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Abstract

The celebrated Black-Scholes model on pricing a European option gives a simple and

elegant pricing formula for European options with the underlying price following a

geometric Brownian motion. In a realistic market with transaction costs, the option

pricing problem is known to lead to solving nonlinear partial differential equations

even in the simplest model. The nonlinear term in these partial differential equations

(PDE) reflects the presence of transaction costs. Leland developed a modified option

replicating strategy which depends on the size of transaction costs and the frequency of

revision. In this thesis, we consider the problem of option pricing under the Heston-CIR

model, which is a combination of the stochastic volatility model discussed in Heston

and the stochastic interest rates model driven by Cox-Ingersoll-Ross (CIR) processes

with transaction costs. in this case, the reacted nonlinear PDE with respect to the option

price does not have a closed-form solution. We use the finite-difference scheme to solve

this PDE and conduct model’s performance analysis.
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Chapter 1

Introduction

1.1 Background and Literature Review

Transaction costs are expenses incurred when buying or selling a good or service. One of

assumptions in the Black-Scholes (Black & Scholes, 1973) model assumed no transac-

tion cost in the continuous re-balancing of a hedged portfolio. In real financial markets,

this assumption is not valid. The construction of hedging strategies for transaction cost

is an important problem. Leland (Leland, 1985) presented a proportional transaction

cost based on a method for hedging call option and Black-Scholes assumptions. He

assumed the hedge strategy of re-hedging at every time step to give the fundamental of

option pricing model with transaction costs. This model assumes that the portfolio of

option is re-balanced at every time step, the bid-offer spread and the cost have propor-

tion of the value traded. Then, Hodges and Neuberger (Hodges & Neuberger, 1989)

described the replication of a hedged contingent claim under proportional transaction

costs. They derived an optimal replicating strategies by considering an alternative and

simpler claim which is better than the strategy derived by Leland.

Boyle and Vorst (Boyle & Vorst, 1992) used the long-term price to approximate

the Black-Scholes formula with an adjusted variance which is similar to the optimal

8



Chapter 1. Introduction 9

strategies derived by Leland (Leland, 1985). The results of Leland and Boyle and Vorst

are not very effective to the volatility in the Black-Scholes formula. Davis, Panas and

Zariphopoulou (Davis, Panas & Zariphopoulou, 1993) considered a framework under

which proportional transaction charges are levied on all sales and purchases of stock.

In this case, "perfect replication" is no longer possible, and holding an option involves

an essential element of risk. They derived a non-linear function as unique viscosity

solution with different boundary conditions. Hoggard, Whalley and Wilmott (Hoggard,

Wilmott & Whalley, 1994) derived a non-linear parabolic PDE for the option price and

gave results for several simple combinations of options, as their results are different

from those before. They proposed a portfolio of European options for hedging with

transaction costs. This paper assumed the fixed length of time step and reduced the

modified variance case presented by Leland. As previously mentioned, the results from

Leland need to be proved. Lott (Lott, 1993) provided a rigorous mathematical proof of

the footnote remark for Leland’s conjecture which claims that the level of transaction

costs is a constant. Kabanov and Safarian (Y. M. Kabanov & Safarian, 1997) calculated

the hedging error and proved the approximation results for this, because the Leland’s

constant level of transaction costs is incorrect.

Dewynne, Whalley and Wilmott (Dewynne, Whalley & Wilmott, 1994) considered

option pricing with transaction costs to a model, in terms of differential equations. Soner,

Shreve and Cvitanić (Soner, Shreve & Cvitanić, 1995) proved that if we are attempting

to dominate a European call, then we can use the trivial strategy of buying one share

of the underlying stock to dominate the European call and holding to maturity. They

derived the least expensive method of dominating a European call in a Black-Scholes

model with proportional transaction costs. Mohamed (Mohamed, 1994) considered the

issue of hedging options under proportional transaction costs and attempted to evaluate

several re-hedging strategies by Monte Carlo simulations. His results found that the

best hedging strategy is the Whalley and Wilmott approximation for the Hodges and
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Neuberger utility maximization. Whalley and Wilmott (Whalley & Wilmott, 1997)

analyzed the different Black–Scholes fair values for pricing European options with

re-hedging transaction costs in real financial market. They used the asset price and

time in an inhomogeneous diffusion equation to improve the the optimal hedging

strategy. Indeed, both Mohamed (Mohamed, 1994) and Whalley and Wilmott (Whalley

& Wilmott, 1997) found a dynamic band for the hedging strategy involving with the

option’s gamma.

Grannan and Swindle (Grannan & Swindle, 1996) illustrated a method for construct-

ing option hedging strategies with transaction costs which contains Leland’s discrete

time replication scheme. They obtained a strategy using different time intervals between

hedging, replication error for a given initial wealth will significantly reduce. Cvitanić

and Karatzas (Cvitanić & Karatzas, 1996) derived a formula for the minimal initial

wealth needed to hedge strategies with transaction costs and proved an optimal solution

to the portfolio optimization problem of maximizing utility from terminal wealth in the

same model. Ahn et al. (Ahn, Dayal, Grannan, Swindle et al., 1998) established the

concept of diffusion limits for hedging strategies. They obtained the expressions for

replication errors of stock price strategies and a variety of "renewal" strategies.

Grandits and Schachinger (Grandits & Schachinger, 2001) proved the limiting

hedging error is a removable discontinuity at the exercise price. According to a quantit-

ative result they determined the rate at which that peak becomes narrower as the lengths

of revision intervals change. Baran (Baran, 2003) gave a quantile hedging for strategy

effectiveness and shortfall risk in a discrete-time market model with transaction costs.

Pergamenshchikov (Pergamenshchikov, 2003) proved the limit theorem of the Leland

strategy for an approximate hedging and the rate of convergence. Wilmott (Wilmott,

2006) presented a review for the Leland’s model (Leland, 1985) for transaction costs

and the Hoggard–Whalley–Wilmott model (Hoggard et al., 1994) for option portfolios.

Zhao and Ziemba (Zhao & Ziemba, 2007b) identified that the Leland’s claim has
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mathematical defects. This means that we cannot optimize the option price with

transactions costs in the Black–Scholes model (Black & Scholes, 1973). Zhao and

Ziemba (Zhao & Ziemba, 2007a) simulated the volatility adjusted by the length of

trading interval and the transaction costs. They specified the Leland’s model without

including the cost of establishing the initial hedge ratio. Leland (Leland, 2007) corrected

this problem. The results of Lott (Lott, 1993) and Kabanov and Safarian (Y. M. Kabanov

& Safarian, 1997) can be used on the case of more general pay-off functions and

unevenness revision intervals, but the terminal values of portfolio do not converge to

the non-convex pay-off function. Lépinette (Lépinette, 2008) suggested a modification

to Leland’s strategy to solve the identification of Kabanov and Safarian. Lépinette

(Lépinette-Denis, 2009) showed that the convergence holds for a large class of concave

pay-off functions to the Leland strategy. Kabanov and Safarian (Y. Kabanov & Safarian,

2009) considered the hedging errors of Leland’s strategies and arbitrage theory for

markets with transaction costs. They used a multidimensional HJB equation for the

optimal control of portfolios in the presence of market friction. Denis and Kabanov

(Denis & Kabanov, 2010) found the convex pay-off function and the first order term of

asymptotics for the mean square error. Denis (Denis, 2010) showed that a convex large

class of the pay-off functions for the Leland’s strategies.

Recently, the most advanced domains of mathematical finance is the arbitrage

theory for financial markets with proportional transaction costs. Grépat and Kabanov

(Grépat & Kabanov, 2012) established criteria of absence of arbitrage opportunities

under small transaction costs for a family of multi-asset models of financial market.

Guasoni, Lépinette and Rásonyi (Guasoni, Lépinette & Rásonyi, 2012) proved the

Fundamental Theorem of Asset Pricing with transaction costs, when bid and ask prices

follow locally bounded cadlag processes. The result of this paper relies on a new

notion of admissibility, which reflects future liquidation opportunities. The Robust

No Free Lunch with Vanishing Risk condition implies that admissible strategies are
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predictable processes of a finite variation. Mariani and Sengupta (Mariani & SenGupta,

2012) proposed a particular market completion assumption which asserts the asset

is driven by a stochastic volatility process and in the presence of transaction costs

and led to solving a nonlinear partial differential equation to find the price of options.

Under this paper, Mariani, SenGupta and Bezdek (Mariani, SenGupta & Bezdek,

2012) gave an algorithmic scheme to obtain the solution of the problem by an iterative

method and provide numerical solutions using the finite difference method. As we

know, if the transaction cost rate does not depend on the number of revisions, the

approximation error does not converge to zero as the frequency of revisions tends to

infinity. Lépinette (Lépinette, 2012) suggest a modification of Leland strategy ensuring

that the approximation error vanishes in the limit.

In particular, transaction costs can be approximately compensated applying the

Leland adjusting volatility principle and asymptotic property of the hedging error due to

discrete readjustments is characterized. Nguyen (H. Nguyen, 2014) showed that jump

risk is approximately eliminated and the results established in continuous diffusion

models are recovered. They also confirmed that for constant trading cost rate, the

results established by Kabanov and Safarian (Y. M. Kabanov & Safarian, 1997) and

Pergamenshchikov (Pergamenshchikov, 2003) are valid in jump-diffusion models with

deterministic volatility using the classical Leland parameter. Florescu, Mariani and

Sengupta (Florescu, Mariani & Sengupta, 2014) considered the nonlinear term in these

partial differential equations (PDE) which reflect an underlying general stochastic

volatility model of transaction costs. In this premise, they used a traded proxy for the

volatility to obtain a non-linear PDE whose solution provides the option price in the

presence of transaction costs. Lépinette and Tran (Lépinette & Tran, 2014) extended the

results of Denis (Denis, 2010), Lépinette (Lépinette, 2012) for local volatility models in

the market of European options. They proposed an approximation of replication of a

European contingent claim when the market is under proportional transaction costs.
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In a recent paper, SenGupta (SenGupta, 2014) generalized the nonlinear partial

differential equations even when the underlying asset follows a stochastic one-factor

interest rate model. The nonlinear term in the resulting PDE corresponding to the

presence of transaction costs is modelled using a simple geometric Brownian motion.

This paper shows that the model follows a nonlinear parabolic type partial differential

equation and proves the existence of classical solution for this model under a particular

assumption. Later on, Mariani, SenGupta and Sewell(Mariani, SenGupta & Sewell,

2015) used PDE2D software to solve a complex partial differential equation motivated

by applications in finance where the solution of the system gives the price of a European

call option, including transaction costs and stochastic volatility. Nguyen and Perga-

menshchikov (T. H. Nguyen & Pergamenschchikov, 2015) showed that jump risk is

approximately eliminated and the results established in continuous diffusion models are

recovered. They described the option replication under constant proportional transaction

costs in models where stochastic volatility and jumps are combined to capture market’s

important features. In particular, transaction costs can be approximately compensated

by applying the Leland adjusting volatility principle and asymptotic property of the

hedging error due to discrete readjustments is characterized. Later on, Nguyen and

Pergamenshchikov (T. H. Nguyen & Pergamenshchikov, 2017) proved several limit

theorems for the normalized replication error of Leland’s strategy, as well as that of the

strategy suggested by Lépinette (Lépinette & Tran, 2014). They fixed the underhedging

property pointed out by Kabanov and Safarian (Y. M. Kabanov & Safarian, 1997).

Kallsen and Muhle-Karbe,(Kallsen & Muhle-Karbe, 2017) investigated a the general

structure of optimal investment and consumption with small proportional transaction

costs. For a risk-less asset and a risky asset with general continuous dynamics, traded

with random and time-varying but small transaction costs, this paper derives simple

formal asymptotics for the optimal policy and welfare.
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1.2 Research Questions

Based on the literature review, we considered the following research questions in this

thesis.

Question 1.1: How can we derivate Heston stochastic volatility model with trans-

action costs using an approach similar to that in Mariani, SenGupta and Sewell(Mariani

et al., 2015)?

Question 1.2: Whether the estimation of our results under different stochastic volatility

models with transaction cost is consistent with the results of Mariani, SenGupta and

Sewell(Mariani et al., 2015)?

Question 1.3: How can we derive a solution to the Heston-CIR model with trans-

action costs and stochastic interest rate using an approach similar to Chapter 3 of this

thesis?
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1.3 Thesis Contributions and Organization

The contributions of this thesis can be expressed in answering the questions given in

Section 1.2. These answers are included in subsequent chapters, which are organized as

follows.

Chapter 2: In this chapter, we introduce some mathematical preliminaries and financial

terminologies which will be used in the subsequent chapters. Section 2.1 gives the

mathematical foundations include probability theory, stochastic processes, Brownian

motion and Itô’s Lemma. In Section 2.2, we present some financial preliminaries,

including the Black-Scholes model, risk neutral measure, the Heston model and the

Cox-Ingersoll-Ross (CIR) model.

Chapter 3: In the first section of this chapter, we briefly introduce Leland’s (Leland,

1985) classical model on pricing option with transaction costs. In Section 3.2, we extend

Leland’s model in Section 3.1 by adding transaction costs to Heston’s (Heston, 1993)

stochastic volatility model. In Section 3.3, we apply the finite-difference method to

find an approximate solution to the model derived in Section 3.2. The last section is

dedicated to the numerical implementation of the solution obtained in Section 3.3 and

comparison our results with these of Mariani, SenGupta and Sewell (Mariani et al.,

2015).

Chapter 4: In this chapter, we consider the Heston-CIR model with transaction cost. In

Section 4.1, we introduce the Heston-CIR with a partial correlation. In order to analyze

the delta hedging portfolio of the Heston-CIR model with transaction cost in Section

4.3, we first derive a pricing formula for zero-coupon bonds in Section 4.2. In Section

4.4, we use the replicating technique to derive the model and substitute the solution

of zero-coupon bonds into the PDE. We obtain the numerical solution to the PDE of

Heston-CIR model with transaction cost by implementing the finite difference scheme

in MATLAB. In the last section of this chapter, we analyze the numerical results of the
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PDE.

Chapter 5: This is the last chapter of the thesis and is devoted to present the conclusion

and some potential research directions in the future.



Chapter 2

Mathematical and Financial

Techniques

In this chapter, we introduce some mathematical preliminaries and financial terminolo-

gies which will be used in the subsequent chapters. Section 2.1 gives the mathematical

foundations include probability theory, stochastic processes, Brownian motion and Itô’s

Lemma. In Section 2.2, we present some financial preliminaries the Black-Scholes

model, risk neutral measure, the Heston model and the Cox-Ingersoll-Ross (CIR) model.

17
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2.1 Mathematical Techniques

In this chapter, we introduce some mathematical preliminaries and techniques that are

applied in this thesis. The majority of the material used in this chapter is taken from

textbooks (Shreve, 2004) and (Wilmott, 2006).

2.1.1 Probability Theory

We define a probability space as (Ω,F ,P) using the terminology of measure theory.

The sample space Ω is a set of all possible outcomes ω ∈ Ω of some random experiment.

Probability P is a function, A↦ P(A), which assigns a non negative number P(A) to

A in a subset F of all possible set of outcomes, where the event space F is a σ-algebra

on Ω. We use 2Ω to denote the set of all possible subset of Ω.

Definition 2.1.1 (σ-algebra). We say that F ⊆ 2Ω is a σ-algebra, if

• Ω ∈ F ,

• If A ∈ F then Ac ∈ F as well (where Ac = Ω ∖A).

• If Ai ∈ F for i = 1,2,3, ... then also ⋃iAi ∈ F .

Definition 2.1.2. A pair (Ω,F) with F a σ-algebra of subsets of Ω is called a measur-

able space. Given a measurable space (Ω,F), a measure µ is any countably additive

non-negative set function on this space. That is µ ∶ F → [0,∞], having the properties:

• µ(A) ≥ µ(∅) = 0 for all A ∈ F .

• µ(⋃nAn) = ∑n µ(An) for any countable collection of disjoint sets An ∈ F .

When in addition µ(Ω) = 1, we call the measure µ a probability measure, and often

label it by P (it is also easy to see that then P(A) ≤ 1 for all A ∈ F).
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To summarize, a probability measure space a triple (Ω,F ,P), with P a measure on

a measurable space (Ω,F).

Definition 2.1.3 (Random Variable). A random variable X is a real-valued function

X ∶ Ω↦ R on a probability measure space (Ω,F ,P) which satisfies the property that

for any Borel subset B of R, the subset of Ω given by

X−1(B) ∶= {ω ∶X(ω) ∈ B}. (2.1)

belongs to F .

A random variables X is numerical functions ω ↦ X(ω) of the outcome of our

random experiment. To define the Borel subsets of R, we first consider the closed

intervals [a, b] ∈ R and then proceed to add all possible sets that are necessary to have a

σ-algebra. Therefore, all possible unions of sequences of closed intervals are Borel sets.

Definition 2.1.4 (Filtration). A filtration is a family {F ∶ t ≥ 0} of sub-σ-algebra such

that F(s) ⊆ F(t) for all s ≤ t.

Theorem 2.1.1 (G-measurable). Consider a probability space (Ω,F ,P) and a random

variable X defined on (Ω,F ,P). Denote G a σ-algebra of subset of Ω. Then if every

set within σ(X) is also in G, such that X is G-measurable.

2.1.2 Expectation

The mean, expected value, or expectation of a random variable X is written as E(X)

or µX . The expectation is defined differently for continuous and discrete random

variables. Let f(X) be a function of X . We can imagine a long-lerm average of

f(X) just as we can imagine a long-term average of X . This average is written as

E(f(X)). Imagine observing X many times (N times) to give results x1, x2, ..., xN .
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Apply the function f to each of these observations, to give f(x1), ..., f(xN). The mean

of f(x1), f(x2), ..., f(xN) approaches E(f(X)) as the number of observation N tends

to infinity.

Theorem 2.1.2. Let X be a continuous random variable and let f be a function. The

expected value of f(X) is defined as

E(f(X)) = ∫
∞

−∞
f(x)p(x)dx,

where p is th probability density function of X .

Theorem 2.1.3. Let X be a discrete random variable and let f be a function. The

expected value of f(X) is

E(f(X)) = ∑
x

f(x)p(x) = ∑
x

f(x)P(X = x).

The expectation of X is an indicator of the mean or first moment of the random

variable.

2.1.3 Stochastic Processes

A stochastic process is simply a collection of random variables indexed by time. It will

be useful to consider separately the cases of discrete time and continuous time. We

will even have occasion to consider indexing the random variables by negative time. A

discrete time stochastic process X = {Xn, n = 0,1,2, ...} is a countable collection of

random variables indexed by the non-negative integers, and a continuous time stochastic

process X = {Xt,0 ≤ t < ∞} is an uncountable collection of random variables indexed

by the non-negative real numbers.
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Definition 2.1.5. Suppose that (Ω,F ,P) is a probability space, and that I ⊂ R is of

infinite cardinality. Suppose further that for each α ∈ I , there is a random variable

{X(α) ∶ Ω → R} defined on (Ω,F ,P). The function {X ∶ I × Ω → R} defined

by X(α,ω) is called a stochastic process with indexing set I , and it written X =

{X(α), α ∈ I}.

In general, we may consider any indexing set I ⊂ R having infinite cardinality,

so that calling X = {X(α), α ∈ I} a stochastic process simply means that X(α) is a

random variable for each α ∈ I . If the cardinality of I is finite, then X is not considered

as a stochastic process, but rather a random vector.

2.1.4 Martingales and Markov Process

Definition 2.1.6 (Martingale). A valued stochastic process {X(t) ∶ t ≥ 0} is a martin-

gale with respect to a filtration {F(t) ∶ t ≥ 0} if it is adapted, that is, X(t) ∈ F(t) for

all t ≥ 0, if E[X(t)] < ∞ for all t ≥ 0, and if

E[X(t) ∣ F(s)] =X(s).

for all 0 ≤ s ≤ t.

Definition 2.1.7 (Markov Process). Consider a probability space (Ω,F ,P), let T

denote a fixed positive number and let {F(t) ∶ 0 ≤ t ≤ T} be a filtration. Let {X(t) ∶

0 ≤ t ≤ T} denote an adapted stochastic process. Assume that for all s and t, where

0 ≤ s ≤ t ≤ T , and for every non-negative Borel-measurable function f , there exists

another Borel-measurable function g such that

E[f(X(t)) ∣ F(s)] = g(X(s)).

Then we say that {X(t) ∶ 0 ≤ t ≤ T} is a Markov Process.
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2.1.5 Brownian Motion

A Brownian motion {B(t) ∶ t ≥ 0} is a continuous-time stochastic process satisfying

the following conditions:

• B(t) is continuous in the parameter t, with B(0) = 0.

• For each t, B(t) is normally distributed with expected value 0 and variance t, and

they are independent of each other.

• For each t and s the random variables B(t+ s) −B(s) and B(s) are independent.

Moreover B(t + s) −B(s) has variance t.

However, just because we want something with certain properties does not guarantee

that such a thing exists.There is one important fact about Brownian motion,

S(t) = eσB(t)e(µ−σ2/2)t

satisfies the stochastic differential equation

dS = µSdt + σSdB(t). (2.2)

The crucial fact about Brownian motion, which we will need, is

(dB)2 = dt,

where (dB)2 is determinant, not random and its magnitude is dt. So the amount of

change in (dB)2 caused by a change dt in the parameter is equal to dt. To partially

justify this statement we compute the expected value of (B(t + δt) −B(t))2.

E[(B(t + δt) −B(t))2] = V ar[(B(t + δt) −B(t))] = δt.
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2.1.6 Itô’s Lemma

Theorem 2.1.4. Let {B(t) ∶ t ≥ 0} be a Brownian motion and {W (t) ∶ t ≥ 0} be an

Itô’s drift-diffusion process which satisfies the stochastic differential equation:

dW (t) = µ(W (t), t)dt + σ(W (t), t)dB(t).

If f(w, t) ∈ C2(R2,R) then f(W (t), t) is also an Ito drift-diffusion process, with its

differential given by:

d(f(W (t), t)) = ∂f
∂t

(W (t), t)dt + ∂f

∂W
(W (t), t)dW (t) + 1

2

∂2f

∂W 2
(W (t), t)σ2dt.

For a function f(x, y) of the variable x and y it is not at all hard to justify that the

equation below is correct to first order terms.

df = ∂f
∂x
dx + ∂f

∂y
dy.

However, what if we have a function f which depends not only on a real variable t, but

also on a stochastic process such as Brownian motion? Suppose that f = f(t,B(t)),

where {B(t) ∶ t ≥ 0} denotes a Brownian motion. One is tempted to write as before that

df = ∂f
∂t
dt + ∂f

∂B(t)dB(t).

In this case we would be badly mistaken. To see that this is so, we expand df using

Taylor’s formula and keep the terms involving the second derivatives of f

df = ∂f
∂t
dt + ∂f

∂B(t)dB(t) + 1

2

∂2f

∂t2
(dt)2 + 1

2

∂2f

∂B(t)2
(dB(t))2 + higher order terms.

We discard all terms involving dt to a power higher than 1. Note that the term dtdB(t)
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has magnitude (dt)3/2. This leaves the following expression for df :

df = ∂f
∂t
dt + ∂f

∂B(t)dB(t) + 1

2

∂2f

∂B(t)2
(dB(t))2.

We next use the fact that (dB(t))2 = dt.
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2.2 Financial Techniques

In this section, we present some financial preliminaries, including the Black-Scholes

model and risk neutral measure. Further on, some concepts on stochastic volatility

models and stochastic interest rate which are required in the forthcoming chapters are

discussed. Detailed explanations can be found in (Wilmott, 2006).

2.2.1 Equivalent Probability Measures

Let (Ω,F) be a measurable space, P and Q are two equivalent probability measures on

(Ω,F) for any A ∈ F ,P(A) = 0 is and only if Q(A) = 0. Let (Ω,F ,P) be a probability

space and {F(t) ∶ t ≥ 0} be a filtration. Suppose that Z is an positive random variable

and EP[Z] = 1. We define Q by

Q(A) ∶= ∫
A
Z(ω)dP(ω) for all A ∈ F .

Then Q is a probability measure generated by Z on (Ω,F). It can be easily checked

that P and Q are equivalent probability measures. Moreover, P and Q are related by the

formula

EQ[X] = EP[XZ].

We call Z the Radon-Nikodým derivative of Q with respect to P, written as

Z = dQ
dP

.

The Radon-Nikodým derivative process {Z(t) ∶ 0 ≤ t ≤ T} is defined by

Z(t) = EP[Z ∣ F], 0 ≤ t ≤ T.
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In addition, {Z(t) ∶ 0 ≤ t ≤ T} is a martingale with respect to {F(t) ∶ 0 ≤ t ≤ T}, since

for any 0 ≤ s ≤ t ≤ T ,

EP[Z(t) ∣ F(s)] = EP[EP[Z ∣ F(t)] ∣ F(s)] = EP[Z ∣ F(s)] = Z(s).

Theorem 2.2.1 (Girsanov’s theorem). Let {B(t) ∶ 0 ≤ t ≤ T} be a Brownian motion

on a probability space (Ω,F ,P), and let {F(t) ∶ 0 ≤ t ≤ T} be a filtration for this

Brownian motion. Let {α(t) ∶ 0 ≤ t ≤ T} be an adapted process with respect to

{F(t) ∶ 0 ≤ t ≤ T}. Define

Z(t) ∶= exp(−∫
t

0
α(s)dB(s) − 1

2 ∫
t

0
α2(s)du) ,

B̃(t) = B(t) + ∫
t

0
α(s)ds,

and assume that

EP [∫
T

0
α2(s)Z2(s)ds] < ∞.

Set Z = Z(T ). Then EP[Z] = 1, and under the equivalent probability measure Q

generated by Z, the process {B̃(t) ∶ 0 ≤ t ≤ T} is a Brownian motion..

2.2.2 Stock Price Under the Risk-Neutral Measure

Consider a stock whose price is modelled by a generalized geometric Brownian

dS(t) = µ(t)S(t)dt + σ(t)S(t)dB(t), t ∈ [0, T ],

with both µ(t) and σ(t) are adapted processes. In the integral form,

S(t) = S(0) exp [∫
t

0
σ(s)dB(s) + ∫

t

0

µ(s) − σ2(s)
2

ds] .
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Let the interest rate R(t) be another adapted process. The discount process

D(t) = e∫ t0 R(s)ds

satisfies

dD(t) = −R(t)D(t)dt,

which is a formula from the ordinary calculus, since we can use d (∫
t

0 R(s)ds) = R(t)dt.

One dollar invested at time 0 in bank becomes
1

D(t) at time t, or, equivalently, 1 dollar

has time 0 value D(t) at time t. We compute

d(D(t)S(t)) = (µ(t) −R(t))D(t)S(t)dt + σ(t)D(t)S(t)dB(t)

= σ(t)D(t)S(t)(α(t)dt + dB(t)),

where

α(t) ∶= µ(t) −R(t)
σ(t)

is the market price of risk. Define

B̃(t) = B(t) + ∫
t

0
α(s)ds.

By Girsanov’s theorem (Girsanov, 1960), there exists a probability measure Q, equival-

ent to P, under which {B̃ ∶ 0 ≤ t ≤ T} is a Brownian motion. Hence,

d[D(t)S(t)] = σ(t)D(t)S(t)dB̃(t).

follows that {D(t)S(t) ∶ 0 ≤ t ≤ T} is a martingale under Q. For this reason, Q is

called the risk-neutral measure. The mean rate of return from the stock investment

under the risk-neutral measure is the same as that from the bank investment.
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2.2.3 The Black Scholes Model and Risk Neutral Pricing

In 1973, Black and Scholes (Black & Scholes, 1973) published a seminal paper on the

theory of option pricing. They created a risk-less hedging portfolio by adjusting the

proportion of the stock and option in the portfolio. In the Black-Scholes world, they

assumed a portfolio with zero risk-less arbitrage in the market, it must have an expected

rate of return equal to the risk-less interest rate. Suppose that we have a European

call option, whose valued is denoted by C(S, t), where S is the stock price at time t.

Assume that the stock price follows the geometric Brownian motion Eq.(2.2). By Itô’s

Lemma (Theorem 2.1.4) we have

dC = (µS∂C
∂S

+ 1

2
σ2S2∂

2C

∂S2
+ ∂C
∂t

)dt + σS∂C
∂S

dB(t). (2.3)

If Π is a portfolio of one option and −∆ shares of the stock, then the value of the

portfolio is

Π = C(S, t) −∆S. (2.4)

The change in the value of this portfolio in one time-step dt is

dΠ = dC(S, t) −∆dS. (2.5)

Substituting Eq.(2.2) and (2.3) into (2.5), we have

dΠ = (µS∂C
∂S

+ 1

2
σ2S2∂

2C

∂S2
+ ∂C
∂t

− µ∆S)dt + σS (∂C
∂S

−∆)dB(t). (2.6)

If we choose ∆ = ∂C
∂S

, then the stochastic term is zero. This means the risk of portfolio

is reduce to zero and dΠ becomes

dΠ = (1

2
σ2S2∂

2C

∂S2
+ ∂C
∂t

)dt. (2.7)
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On the other hand, Under risk-neural probability measure Q, the value of the portfolio

is changed by time and the interest rate r as dΠ = rΠdt. Then we have

rΠdt = (1

2
σ2S2∂

2C

∂S2
+ ∂C
∂t

)dt. (2.8)

Dividing both sides by dt, we obtain the following Black-Scholes equation

1

2
σ2S2∂

2C

∂S2
+ ∂C
∂t

+ rS ∂C
∂S

− rC = 0. (2.9)

Following Wilmott (Wilmott, 2006), the option value C is a function of the underlying

asset price S, the time t and the strike price E. At the maturity, the payoff od option is

C(S,T ) = max[S −E,0].

Next, we show the solution of the Black Scholes equation.

Theorem 2.2.2. The value of the European call option is given by

c(S, t) = SN(d1) −Ee−r(T−t)N(d2), (2.10)

where

N(d) = 1√
2π
∫

d

−∞
e
−
1

2
s2

ds

is the cumulative distribution function for the standard normal distribution,

d1 =
ln(S/E) + (r + 1

2
σ2)(T − t)

σ
√
T − t

and d2 =
ln(S/E) + (r − 1

2
σ2)(T − t)

σ
√
T − t

.

(2.11)
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Theorem 2.2.3. The value of the European put option is given by

p(S, t) = Ee−r(T−t)N(−d2) − SN(−d1), (2.12)

where N(d), d1 and d2 are given in Theorem 2.2.1.

2.2.4 The CIR Model

The Cox-Ingersoll-Ross (CIR) model (Cox, Ingersoll Jr & Ross, 1985) is a well-known

short-rate model that describes the interest rate movements driven by one source of

market risk. This model has been widely used to describe the dynamics of the short

rate interest because it has some fundamental features like intuitive parametrization,

non-negativity and pricing formulas. According to the CIR model, the dynamics of

interest rate can described as follows:

dr(t) = λ(θ − r(t))dt + σ
√
r(t)dX3

t , (2.13)

where r(t) is the short rate interest, λ is the speed of mean reversion, θ is the long-run

mean and σ is the volatility process.

2.2.5 The Heston Model

The Heston model was published in 1993 (Heston, 1993) to value European options

under stochastic volatility. Under the Heston model, the dynamics of the stock price

and the variance processes under the risk-neutral measure, and described as follows:

dS(t) = rS(t)dt +
√
V (t)S(t)dX1

t , (2.14)

dV (t) = λ(θ − V (t))dt + σ
√
V (t)dX2

t , (2.15)
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where the two Brownian motions {X1
t ∶ t ≥ 0} and {X2

t ∶ t ≥ 0} are correlated with a

correlation coefficient ρ(−1 ≤ ρ ≤ 1), this is,

⟨dX1
t , dX

2
t ⟩ = ρdt, (2.16)

r is the rate of return, the parameters λ, θ and σ represent the speed of mean reversion,

the long run mean variance and the volatility of the variance, respectively.



Chapter 3

Option Pricing Under the Heston

Model with Transaction Costs

In the first section of this chapter, we briefly introduce Leland’s (Leland, 1985) classical

model on pricing options with transaction costs. In Section 3.2, we extend Leland’s

model in Section 3.1 by adding transaction costs to Heston’s (Heston, 1993) stochastic

volatility model. In Section 3.3, we apply the finite-difference method to find an

approximate solution to the model derived in Section 3.2. The last section is dedicated

to the numerical implementation of the solution obtained in Section 3.3 and comparison

between our results and these of Mariani, SenGupta and Sewell (Mariani et al., 2015).

32
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3.1 The Leland Model

Local volatility models are popular as they can be calibrated to the market of European

options by the simple Dupire formula. Leland (Leland, 1985) developed a modified

option replicating strategy which depends on the size of transaction costs and the

frequency of revision. In this paper, Leland introduced the idea of using expected

transaction costs over a small interval. SenGupta (SenGupta, 2014) proposed a modified

Leland’s method which allows to approximately replicate a European contingent claim

when the market is under proportional transaction costs. Horsky and Sayer (Horsky

& Sayer, 2015) presented an innovative hybrid model for the valuation of equity

options. Their model is of affine structure, allows for correlations between the stock,

the short rate and the volatility processes and can be fitted perfectly to the initial term

structure. In their paper, they determined the zero bond price formula and derived the

analytic solution for European type options in terms of characteristic functions needed

for fast calibration. Mariani, SenGupta and Sewell (Mariani et al., 2015) solved a

complex partial differential equation motivated by applications in finance where the

solution of the system gives the price of European options, including transaction costs

and stochastic volatility. Since the seminal work by Leland (Leland, 1985), people

have been developing strategies of option pricing with transactions costs. The main

contributions of Leland (Leland, 1985) are based on the Black-Scholes and Merton

(Black & Scholes, 1973) assumptions and model. One of key assumptions is that the

value of stock follows a stationary log-normal diffusion process, this is,

dS

S
= dt + σZ

√
dt, (3.1)
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where Z is a standard normal random variable. Using the Taylor expression theorem,

we can show
δS

S
= µδt + σZ

√
δt +O(δt3/2), (3.2)

where S is the current stock price, σ is the volatility of underlying asset.

Let C(S;E, t, r, σ2) be the value of a European call option when the current stock

price is S, the striking price is E, the time to maturity is T − t, the interest rate is r and

the rate of return have variance σ2. In the absence of transaction costs with possible

continuous trading, Black and Scholes (Black & Scholes, 1973) showed that

C = SN(d1) −Ee−rTN(d1 − σ
√
T − t), (3.3)

where d1 =
ln(S

E
) + (r + 1

2
σ2)(T − t)

σ
√
T − t

. It follows thatC satisfies the partial differential

equation,
1

2
CSSS

2σ2 +Ct − r[C −CSS] = 0, (3.4)

where the boundary condition is

C[S;E,T, r, σ2] = max[S −E,0]. (3.5)

Consider now holding a fixed portfolio of D shares of stock and Q dollars of the

risk-free security over the interval [t, t + δt]. The length of the interval, δt, will be

termed the revision interval. The return to this portfolio will be

δP =DS (δS
S

) + rQδt +O(δt2). (3.6)
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The change in value of a call option C[S;K, t, r, σ2] will be

δC = CSS (δS
S

) +Ctδt +
1

2
CSSS

2 (δS
S

)
2

+O(δt3/2). (3.7)

The different between the change in value of the portfolio and the call option, δH

δH = δP −δC = (DS−CSS) (
δS

S
)+(rQ−Ct)δt−

1

2
CSSS

2 (δS
S

)
2

+O(δt3/2). (3.8)

We define a replicating portfolio such that

D = CS (3.9)

and

Q = C −CSS. (3.10)

Since P = DS + Q = C at each time period, this portfolio yield the option return

max[S −E,0] at T . Substituting (3.9) and (3.10) into (3.8) and using (3.4) yields

δH = 1

2
CSSS

2 [σ2δt − (δS
S

)
2

] +O(δt3/2). (3.11)

The expectation of δH will be

E[δH] = 1

2
CSSS

2 [σ2δt − (δS
S

)
2

] = 0. (3.12)

Following Leland (Leland, 1985), we use k to denote the proportional transaction

cost rate, the adjusted volatility of short positions on option pricing is given as follows

σ̂2(σ2, k, δt) = σ2 [1 + kE ∣δS
S

∣ /σ2δt] (3.13)
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= σ2[1 +
√

2/πkσ
√
δt],

since

E [δS
S

] =
√

(2/π)σ
√
δt.

Let

Ĉ[S,E,σ2, r, t, k, δt] = StN(d̂1) −Ee−r(T−t)N(d̂1 − σ̂
√
T − t), (3.14)

where

d̂1 =
ln(S

E
) + (r + 1

2
σ̂2)(T − t)

σ̂
√
T − t

. (3.15)

That is, Ĉ is the Black-Scholes option price based on the modified volatility (3.13).

Since the augmented volatility does not depend on the strike price, one might be

skeptical about the truth of the theory in the first place.

Theorem 3.1.1 ((Leland, 1985)). Following the modified delta hedging strategy, the

Black-Scholes price Ĉ will yield max[S −E,0] almost inclusive of transaction costs,

as δt→ 0.
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3.2 Heston’s Stochastic Model with Transaction Costs

In this section, we present a general stochastic volatility model for which a valuation

formula can be derived. The Heston model is one of the most widely used stochastic

volatility models today. From the Heston (Heston, 1993) model, under the risk-neutral

probability measure Q we assume the spot index and the volatility are given as follows

dS(t) = rS(t)dt +
√
V (t)S(t)dX1

t , (3.16)

dV (t) = λ(θ − V (t))dt + σ
√
V (t)dX2

t , (3.17)

where the two Brownian motionsX1
t andX2

t are correlated with a correlation coefficient

ρ(−1 ≤ ρ ≤ 1), this is,

⟨dX1
t , dX

2
t ⟩ = ρdt. (3.18)

We can now proceed the hedging argument in order to form a risk-free portfolio. If we

consider a portfolio Π consisting of one European call option, with value C(S,V, t)

on the current price S and variance V at time t, quantities −∆ and −∆1 of S and V ,

respectively. The value of hedging portfolio is

Π = C −∆S −∆1V. (3.19)

According to the self-financing argument and considering the transaction cost, we know

an expression for the change in value of the portfolio Π

dΠ = dC −∆dS −∆1dV − kS ∣ ν ∣ −k1V ∣ ν1 ∣ . (3.20)
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Applying Itô’s formula to get the dynamics of C, we obtain

dC = ∂C
∂t
dt + ∂C

∂S
dS + ∂C

∂V
dV + 1

2
V S2∂

2C

∂S2
dt + 1

2
V σ2∂

2C

∂V 2
dt + ρσV S ∂2C

∂S∂V
dt.

Substituting dC into Eq. (3.20), we can now deduce a valuation formula for the change

in value of the portfolio Π

dΠ = (∂C
∂t

+ 1

2
V S2∂

2C

∂S2
+ 1

2
V σ2∂

2C

∂V 2
+ ρσV S ∂2C

∂S∂V
)dt (3.21)

+(∂C
∂S

−∆)dS + (∂C
∂V

−∆1)dV − kS ∣ ν ∣ −k1V ∣ ν1 ∣ .

The risk can be hedged away to leading order by setting the coefficients of dS and dV

to zero. Following Mariani, SenGupta and Sewell (Mariani et al., 2015), we let

∆ = ∂C
∂S

,

and

∆1 =
∂C

∂V
.

Substituting ∆ and ∆1 into Eq. (3.21, )we can eliminate the dS and dV terms and the

dynamics of Π becomes

dΠ = (∂C
∂t

+ 1

2
V S2∂

2C

∂S2
+ 1

2
V σ2∂

2C

∂V 2
+ ρσV S ∂2C

∂S∂V
)dt − kS ∣ ν ∣ −k1V ∣ ν1 ∣ .

(3.22)

Now in principle options depending on the underlying asset S and possibly even the

variance V can be priced by developing a numerical scheme for the PDE and working

backward in time from the payoff at maturity. However, in the real financial market

this price is not readily justified, since the variance V is not a tradable asset in the

marketplace and must be dynamically hedged in other way. This model also has many
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parameters to be estimated in order to model the market. Therefore we consider adding

transaction costs and this addition may influence the prices obtained for the options. In

this section we investigate the costs associated with trading the asset. If the number of

asset held at time t is

∆t =
∂C

∂S
(S,V, t), (3.23)

we assume that after a time step δt and re-hedging, the number of assets we hold in the

small time interval [t, t + δt] is

∆t+δt =
∂C

∂S
(S + δS, V + δV, t + δt).

According to the conditions given above, the time step δt is small and the changes in

asset and the interest rate are also small. Now, we applying Taylor’s formula to expend

∆t+δt yields,

∆t+δt ≃
∂C

∂S
+ δt ∂

2C

∂t∂S
+ δS ∂

2C

∂S2
+ δV ∂2C

∂S∂V
+⋯ (3.24)

If we set up δS =
√
V SδX1 + O(δt) and δV = σ

√
V δX2 + O(δt), substitute δS and

δV into Eq. (3.24), by neglecting all terms proportional to δt or with higher order in δt,

we will have an expression as follow,

∆t+δt ≃
∂C

∂S
+
√
V SδX1∂

2C

∂S2
+ σ

√
V δX2 ∂2C

∂S∂V
. (3.25)

Next, we substitute (3.23) into (3.25) to get the number of assets trading during a

time step:

ν =
√
V SδX1∂

2C

∂S2
+ σ

√
V δX2 ∂2C

∂S∂V
. (3.26)

Because X1 and X2 are correlated Brownian motions, we consider Z1 and Z2 are
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independent normal variables with mean 0 and variance 1. Then, we have

δX1 = Z1

√
δt

and

δX2 = ρZ1

√
δt +

√
1 − ρ2Z2

√
δt.

Substituting expressions of δX1 and δX2 in Eq. (3.26) and denoting:

α1 =
√
V S

√
δt
∂2C

∂S2
+ σ

√
V ρ

√
δt

∂2C

∂S∂V
, (3.27)

β1 = σ
√
V
√

1 − ρ2
√
δt

∂2C

∂S∂V
,

then we can rewrite the change in the number of shares over a time step δt as:

ν = α1Z1 + β1Z2.

In a very similar way we can express ν1 as follows:

ν1 =
√
V SδX1 ∂2C

∂S∂V
+ σ

√
V δX2∂

2C

∂V 2
. (3.28)

We know the expectation of the change in value of the portfolio is

E[dΠ] = (∂C
∂t

+ 1

2
V S2∂

2C

∂S2
+ 1

2
V σ2∂

2C

∂V 2
+ ρσV S ∂2C

∂S∂V
)dt−kSE[∣ ν ∣]−k1V E[∣ ν1 ∣].

(3.29)

Under the risk-neutral measure Q,

E[dΠ] = rΠdt. (3.30)
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Hence, we have

(∂C
∂t

+ 1

2
V S2∂

2C

∂S2
+ 1

2
V σ2∂

2C

∂V 2
+ ρσV S ∂2C

∂S∂V
)dt − kSE[∣ ν ∣] − k1V E[∣ ν1 ∣

= r (C − S∂C
∂S

− V ∂C
∂V

)dt.

Dividing each side by dt and re-arranging yield

∂C

∂t
+ 1

2
V S2∂

2C

∂S2
+ 1

2
V σ2∂

2C

∂V 2
+ ρσV S ∂2C

∂S∂V
− kS
dt

E[∣ ν ∣] − k1V

dt
E[∣ ν1 ∣

= r (C − S∂C
∂S

− V ∂C
∂V

) . (3.31)

Next, we calculate E[∣ ν ∣] and E[∣ ν1 ∣]. By Eq.(3.28), we have

E[∣ ν ∣] =
√

2

π

√
α2

1 + β2
1 =

√
2δt

π
×

¿
ÁÁÀV S2 (∂

2C

∂S2
)

2

+ σ2V ( ∂2C

∂S∂V
)

2

+ 2ρV σS
∂2C

∂S2

∂2C

∂S∂V
.

(3.32)

Similarly, we can obtain

E[∣ ν1 ∣] =
√

2δt

π
×

¿
ÁÁÀV S2 ( ∂2C

∂S∂V
)

2

+ σ2V (∂
2C

∂V 2
)

2

+ 2ρV σS
∂2C

∂V 2

∂2C

∂S∂V
. (3.33)

If we substitute Eq.(3.32) and Eq.(3.33) into Eq. (3.31) and note that dt = δt, we get a

partial differential equation of stochastic volatility model with transaction costs,

∂C

∂t
+ 1

2
V S2∂

2C

∂S2
+ 1

2
V σ2∂

2C

∂V 2
+ ρσV S ∂2C

∂S∂V
+ rS ∂C

∂S
+ rV ∂C

∂V
− rC (3.34)

−kS
√

2

πδt
×

¿
ÁÁÀV S2 (∂

2C

∂S2
)

2

+ σ2V ( ∂2C

∂S∂V
)

2

+ 2ρV σS
∂2U

∂S2

∂2U

∂S∂V

−k1V

√
2

πδt
×

¿
ÁÁÀV S2 ( ∂2C

∂S∂V
)

2

+ σ2V (∂
2C

∂V 2
)

2

+ 2ρV σS
∂2C

∂V 2

∂2C

∂S∂V
= 0.
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We assume a European call option with the strike price E and time to maturity time T

satisfies the PDE (3.34) subject to the following terminal condition:

C(S,V, T ) = max[S −E,0], (3.35)

and boundary conditions

C(0, V, t) = 0,
∂C

∂S
(Smax, V, t) = 1,

∂C

∂t
(S,0, t) + rS ∂C

∂S
(S,0, t) − rC(S,0, t) = 0, (3.36)

C(S,Vmax, t) = S.
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3.3 Finite Difference Scheme for the Heston Model with

Transaction Costs

In this section, we explain how to build the finite difference schemes for solving Eq.

(3.34). We assume that the stock price S is between 0 and Smax, the volatility V is

between 0 and Vmax, and the time t is in the interval 0 ≤ t ≤ T . In practice, Smax does

not have to be too large. Typically, it should be three or four times the value of the

exercise price. In the next section, we take Vmax = 1. To derive the finite difference

scheme, we first transform the domain of the continuous problem

{(S,V, t) ∶0 ≤ S ≤ Smax,0 ≤ V ≤ Vmax,0 ≤ t ≤ T}

into a discretized domain with a uniform system of meshes or node points (iδS, jδV, nδt),

where i = 1,2, ..., I , j = 1,2, ..., J and n = 1,2, ...,N so that IδS = Smax, JδV = Vmax

and Nδt = T . Let Cn
i,j denote the numerical approximation of C(iδS, jδV, nδt). The

continuous temporal and spatial derivatives in (3.34) are approximated by the following

finite difference operators
∂C

∂t
≈
Cn+1
i,j −Cn

i,j

δt
,

∂C

∂S
≈
Cn
i+1,j −Cn

i−1,j

2δS
,

∂2C

∂S2
≈
Cn
i+1,j − 2Cn

i,j +Cn
i−1,j

(δS)2
,

∂C

∂V
≈
Cn
i,j+1 −Cn

i,j−1

2δV
,

∂2C

∂V 2
≈
Cn
i,j+1 − 2Cn

i,j +Cn
i,j−1

(δV )2
,

∂2C

∂S∂V
≈
Cn
i+1,j+1 +Cn

i−1,j−1 −Cn
i−1,j+1 −Cn

i+1,j−1

4δSδV
.
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Applying these approximations to Eq. (3.34), we obtain the following explicit Forward-

Time-Centered-Space finite difference scheme,

Cn+1
i,j = Cn

i,j+
1

2
V S2 δt

(δS)2
(Cn

i+1,j−2Cn
i,j+Cn

i−1,j)+
1

2
V σ2 δt

(δV )2
(Cn

i,j+1−2Cn
i,j+Cn

i,j−1)

+ rS δt

2δS
(Cn

i+1,j −Cn
i−1,j) + rV

δt

2δV
(Cn

i,j+1 −Cn
i,j−1) (3.37)

+ρσV S δt

4δSδV
(Cn

i+1,j+1 +Cn
i−1,j−1 −Cn

i−1,j+1 −Cn
i+1,j−1) − rδtCn

i,j − F1 − F2,

where

F1 = kSδt

√

2

πδt

¿

Á
Á
ÁÀV S2

(

(Cn
i+1,j − 2C

n
i,j +C

n
i−1,j)

(δS)2
)

2

+ V σ2
(

(Cn
i+1,j+1 +C

n
i−1,j−1 −C

n
i−1,j+1 −C

n
i+1,j−1)

4δSδV
)

2

+2ρV σS
(Cn

i+1,j+1 +C
n
i−1,j−1 −C

n
i−1,j+1 −C

n
i+1,j−1)

4δSδV

(Cn
i+1,j − 2C

n
i,j +C

n
i−1,j)

(δS)2
,

F2 = k1σδt

√

2

πδt

¿

Á
Á
ÁÀV S2

(

(Cn
i+1,j+1 +C

n
i−1,j−1 −C

n
i−1,j+1 −C

n
i+1,j−1)

4δSδV
)

2

+ σ2V (
(Cn

i,j+1 − 2C
n
i,j +C

n
i,j−1)

(δV )2
)

2

+2ρV σS
(Cn

i+1,j+1 +C
n
i−1,j−1 −C

n
i−1,j+1 −C

n
i+1,j−1)

4δSδV

(Cn
i,j+1 − 2C

n
i,j +C

n
i,j−1)

(δV )2
,

and i = 1,2, ..., I , j = 1,2, ..., J and n = 1,2, ...,N .

The terminal condition (3.35) becomes

Cn
i,j = max[iδS −E,0],

and the boundary conditions (3.36) becomes

Cn
1,j = 0, Cn+1

I,j = δS +Cn+1
I−1,j,
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Cn+1
i,J = iδS,

Cn+1
i,1 = riδt(Cn

i+1,1 −Cn
i,1) −Cn

i,1(rδt + 1).



Chapter 3. Option Pricing Under the Heston Model with Transaction Costs 46

3.4 Numerical Results and Model’s Performance

Analysis

In this section, we solve Eq.(3.34) numerically by implementing the finite difference

scheme in MATLAB. The parameters are set up as follows: strike price E = 100,

Smax = 200, Vmax = 1, interest rate r = 0.05, the correlation factor ρ = 0.8, σ = 0.4 and

maturity time T = 1. Figure 3.1 shows the option C at time t = 0, for the case k = k1 = 0.

Figure 3.2 shows the option C at time t = 0, for the case k = k1 = 0.02.

Figure 3.1: Solution of Eq.(3.34), when k = 0 and k1 = 0
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Figure 3.2: Solution of Eq.(3.4), when k = 0.02 and k1 = 0.02

Tabulated results when k = k1 = 0 at V = 0.05 and V = 0.6, S between 80 to 120 are

shown in Table 3.1. Tabulated results when k = k1 = 0.02 at V = 0.05 and V = 0.6, S

between 80 to 120 are shown in Table 3.2. In Tables 3.1 and 3.2, the second and the

third columns from left are our numerical results.

Mariani, SenGupta and Sewell (Mariani et al., 2015) considered a stochastic volat-

ility model, similar to that of (Wiggins, 1987). In this model, they considered the

following stochastic volatility model:

dSt = µStdt + σtStX1
t ,

dσt = ασtdt + βσtdX2
t ,

where the two Brownian motions X1
t and X2

t are correlated with correlation coefficient

ρ:

⟨dX1
t , dX

2
t ⟩ = ρdt.

Applying the same approach, they derived a PDE for a European call option with trans-

action cost under the risk-neutral probability measure. Their PDE is solved numerically
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by a software package PDE2D. The two columns from right are results of Mariani,

SenGupta and Sewell (Mariani et al., 2015). We compare our results in two tables

with those of Mariani, SenGupta and Sewell (Mariani et al., 2015), and find there is no

significant difference when V = 0.05. When V = 0.6, we can observe the difference

between our results and those of Mariani, SenGupta and Sewell (Mariani et al., 2015),

but no significant effect in data analysis. After we compare results between Table 3.1

and Table 3.2, we find that when k and k1 increase to 0.02, the values of option C

decrease and all changes of C(V = 0.05) are less than 0.3. The changes of C are more

significant when V = 0.6.

Table 3.1: Solution of Eq.(3.37),when k = k1 = 0.0 and k = k1 = 0.02

S C (V = 0.05) C (V = 0.6) C (V = 0.05) C (V = 0.6)
(k = k1 = 0) (k = k1 = 0) (k = k1 = 0.02) k = k1 = 0.02)
our results our results (Mariani et al., 2015) (Mariani et al., 2015)

80 2.658 40.111 2.349 38.627
82 2.989 41.361 2.654 39.857
84 3.351 42.626 2.989 41.103
86 3.747 43.908 3.357 42.367
88 4.177 45.207 3.760 43.648
90 4.647 46.521 4.201 44.947
92 5.159 47.853 4.685 46.262
94 5.722 49.201 5.221 47.595
96 6.348 50.565 5.823 48.944
98 7.056 51.946 6.513 50.311

100 7.872 53.343 7.321 51.695
102 8.827 54.756 8.282 53.096
104 9.940 56.186 9.418 54.514
106 11.219 57.631 10.734 55.948
108 12.651 59.093 12.214 57.399
110 14.216 60.571 13.831 58.866
112 15.887 62.064 15.555 60.350
114 17.642 63.573 17.359 61.849
116 19.459 65.097 19.221 63.365
118 21.322 66.637 21.124 64.896
120 23.220 68.192 23.056 66.443
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Table 3.2: Solution of Eq.(3.37),when k = k1 = 0.0 and k = k1 = 0.02

S C (σ = 0.05) C (σ = 0.6) C (σ = 0.05) C (σ = 0.6)
(k = k1 = 0) (k = k1 = 0) (k = k1 = 0.02) k = k1 = 0.02)
our results our results (Mariani et al., 2015) (Mariani et al., 2015)

80 0.032 17.794 0.007 16.980
82 0.057 18.806 0.015 17.978
84 0.102 19.846 0.030 19.004
86 0.181 20.912 0.059 20.057
88 0.316 22.005 0.116 21.138
90 0.544 23.125 0.227 22.247
92 0.917 24.270 0.440 23.382
94 1.503 25.442 0.842 24.544
96 2.378 26.639 1.582 25.732
98 3.594 27.861 2.861 26.946

100 5.145 29.108 4.754 28.185
102 6.950 30.380 6.800 29.450
104 8.894 31.676 8.834 30.739
106 10.883 32.995 10.855 32.053
108 12.879 34.338 12.867 33.391
110 14.876 35.704 14.873 34.752
112 16.875 37.092 16.875 36.136
114 18.876 38.503 18.877 37.543
116 20.877 39.936 20.877 38.972
118 22.877 41.389 22.877 40.423
120 24.877 42.864 24.877 41.896



Chapter 4

Heston-CIR Model with Transaction

Cost

In this chapter, we consider the Heston-CIR model with transaction cost. In Section 4.1,

we introduce the Heston-CIR with a partial correlation. In order to analyze the delta

hedging portfolio of the Heston-CIR model with transaction cost in Section 4.3, we first

derive a pricing formula for zero-coupon bonds in Section 4.2. In Section 4.4, we use

the replicating technique to derive the model and substitute the solution of zero-coupon

bonds into the PDE. We obtain the numerical solution to the PDE of Heston-CIR model

with transaction cost by implementing the finite difference scheme in MATLAB. In the

last section of this chapter, we analyze the numerical results of the PDE.

50
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4.1 The Heston-CIR Model with Transaction costs

The Cox-Ingersoll-Ross (CIR) (Cox et al., 1985) model is a diffusion process suitable

for modeling the term structure of interest rates. The simplest version of this model

describes the dynamics of the interest rate r(t) as a solution of the following stochastic

differential equation (SDE):

dr(t) = α(β − r(t))dt + η
√
r(t)dX3

t

for constants α > 0, β > 0, η > 0 and a standard Brownian motion {X3
t ∶ t ≥ 0}. We

consider the Heston-CIR hybrid model as follows

dS(t) = µS(t)dt +
√
V (t)S(t)dX1

t , (4.1)

dV (t) = k(θ − V (t))dt + σ
√
V (t)dX2

t , (4.2)

dr(t) = α(β − r(t))dt + η
√
r(t)dX3

t . (4.3)

We assume that correlations involved in the above model are given by

⟨dX1
t , dX

2
t ⟩ = ρdt, ⟨dX1

t , dX
3
t ⟩ = 0, ⟨dX2

t , dX
3
t ⟩ = 0.

The random variables S(t), V (t) and r(t) represent, respectively, the asset price, its

variance and the interest rate at time t > 0. The parameters k, θ, σ, η, α and β are given

positive real constants. The {X1
t ∶ t ≥ 0}, {X2

t ∶ t ≥ 0} and {X3
t ∶ t ≥ 0} are Brownian

motions under a risk-neutral measure.
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4.2 Pricing Zero-Coupon Bonds

The CIR process has some appealing properties from an applied point of view, for

example, the interest rate stays non-negative, and is elastically pulled towards the long-

term constant value β at a speed controlled by mean-reverting α. We ensure that r(t)

remains positive. Intuitively, when the rate is at a low level, the standard deviation

η
√
r(t) also becomes close to zero, which dampens the effect of the random shock

on the rate. Consequently, when the rate gets close to zero, its evolution becomes

dominated by the drift factor, which pushes the rate upwards and towards equilibrium.

For the general stochastic interest rate model, we consider

dr = u(r, t)dt +w(r, t)dX3
t . (4.4)

The functional forms of u(r, t) and w(r, t) determine the behavior of the spot rate r.

We denote λ to be the market price of risk. The risk-neutral interest rate follows

dr = [u(r, t) − λw(r, t)]dt +w(r, t)dX̃3
t , (4.5)

where {X̃3
t ∶ t ≤ 0} is a Brownian motion under the risk-neutral probability measure Q.

Next, if we assume that the discount process is

D(t) = e−∫ t0 r(τ)dτ

and the money market account price process should be

1

D(t) = e∫ t0 r(τ)dτ .
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We will have the differential formula for D(t) and 1
D(t) :

dD(t) = −r(t)e−∫ t0 r(τ)dτdt = −r(t)D(t)dt,

d
1

D(t) = r(t)
D(t)dt.

Let P (t, T ) be the price of a zero-coupon bond with maturity at time T , as seen at

time t. We assume P (T,T ) = 1. Since the discounted price of this bond should be a

martingale under the risk-neutral measure, we have

EQ
t [P (T,T )D(T )] = EQ

t [D(T )] =D(t)P (t, T ).

Following this formula, we have

P (t, T ) = EQ
t [e−∫

T
t r(τ)dτ ].

Since dr is a Markov process and we have

P (t, T ) = Z(t, r(t)).

To find the PDE for Z(t, r(t)), we apply Itô’s lemma to differentiate D(t)P (t, T ) =

D(t)Z(t, r(t)) to get,

d(D(t)Z(t, r(t))) = Z(t, r(t))dD(t) +D(t)dZ(t, r(t)) (4.6)

=D(t) [−rZdt + ∂Z
∂t
dt + ∂Z

∂r
dr + 1

2

∂2Z

∂r2
dr2] .
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Substituting (4.5) into (4.6) yields

d[D(t)Z] =D(t) [−rz + ∂Z
∂t

+ (µ − λw)∂Z
∂r

+ 1

2
w2∂

2Z

∂r2
]dt +D(t)w∂Z

∂r
dX̃3

t . (4.7)

Since D(t)Z is a martingale, we can set the dt term equal to zero, which yields a PDE

for the bond price:

∂Z

∂t
+ 1

2
w2∂

2Z

∂r2
+ (u − λw)∂Z

∂r
− rZ = 0, (4.8)

with the final condition Z(r, t;T ) = 1. In the Heston-CIR model, we consider

dr = α(β − r)dt + η
√
rdX3. (4.9)

If we choose λ
√
r to be the market price of risk, then for the Heston-CIR model, Eq.

(4.8) becomes

∂Z

∂t
+ 1

2
η2r

∂2Z

∂r2
+ (α(β − r) − λη)∂Z

∂r
− rZ = 0, (4.10)

with the final condition Z(r, t;T ) = 1. The term α(β − r) − λη can be re-written as

α(β − λη
α
− r) ∶= a(b − r),

and the PDE is re-written as

∂Z

∂t
+ 1

2
η2r

∂2Z

∂r2
+ a(b − r)∂Z

∂r
− rZ = 0. (4.11)

In the final step, we look for a solution in the form of

Z(r, t;T ) = e−B(t,T )r+A(t,T ). (4.12)
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Differentiating each parameters in (4.12), we have

∂Z

∂t
= (−rB′(t, T ) −A′(t, T ))Z(t, r),

∂Z

∂r
= −B(t, T )Z(t, r),

∂2Z

∂r2
= B2(t, T )Z(t, r).

Substituting the above equations into the PDE (4.11) gives

[−rB′(t, T ) −A′(t, T ) + (ab − ar)B(t, T ) + 1

2
η2rB2(t, T ) − r]Z(t, r) = 0.

⇒ [(−B′(t, T ) + 1

2
η2B2(t, T ) + aB(t, T ) − 1)r −A′(t, T ) − abB(t, T )]Z(t, r) = 0.

(4.13)

The Eq. (4.13) yields the following two ODEs

A′(t, T ) = −abB(t, T ), (4.14)

B′(t, T ) = 1

2
η2B2(t, T ) + aB(t, T ) − 1. (4.15)

Solving Eq. (4.14) and Eq. (4.15), we obtain

B(t, T ) = 2(eγ(T−t) − 1)
(a − γ)(eγ(T−t) − 1) + 2γ

, (4.16)

A(t, T ) = ln( 2γe(γ+a)(T−t)/2

(γ + a)(eγ(T−t) − 1) + 2γ
)

2ab
η2

, (4.17)

where γ =
√
a2 + 2η2.
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4.3 Delta Hedging Portfolio of the Heston-CIR Model

with Transaction costs

We consider a portfolio Π that contains one option, with value C(S,V, r, t), and quant-

ities −∆,−∆1 and −∆2 of S, V and Z, respectively, where Z ∈ B. Thus we hedge the

stochastic interest rate with a zero coupon bond Z maturing at the same time as the

option C. That is

Π = C −∆S −∆1V −∆2Z. (4.18)

According to the self-financing argument, considering the transaction cost and stochastic

interest rate, we obtain

dΠ = dC −∆dS −∆1dV −∆2dZ, (4.19)

where we apply Itô’s formula to get the dynamics of C,

dC = ∂C
∂t
dt+∂C

∂S
dS+∂C

∂r
dr+∂C

∂V
dV +1

2
V S2∂

2C

∂S2
dt+ρσV S ∂2C

∂S∂V
dt+1

2
σ2V

∂2C

∂V 2
dt+1

2
η2r

∂2C

∂r2
dt,

and

dZ = ∂Z
∂t
dt + ∂Z

∂r
dr + 1

2
η2r

∂2Z

∂r2
dt.

Substituting dC to dΠ, we have the change in value of the portfolio Π:

dΠ = (∂C
∂t

+ 1

2
V S2∂

2C

∂S2
+ ρσV S ∂2C

∂S∂V
+ 1

2
σ2V

∂2C

∂V 2
+ 1

2
η2r

∂2C

∂r2
−∆2

∂Z

∂t
− ∆2

2
η2r

∂2Z

∂r2
)dt

+(∂C
∂S

−∆)dS+(∂C
∂V

−∆1)dV +(
∂C

∂r
−∆2

∂Z

∂r
)dr−k0S ∣ ν ∣ −k1V ∣ ν1 ∣ −k2Z ∣ ν2 ∣,

(4.20)

where k0S ∣ ν ∣, k1V ∣ ν1 ∣ and k2Z ∣ ν2 ∣ represent the transaction costs associated with

trading ν of the main asset S and ν1 of the volatility index V and ν2 of the zero coupon
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bond Z during the time step dt.

If we let

(∂C
∂S

−∆) = 0,

(∂C
∂V

−∆1) = 0,

and

(∂C
∂r

−∆2
∂Z

∂r
) = 0,

we can eliminate the dS and dV and dr terms in Eq. (4.20) and the dynamics of Π

becomes

dΠ = (∂C
∂t

+ 1

2
V S2∂

2C

∂S2
+ ρσV S ∂2C

∂S∂V
+ 1

2
σ2V

∂2C

∂V 2
+ 1

2
η2r

∂2C

∂r2
−∆2

∂Z

∂t
− ∆2

2
η2V

∂2Z

∂r2
)dt

− k0S ∣ ν ∣ −k1V ∣ ν1 ∣ −k2Z ∣ ν2 ∣ . (4.21)
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4.4 The PDE derivation of the Heston-CIR Model

In the last two sections, we derive the PDE of the Heston-CIR system and give numerical

solutions. In this section we investigate the costs associated with trading the asset and

set up the PDE for the Heston-CIR model with transaction cost.. If the number of asset

held short at time t is

∆t =
∂C

∂S
(S,V, r, t), (4.22)

we assume after a time step δt and re-hedging, the number of assets we hold over a

small time interval δt is

∆t+δt =
∂C

∂S
(S + δS, V + δV, r + δr, t + δt).

According to the conditions given above, the time step δt is small, the changes in asset

and the interest rate are also small. Applying the Taylor’s formula to expend ∆t+δt

yields,

∆t+δt ≃
∂C

∂S
+ δS ∂

2C

∂S2
+ δV ∂2C

∂S∂V
+ δr ∂

2C

∂S∂r
+ δt ∂

2C

∂S∂t
. (4.23)

In Section 4.1 we assume that the correlations of this model are ⟨dX1
t , dX

2
t ⟩ = ρdt,

⟨dX1
t , dX

3
t ⟩ = 0 and ⟨dX2

t , dX
3
t ⟩ = 0. So, we can neglect the term ∂2C

∂S∂r . In addition,

for small δt, δt ∂
2C

∂S∂t is also negligible. If we set up δS =
√
V SδX1 + O(δt) and

δV = σ
√
V δX2 +O(δt), substitute δS and δV into Eq. (4.23) and neglect the last two

terms in (4.23) and any other term proportional to δt or with higher order in δt, we have

an expression as follow,

∆t+δt ≃
∂C

∂S
+
√
V SδX1∂

2C

∂S2
+ σ

√
V δX2 ∂2C

∂S∂V
. (4.24)

Next, we subtract (4.22) from (4.24), we obtain the number of assets trading during
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the time step δt as follows:

ν =
√
V SδX1∂

2C

∂S2
+ σ

√
V δX2 ∂2C

∂S∂V
. (4.25)

Because X1
t and X2

t are correlated Brownian motions, we consider two independent

normal variables Z1 and Z2 with mean 0 and variance 1. Then, we have

δX1 = Z1

√
δt

and

δX2 = ρZ1

√
δt +

√
1 − ρ2Z2

√
δt.

Substituting these expressions of δX1 and δX2 in Eq (4.25) and denoting

α1 =
√
V S

√
δt
∂2C

∂S2
+ σ

√
V ρ

√
δt

∂2C

∂S∂V
, (4.26)

β1 = σ
√
V
√

1 − ρ2
√
δt

∂2C

∂S∂V
,

then we can rewrite the change in the number of shares over the time step δt as:

ν = α1Z1 + β1Z2.

In a very similar way we can express ν1 as follows:

ν1 =
√
V SδX1 ∂2C

∂S∂V
+ σ

√
V δX2∂

2C

∂V 2
. (4.27)

Since X3 is independent from X1 and X2, we have

ν2 =
η
√
r

ζ(r, t)
∂2C

∂r2
δX3, (4.28)
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where ζ(r, t) = ∂Z
∂r . Let ∆2 = 1

ζ(r,t)
∂C
∂r . We know the expectation of the change in value

of the portfolio is

E[dΠ] = (∂C
∂t

+ 1

2
V S2∂

2C

∂S2
+ ρσV S ∂2C

∂S∂V
+ 1

2
σ2V

∂2C

∂V 2
+ 1

2
η2r

∂2C

∂r2
−∆2

∂Z

∂t
− ∆2

2
η2r

∂2Z

∂r2
)dt

− k0SE[∣ ν ∣] − k1V E[∣ ν1 ∣] − k2ZE[∣ ν2 ∣]. (4.29)

Under the risk-neutral measure Q,

E[dΠ] = rΠdt. (4.30)

Hence, we have

(∂C
∂t

+ 1

2
V S2∂

2C

∂S2
+ ρσV S ∂2C

∂S∂V
+ 1

2
σ2V

∂2C

∂V 2
+ 1

2
η2r

∂2C

∂r2
−∆2

∂Z

∂t
− ∆2

2
η2r

∂2Z

∂r2
)dt

−k0SE[∣ ν ∣] − k1V E[∣ ν1 ∣] − k2ZE[∣ ν2 ∣]

= (−rS ∂C
∂S

− rV ∂C
∂V

− rZ
ζ

∂C

∂r
+ rC)dt.

Dividing each side by dt and re-arranging yield

∂C

∂t
+ 1

2
V S2∂

2C

∂S2
+ ρσV S ∂2C

∂S∂V
+ 1

2
σ2V

∂2C

∂V 2
+ 1

2
η2r

∂2C

∂r2
−∆2

∂Z

∂t
− ∆2

2
η2r

∂2Z

∂r2

−k0S

dt
E[∣ ν ∣] − k1V

dt
E[∣ ν1 ∣] − k2Z

dt
E[∣ ν2 ∣]

= −rS ∂C
∂S

− rV ∂C
∂V

− rZ
ζ

∂C

∂r
+ rC. (4.31)

Next, we calculate E[∣ ν ∣], E[∣ ν1 ∣] and E[∣ ν2 ∣]. By Eq.(4.26), we have

E[∣ ν ∣] =
√

2δt

π

√
α2

1 + β2
1 =

√
2δt

π
×
√
V S2(∂

2C

∂S2
)2 + σ2V ( ∂2C

∂S∂V
)2 + 2ρV σS

∂2C

∂S2

∂2C

∂S∂V
.

(4.32)
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Similarly, we can obtain

E[∣ ν1 ∣] =
√

2δt

π
×
√
V S2( ∂2C

∂S∂V
)2 + σ2V (∂

2C

∂V 2
)2 + 2ρV σS

∂2C

∂S2

∂2C

∂S∂V
, (4.33)

and

E[∣ ν2 ∣] =
√

2δt

π
× η

∣ ζ ∣
√
r ∣∂

2C

∂r2
∣ . (4.34)

Substituting Eq.(4.32), Eq.(4.33) and Eq. (4.34) into Eq. (4.31) and note that dt = δt,

we get a partial differential equation of stochastic volatility model with transaction

costs,

∂C

∂t
+1

2
V S2∂

2C

∂S2
+1

2
V σ2∂

2C

∂V 2
+ρσV S ∂2C

∂S∂V
+1

2
η2r

∂2C

∂r2
+rS ∂C

∂S
+rV ∂C

∂V
+a(b−r)∂C

∂r
−rC

− F1 − F2 − F3 = 0, (4.35)

where

F1 = k0S

√
2

πδt
×
√
V S2(∂

2C

∂S2
)2 + σ2V ( ∂2C

∂S∂V
)2 + 2ρV σS

∂2C

∂S2

∂2C

∂S∂V
,

F2 = k1V

√
2

πδt
×
√
V S2( ∂2C

∂S∂V
)2 + σ2V (∂

2C

∂V 2
)2 + 2ρV σS

∂2C

∂S2

∂2C

∂S∂V
,

F3 = k2
Z

∣ ζ ∣

√
2

πδt
η
√
r ∣∂

2C

∂r2
∣ .

We assume that a European call option with the strike price E and maturity at time T

satisfies the PDE (4.35) subject to the following terminal condition:

C(S,V, r, T ) = max[S −E,0], (4.36)
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and boundary conditions

C(0, V, r, t) = 0,

∂C

∂S
(Smax, V, r, t) = 1,

∂C

∂t
(S,0, r, t)+rS ∂C

∂S
(S,0, r, t)+a(b−r)∂C

∂r
−rC(S,0, r, t)−F3(S,0, r, t) = 0, (4.37)

C(S,Vmax, r, t) = S,

∂C

∂r
(S,V,0, t) = 0,

∂U

∂r
(S,V, rmax, t) = 0.
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4.5 Finite Difference Scheme

Next, we will explain how to build the finite difference schemes. We assume that the

stock price S is between 0 and Smax, the volatility V is between 0 and Vmax, the interest

rate r is between 0 and rmax and the time t is in the interval 0 ≤ t ≤ T . In practice, Smax

does not have to be too large. Typically, it should be three or four times the value of

the exercise prise. In the next section, we take Vmax = 1. To derive the finite difference

scheme, we first transform the domain of the continuous problem

{(S,V, t) ∶ 0 ≤ S ≤ Smax,0 ≤ V ≤ Vmax,0 ≤ r ≤ rmax,0 ≤ t ≤ T}

into a discretized domain with a uniform system of meshes or node points (iδS, jδV, nδt),

where i = 1,2, ..., I , j = 1,2, ..., J , k = 1,2, ...,K and n = 1,2, ...,N so that IδS = Smax,

JδV = Vmax, Kδr = rmax and Nδt = T . Let Cn
i,j,k denote the numerical approximation

of C(iδS, jδV, kδr, nδt). The continuous temporal and spatial derivatives in (4.35) are

approximated by the following finite difference operators

∂C

∂t
≈
Cn+1
i,j,k −Cn

i,j,k

δt
,

∂C

∂S
≈
Cn
i+1,j,k −Cn

i−1,j,k

2δS
,

∂2C

∂S2
≈
Cn
i+1,j,k − 2Cn

i,j,k +Cn
i−1,j,k

(δS)2
,

∂C

∂V
≈
Cn
i,j+1,k −Cn

i,j−1,k

2δV
,

∂2C

∂V 2
≈
Cn
i,j+1,k − 2Cn

i,j,k +Cn
i,j−1,k

(δV )2
,

∂2C

∂S∂V
≈
Cn
i+1,j+1,k +Cn

i−1,j−1,k −Cn
i−1,j+1,k −Cn

i+1,j−1,k

4δSδV
,



Chapter 4. Heston-CIR Model with Transaction Cost 64

∂C

∂r
≈
Cn
i,j,k+1 −Cn

i,j,k−1

2δr
,

∂2C

∂r2
≈
Cn
i,j,k+1 − 2Cn

i,j,k +Cn
i,j,k−1

(δr)2
.

We obtain the following explicit Forward-Time-Centered-Space finite difference scheme

for the (4.35):

Cn+1
i,j,k = Cn

i,j,k+
1

2
V S2 δt

(δS)2
(Cn

i+1,j,k−2Cn
i,j,k+Cn

i−1,j,k)+
1

2
V σ2 ∆t

(δV )2
(Cn

i,j+1,k−2Cn
i,j,k+Cn

i,j−1,k)

+1

2
η2r

δt

(δr)2
(Cn

i,j,k+1−2Cn
i,j,k+Un

i,j,k−1)+ρσV S
δt

4∆SδV
(Cn

i+1,j+1,k+Cn
i−1,j−1,k−Cn

i−1,j+1,k−Cn
i+1,j−1,k)

+rS δt

2δS
(Cn

i+1,j,k−Cn
i−1,j,k)+rV

δt

2δV
(Cn

i,j+1,k−Cn
i,j−1,k)+a(b−r)

δt

2δr
(Cn

i,j,k+1−Cn
i,j,k−1)−rδtCn

i,j,k

(4.38)

−F1 − F2 − F3,

where

F1 = k0Sδt

√

2

πδt

¿

Á
ÁÀ2ρV σS

(Cn
i+1,j+1,k +C

n
i−1,j−1,k −C

n
i−1,j+1,k −C

n
i+1,j−1,k)

4δSδV

(Cn
i+1,j,k − 2C

n
i,j,k +C

n
i−1,j,k)

(δS)2

+V S2
(

(Cn
i+1,j,k − 2C

n
i,j,k +C

n
i−1,j,k)

(δS)2
)

2

+ V σ2
(

(Cn
i+1,j+1,k +C

n
i−1,j−1,k −C

n
i−1,j+1,k −C

n
i+1,j−1,k)

4δSδV
)

2

,

F2 = k1V δt

√

2

πδt

¿

Á
ÁÀ2ρV σS

(Cn
i+1,j+1,k +C

n
i−1,j−1,k −C

n
i−1,j+1,k −C

n
i+1,j−1,k)

4δSδV

(Cn
i,j+1,k − 2C

n
i,j,k +C

n
i,j−1,k)

(δV )2

+V S2
(

(Cn
i+1,j+1,k +C

n
i−1,j−1,k −C

n
i−1,j+1,k −C

n
i+1,j−1,k)

4δSδV
)

2

+ σ2V (
(Cn

i,j+1,k − 2C
n
i,j,k +C

n
i,j−1,k)

(δV )2
)

2

,

F3 = k2
Z

∣ ζ ∣δt
√

2

πδt
η
√
r
Cn
i,j,k+1 − 2Cn

i,j,k +Cn
i,j,k−1

(δr)2
,
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and i = 1,2, ..., I , j = 1,2, ..., J , k = 1,2, ...,K and n = 1,2, ...,N .

The terminal condition (3.36) becomes

Cn
i,j,k = max[i∆S −E,0],

and the boundary conditions (4.37) become

Cn
1,j,k = 0, Cn+1

I,j,k = ∆S +Cn+1
I−1,j,k,

Cn+1
i,J,k = i∆S,

Cn+1
i,1,k = ∆t(ri(Cn

i+1,1,k −Cn
i,1,k) +

a(b − r)
∆r

(Cn
i,1,k+1 −Cn

i,1,k) − rCn
i,1,k − F ′

3) +Cn
i,1,k,

Cn+1
i,j,1 = Cn+1

i,j,2, Cn+1
i,j,K = Cn+1

i,j,K−1,

where

F ′
3 = k2

Z

∣ ζ ∣∆t
√

2

πδt
η
√
r
Cn
i,1,k+1 − 2Un

i,1,k +Cn
i,1,k−1

(∆r)2
.
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4.6 Numerical Analysis

In this section, we solve the PDE numerically in MATLAB. We assume that the strike

price E = 100, the range of stock prices S is [0,200], the range of volatility V is [0,1]

and interest rate r ∈ [0,1]. The parameters ρ, σ η and T table values as follows: ρ = 0.8,

σ = 0.05, η = 0.2 and T = 1. The figure 4.1 shows that at time t = 0 how the option

value C changes with S and V , when k0 = k1 = k2 = 0. The figure 4.2 shows that at

time t = 0 how the option value C changes with S and V , when k0 = k1 = k2 + 0.02.

Figure 4.1: Solution of PDE, when k0 = 0, k1 = 0, k2 = 0

Figure 4.2: Solution of Heston-CIR PDE, when k0 = 0.02, k1 = 0.02, k2 = 0.02



Chapter 4. Heston-CIR Model with Transaction Cost 67

Tabulated results when k0 = k1 = k2 = 0 at V = 0.04 and V = 0.6, S between 80 to

120 are shown in Table 4.1. Table 4.1 shows us when V = 0.04, there are more obvious

changes from r = 0.04 to r = 0.08, all values of option C increase between 0.5 to 2.5.

However, these changes are not significant when V = 0.6.

Table 4.1: Solution of Heston-CIR PDE, when k0 = 0, k1 = 0, k2 = 0

S C (V = 0.04) C (V = 0.6) C (V = 0.04) C (V = 0.6)
(r = 0.04) (r = 0.04) (r = 0.08) r = 0.08)

80 1.712 21.221 2.200 21.692
84 2.654 23.741 3.335 24.242
88 3.912 26.366 4.813 26.896
92 5.512 29.089 6.650 29.647
96 7.461 31.906 8.842 32.491

100 9.751 34.811 11.369 35.422
104 12.359 37.798 14.199 38.435
108 15.253 40.865 17.293 41.525
112 18.396 44.005 20.612 44.688
116 21.749 47.216 24.113 47.921
120 25.274 50.493 27.762 51.219

Tabulated results when k0 = k1 = k2 = 0.02 at V = 0.05 and V = 0.6, S between

80 to 120 are shown in Table 4.2. Table 4.2 shows us when V = 0.04, there are more

obvious changes from r = 0.04 to r = 0.08, all values of option C increase between 0.4

to 2.2. In addition, these changes are also significant when V = 0.6, from r = 0.04 to

r = 0.08, all values of option C are increase by 1.
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Table 4.2: Solution of Heston-CIR PDE, when k0 = 0.02, k1 = 0.02, k2 = 0.02

S C (V = 0.04) C (V = 0.6) C (V = 0.04) C (V = 0.6)
(r = 0.04) (r = 0.04) (r = 0.08) (r = 0.08)

80 1.445 20.660 1.8526 21.118
84 2.328 23.162 2.913 23.650
88 3.545 25.770 4.335 26.288
92 5.130 28.479 6.142 29.025
96 7.094 31.283 8.333 31.856

100 9.427 34.177 10.885 34.776
104 12.102 37.155 13.762 37.779
108 15.081 40.213 16.919 40.861
112 18.318 43.346 20.307 44.017
116 21.766 46.551 23.880 47.243
120 25.384 49.822 27.597 50.536

After we compare Table 4.1 with Table 4.2, we find when k0 k1and k2 increase

to 0.02, the value of option C will decrease and all changes of C(V = 0.04) are less

than 0.3. The changes of C are more significant when V = 0.6. These results are very

similar to those in Chapter 3. Since S increases from 80 to 120, the changes will be

increasingly obscure.
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Figure 4.3: Solution of Heston-CIR PDE, when k0 = 0.02, k1 = 0.02, k2 = 0.02



Chapter 5

Discussion and Conclusion

The main goal of this thesis is to consider the problem of option pricing under the

Heston-CIR model, which is a combination of the stochastic volatility model discussed

in Heston and the stochastic interest rates model driven by Cox-Ingersoll-Ross (CIR)

processes. We obtain the numerical solution to the PDE of Heston-CIR model with

transaction cost by implementing the finite difference scheme in MATLAB. In this

chapter, we summarise our results in Chapter 3 and Chapter 4 and suggest some

possible directions for future work. Section 5.1 is devoted to discuss the significance

and conclusion of our main results. In Section 5.2, we discuss the limitations of our

findings and propose some future research directions which may be worth of pursuing.

70
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5.1 Conclusion

The Black-Scholes (Black & Scholes, 1973) model assumed no transaction cost in the

continuous re-balancing of a hedged portfolio. In real financial markets, this assumption

is not valid. The construction of hedging strategies for transaction cost is an important

problem. Based on a method for hedging call option and Black-Scholes assumptions,

Leland (Leland, 1985) presented a hedging strategy with a proportional transaction cost.

Mariani, SenGupta and Sewell (Mariani et al., 2015) considered a stochastic volatility

model, similar to that of (Wiggins, 1987). Applying the same approach, this thesis

focuses on the Heston-CIR model with transaction cost and stochastic interest rate.

In this thesis, we study the Heston-CIR model in the framework of transaction

cost and stochastic interest rate. In Chapter 3, we extend Leland’s model by adding

transaction costs to Heston’s (Heston, 1993) stochastic volatility model and derive a

PDE for a general class of stochastic volatility models. We apply the finite-difference

method to find an approximate solution to this model and compare our numerical results

with these of Mariani, SenGupta and Sewell (Mariani et al., 2015). We find that the

results of our stochastic volatility models are no significant difference with these of

Mariani, SenGupta and Sewell (Mariani et al., 2015). Moreover, we also discuss the

impact of transaction cost under this stochastic volatility model. We discover that the

change of the transaction cost have little impact on the value of option price.

Following the study in Chapter 3, we consider the Heston-CIR model with partial

correlation in Chapter 4. To do this, we derive a pricing formula for zero-coupon bonds

and analyze the Delta hedging portfolio of the Heston-CIR model with transaction

cost. We use replicating technique to derive the model and substitute the solution of

zero-coupon bonds into the PDE. We obtain the numerical solution to the PDE of

Heston-CIR model with transaction cost by implementing the finite difference scheme

in MATLAB. We analyze the impact of the interest rate change under the Heston-CIR
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model. Furthermore, we also discuss the impact of transaction cost under the Heston-

CIR model. When the Heston-CIR model with non transaction cost, We discover that if

volatility is a small value (V = 0.04), all values of option price increase between 0.5 to

2.5 and these changes are not significant when V = 0.6. However, when the Heston-CIR

model with transaction cost, all values of option price increase becomes less apparent

when V = 0.04 and these changes are more significant when V = 0.6. These results are

very similar to those in Chapter 3.
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5.2 Future Research

In this section, we discuss some limitations of our findings and potential directions for

future research. In the Black and Scholes world, where the volatility of asset returns is

assumed to be a constant, pure delta hedging suffices to solve the hedging problem. An

option can be perfectly hedged by dynamically trading the underlying stock. Delta is

the rate of change of the option value with respect to the underlying asset price. The

delta measure is most important in hedging the exposure of a portfolio of options to

the market risk. In our work we did not use the real market data to test our results. In

reality, due to many factors, financial markets may experience jumps from time to time.

However, our model does not capture jumps in either volatility or underlying stock

prices. In Chapters 3 and 4, when we set up a risk-less portfolio to hedge the option, we

needed an asset whose value depends on volatility. We followed the approach used by

Mariani, SenGupta and Sewell (Mariani et al., 2015), and did not consider the market

risk of this asset due to the stock price and volatility movements. However, Gatheral

(Gatheral, 2011) considered this risk factor for option pricing under stochastic volatility

models. In Chapter 4, we consider the Heston-CIR model only with a partial correlation

rather than full correlation. It would be of interests to consider how to overcome the

above three limitations. These will be possible research directions in the future.
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Appendix A

MATLAB code

%For chapter 3, when k=k1=0

%parameter values

Smax=200;Smin=0;Vmax=1;Vmin=0;K=100;

I=100;J=100;r=0.05;

rho=0.8;k=0.0;k1=0.0;

T=1; deltat=1; dt=1/10000;

sigma=0.4;

N=1+ceil(T/dt);% dt = T/nt;

% the lower bounds of s and v are both 0

ds = (Smax-Smin)/(I-1); % step length of s

dv = (Vmax+Vmin)/(J-1); % step length of v

U=zeros(I,J,N);

for i=1:I

for j=1:J

U(i,j,1)=max(0,(i-1)*ds-K);

end

end

for n=1:N-1 % the interior elements. Cross term part.

for j=2:J-1

for i = 2:I-1

F1=0; F2=0;

U(i,j,n+1)=U(i,j,n)+((j-1)*dv)*((i-1)*ds)^2*dt/(2*ds^2)*(U(i+1,j,n)-2*U(i,j,n)+U(i-1,j,n))...

+sigma^2*((j-1)*dv)*dt/(2*dv^2)*(U(i,j+1,n)-2*U(i,j,n)+U(i,j-1,n))...

+r*(i-1)*ds*dt/(2*ds)*(U(i+1,j,n)-U(i-1,j,n))...

+r*(j-1)*dv*dt/(2*dv)*(U(i,j+1,n)-U(i,j-1,n))...

+rho*sigma*((j-1)*dv)*((i-1)*ds)*dt/(4*ds*dv)*(U(i+1,j+1,n)+U(i-1,j-1,n)-U(i-1,j+1,n)-U(i+1,j-1,n))...

-r*dt*U(i,j,n)-F1-F2;

end

end

for j=1:J

U(1,j,n+1)=0;
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end

for i=2:I-1

U(i,1,n+1)= r*(i-1)*dt*(U(i+1,1,n)-U(i,1,n))+U(i,1,n)*(1-r*dt);

end

for i=2:I-1

U(i,J,n+1)=(i-1)*ds;

end

for j=1:J

U(I,j,n+1)=ds+U(I-1,j,n+1);

end

end

figure(1)

S=0:ds:200;

V=0:dv:1;

mesh(V,S,U(:,:,n))

xlabel(’V’)

ylabel(’S’)

zlabel(’C’)

title(’Numerical solution of PDE, when k=k1=0.00’)

T1=(table(U(39:61,5,n),U(39:61,60,n)));

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%For chapter 3, when k=k1=0.02

%parameter values

Smax=200;Smin=0; Vmax=1;Vmin=0;K=100;

I=100;J=100;r=0.05;

rho=0.8;k=0.02;k1=0.02;

T=1; deltat=1; dt=1/10000;

sigma=0.4;

N=1+ceil(T/dt);% dt = T/nt;

% the lower bounds of s and v are both 0

ds = (Smax-Smin)/(I-1); % step length of s

dv = (Vmax+Vmin)/(J-1); % step length of v

U=zeros(I,J,N);

for i=1:I

for j=1:J

U(i,j,1)=max(0,(i-1)*ds-K);

end

end

for n=1:N-1 % the interior elements. Cross term part.

for j=2:J-1

for i = 2:I-1

f1=(U(i+1,j,n)-2*U(i,j,n)+U(i-1,j,n))/(ds)^2;

f2=(U(i+1,j+1,n)+U(i-1,j-1,n)-U(i-1,j+1,n)-U(i+1,j-1,n))/(4*ds*dv);

f3=(U(i,j+1,n)-2*U(i,j,n)+U(i,j-1,n))/(dv)^2;

F1=k*((i-1)*ds)*dt*sqrt(2/(pi*deltat))*sqrt(((j-1)*dv)*((i-1)*ds)^2*(f1)^2 +...

sigma^2*((j-1)*dv)*(f2)^2+2*rho*sigma*((j-1)*dv)*((i-1)*ds)*(f2*f1));

F2=k1*((j-1)*dv)*dt*sqrt(2/(pi*deltat))*sqrt(((j-1)*dv)*((i-1)*ds)^2*(f2)^2+...

sigma^2*((j-1)*dv)*(f3)^2+2*rho*sigma*((j-1)*dv)*((i-1)*ds)*(f2*f3));

U(i,j,n+1)=U(i,j,n)+((j-1)*dv)*((i-1)*ds)^2*dt/(2*ds^2)*(U(i+1,j,n)-2*U(i,j,n)+U(i-1,j,n))...
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+sigma^2*((j-1)*dv)*dt/(2*dv^2)*(U(i,j+1,n)-2*U(i,j,n)+U(i,j-1,n))...

+r*(i-1)*ds*dt/(2*ds)*(U(i+1,j,n)-U(i-1,j,n))...

+r*(j-1)*dv*dt/(2*dv)*(U(i,j+1,n)-U(i,j-1,n))...

+rho*sigma*((j-1)*dv)*((i-1)*ds)*dt/(4*ds*dv)*(U(i+1,j+1,n)+U(i-1,j-1,n)-U(i-1,j+1,n)-U(i+1,j-1,n))...

-r*dt*U(i,j,n)-F1-F2;

end

end

for j=1:J

U(1,j,n+1)=0;

end

for i=2:I-1

U(i,1,n+1)= r*(i-1)*dt*(U(i+1,1,n)-U(i,1,n))+U(i,1,n)*(1-r*dt);

end

for i=2:I-1

U(i,J,n+1)=(i-1)*ds;

end

for j=1:J

U(I,j,n+1)=ds+U(I-1,j,n+1);

end

end

figure(2)

S=0:ds:200;

V=0:dv:1;

mesh(V,S,U(:,:,n))

xlabel(’V’)

ylabel(’S’)

zlabel(’C’)

title(’Numerical solution of PDE, when k=k1=0.00’)

T2=(table(U(39:61,5,n),U(39:61,60,n)))

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%For chapter 4 when k0=k1=k2=0

%parameter values

Smax=200;Smin=0;Vmax=1;Vmin=0;rmax=1;rmin=0;

E=100;% strike price

I=50;J=25;K=25;

eta=0.2;rho=0.8;k0=0.02;k1=0.02;k2=0.02;

T=1; dt=1/10000;a=0.5;b=0.1;

sigma=0.05;%or sigma=0.6

N=1+ceil(T/dt);% dt = T/nt; %N=100

deltat=1;

% the lower bounds of s and v are both 0

ds = (Smax-Smin)/(I-1); % step length of s

dr = (rmax-rmin)/(K-1); % step length of r

dv = (Vmax+Vmin)/(J-1); % step length of v

%initial conditions

U=zeros(I,J,K,N);

for i=1:I

for j=1:J

for k=1:K
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U(i,j,k,1)=max(0,(i-1)*ds-E);

end

end

end

for n=1:N-1 % equation 2.

for j=2:J-1

for k = 2:K-1

for i = 2:I-1

%bonds price

kappa=0.5;alpha=0.5;

h = sqrt(kappa^2 + 2*sigma^2);

A = (2*h*exp((kappa+h)*T/2)/(2*h + (kappa+h)*(exp(T*h)-1)))^((2*kappa*alpha)/sigma^2);

B = 2*(exp(T*h)-1)/(2*h + (kappa+h)*(exp(T*h)-1));

Z = exp(-B*((k-1)*dr)+A); %equation 4.14

Zeta = -B*Z; %Zeta=dZ/dr

F1=0;

F2=0;

F3=0;

U(i,j,k,n+1)=U(i,j,k,n)+((j-1)*dv)*((i-1)*ds)^2*dt/(2*ds^2)*(U(i+1,j,k,n)-2*U(i,j,k,n)+U(i-1,j,k,n))...

+sigma^2*((j-1)*dv)*dt/(2*dv^2)*(U(i,j+1,k,n)-2*U(i,j,k,n)+U(i,j-1,k,n))...

+(eta^2)*((k-1)*dr)*dt/(2*dr^2)*(U(i,j,k+1,n)-2*U(i,j,k,n)+U(i,j,k-1,n))...

+((k-1)*dr)*(i-1)*ds*dt/(2*ds)*(U(i+1,j,k,n)-U(i-1,j,k,n))...

+((k-1)*dr)*(j-1)*dv*dt/(2*dv)*(U(i,j+1,k,n)-U(i,j-1,k,n))...

+(a*(b-(k-1)*dr))*dt/(2*dr)*(U(i,j,k+1,n)-U(i,j,k-1,n))...

+rho*sigma*((j-1)*dv)*((i-1)*ds)*dt/(4*ds*dv)*(U(i+1,j+1,k,n)+U(i-1,j-1,k,n)-U(i-1,j+1,k,n)-U(i+1,j-1,k,n))...

-(k-1)*dr*dt*U(i,j,k,n)-F1-F2-F3;

F33=dt*k2*Z/Zeta*sqrt(2/(pi*deltat))*eta*sqrt((k-1)*dr)/(dr^2)*(U(i,1,k+1,n)-2*U(i,1,k,n)+U(i,1,k-1,n));

end

end

end

%boundary conditions

%when S=min

for k=1:K

for j=1:J

U(1,j,k,n+1)=0;

end

end

%when r=min

for i=2:I-1

for j=2:J-1

U(i,j,1,n+1)=U(i,j,2,n+1);

end

end

%when r=max

for i=2:I-1

for j=2:J-1

U(i,j,K,n+1)= U(i,j,K-1,n+1);
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end

end

%when V=max

for i=2:I-1

for k=2:K-1

U(i,J,k,n+1)=(i-1)*ds;

end

end

%when V=min

for i=2:I-1

for k=2:K-1

U(i,1,k,n+1)=U(i,1,k,n)...

+((k-1)*dr)*(i-1)*ds*dt/(2*ds)*(U(i+1,1,k,n)-U(i-1,1,k,n))...

+(a*(b-(k-1))*dr)*dt/(2*dr)*(U(i,1,k+1,n)-U(i,1,k-1,n))...

-(k-1)*dr*dt*U(i,1,k,n)-F33;

end

end

%when S=max

for k=1:K

for j=1:J

U(I,j,k,n+1)=ds+U(I-1,j,k,n+1);

end

end

end

figure(3)

S=0:ds:200;

V=0:dv:1;

mesh(V,S,U(:,:,1,n))

xlabel(’V’)

ylabel(’S’)

zlabel(’C’)

title(’Numerical solution of Heston-CIR PDE, when V=0.04,k0=k1=k2=0.02’)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%For chapter 4 when k0=k1=k2=0.02

%parameter values

Smax=200;Smin=0;Vmax=1;Vmin=0;rmax=1;rmin=0;

E=100;% strike price

I=50;J=25;K=25;

eta=0.2;rho=0.8;k0=0.02;k1=0.02;k2=0.02;

T=1; dt=1/10000;a=0.5;b=0.1;

sigma=0.05;%or sigma=0.6 deltat=1;

N=1+ceil(T/dt);% dt = T/nt; %N=100

% the lower bounds of s and v are both 0

ds = (Smax-Smin)/(I-1); % step length of s

dr = (rmax-rmin)/(K-1); % step length of r

dv = (Vmax+Vmin)/(J-1); % step length of v

%initial conditions

U=zeros(I,J,K,N);

for i=1:I

for j=1:J

for k=1:K
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U(i,j,k,1)=max(0,(i-1)*ds-E);

end

end

end

for n=1:N-1 % equation 2.

for j=2:J-1

for k = 2:K-1

for i = 2:I-1

%bonds price

kappa=0.5;alpha=0.5;

h = sqrt(kappa^2 + 2*sigma^2);

A = (2*h*exp((kappa+h)*T/2)/(2*h + (kappa+h)*(exp(T*h)-1)))^((2*kappa*alpha)/sigma^2);

B = 2*(exp(T*h)-1)/(2*h + (kappa+h)*(exp(T*h)-1));

Z = exp(-B*((k-1)*dr)+A); %equation 4.14

Zeta = -B*Z; %Zeta=dZ/dr

f1= (U(i+1,j,k,n)-2*U(i,j,k,n)+U(i-1,j,k,n))/(ds^2);

f2= (U(i,j+1,k,n)-2*U(i,j,k,n)+U(i,j-1,k,n))/(dv^2);

f3= (U(i+1,j+1,k,n)+U(i-1,j-1,k,n)-U(i-1,j+1,k,n)-U(i+1,j-1,k,n))/(4*ds*dv);

F1=k0*((i-1)*ds)*dt*sqrt(2/(pi*deltat))...

*sqrt(2*rho*(j-1)*dv*sigma*(i-1)*ds*f1*f3+(j-1)*dv*((i-1)*ds)^2*(f1)^2+(j-1)*dv*sigma^2*(f3)^2);

F2=k1*(j-1)*dv*dt*sqrt(2/(pi*deltat))...

*sqrt(2*rho*(j-1)*dv*sigma*(i-1)*ds*f2*f3+(j-1)*dv*((i-1)*ds)^2*(f3)^2+(j-1)*dv*sigma^2*(f2)^2);

F3=dt*k2*Z/Zeta*sqrt(2/(pi*deltat))*eta*sqrt((k-1)*dr)/(dr^2)*(U(i,j,k+1,n)-2*U(i,j,k,n)+U(i,j,k-1,n));

U(i,j,k,n+1)=U(i,j,k,n)+((j-1)*dv)*((i-1)*ds)^2*dt/(2*ds^2)*(U(i+1,j,k,n)-2*U(i,j,k,n)+U(i-1,j,k,n))...

+sigma^2*((j-1)*dv)*dt/(2*dv^2)*(U(i,j+1,k,n)-2*U(i,j,k,n)+U(i,j-1,k,n))...

+(eta^2)*((k-1)*dr)*dt/(2*dr^2)*(U(i,j,k+1,n)-2*U(i,j,k,n)+U(i,j,k-1,n))...

+((k-1)*dr)*(i-1)*ds*dt/(2*ds)*(U(i+1,j,k,n)-U(i-1,j,k,n))...

+((k-1)*dr)*(j-1)*dv*dt/(2*dv)*(U(i,j+1,k,n)-U(i,j-1,k,n))...

+(a*(b-(k-1)*dr))*dt/(2*dr)*(U(i,j,k+1,n)-U(i,j,k-1,n))...

+rho*sigma*((j-1)*dv)*((i-1)*ds)*dt/(4*ds*dv)*(U(i+1,j+1,k,n)+U(i-1,j-1,k,n)-U(i-1,j+1,k,n)-U(i+1,j-1,k,n))...

-(k-1)*dr*dt*U(i,j,k,n)-F1-F2-F3;

F33=dt*k2*Z/Zeta*sqrt(2/(pi*deltat))*eta*sqrt((k-1)*dr)/(dr^2)*(U(i,1,k+1,n)-2*U(i,1,k,n)+U(i,1,k-1,n));

end

end

end

%boundary conditions

%when S=min

for k=1:K

for j=1:J

U(1,j,k,n+1)=0;

end

end

%when r=min

for i=2:I-1

for j=2:J-1
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U(i,j,1,n+1)=U(i,j,2,n+1);

end

end

%when r=max

for i=2:I-1

for j=2:J-1

U(i,j,K,n+1)= U(i,j,K-1,n+1);

end

end

%when V=max

for i=2:I-1

for k=2:K-1

U(i,J,k,n+1)=(i-1)*ds;

end

end

%when V=min

for i=2:I-1

for k=2:K-1

U(i,1,k,n+1)=U(i,1,k,n)...

+((k-1)*dr)*(i-1)*ds*dt/(2*ds)*(U(i+1,1,k,n)-U(i-1,1,k,n))...

+(a*(b-(k-1))*dr)*dt/(2*dr)*(U(i,1,k+1,n)-U(i,1,k-1,n))...

-(k-1)*dr*dt*U(i,1,k,n)-F33;

end

end

%when S=max

for k=1:K

for j=1:J

U(I,j,k,n+1)=ds+U(I-1,j,k,n+1);

end

end

end

figure(4)

S=0:ds:200;

V=0:dv:1;

mesh(V,S,U(:,:,1,n))

xlabel(’V’)

ylabel(’S’)

zlabel(’C’)

title(’Numerical solution of Heston-CIR PDE, when V=0.04,k0=k1=k2=0.02’)
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