;

(iii) X(s) = E[X(t)|F(s)] for every s, t ∈ T with s ≤ t.
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A basic paradigm which is important in stochastic calculus is Itô formula pioneered

by Kiyoshi Itô in 1940. To study this, we need to specify beforehand the concept of

stochastic integrals. Given a fixed time T , let {X(t) : 0 ≤ t ≤ T} be a stochastic

process adapted to the filtration up to T , F = {F(t) : 0 ≤ t ≤ T} on a probability

space (Ω,F ,P), such that

E
[∫ T

0
X(t)2dt

]
<∞. (2.1)

By some mathematical manipulation and properties of Brownian motions, one can

check that for 0 = tn0 < tn1 < · · · < tnn = T ,

E

(n−1∑
i=0

X(ti)(W (ti+1)−W (ti))

)2
 = E

[
n−1∑
i=0

X2(tni )(tni+1 − tni )

]
, (2.2)

which converges to E
[∫ T

0 X(t)2dt
]
. For each n ≥ 1, let 0 = tn0 < tn1 < · · · < tnn = T

be a partition of [0, T ] and δn = max0≤i≤n−1(tni+1 − tni ). Assume δn → 0 as n → ∞.

The stochastic integral of {X(t) : 0 ≤ t ≤ T} with respect to a Brownian motion

{W (t) : 0 ≤ t ≤ T} is defined as

∫ T

0
X(t)dW (t) = lim

n→∞

n−1∑
i=0

X(tni )
(
W (tni+1)−W (tni )

)
, (2.3)

where the convergence in (2.3) is in probability.

From (2.2) we can get

E

[(∫ T

0
X(t)dW (t)

)2
]

= E
[∫ T

0
X2(t)dt

]
. (2.4)

The stochastic integral also satisfies the martingale property, i.e., for any 0 ≤ s < t ≤ T

E
[∫ t

0
X(τ)dW (τ)

∣∣∣∣F(s)

]
=

∫ s

0
X(τ)dW (τ).

Theorem 2.2. [82] (Itô formula for Brownian motion). Let f(t, x) be a function for

which the partial derivatives ft(t, x), fx(t, x) and fxx(t, x) are defined and continuous,
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and let {W (t) : t ≥ 0} be a Brownian motion. Then for every t ≥ 0,

df(t,W (t)) = ft(t,W (t))dt+ fx(t,W (t))dW (t) +
1

2
fxx(t,W (t))dt. (2.5)

Definition 2.11. Let {W (t) : t ≥ 0} be a Brownian motion, and let {F(t) : t ≥ 0} be

an associated filtration. An Itô process is a stochastic process of the form

X(t) = X(0) +

∫ t

0
Ψ(s)dW (s) +

∫ t

0
Θ(s)ds,

where X(0) is non-random, and Ψ(s) along with Θ(s) are adapted stochastic processes.

Theorem 2.3. [82](Itô formula for Itô process). Let {X(t) : t ≥ 0} be an Itô pro-

cess, and let f(t, x) be a function for which the partial derivatives ft(t, x), fx(t, x) and

fxx(t, x) are defined and continuous. Then for every t ≥ 0,

df(t,X(t)) = ft(t,X(t))dt+ fx(t,X(t))Ψ(t)dW (t) + fx(t,X(t))Θ(t)dt

+1
2fxx(t,X(t))Ψ2(t)dt.

(2.6)

2.1.2 Markov Chains

Definition 2.12. A stochastic process {X(t) : t ≥ 0} with a finite state space S =

{s1, s2, ..., sN} is said to be a continuous-time Markov chain if for all t, s ≥ 0,

P(X(t+ s) = sj |X(u) : 0 ≤ u ≤ s) = P(X(t+ s) = sj |X(s)).

Definition 2.13. Let pij(t) = P(X(t) = sj |X(0) = si) for all si, sj ∈ S, and P (t) =

[pij(t)]si,sj∈S . We call pij(t) the transition probability from state si to state sj at time

t, and P (t) is the transition probability matrix at time t.

The properties of the transition matrix are listed as follows:

(i) pij(t) ≥ 0 for all si, sj ∈ S and t ≥ 0;

(ii)
∑

sj∈S pij(t) = 1 for all si ∈ S and t ≥ 0;

(iii) pij(t+ s) =
∑

sk∈S pik(t)pkj(s) for all t ≥ 0, s ≥ 0 and si, sj ∈ S.
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Since we would like to have only finitely-many jumps in a finite time interval, we

assume for small t, and o(t) which is a quantity asymptotically negligible as t↓0 after

dividing by t (formally f(t) = o(t) as t↓0 if f(t)/t→0 as t↓0),

(iv) 0 ≤ pij(t) = o(t) for i 6= j;

(v) 0 ≤ 1− pii(t) = o(t);

so that for i 6= j,

qij =
∂

∂t
pij(t)|t=0

would be the transition rate from si to sj . The transition rate can be defined as number

of possible events causing transition in each state of the Markov chain which takes place

with parameter qij for i 6= j. The N×N matrix Q = [qij ]1≤i,j≤N is called the transition

rate matrix.

2.1.3 Equivalent Probability Measures

Let (Ω,F) be a measurable space. Recall that two probability measures P and Q on

(Ω,F) are said to be equivalent provided that for any A ∈ F ,P(A) = 0 if and only if

Q(A) = 0.

Let (Ω,F ,P) be a probability space and {F(t) : t ≥ 0} be a filtration. Suppose that

Z is an almost surely positive random variable such that EP[Z] = 1. We define Q by

Q(A) :=

∫
A
Z(ω)dP(ω) for all A ∈ F .

Then Q is a probability measure generated by Z on (Ω,F). It can be easily checked

that P and Q are equivalent probability measures. Moreover, P and Q are related by

the formula

EQ[X] = EP[XZ].

We call Z the Radon-Nikodým derivative of Q with respect to P, written as

Z =
dQ
dP

.

The Radon-Nikodým derivative process {Z(t) : 0 ≤ t ≤ T} is defined by

Z(t) = EP[Z|F(t)], 0 ≤ t ≤ T.
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In addition, {Z(t) : 0 ≤ t ≤ T} is a martingale with respect to {F(t) : 0 ≤ t ≤ T},
since for any 0 ≤ s ≤ t ≤ T ,

EP[Z(t)|F(s)] = EP[EP[Z|F(t)]|F(s)] = EP[Z|F(s)] = Z(s).

Theorem 2.4. [98][One-dimensional Girsanov Theorem] Let {W (t) : 0 ≤ t ≤ T} be

a Brownian motion on a probability space (Ω,F ,P), and let {F(t) : 0 ≤ t ≤ T} be a

filtration for this Brownian motion. Let {γ(t) : 0 ≤ t ≤ T} be an adapted process with

respect to {F(t) : 0 ≤ t ≤ T}. Define

Z(t) = exp

(
−
∫ t

0
γ(s)dW (s)− 1

2

∫ t

0
γ2(s)ds

)
,

W̃ (t) = W (t) +

∫ t

0
γ(s)ds,

and assume that

EP
[∫ T

0
γ2(s)Z2(s)ds

]
<∞.

Set Z = Z(T ). Then EP[Z] = 1, and under the equivalent probability measure Q
generated by Z, the process

{
W̃ (t) : 0 ≤ t ≤ T

}
is a Brownian motion.

Theorem 2.5. [98][Multi-dimensional Girsanov Theorem] Let {W(t) : 0 ≤ t ≤ T} be

an n-dimensional Brownian motion on a probability space (Ω,F ,P), and let {F(t) : 0 ≤
t ≤ T} be its filtration. Let γ(t) be an n-dimensional adapted process with respect to

{F(t) : 0 ≤ t ≤ T}. Define

Z(t) = exp

(
−
∫ t

0
γ(s) · dW(s)− 1

2

∫ t

0
‖γ(s)‖2ds

)
,

W̃(t) = W(t) +

∫ t

0
γ(s)ds,

and assume that

EP
[∫ T

0
‖γ(s)‖2Z(s)2ds

]
<∞.

Set Z = Z(T ). Then EP(Z) = 1, and under the probability measure Q generated by Z,

the process
{

W̃(t) : 0 ≤ t ≤ T
}

is an n-dimensional Brownian motion.
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2.1.4 Feynman-Kac Theorem

In stochastic calculus, the Feynman-Kac Theorem establishes a relationship between

stochastic differential equations and partial differential equations. In this subsection,

we give two versions of the Feynman-Kac Theorem.

Theorem 2.6. [98][One-dimensional case] Let (Ω,F ,P) be a probability space and

{X(t) : t ≥ 0} be a stochastic process satisfying the following one-dimensional stochastic

differential equation

dX(t) = a(X(t), t)dt+ b(X(t), t)dW (t),

where {W (t) : 0 ≤ t ≤ T} is a one-dimensional Brownian motion on (Ω,F ,P). Let h(x)

be a Borel-measurable function and r be a constant representing the interest rate. Fix

T > 0, for t ∈ [0, T ], X(t) = x, define F (x, t) as the following conditional expectation,

F (x, t) = EP
[
e−r(T−t)h(x(T ))

∣∣∣∣F(t)

]
. (2.7)

Then F (x, t) satisfies the following partial differential equation

∂F

∂t
+ a(x, t)

∂F

∂x
+

1

2
b(x, t)2∂

2F

∂x2
− rF (x, t) = 0, (2.8)

subject to the terminal condition F (x, T ) = h(x) for all x.

Theorem 2.7. [98][Multi-dimensional case] Let (Ω,F ,P) be a probability space and

{X(t) : t ≥ 0} be an n-dimensional stochastic process satisfying the following n-

dimensional stochastic differential equation

dX(t) = a(X(t), t)dt+ b(X(t), t)dW(t), (2.9)

where {W(t) : 0 ≤ t ≤ T} is an m-dimensional Brownian motion on (Ω,F ,P),

a(X(t), t) is an n-dimensional vector and b(X(t), t) is an n × m matrix. Let h(x)

be a Borel-measurable function and r be a constant representing the interest rate. Fix

T > 0, for t ∈ [0, T ],X(t) = x, define F (x, t) as the following conditional expectation,

F (x, t) = EP
[
e−r(T−t)h(x(T ))

∣∣∣∣F(t)

]
. (2.10)
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Then F (x, t) satisfies the following partial differential equation

∂F

∂t
+

n∑
i=1

ai(x, t)
∂F

∂xi
+

1

2

n∑
i=1

n∑
j=1

(
b(x, t)b(x, t)T

)
ij

∂2F

∂xi∂xj
− rF (x, t) = 0, (2.11)

subject to the terminal condition F (x, T ) = h(x) for all x.

2.1.5 Fourier Transform

The Fourier transform is an important tool in Mathematics, particularly for solving

differential equations. In this subsection we recall the concept of generalized Fourier

transform in [13].

Definition 2.14. Let f(x) be a function defined on R. The generalized Fourier trans-

form f̂ of f is defined to be

f̂(ω) = F[f(x)] =

∫ ∞
−∞

f(x)e−iωxdx,

with i =
√
−1 and ω being the Fourier transform variable.

On the other hand, the generalized inverse Fourier transform is useful for retrieving

the original function before the transformation.

Definition 2.15. The generalized inverse Fourier transform is given by

f(x) = F−1[f̂(ω)] =
1

2π

∫ ∞
−∞

f̂(ω)eiωxdω.

Note that the Fourier transformation of the function eiξx is

F[eiξx] = 2πδξ(ω), (2.12)

where ξ is any complex number and δξ(ω) is the generalized delta function satisfying∫ ∞
−∞

δξ(x)Φ(x)dx = Φ(ξ). (2.13)
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The Fourier transform of a probability density function f for a random variable X is

called its characteristic function which is represented as an expectation:

f(ω) = E[eiωX ]. (2.14)

Qualitative properties of a particular distribution such as its volatility, skewness and

kurtosis could be retrieved from its characteristic function since it aids in obtaining

moments of random variable by taking derivatives at initial point ω = 0.

Some leading numerical techniques in Fourier transforms are known as the Fast

Fourier Transform (FFT) and Fourier space time stepping technique. Focusing mostly

on Levy processes, the FFT carries the supremacy of incorporating numerous uncer-

tainties in the volatility and correlation, being dependent only on the number of under-

lying assets. Hence, the common obstacle of increasing dimensionality as the ones in

finite-difference and lattice tree methods can be avoided. In addition, FFT also grants

higher efficiency since it has vast number of branches, and requires less operation time.

In contrast, the Fourier space time stepping technique is convenient for figuring out

partial differential integral equation for Levy processes too, which are beneficial for

path-dependent asset prices and constraints in option pricing models.

2.1.6 Cholesky Decomposition

The Cholesky decomposition is a tool which is commonly used in linear algebra to

factorize a positive definite matrix into a lower triangular matrix and its conjugate

transpose. Named after André-Louis Cholesky, given the covariances or correlation

between variables, we can perform an invertible linear transformation that de-correlates

the variables. Conversely, a set of uncorrelated variables can also be transformed into

variables with given covariances. First, we have to ensure that for a given square

matrix A = [aij ]1≤i,j≤n, A is symmetric meaning that aij = aji for all 1 ≤ i, j ≤ n.

This symmetric matrix is defined as positive definite if xᵀAx > 0 for any non-zero

vector x of real numbers.

The following result can be found in [50].

Proposition 2.1. [50] Let A = [aij ]1≤i,j≤n be a real symmetric matrix. If A is positive

definite, then there is a unique lower triangular matrix C with strictly positive diagonal

entries such that A = CCᵀ.
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In Proposition 2.1, CCᵀ is called the Cholesky decomposition of A. The above

proposition can be illustrated through the following matrices, where the coefficients for

both sides of the equation are calculated:
a11 a12 ... a1n

a21 a22 ... a2n

...
...

. . .
...

an1 an2 ... ann

 =


c11 0 ... 0

c21 c22 ... 0
...

...
. . .

...

cn1 cn2 ... cnn



c11 c21 ... cn1

0 c22 ... cn2

...
...

. . .
...

0 0 ... cnn

 .

Solving for the unknowns which is the non-zeros results in the following

cii =

√√√√(aii − i−1∑
k=1

c2
ik

)
and cji =

(
aji −

i−1∑
k=1

cjkcik

)
/cii,

where the expression under the square-root is always positive, and all cij are real since

A is symmetric and positive definite.

The Cholesky decomposition can be performed on covariance or correlated matrices

based on their positive definiteness property. Let X = [X1, ..., Xn]ᵀ be an n-dimensional

random vector such that E[Xi] = 0 and Var[Xi] = σ2
i > 0 for all i = 1, ..., n. The

correlation coefficient of Xi and Xj for any 1 ≤ i, j ≤ n is given by ρij =
E[XiXj ]
σiσj

.

Denote Σ = [ρij ]1≤i,j≤n as the matrix of correlation coefficient. Then it also can be

checked that Σ is positive definite.

Applications of the Cholesky decomposition can be seen in solving the normal equa-

tions of least squares to produce coefficient estimates in multiple regression analysis. In

mathematical finance, the Cholesky decomposition is commonly applied in the Monte

Carlo simulation for simulating systems with multiple correlated variables.

2.2 Finance

In this section, some preliminaries regarding option pricing and the Black-Scholes model

are presented. Further on, some concepts on forward measure, variance swaps, stochas-

tic volatility and stochastic interest rate which are required in the forthcoming chapters

are discussed. Detailed explanations can be found in [15, 108, 113].
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2.2.1 The Black-Scholes Model and Risk-Neutral Pricing

Let {W (t) : 0 ≤ t ≤ T} be a Brownian motion on a probability space (Ω,F ,P), and let

{F(t) : 0 ≤ t ≤ T} be a filtration for this Brownian motion. Here T > 0 is a fixed final

time. In the Black-Scholes model, we consider the prices {S(t) : 0 ≤ t ≤ T} of a stock

as a stochastic process that satisfies the following stochastic differential equation

dS(t) = µS(t)dt+ σS(t)dW (t), 0 ≤ t ≤ T, (2.15)

where µ is the drift rate of S(t) and σ is the volatility of S(t). Both µ and σ are

assumed to be constant. Applying Itô′s lemma, we can solve equation (2.15) and

derive the following formula

S(t) = S(0) exp

((
µ− 1

2
σ2

)
t+ σW (t)

)
. (2.16)

In addition, let B(t) be the value of a bank account at time t ≥ 0. Assume B(0) = 1

and that the bank account evolves according to the following differential equation

dB(t) = r(t)B(t)dt, B(0) = 1, (2.17)

where r(t) is a positive function of time. Here, r(t) is the instantaneous rate at which

the bank account accrues, usually referred to as instantaneous spot rate, or briefly as

short rate. As a consequence,

B(t) = exp

(∫ t

0
r(s)ds

)
.

Furthermore, the present value of $1 at time t > 0 is given by

D(t) = exp

(
−
∫ t

0
r(s)ds

)
,

which is called the discount factor.

In finance, a derivative can be defined as a security whose value depends on the value

of a more basic underlying variable, such as interest rates, commodity prices, stock

indices or other traded securities. Options are special types of financial derivatives.

Recall that a European call (put) option is a contract which gives holder the right, but

not obligation, to buy (sell) the underlying asset at an agreed fixed price K (called
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the strike price) which will be exercised on the expiration date T (called the maturity

time).

Consider a financial market consisting of a stock (risky investment) whose price

follows (2.15), a bank account (risk-free investment) whose value follows (2.17), and an

option (on the stock) whose value is c(t). An investor in our Black-Scholes market can

form a portfolio from the three investment alternatives: x(t) number of stocks, y(t)

number of bonds and z(t) number of options at time t. We call (x, y, z) the portfolio

strategy, and the value of the portfolio at time t is

V (t) = x(t)S(t) + y(t)B(t) + z(t)c(t).

Definition 2.16. A portfolio strategy (x, y, z) is called self-financing if

dV (t) = x(t)dS(t) + y(t)dB(t) + z(t)dc(t),

which can be re-written in the integral form as

V (t) = V (0) +

∫ t

0
x(s)dS(s) +

∫ t

0
y(s)dB(s) +

∫ t

0
z(s)dc(s).

It is clear that if the portfolio is self-financing, then the change in portfolio value is

equal to the stock position times the change of stock price added to the bank account

position times the change of bank account, plus the option position times the change

of option price.

Definition 2.17. A self-financing portfolio strategy is called an arbitrage opportunity

if V (0) = 0, V (T ) ≥ 0 and EP[V (T )] > 0.

Intuitively, an arbitrage opportunity can be defined as a self-financing trading strat-

egy requiring no initial investment, having zero probability of negative value at expira-

tion, and yet having some possibility of a positive terminal payoff.

Now, we consider the discounted stock price process {D(t)S(t) : 0 ≤ t ≤ T}. Its

differential is given by

d(D(t)S(t)) = (µ− r(t))D(t)S(t)dt+ σD(t)S(t)dW (t)

= σD(t)S(t)

(
µ− r(t)

σ
dt+ dW (t)

)
.

(2.18)
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Applying the Girsanov theorem, there exists a probability measure Q equivalent to P
such that {W̃ (t) : 0 ≤ t ≤ T} is a Brownian motion with respect to Q, where

W̃ (t) = W (t) +
µ− r(t)

σ
t.

This means that the discounted stock price process {D(t)S(t) : 0 ≤ t ≤ T} is a

martingale under Q. The measure Q is called the risk-neutral measure. Moreover, it

can be verified that the discounted value process of a self-financing portfolio {D(t)V (t) :

0 ≤ t ≤ T} is also a martingale under Q.

A contingent T -claim is a financial contract that pays the holder a random amount

at time T . Suppose that f(S(T )) is the payoff of a European option at the maturity

time T . One of the objectives is to find self-financing portfolios which can replicate the

claim with an investment in the stock and the bank account. Such portfolios are called

hedging portfolios, and in this case, the claim is called attainable. The value of such

portfolios will be denoted by H(t), and for a given strategy (xH , yH), we have

H(t) = xH(t)S(t) + yH(t)B(t).

In order for H to be a hedging portfolio, we must have V (T ) = f(S(T )) almost surely.

We call the market complete, if all contingent claims in the market are attainable.

In the Black-Scholes model, it is assumed that the market is complete and arbi-

trage free. Next, we provide two fundamental results that link arbitrage, risk-neutral

probability measure and market completeness.

Theorem 2.8. [98] (First Fundamental Theorem of Asset Pricing). A market model

is arbitrage-free if and only if it has at least one risk-neutral probability measure.

Theorem 2.9. [98] (Second Fundamental Theorem of Asset Pricing). Consider a

market model that has a risk-neutral probability measure. The model is complete if and

only if the risk-neutral probability measure is unique.

For a European call option with strike price K and maturity time T , its payoff at

maturity is

f(S(T )) = max{S(T )−K, 0}.

The fact that {D(t)H(t) : 0 ≤ t ≤ T} is a martingale under Q implies that

D(t)H(t) = EQ[D(T )H(T )|F(t)] = EQ [D(T )f(S(T )) | F(t)] .
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The arbitrage-free assumption forces H(t) = c(t). By dividing the discount factor D(t),

we may write c(t) as

c(t) = EQ
[
e−

∫ T
t r(s)dsf(S(T )) | F(t)

]
, 0 ≤ t ≤ T.

This is the risk-neutral pricing formula. In addition, if r(t) is constant, then it can be

shown that

c(t) = S(T )N (d1)−Ke−r(T−t)N (d2), (2.19)

with

d1 =
log(S(T )/K) + (r + 1

2σ
2)(T − t)

σ
√

(T − t)
,

and

d2 = d1 − σ
√

(T − t),

where N (·) denotes the cumulative distribution function of standard normal distribu-

tion. Equation (2.19) is called the Black-Scholes pricing formula for a European call

option. Using the same argument, the price p(t) of a European put option can expressed

as

p(t) = Ke−r(T−t)N (−d2)− S(T )N (−d1).

Following the Feynman-Kac theorem, the price c(t) of a European call option satisfies

the following PDE
∂c

∂t
+

1

2
σ2S2 ∂

2c

∂S2
+ rS

∂c

∂S
− rc = 0. (2.20)

In the literature, equation (2.20) is called the Black-Scholes PDE.

2.2.2 Numéraire, Forward Measures and Variance Swaps

In finance, a numéraire is any positive non-dividend paying asset. The following result,

taken from [15] (refer to Proposition 2.2.1 in [15]), provides a fundamental tool for the

pricing of derivatives to any numéraire.

Proposition 2.2. [15] Assume there exists a numéraire N and a probability measure

QN , equivalent to the initial Q, such that the price of any traded asset X (without

intermediate payments) relative to N is a martingale under QN , that is,

X(t)

N(t)
= EQN

[
X(T )

N(T )

∣∣∣F(t)

]
, 0 ≤ t ≤ T. (2.21)
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Let U be an arbitrary numéraire. Then there exists a probability measure QU , equivalent

to Q, such that the price of any attainable claim Y normalized by U is a martingale

under QU , that is,

Y (t)

U(t)
= EQU

[
Y (T )

U(T )

∣∣∣F(t)

]
, 0 ≤ t ≤ T. (2.22)

Moreover, the Radon-Nikodým derivative defined by QU is given by

dQU

dQN
=
U(T )N(0)

U(0)N(T )
.

A zero-coupon bond with the maturity time T is a contract between two parties,

namely the holder and the writer, that guarantees its holder the payment of one unit of

currency at time T , with no intermediate payments. The contract value at time t < T

is denoted by P (t, T ). Clearly, P (T, T ) = 1 for all T > 0.

Under the arbitrage-free assumption, we know that there is a risk-neutral probability

measure Q for the market. Now, take a zero-coupon bond as the numéraire U in

Proposition 2.2, and let QT denote the corresponding probability measure, equivalent

to Q. Realizing that P (T, T ) = 1 eliminates the dependence on the discount process,

we obtain

Y (t) = P (t, T )ET [Y (T )|F(t)], 0 ≤ t ≤ T. (2.23)

We call QT the T -forward measure. It can be verified that the expectation of a future

instantaneous spot rate r(T ) under QT is equal to the related instantaneous forward

rate f(t, T ), that is,

ET [r(T )|F(t)] = f(t, T )

for each 0 ≤ t ≤ T . For details, refer to [15].

In general, there is more complexity involved in pricing interest rate derivatives

because the payoff functions depend on interest rates at multiple time points. Fur-

thermore, the volatilities of these interest rates may differ due to the different peri-

ods involved comprising from the short-term rates to the long-term rates. Whenever

stochastic interest rates are present, there exists a joint dynamism between the under-

lying asset price and interest rates in the pricing procedure. The use of the forward

measure allows taking out the discounting effect from the joint evolution of the asset

price and interest rates, when zero-coupon bonds are used as numéraires.

A forward contract is an agreement between two parties, namely the holder and
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the writer, where the holder agrees to buy an asset from the writer at delivery time T

in the future for a pre-determined delivery price K. In this transaction, no up-front

payment occurs. The delivery price is chosen so that the value of the forward contract

to both parties is zero when the contract starts. The holder assumes a long position,

and the writer assumes a short position.

A variance swap is a forward contract on the future realized variance of the returns of

a specified asset. Offering additional purpose in determining the payoff of the financial

derivative, this gives extra credit apart from the advantage of avoiding direct exposures

to itself. Since the payment of a variance swap is only made in a single fixed payment

at maturity, it is defined as a forward contract which is traded over the counter. At

maturity time T , a variance swap rate can be evaluated as V (T ) = (RV −K)×L, where

K is the annualized delivery or strike price for the variance swap and L is the notional

amount of the swap in dollars. Roughly speaking, the realized variance (RV) is the

sum of squared returns. It provides a relatively accurate measure of volatility which

is useful for many purposes, including volatility forecasting and forecast evaluation.

The formula for the measure of realized variance used in this thesis and several other

authors [80, 119] is

RV =
AF

N

N∑
j=1

(
S(tj)− S(tj−1)

S(tj−1)

)2

× 1002, (2.24)

whereas in the market, a typical measure of the realized variance is defined as

RV =
AF

N

N∑
j=1

(
ln

S(tj)

S(tj−1)

)2

× 1002. (2.25)

The formula in (2.24) is known as the actual return realized variance, and the formula

in (2.25) is recognizable as the log return realized variance. The formula in (2.25)

had also been used extensively in the literature, such as in [116] and [117]. Several

authors also used both definitions in their research, for example [34]. Here, S(tj) is the

closing price of the underlying asset at the j -th observation time tj , T is the lifetime of

the contract and N is the number of observations. AF is the annualized factor which

follows the sampling frequency to convert the above evaluation to annualized variance

points. Assuming there are 252 business days in a year, AF = 252 for every trading

day sampling frequency. However if the sampling frequency is every month or every

week, then AF will be 12 and 52 respectively. The measure of realized variance requires
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monitoring the underlying price path discretely, usually at the end of each business day.

For this purpose, we assume equally discrete observations to be compatible with the

real market, which reduces to AF = 1
∆t = N

T .

The long position of variance swaps pays a fixed delivery price at the expiration

and receives the floating amounts of the annualized realized variance, whereas the short

position is the opposite. The notional amount L can be expressed in two terms which

are variance notional and vega notional. Variance notional gives the dollar amount of

profit or loss obtained from the difference of one point between the realized variance

and the delivery price. In contrast, vega notional calculates the profit or loss from

one point of change in volatility points. Since it is the market practice to define the

variance notional in volatility terms, the notional amount is typically quoted in dollars

per volatility point. Even though the vega notional is the common market practice,

this does not rise any complication due to the square-root relationship between the

variance and volatility.

Generally, short position holders are mostly drawn to the irresistible attributes of

variance swaps since the implied volatility is likely to be bigger than the final realized

volatility. Moreover, the convexity property allows strike prices to be more expensive

than the ones acquired from fair volatility. In addition, variance swaps also offer the

capability to record the volatility trends of two correlated indices.

2.2.3 The CIR Model

Even though the Black-Scholes model has been widely recognized as the foundation for

practitioners and researchers in the option pricing world, it contains several limitations

which induce modelling difficulties. The constant volatility and constant instantaneous

interest rate setting are not consistent with real market observations. Previous lit-

eratures revealed that implied volatility, volatility clustering and fat tail distribution

are common market realities, and these phenomena are absolutely in contrast to the

Black-Scholes assumptions ([3],[59],[75]). Starting from this point, many studies have

been done on improving the Black-Scholes formula (see [74]) by proposing stochastic

interest rate models, introducing jumps components, models with Levy processes and

etc.

In this section, a review on the Cox-Ingersoll-Ross (CIR) stochastic interest rate

model will be given. Since it is categorized in the class of short-rate models, it also

possesses common characteristics such as continuous-time diffusion dynamics as well as

the mean-reverting property. Let {r(t) : t ≥ 0} be the process of interest rate. In 1985,
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Cox, Ingersoll and Ross [27] came up with the following model which discussed specifi-

cally the effects of anticipation, risk-aversion, investment alternative and consumption

timing preferences towards a competitive economy in a continuous-time setting:

dr(t) = α[β − r(t)]dt+ η
√
r(t)dW (t) (2.26)

with positive constants α, β and η, where {W (t) : t ≥ 0} is a standard Brownian motion.

One remarkable feature of this model is its capability to ensure positive interest rates

due to the nature of square-root term in the short rate dynamics. The condition to

avoid possibility of negative rates however can only be achieved by restricting 2αβ > η2.

This is the main advantage of CIR model compared with the earlier models, besides

resembling the tangible condition of interest rates in market. It is also worth to mention

that the expectation and the variation for the CIR process can be expressed respectively

as

E [r(t)|r(0)] = r(0)e−αt + β(1− e−αt), (2.27)

Var [r(t)|r(0)] = r(0)
η2

α
(e−αt − e−2αt) +

βη2

2α
(1− e−αt)2. (2.28)

Under the arbitrage-free condition, the price P (t, T ) of a zero-coupon bond satisfies the

following partial differential equation

∂P

∂t
+

1

2
η2r

∂2P

∂2r
+ α(β − r)∂P

∂r
− rP = 0. (2.29)

Assume that P (t, T ) has the affine form P (t, T ) = A(t, T )e−B(t,T )r(t). Substituting

P (t, T ) into (2.29), we can derive

A(t, T ) =
−2a

σ2
ln

[
γe1/2b(T−t)

γ cosh(γ(T − t)) + 1
2b sinh(γ(T − t))

]
, (2.30)

and

B(t, T ) =
sinh(γ(T − t))

γ(T − t)) + 1
2b sinh(γ(T − t))

, (2.31)

where γ = 1
2

√
b2 + 2σ2, sinhu =

eu − e−u

2
, and coshu =

eu + e−u

2
. For details, refer

to [98].

Despite the ability to exhibit conditional volatility which depends on levels of short

rate, the CIR model is not amenable to a closed form solution. However, the mean
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and variance of interest rate at time t can be calculated explicitly if the initial condi-

tion of the interest rate is given. Thus, many numerical methods have been proposed

in the literature including finite-difference method and discretization schemes. Other

flaws of the model include inadequate flexibility to fit the market’s term structure and

intractability especially when multi-factor cases are involved.

2.2.4 The Heston Model

In general, stochastic volatility models are defined as models which assume the volatility

of an asset as a random process. This is particularly important because volatility

changes with both time and stock price levels in the real market. One important

characteristic of these models is the capability to exhibit the smile curve. In fact,

the constant volatility assumption in the Black-Scholes model should be ignored since

stochastic volatility models could exhibit skewness property for the implied volatility

([3],[75]). Apart from that, there are also other advantages such as the ability to

simulate fat-tail returns which result in proper modelling of intense asset prices as well

as incorporation of market jumps.

Despite the attractive superiorities offered by stochastic volatility models, they also

possess some impediments such as the difficulties arising in hedging and parameter

evaluation problems. The volatility process has an individually independent random

component which is imperfectly correlated to the Brownian motion term in its stochas-

tic differential equation and leads to non-existence of a unique equivalent martingale

measure. There are a few different driving processes of stochastic volatility models

which distinguish them apart such as the lognormal process for the Hull-White model,

the Ornstein-Uhlenbeck process for the Stein-Stein and Scott model, and the square-

root process for the Heston model. The mean-reversion property held by Ornstein-

Uhlenbeck and the square-root process are regarded as very enticing from the financial

perspective since the implied volatility process also shares the same property.

The Heston model was introduced to remedy the pitfalls of the Black-Scholes model

which did not consider skewness elements and was unsolvable analytically. Derivations

of a closed form solution for the price of a European call was done by applying tech-

niques of characteristic functions and imposing correlations between the stock price

and volatility. This resulted in the probability density function for a continuously

compounded return for a half-year period with prices for in and out-of-the-money op-

tions. To be more precise, the stock price S(t) has the dynamics as follows, where the
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instantaneous variance ν(t) follows a CIR process:

dS(t) = µS(t)dt+
√
ν(t)S(t)dW1(t),

dν(t) = κ[θ − ν(t)]dt+ σ
√
ν(t)dW2(t),

(2.32)

where {Wi(t) : t ≥ 0}, i = 1, 2, is a standard Brownian motion, and (dW1(t), dW2(t)) =

ρdt for −1 ≤ ρ ≤ 1. Also, the parameters µ represent the rate of return of asset, θ is

the long-term variance, κ is the rate which ν(t) reverts to θ, and σ is the volatility of

volatility.

A paramount discovery from this model was the significant effect of the correlation

between the volatility and asset price towards the current price of asset consequent to

exercise and current price of strike at payment time. These criteria could be measured

in terms of skewness in gain and strike prices’ intolerance when compared with the

Black-Scholes model. Besides that, the parameters in the Heston model which do not

exist in the Black-Scholes model assist in better market price predictions via monitoring

the shape of the volatility curve, along with its behaviour over time. However, these

parameters should be assessed with caution since it would give great impact on model

fitting. Carmona and Nadtochiy [21] claimed that fitting performance towards the

whole term structure of implied volatility was not adequately guaranteed based on

incapability of replicating all market price strikes and maturities. Shamsutdinov [96]

elaborated on the calibration procedures of the Heston’s model parameters for the

European options by utilizing the EURO STOXX 500 Index. Among the steps involved

include choosing an appropriate error function and application of various optimization

methods such as R for search of parameter setting.

2.3 Monte Carlo Simulation

It is common practice in finance to represent the price of a derivative security using

the expected present value of the derivative’s payoff according to the asset pricing

theory. However, the expectations involved often do not have closed form formulas.

The Monte Carlo simulation method comes in handy to find numerical approximations

of the expectations. A general introduction about the Monte Carlo simulation method

can be found in [47, 108].

Monte Carlo simulation is regarded as an ideal tool for pricing European style

financial derivatives involving integrations which could not be derived analytically. This
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is based on its capability to sample paths of different types of models of stochastic

differential equations. Many authors, e.g. [17, 58, 78], have utilized the Monte Carlo

simulation to price financial derivatives for the jump-diffusion, hybrid and two-factor

interest rate models. The Monte Carlo simulation is a generic algorithm which generates

a large number of sample paths according to the model under consideration, then

computes the derivative payoff for each path in the sample. The average is then taken

to find an approximation to the expected present value of the derivative. The Monte

Carlo simulation result converges to the derivative value in the limit as the number of

paths in the sample goes to infinity.

The main advantage of the Monte Carlo simulation is that it is usually easy to

implement and can be used to evaluate a large range of European style derivative

securities. Also, if enough sample paths are taken, then Monte Carlo simulation is

reliable to give a good approximation of the value of the derivatives. Therefore, it is

often used as a benchmark value for many complicated European style derivatives.

However, many authors, e.g. [77, 106], criticized the Monte Carlo simulation in

terms of long computational time, high expense, and difficulty in calculating the Greeks.

In addition, it is impractical for American options since American options involve op-

tion valuation at intermediate times between simulation start time and expiry time.

Some breakthroughs have been discovered to improve the performance of Monte Carlo

methods including implementing antithetic variables and control variate technique.

These techniques contribute to increasing accuracy levels but do not guarantee any

improvement in convergence speed.

In this thesis, we mainly use two schemes of the Monte Carlo simulation to generate

sample paths of stochastic variables. Let {X(t) : t ≥ 0} be a general stochastic process

which follows an autonomous stochastic differential equation:

dX(t) = µ(X(t))dt+ σ(X(t))dW (t), X(0) = X0,

where {W (t) : t ≥ 0} is a standard Brownian motion, µ(X(t)) is the drift term of the

process and σ(X(t)) is the volatility term of the process.

The Euler-Maruyama and Milstein schemes are constructed within the Itô integral

framework. In particular, consider a basic discretization T : {t0, t1, ..., tN = T} for

interval [t0, T ] with N sub-intervals of equal length and denote the interval length

∆t = T−to
N . For the Euler-Maruyama scheme, we approximate the realization of the
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stochastic variable X(t) at time tj as Xj , where

Xj = Xj−1 + µ(Xj−1)∆t+ σ(Xj−1)(W (tj)−W (tj−1)), X0 = X(0).

Even though the Euler-Maruyama scheme is user-friendly and relevant for most

scenarios, its convergence speed is quite low since the error of the diffusion term is

o(
√

∆t). This urges the need for a refinement of the scheme with emphasis on the

diffusion term. The Milstein scheme reduces the error of the diffusion terms to o(∆t) by

adding additional terms to the Euler-Maruyama scheme. In particular, the realization

of the stochastic variable at time tj in the Milstein scheme is approximated by:

Xj = Xj−1 + µ(Xj−1)∆t+ σ(Xj−1)(W (tj)−W (tj−1))

+
1

2
σ(Xj−1)σ′(Xj−1)((W (tj)−W (tj−1))2 −∆t), X0 = X(0).

This results in increasing the rate of convergence for the Milstein scheme.
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Chapter 3

Pricing Variance Swaps under

Stochastic Factors : Partial

Correlation Case

In this chapter, we investigate the problem on pricing discretely-sampled variance swaps

under the framework of stochastic interest rate and stochastic volatility based on the

Heston-CIR hybrid model. In Section 3.1, we first present some details regarding the

Heston-CIR hybrid model. In Section 3.2, we extend the hybrid model in Section 3.1

to the specific case of pricing variance swaps. We do this by first implementing the

change of measure to the model setup, followed by two computation steps to solve the

corresponding equations. Finally, in Section 3.3, we discuss the effects of stochastic

interest rate on the price of variance swaps and show some comparisons for the purpose

of formula validation.

3.1 The Heston-CIR Model

In this section, we present a hybridization of the Heston stochastic volatility model in

[66] and the Cox-Ingersoll-Ross (CIR) interest rate model in [27], which is widely known

as the Heston-CIR model. The risk-neutral probability measure is being considered in

this section.

As revealed by many empirical studies [59, 75], the classical Black-Scholes model

in [10] may fail to reflect certain features of financial markets due to some unrealistic

assumptions including the constant volatility and constant interest rate. To remedy

these drawbacks of the Black-Scholes model, many models have been proposed by
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academic researchers and practitioners to incorporate stochastic interest rate, jump

diffusion and stochastic volatility [27, 31, 101]. Among stochastic volatility models,

the one proposed by [66] has received a lot of attentions, since it gives a satisfactory

description of the underlying asset dynamics [34, 37]. Recently, Zhu and Lian [119, 120]

used Heston model to derive a closed form exact solution to the price of variance swaps.

In this thesis, we move a step further by taking advantage of the hybridization between

the Heston stochastic volatility model and the CIR interest rate model. Note that

Heston-CIR hybrid models have been discussed and applied to the studies of pricing

American options, the affine approximation pricing techniques with correlations, and

the convergence of approximated prices using discretization methods, refer to [26, 55,

77]. The Heston-CIR hybrid model that we shall use in our framework can be described

as follows 
dS(t) = µS(t)dt+

√
ν(t)S(t)dW1(t), 0 ≤ t ≤ T,

dν(t) = κ(θ − ν(t))dt+ σ
√
ν(t)dW2(t), 0 ≤ t ≤ T,

dr(t) = α(β − r(t))dt+ η
√
r(t)dW3(t), 0 ≤ t ≤ T,

(3.1)

where r(t) is the stochastic instantaneous interest rate in which α determines the speed

of mean reversion for the interest rate process, β is the long-term mean of the interest

rate and η controls the volatility of the interest rate. In the stochastic instantaneous

variance process ν(t), κ is its mean-reverting speed parameter, θ is its long-term mean

and σ is its volatility. In order to ensure that the square root processes are always

positive, it is required that 2κθ ≥ σ2 and 2αβ ≥ η2 respectively [27, 66]. Throughout

this chapter, we assume that correlations involved in the above model are given by

(dW1(t), dW2(t)) = ρdt, (dW1(t), dW3(t)) = 0 and (dW2(t), dW3(t)) = 0, where 0 ≤ t ≤
T , and ρ is a constant with −1 < ρ < 1. In Chapter 4, we shall consider the case with

full correlation structure between all underlyings.

For any 0 ≤ t ≤ T , let

Z(t) = exp

[
−1

2

∫ t

0
(γ1(s))2ds−

∫ t

0
γ1(s)dW1(s)− 1

2

∫ t

0
(γ2(s))2ds

−
∫ t

0
γ2(s)dW2(s)− 1

2

∫ t

0
(γ3(s))2ds−

∫ t

0
γ3(s)dW3(s)

]
,

where γ1(t) = µ−r(t)√
ν(t)

, γ2(t) =
λ1
√
ν(t)

σ and γ3(t) =
λ2
√
r(t)

η are the market prices of risk

(risk premium) of Brownian processes {W1(t) : 0 ≤ t ≤ T}, {W2(t) : 0 ≤ t ≤ T} and

{W3(t) : 0 ≤ t ≤ T}, respectively. Here, λj (j = 1, 2) is the premium of volatility

risk as illustrated in [66], where Breeden’s consumption-based model is applied to yield
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PARTIAL CORRELATION

a volatility risk premium of the form λj(t, S(t), ν(t)) = λjν for the CIR square-root

process, see [14].

Similar to that in [24, 26, 62], we define three processes W̃1(t), W̃2(t) and W̃3(t)

such that 
dW̃1(t) = dW1(t) + γ1(t)dt, 0 ≤ t ≤ T,

dW̃2(t) = dW2(t) + γ2(t)dt, 0 ≤ t ≤ T,

dW̃3(t) = dW3(t) + γ3(t)dt, 0 ≤ t ≤ T.

According to Girsanov theorem, EP[Z(T )] = 1 and there exists a risk-neutral proba-

bility measure Q equivalent to the real world probability measure P such that Z(t) =
dQ
dP |F(t) for all 0 ≤ t ≤ T . In what follows, the conditional expectation at time t with

respect to Q is denoted by EQ[· | F(t)], where F(t) is the filtration up to time t. Under

Q, the system of equations (3.1) is transformed into the following form
dS(t) = r(t)S(t)dt+

√
ν(t)S(t)dW̃1(t), 0 ≤ t ≤ T,

dν(t) = κ∗(θ∗ − ν(t))dt+ σ
√
ν(t)dW̃2(t), 0 ≤ t ≤ T,

dr(t) = α∗(β∗ − r(t))dt+ η
√
r(t)dW̃3(t), 0 ≤ t ≤ T,

(3.2)

where κ∗ = κ + λ1, θ∗ = κθ
κ+λ1

, α∗ = α + λ2 and β∗ = αβ
α+λ2

are the risk-neutral

parameters, {W̃i(t) : 0 ≤ t ≤ T} (1 ≤ i ≤ 3) is a Brownian motion process under Q.

3.2 Pricing Variance Swaps under the Heston-CIR Model

with Partial Correlation

In this section, we will derive a semi-closed form solution for the delivery price of

variance swaps in a Heston-CIR hybrid model. The first part of this section consists of

our solution techniques which involve two steps of computation and change of measure.

For this purpose, a decomposition of the hybrid model will be demonstrated. The

second and third parts of this section deal with solutions for two steps of computation.

Our solutions extend the corresponding results in [119], where only stochastic volatility

in the pricing model was considered.

3.2.1 Outline of the Solution Approach

Here, we demonstrate our techniques for pricing discretely-sampled variance swaps.

Note that this solution outline is also applicable to the pricing case with full correlation
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in Chapter 4. However, for the case with full correlation, we will need to make some

adjustments in the part involving the change of measure. We will show how to handle

these changes in the next chapter.

Previously in Chapter 2, it has been defined that at maturity time T , a variance

swap rate can be evaluated as

V (T ) = (RV −K)× L, (3.3)

where K is the annualized delivery price or strike price for the variance swap and L is

the notional amount of the swap in dollars. In the risk-neutral world, the value of a

variance swap with stochastic interest rate at time t is the expected present value of

its future payoff with respect to Q, that is,

V (t) = EQ
[
e−

∫ T
t r(s)ds(RV −K)× L|F(t)

]
. (3.4)

This value should be zero at t = 0 since it is defined in the class of forward contracts.

The above expectation calculation involves the joint distribution of the interest rate

and the future payoff which is complicated to be evaluated. Thus, it would be more

convenient to use the bond price as the numeraire since the joint dynamics can be

diminished by taking advantage of the property P (T, T ) = 1.

Since the price of a T -maturity zero-coupon bond at t = 0 is given by

P (0, T ) = EQ
[
e−

∫ T
0 r(s)ds|F(0)

]
, (3.5)

we can determine the value of K by changing the risk-neutral measure Q to the T -

forward measure QT . It follows that

EQ
[
e−

∫ T
0 r(s)ds(RV −K)× L|F(0)

]
= P (0, T )ET [(RV −K)× L|F(0)], (3.6)

where ET [(·)|F(0)] denotes the expectation under QT with respect to F(0) at t = 0.

Thus, the fair delivery price or the strike price of the variance swap is defined as

K = ET [RV |F(0)], and we shall focus in finding this value for the rest of the chapter.

Under the T -forward measure, the valuation of the fair delivery price for a variance

swap is reduced to calculating the N expectations expressed in the form of

ET
[(

S(tj)− S(tj−1)

S(tj−1)

)2 ∣∣∣F(0)

]
(3.7)
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for t0 = 0, some fixed equal time period ∆t and N different tenors tj = j∆t (j =

1, · · · , N). It is important to note that we have to consider two cases j = 1 and j > 1

separately. For the case j = 1, we have tj−1 = 0, and S(tj−1) = S(0) which is a known

value at time t0 = 0, instead of an unknown value of S(tj−1) for any other cases with

j > 1. In the process of calculating this expectation, j, unless otherwise stated, is

regarded as a constant. Hence both tj and tj−1 are regarded as known constants.

Based on the tower property of conditional expectations, the calculation of expec-

tation (3.7) can be separated into two steps in the following form

ET
[(

S(tj)
S(tj−1) − 1

)2 ∣∣∣F(0)

]
= ET

[
ET
[(

S(tj)
S(tj−1) − 1

)2 ∣∣∣F(j − 1)

] ∣∣∣F(0)

]
. (3.8)

For notational convenience, we denote the term

ET
[(

S(tj)
S(tj−1) − 1

)2 ∣∣∣F(j − 1)

]
= Ej−1, (3.9)

meaning that in the first step, the computation involved is to find Ej−1, and in the

second step, we need to compute

ET [Ej−1|F(0)] . (3.10)

To this purpose, we implement the measure change from Q to the T -forward measure

QT . In order to obtain the new dynamics for our SDEs in (3.2) under QT , we need

to find the volatilities for both numeraires respectively (refer [15]). Note that the

numeraire under Q is N1,t = e
∫ t
0 r(s)ds and the numeraire under QT is N2,t = P (t, T ) =

A(t, T )e−B(t,T )r(t), where

A(t, T ) =

 2
(
e(α∗+

√
(α∗)2+2η2)

(T−t)
2

)√
(α∗)2 + 2η2

2
√

(α∗)2 + 2η2 +
(
α∗ +

√
(α∗)2 + 2η2

)(
e(T−t)

√
(α∗)2+2η2 − 1

)


2α∗β∗(t)

η2

,

and

B(t, T ) =
2
(
e(T−t)

√
(α∗)2+2η2 − 1

)
2
√

(α∗)2 + 2η2 +
(
α∗ +

√
(α∗)2 + 2η2

)(
e(T−t)

√
(α∗)2+2η2 − 1

) ,
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(see [15]). Differentiating lnN1,t yields

d lnN1,t = r(t)dt =

(∫ t

0
α∗(β∗ − r(s))ds

)
dt+

(∫ t

0
η
√
r(s)dW̃3(s)

)
dt,

whereas the differentiation of lnN2,t gives

d lnN2,t =

[
A′(t, T )

A(t, T )
−B′(t, T )r(t)−B(t, T )α∗(β∗(t)− r(t))

]
dt−B(t, T )η

√
r(t)dW̃3(t).

It can be observed that now we have obtained the volatilities for both numeraires. We

proceed by applying the Cholesky decomposition to our SDEs in (3.2), which can be

re-written as 
dS(t)
S(t)

dν(t)

dr(t)

 = µQdt+ Σ× C ×


dW ∗1 (t)

dW ∗2 (t)

dW ∗3 (t)

 , 0 ≤ t ≤ T, (3.11)

with

µQ =

 r(t)

κ∗(θ∗ − ν(t))

α∗(β∗ − r(t))

 , Σ =


√
ν(t) 0 0

0 σ
√
ν(t) 0

0 0 η
√
r(t)


and

C =

 1 0 0

ρ
√

1− ρ2 0

0 0 1


such that

CCᵀ =

 1 ρ 0

ρ 1 0

0 0 1


and dW ∗1 (t), dW ∗2 (t) and dW ∗3 (t) are mutually independent under Q satisfying

dW̃1(t)

dW̃2(t)

dW̃3(t)

 = C ×


dW ∗1 (t)

dW ∗2 (t)

dW ∗3 (t)

 , 0 ≤ t ≤ T.

Next, we show how to find µT which is the new drift for our SDEs under QT by utilizing
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the formula below

µT = µQ −
[
Σ× C × Cᵀ × ( ΣQ − ΣT )

]
, (3.12)

with ΣQ and ΣT given by

ΣQ =

 0

0

0

 and ΣT =

 0

0

−B(t, T )η
√
r(t)

 ,
along with Σ and CCᵀ as defined in (3.11). This results in the transformation of (3.11)

under Q to the following system under QT


dS(t)
S(t)

dν(t)

dr(t)

 =

 r(t)

κ∗(θ∗ − ν(t))

α∗β∗ − [α∗ +B(t, T )η2]r(t)

 dt+ Σ× C ×

 dW ∗1 (t)

dW ∗2 (t)

dW ∗3 (t)

 , 0 ≤ t ≤ T.
(3.13)

3.2.2 The First Step of Computation

As described in the previous subsection, our solution techniques involve finding so-

lution for two steps. We shall first calculate Ej−1 and consider a contingent claim

Uj(S(t), ν(t), r(t), t) over [tj−1, tj ], whose payoff at expiry tj is
(

S(tj)
S(tj−1) − 1

)2
. Apply-

ing the Feynman-Kac theorem, we can obtain a PDE for Uj over [tj−1, tj ] as

∂Uj
∂t

+
1

2
νS2∂

2Uj
∂S2

+
1

2
σ2ν

∂2Uj
∂ν2

+
1

2
η2r

∂2Uj
∂r2

+ ρσνS
∂2Uj
∂S∂ν

+ rS
∂Uj
∂S

+κ∗(θ∗ − ν)
∂Uj
∂ν

+
[
α∗β∗ − (α∗ +B(t, T )η2)r

] ∂Uj
∂r

= 0

(3.14)

with the terminal condition

Uj(S(tj), ν, r, tj) =

(
S(tj)

S(tj−1)
− 1

)2

. (3.15)

If the underlying asset follows the dynamic process (3.13), we can find the solution of

PDE (3.14) with condition (3.15) by the generalized Fourier transform method. Its

solution can be derived by the following general proposition.
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Proposition 3.1. If the underlying asset follows the dynamic process (3.13) and a

European-style derivative written on this underlying has a payoff function U(S, ν, r, T ) =

H(S) at expiry T , then the solution to the associated PDE system of the derivative value

∂U

∂t
+

1

2
νS2∂

2U

∂S2
+

1

2
σ2ν

∂2U

∂ν2
+

1

2
η2r

∂2U

∂r2
+ ρσνS

∂2U

∂S∂ν
+ rS

∂U

∂S

+κ∗(θ∗ − ν)
∂U

∂ν
+
[
α∗β∗ − (α∗ +B(t, T )η2)r

] ∂U
∂r

= 0,

U(S, ν, r, T ) = H(S)

(3.16)

can be expressed in semi-closed form as

U(x, ν, r, τ) = F−1
[
eC(ω,τ)+D(ω,τ)ν+E(ω,τ)rF[H(ex)]

]
, (3.17)

in terms of the generalized Fourier transform (see [88]), where x = lnS, τ = T − t,
i =
√
−1, ω is the Fourier transform variable,

D(ω, τ) =
a+ b

σ2

1− ebτ

1− gebτ
,

a = κ∗ − ρσωi, b =
√
a2 + σ2(ω2 + ωi), g =

a+ b

a− b
,

(3.18)

and E(ω, τ) along with C(ω, τ) satisfy the following system of ODEs
dE

dτ
=

1

2
η2E2 − (α∗ +B(T − τ, T )η2)E + ωi,

dC

dτ
= κ∗θ∗D + α∗β∗E,

(3.19)

with the initial conditions

C(ω, 0) = 0, E(ω, 0) = 0. (3.20)

We now present a proof of Proposition 3.1. Applying the following transform τ = T − t,

x = lnS,
(3.21)
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we can convert (3.16) to the following

∂U

∂τ
=

1

2
ν
∂2U

∂x2
+

1

2
σ2ν

∂2U

∂ν2
+

1

2
η2r

∂2U

∂r2
+ ρσν

∂2U

∂x∂ν
+

(
r − 1

2
ν

)
∂U

∂x

+κ∗ (θ∗ − ν)
∂U

∂ν
+
[
α∗β∗ − (α∗ +B(T − τ, T )η2)r

] ∂U
∂r

,

U(x, ν, r, 0) = H(ex).

(3.22)

Performing the Fourier transform to (3.22) with respect to the variable x, we obtain

the following equation for Ũ(ω, ν, r, τ) = F[U(x, ν, r, τ)]

∂Ũ

∂τ
=

1

2
σ2ν

∂2Ũ

∂ν2
+

1

2
η2r

∂2Ũ

∂r2
+ [κ∗θ∗ + (ρσωj − κ∗)ν]

∂Ũ

∂ν

+
[
α∗β∗ − (α∗ +B(T − τ, T )η2)r

] ∂Ũ
∂r

+

[
−1

2
(ωi+ ω2)ν + rωi

]
Ũ ,

Ũ(ω, ν, r, 0) = F[H(ex)].

(3.23)

Following the solution procedure of Heston in [66], the solution to the above PDE can

be assumed to be of the following form

Ũ(ω, ν, r, τ) = eC(ω,τ)+D(ω,τ)ν+E(ω,τ)rŨ(ω, ν, r, 0). (3.24)

We can then substitute (3.24) into (3.23) to reduce it to the following system of three

ODEs 

dD

dτ
=

1

2
σ2D2 + (ρωσi− κ∗)D − 1

2

(
ω2 + ωi

)
,

dE

dτ
=

1

2
η2E2 − (α∗ +B(T − τ, T )η2)E + ωi,

dC

dτ
= κ∗θ∗D + α∗β∗E,

(3.25)

with the initial conditions

C(ω, 0) = 0, D(ω, 0) = 0, E(ω, 0) = 0. (3.26)

Based on the ODEs, only the function D can be solved analytically as

D(τ) =
a+ b

σ2

1− ebτ

1− gebτ
, a = κ∗ − ρσωi,

b =
√
a2 + σ2(ω2 + ωi), g =

a+ b

a− b
,
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whereas numerical integration is used to obtain the solutions of the functions E and

C using standard mathematical software package, e.g., MATLAB. We list out the

MATLAB codes used to perform this integration in the Appendix of this chapter.

It can be observed that the Fourier transform variable ω appears as a parameter in

function C, D and E. After performing the inverse Fourier transform, we obtain the

solution as in the original form of our PDE as follows

U(x, ν, r, τ) = F−1
[
Ũ(ω, ν, r, τ)

]
= F−1

[
eC(ω,τ)+D(ω,τ)ν+E(ω,τ)rF[H(ex)]

]
.

(3.27)

Note that Proposition 3.1 is applicable to most derivatives whose payoffs depend on

spot price S in the framework of the Heston-CIR hybrid model under our assumptions.

However, in some cases, it is hard to handle the general Fourier transform. Next,

we apply the terminal condition H(S(tj)) =
(

S(tj)
S(tj−1) − 1

)2
to Proposition 3.1, the

Fourier inverse transform could be explicitly worked out and hence the solution to

(3.14) can be written in an elegant form. For convenience, define the variable I(t) =∫ t
0 δ(tj−1− τ)S(τ)dτ , where δ(·) is the Dirac delta function. Note that for t ≥ tj−1, the

variable I(t) is equal to the constant S(tj−1). Thus for [tj−1, tj ], we can simplify the

notation I(t) as I. Denoting x = lnS, we perform the generalized Fourier transform to

the payoff function H(ex) with respect to x and derive

F

[(
ex

I
− 1

)2
]

= 2π

[
δ−2i(ω)

I2
− 2

δ−i(ω)

I
+ δ0(ω)

]
. (3.28)

Thus, the solution to (3.14) is given by

Uj(S, ν, r, τ) = F−1

[
eC(ω,τ)+D(ω,τ)ν+E(ω,τ)r2π

[
δ−2i(ω)

I2
− 2

δ−i(ω)

I
+ δ0(ω)

]]
=

∫ ∞
−∞

eC(ω,τ)+D(ω,τ)ν+E(ω,τ)r

[
δ−2i(ω)

I2
− 2

δ−i(ω)

I
+ δ0(ω)

]
exωidω

=
e2x

I2
eC̃(τ)+D̃(τ)ν+Ẽ(τ)r − 2ex

I
eĈ(τ)+Ê(τ)r + 1,

(3.29)

where tj−1 ≤ t ≤ tj and τ = tj − t. C̃(τ), D̃(τ) and Ẽ(τ) are the notations C(−2i, τ),

D(−2i, τ) and E(−2i, τ) respectively, whereas Ĉ(τ) and Ê(τ) are equal to C(−i, τ)

and E(−i, τ) respectively.

Finally, let τ = ∆t in Uj(S, ν, r, τ), and by noting that lnS(tj−1) = ln I(t) in (3.29),
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we obtain

Ej−1 = eC̃(∆t)+D̃(∆t)ν(tj−1)+Ẽ(∆t)r(tj−1) − 2eĈ(∆t)+Ê(∆t)r(tj−1) + 1. (3.30)

3.2.3 The Second Step of Computation

In the previous subsection, we had obtained the solution for the first computation

step. In this subsection, we shall proceed by finding the expectation of this solution, as

defined in our solution outline. In particular, we need to calculate ET [Ej−1|F(0)] and

K.

Since Ej−1 is an exponential function of the stochastic variables ν(tj−1) and r(tj−1)

in affine form, it is possible for us to carry out the expectation with a semi-closed form

solution, by using the characteristic functions of ν(tj−1) and r(tj−1). We assume that

ν(tj−1) and r(tj−1) are independent. Thus,

ET [Ej−1|F(0)] = eC̃(∆t) · ET
[
eD̃(∆t)ν(tj−1)|F(0)

]
· ET

[
eẼ(∆t)r(tj−1)|F(0)

]
−2eĈ(∆t) · ET

[
eÊ(∆t)r(tj−1)|F(0)

]
+ 1.

(3.31)

If we put

h(φ, ν, τ) = ET
[
eφν(t+τ)|F(t)

]
(3.32)

and

f(φ, r, τ) = ET
[
eφr(t+τ)|F(t)

]
, (3.33)

then we can express ET [Ej−1] as follows

ET [Ej−1|F(0)] = eC̃(∆t) · h(D̃(∆t), ν(0), tj−1) · f(Ẽ(∆t), r(0), tj−1)

−2eĈ(∆t) · f(Ê(∆t), r(0), tj−1) + 1.
(3.34)

Here, we show how to derive expressions for f and h by solving the corresponding

PDEs. First, we define

f(φ, r, τ) = ET
[
eφr(t+τ)|F(t)

]
. (3.35)

Given that the stochastic process of r(t) follows the equation in (3.13) under the T -

forward probability measure QT , applying the Feynman-Kac formula, we can derive
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that f(φ, r, τ) satisfies the following PDE
∂f

∂τ
=

1

2
η2r

∂2f

∂r2
+
[
α∗β∗ − (α∗ +B(tj−1 − τ, T )η2)r

] ∂f
∂r
,

f(φ, r, τ = 0) = eφr,

(3.36)

whose solution has the form f(φ, r, τ) = eF (φ,τ)+H(φ,τ)r. Substituting this function into

(3.36), we obtain the following system of ODEs
dH

dτ
=

1

2
η2H2 − (α∗ +B(tj−1 − τ, T )η2)H,

dF

dτ
= α∗β∗H,

(3.37)

with the initial conditions

H(φ, 0) = φ, F (φ, 0) = 0. (3.38)

The solution to this system is retrieved via numerical integration in the MATLAB

software, and the codes used are displayed in Appendix. Next, we define the function

h(φ, ν, τ) = ET
[
eφν(t+τ)|F(t)

]
in order to derive an expression of ET

[
eD̃(∆t)ν(tj−1)|F(0)

]
. Then, h satisfies the follow-

ing PDE 
∂h

∂τ
=

1

2
σ2ν

∂2h

∂ν2
+ κ∗(θ∗ − ν)

∂h

∂ν
,

h(φ, ν, τ = 0) = eφν ,

whose solution has the form h(φ, ν, τ) = eL(φ,τ)+M(φ,τ)ν . We will later obtain the

following system of ODEs 
dM

dτ
=

1

2
σ2M2 − κ∗M,

dL

dτ
= κ∗θ∗M,

with initial conditions M(φ, 0) = φ and L(φ, 0) = 0. We obtain the solution to the
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above ODEs as 
M(φ, τ) =

φe−κ
∗τ

1− σ2φ(1− e−κ∗τ )

2κ∗

,

L(φ, τ) =
−2κ∗θ∗

σ2
ln

(
1− σ2φ(1− e−κ∗τ )

2κ∗

)
.

3.2.4 Delivery Price of Variance Swaps

In the previous two subsections, we demonstrate our solution techniques for pricing

variance swaps by separating them into two computation steps. Now, by referring back

to the formula of RV as given in (2.24), we have the fair delivery price of variance swaps

as

K = ET [RV |F(0)] =
1002

T

N∑
j=1

ET [Ej−1|F(0)]. (3.39)

Using (3.34), the summation in (3.39) for the whole period of j = 1 to j = N can now

be carried out all the way except for the very first period with j = 1. We need to treat

the case j = 1, separately, because in this case we have tj−1 = 0 and S(tj−1) = S(0) is

a known value, instead of an unknown value of S(tj−1) for any other cases with j > 1.

For the case j = 1, we put

G(ν(0), r(0)) = ET
[(

S(t1)

S(0)
− 1

)2 ∣∣∣F(0)

]
, (3.40)

and for any other cases with j > 1, we put

Gj(ν(0), r(0)) = ET [Ej−1|F(0)].

Then, G(ν(0), r(0)) can be derived from Proposition 3.1 directly. Finally, we obtain

the fair delivery price of a variance swap as

K = ET [RV |F(0)] =
1002

T

G(ν(0), r(0)) +

N∑
j=2

Gj(ν(0), r(0))

 . (3.41)

This formula is obtained by solving the associated PDEs in two steps. Since we have

managed to express the solution of the associated PDEs in both steps, we are able to

write the fair delivery price of a variance swap with discretely-sampled realized variance

56



3.3. NUMERICAL EXAMPLES AND SIMULATION

defined in its payoff in a simple and semi-closed form.

3.3 Numerical Examples and Simulation

In this section, we perform a numerical analysis for pricing variance swaps under our

model and utilize our semi-closed form pricing formula. This involves comparison of

our formula with the Monte Carlo simulation and the continuously-sampled variance

swaps model. In addition, we also investigate the effects of stochastic interest rate in

our pricing formulation.

We use the parameters in Table 3.1, unless otherwise stated, in all our numerical

examples. This set of parameters for the hybrid Heston-CIR model was also adopted

by [55].

Table 3.1: Model parameters of the Heston-CIR hybrid model

Parameters S0 ρ V0 θ∗ κ∗ σ r0 α∗ β∗ η T

Values 1 -0.40 (22.36%)2 (22.36%)2 2 0.1 5% 1.2 5% 0.01 1

3.3.1 Monte Carlo Simulation

We firstly have implemented Monte Carlo (MC) simulations to obtain numerical results

as references for comparisons. The stochastic processes of the model are discretized by

using the simple Euler-Milstein scheme.

Figure 3.1 shows the comparison among the numerical results obtained from our

semi-closed form formula (3.41), those from Monte Carlo simulations, and the numer-

ical calculation of the continuously-sampled realized variance. Model parameters are

presented in Table 3.1, and the time to maturity is 1 year. It is clearly seen that the

results from our solution perfectly match the results from the MC simulations which

serve as benchmark values. For example, for the weekly-sampled variance swaps (the

sampling frequency is 52 in the figure), the relative difference between numerical results

obtained from formula (3.41) and the MC simulations is less than 0.05% already, when

the number of paths reaches 200,000 in MC simulations. Such a relative difference is

further reduced when the number of paths is increased; demonstrating the convergence

of the MC simulations towards our semi-closed form solution and hence to a certain

extent providing a verification of our solution.
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Figure 3.1: Comparison of our formula for variance swaps with MC simulation in
different sampling frequency.
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Figure 3.2: Values of variance swaps with different β∗ in the Heston-CIR hybrid model.
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Figure 3.3: Values of variance swaps with different η in the Heston-CIR hybrid model.
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3.3.2 Effect of Stochastic Interest Rate

To test the effects of the stochastic interest rate, we now calculate the fair strike values

of variance swaps with stochastic interest rate and deterministic interest rate. So we

implement the semi-analytical pricing formula (3.41) with the parameters tabulated in

Table 3.1 (unless otherwise stated) to obtain numerical values of variance swaps with

stochastic interest rate. For the variance swaps with constant deterministic interest

rate, we implement the formula in [119]. Of course, since the semi-closed form pricing

formula (3.41) is derived based on a more general Heston-CIR hybrid model, we can

obtain values of variance swaps with constant deterministic interest rate by setting

α∗ = 0, β∗ = 0 and η = 0. The time to maturity in all the numerical examples below

is T = 1.

Figure 3.2 depicts the fair strike values of variance swaps in different sampling

frequencies, ranging from 15 sampling times in total per year to 160 times per year.

Model parameters are presented in Table 3.1, except for β∗ that can take different values

as indicated in the figure. Time to maturity is 1 year. We notice that with the increase
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of sampling frequency, the value of a discrete variance swap decreases, converging to

the continuous sampling counterpart. This is consistent with the convergence pattern

of constant interest rate as shown in [16, 119]. We can also observe that, when the

spot interest rate (r0 = 5%) is equal to the long-term interest rate (β∗ in our notation),

the value of a variance swap with stochastic interest rate coincides with the value in

the case of constant interest rate which remains unchanging as 5%. This implies that

the parameters α∗ and η have little effect on the values of variance swaps. To confirm

this, we also examine the pricing behaviour of variance swaps with respect to η which

is displayed in Figure 3.3. Increasing values of η would lead to increasing prices of a

variance swap. There exists some slight difference for small sampling frequencies, but

the difference grows larger as the number of sampling frequencies increases. However,

the same convergence pattern towards the continuous sampling counterpart can also

be seen for these different η parameters.

Finally, we can see that, when β∗ increases, the value of a variance swap increases

correspondingly. This implies that the interest rate can impact and change the value

of a variance swap, ignoring the effect of interest rate will result in mispricing. Since

interest rate changes and is modeled by a stochastic process (such as a CIR process),

working out the semi-closed form pricing formula for discretely-sampled variance swaps

in the Heston-CIR hybrid model can help pricing variance swaps more accurately.

3.4 Appendix

As described in Subsection 3.2.2, we use MATLAB to perform the numerical integration

for the ODEs of functions E and C. Here, we exhibit the codes used during the

implementation process. We start with the ODE of function Ẽ(τ) which represents

E(−2i, τ) by writing the codes in the file named myode ewidetilde.m as follows

function dydt = myode ewidetilde(t,y,Bt,B)

B = interp1(Bt,B,t);

[ K S nu0 rho rho sqvr rho xr rho vr theta star lambda 1 lambda 2 sigma

kapa T t alpha beta star r0 eta]=InputPara 2( );

kapa star= kapa + lambda 1; alpha star = alpha + lambda 2;

alpha star = 1.2;

beta star = 0.05;
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dydt = ((1/2).* eta.ˆ2 .* y.ˆ2) -((alpha star + B.*eta.ˆ2).*y) +2;

Next, we embed this file under a new file named call ewidetilde.m to obtain the solution

of numerical integration of Ẽ(τ)

function [E tilde] = call ewidetilde( t, T, delT, r0, nu0, rho, rho sqvr,

rho xr, rho vr, sigma, alpha star, kapa star, lambda 1, lambda 2, beta star,

eta, theta star)

[ K S nu0 rho rho sqvr rho xr rho vr theta star lambda 1 lambda 2 sigma

kapa T t alpha beta star r0 eta]=InputPara 2( );

kapa star= kapa + lambda 1; alpha star = alpha + lambda 2;

alpha star = 1.2;

beta star = 0.05;

eta = 0.01;

r0 = 0.05;

delTend=delT;

delT=0:delTend/100:delTend;

b function = B function( t, T, delT, r0, nu0, rho, rho sqvr, rho xr, rho vr,

sigma, alpha star, kapa star, lambda 1, lambda 2, beta star, eta, theta star);

B=b function;

Bt=delT;

Tspan = delT; % Solve from t=1 to t=5

IC = 0; % y(t=0) = 1

[Tn Y] = ode45(@(t,y) myode ewidetilde(t,y,Bt,B),Tspan,IC); % Solve ODE

E tilde=Y;

Following the same steps as above,we can write the codes for the function Ê(τ) by

substituting ω = −i into its ODE in (3.25) to obtain its numerical integration solution.

Moving on to function C, we have to find the solutions for C̃(τ) and Ĉ(τ) which

are the notations for C(−2i, τ) and C(−i, τ) respectively. The codes are listed below

function dydt = myode cwidetilde(t,y,Dt,D,Et,E)

D = interp1(Dt,D,t); % Interpolate the data set (gt,g) at time t

E = interp1(Et,E,t); % Interpolate the data set (gt,g) at time t
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[ K S nu0 rho theta star lambda 1 lambda 2 sigma kapa T t alpha beta star

r0 eta]=InputPara 2( );

kapa star= kapa + lambda 1; alpha star = alpha + lambda 2;

alpha star = 1.2;

beta star = 0.05;

eta = 0.01;

r0 = 0.05 ;

T=1;

dydt = kapa star*theta star*D+alpha star*beta star*E;

We can later obtain the solution for C̃(τ) using the following codes

function [C tilde] = call cwidetilde( t, T, delT, r0, nu0, rho, sigma,

alpha star, kapa star, lambda 1, lambda 2, beta star, eta, theta star)

[ K S nu0 rho theta star lambda 1 lambda 2 sigma kapa T t alpha beta star

r0 eta]=InputPara 2( );

kapa star= kapa + lambda 1; alpha star = alpha + lambda 2;

alpha star = 1.2;

beta star = 0.05;

eta = 0.01;

r0 = 0.05 ;

T=1;

delTend=delT;

delT=0:delTend/100:delTend;

d wildetilde = D widetilde( t, T, delT, r0, nu0, rho, sigma,

alpha star, kapa star, lambda 1, lambda 2, beta star, eta,

theta star);

e wildetilde = call ewidetilde( t, T, delTend, r0, nu0, rho, sigma,

alpha star, kapa star, lambda 1, lambda 2, beta star, eta,

theta star);

D=d wildetilde;

Dt=delT;

Et =delT;

E = e wildetilde;
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Tspan = delT; % Solve from t=1 to t=5

IC = 0; % y(t=0) = 1

[Tn Y] = ode45(@(t,y) myode cwidetilde(t,y,Dt,D,Et,E),Tspan,IC); % Solve ODE

C tilde=Y;

The solution for Ĉ(τ) is attained by replacing the functions d wildetilde and e wildetilde

in the codes above with e widehat, then following the same manner as outlined.

Finally, we proceed in finding the solutions of functions H and F as defined in (3.37)

under Subsection 3.2.3. Note that we have to deal with two functions since the variable

φ in f(φ, r, τ) consists of Ẽ(∆) and Ê(∆). The codes for the ODE of H(Ẽ(∆), τ) can

be written as

function dydt = myode H function ewidetilde(t,y,Bt,B)

% Interpolate the data set (gt,g) at time t

B = interp1(Bt,B,t);

[ K S nu0 rho theta star lambda 1 lambda 2 sigma kapa T t alpha beta star

r0 eta]=InputPara 2( );

kapa star= kapa + lambda 1; alpha star = alpha + lambda 2;

alpha star = 1.2;

beta star = 0.05;

eta = 0.01;

r0 = 0.05 ;

T=1;

dydt = ((1/2).* eta.ˆ2 .* y.ˆ2) -((alpha star + B.*eta.ˆ2).*y);

which is later solved numerically by

function [H func] = call H function ewidetilde( t, T, delT, r0, nu0, rho,

sigma, alpha star, kapa star, lambda 1, lambda 2, beta star, eta,

theta star, e wildetilde)

[ K S nu0 rho theta star lambda 1 lambda 2 sigma kapa T t alpha beta star

r0 eta]=InputPara 2( );

kapa star= kapa + lambda 1; alpha star = alpha + lambda 2;

alpha star = 1.2;

beta star = 0.05;
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eta = 0.01;

r0 = 0.05 ;

T=1;

tjMinus1=delT;

delTend=delT;

delT=0:delTend/1000:delTend;

b function = B function( t, T, T-(tjMinus1-delT), r0, nu0, rho, sigma,

alpha star, kapa star, lambda 1, lambda 2, beta star, eta, theta star);

B=b function;

Bt =delT;

Tspan = delT; % Solve from t=1 to t=5

IC = e wildetilde; % y(t=0) = 1

[Tn Y] = ode45(@(t,y) myode H function ewidetilde(t,y,Bt,B),Tspan,IC);

H func=Y;

One can later find the numerical integration ofH(Ê(∆), τ) by substituting e widehat

into the initial condition denoted as IC in the codes above. Once the solutions for

functions H(Ẽ(∆), τ) and H(Ê(∆), τ) are obtained, we can find the solutions for

F (Ẽ(∆), τ) and F (Ê(∆), τ) utilizing the same procedures as outlined for finding C̃(τ)

and Ĉ(τ).
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Chapter 4

Pricing Variance Swaps under

Stochastic Factors : Full

Correlation Case

The evolving number of complex hybrid models featuring various underlyings in the

financial world nowadays brings attention to the correlation issue in the models. This

issue can be directly linked to the highlighted importance of imposing correlations,

either partially or fully, in the literature. In this chapter, the hybrid model of stochastic

volatility and stochastic interest rate for pricing variance swaps given in Chapter 3 is

further extended. First, an extension of the model in Subsection 3.2.1 to a pricing model

with full correlation among the asset, interest rate as well as the volatility is established

in Section 4.1. In Section 4.2, we approach this pricing problem via approximations

since this model is incompliant with the analytical tractability property. We first

determine the approximations for the non-affine terms, then solve the corresponding

equations using approximations of normally distributed random variables. Section 4.3

presents some numerical results, along with the study of the correlation impacts on the

delivery price of a variance swap.

4.1 The Heston-CIR Model with Full Correlation

In this section, we study the problem of pricing variance swaps under the Heston-CIR

Model with full correlation. We will deal with an extension of the model in Subsection

3.2.1 to the case where full correlation structure is involved.

Assume that the correlations involved in model (3.1) are given by (dW1(t), dW2(t)) =
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ρ12dt = ρ21dt, (dW1(t), dW3(t)) = ρ13dt = ρ31dt and (dW2(t), dW3(t)) = ρ23dt = ρ32dt,

where 0 ≤ t ≤ T and −1 < ρij < 1 for all i, j = 1, 2, 3 which are constants. The system

in (3.11) under the risk-neutral measure, Q can be adjusted as follows


dS(t)
S(t)

dν(t)

dr(t)

 = µQdt+ Σ× C ×


dW ∗1 (t)

dW ∗2 (t)

dW ∗3 (t)

 , 0 ≤ t ≤ T, (4.1)

where

µQ =

 r(t)

κ∗(θ∗ − ν(t))

α∗(β∗ − r(t))

 , Σ =


√
ν(t) 0 0

0 σ
√
ν(t) 0

0 0 η
√
r(t)


and

C =


1 0 0

ρ12

√
1− ρ2

12 0

ρ13
ρ23 − ρ13ρ12√

1− ρ2
12

√√√√1− ρ2
13 −

(
ρ23 − ρ13ρ12√

1− ρ2
12

)2


such that

CCᵀ =

 1 ρ12 ρ13

ρ21 1 ρ23

ρ31 ρ32 1

 .
Here, {W̃1(t) : 0 ≤ t ≤ T}, {W̃2(t) : 0 ≤ t ≤ T} and {W̃3(t) : 0 ≤ t ≤ T} are

three Brownian motions under Q such that dW ∗1 (t), dW ∗2 (t) and dW ∗3 (t) are mutually

independent and satisfy the following relation
dW̃1(t)

dW̃2(t)

dW̃3(t)

 = C ×


dW ∗1 (t)

dW ∗2 (t)

dW ∗3 (t)

 , 0 ≤ t ≤ T.

Following the techniques for the change of measure same as those in Subsection

3.2.1, we demonstrate how to find µT which is the new drift for our SDEs under QT by

utilizing the formula below as defined in (3.12)

µT = µQ −
[
Σ× C × Cᵀ × ( ΣQ − ΣT )

]
,
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with ΣQ and ΣT given by

ΣQ =

 0

0

0

 and ΣT =

 0

0

−B(t, T )η
√
r(t)

 ,
along with Σ and CCᵀ as defined in (4.1). This gives us the new dynamics for (4.1)

under the forward measure, QT for 0 ≤ t ≤ T as follows
dS(t)
S(t)

dν(t)

dr(t)

 =

 r(t)− ρ13B(t, T )η
√
r(t)

√
ν(t)

κ∗(θ∗ − ν(t))− ρ23σB(t, T )η
√
r(t)

√
ν(t)

α∗β∗ − [α∗ +B(t, T )η2]r(t)

 dt+ Σ×C ×

 dW ∗1 (t)

dW ∗2 (t)

dW ∗3 (t)

 .
(4.2)

4.2 Solution Techniques for Pricing Variance Swaps with

Full Correlation

As described in Subsection 3.2.1, our solution outline involves finding solution for two

computation steps. In this section, we exhibit our approach in obtaining a semi-closed

form approximation pricing formula for variance swaps with full correlation structure.

The first part of this section presents an extension of the method given in Subsection

3.2.2 to the case where full correlation is involved. Here, we demonstrate how to deal

with the deterministic approximation proposed in [55]. The second part of this section

presents the solution for the second step which utilizes approximation properties of

normally distributed random variables.

4.2.1 Solution for the First Step

As illustrated in (3.9), we shall focus on a contingent claim Uj(S(t), ν(t), r(t), t), whose

payoff at expiry tj is
(

S(tj)
S(tj−1) − 1

)2
. Applying standard techniques in the general asset
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valuation theory, the PDE for Uj over [tj−1, tj ] can be described as

∂Uj
∂t

+
1

2
νS2∂

2Uj
∂S2

+
1

2
σ2ν

∂2Uj
∂ν2

+
1

2
η2r

∂2Uj
∂r2

+ ρ12σνS
∂2Uj
∂S∂ν

+
[
rS − ρ13B(t, T )η

√
r(t)

√
ν(t)S

] ∂Uj
∂S

+
[
κ∗(θ∗ − ν)− ρ23σB(t, T )η

√
r(t)

√
ν(t)

] ∂Uj
∂ν

+
[
α∗β∗ − (α∗ +B(t, T )η2)r

] ∂Uj
∂r

+ ρ23ση
√
ν(t)

√
r(t)

∂2Uj
∂ν∂r

+ ρ13η
√
ν(t)

√
r(t)S

∂2Uj
∂S∂r

= 0

(4.3)

with the terminal condition

Uj(S(tj), ν, r, tj) =

(
S(tj)

S(tj−1)
− 1

)2

. (4.4)

Proposition 4.1. If the underlying asset follows the dynamic process (4.2) and a

European-style derivative written on this asset has a payoff function U(S, ν, r, T ) =

H(S) at expiry T , then the solution of the associated PDE system of the derivative

value

∂U

∂t
+

1

2
νS2∂

2U

∂S2
+

1

2
σ2ν

∂2U

∂ν2
+

1

2
η2r

∂2U

∂r2
+ ρ12σνS

∂2U

∂S∂ν

+
[
rS − ρ13B(t, T )η

√
r(t)

√
ν(t)S

] ∂U
∂S

+
[
κ∗(θ∗ − ν)− ρ23σB(t, T )η

√
r(t)

√
ν(t)

] ∂U
∂ν

+
[
α∗β∗ − (α∗ +B(t, T )η2)r

] ∂U
∂r

+ ρ23ση
√
ν(t)

√
r(t)

∂2U

∂ν∂r
+ ρ13η

√
ν(t)

√
r(t)S

∂2U

∂S∂r

= 0

U(S, ν, r, T ) = H(S),

(4.5)

can be expressed in semi-closed form as

U(x, ν, r, t) = F−1
[
eC(ω,T−t)+D(ω,T−t)ν+E(ω,T−t)rF[H(ex)]

]
, (4.6)

using generalized Fourier transform method [88], where x = lnS, i =
√
−1, τ = T − t,
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ω is the Fourier transform variable,
D(ω, τ) =

a+ b

σ2

1− ebτ

1− gebτ
,

a = κ∗ − ρ12σωi, b =
√
a2 + σ2(ω2 + ωi), g =

a+ b

a− b
,

(4.7)

and E(ω, τ) along with C(ω, τ) satisfy the following ODEs

dE

dτ
=

1

2
η2E2 − (α∗ +B(T − τ, T )η2)E + ωi,

dC

dτ
= κ∗θ∗D + α∗β∗E − ρ13ηET (

√
ν(T − τ)

√
r(T − τ))ωiB(T − τ, T )

+ρ13ηET (
√
ν(T − τ)

√
r(T − τ))ωiE

−ρ23σηET (
√
ν(T − τ)

√
r(T − τ))DB(T − τ, T )

+ρ23ησET (
√
ν(T − τ)

√
r(T − τ))DE,

(4.8)

with the initial conditions

C(ω, 0) = 0, E(ω, 0) = 0. (4.9)

The derivation leading to the solution in Proposition 4.1 can be referred from the

proof below. We denote τ = T − t and x = lnS, then the PDE system (4.3) is

transformed into the following

∂U

∂τ
=

1

2
ν
∂2U

∂x2
+

1

2
σ2ν

∂2U

∂ν2
+

1

2
η2r

∂2U

∂r2
+ ρ12σν

∂2U

∂x∂ν

+

[
r − ρ13B(T − τ, T )η

√
ν(T − τ)

√
r(T − τ)− 1

2
ν

]
∂U

∂x

+
[
κ∗ (θ∗ − ν)− ρ23σB(T − τ, T )η

√
ν(T − τ)

√
r(T − τ)

] ∂U
∂ν

+
[
α∗β∗ − (α∗ +B(T − τ, T )η2)r

] ∂U
∂r

+ ρ13η
√
ν(T − τ)

√
r(T − τ)

∂2U

∂x∂r

+ρ23ση
√
ν(T − τ)

√
r(T − τ)

∂2U

∂ν∂r
.

U(x, ν, r, 0) = H(ex).

(4.10)

Following the technique of Fourier transform same as that in (3.23), the PDE system
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is converted to the following

∂Ũ

∂τ
=

1

2
σ2ν

∂2Ũ

∂ν2
+

1

2
η2r

∂2Ũ

∂r2

+
[
κ∗θ∗ + (ρ12σωi− κ∗)ν − ρ23σB(T − τ, T )η

√
ν(T − τ)

√
r(T − τ)

] ∂Ũ
∂ν

+
[
α∗β∗ − (α∗ +B(T − τ, T )η2)r + ρ13η

√
ν(T − τ)

√
r(T − τ)ωi

] ∂Ũ
∂r

+ρ23ση
√
ν(T − τ)

√
r(T − τ)

∂2Ũ

∂ν∂r

+

[
−1

2
(ωi+ ω2)ν + rωi− ρ13B(T − τ, T )η

√
ν(T − τ)

√
r(T − τ)ωi

]
Ũ ,

Ũ(ω, ν, r, 0) = F[H(ex)],

(4.11)

where i =
√
−1 and ω is the Fourier transform variable.

As seen above, the partial differential equation contains the non-affine term of√
ν(t)

√
r(t), where t = T − τ for writing convenience. Note that standard techniques

to find characteristic functions as in [31] could not be applied in this case, thus we need

to find an approximation for this non-affine term. Following an approach employed in

[55], the expectation ET (
√
ν(t)) with the CIR-type process can be approximated by

ET (
√
ν(t)) ≈

√
q1(t)(ϕ1(t)− 1) + q1(t)l1 +

q1(t)l1
2(l1 + ϕ1(t))

=: Λ1(t), (4.12)

with

q1(t) =
σ2(1− e−κ∗t)

4κ∗
, l1 =

4κ∗θ∗

σ2
, ϕ1(t) =

4κ∗ν(0)e−κ
∗t

σ2(1− e−κ∗t)
. (4.13)

This first-order approximation is obtained using delta method, where a function f(X)

can be approximated by a first-order Taylor expansion at ET (X), for a given random

variable X and its first two moments exist. It is assumed that f and its first-order

derivative f ′ are sufficiently smooth.

In order to avoid further complication during derivation of the characteristic func-

tion and present a more efficient computation, the above approximation is further

simplified and given by

ET (
√
ν(t)) ≈ m1 + p1e

−Q1t =: Λ̃1(t), (4.14)
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where

m1 =

√
θ∗ − σ2

8κ∗
, p1 =

√
ν(0)−m1, Q1 = − ln[p−1

1 (Λ1(1)−m1)]. (4.15)

The same procedure can be applied to find the expectation of ET (
√
r(t)) with the

square-root type of stochastic process as follows

ET (
√
r(t)) ≈

√
q2(t)(ϕ2(t)− 1) + q2(t)l2 +

q2(t)l2
2(l2 + ϕ2(t))

=: Λ2(t), (4.16)

with

q2(t) =
η2(1− e−α∗t)

4α∗
, l2 =

4α∗β∗

η2
, ϕ2(t) =

4α∗r(0)e−α
∗t

η2(1− e−α∗t)
, (4.17)

and

ET (
√
r(t)) ≈ m2 + p2e

−Q2t =: Λ̃2(t), (4.18)

where

m2 =

√
β∗ − η2

8α∗
, p2 =

√
r(0)−m2, Q2 = − ln[p−1

2 (Λ2(1)−m2)]. (4.19)

Utilizing the above expectations of both stochastic processes, we are able to obtain

ET (
√
ν(t)

√
r(t)) numerically. Here we present the derivation of ET (

√
ν(t)

√
r(t)) by

employing properties of dependent random variables and instantaneous correlation.

Based on the dependence property between the variables
√
ν(t) and

√
r(t), we can

obtain the following

ET (
√
ν(t)

√
r(t)) = CovT (

√
ν(t),

√
r(t)) + ET (

√
ν(t))ET (

√
r(t)). (4.20)

In order to figure out CovT (
√
ν(t),

√
r(t)), we utilize the definition of instantaneous

correlations

ρ√
ν(t)
√
r(t)

=
CovT (

√
ν(t),

√
r(t))√

VarT (
√
ν(t))VarT (

√
r(t))

. (4.21)

Substitution of the following

VarT (
√
ν(t)) ≈ VarT (ν(t))

4ET (ν(t))
≈
[
q1(t)− q1(t)l1

2(l1 + ϕ1(t))

]
, (4.22)
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and

VarT (
√
r(t)) ≈ VarT (r(t))

4ET (r(t))
≈
[
q2(t)− q2(t)l2

2(l2 + ϕ2(t))

]
(4.23)

into (4.21) gives us

CovT (
√
ν(t),

√
r(t)) ≈ ρ√

ν(t)
√
r(t)

(√(
q1(t)− q1(t)l1

2(l1 + ϕ1(t))

)(
q2(t)− q2(t)l2

2(l2 + ϕ2(t))

))
.

(4.24)

Finally, combining (4.14), (4.18), and (4.24), an approximation of ET (
√
ν(t)

√
r(t)) is

given by

ET (
√
ν(t)

√
r(t)) ≈ ρ√

ν(t)
√
r(t)

(√(
q1(t)− q1(t)l1

2(l1 + ϕ1(t))

)(
q2(t)− q2(t)l2

2(l2 + ϕ2(t))

))
+(m1 + p1e

−Q1t)(m2 + p2e
−Q2t).

(4.25)

Now that we have obtained the expressions for ET (
√
ν(t)

√
r(t)) in (4.11), we can

adopt Heston’s assumption in [66] as follows

Ũ(ω, ν, r, τ) = eC(ω,τ)+D(ω,τ)ν+E(ω,τ)rŨ(ω, ν, r, 0). (4.26)

By substituting (4.26) into (4.11), we can obtain the following ODE

dD

dτ
=

1

2
σ2D2 + (ρ12ωσi− κ∗)D −

1

2

(
ω2 + ωi

)
, (4.27)

with the initial condition

D(ω, 0) = 0, (4.28)

and the other two ODEs with initial conditions as described in (4.8) and (4.9).

Note that only the function D has analytical form as

D(τ) =
a+ b

σ2

1− ebτ

1− gebτ
, a = κ∗ − ρ12σωi,

b =
√
a2 + σ2(ω2 + ωi), g =

a+ b

a− b
.

The solutions of the functions E and C can be found by numerical integration using

standard mathematical software package, e.g., MATLAB. Note that the ODE for func-
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tion E is the same as the one in Chapter 3. Thus, here we only discuss the algorithm

to find an approximate for function C. The MATLAB codes used to perform this

integration are given in the Appendix at the end of this chapter.

Since the Fourier transform variable ω appears as a parameter in functions C, D

and E, the inverse Fourier transform is conducted to retrieve the solution as in its

initial setup

U(x, ν, r, τ) = F−1
[
Ũ(ω, ν, r, τ)

]
= F−1

[
eC(ω,τ)+D(ω,τ)ν+E(ω,τ)rF[H(ex)]

]
.

(4.29)

Following the techniques same as those used in (3.28) to (3.30), the solution of the PDE

(4.3) is derived as follows

Uj(S, ν, r, I, τ) ≈ e2x

I2
eC̃(τ)+D̃(τ)ν+Ẽ(τ)r − 2ex

I
eĈ(τ)+Ê(τ)r + 1, (4.30)

where tj−1 ≤ t ≤ tj and τ = tj − t. We use C̃(τ), D̃(τ) and Ẽ(τ) to denote C(−2i, τ),

D(−2i, τ) and E(−2i, τ) respectively. In addition, Ĉ(τ) and Ê(τ) represent C(−i, τ)

and E(−i, τ) respectively.

4.2.2 Solution for the Second Step

In this subsection, we shall continue to carry out the second step in finding out the

expectation (3.7) as described in Subsection 3.2.1 with full correlation case. In partic-

ular, we aim to calculate the expectation ET [Ej−1|F(0)], which will finally lead us to

obtain the fair delivery price of a variance swap.

The computation of Ej−1 has been worked out by our first step. Following (4.30)

and by letting τ = ∆t in Uj(S, ν, r, I, τ), the solution of the first step is

Ej−1 ≈ eC̃(∆t)+D̃(∆t)ν(tj−1)+Ẽ(∆t)r(tj−1) − 2eĈ(∆t)+Ê(∆t)r(tj−1) + 1. (4.31)
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Now, (4.31) implies that

ET [Ej−1|F(0)] ≈ ET
[
eC̃(∆t)+D̃(∆t)ν(tj−1)+Ẽ(∆t)r(tj−1) − 2eĈ(∆t)+Ê(∆t)r(tj−1) + 1|F(0)

]
≈ ET

[
eC̃(∆t)+D̃(∆t)ν(tj−1)+Ẽ(∆t)r(tj−1)|F(0)

]
−2ET

[
eĈ(∆t)+Ê(∆t)r(tj−1)|F(0)

]
+ 1.

(4.32)

Based on the assumption that ν(tj−1) and r(tj−1) are dependent, and the approxi-

mations of ET (
√
ν(t)) and ET (

√
r(t)), we give an approximation of ET [Ej−1|F(0)] as

follows

ET [Ej−1|F(0)] ≈ eC̃(∆t) · ET
[
eD̃(∆t)ν(tj−1)+Ẽ(∆t)r(tj−1)|F(0)

]
−2eĈ(∆t) · ET

[
eÊ(∆t)r(tj−1)|F(0)

]
+ 1

≈ eC̃(∆t) · exp[D̃(∆t)(q1(tj−1)(l1 + ϕ1(tj−1)))

+Ẽ(∆t)(q2(tj−1)(l2 + ϕ2(tj−1)))

+ D̃(∆t)2

2 (q1(tj−1)2(2l1 + 4ϕ1(tj−1)))

+ Ẽ(∆t)2

2 (q2(tj−1)2(2l2 + 4ϕ2(tj−1)))

+D̃(∆t)Ẽ(∆t)ρ23

√
q1(tj−1)2(2l1 + 4ϕ1(tj−1))√

q2(tj−1)2(2l2 + 4ϕ2(tj−1))]

−2eĈ(∆t) · exp[Ê(∆t)(q2(tj−1)(l2 + ϕ2(tj−1)))

+ Ê(∆t)2

2 (q2(tj−1)2(2l2 + 4ϕ2(tj−1)))] + 1.

(4.33)

Now, we show how to derive expressions for ET
[
eD̃(∆t)ν(tj−1)+Ẽ(∆t)r(tj−1)|F(0)

]
and

ET
[
eÊ(∆t)r(tj−1)|F(0)

]
by approximations using normally distributed random variables.

The variables ν(tj−1) and r(tj−1) can be well approximated by normally distributed

random variables as follows

ν(tj−1) ≈ N
(
q1(tj−1)(l1 + ϕ1(tj−1)), q1(tj−1)2(2l1 + 4ϕ1(tj−1))

)
, (4.34)
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and

r(tj−1) ≈ N
(
q2(tj−1)(l2 + ϕ2(tj−1)), q2(tj−1)2(2l2 + 4ϕ2(tj−1))

)
. (4.35)

Let Y (0, tj−1) = D̃(∆t)ν(tj−1) + Ẽ(∆t)r(tj−1). With those normal random variable

approximations in (4.34) and (4.35), we can find the characteristic function of Y (0, tj−1)

as follows

ET
[
eY (0,tj−1)|F(0)

]
≈ exp[ET (Y (0, tj−1)) +

1

2
VarT (Y (0, tj−1))], (4.36)

where

ET (Y (0, tj−1)) ≈ D̃(∆t)(q1(tj−1)(l1 + ϕ1(tj−1))) + Ẽ(∆t)(q2(tj−1)(l2 + ϕ2(tj−1))),

(4.37)

and

VarT (Y (0, tj−1)) ≈ D̃(∆t)2(q1(tj−1)2(2l1 + 4ϕ1(tj−1)))

+Ẽ(∆t)2(q2(tj−1)2(2l2 + 4ϕ2(tj−1)))

+2D̃(∆t)Ẽ(∆t)ρ23

√
q1(tj−1)2(2l1 + 4ϕ1(tj−1))√

q2(tj−1)2(2l2 + 4ϕ2(tj−1)).

(4.38)

We can apply the same procedure to find the expression for ET
[
eÊ(∆t)r(tj−1)|F(0)

]
,

which is given by

ET
[
eÊ(∆t)r(tj−1)|F(0)

]
≈ exp[ET (Ê(∆t)r(tj−1)) + 1

2Var
T (Ê(∆t)r(tj−1))]

≈ exp[Ê(∆t)(q2(tj−1)(l2 + ϕ2(tj−1)))

+ Ê(∆t)2

2 (q2(tj−1)2(2l2 + 4ϕ2(tj−1)))].

(4.39)

Following the steps in Subsection 3.2.4, we can substitute (4.33) into (3.41) which

will finally give us the fair delivery price of a variance swap. Our solution technique

involves derivation of the characteristic function using approximations in order to fulfill

the affinity property for fully correlated state variables. Since this approach proposes

two steps of PDE solving problem, the utmost complexity is embedded in finding the

final semi-analytical solution. Using some numerical results, the next section conducts

analysis for the performance of our formulation for pricing variance swaps.
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4.3 Numerical Results

In this section, we present some numerical tests in order to analyze the performance

of our approximation formula for evaluating prices of variance swaps. In Subsection

4.3.1, comparisons are made among the results calculated by our formula, the Monte

Carlo (MC) simulation which resembles the real market, and the continuous-sampling

variance swaps model in [102]. We also use the finite difference method to obtain a

numerical solution. In addition, in Subsection 4.3.2, we investigate the impact of full

correlations among the state variables in our model on the delivery prices of variance

swaps. For the base parameter setting, we follow these parameter values, where S(0) =

1, ρ12 = −0.615, ρ13 = 0.20, ρ23 = 0.15, ν(0) = (0.2045)2, θ∗ = (0.2874)2, κ∗ = 0.3,

σ = 0.4921, r(0) = 0.04, α∗ = 0.501, β∗ = 0.04, η = 0.005 and T = 1.

4.3.1 Comparison among Our Formula, MC Simulation and

Continuous-Sampling Model

We perform our MC simulation in this paper using the Euler-Maruyama scheme with

200, 000 path numbers and S(0) = 1. The comparison results made between numerical

implementation of our formula, along with the MC simulation and the continuous-

sampling model are presented in Figure 4.1 and in Table 4.1. All values for the fair

delivery prices are depicted in variance points, which are the squares of volatility points.

Table 4.1: Comparing prices of variance swaps among our formula, continuous-
sampling model and MC simulation.

Sampling Frequency Our formula Continuous-sampling model MC simulation
N=4 542.06 524.00 541.73
N=12 529.84 524.00 530.27
N=26 526.47 524.00 526.30
N=52 525.03 524.00 525.43

In Figure 4.1 the graphs of all three compared models are plotted against each

other, with the MC simulation taken as benchmark. It could be clearly seen that our

approximation formula matches the MC simulation very well, whereas the continuous-

sampling model does not provide a satisfactory fit. To gain some insights of the relative

difference between our formula and the MC simulation, we compare their relative per-

centage error. By taking N = 52 which is the weekly sampling frequency for market

practice and 200, 000 path numbers, we discover that the error produced is 0.07%, with

further reduction of this quantity as path numbers reach 500, 000. In fact, even for
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Figure 4.1: Comparison of the delivery price of variance swaps
produced among our model, the continuous-sampling model and
MC simulation.
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Our discrete model (Weekly sampling)
Monte Carlo simulations
The continuous model (Swishchuk, 2004)

small sampling frequency such as the quarterly sampling frequency when N = 4, our

formula can be executed just in 0.49 seconds compared to 27.7 seconds needed by the

MC simulation. These findings verify the accuracy and efficiency of our formula.

In addition, we conduct a comparison between our approximation formula and the

numerical solution of the partial differential equation in (4.3) using the finite difference

method. Using the same set of parameter values, we found out in Figure 4.2 that

our approximation formula resembles the numerical solution very closely. This finding

supports the performance quality of our pricing formula.

4.3.2 Impact of Correlation among Asset Classes

Next, we investigate the impact of the correlation coefficients among the interest rate

with the underlying and the volatility respectively in our model. For this purpose,
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Figure 4.2: Comparison of the delivery price of variance swaps
produced among our model and the finite difference method.
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we examine the relationship produced by the delivery price of the variance swap when

computed against different correlation settings. The impact of the correlations among

the interest rate with the underlying can be found in Figure 4.3.

From Figure 4.3, we can see that the values of variance swaps are increasing as the

correlation values increase. Ignoring the correlation coefficient between the interest rate

and the underlying might result in mispricing of about 5 basis points in the delivery

price. This is very crucial since a relative error of even 2% might produce considerable

amount of loss due to the nature of the notional amount and size of contract traded

per order. However, it is also observed that the impact of these correlation coefficients

becomes less apparent as the number of sampling frequencies increases.

The effects of the correlation coefficient among the interest rate and the volatility

are given in Figure 4.4. In contrast to the correlation effects in Figure 4.3, smaller

impacts are observed for these asset classes. The variance swap values produced by

all three coefficients are almost overlapping with each other. For example, for N = 12
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Figure 4.3: Impact of different ρ13 values on delivery prices of
variance swaps in the Heston-CIR hybrid model.
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which is the monthly sampling frequency, the delivery price is 529.834 for ρ23 = 0, with

only a slight increase to 529.836 for ρ23 = 0.5, and a slight reduction to 529.833 for

ρ23 = −0.5. Besides that, this graph also displays the same trend of reducing impact

of the correlation coefficients as the number of sampling frequencies increases.

4.4 Appendix

In this appendix, we show the codes implemented in MATLAB to find the approximate

solution for function C. Note that the codes for function E in this chapter are the

same as given in Appendix Chapter 3. For function C, we have to find solutions for

C̃(τ) and Ĉ(τ) which are the notations for C(−2i, τ) and C(−i, τ) respectively. We

represent ET (
√
ν(T − τ)

√
r(T − τ)) as M in our code for the ODE of C̃(τ) below
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Figure 4.4: Impact of different ρ23 values on delivery prices of
variance swaps in the Heston-CIR hybrid model.
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function dydt = myodefull cwidetilde(t,y,Dt,D,Et,E,Bt,B,Mt,M)

D = interp1(Dt,D,t);

E = interp1(Et,E,t);

B = interp1(Bt,B,t);

M = interp1(Mt,M,t);

[ K S nu0 rho rho sqvr rho xr rho vr theta star lambda 1 lambda 2 sigma

kapa T t alpha beta star r0 eta]=InputPara 2( );

kapa star= kapa + lambda 1; alpha star = alpha + lambda 2;

alpha star = 0.501;

beta star = 0.04;

dydt = (kapa star*theta star.*D)+(alpha star*beta star.*E)

-(2.*(rho xr.*eta.*B.*M))+ (2.*(rho xr.*eta.*E.*M))

-(rho vr.*sigma.*eta.*B.*D.*M )+(rho vr.*eta.*sigma.*D.*E.*M );
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We can later obtain the approximate solution for C̃(τ) using the following codes

function [C tilde] = call cwidetildefull( t, T, delT, r0, nu0, rho, rho sqvr,

rho xr, rho vr, sigma, alpha star, kapa star, lambda 1, lambda 2, beta star,

eta, theta star)

[ K S nu0 rho rho sqvr rho xr rho vr theta star lambda 1 lambda 2 sigma

kapa T t alpha beta star r0 eta]=InputPara 2( );

kapa star= kapa + lambda 1; alpha star = alpha + lambda 2;

alpha star = 0.501;

beta star = 0.04;

eta = 0.005;

r0 = 0.04;

T=1;

delTend=delT;

delT=0:delTend/100:delTend;

d wildetilde = D widetilde( t, T, delT, r0, nu0, rho, rho sqvr,

rho xr, rho vr, sigma, alpha star, kapa star, lambda 1, lambda 2,

beta star, eta, theta star);

e wildetildefull = call ewidetildefull( t, T, delTend, r0, nu0,

rho, rho sqvr, rho xr, rho vr, sigma, alpha star, kapa star,

lambda 1, lambda 2, beta star, eta, theta star);

exp sqvr = E sqvr( t, T, delT, r0, nu0, rho, rho sqvr, rho xr,

rho vr, sigma, alpha star, kapa star, lambda 1, lambda 2,

beta star, eta, theta star);

b function = B function( t, T, delT, r0, nu0, rho, rho sqvr,

rho xr, rho vr, sigma, alpha star, kapa star, lambda 1, lambda 2,

beta star, eta, theta star);

D=d wildetilde;

Dt=delT;

Et =delT;

E = e wildetildefull;

M= exp sqvr;

Mt=delT;

B=b function;

Bt=delT;
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Tspan = delT; % Solve from t=1 to t=5

IC = 0; % y(t=0) = 1

[Tn Y] = ode45(@(t,y) myodefull cwidetilde(t,y,Dt,D,Et,E,Bt,B,Mt,M),

Tspan,IC);

C tilde=Y;

Finally, the approximate solution for Ĉ(τ) is attained by replacing ω = −i in its

ODE in (4.13) and following the coding steps as outlined for C̃(τ).
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Chapter 5

Pricing Variance Swaps under

Stochastic Factors with

Regime Switching

In this chapter, the hybrid pricing model given in Chapter 3 is further considered.

We address the issue of pricing discretely-sampled variance swaps under stochastic

volatility and stochastic interest rate with regime switching. This regime switching

hybrid model is presented in Section 5.1 and possesses parameters that switch according

to a continuous-time observable Markov chain process. This switching phenomena can

be interpreted as the responsiveness of the underlying asset towards the states of an

observable macroeconomic factor. To accomplish this, we first derive the dynamics for

this model under the T -forward measure in Subsection 5.1.2. Here, we demonstrate how

to handle the change of measure with the existence of regime switching. In Section 5.2,

we derive the forward characteristic function in order to obtain the analytical formula

for the price of variance swaps. The last section demonstrates some numerical examples

and discussion on our findings, including the observed impacts of regime switching.

5.1 Modeling Framework

In this section, we consider the Heston stochastic volatility model which is combined

with the one-factor Cox-Ingersoll-Ross (CIR) stochastic interest rate model with regime

switching to describe the valuation of variance swaps. A regime switching model for

pricing volatility derivatives was first considered by Elliot et al. in [37]. Our aim is to
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achieve a better characterization of the market by incorporating stochastic interest rate

into the modeling framework. This extends the work of Elliot and Lian in [34] which

only focuses on regime switching effects on the Heston stochastic volatility model.

In the literature, [97] presented a pricing formula for continuously-sampled variance

swaps under the hybridization of the Schöbel-Zhu and the Hull-White models. However,

positive interest rate or positive volatility could not be guaranteed in this hybrid model.

In fact, their formula was represented in an integral form as a continuous approximation

to the discrete sampling practice in the market. The change of measure technique

proposed by these authors was also different from the technique used in this thesis. In

what follows, we shall give some description regarding the formulation of this hybrid

model. Furthermore, we shall demonstrate how to deal with an extension to the model

in Section 3.1 to the case where regime switching is incorporated.

5.1.1 The Heston-CIR Model with Regime Switching

The Heston-CIR model adjusted by the Markov chain described in this section is capa-

ble of capturing several macroeconomic issues such as alternating business cycles which

affect the asset price as well as the dynamics of volatility and interest rate. In other

words, specific parameters of the dynamics involved in the asset price, volatility and

interest rate switch over time according to the observable states of an economy. Let

[0, T ] be a finite time interval. Since we will deal with an extension of the model in

Section 3.1 to the case where regime switching is involved, we shall consider a risk-

neutral probability measure Q. We model the market dynamics by a continuous-time

finite-state observable Markov chain X = {X(t) : 0 ≤ t ≤ T} with different states

of an economy denoted by state space S = {s1, s2, ..., sN}. Without loss of general-

ity, the state space can be identified with the set of unit vectors {e1, e2, ..., eN}, where

ei = (0, ..., 1, ..., 0)ᵀ ∈ RN . An N -by-N rate matrix Q = [qij ]1≤i,j≤N is used to generate

the evolution of the chain under Q. Here for i 6= j, qij is the (constant) intensity of the

transition of the chain X from state ei to state ej in a small interval of time, for each

i, j = 1, 2, ..., N , satisfying qij ≥ 0 for i 6= j and
∑N

i=1 qij = 0 for all j = 1, 2, ..., N .

According to [38], a semi-martingale representation holds for the process X as follows

X(t) = X(0) +

∫ t

0
QX(s)ds+M(t), (5.1)

where {M(t) : 0 ≤ t ≤ T} is a RN -valued martingale with respect to the filtration

generated by X under Q.
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As mentioned before, the regime switching effect is captured in our Heston-CIR

model via assuming that the stock, the volatility and the interest rate are dependent

on market trends or other economic factors indicated by the regime switching Markov

chain X. In particular, it is assumed that the long-term mean of variance θ∗(t) of the

risky stock depends on the states of the economic indicator X(t), that is

θ∗(t) = 〈θ∗, X(t)〉, (5.2)

where θ∗ = (θ∗1, θ
∗
2, ..., θ

∗
N )ᵀ with θ∗i > 0, for each i = 1, 2, ..., N . 〈·, ·〉 denotes the

scalar product in RN . In addition, the long-term mean of the interest rate β∗(t) is also

assumed to be influenced by the states of the economic indicator described by X(t),

i.e.

β∗(t) = 〈β∗, X(t)〉, (5.3)

where β∗ = (β∗1 , β
∗
2 , ..., β

∗
N )ᵀ with β∗i > 0, for each i = 1, 2, ..., N. Thus, we adjust the

system in (3.2) under the risk-neutral measure Q as follows
dS(t) = r(t)S(t)dt+

√
ν(t)S(t)dW̃1(t), 0 ≤ t ≤ T,

dν(t) = κ∗(θ∗(t)− ν(t))dt+ σ
√
ν(t)dW̃2(t), 0 ≤ t ≤ T,

dr(t) = α∗(β∗(t)− r(t))dt+ η
√
r(t)dW̃3(t), 0 ≤ t ≤ T.

(5.4)

Working on the decomposition technique same as that in (3.11), we can re-write

the SDEs in (5.4) under Q in the form of


dS(t)
S(t)

dν(t)

dr(t)

 = µQdt+ Σ× C ×


dW ∗1 (t)

dW ∗2 (t)

dW ∗3 (t)

 , 0 ≤ t ≤ T, (5.5)

with

µQ =

 r(t)

κ∗(θ∗(t)− ν(t))

α∗(β∗(t)− r(t))

 , Σ =


√
ν(t) 0 0

0 σ
√
ν(t) 0

0 0 η
√
r(t)

 (5.6)

and

C =

 1 0 0

ρ
√

1− ρ2 0

0 0 1


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such that

CCᵀ =

 1 ρ 0

ρ 1 0

0 0 1


and dW ∗1 (t), dW ∗2 (t) and dW ∗3 (t) are mutually independent under Q satisfying

dW̃1(t)

dW̃2(t)

dW̃3(t)

 = C ×


dW ∗1 (t)

dW ∗2 (t)

dW ∗3 (t)

 , 0 ≤ t ≤ T.

5.1.2 Model Dynamics under the T -Forward Measure with Regime

Switching

In this subsection, we shall focus on obtaining the new dynamics for our model under the

T-forward measure when the regime switching is incorporated. Hence, we shall adjust

the numeraire under QT in Subsection 3.2.1 due to the enlarged filtration generated by

the short rate and the Markov process.

First, we assume that the bond price is having a regime switching exponential affine

form representation which is denoted by

P (t, T, r(t), X(t)) = eA(t,T,X(t))−B(t,T )r(t), (5.7)

where A(t, T,X(t)) and B(t, T ) are to be determined. Note that under Q, we have

to take the discounted price of this bond to ensure the martingale property. The

discounted bond price is given by

P̃ (t, T, r(t), X(t)) = e−
∫ t
0 r(s)dsP (t, T, r(t), X(t)). (5.8)

Next, applying Itô formula to P̃ (t, T, r(t), X(t)) and realizing that the non-martingale

terms must sum to zero, we obtain

∂P

∂t
+ α∗(β∗(t)− r)∂P

∂r
+ 〈P, QX(t)〉+

1

2

∂2P

∂r2
η2r − rP = 0, (5.9)

with terminal condition P (T, T, r(T ), X(T )) = 1, P = (P1, P2, ..., PN )ᵀ, Pi = P (t, T, r, ei)

and Pi = e
∫ t
0 r(s)dsP̃i for all i = 1, 2, ..., N . Realizing the fact that X(t) takes one of the
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values from the set of unit vectors {e1, e2, ..., eN}, we can write

X(t) = ei (i = 1, 2, ..., N),

θ∗(t) = 〈θ∗, X(t)〉 = θ∗i ,

β∗(t) = 〈β∗, X(t)〉 = β∗i ,

P (t, T, r,X(t)) = P (t, T, r, ei) = Pi.

As a result, equation (5.9) becomes the following N coupled PDEs for all i = 1, 2, ..., N

∂Pi
∂t

+ α∗(β∗i − r)
∂Pi
∂r

+ 〈P, Qei〉+
1

2

∂2Pi
∂r2

η2r − rPi = 0, (5.10)

with terminal condition Pi(T, T, r) = 1. We later substitute the expressions of
∂P

∂t
,
∂P

∂r

and
∂2P

∂r2
into the above PDE to obtain the following differential equations


dB(t, T )

dt
=

1

2
η2B(t, T )2 + α∗B(t, T )− 1,

dAi
dt

= α∗β∗iB(t, T )− e−Ai〈Ã, Qei〉,
(5.11)

where Ai = A(t, T, ei), Ãi = eAi , A = (A1, A2, ..., AN )ᵀ and Ã = (Ã1, Ã2, ..., ÃN )ᵀ for

all i = 1, 2, ..., N . Also, B(T, T ) = 0, A(T, T,X(T )) = 0 and Ai(T, T ) = 0 respectively.

Solution of the first equation of (5.11) is similar to that of the same type of ODE for

the CIR model as given in [27] using characteristic equations, and

B(t, T ) =
2
(
e(T−t)

√
(α∗)2+2η2 − 1

)
2
√

(α∗)2 + 2η2 +
(
α∗ +

√
(α∗)2 + 2η2

)(
e(T−t)

√
(α∗)2+2η2 − 1

) .
Next, we show the steps to obtain the function Ai. Let Υi(t) = α∗β∗iB(t, T ) for

i = 1, 2, ..., N and consider the diagonal matrix

diag(Υ(t)) = diag(Υ1(t),Υ2(t), ...,ΥN (t)).

Denote Ãi = eAi for i = 1, 2, ..., N and substituting this into the ODE of function Ai

in (5.11) satisfies

dÃ

dt
= [diag(Υ(t))−Qᵀ]Ã,
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with Ã(T, T ) = 1 and 1 = (1, 1, ..., 1)ᵀ ∈ RN . Suppose Φ(t) is the fundamental matrix

solution of
dΦ(t)

dt
= [diag(Υ(t))−Qᵀ]Φ(t), Φ(T ) = I,

then we can write

Ã(t, T ) = Φ(t)Ã(T, T ) = Φ(t)1.

Now, Ã(t, T ) = Φ(t)1 implies that Ãi(t, T, ei) = 〈Φ(t)1, ei〉, and utilizing Ãi = eAi for

i = 1, 2, ..., N gives us Ai(t, T, ei) = ln(〈Φ(t)1, ei〉). Thus,

A(t, T,X(t)) = 〈A, X(t)〉. (5.12)

Moving on, we implement the measure change from the risk-neutral measure Q to

the T -forward measure QT . Following the techniques same as those in Subsection 3.2.1,

differentiating lnN1,t which is e
∫ t
0 r(s)ds yields

d lnN1,t = r(t)dt =

(∫ t

0
α∗(β∗ − r(s))ds

)
dt+

(∫ t

0
η
√
r(s)dW̃3(s)

)
dt,

whereas the differentiation of lnN2,t which is P (t, T, r(t), X(t)) = Ã(t, T,X(t))e−B(t,T )r(t)

gives

d lnN2,t =


∂Ã(t, T,X(t))

∂t

Ã(t, T,X(t))
− ∂B(t, T )

∂t
r(t)−B(t, T )α∗(β∗(t)− r(t))

+
〈 Ã(t, T )

Ã(t, T,X(t))
, QX(t)

〉]
dt−B(t, T )η

√
r(t)dW̃3(t)

+
〈 Ã(t, T )

Ã(t, T,X(t))
, dM(t)

〉
.

As mentioned in the previous chapters, the above steps assist in obtaining the volatilities

for both numeraires. Next, we proceed to find µT which is the new drift for our SDEs

under QT with regime switching by using the formula in (3.12)

µT = µQ −
[
Σ× C × Cᵀ × ( ΣQ − ΣT )

]
,
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with ΣQ and ΣT given by

ΣQ =

 0

0

0

 and ΣT =


0

0

−B(t, T )η
√
r(t) +

〈 Ã(t, T )

Ã(t, T,X(t))
, dM(t)

〉
 ,

along with Σ and CCᵀ as defined in (5.6). However, due to the the independence

between dW̃3(t) and M(t), we obtain the new dynamics for (5.4) under the forward

measure QT as
dS(t)
S(t)

dν(t)

dr(t)

 =

 r(t)

κ∗(θ∗(t)− ν(t))

α∗β∗(t)− [α∗ +B(t, T )η2]r(t)

 dt+ Σ×C ×

 dW ∗1 (t)

dW ∗2 (t)

dW ∗3 (t)

 , 0 ≤ t ≤ T.
(5.13)

In addition, under QT , the semi-martingale decomposition of the Markov chain X is

given by

X(t) = X(0) +

∫ t

0
QT (s)X(s)ds+MT (t), (5.14)

with the rate matrix QT (t) = [qTij(t)]i,j=1,2,...,N of the chain X defined as

qij
T (t) =


qij
Ã(t, T, ej)

Ã(t, T, ei)
, i 6= j,

−
∑

k 6=i qik
Ã(t, T, ek)

Ã(t, T, ei)
, i = j.

Note that by defining γ(T ) as the Radon-Nikodým derivative of QT with respect to Q,

we obtain

dγ(t)

γ(t)
=
dγ1(t)

γ1(t)
· dγ2(t)

γ2(t)

= −B(t, T )η
√
r(t)dW̃3(t) ·

〈 Ã(t, T )

Ã(t, T,X(t))
, dM(t)

〉
which later gives us

γ1(t) = exp

(∫ t

0
η
√
r(s)B(s, T )dW̃3(s)− 1/2

∫ t

0
η2r(s)B2(s, T )ds

)
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due to the Girsanov theorem, and

γ2(t) =
Ã(t, T,X(t))

Ã(0, T,X(0))
exp

(
−
∫ t

0

dÃ
ds +QÃ(s, T,X(s))

Ã(s, T,X(s))
ds

)

which is obtained by taking integration on
dγ2(t)

γ2(t)
. Finally, the rate matrix of QT (t) is

obtained by following the result from [84].

5.2 Derivation of Pricing Formula

In this section, we will find a semi-closed form solution for pricing variance swaps

under stochastic volatility and stochastic interest rate with regime switching using

characteristic function. The incorporation of regime switching results in an enlarged

filtration. Basically, we still work on finding the expectation (3.7) in Subsection 3.2.1,

but we change the time notations in this chapter. Let y(T ) = lnS(T + ∆) − lnS(T ).

In this case we have to evaluate the conditional price given the information about the

sample path of the Markov chain X from time 0 up to time T + ∆ for 0 ≤ t ≤ T + ∆.

First, define F1(t), F2(t) and F3(t) as the natural filtrations generated by the three

Brownian motions {W ∗1 (t) : 0 ≤ t ≤ T}, {W ∗2 (t) : 0 ≤ t ≤ T} and {W ∗3 (t) : 0 ≤ t ≤ T}
up to time t respectively, and denote FX(t) as the filtration for the regime switching

Markov chain X(t) up to time t, that is

F1(t) = σ{W ∗1 (u) : u ≤ t},

F2(t) = σ{W ∗2 (u) : u ≤ t},

F3(t) = σ{W ∗3 (u) : u ≤ t},

FX(t) = σ{X(u) : u ≤ t}.

(5.15)

To obtain the characteristic function of y(T ), we consider the evaluation of its condi-

tional value given the information about FX(T + ∆) which is the sample path of the

Markov chain X from time 0 to time T + ∆. This means we shall concentrate on the
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following form

ET [eφy(T )|F1(t) ∨ F2(t) ∨ F3(t) ∨ FX(t)]

= ET [ET [eφy(T )|F1(t) ∨ F2(t) ∨ F3(t) ∨ FX(T + ∆)]

|F1(t) ∨ F2(t) ∨ F3(t) ∨ FX(t)].

(5.16)

To achieve this, we shall separate our derivation process into two subsections. In

the first subsection, we shall compute the characteristic function for y(T ) given path

FX(T+∆), that is ET [eφy(T )|F1(t)∨F2(t)∨F3(t)∨FX(T+∆)]. In the second subsection,

we use the result in the first subsection to compute the characteristic function for y(T ).

5.2.1 Characteristic Function for Given Path FX(T + ∆)

Denote the current time as t, where t < T . Under this pricing model with regime switch-

ing, we consider an enlarged filtration in which we define the forward characteristic

function f(φ; t, T,∆, ν(t), r(t)) of the stochastic variable y(T ) = lnS(T + ∆)− lnS(T )

as

f(φ; t, T,∆, ν(t), r(t))

= ET [eφy(T )|F1(t) ∨ F2(t) ∨ F3(t) ∨ FX(t)]

= ET [exp(φ(lnS(T + ∆)− lnS(T )))|F1(t) ∨ F2(t) ∨ F3(t) ∨ FX(t)].

(5.17)

As mentioned earlier, our main aim is to obtain the characteristic function given

the information about the sample path of the Markov chain X from time 0 to time

T + ∆. In particular, given FX(T + ∆), the conditional characteristic function is given

by the following proposition.

Proposition 5.1. If the underlying asset follows the dynamics (5.13), then the for-

ward characteristic function of the stochastic variable y(T ) = lnS(T + ∆) − lnS(T )

conditional on FX(T + ∆) is given by

f(φ; t, T,∆, ν(t), r(t)|FX(T + ∆)) = ET [eφy(T )|F1(t) ∨ F2(t) ∨ F3(t) ∨ FX(T + ∆)]

= eC(φ,T )j(D(φ, T ); t, T, ν(t))

·k(E(φ, T ); t, T, r(t)),

(5.18)
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where D(φ, t), j(φ; t, T, ν(t)) and k(φ; t, T, r(t)) are given by

D(φ, t) =
a+ b

σ2

1− eb(T+∆−t)

1− geb(T+∆−t) ,

a = κ∗ − ρσφ, b =
√
a2 + σ2(φ− φ2), g =

a+ b

a− b
,

(5.19)

with
j(φ; t, T, ν(t)) = eF (φ,t)+G(φ,t)ν(t),

F (φ, t) =
∫ T
t 〈κ

∗θ∗G(φ, s), X(s)〉ds,

G(φ, t) =
2κ∗φ

σ2φ+ (2κ∗ − σ2φ)eκ∗(T−t) ,

(5.20)

k(φ; t, T, r(t)) = eL(φ,t)+M(φ,t)r(t), (5.21)

and C(φ, t),E(φ, t),L(φ, t) and M(φ, t) are determined by the following ODEs

−dE
dt

=
1

2
η2E2 − (α∗ +B(t, T )η2)E + φ,

−dC
dt

= κ∗θ∗(t)D + α∗β∗(t)E,

−dM
dt

=
1

2
η2M2 − (α∗ +B(t, T )η2)M,

−dL
dt

= α∗β∗(t)M.

(5.22)

Here, we give a brief proof for Proposition 5.1. Following (3.8), we can represent

the conditional forward characteristic function for y(T ) in two computation steps as

f(φ; t, T,∆, ν(t), r(t)|FX(T + ∆)) = ET [ET [eφy(T )|F1(T ) ∨ F2(T ) ∨ F3(T ) ∨ FX(T + ∆)]

|F1(t) ∨ F2(t) ∨ F3(t) ∨ FX(T + ∆)].

(5.23)

We focus first on solving the inner expectation

ET [eφy(T )|F1(T ) ∨ F2(T ) ∨ F3(T ) ∨ FX(T + ∆)].
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By defining function

U(φ; t,X, ν, r) = ET [eφy(T )|F1(t) ∨ F2(t) ∨ F3(t) ∨ FX(T + ∆)]

with T ≤ t ≤ T + ∆, and applying the Feynman-Kac theorem, we obtain

∂U

∂t
+

1

2
ν
∂2U

∂X2
+

1

2
σ2ν

∂2U

∂ν2
+

1

2
η2r

∂2U

∂r2
+ ρσν

∂2U

∂X∂ν
+

[
r − 1

2
ν

]
∂U

∂X

+ [κ∗(θ∗(t)− ν)]
∂U

∂ν
+
[
α∗β∗(t)− (α∗ +B(t, T )η2)r

] ∂U
∂r

= 0,

U(φ; t = T + ∆, X, ν, r) = eφX ,

(5.24)

where X = lnS(t) − lnS(T ) in (T ≤ t ≤ T + ∆). In order to solve the above PDE

system, we adopt Heston’s (1993) assumption as follows

U(φ; t,X, ν(t), r(t)) = eC(φ,t)+D(φ,t)ν+E(φ,t)r+φX . (5.25)

We can later obtain three ODEs by substituting the above function into the previous

PDE 

−dD
dt

=
1

2
φ(φ− 1) + (ρσφ− κ∗)D +

1

2
σ2D2,

−dE
dt

=
1

2
η2E2 − (α∗ +B(t, T )η2)E + φ,

−dC
dt

= κ∗θ∗(t)D + α∗β∗(t)E

(5.26)

with the initial conditions

C(φ, T + ∆) = 0, D(φ, T + ∆) = 0, E(φ, T + ∆) = 0. (5.27)

Finally, we can write the solution of function D as
D(φ, t) =

a+ b

σ2

1− eb(T+∆−t)

1− geb(T+∆−t) ,

a = κ∗ − ρσφ, b =
√
a2 + σ2(φ− φ2), g =

a+ b

a− b
.

(5.28)

Numerical integration is performed to obtain the solutions of the functions E and C as

outlined in Chapter 3.

Now that we had obtained the solution for the inner expectation, we shall move on
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to solve the outer expectation (0 ≤ t ≤ T ). At time t = T,X = lnS(T )− lnS(T ) = 0.

Substituting this back into the inner expectation of (5.23) means

ET [eφy(T )|F1(T ) ∨ F2(T ) ∨ F3(T ) ∨ FX(T + ∆)]

= U(φ;T,X, ν(T ), r(T ))

= eC(φ,T )+D(φ,T )ν(T )+E(φ,T )r(T ).

By defining the following functions

j(φ; t, T, ν(t)) = ET [eφν(T )|F1(t) ∨ F2(t) ∨ F3(t)],

and

k(φ; t, T, r(t)) = ET [eφr(T )|F1(t) ∨ F2(t) ∨ F3(t)],

we obtain the respective PDEs as

∂j

∂t
+

1

2
σ2ν

∂2j

∂ν2
+ [κ∗(θ∗(t)− ν)]

∂j

∂ν
= 0,

j(φ, t = T, T, ν) = eφν ,

(5.29)

and
∂k

∂t
+

1

2
η2r

∂2k

∂r2
+
[
α∗β∗(t)− (α∗ +B(t, T )η2)r

] ∂k
∂r

= 0,

k(φ, t = T, T, r) = eφr.

(5.30)

Taking advantage of the affine-form solution techniques as those in [31, 66], we assume

the solution to (5.29) is in the form of

j(φ; t, T, ν(t)) = eF (φ,t)+G(φ,t)ν(t). (5.31)

The functions F (φ, t) and G(φ, t) can be found by solving two Riccati ODEs

−dG
dt

=
1

2
σ2G2 − κ∗G,

−dF
dt

= κ∗θ∗(t)G,

(5.32)

with the initial conditions

F (φ, T ) = 0, G(φ, T ) = φ. (5.33)
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The solutions are 
F (φ, t) =

∫ T
t κ∗θ∗(s)G(φ, s)ds,

G(φ, t) =
2κ∗φ

σ2φ+ (2κ∗ − σ2φ)eκ∗(T−t) .
(5.34)

Next, the function k(φ; t, T, r(t)) = eL(φ,t)+M(φ,t)r(t) is defined in order to derive a

solution to (5.30). The initial conditions are L(φ, T ) = 0 and M(φ, T ) = φ. Then, L

and M satisfy the following ODEs
−dM
dt

=
1

2
η2M2 − (α∗ +B(t, T )η2)M,

−dL
dt

= α∗β∗(t)M,

(5.35)

whose solutions can be obtained numerically.

5.2.2 Characteristic Function for Given Path FX(t)

In this subsection, we shall proceed by finding the expectation of the computations

obtained in the previous subsection. In particular, our focus is to derive the charac-

teristic function for given path FX(t). We need to evaluate the equation (5.18), where

θ∗(t) and β∗(t) depend on the path of the Markov chain process up to time T + ∆, by
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considering

f(φ; t, T,∆, ν(t), r(t))

= ET [ET [eφy(T )|F1(t) ∨ F2(t) ∨ F3(t) ∨ FX(T + ∆)]|F1(t) ∨ F2(t) ∨ F3(t) ∨ FX(t)]

= ET [eC(φ,T ) · j(D(φ, T ); t, T, ν(t)) · k(E(φ, T ); t, T, r(t))|F1(t) ∨ F2(t) ∨ F3(t) ∨ FX(t)]

= ET
[
exp

(∫ T+∆
T 〈α∗β∗E(φ, s) + κ∗θ∗D(φ, s), X(s)〉ds

+
∫ T
t 〈κ

∗θ∗G(D(φ, T ), s), X(s)〉ds+
2κ∗D(φ, T )

σ2D(φ, T ) + (2κ∗ − σ2D(φ, T ))eκ∗(T−t) ν(t)

+
∫ T
t 〈α

∗β∗M(E(φ, T ), s), X(s)〉ds

+r(t)
∫ T
t

(
1

2
η2M2(E(φ, T ), s)− (α∗ +B(s, T )η2)M(E(φ, T ), s)

)
ds

)
∣∣∣F1(t) ∨ F2(t) ∨ F3(t) ∨ FX(t)

]
= ET [exp(

∫ T+∆
t 〈J(s), X(s)〉ds)|F1(t) ∨ F2(t) ∨ F3(t) ∨ FX(t)]

× exp(ν(t)G(D(φ, T ), t))× exp(r(t)M(E(φ, T ), t)).

(5.36)

Here, the function J(t) ∈ RN is given by

J(t) = [κ∗θ∗G(D(φ, T ), t) + α∗β∗M(E(φ, T ), t)](1−HT (t))

+[α∗β∗E(φ, t) + κ∗θ∗D(φ, t)]HT (t)
(5.37)

along with HT (t) which is a Heaviside unit step function defined as

HT (t) =

{
1, if t ≥ T ,
0, else.

Hence, the final conditional expectation in (5.36) can be written as

ET
[
exp

(∫ T

t
〈ṽ, X(s)〉u(s)ds

) ∣∣∣F1(t) ∨ F2(t) ∨ F3(t) ∨ FX(t)

]
, (5.38)

where ṽ is an RN vector and u(s) is a general deterministic integrable function. The

following proposition shows that we can compute this value by evaluating the charac-

teristic function of
∫ T
t 〈ṽ, X(s)〉u(s)ds.
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Proposition 5.2. If X is a regime switching Markov chain with dynamics (5.14), then

the characteristic function, f(ψ, t) of the stochastic variable
∫ T
t 〈ṽ, X(s)〉u(s)ds ∈ R is

given by

f(ψ, t) = ET
[
exp

(
ψ
∫ T
t 〈ṽ, X(s)〉u(s)ds

) ∣∣∣F1(t) ∨ F2(t) ∨ F3(t) ∨ FX(t)
]

= 〈Φ(t, T ; ṽ)X(t), I〉,
(5.39)

where the function Φ(t, T ; ṽ) is an N-by-N R-valued matrix given by

Φ(t, T ; ṽ) = exp

(∫ T

t
(QT (s) + ψu(s) diag[ṽ])ds

)
, (5.40)

with I = (1, 1, ..., 1) ∈ RN .

The proof of Proposition 5.2 is given as follows. Note that the problem of finding the

expectation in (5.36) reduces into finding the characteristic function of
∫ T
t 〈ṽ, X(s)〉u(s)ds

by writing (5.38) in the following form

f(ψ, t) = ET
[
exp

(
ψ

∫ T

t
〈ṽ, X(s)〉u(s)ds

) ∣∣∣F1(t) ∨ F2(t) ∨ F3(t) ∨ FX(t)

]
. (5.41)

Consider the function Z(t, T ) = X(T ) exp
(
ψ
∫ T
t 〈ṽ, X(s)〉u(s)ds

)
. By taking differen-

tiation and using (5.14), we obtain

dZ(t, T ) = exp
(
ψ
∫ T
t 〈ṽ, X(s)〉u(s)ds

)
(QT (T )X(T )dT + dMT (T ))

+ψ〈ṽ, X(T )〉u(T )X(T ) exp
(
ψ
∫ T
t 〈ṽ, X(s)〉u(s)ds

)
dT

= exp
(
ψ
∫ T
t 〈ṽ, X(s)〉u(s)ds

)
dMT (T )

+ exp
(
ψ
∫ T
t 〈ṽ, X(s)〉u(s)ds

)
QT (T )X(T )dT

+ψ〈ṽ, X(T )〉u(T )X(T ) exp
(
ψ
∫ T
t 〈ṽ, X(s)〉u(s)ds

)
dT

= exp
(
ψ
∫ T
t 〈ṽ, X(s)〉u(s)ds

)
dMT (T ) +X(T ) exp

(
ψ
∫ T
t 〈ṽ, X(s)〉u(s)ds

)
×(QT (T ) + ψu(T ) diag[ṽ])dT.

(5.42)

Integrating each side of (5.42) gives
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∫ T
t dZ(t, s) =

∫ T
t (QT (s) + ψu(s) diag[ṽ])Z(t, s)ds

+
∫ T
t exp

(
ψ
∫ w
t 〈ṽ, X(y)〉u(y)dy

)
dMT (s).

(5.43)

Let the function Ψ(t, T ; ṽ) = ET
[
Z(t, T )

∣∣∣F1(t) ∨ F2(t) ∨ F3(t) ∨ FX(t)
]
. Taking ex-

pectations in both sides of (5.43) results in

Ψ(t, T ; ṽ) = X(t) +

∫ T

t
(QT (s) + ψu(s) diag[ṽ])Ψ(t, s; ṽ)ds. (5.44)

Suppose Φ(t, s; ṽ) is the N ×N matrix solution of the linear system of ordinary differ-

ential equation

dΦ(t, s; ṽ)

ds
= (QT (s) + ψu(s) diag[ṽ])Φ(t, s; ṽ),

Φ(t, t; ṽ) = diag[I].

(5.45)

Comparing with (5.44) results in Ψ(t, T ; ṽ) = Φ(t, T ; ṽ)X(t), which finally gives us

f(ψ, t) = 〈Φ(t, T ; ṽ)X(t), I〉. (5.46)

Finally, we substitute Proposition 5.2 back into (5.36) which gives us the character-

istic function of the stochastic variable y(T ) = lnS(T+∆)−lnS(T ) for the Heston-CIR

model with regime switching, as in the Proposition 5.3 below.

Proposition 5.3. If the underlying asset follows the dynamics (5.13), then the forward

characteristic function of the stochastic variable y(T ) = lnS(T + ∆)− lnS(T ) is given

by

f(φ; t, T,∆, ν(t), r(t)) = ET [eφy(T )|F1(t) ∨ F2(t) ∨ F3(t) ∨ FX(t)]

= exp(ν(t)G(D(φ, T ), t))× exp(r(t)M(E(φ, T ), t))

×〈Φ(t, T + ∆; J)X(t), I〉,

(5.47)
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where D(φ, t), G(φ, t), J(t) and Φ(t, T + ∆; J) are given by

D(φ, t) =
a+ b

σ2

1− eb(T+∆−t)

1− geb(T+∆−t) ,

a = κ∗ − ρσφ, b =
√
a2 + σ2(φ− φ2), g =

a+ b

a− b
,

G(φ, t) =
2κ∗φ

σ2φ+ (2κ∗ − σ2φ)eκ∗(T−t) ,

J(t) = [κ∗θ∗G(D(φ, T ), t) + α∗β∗M(E(φ, T ), t)](1−HT (t))

+[α∗β∗E(φ, t) + κ∗θ∗D(φ, t)]HT (t),

Φ(t, T + ∆; J) = exp
(∫ T+∆

t (QT (s) + diag[J(s)])ds
)
,

(5.48)

and E(φ, t) along with M(φ, t) are determined by the following ODEs

−dE
dt

=
1

2
η2E2 − (α∗ +B(t, T )η2)E + φ,

−dM
dt

=
1

2
η2M2 − (α∗ +B(t, T )η2)M.

(5.49)

Now, by using the valuation of the fair delivery price for a variance swap as given

in (3.7), and summarizing the whole procedure above, we can write the forward char-

acteristic function for a variance swap as

ET
[(

S(tj)
S(tj−1) − 1

)2 ∣∣∣F1(0) ∨ F2(0) ∨ F3(0) ∨ FX(0)

]
= ET [e2y(tj−1,tj) − 2ey(tj−1,tj) + 1|F1(t) ∨ F2(t) ∨ F3(t) ∨ FX(t)]

= f(2; 0, tj−1,∆t, ν(t), r(t))− 2f(1; 0, tj−1,∆t, ν(t), r(t)) + 1,

(5.50)

where y(tj−1) = lnS(tj)−lnS(tj−1), ∆t = tj−tj−1, and function f(φ; t, T,∆, ν(t), r(t))

is given in equation (5.18). Finally, by utilizing (3.41), the fair strike price for a variance

swap in terms of the spot variance ν(0) and the spot interest rate r(0) is given as

RV =
1002

T

N∑
j=1

[f(2; 0, tj−1,∆t, ν(0), r(0))− 2f(1; 0, tj−1,∆t, ν(0), r(0)) + 1]. (5.51)
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5.3 Formula Validation and Results

In this section, we assess the performance of our semi-closed form pricing formula

as defined in the previous subsection. Our main focus will be on investigating the

effects of incorporating regime switching into pricing discretely-sampled variance swaps

with stochastic volatility and stochastic interest rate. For illustration purposes, we

consider three regimes named as X(t) = 1, X(t) = 2 and X(t) = 3, which represent

the states Contraction, Trough and Expansion of the business cycle respectively. The

Contraction state can be defined as the situation when the economy starts slowing

down, whereas the Trough state happens when the economy hits bottom, usually in a

recession. In addition, Expansion is identified as the situation when the economy starts

growing again. Here, we assume that the Heston-CIR model without regime switching

corresponds to the first regime and it will switch to the other two regimes over time.

This will be discussed in Subsection 5.3.2.

However, to start off, we first demonstrate the validation of our pricing formula

against the Monte Carlo (MC) simulation in Subsection 5.3.1. The following Table 5.1

shows the set of parameters that we use to implement all the numerical experiments,

unless otherwise stated.

Table 5.1: Model parameters of the Heston-CIR hybrid model with regime switching.

Parameters S0 ρ V0 θ∗ κ∗ σ r0 α∗ β∗ η T

Values 1 -0.40 0.05 [0.05, 0.075, 0.04]ᵀ 2 0.1 0.05 1.2 [0.05, 0.04, 0.075]ᵀ 0.01 1

In addition, the transition rate matrix for the Markov chain is given by

Q =

 −1 0.1 0.9

0.9 −1 0.1

0.5 0.5 −1

 .

5.3.1 Validation of Our Pricing Formula

Here, we compare the prices of variance swaps from our pricing formula in (5.51)

against those obtained from the Markov Chain Monte Carlo simulation. The sampling

frequency varies from N = 1 up to N = 52, and the MC simulation is conducted using

the Euler discretization with 200,000 sample paths. The comparison is displayed in

Figure 5.1.
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Figure 5.1: Strike prices of variance swaps for the Heston-CIR model with regime
switching and Monte Carlo simulation.
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We see from the graph plot in Figure 5.1 that our pricing formula compares very

well and provides a satisfactory fit to the MC simulation for N = 52 which is the

weekly sampling. In fact, the error calculated between our pricing formula and the MC

simulation is less than 0.077% for N = 52, and this error will be reduced as the number

of sample paths increases. In addition, it should be emphasized that for N = 4, the run

time of our pricing formula is only 3.28 seconds, whereas the MC simulation took about

8200 seconds. It is clear that our pricing formula attains almost the same accuracy in

far less time compared to the MC simulation which serves as benchmark values.

5.3.2 Effect of Regime Switching

In order to explore the economic consequences of incorporating regime switching into

the Heston-CIR model, we present Figure 5.2 which shows the difference between our

pricing formula in (5.51) versus the Heston-CIR model without regime switching in [19].

For the Heston-CIR model without regime switching, we let the parameter values of
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State 1 be θ∗1 = 0.05 and β∗1 = 0.05. For the Heston-CIR model with regime switching,

all parameter values are given in Table 5.1.

Figure 5.2: Strike prices of variance swaps for the Heston-CIR model with and without
regime switching.
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We observe that the prices of variance swaps obtained from the Heston-CIR model

with regime switching are significantly lower than those from the corresponding model

without regime switching. For example, for N = 52, the difference between variance

swaps prices calculated from the two models is 1.001%. This can be explained from

the values of θ∗1 and β∗1 which remain constant, whereas the values of θ∗ and β∗ in the

Heston-CIR model with regime switching vary according to the changing states. Besides

that, for the weekly sampling case, the difference in variance swaps prices between the

two models becomes larger and stabilizes as the sampling frequency reaches 52. One

possible explanation for this is the number of transitions between states in the Heston-

CIR model with regime switching increases as the sampling frequency increases.

In addition, we also examine the economic aftermath for the prices of variance swaps

by allowing the Heston-CIR model to switch across three regimes. In particular, we
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denote θ∗1 = 0.05 and β∗1 = 0.05 for the Contraction state, θ∗2 = 0.075 and β∗2 = 0.04 for

the Trough state, and θ∗3 = 0.04 and β∗3 = 0.075 for the Expansion state respectively.

These values are assumed by noting that a good (resp. bad) economy is identified by

high (resp. low) interest rate and low (resp. high) volatility. We provide the variance

swaps pricing outcome for these three regimes in Table 5.2.

Table 5.2: Comparing prices of variance swaps among three different states in our
pricing formula.

Sampling Frequency State Contraction State Trough State Expansion
N=4 517.89 661.93 464.79
N=12 505.74 648.32 450.21
N=26 502.61 644.83 446.42
N=52 501.28 643.37 444.82

From Table 5.2, we discover that the price of a variance swap is highest in the

Trough state, followed by the Contraction state, and found lowest in the Expansion

state. This trend is consistent throughout all sampling frequencies from N = 4 to

N = 52. We can relate this finding to the economic condition of each of the states.

In particular, the Trough state is the state with the worst economy among the three,

whereas the Expansion state resembles the best economy. Thus, the price of a variance

swap is cheapest in the best economy among the three, and most expensive in the worst

economy among all. This implies that regime switching has an important impact in

capturing the economic changes on the prices of variance swaps.
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Chapter 6

Conclusion and Future Work

The main goal of this thesis is to develop some techniques for pricing variance swaps

under stochastic volatility and stochastic interest rate. To do this, several mathematical

techniques and financial concepts are employed. In this chapter, we summarise the main

outcomes from our analysis and suggest some possible directions for future work. More

precisely, Section 6.1 is devoted to discuss the conclusion of our work in three major

aspects. In Section 6.2, we propose some future research directions which may be worth

of pursuing.

6.1 Conclusion

In this thesis, we study the pricing of discretely-sampled variance swaps in the frame-

work of stochastic volatility and stochastic interest rate. In Chapter 3, we present the

Heston-CIR model for pricing variance swaps with partial correlation imposed between

the asset price and the volatility. We derive a semi-closed form pricing formula for the

fair delivery price of a variance swap via dimension-reduction technique and derivation

of characteristic functions. We demonstrate the practical implementation of our pricing

formula through numerical experiments. We compare the numerical results obtained

from our pricing formula with those from Monte Carlo (MC) simulation and the numer-

ical calculation of the continuously-sampled variance swaps model. We find that the

results from our pricing formula perfectly match the results from the MC simulation.

In addition, the relative difference is further reduced as the number of paths increased.

This provides a verification of our pricing formula since the MC simulation resembles

the real market. Moreover, we also discuss the impact of interest rate on the values of

variance swaps. First, we notice that the value of a discrete variance swap decreases

and converges to the continuous sampling counterpart as the sampling frequency in-
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creases. This is consistent with the convergence pattern of constant interest rate which

had been explored by other researchers. Secondly, we discover that the speed α∗ of

mean-reversion, and the volatility η of the stochastic interest rate have little impact

on the value of variance swaps. Finally, the impact of the long-term mean β∗ of the

interest rate on the value of variance swaps is also discussed. Our results show that

the value of a variance swap increases accordingly as β∗ increases. This highlights the

importance of incorporating stochastic interest rate in pricing variance swaps.

Following the study in Chapter 3, we discuss the pricing of discretely-sampled vari-

ance swaps with full correlation among the asset price, interest rate as well as the

volatility in Chapter 4. This full correlation model is incompliant with the analytical

tractability property due to the presence of non-affine terms in its structure. One pos-

sible way to deal with this issue is to define this model in the class of affine diffusion

processes to obtain its characteristic function. Thus, we determine the approximations

for the non-affine terms and present a semi-closed form approximation formula for the

fair delivery price of a variance swap. From theoretical results and numerical examples,

we show that our pricing formula is efficient in terms of reducing the computational

time, and significantly accurate compared with the continuous sampling model. Fur-

thermore, we also investigate the impact of the correlation coefficients between the

interest rate with the underlying and the volatility respectively on our pricing model.

In particular, we examine how the delivery price of a variance swap changes when the

correlation parameter takes values from -0.5, 0 to 0.5. We discover that the value of a

variance swap increases as the correlation value between the asset price and the inter-

est rate increases. However, the impact of these correlation coefficients becomes less

apparent as the number of sampling frequencies increases. In contrast, we discover that

the correlation coefficient between the volatility and the interest rate has little impact

on the price of a variance swap. The impact of the correlation coefficient on the prices

gets smaller as the number of sampling frequencies increases.

Finally, we investigate the pricing of discretely-sampled variance swaps under stochas-

tic volatility and stochastic interest rate with regime switching. In Chapter 5, we

describe the Heston-CIR model with regime switching which is capable of capturing

several macroeconomic issues such as alternating business cycles. In particular, we as-

sume that the long-term mean θ∗(t) of variance of the risky stock, and the long-term

mean β∗(t) of the interest rate depend on the states of the economy indicated by the

regime switching Markov chain. We demonstrate our solution techniques and derive

a semi-closed form formula for pricing variance swaps. Numerical experiments reveal

that our pricing formula attains almost the same accuracy in far less time compared
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with the MC simulation which serves as benchmark values. To analyse the effects of

incorporating regime switching into pricing variance swaps, we first compare the vari-

ance swaps prices calculated from the regime switching Heston-CIR model with the

corresponding model without regime switching. We find that the prices of variance

swaps obtained from the regime switching Heston-CIR model are significantly lower

than those of its non-regime switching counterparts. In fact, for the weekly sampling

case, the difference in variance swaps prices between the two models becomes larger and

stabilizes towards the end. We relate this finding to the number of transitions between

states in the Heston-CIR model with regime switching which increases as the sampling

frequency becomes larger. Next, we explore the economic consequence for the prices

of variance swaps by allowing the Heston-CIR model to switch across three regimes.

These three regimes represent three economic conditions of the business cycle which

reflects the best, moderate and worst economy. We notice that the price of a variance

swap is cheapest in the best economy among the three, and most expensive in the worst

economy among all. This confirms the essentiality of incorporating regime switching

in pricing variance swaps, since the price of a variance swap changes according to the

respective economic condition.

6.2 Remaining Problems with the Existing Models

In what follows, we shall discuss some potential directions for future research. Overall,

this thesis focuses on pricing variance swaps with stochastic volatility and stochastic

interest rate under the Heston-CIR model. However, we can also consider many other

stochastic processes to represent the dynamics of factors driving the model. For exam-

ple, we can consider the Heston-LIBOR model since there is not much existing literature

concerning the hybrid model of these two processes, especially those involving the LI-

BOR model due to increased complexity. In fact, the structure of the hybrid model can

be modified to include more factors or larger dimensions, as well as additional random

jumps. These would offer interesting ways to evaluate the variance swaps in different

conditions compared with other existing literatures. Furthermore, the techniques pre-

sented in this thesis can be generalised for pricing other derivatives, for example the

third generation volatility products, as well as options on volatility and VIX futures.

Besides that, we believe that the techniques used in this thesis can also be applied to

the problem of pricing variance swaps using the definition of realized variance given in

equation (2.25) which is more popular in the market. This will be one of the research

directions in the future.
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In terms of numerical results, a possible extension would be to consider calibra-

tion and parameter estimation techniques of our pricing model to the volatility index.

In addition, we can also improve the computational efficiency and robustness by im-

plementing effective algorithm schemes for time discretization, and variance reduction

techniques for the MC simulation.

Regarding pricing discretely-sampled variance swaps with full correlation among

all asset classes, we may perform some calibration procedure to obtain the correla-

tion parameters as explained in [99]. Besides that, an empirical study on comparison

between the relative performance of the Heston-CIR model and other hybridizations

of stochastic volatility and stochastic interest rate models with full correlations may

also be investigated. Other techniques may also be implemented to deal with the full

correlation structure, such as the Wishart process proposed in [48].

Finally, for incorporating regime switching in pricing discretely-sampled variance

swaps, Futami [43] estimated the business cycle using observable information obtained

from previous short rate history in predicting the term structure of interest rates. This

helps to filter the current regime from observable short rate, which affects the market

price of diffusion and volatility respectively. Thus, a possible extension would be to an-

alyze our pricing formula under this partial information. Also, it is of practical interest

to explore some approaches to estimate the number of states in the Markov chain, as

well as the parameters for the transition matrix. Another interesting future research

direction is to investigate the inclusion of rare states in the framework of our pricing

model. This notion proposed in [7] is claimed to capture tight liquidity conditions,

which definitely gives extra credit in terms of documenting economic consequences.
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[54] Grünbichler, A.; Longstaff, F. A. Valuing futures and options on volatility. J.

Banking Finance 20 (1996), 985–1001.

[55] Grzelak, L. A.; Oosterlee, C. W. On the Heston model with stochastic interest

rates. SIAM J. Financial Math. 2 (2011), no. 1, 255–286.

[56] Grzelak, L. A.; Oosterlee, C. W. On cross-currency models with stochastic volatil-

ity and correlated interest rates. Appl. Math. Finance 19 (2012), no. 1, 1–35.

[57] Grzelak, L. A.; Oosterlee, C. W.; Van Weeren, S. The affine Heston model with

correlated Gaussian interest rates for pricing hybrid derivatives. Quant. Finance

11 (2011), no. 11, 1647–1663.

[58] Grzelak, L. A.; Oosterlee, C. W.; Van Weeren, S. Extension of stochastic volatility

equity models with the Hull-White interest rate process. Quant. Finance 12 (2012),

no. 1, 89–105.

[59] Gulisashvili, A.; Stein, E. M. Asymptotic behaviour of distribution densities with

stochastic volatility I. Math. Finance 20 (2010), no. 3, 447–477.

[60] Guo, S.; Grzelak, L. A.; Oosterlee, C. W. Analysis of an affine version of

the Heston-Hull-White option pricing partial differential equation. Appl. Numer.

Math. 72 (2013), 143–159.

112



BIBLIOGRAPHY

[61] Haastrecht, A. V.; Lord, R.; Pelser, A.; Schrager, D. Pricing long-dated insurance

contracts with stochastic interest rates and stochastic volatility. Insurance Math.

Econom. 45 (2009), 436–448.

[62] Haentjens, T.; In’t Hout, K. J. Alternating direction implicit finite difference

schemes for the Heston-Hull-White partial differential equation. J. Comput. Fi-

nance 16 (2012), no. 1, 83–110.

[63] Hamilton, J. D. A new approach to the economic analysis of nonstationary time

series and the business cycle. Econometrica 57 (1989), no. 2, 357–384.

[64] Harrison, J. M.; Pliska, S. R. A stochastic calculus model of continuous trading :

complete markets. Stochastic Process. Appl. 15 (1983), no. 3, 313–316.

[65] Heath, D.; Jarrow, R.; Morton, A. Bond pricing and the term structure of interest

rates : a new methodology for contingent claims evaluation. Econometrica 60

(1992), no. 1, 77–105.

[66] Heston, S. L. A closed-form solution for options with stochastic volatility with

applications to bond and currency options. Rev. Financial Stud. 6 (1993), 327–

343.

[67] Heston, S. L.; Nandi, S. Derivatives on volatility : some simple solutions based on

observables. Federal Reserve Bank of Atlanta WP (2000), no. 2000-20.

[68] Hieber, P.; Scherer, M. Efficiently pricing barrier options in a Markov-switching

framework. J. Comput. Appl. Math. 235 (2010), no. 3, 679-685.

[69] Hull, J.; White, A. Pricing interest-rate derivative securities. Rev. Financial Stud.

3 (1990), no. 4, 573–592.

[70] Hull, J.; White, A. Branching out. Risk 7 (1994), no. 7, 34–37.

[71] Jamshidian, F. LIBOR and swap market models and measures. Finance Stoch. 1

(1997), no. 4, 293–330.

[72] Joshi, M.; Stacey, A. New and robust drift approximations for the LIBOR market

model. Quant. Finance 8 (2008), no. 4, 427-434.

[73] Kienitz, J.; Wetterau, D. Financial modelling : theory, implementation and prac-

tice (with MATLAB source). John Wiley and Sons, 2012.

113



BIBLIOGRAPHY

[74] Kijima, M.; Tanaka, K. Alternatives to Black-Scholes formulation in finance. En-

cyclopedia Stat. Sci. (2009), 1–31.

[75] Kim, B.; Kim, J. H. Default risk in interest rate derivatives with stochastic volatil-

ity. Quant. Finance 11 (2011), no. 12, 1837–1845.

[76] Kim, J. H., Yoon, J. H.; Yu, S. H. Multiscale stochastic volatility with the Hull-

White rate of interest. J. Futures Markets 34 (2014), no. 9, 819–837.
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