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Abstract

In this thesis, we study the issue of pricing discretely-sampled variance
swaps under stochastic volatility and stochastic interest rate. In particular,
our modeling framework consists of the equity which follows the dynamics
of the Heston stochastic volatility model, whereas the stochastic interest
rate is driven by the Cox-Ingersoll-Ross (CIR) model. We first extend the
framework of [I19] by incorporating the CIR interest rate into their Heston
model for pricing discretely-sampled variance swaps. We impose partial
correlation between the asset price and the volatility, and derive a semi-
closed form pricing formula for the fair delivery price of a variance swap.
Several numerical examples and comparisons are provided to validate our
pricing formula, as well as to show the effect of stochastic interest rate on

the pricing of variance swaps.

In addition, the pricing of discretely-sampled variance swaps with full
correlation among the asset price, interest rate as well as the volatility is
investigated. This offers a more realistic model with practical importance
for pricing and hedging. Since this full correlation model is incompliant
with the analytical tractability property, we determine the approximations
for the non-affine terms by following the approach in [55] and present a semi-
closed form approximation formula for the fair delivery price of a variance
swap. Our results confirm that the impact of the correlation between the
stock price and the interest rate on variance swaps prices is very crucial.
Besides that, the impact of correlation coefficients becomes less apparent as

the number of sampling frequencies increases for all cases.

Finally, the issue of pricing discretely-sampled variance swaps under
stochastic volatility and stochastic interest rate with regime switching is
also discussed. This model is an extension of the corresponding one in
[34] and is capable of capturing several macroeconomic issues such as alter-

nating business cycles. Our semi-closed form pricing formula is proven to



achieve almost the same accuracy in far less time compared with the Monte
Carlo simulation. Through numerical examples, we discover that prices
of variance swaps obtained from the regime switching Heston-CIR model
are significantly lower than those of its non-regime switching counterparts.
Furthermore, when allowing the Heston-CIR model to switch across three
regimes, it is observable that the price of a variance swap is cheapest in the

best economy, and most expensive in the worst economy among all.
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Chapter 1

Introduction

1.1 Background

This section is devoted to provide some insights regarding the background of important
aspects in this thesis. Subsection 1.1.1 describes some information on volatility deriva-
tives. Following this section is Subsection 1.1.2 which introduces stochastic interest

rate.

1.1.1 Volatility Derivatives

Basically, volatility derivatives are financial derivatives whose values depend on the
future levels of volatility. A major difference between volatility derivatives and other
standard derivatives lies in the volatility term which not only determines the final
calculation points, but also exists in the payoff formulation. According to Demeterfi
et al. [29], volatility derivatives are traded for decision-making between long or short
positions, trading spreads between realized and implied volatility, and hedging against
volatility risks. Without doubt, these are due to the captivating traits of volatility itself
such as mean-reversion, sensitivity to risks and non-positive relationship with the stock
or indices. The utmost advantage of volatility derivatives is their capability in providing
direct exposure towards the asset’s volatility without being burdened with the hassles
of continuous delta-hedging. This is due to the fact that constant buying and selling
activities in delta-hedging would result in high transaction costs and liquidity issues.
The tremendous spike in the trading volume of volatility derivatives recently can be
related to their importance in providing volatility exposures to market practitioners.
The Chicago Board Options Exchange (CBOE) reported that the average daily trading

volume of futures on its VIX volatility index showed an increasing trend, and climbed
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26 percent from 159498 in 2013 to 200,521 in 2014. An increment of 11 percent was also
exhibited by the VIX options in the same period, with the same overall rising pattern
from the year 2006 up to 2014.

Figure 1.1: Average daily trading volume of VIX futures.
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Figure 1.2: Average daily trading volume of VIX options.
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Historically, M. Brenner and D. Galai were the pioneers of trading activities for
volatility derivatives back in 1993 where implied volatilities of at-the-money (ATM)
options were used to develop a volatility index. In the same year, a volatility index
known as VIX was launched by CBOE. VIX offered an alternative for Brenner and
Galai’s approach by focusing on the one-month implied volatilities of S&P 100 index
options. Starting from this point, other countries such as German and Austria also
announced their volatility indexes respectively. By 1996, the trend of trading a class of
volatility derivatives known as the volatility swaps was observed. This was followed by
the trading of variance swaps back in 1998 due to the impact brought by the crash of the
Long Term Capital Management. By 2005, the third generation of variance derivatives
such as options on realized variance, conditional variance swaps and corridor variance
swaps have started to trade actively. Further details regarding the evolution of volatility
derivatives can be found in [22].

Generally, volatility can be measured in three main ways, namely historical volatil-
ity, implied volatility and model-based volatility. Historical volatility is mainly related
to previous standard deviation of financial returns involving a specified time period.
Examples of volatility derivatives written on this historical volatility measure include
variance swaps, volatility swaps and futures on realized variance launched by CBOE.
For the implied volatility, it ascertains the volatility by matching volatilities from the
market with some specific pricing model. The VIX of CBOE estimates this type of
volatility measure of the S&P 500 index. Finally, the model-based volatility is defined
in the class of stochastic volatility models as done in [66], [101] and others.

Volatility derivatives’ transactions involve two main methods known as static repli-
cation and delta hedging. For the static replication, the essential ingredients are con-
tinuum of strikes from market prices, deals occurring only at initial and maturity times,
and existence of futures market. This method is suitable for options insensitive to price
changes by mixing uniform weighting of returns from high and low option strikes. It is
more favourable than the ATM implied volatilities because it does not assume constant
volatility or continuous underlying price process. Moreover, it retains the volatility
responsiveness along the time interval even throughout cases of extreme price changes.
In order to overcome this, the method of delta hedging is proposed. Here, the assump-
tion of continuous semi-martingale is imposed on the underlying futures price process,
whereas the assumption for the volatility does not change from previous. The replica-
tion conducted using the Black model with constant volatility (the hedging volatility)
will produce errors based on the nature of volatility itself which is stochastic. Some

rules are followed in order to determine whether the errors induce profit or loss. A loss
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is observed if the hedging volatility is always less than the realized volatility and vice
versa. The ultimate profit and loss for an option can be incurred from daily summation
throughout the option’s lifetime, which reflects the evaluation formula for a variance
swap. The only difference is that delta hedging holds the path-dependence property
since its weights has subordinations with the option’s gamma. Little and Pant [80] sug-
gested using stochastic volatility models or specifying the payment function to relax
the path-dependency property.

In Chapter 2 of this thesis, we will introduce a special type of volatility derivatives,
namely variance swaps. Variance swaps were first launched in 1998 due to the break-
through of volatility derivatives in the market. An extensive review of variance swaps

can be found in [11].

1.1.2 Stochastic Interest Rate

In today’s modern financial world, interest rate and its ever-changing feature is one
of the most debated issues among economists, investors and researchers. This is due
to the fact that it possesses strong influence towards all types of derivative securities.
Dynamics of the interest rate is determined by many factors, and this largely affects all
other financial derivatives which are very responsive towards it. These financial deriva-
tives are defined in [I08] as interest-rate derivatives, which range from fixed-income
contracts such as bond options, caps, floors, and swaptions, to more complicated and
path-dependent contracts such as index amortizing rate swap. Basically, the financial
derivatives values are indirectly derived from values of other traded equities, and their
future prices will also be influenced by the future prices of those traded equities. Bank
for International Settlements (BIS) reported E| that interest rate derivatives dominated
over 82 percent of the total outstanding amount of over-the-counter (OTC) derivatives
in 2010. This value was constructed by 77 percent of swaps, followed by 12 percent of
forward rate agreement and 11 percent of total options respectively.

Factors that influence levels of market interest rate are recognized as expected lev-
els of inflation, general economic activities, current status of surplus or deficit, foreign
exchange market and political stability [5I]. Without doubt, the interest rate concept
has long been incorporated into our daily lives. One simple example is an expecta-
tion of money growth with certain rates after depositing money in bank accounts for

some specific period. As for creditors, they would also expect some increase in the

"http:/ /www.slideshare.net /francoischoquet /build-curve-cpt
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Figure 1.3: Trading volume of interest rate derivatives and the respective
instruments breakdown as in June 2010.
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amount received later from the debtors, with certain rates incurred on the borrowed
amount. The greater the term to maturity involved, the greater the uncertainty would
be. Practitioners in the financial and economics world have long realized how crucial
the role played by interest rate is. First, pricing of actuarial commodities or any other
assets in the market is figured out through discounted cash flows calculated until ma-
turity. These discounts would rely on default-free dynamic interest rate, also named
as spot rates. Secondly, interest rate also greatly influences actions taken in businesses
or organizations. The rate of return that could be gained during choosing investment
opportunities offering equal risks would concern interest rate. Moreover, if there are
optional chances that involve different rates but looks promising enough, then the ones
that come out with less interest rate will likely be considered. In addition, the govern-
ment will also be assisted in dealing with pricing issues and choosing debt opportunities
with the least cost, along with other financial policies.

Cox et al. [27] criticized the four prominent theories of the Term Structure of Inter-
est Rates (TSIR) which comprised of the Expectations Hypothesis, Liquidity Preference
Theory, Market Segmentation Theory and Preferred Habitat Theory. They stressed on
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the importance of encompassing the uncertainties which later led to investigation of
stochastic interest rate models. Yet, it is undeniable that this goes inextricably with
the real scenarios occurring in the financial and economics world. Perturbations of lig-
uid zero-coupon bond prices, along with insufficiency in their amounts are among the
realities that have to be faced in today’s market. In addition, since the financial world
is full of uncertainties, analysis of the spot rates and forward rates becomes more and
more complicated and hard. There are also many cases in the market where the data
are unclear, indefinite in their boundaries, and not very reliable in order to anticipate
future interest rate. Examples are subjective interest rate expectations and beliefs of
experts, and prices of fixed income securities. Not only that, the dynamics of financial
asset prices also should be given attention to prevent information loss. It is also impor-
tant to ensure that the model chosen to represent the yield curve is capable enough of
including a variety of possible shapes. Hence, it is inherent to model the interest rate
as a random variable since its future value holds the random outcome property which
is not predictable.

Generally, the modeling trend of stochastic interest rate can be seen as develop-
ing from unobservable rates such as spot rates, to market rates regularly practised by
financial institutions. O. Vasicek was the pioneer of the field when he introduced a
general model of interest rate in 1977 by assuming normal distribution for the instan-
taneous short rate, refer to [I07]. Since the normally distributed property might result
in negative values for the short rate, Cox et al. [27] (in short, CIR) came up with
non-central chi-square distributed short rate model. However, this model might result
in imperfect fit when calibrated towards the observed TSIR. Thus, Hull and White [69]
(in short, HW) proposed improvements for both the Vasicek and CIR model in 1990.
Unfortunately, the extension for the CIR model was regarded as not fully tractable and
did not ensure perfect fitting during calibration, as pointed out in [I5]. Starting from
this point, a methodology which imposed stochastic structure directly on the evolu-
tion of the forward rate curve was introduced in 1992 to avoid arbitrage opportunities.
Known as the Heath, Jarrow and Morton (in short, HIM) model, it can be used to price
and hedge consistently all contingent claims of the term structure, see [65]. Along the
general framework of HJM; Brace et al. [12] further analysed a class of term structure
models with volatility of lognormal type. This market model possessed the advantage
of having observable rates which are quoted by financial markets, compared with spot
rate and forward rate models. In addition, it is also consistent with the Black formulas
currently being practiced.

In this thesis, we apply some stochastic interest rate models to price variance swaps.
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Generally, the maturities of most liquid variance swaps are between three months up
to around two years. However, variance swaps traded in indices and more liquid stocks
have maturities around three years, or even up to five years and beyond. An example
of the related market is the Euro Stoxx 50 which is a stock index of Eurozone stocks
designed by STOXX, refer to [2]. Since previous researchers claimed that constant
interest rate is only appropriate for short term maturity financial derivatives, it is

crucial to use stochastic interest rate models when pricing such variance swaps.

1.2 Literature Review

Researchers working in the field concerning volatility derivatives have been focusing on
developing suitable methods for evaluating variance swaps. In this thesis, we shall sep-
arate these methods into two main categories : analytical and numerical approaches.
For the analytical approaches, Carr and Madan [23] combined static replication using
options with dynamic trading in futures to price and hedge certain volatility contracts
without specifying the volatility process. The principal assumptions were continuous
trading and continuous semi-martingale price processes for the future prices. The selec-
tion of a payoff function which diminished the path dependence property ensured that
the investor’s joint perception regarding volatility and price was also taken into consid-
eration. Further, Demeterfi et al. [29] also produced work in the same area by proving
that a variance swap could be reproduced via a portfolio of standard options. The
requirements specified were continuity of exercise prices for the options and continuous
sampling times for the variance swaps. In addition, incorporation of stochastic volatil-
ity into the pricing and hedging models of variance swaps also has been a recent trend
in the literatures. Elliott et al. [37] constructed a continuous-time Markov-modulated
version of the Heston stochastic volatility model to distinguish the states of a business
cycle. Analytical formulas were obtained using the regime switching Esscher trans-
form and price comparisons were made between models with and without switching
regimes. Results showed that prices of variance swaps implied by the regime switching
Heston stochastic volatility model were significantly higher than those without switch-
ing regimes. Grunbichler and Longstaff [54] also developed pricing model for options
on variance based on the Heston stochastic volatility model. One important finding
was the contrast characteristics between volatility derivatives and options on traded
assets. However, it was later noted by Heston and Nandi [67] that specification of the
mean-reverting square-root process is difficult to be applied to the real market. Thus,

the latter proposed a user-friendly model by working on the discrete-time GARCH
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volatility process with parametric specifications. This model had the advantage of real
market practicability, as well as the capability to hedge various volatility derivatives
using only single asset. Another interesting study by Swishchuk and Xu [103] focused
on introducing delay into stochastic volatility models which also involved jumps for
pricing variance swaps. This delay is different from the usual filtration definition since
the asset price will be determined by the entire information starting from the inception
point. They also provided techniques to reduce risk via lower bounds for the delay
process. Based on their experiments on the S&P Canada index from 1999-2002, they
concluded that their model resulted in higher pricing based on the higher liabilities
involved. Overall, all of these researchers assumed continuous sampling time, whereas
the discrete sampling is the actual practice in financial markets. In fact, options of
discretely-sampled variance swaps were mis-valued when the continuous sampling were
used as approximations, and produce huge inaccuracies in certain sampling periods, as
discussed in [9] 34} 80, 119].

Recognizing the fact that the continuous sampling evaluation is contrary to the
real market, the focus of research has actuated towards discrete sampling. Besides
ensuring that this condition is fulfilled, researchers also tried to handle the internal
problems commonly occurring in the literature. Carr and Lee [22] addressed the is-
sue of pricing errors in replication strategies up to the third order when at-the-money
(ATM) was used for predicting realized variances. They provided a new formulation
for the implied volatility along with weight functions, and conditioned on sufficient
conditions for approximating volatility swaps which resulted in pricing rates with least
errors. Quite recently, Zheng and Kwok [116] highlighted the importance of utilizing
the joint moment generating function for assessing prices of third generation volatility
products. These gamma swaps, corridor gamma swaps and conditional variance swaps
were tested against the ones on continuous sampling to explore the effects on con-
vergence, sampling intervals and sensitivities. Even though these products exhibited
convergence towards continuous sampling, linearity was not a must. The period speci-
fied in contracts and parameter numbers also influenced the fair strike prices. However,
gamma swaps were not affected by the variations in sampling intervals. Furthermore,
these authors also discussed the diminishing precision problem for short term volatility
derivatives and variance products with nonlinear payoffs. Later on, saddlepoint ap-
proximation formulas were derived in [I17] along with conditional saddlepoint method
based on simulation paths. As predicted, the method of Zheng and Kwok worked well
for short time intervals, specially for in-the-money (ITM) options. Also, reasonable

accuracy was achievable by varying through various strikes and interval levels.
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In addition to the above mentioned analytical approaches, some other authors also
conducted researches using numerical approaches. Little and Pant [80] explored the
finite-difference method via dimension-reduction approach and obtained high efficiency
and accuracy for discretely-sampled variance swaps. The main tool was the assump-
tion of the local volatility as a known function of time and spot price of the underlying
asset. Furthermore, Windcliff et al. [I09] investigated the effects of employing the
partial-integro differential equation on constant volatility, local volatility and jump
diffusion-based volatility products using delta-gamma hedging. Large transaction costs
involved in constant volatility models may result in inefficiency of their delta-gamma
hedging modus. Thus, they suggested that institutions hedging the swaps propose
clients as natural counter-parties to reduce the transaction costs. An extension of the
approach in [80] was made by Zhu and Lian in [I19] through incorporating Heston
two-factor stochastic volatility for pricing discretely-sampled variance swaps. Levels
of validity for short periods when using the continuous-time sampling were provided
through significant errors, along with analytical hedging derivations and numerical
simulations. However, a much simpler approach was explored by Rujivan and Zhu [93]
who proved that it was not necessary to include the generalized Fourier transform and
putting in state variable in the previous framework. Their method for solving the par-
tial differential equations consists of applying the Schwartz solution procedure which
fulfilled certain inequalities in order to obtain an affine global solution. Their method
was favourable in terms of being directly related to the conditional variance, skewness
and kurtosis. Another recent study was conducted by Bernard and Cui [9] on analyt-
ical and asymptotic results for discrete sampling variance swaps with three different
stochastic volatility models. Their Cholesky decomposition technique exhibited signifi-
cant simplification compared with the work in the literature. However, the assumption
of constant interest rates by these authors as well as other previous authors involving
variance swaps was unrealistic with the real market phenomena.

In the past three decades, many authors have concentrated on the issue of mod-
elling interest rate and its application in financial derivatives’ pricing using stochastic
approaches. Yet, it is undeniable that this goes inextricably with the real scenarios
occurring in the financial and economics world. Elliott and Siu [36] pointed out that
stochastic interest rate models should be capable of providing a practical realization
of the fluctuation property, as well as adequately tractable. They derived exponential-
affine form of bond prices with elements of continuous-time Markov chains using en-
larged filtration and semi-martingale decompositions. Moreover, Kim et al. [76] showed

that incorporation of stochastic interest rate into a stochastic volatility model gave bet-
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ter results compared with the constant interest rate case in any maturity. They pro-
posed a model which was a combination of the multi-scale stochastic volatility model
n [42] and the Hull-White interest rate model. The call option price approximation
for this mixed model was obtained via derivation of the leading order and the first
order correction prices using Fouque’s multiscale expansion method and operator spec-
ifications for the correction terms. In addition, Grzelak and Oosterlee [55] examined
correlation issues of Kuropean products pricing with the Heston-Hull-White and the
Heston-CIR hybrid models. These resulted in big errors for some short-maturity op-
tions which was another drawback of the constant interest rate. Another recent study
by Shen and Siu [97] showed the important effects of both stochastic interest rates and
stochastic volatility with regime switching for pricing variance swaps. Even though
their regime switching approach was capable of incorporating inconsistencies between
different business steps, they only considered continuous sampling approximation and
formulated their variance swap rates in integral form.

In the literature, there has also been a growing number of researchers working in
numerical techniques for pricing financial derivatives involving stochastic interest rates.
For example, both Guo et al. [60], and Haentjens and In’t Hout [62] employed the finite-
difference scheme specializing in the amalgamation of the Heston and the Hull-White
model. The alternating direction implicit (ADI) time discretization scheme was built
up from specifications of boundary conditions and sets of grid points were chosen. The
main difference between these two approaches was the number of stochastic differential
equations involved, since the former authors were concerned with the change of measure
whereas the latter authors did not. Also, the number of experiments considered in [62]
involved a wider range.

The model setup featured in this thesis can be categorized in the class of hybrid
models, which describe interactions between different asset classes such as stock, inter-
est rate and commodities combined together as new. The main aim of these models is
to provide bespoke alternatives for market practitioners and financial institutions, as
well as reducing the associated risks between the underlyings. Newly-found stochas-
tic differential equations according to the types of models considered will be derived.
The evolving number of complex hybrid models featuring various underlyings can be
related to the modernisation of the financial markets today, along with computational
advancements. Some popular examples are the hybridization of equity-interest rate
products, as well as the combination of equity-FX rate models.

Hybrid models can be generally categorized into two different types, namely hybrid

models with full correlations, or hybrid models with partial correlations among the
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engaged underlyings. These models are later analyzed using analytical or numerical
approaches according to the techniques and complexities involved. The correlation
issue can be directly linked to the highlighted importance of imposing correlations,
either partially or fully, in the literature. Grzelak et al. [57] and Chen et al. [24]
stressed that correlations between equity and interest rate are crucial to ensure that
the pricing activities are precise, especially for industrial practice. A study done in
[46] on auto-callable securities revealed the effects of correlation between equity and
interest rate in terms of the increment or reduction of the final product prices. The
essentiality of this property was later illustrated for the Heston-Vasicek and Heston-
CIR++ model by imposing indirect correlations through approximations. A detailed
description regarding correlation effects among interest rate, volatility and the equity
respectively can be found in [61] which provided comparisons in terms of graph shapes
and maturity time. According to these authors, the correlation effects between equity
and interest rates were more distinct compared with the correlation effects between
interest rates and volatility.

Hybrid models with partial correlations between asset classes seem to dominate
the field due to less complexity involved. Majority of the researchers focus on either
inducing correlation between the stock and interest rate, or between the stock and
the volatility. Grzelak and Oosterlee [56] overcame the limitations in [55] regarding
interest rate smiles by modeling multi-currency models with smiles for FX rate, do-
mestic and foreign fixed income market, respectively. This was achievable through the
Heston-Libor hybrid model which involved the freezing of Libor rates technique due
to the non-affine property. Results showed that their model is excellent in terms of
producing small errors compared with the original model. Another study focusing on
pricing vanilla options using the Heston-multifactor Gaussian hybrid model was done
n [57], where comparisons with the Schobel-Zhu-Hull-White (SZHW) hybrid model
were made as well. Exploitation on the analytical tractability of Gaussian processes
produced decent fitting to ATM volatility structures, along with closed form solutions
for the caps and swaptions. In contrast, Ahlip and Rutkowski [I] derived a semi-closed
form pricing formula for FX options with Heston stochastic volatility for the exchange
rate and the CIR dynamics for the domestic and foreign interest rates. These authors
also displayed the effects of incorporating the stochastic interest rates and options’ ma-
turity. Furthermore, Ziveyi et al. [121] utilized numerical techniques via sparse grid
quadrature for the pricing of deferred annuity options. An interesting observation was
the ability to obtain closed form formulas which departed from the usual practice of

numerical approximations or Monte Carlo simulation. This was accomplished using
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Duhamel’s principle and the method of characteristics. Recently, several authors also
imposed correlations both between the stock and interest rate, and between the stock
and the volatility. An example of analytical technique can be found in [24] where
the Stochastic-Alpha-Beta-Rho (SABR)-HW model was proposed. Even though this
model enjoyed calibration resolution from its inverse projection formula, the calibrated
parameters were only applicable for a single maturity and could not provide a consistent
description of the dynamics. As for numerical approach techniques, the finite-difference
method was employed in [60] along with Alternating Direction Implicit (ADI) scheme
for investigating approximation properties for Heston-Hull-White model. It was con-
cluded that the errors between the solutions of the full scale Heston-Hull-White and its
approximation were fairly small. In addition, only the changes in correlation parameters
between the interest rate and the stock had impact on those errors.

The hybrid models with full correlations between underlyings also attracted atten-
tion for improved model capability. Grzelak et al. [58] and Singor et al. [99] compared
their Heston-Hull-White hybrid model with the SZHW hybridization for pricing infla-
tion dependent and Furopean options respectively. Their techniques differ in the way
that the former applied square-root approximation method in [55], whereas the latter
extended the space vector into one additional dimension. In 2011, some advancements
involving numerical techniques were observed through the ADI scheme and the sparse
grid approach. The Heston-CIR case for American compound type option studied in
[26] and the Heston-Hull-White model used in [62] gave increased accuracy and capa-
bility, as well as improved convergence property. Moreover, an exquisite contribution
in the literature of Heston-CIR model was attained in [48] where closed form solutions
of FX options and basic interest rate derivatives were achieved. Their technique of
modeling the involved random factors of interest rate and the volatility of the exchange
rate under a process of Wishart matrix promised full analytical tractability.

Despite of the relevance of imposing correlations as described above, the attention
should be drawn on the ability of the hybrid models to hold their analytical and compu-
tational tractability. This is not surprising based on their expanded ramification, and
the fact that this is one of the long standing problems in finance. One possible approach
is to implement some modifications in these models’ structure so that the property of
affine diffusion models could be ensured. This framework which was adopted from
[31] guarantees that the state vector would result in closed or nearly closed form ex-
pressions. This is applicable with the aid of the characteristic function obtained from
Fourier transform techniques. Other advantages of affine diffusion models include the

ability to replicate numerous shapes of the term structure, and also provide adequate
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fitting either to the whole or initial term structure, refer to Paseka [87].

The supremacies of incorporating the Markov regime switching techniques into fi-
nancial economics modeling have long been discussed in the past four decades. The
concept of regime switching was first introduced by Goldfeld and Quant [49] in 1973
to characterize parameter changes in nonlinear and non-stationary models. Basically,
a regime switching process involves an unobservable variable in the time-series that
switches among a certain number of states with independent price process for each
state. The switching from one state to another results in a switching probability
which is combined with the joint conditional probability of the current state to produce
joint conditional probability for each future state. These processes are filtered by the
transition probability matrix. The notion of regime switching was later developed by
Hamilton [63] who considered discrete auto-correlated shifts between positive and neg-
ative growth rates in the US post-war business cycles. The author found out that the
Markov regime switching approach succeeded in capturing complex dynamic patterns
in economic transitions. Based on this realization, incorporation of Markov chains into
financial modelling with added adjustability and manageable properties can be seen for
some unsolved problems in interest rate modeling. These include sudden jumps in the
interest rate dynamics due to unpredictable market events, and the cyclical nature of
time-series of interest rates according to the economic cycles.

The first advantage of Markov regime switching could be seen via its efficiency to
capture the nonlinear behavior in market trading. Goldfeld and Quant [49] initiated
this idea based on the vast quantity of work done on identifying nonlinear param-
eterizations and their importance. The regime switching models’ state dependence
on transition probabilities towards lagged level of instantaneous rates, along with the
ability to illustrate the unit root traits of those rates assisted in predicting interest
rates effectively, see [0l [53]. In addition, regime switching models are also proficient
for accommodating financial time-series with time-varying properties through shifting
patterns exhibited between recession and growth states, refer to [36, 63, [100]. Roma
and Torous [90] claimed that some properties of interest rates such as increment at
peak business stages and plunge at trough stages could not be explained by classical
interest rate models. In fact, it is important to ensure that the cyclical nature of time-
series of interest rates is well described in a model which also allows possible structural
changes, such as inclusion of jumps. Moreover, regime switching models also provide
the flexibility which might include the mean-reversion, asymmetric distribution or oth-
ers. Previous studies, e.g., Elliott and Mamon [35], and Elliott and Wilson [38] showed

that the dynamics of interest rates was modeled excellently when the mean-reverting
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level followed a finite state continuous Markov chain. An interesting observation was
noted from the stochastic nature of the business cycle lengths and intensities inherited
from the uncertainties involved in the Markov chain. In addition, the present applica-
bility of the regime switching techniques along with their substantial effects should not
be ignored. Ang and Bekaert [5] proved empirically that neglecting regime switching
for a conditionally risk-free asset incurred more cost which was equivalent to neglecting
overseas investment opportunities. Recent work in Liew and Siu [79] and Zhou and
Mamon [118] also revealed that regime switching models could display some important
observations in the market such as volatility clustering and heavy tail distributions of
returns, as well as replication of irregular yield curve shapes. The authors of [118]
also certified that regime switching models calibrated better and gave more accurate
predictions when compared with their counterparts.

The research work in the literature on option pricing, interest rate modeling as well
as volatility derivatives exposed the immense popularity of the Markov regime switch-
ing technique. For instance, examples are given in evaluating forward starting options
n [89], barrier options in [68], Asian options in [I14], American options in [I12] and
volatility derivatives in [85] [97]. The prevailing issue identified in all of these papers
is on overcoming the incomplete market environment induced by the uncertainties of
the regime switching. Several techniques proposed in recent work include introduction
of additional securities [I15], utilization of Esscher transform [34], and implementation
of minimal martingale measure approach, see [7, 52, [94]. Zhang et al. [I15] added
sets of Markov jump assets and ensured that the configuration of the portfolio was
equivalent continuously to guarantee that the market was complete. The main objec-
tive was to initiate new assets with bigger filtration having its own unique equivalent
martingale measure. As for Esscher transform, this time-honored tool can be tracked
back to [45] where the applicability of Esscher transform for price processes modulated
by stochastic processes with stationary and independent increments was suggested.
Pricing formulas for European options were given by characterizing Esscher transform
under the risk-neutral probability measure. This concept was later developed by Elliott
et al. [33] who justified their choice of equivalent risk-neutral measure for European call
options using the Bayes rule and the Girsanov theorem. The essence of incorporating
regime switching for pricing variance and volatility swaps under the Heston stochastic
volatility model was illustrated in [34] and [37]. In fact, these papers conducted ex-
periments on two regimes representing economies in good and bad states. However,
these two papers were distinguished in the sampling type chosen, where the latter con-

centrated on continuous sampling compared to discrete sampling case by the former.
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In addition, Elliott et al. [37] adopted probabilistic and partial differential equation
approach to find the conditional price of the volatility derivatives, whereas Elliott and
Lian [34] derived forward characteristic functions with the aid of Fourier transform.
In contrast, the authors of [7, [52] handled the Markov modulated market by taking
benefit of the minimal martingale measure via local risk minimizing stategy. Prices of
defaultable bonds, variance and volatility swaps were obtained respectively using the
Follmer-Schweizer decomposition which later resulted in solutions of partial differential
equations. Working under the same domain, Salvi and Swishchuk [94] took a different
approach in tackling the problem by using the Fubini theorem and the property of
conditional expectation for pricing covariance and correlation swaps. These result in
approximations which were given at the first order, where daily interpolation was taken
into account.

Integration of Markov regime switching techniques with stochastic interest ra