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Abstract

The sparseness of Mashup-API rating matrix coupled with cold-start and scalability

issues have been identified as the most critical challenges that affect most Collaborative

filtering based Web APIs recommendation solution. Sparseness deteriorates the rating

prediction accuracy. Several Web-API recommendation approaches employ basic col-

laborative filtering technique which operates on second-order matrices or tensors by

decomposing the Mashup-API interaction matrix into two low-rank matrix approxima-

tions, and then make prediction based on the factorized tensors. While most existing

CF, Matrix factorization-based Web-API recommendation approaches have shown

promising improvement in recommendation results, one limitation is that they only

focus on 2-dimensional data model in which historical interaction between Mashup-API

are mainly used. However, recent works in recommendation domain show that by

incorporating additional information into the rating data, Web-API rating prediction

accuracy can be enhanced. Inspired by these works, this research proposes a collaborat-

ive Filtering method based Tensors factorization, an extension of Matrix factorization-

that exploits the ternary relation among three key entities in Web service ecosystem

Mashup-API-Proximity. Modelling the Web-API rating data with Tensor decomposition

technique enables incorporation proximity information as third additional entity into

Web service recommendation application to improve prediction accuracy. Specifically,

we employ High Order Singular Value Decomposition approach with regularization

term to extend the traditional Mashup-API matrix into Mashup-API-Proximity tensors.
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Experimental analysis on ProgrammableWeb dataset shows promising results compare

with some state-of-the-art approaches.

Keywords: Tensors Factorization, ProgrammableWeb, High Order Singular Value

Decomposition, Recommendation, Mashups, Web-API recommendation
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Chapter 1

Introduction

1.1 Aim

Recommender systems play an important role in many real-world applications that

support users in managing large information space and helping users to overcome

the current information overload problem on the internet. However,these systems are

generally faced with challenging issues such as data sparsity, scalability and cold start

problem. For data sparsity, the recent prevalence of open data source coupled with

the increasing growth of the number of users and items in various online, distributed

system platforms, increases the sparseness of user-to-item rating data. In this case,

only a small fraction of items usually have explicit rating information defined by

users. Eventually, the data sparseness deteriorates the rating prediction accuracy of

conventional collaborative filtering (CF) techniques.

Conventional recommender approaches such as item-based (Linden, Smith & York,

2003) or user-based (Isinkaye, Folajimi & Ojokoh, 2015) and popular Matrix Factor-

ization method are mainly based on two major types entities user-item. That is, they

operate on second-order tensors representing relations or interactions between users

(such as customers/consumers) and items (products, services and resources). Since in
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Chapter 1. Introduction 13

real-world, multiple information about object interactions usually involve more than

two participating entities, and several additional information about the state of the inter-

actions like location, time, or mood of the user are usually available (W. Wu et al., 2017).

Recent techniques are leveraging various auxiliary information currently available on

the web to enhance rating prediction accuracy. However, while various side/auxiliary

information is available to support the performance of recommendation applications,

incorporating multifaceted information such as ternary relation between independent

objects into rating matrix is a challenging task. Moreover, many existing approaches for

prediction and recommendation can neither handle heterogeneous, large-scale datasets

nor deal with cold-start problem.

In service-oriented computing, various web service recommendation approaches

including memory-based, content-based, social-based, and context-based and other

hybrid collaborative filtering approach exit (Bobadilla, Ortega, Hernando & Gutiérrez,

2013). Many of these approaches explored the historical, co-invocation and interaction

information that exist between Web-service compositions Mashups and component

services like Web-APIs to solve the discovery problem and recommendation/service

selection problems that exist in the service computing domain (Yao, Wang, Sheng,

Benatallah & Huang, 2018; B. Cao et al., 2017), Generally, most of these works

focus on using two entities : mashups, (which could be related to Web-APIs users )

and Web-APIs (which is the item in Web service recommendation context) in their

applications. Several other efforts also integrate Quality of Service (Z. Zheng, Zhang

& Lyu, 2012; Z. Zheng, Ma, Lyu & King, 2012), Location (X. Chen, Zheng, Yu &

Lyu, 2013) and Trust (Su, Xiao, Liu, Zhang & Zhang, 2017) information into their

prediction/recommendation systems. However, most of these approaches consider two-

dimensional matrix representation techniques, and thus, can not effectively exploit the

underlying latent features that exist within multiple object interactions. As a dominant

and common implementation of the CF method, the basic matrix factorization technique
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enables decomposition of the Mashup-API relationship matrix into 2 low-rank matrix

approximations and makes predictions based on the resulting factorized matrices (Yao,

Wang et al., 2018). Previous research works in web service recommendation has shown

that more effective, multi-dimensional information could lead to the enhancement of

recommendation results. However, most of the existing web service recommendation

solutions only used part of the information available in service ecosystem. One other

main challenges of building a recommender system using heterogeneous information is

to systematically define features to represent the different types of relationships between

entities, and learn, exploit the importance of each relationship type (X. Yu et al., 2013).

This research work proposes an extension of matrix factorization technique that ex-

tends the two-dimensional mashup-api into a three-dimensional mashup-api-proximity

matrix, which enables incorporation of proximity as third additional entity into Web

service recommendation application with the aim of enhancing prediction accuracy.

We aim to introduce proximity as context into existing explicit correlations among

diverse Web services. Specifically, this research proposes a Higher-Order Singular

Value Decomposition (HOSVD) approach with implicit correlation regularization to

solve and enhance the accuracy of Web-API recommendation application. The intention

is to apply HOSVD technique to discover the latent relationships and patterns through

representation of web-service information in a 3-order tensor. We apply tensor fac-

torization techniques on the diffused mashup preferences in order to calculate latent

representations for mashups and Web-APIs accordingly. We then combine these latent

features and define a global recommendation model.

1.2 Research Questions

With the objective of incorporating explicit correlations information derived from

service co-invocation and proximity information using a three-dimensional tensor
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which is based on a generalization of MF , this research aims to answer the following

research questions are to be answered:

1. How to cast the Web-API recommendation problem as a third-order task by

completing the missing or unobserved entries in the rating matrix?

2. What is the impact of context information in a three-dimensional matrix factoriz-

ation prediction model when compared with the conventional two-dimensional

Probabilistic Matrix Factorization (PMF) model?- Impact of dimensionality

The above questions will address the application of multi-variate models like MF

and its extensions in capturing latent relationships that exist between Web-APIs.

1.3 Background

This section provides background knowledge on the key components of this research

work. First, a smart overview of the Recommendation systems and Big Data, Second, it

provides the background of knowledge of Collaborative filtering with Matrix-factorization

based Web service recommendation systems and Finally introduced the Motivation

behind the approach used in this research.

1.3.1 Recommendation systems and Big Data

In recent years, recommendation systems have become increasingly important in service-

oriented computing domain. The use of these systems has exploded over the last decades

in many industries, making personalized recommendation pervasive online and promot-

ing development of user-centric services. These systems are popular means of assisting

users in online services to discover and recommend the whole range of items, including

consumer products, movies, friends and web services from a large resource collection.
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Companies such as Facebook, Amazon, Neflix, eBay, Google and Twitter employ

recommender systems in their services to improve customer intimacy and satisfaction.

The growth of recommender systems has been in parallel with the web. The emergence

of Web 2.0, coupled with the continuous development of various web services, have

led to a rapid increase in the amount of digital information generated on various web

platforms. For instant, with the increase in the development of e-commerce platforms,

more auxiliary data that captures features of both users and items are now available for

enhancing the performance of recommender systems. Online social networks contain

gigabytes of data, which can be mined to provide recommendations support. The boom

of social media has also contributed to the development in recommendation, especially

in social recommendation. Generally, social recommendation focuses on modelling

social network information as regularization terms to constrain the matrix factorization

framework (J. Zheng et al., 2017).They generate similarity of users by leveraging rich

social interactions among users, for instance, friendships in Facebook, following rela-

tions on Twitter. Emerging technologies such as Big data has played a significant role

in developing recommender systems (Y. Zhang, Chen, Mao, Hu & Leung, 2014). The

use of BigData technologies enables discovery of latent information within data with

large volume features, most of which are now used to support item recommendation.

1.3.2 Recommending Web Services

With the remarkable development in service-oriented computing domain coupled with

improvements in internet technologies, there has been a rapid surge in the number

of Web services (also referred to as Web APIs) available on the internet. Several

web service registries, portals and marketplaces have also emerged, enabling service

developers and providers to expose, manage and advertise their services. Service

consumers can now explore these repositories to discover services of their interest.
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For example, as of April 2019, the current largest, online Web-API repository called

ProgrammableWeb 1 has over 20,320 Web-APIs belonging to more than 400 predefined

categories, and over 7,000 mashups (service compositions). Similarly, a popular Web

service marketplace, Mashape 2 currently has over 10,000 collections of public and

private APIs with about 100,000 records of engaged developers around the globe. The

continual growth of these service ecosystems conveys the popular emerging service

economy (Tan, Fan, Ghoneim, Hossain & Dustdar, 2016). This also reflects both

economic and social impacts of web services in the software development industry.

Diverse services can now be used for composing new, value-added application − also

known as "mashups " −, which combine several Web-APIs from different sources to

satisfy complex user requirements. Web-APIs have become ubiquitous due to majority

of software applications/services currently been offered as some form of Web-APIs

(Adeleye, Yu, Yongchareon, Sheng & Yang, 2019).

The diversity and rapid increase in the number of Web-APIs on the internet poses a

great challenge to their consumption and reusability. While there are tens of thousands

of web services with diverse functionalities currently available in various repositories,

the discovery and selection of appropriate services capable of satisfying some specific

and complex user requirements is a great challenge. Software developers and other

service users still find it very challenging to select suitable services from a pool of

functionally similar and related services, especially for service composition purposes.

Recently, recommendation techniques have been employed to tackle service discovery

and selection complexities. Web service recommendation involves automatic identific-

ation of usefulness or suitability of web services, selecting candidate services based

on users’ requirements (or behaviour analysis) and proactively recommending most

suitable services to end users. Various researchers have made efforts to proactively

1https://www.programmableweb.com
2https://www.mashape.com
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recommend services to users based on certain parameters and preferences. Thus, web

service recommendation became an active process of service search, discovery and selec-

tion that can be facilitated with various computer science and mathematical techniques

such data analysis, machine learning, deep learning, graph theory and probabilistic

approaches, to enhance accuracy in prediction (Yao, Sheng, Ngu, Yu & Segev, 2015).

Even though existing web service recommendation techniques show improvements, the

recommendation tasks continue to pose a great challenge for service engineers due to

rapid, continuous increase in the number of web services. Generally, recommender

systems provide support for selecting products and conventional services; however, their

direct application to web services is not straightforward due to the following challenges:

• Current Scarcity of user feedbacks on web services (Lecue, 2010) and High

degree of uncertainty in the feedbacks (Users feedbacks are sometimes subjective)

(L. Chen, Wang, Yu, Zheng & Wu, 2013).

• Lack of specific quality of services (QoS) and context information (Su et al.,

2017).

• Need to fine-tune web services to the requirement of intended user (L. Liu, Lecue

& Mehandjiev, 2013).

• Inadequate formal semantic specifications for describing web services (Yao, Wang

et al., 2018).

• Lack of social-awareness among web services (Adeleye et al., 2019).

• Keyword-based approaches have poor recommendation performance and are

heavily dependent on correct and complex queries from users.

Currently, most service consumers rely on manual searching (keyword-based) of ser-

vice registries like ProgrammableWeb to find and select relevant web services. Clearly,
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such search is ineffective and time-consuming. Therefore, effective recommendation

approach is required to support service consumers in selecting suitable services for a

particular requirement or a given service composition task. Most existing web service

recommendation solutions are either based Content-based approach such as keyword-

dominant web service search engines or Collaborative filtering and Matrix Factorization

approach. These two recommendation techniques possess the following limitations:

• The main idea of Content-based methods is to exploit Information about user’s

preferences, profiles and web service descriptions including semantic information

of service interfaces, functionality descriptions and so on. For instance, a common

approach is recommended services for a particular composition based on the sim-

ilarity between mashups requirements and service profiles. However, the method

suffers several set backs: (i) Lack or inadequate formal semantic description for

Web-APIs. This is common especially for newly emerged web services, which

lack formal semantic information and attributes like the traditional web services.

Attributes such as tags, functional category, input and output description are lack-

ing in most newly developed and published services. Without this information,

it is somewhat challenging to implement an effective content-based web service

recommender system. (ii) Another set back is the problem of over-specialization

(Bobadilla et al., 2013), where the same type of services a recommended.

• For Collaborative filtering (CF) recommendation methods are based on opinion of

past users with similar preferences to the new users. CF approaches rely on rating

data such as Quality of Service (QoS) values. For web services, rating value is

either determined by service providers ( for example, as throughput and price) or

derived as an estimation of user-service invocation, service-service co-invocation

transactions. Another rating parameter commonly used is user satisfaction, which

is subjective. One of the main challenges of CF-based approach is difficulty in
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obtaining QoS value for web services. Another challenge of CF algorithms is

the sparsity of rating matrix and the ever-growing nature of rating data (Bokde,

Girase & Mukhopadhyay, 2015). These challenges are usually tackled with

various Matrix factorization models such as probabilistic matrix factorization,

Single value decomposition (SVD) and principal component analysis (PCA)

(discussed in next chapter).

Other recent methods include network-based and hybrid approaches. Hybrid recom-

mendation approaches integrate two or more of the above methods to recommend

appropriate services to users. In other to improve recommendation processes, some

researchers tried to leverage the capabilities of multiple techniques by combining

them.(both network-based and hybrid approaches are later discussed in Literature

review chapter).

1.4 Research Motivation and Significance

In this era of information overload and data explosion, internet and web users have to

struggle through a rapidly, continually increasing amount of both relevant and irrelevant

information. Specifically, in service-oriented computing, tens of thousands of web

services are currently available on web and this number has been continuously soaring.

Web services have had enormous impact on the Web as a potential means for supporting

a distributed service-based economy. However, the discovery and reuse of appropriate

web services on a global scale especially for complex service requirements task are still

very limited and challenging. Moreover, the diversity of web services present a unique

challenge to service composition; it is now more challenging to select appropriate

services from myriad of functionally similar services. While there are billions of web

pages currently available on the web, very few numbers of web services are publicly

available to service consumers. Traditional approach to searching through the web using
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keywords have proven inefficient. Thus, managing web service information overload

and data explosion requires the support of intelligent systems that can leverage the

available information, process and filter faster than humans and recommend services

based on user’s requirements. To satisfy these diverse needs, user-centric or personalized

recommender systems have emerged.

Conventional web service recommender systems deal with two major types of

entities, which include users service requirements and service profiles (e.g. service

functional descriptions or historical information). A popular approach is to recommend

web services based on the semantic similarity between user’s service requirement and

a combination of service description and co-invocation information. Due to increas-

ing complexity of user’s service requirement and the surge in large-scale information

ecosystems, multi-layer information is required to improve service recommendation

quality. Generally, dominant frameworks for web service recommendation are logically

two dimensional focusing on the interaction between web service composition, ( which

usually reflects historical usage of web services) and web services. This exemplifies

a sort of interaction that manifests between traditional users (consumers) and items

(products), and are normally characterized by a single relation (Vahedian, Burke &

Mobasher, 2017). However, the ever-growing increase in social ecosystems, where

multi-entity interaction and correlation occur across different domains and context

have created multi-dimensional space that reflects complex heterogeneous relationship

between various entities. Consequently, large-scale Heterogeneous Information Net-

work that consists of interconnected entities with multi-type relations can exist (Jamali

& Lakshmanan, 2013).

Previous studies suggest that more effective utilization of side information or auxil-

iary data can help improve the quality of recommender system (Yang, Lei, Liu & Li,

2017), (X. Liu et al., 2012), (X. Yu et al., 2014). Through open data initiative and rapid

development of APIs, huge amount of auxiliary data, which can be used to improve
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web service recommendation quality are increasingly becoming available. Although

auxiliary data may contain information that could be useful for enhancing recommender

system functions, this information and its associated complexity poses the following

challenges for the systems:

• The difficulty of integrating a wide variety (heterogeneous) of data effectively

into a recommendation framework (Vahedian et al., 2017).

• The challenges of modelling and utilizing these complex and heterogeneous data

in enhancing recommender systems (Shi, Hu, Zhao & Philip, 2019) .

• The challenge of developing a generic approach to model these varying data (of

different types and attributes) from different platform.

Generally, a handful hybrid recommendation solutions exist to tackle related prob-

lems similar to the ones mentioned above, among them, information network-based

recommendation approach, which utilizes relationship information between users and

items are increasingly gaining more attention in the research world. Most previous pre-

diction approaches based on information network are considered unsupervised methods.

These methods are mainly based on direct analysis of graphs or topological structure

of the network to get the likelihood that new links might appear (Do, Pham, Phan &

Nguyen, 2018). However, this kind of approach does not gain optimal effectiveness

and accuracy in the complex dynamic network. Supervised methods allow the system

to learn from the previous network dataset to generate the predictive model, which

is applied to compute the probability that two nodes will be connected in the future.

Efforts in this area are mainly focused on single relationship types and homogeneous

networks that do not provide comprehensive semantic meanings behind different links.

For example,some algorithms only consider part of information in social network (like

Mashup-APIs affiliation network, user-user or item-item network). However, in many
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modern cases, recommendation problem usually exists in a heterogeneous information

network environment, where there are several layers of multi-type relationship. Hence,

the homogeneous network method may not be applicable.

1.5 Research Scope and Methodology

This research scope extends to the study and review of recommender systems with

focus on various techniques and methods applicable to providing web service recom-

mendation solution. In order to effectively leverage available online information to

enhance the quality of web service recommendations, this research work study several

collaborative filtering techniques to induce a model from rating a matrix and utilize the

model to perform recommendation. Specifically, by modelling web service information

with location information as three-order tensors, correlation and interaction among

web services, service composition and location can be captured using the core tensor

in reduced-dimension form. This study also provides an overview and application of

higher-order tensors with respect recommender systems implementation and enhance-

ment. Tensor decomposition is applied to web service data arrays for extracting service

attributes.

Recommender systems mainly base their suggestions on rating data of two entities

(users and items), which are often placed in a matrix with one representing users and the

other representing items of interest. These ratings are given explicitly by users creating

a sparse user-item rating matrix because an individual user is likely to rate only a small

fraction of the items that belong to the item set. Another challenging issue with this

user-item rating matrix is scalability of data (i.e., the large number of possible registered

users or inserted items), which may affect the time performance of a recommendation

algorithm.

We can deal with all aforementioned challenges by applying matrix decomposition
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methods (also known as factorization methods). Matrix factorization denotes a process,

where a matrix is factorized into a product of matrices. A matrix factorization method

is useful for solving plenty of problems, both analytical and numerical; an example

of a numerical problem is the solution of linear equations and eigenvalue problems.

Its importance relies on the exploitation of latent associations that exist in the data

among participating entities (e.g., between users and items). In a trivial form, the matrix

factorization method uses two matrices, which hold the information of correlation

between the user-feature and item-feature factors, respectively.

Big data has association, high dimension and multivariate features. Tensor as an

expression format of high dimension data structure can be used for selecting these high

dimensional features. Big data application organize data as tensor format and use high

dimensional array theory to process and analysis it. Big data applications organize data

in tensor format and use high dimensional array theory to process and analysis it. Tucker

proposed multidimensional expended decomposition model for similar factor analysis

of the third-order tensors in 1966[51], and had further development by Kroonenberg in

the 1980s, and define the Tucker3, Tucher3ALS, 3-Mode SVD and 3-Mode PCA. In

the next few years, this decomposition was expended to n-order tensor and concluded

by Lathauwer; they call these compositions as HOSVD, N-way SVD and multilinear

SVD [40]. In the past years, HOSVD was used in analysis the data based on experience,

especially in the chemo metrics and psychometrics. Some methods related to HOSVD

was found independently, it makes the related literature is mixed, and the general

mathematics theories for these methods are very few, these methods mainly used for

the special data type.

In the big data era, HOSVD has many applications in big data analysis, however,

these studies nor consider the implementation effectiveness problem, sometimes, there

are a lot of methods to process the huge amount number of tensors has low efficiency

make it cannot direct used in the real big data scene. Thus the study of higher effective
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calculation approach of HOSVD is important and urgent.

HOSVD is a method for mapping SVD to high dimensional space; the calculation

relies on the calculation of matrix SVD. Thus, the study of HOSVD cannot do without

study of matrix SVD. So far, the study of HOSVD mainly focus on some algorithm

application effect enhancement and interpretation, research on HOSVD parallelization

not a lot, and has a lot of researches on matrix SVD parallelization calculation. For the

huge amount of data in tensor, can use HOSVD to compress the data, it can save the

storage space.

To solve the problem, avoid the complex calculation process, improve accuracy

choose the SVD and HOSVD method. According to build the third-order tensor space

matrix based on user, tag and project, use the good characteristic of SVD to process the

sparse data problem, expand in the multidimensional tensor space matrix. The approach

can guarantee the complete data structure and delete the blank part in the data to reduce

the sparse data and produce the recommended results. In addition, use HOSVD can

effective reduce the data redundant and improve recommend precision.

As the development of Web 2.0 technique, Social Network Service provides a new

platform for the interaction between users. Such as Facebook, Twitter, Instagram, let

many network users to form a publishing and sharing ecosystem of resources, so that

users can actively communicate with each other in the circle. If users find resources that

meet their interests and hobbies, they often make “tags” to facilitate retrieval. At the

same time, the tags that users get after tagging their favourite image, web link, book,

music and video resources under different network platforms can provide a reference

for other users to find the network resources they need. The concept of Folksonomy

arises from this.

Folksonomy is a process in which many information users choose the appropriate

network information resources according to their own needs and determine the matching
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social tags according to their own cognitive level. It emphasizes process and inform-

ation that involved. Early websites with folksonomy features have strong “tagging”

characteristics, such as Movie Lens, people can classify the interested movies according

to different tags and grade for the movie. And some typical websites such as picture

website Flicker, video website YouTube also have the same characteristic.

The information contained in tags can be an effective basis for recommendation to

other users. Therefore, personalized recommendation system has been greatly developed

in folksonomy websites. In addition to tags, other social media included in folksonomy

websites are also common raw data in recommendation systems. Because of the

relationship among users, tags and resources in public annotation website, there is a

great space to develop the algorithm of recommendation system. From the more mature

collaborative filtering recommendation system to label-based tag recommendation

system, each method has its defects and shortcomings. How to make full use of the

original data and develop a more efficient, accurate and personalized recommendation

system for folksonomy websites has become a hot issue in academic research.

1.6 Research contributions

The contribution of this research work is as follows:

Firstly, with the aim of tackling the sparseness of rating data, this work propose a

fusion method for integrating independent, multi-facet, heterogeneous information

for web services into a single representation that can be leverage to enhance service

recommendation .

Secondly, this research investigates the challenge of Web-APIs recommendation for

mashup with a regularized three-order Matrix factorization approach that decomposes

APIs-Mashups-proximity matrix into three low-dimensional matrices. Secondly, this

work investigates the problem of Web-APIs prediction for mashup by incorporating
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regularized terms into the weighted Frobenious norm in three-order matrix factorization.

Finally, the report starts from the tensor structure, study how to decomposition

tensor and achieve the distributed storage of tensor data, avoid the situation of a general

computer cannot process the huge amount of data in tensor. Then in the distributed

storage achieve the SVD calculation method to decomposition the data, the experiment

express that it can solve the data sparse problem, it provides the idea for SVD in the

application of big data analysis. And then based on it, provide HOSVD method based

on it, the experiment shows that save the storage space, and improve the accuracy

without any other changes, accelerate advantage of HOSVD be more distinct, it has the

important significance about improving processing and running efficiency of HOSVD

analysis application when incremental data comes.

1.7 Thesis Structure

The rest of this paper is organized into five parts: Chapter 2 presents a literature review

of introduces and explores the fundamental concepts related to this research work, and

explores previous efforts in providing web service discovery and recommendation solu-

tions. The chapter identifies the various models and characteristics which are likely to be

employed in this research. Chapter 3 describes the research methods in detail, provides

the preliminary knowledge overview of tensors. Then presents the representation and

construction of the tensor model. Finally , the prediction algorithm based on HOSVD

decomposition in the proposed recommendation framework is illustrated. Chapter 4

displays the implementation and examination for the hypotheses, and the corresponding

measurement. Chapter 5 presents the analysis and discussion of our results. Chapter 6

is a general conclusion part for this research. Moreover, the challenges regarding the

research and the future work are proposed in this chapter.
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Literature Review

2.1 Introduction

Recently, there have been several research works conducted in service-oriented com-

puting domain to tackle various issues, and fill research gaps related to Web service

discovery, composition and recommendation. Several techniques and models have

been explored to support these activities. This chapter introduces and explores the

fundamental concepts related to this research work, and explores previous efforts in

providing web service discovery and recommendation solutions. The first part of the

chapter presents the general overview of Web service recommendation and discovery

with respect to service computing. As shown in Figure 2.1, various categories of Web

service recommender systems are discussed with different kind of techniques used to

implement these systems. In general, three different recommender systems are con-

sidered : (i) Content-based filtering techniques, (ii) Collaborative Filtering techniques

and (iii) Hybrid approaches. The collaborative filtering technique is further divided into

two separate groups: (a) Model-based approaches, and (b) Memory-based approaches.

As for model-based, various data-mining and machine-learning techniques are

employed to achieve the recommendation objectives. Most common techniques are

28
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Figure 2.1: Literature Review Layout

discussed in this chapter. Model-based techniques utilize user-item matrices to identify

relationships and interactions between recommendation entities. Recently, dimension

reduction techniques such as Matrix completion techniques, Singular Value Decomposi-

tion (SV D) techniques, Matrix factorization (MF ), Tensor decomposition techniques

have been employed by researchers to simplify and implement model-based, collaborat-

ive filtering approaches. These techniques and other related methods are also reviewed

in this chapter. Finally, various decomposition methods from the perspective of tensor

are discussed. Different recommender systems evaluation metrics are discussed with

respect to each techniques covered in this review.
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2.2 Web Service Recommendation

Web service recommendation involves automatic identification of usefulness or suit-

ability of web services, selecting candidate services based on users’ requirements (or

behaviour analysis) and proactively recommending most suitable services to end users.

The proliferation of web services coupled with myriad of functionally similar web ser-

vices makes it harder for service consumers to select most suitable web services among

the large amount of service candidates. Generally, recommender systems provide sup-

port for selecting products and conventional services; however, their direct application

to web services is not straightforward due to the following challenges:

• Current Scarcity of user feedbacks on web services (L. Liu et al., 2013) and High

degree of uncertainty in the feedbacks (Users feedbacks are sometimes subjective)

(X. Chen, Zheng & Lyu, 2014)

• Lack of specific quality of services (QoS) and context information (Su et al.,

2017)

• Need to fine-tune web services to the requirement of intended user. (L. Liu et al.,

2013)

• Inadequate formal semantic specifications for describing web services (Yao et al.,

2015)

• Lack of social-awareness among web services.

Currently, most service engineers and developers rely on manual searching (keyword-

based) of service registries or other public sites such as Google Developers, Program-

mableWeb and Yahoo-pipe to discover and select require web services. Clearly, such

search is ineffective and time consuming. Therefore, effective recommendation ap-

proach is required to support service consumers in selecting suitable services for a
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particular requirement or a given service composition task. Despite recent enhance-

ments made to existing web service recommendation techniques, the task is many gaps

in the process. A number of research work have been done on web service recom-

mendation. We classify these works based on the implementation method and discuss

them under five groups: (1) Content-based approach, which is further divided into three

sub-groups (i) QoS-based (uses of Quality of Service information) (ii) Semantic based

(uses semantic information similarity and formal ontology), (iii) Context-based (uses

context information such as user/service locations (2) Collaborative filtering and Matric

Factorisation –based, (3) Clustering-based approach, (4) Network-based approach and

(5)Hybrid-based approach. We present the review of these approaches with more focus

on their underlying mechanisms and limitations.

2.2.1 Content-based Approach

This group of service recommender solutions rely on syntactic and semantic information

of web services and users to facilitate service recommendation process. The key

idea of content-based methods is to exploit information about user’s preferences and

services content descriptions, which include semantic information of service interfaces,

functionality descriptions, QoS values and so on. They recommend web services based

on the similarity of user preferences and the descriptive information of web services

(Yao et al., 2015). We further describe this group of work under three sub-sections as

follow.

2.2.2 QoS-based Approach

This approach relies on the use of various information that describes nonfunctional

characteristics of web services such as cost, response time, availability, reliability

and throughput to recommend services to users (Su et al., 2017). Most QoS-based



Chapter 2. Literature Review 32

approaches use collaborative filtering algorithms to rank or filter out most suitable

services using the QoS historical information of the user Chen et al. (X. Chen et

al., 2014) proposed a QoS Aware service recommendation approach that uses a user-

collaborative mechanism for collecting past QoS information of web services from

different services users. Based on this data, authors employed a collaborative filtering

technique to predict service QoS value, which is in turn used to rank services. Similar

approach used in (Z. Zheng, Ma, Lyu & King, 2013). In (C. Yu & Huang, 2016),

authors leverage the capabilities of memory-based and model-based CF algorithm to

improve recommendation accuracy based on QoS information. The main limitation of

this approach is that QoS properties are subjective and vary widely among different

service users due to various factors such as network conditions, location, taste and so on.

Hence it difficult to acquire or estimate. QoS properties are measured at the client-side,

which makes it susceptible to various uncertainty (L. Chen et al., 2013). Recent research

efforts in this area have been channelled towards improving QoS information reputation.

(Su et al., 2017) addresses the problem of data credibility caused by dishonest users. The

authors proposed a trust-aware approach for reliable personalized QoS prediction for

service recommendation. The approach used on K-mean clustering algorithm to identify

the honest user’s cluster on each service and classify the QoS feedback submitted by

each user as positive or negative feedbacks based on the cluster. Similarly, Wu et al.

(C. Wu, Qiu, Zheng, Wang & Yang, 2015) proposed a credibility-aware QoS prediction

approach to address unreliability of QoS data. The authors based their approach on

two-phase K-mean clustering to identify the dishonest users by creating cluster values

for untrustworthy index calculation in first phase and another cluster for users in second

K-mean phase. Differentiating between honest and dishonest users is not a trivial task

and considering the subjectivity of user’s information, there is a still lot of gap in this

area.
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2.2.3 Context-Aware approach

This group of service recommenders employ context and location information to cluster

users and services and make recommendation. Chen et al., (X. Chen et al., 2014) used

location and QoS information to recommend personalize services to users. In (Fan et

al., 2017), authors proposed a context-aware service recommendation approach based

on temporal-spatial effectiveness. The authors model spatial correlation between user’s

location and the web services’ location on user preference expansion, then compute their

similarities. Based on this computation, services are ranked and recommended to the

users. In (Xu, Yin, Deng, Xiong & Huang, 2016), authors employ context-information

of both service and user to improve the performance of QoS based recommendation.

For users, author employs geographical information as user-context and identify similar

neighbour for each user based their similarity. The authors mapped the relationships

between the similarity value and geographical distance, and for the services, affiliation

information was used as context. Recommendation is made based on QoS record of

user, service and the neighbours.

2.2.4 Semantic-Based approach

This group of service recommenders is based on the use of formal ontology to measure

similarity for recommendation. They are usually supported by a lightweight semantic

similarity assessment model that originated from ontology-based conceptual similarity

(H. Xia & Yoshida, 2007). Ontology-based comparison is the backbone of semantic-

based web service matching measure (W. Chen, Paik & Hung, 2015). Wang et al. (Wang,

Xu, Qi & Hou, 2008) discussed various semantic matching algorithms with their defects.

The ontologies are usually defined as set of semantic attributes that denote services’

functionality, category, input and output parameters and so on. For instance, in Liu et al.

(L. Liu et al., 2013), a semantic content-based recommendation approach was introduced.
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The approach estimates services similarities based on five different components: I/O,

functionality, category, precondition and effect. It measures semantic similarity based

on these aspects and filter services with different functionalities and categories. Lee

and Kim (Lee & Kim, 2011) proposed an ontology learning method for RESTful

web service, which allows web services to be grouped into concepts so as to capture

relationships between words using pattern The model enables automatic generation

ontologies from web application description languages (WADL). Elmeleegy et al.

(Elmeleegy, Ivan, Akkiraju & Goodwin, 2008) exploited a repository of composition

to estimate the popularity of a specific output, and make recommendations using

conditional probability that an output will be included in a composition. The authors

use a semantic matching algorithm and a meter planner to modify the composition

to produce the suggested output. Building ontology to support this approach is very

challenging, as it requires massive amount of expert knowledge and multiple ontology

development to cater for diverse users and domains.

2.3 Collaborative Filtering Techniques

Collaborative filtering (CF) techniques are widely used in recommender systems that

recommend items such as web services to users based on the similarity of different users.

CF is still active and interesting research area (Bobadilla, Hernando, Ortega & Bernal,

2011; Bobadilla, Hernando, Ortega & Gutiérrez, 2012; Ekstrand, Riedl, Konstan et al.,

2011; Schafer, Frankowski, Herlocker & Sen, 2007). Unlike content-based which is

domain dependent, CF techniques utilize domain-independent prediction algorithms

for content that cannot be adequately represented or described using descriptive data

(metadata) (Isinkaye et al., 2015). Collaborative filtering algorithms are commonly

used techniques in the data mining and information retrieval. They are based on

using historical behaviour of past users to establish connections between users and
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item to recommend. The techniques work by building a database of preferences that

reflect interaction between user-item. Recommendation is based on opinion of past

users with similar preferences to the new users. CF matches users with related and

relevant preferences by estimating the similarities between their profiles to perform

recommendation (Herlocker, Konstan, Terveen & Riedl, 2004). In this setting, users

rely on the neighbourhood information, and a user gets recommendations to items that

he/she has not rated before but have been positively rated by other users in his/her

neighbourhood.

Collaborative filtering algorithm, as one of the most mature recommendation al-

gorithms, has been used as the basis of recommendation theory to expand in the direction

of diversification. Traditional collaborative filtering method uses the preferences of sim-

ilar users to generate personalized recommendation. Generally, collaborative filtering

technology can be divided into two categories: memory-based and model-based meth-

ods. The former method mainly includes two classical collaborative filtering algorithms,

user-based and project0based. It uses the existing scores in the whole database to predict

the scores of other items to generate recommendations. This method is widely used in

real-time online applications and has high efficiency. (M.Deshpande and G.Karypis

2004).

However, when the data matrix is too sparse, the efficiency and accuracy of collabor-

ative filtering algorithm will be greatly reduced. In addition, model-based collaborative

filtering algorithm uses existing scoring data to build models to generate recommend-

ation results, singular value decomposition (B.Sarwar et al. 2000) and non-negative

matrix factor decomposition in matrix factor decomposition can be effectively applied

to model-based collaborative filtering algorithm. The basic theory of model-based

collaborative filtering algorithm is to decompose the low-order vector according to the

paired data in user item matrix. Used to generate relationships between unnoticed users

and projects in the system to form recommendations.
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Source: (Isinkaye et al., 2015)
Figure 2.2: Collaborative Filtering Process

Collaborative filtering recommendations can either be in form of prediction or

ranked-list recommendation (Isinkaye et al., 2015). Prediction is a numerical value, Rij,

expressing the predicted score of item j for the user i, while ranked-list recommendation

is a list, usually of top-N items, which the user will prefer most as shown in Figure 2.2.

(Bobadilla et al., 2013) and (Isinkaye et al., 2015) present a widely accepted tax-

onomy division used to group recommendation approaches into two broad categories,

namely: (i) Model-based CF method (ii) Memory-based CF method. The groups are

discussed as follow:

2.3.1 Model-Based Recommendation Methods

The model-based technique uses recommendation information such as previous user

ratings to learn and/or create a model to enhance the recommendation performance of

CF technique. Generally, several underlining techniques that are rooted in machine

learning or data mining domain are employed in building such model. Some examples
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of commonly used models include Matrix factorization (Luo, Xia & Zhu, 2012) ,

Bayesian classifier (M.-H. Park, Hong & Cho, 2007; Friedman, Geiger & Goldszmidt,

1997), Latent features (J. Zhong & Li, 2010; Yao et al., 2015), Dimensionality Reduc-

tion techniques (Van Der Maaten, Postma & Van den Herik, 2009; Sarwar, Karypis,

Konstan & Riedl, 2000) such as Singular Value Decomposition (SVD) (S. Zhang, Wang,

Ford, Makedon & Pearlman, 2005),(Vozalis & Margaritis, 2007), Matrix Completion

Technique, Latent Semantic methods, and Regression and Clustering and so on. Model-

based techniques analyze the user-item matrix to establish relations between items (such

as web services). These relations are then in turn used to compare the list of top-N

recommendations.

2.3.2 Memory-Based Recommendation Methods

The items that were already rated by the user before play a relevant role in searching for

a neighbor that shares appreciation with him (Zhao & Shang, 2010; Zhu, Ye & Gong,

2009). Once a neighbor of a user is found, different algorithms can be used to combine

the preferences of neighbors to generate recommendations. Due to the effectiveness

of these techniques, they have achieved widespread success in real life applications.

Memory-based CF can be achieved in two ways through user-based and item-based

techniques. User based collaborative filtering technique calculates similarity between

users by comparing their ratings on the same item, and it then computes the predicted

rating for an item by the active user as a weighted average of the ratings of the item by

users similar to the active user where weights are the similarities of these users with the

target item. Item-based filtering techniques compute predictions using the similarity

between items and not the similarity between users. It builds a model of item similarities

by retrieving all items rated by an active user from the user-item matrix, it determines

how similar the retrieved items are to the target item, then it selects the k most similar
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items and their corresponding similarities are also determined. Prediction is made by

taking a weighted average of the active users rating on the similar items k. Several types

of similarity measures are used to compute similarity between item/user. The two most

popular similarity measures are correlation-based and cosine-based. Pearson correlation

coefficient is used to measure the extent to which two variables linearly relate with each

other and is defined as (Isinkaye et al., 2015) :

Sim(a, u) = ∑ni=1(ra,i −ra)(ru,i −ru)√
∑ni=1(ra,i −ra)2

√
∑ni=1(ru,i −ru)2

(2.1)

From the above equation, Sim(a, u) denotes the similarity between two users a and

u, ra;i is the rating given to item i by user a, ra is the mean rating given by user a while n

is the total number of items in the user-item space. Also, prediction for an item is made

from the weighted combination of the selected neighbors’ ratings, which is computed

as the weighted deviation from the neighbors’ mean. The general prediction formula is:

P (a, i) = ∑
n
i=1(ra,i −ra) × Sim(a, u)
∑ni=1 Sim(a, u)

(2.2)

Cosine similarity is different from Pearson-based measure in that it is a vector-space

model which is based on linear algebra rather that statistical approach. It measures the

similarity between two n-dimensional vectors based on the angle between them. Cosine-

based measure is widely used in the fields of information retrieval and texts mining

to compare two text documents, in this case, documents are represented as vectors of

terms. The similarity between two items u and v can be defined as (Adomavicius &

Tuzhilin, 2005; Bobadilla et al., 2013; Herlocker et al., 2004) follows:

CoSim(u, v) = ∑i ru,i rv,i√
∑i r2u,i ×

√
∑i r2v,i

(2.3)

Similarity measure is also referred to as similarity metric, and they are methods
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used to calculate the scores that express how similar users or items are to each other.

These scores can then be used as the foundation of user- or item-based recommendation

generation. Depending on the context of use, similarity metrics can also be referred to

as correlation metrics or distance metrics (Adomavicius & Tuzhilin, 2005).

Table 2.3 provides summary of different CF techniques used in building recom-

mendation solutions as discussed in (Isinkaye et al., 2015) .

Figure 2.3: Summary of Common Collaborative Filtering Techniques

2.3.3 Challenges of collaborative filtering techniques

As discussed in previous section, collaborative filtering approach exhibit some unique

advantages over content-based approaches in providing recommendation solution, espe-

cially when dealing with domains with where there is few content information about the

items in consideration and when it is challenging to analyze the content. Collaborative

filtering technique also can recommend items which are relevant to the user without the

content being available in the user’s description (Schafer et al., 2007). However, with

all this success and advantages, recent widespread use of collaborative technique has

uncovered some potential challenges. The challenges are discussed as follows:
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• Cold-start problem : The cold-start problem (Adomavicius & Tuzhilin, 2005;

Schafer et al., 2007) occurs when there is no adequate information ( e.g. ratings)

about a user or an item to make reliable recommendations. Cold-start is one

of the major issues that limit the performance of CF-based recommendation

solutions. There are three kinds of Cold-start problem (Bobadilla et al., 2013):

(i) New-user problem (ii) New-item problem (iii) New-community Problem. For

new-user problem (Rashid, Karypis & Riedl, 2008), the challenge here is similar

to content-based approaches. For the User-based CF recommender system to

make accurate recommendations, the system needs to learn the user’s preferences

from ratings provided by the user. Since new users in the system lack ratings

yet, the users cannot get any personalized recommendations with memory-based

collaborative filtering.

New-item problem occurs due to lack of ratings for new items. Initially, new

items do not normally have rating, so, until the items are rated by a considerable

number of item users, they are not likely to be recommended to users. Therefore,

most new items that lack rating become isolated and unnoticed by item consumers.

If such item can be discovered via other means, then the new-item issue would

have less impact. New-community problem (Lam, Vu, Le & Duong, 2008; Schein,

Popescul, Ungar & Pennock, 2002) is common challenge that occurs when newly

starting up recommendation system without sufficient information or data for

making an efficient and reliable prediction.

• Data Sparsity problem : Sparsity problem occurs due to insufficient recom-

mendation information. When there are few numbers of ratings available for

recommendation process compare to the number of rating sufficient for a reliable

recommendation (D. H. Park, Kim, Choi & Kim, 2012; Burke, 2007). The lack
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sufficient information usually result to a sparse user-item matrix making it diffi-

cult to locate successful neighbour and eventually results to inaccurate or weak

recommendation performance. For instant, in a Web service recommendation

solution, there are many Web services that have been invoked, consumed and

ranked by very few service consumer (mashups), hence they are less popular and

they would be recommended very rarely. Data sparsity can also result to coverage

problem (Isinkaye et al., 2015).

• Scalability problem : Scalability problem is another challenge associated

to recommendation systems due to linear growth of users and items number

(D. H. Park et al., 2012). For recommendation techniques that are effective and

efficient mainly when limited number of data or information are used, such tech-

niques may not be able to adapt to growth in volume of dataset. The techniques

may no longer be efficient when the volume of the data increases. Therefore, it

is important to employ recommendation algorithms that can adapt to change in

data volume, and can effectively scale up as the volume of recommendation data

increases.

2.3.4 Common Solutions to collaborative filtering challenges

In general, the main challenges of collaborative filtering algorithms include the cold-

start issues, sparsity of rating matrix and the ever-growing nature of rating data (scalab-

ility). These challenges are usually tackled with various Matrix Factorization (MF)

models such as Probabilistic Matrix Factorization (PMF), Single value decomposition

(SVD) and Principal Component Analysis (PCA) (Bokde et al., 2015). Most of these

models are based on latent factor models (Koren, Bell & Volinsky, 2009). The basic

form of MF characterizes both users and items by vectors of factors deduced from item
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rating pattern. High correlation between item and user factors results to a recommenda-

tion. PCA and SVD techniques are more suitable for identifying latent semantic factors

in information retrieval, especially when dealing with CF challenges. More details of

various matrix decomposition methods are further discussed in Section 2.4

2.3.5 Collaborative Filtering Methods for Web Service Recommend-

ation

As discussed in previous section, the main idea behind CF approach is to recommend

new item of interest ( such as Web service) to a consumer based on the experiences

of other consumers of the same item. Most collaborative filtering-based Web service

recommendations are either based on model or memory-based methods. Over the years,

memory-based methods have been very popular partly. This is because intuitively

their recommendation result is easier to interpret (Goldberg, Nichols, Oki & Terry,

1992). Collaborative filtering approach has been used in Web service recommendation

especially in QoS-based Web service recommendations (Z. Zheng et al., 2013; Shao

et al., 2007; J. Cao, Wu, Wang & Zhuang, 2013). In QoS-based collaborative filtering

recommender system, the similarity between users and services is estimated and missing

QoS values are predicted based on the historical QoS records of similar users or similar

services. In (Z. Zheng, Ma, Lyu & King, 2010), a collaborative filtering approach

for predicting Quality of Service values of Web services and recommending Web

services was introduced. (Shao et al., 2007) proposed a user-centric Collaborative

filtering approach that employs Pearson Correlation Coefficient (PCC) to calculate the

correlation between users with respect to the historical Web service usage information

of the users.

In web service, CF-based recommender systems recommend services to a user based

on historical preferences of past users who share similar service taste. Most traditional
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services recommender systems ranked services based on services’ QoS values. Such

recommendation approach requires explicit specification of users’ requirements to be

able to recommend appropriate services (Yao, Wang et al., 2018). On the other hand,

CF algorithms are capable of capturing users’ implicit requirements. In (Z. Zheng et al.,

2010), authors used a combination of user-based and item-based CF approach to improve

QoS value prediction used for their recommendation system. They estimated similarity

between services and users using Pearson correlation coefficient algorithm, predicted

missing values in the service user matrix and recommend top-k services to users.

Hu et al. (Hu, Peng, Hu & Yang, 2015) proposed QoS prediction approach based on

temporal dynamics of QoS attributes and personalized factors of service consumers. The

authors combined improve time series forecasting method with collaborative filtering

to compensate for shortcomings of ARIMA models. Authors in (Zhou, Wang, Guo

& Pan, 2015) used collaborative filtering for making web service recommendation by

exploiting past usage experiences of service consumers.

2.3.6 Clustering-Based Recommendation Approach

Service clustering technique is a recent approach used to improve the quality of service

discovery and support service recommendation solutions. The method enables creation

of web services clusters with similar functionalities in order to reduce service’s search-

ing space during service discovery and recommendation. Generally, this technique

uses service documents including tags as the main information sources for clustering

(L. Chen, Yu, Philip & Wu, 2015). Existing methods focus on two aspects: (i) some

methods first analyze user’s service requirements and the service description documents,

and then create web services clusters based on their functionality similarity (Platzer,

Rosenberg & Dustdar, 2009; Sun & Jiang, 2008) (ii) Others utilize tags contributed by

users and perform clustering by introducing the similarity of service document and tag
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information (B. Cao et al., 2016).

In order to optimize discovery and recommendation solutions, a number of existing

works utilize clustering approach. (L. Chen et al., 2013) proposed a clustering method

called WTLDA that utilizes both web service description documents and tags to cluster

web services. The method enables seamless integration of tags and WSDL documents

through LDA. However, the clustering accuracy of such method depends on the number

of terms and tags used for similarity measurement. Xia et al. (B. Xia et al., 2015)

proposed a category-aware web services clustering and recommendation method, which

supports automatic composition development. The authors use K-means variant method

based on topic Latent Dirichlet Allocation (LDA) to enhance service categorization

and develop on top of the Kmean variant a category relevance-ranking model, which

combines CF and machine learning. The ranking model is used to decompose com-

position requirements and explicitly predict relevant service categories. There results

show improvement in prediction rate. However, authors only consider independent

composition services for clustering without considering the interactions among them.

Recently, researchers have introduced several methods into existing service clustering

approaches to improve their accuracy and diversity. Common methods used are Factor

analysis, topic modelling (Blei, Ng & Jordan, 2003), mining Latent Factors and MF

(Z. Zheng et al., 2013). (Gao, Chen, Wu & Gao, 2015) proposed a method for rank-

ing web services by categorize existing service composition into functionally similar

clusters and then deploy manifold ranking algorithm on each cluster to recommend

services. The author used Text frequency method (TF-IDF) to estimate the similarities

among the service documents. However, latent semantic correlation behind the terms

of service document was not considered in the work.(B. Cao et al., 2017) developed a

two-level topic model using the relationships among composition services to extract

the latent topics for improved service clustering accuracy. Based on the clustering

result, the authors employ CF algorithm to recommend web services for composition
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development.

2.3.7 Hybrid Service Recommendation

Generally, hybrid recommendation technique (Burke, 2002; B. Cao et al., 2017; Porcel,

Tejeda-Lorente, Martínez & Herrera-Viedma, 2012) combines two or more different

recommendation techniques to enhance the recommendation quality and performance,

and gain better system optimization to avoid some drawbacks of pure, traditional

recommendation techniques (Adomavicius & Zhang, 2012). The ideal is to leverage the

advantages of individual technique to gain better recommendation performance as the

disadvantages of one technique could be minimized or removed by another techniques.

Using hybrid recommendation approach could suppress or limit the weaknesses of an

individual method in an integrated recommendation model. In most cases, collaborative

filtering approach is integrated with some other techniques in an effort to avoid ramp-

up problem (Burke, 2002). Table 2.1 show the summary of different hybridization

methods commonly used in building recommendation systems. Various ways in which

the integration or combination of pure recommendation techniques can be realized are

discussed as follows:

Switching Hybridization

In a switching hybridization, recommender system uses some strategies and criterion to

swap or switch between recommendation techniques according to certain heuristic that

reflects the ability of the system to produce an effective rating (Isinkaye et al., 2015).

By swapping techniques, switching hybridization can avoid inadequacy specific to a

particular technique. For instant, the cold start problem in related to content-based

recommendation techniques can be solved by switching to a collaborative recommenda-

tion system. The main advantage of this hybridization strategy is that the recommender
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Hybridization Combination methods
Switching The recommended system swaps from one pure recommendation

technique to another recommendation techniques depending on
the current situation.

Mixed Various pure recommendation technique are combined such that re-
commendation results of these techniques are presented at thesame
time instead of having a single recommendation per item.

Cascade One recommender renes the recommendations given by another.
Feature augmentation Output from one technique is used as an input feature to another.
Feature combination Output from one technique is used as an input feature to another.
Weighted The scores (or votes) of several recommendation techniques are

combined together to produce a single recommendation.

Table 2.1: Hybridization methods in Recommendation

system is very sensitive and responsive to the strengths and deficiencies of its component

recommender techniques. However, the strategy also suffers from complexity associated

with the recommendation processes, which is due to switching procedure and criterion

(Isinkaye et al., 2015). The switching criterion normally leads to more complexity in

the recommendation processes due to the increasing number of parameters, which has

to be determined by the recommender system (Burke, 2002). A popular example of

switching hybrid recommender system called DailyLearner is discussed in (Billsus &

Pazzani, 1999). DailyLearner employed both content-based and collaborative hybrid.

In a scenario where content based technique cannot make recommendations due to cold

start problem or lack of sufficient information, content-based recommendation is used

first and then followed by collaborative filtering approach.

Mixed Hybridization

In mixed hybrid approach, different pure recommendation technique is combined such

that recommendation results of these techniques are presented at the same time instead

of having a single recommendation per item. In this case, each item has multiple

recommendation results from different techniques. Therefore, individual performances
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do not always have impact on the general performance. Mixed hybrid approach is

usually employed where it is practical to make large number of recommendations

simultaneously, An example of mixed hybridization method was discussed in (Smyth &

Cotter, 2000).

Cascade Hybridization

In cascade hybrid recommendation method, one recommendation technique is first used

to produce a coarse ranked list of recommendation candidates, then another technique

is employed to refine the candidate set (Burke, 2002). This strategy is considered to be

very effective and efficient due to the coarse-to-finer nature of the iteration. Cascade

hybrid recommendation method is by nature tolerant to noise since the recommendation

made by high-priority technique can only be refined by another not overturned. An

example of cascade hybrid recommender system called EntreeC was discussed in

(Burke, 2002).

Feature-augmentation and Feature-Combination Hybridization

In feature-augmentation, one technique incorporates the ratings and other informa-

tion produced by another technique into its recommendation processing. For feature-

combination, the features produced by a specific recommendation technique are given

to another recommendation technique (Isinkaye et al., 2015). For instance, the classific-

ation or rating of similar users that is a feature of collaborative filtering is employed

in a case-based reasoning recommender system as one of the features to determine the

correlation between items.
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2.3.8 Hybrid Web Service Recommendation

In web service recommendation, various hybridization recommendation approaches

have been proposed. In general, hybrid service recommendation involves combination

of collaborative filtering approaches with content-based methods to recommend services.

In (Kang, Tang, Liu, Liu & Cao, 2016), authors proposed a hybrid recommendation

solution which incorporated user’s potential QoS preferences, functional interest on

web services, and diversity feature of user interests to recommend top-ranked diversified

Web services. (Y. Zhong, Fan, Huang, Tan & Zhang, 2015) leveraged several techniques

to enhance recommendation performance. The author’s combined web service evolu-

tion, collaborative filtering and content-based matching to build a time-aware service

recommendation. Cao et al. (B. Cao et al., 2017) proposed a service recommendation

technique that leverages both the content of web services repository and social network.

The authors developed a two-level topic model by using social relationship among

service compositions to mine the latent topics for improving service clustering accuracy.

Based on the clustering results of the compositions, the authors employ collaborative

filtering based service recommendation algorithm to rank services. Yao et al. (Yao et

al., 2015) introduced a novel hybrid web service recommendation method based on

combination of collaborative filtering and content-based approaches. The author con-

siders simultaneously QoS rating of data and semantic content web service information

such as functionality using a probabilistic generative model.

Liu.D.R proposed a new hybrid recommend method which combines segmentation-

based sequence rules with KNN-CF. Firstly, the user’s past purchase preferences can be

analyzed to extract the corresponding sequence rules. According to the rules, the initial

recommendation can be generated for users with purchase behavior in the user group.

Then, the second step recommendation can be generated based on the current purchase

data of the target user by the segmentation-based algorithm. Finally, the final result can
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be obtained by combining the two.

Albadvi.A (2009) study the hybrid recommendation algorithm for online retail

stores, which improve six steps of the recommendation process: product structure

classification, subdivision classification, user file establishment, attribute classification,

user-to-user and user-to-product similarity calculation, product development, and finally

generates recommendation. Experiments show that the improvement of the above

steps has better recommendation effect than other collaborative filtering algorithms.

Chang.C.C (2009) [70] use neural network nodes to propose a hybrid recommendation

algorithm. By training artificial neural network, the same group of users are clustered

in different kinds, and Karnaugh model is used for different clusters to discover users’

needs. This method can be used in websites where information is often overloaded,

such as travel recommendation websites.

2.4 Matrix Factorization

As discussed in section 2.3.3, various challenges attributed to collaborative filtering

methods such as sparsity of rating matrix and scalability of recommendation data can be

tackle by Matrix Factorization (MF) . This section presents an overview of MF and also

discuss various MF models such Principal Component Analysis (PCA), Probabilistic

Matrix Factorization (PMF) and Singular Value Decomposition (SVD).

Matrix factorization methods have received significant exposure in recent years,

especially as an unsupervised learning approach for dimensionality reduction, latent

variable decomposition, and for realizations of various latent factor models (Bokde et

al., 2015; Koren et al., 2009). MF methods have been used majorly in data-mining,

information retrieval and machine-learning domains. In most cases, MF models are

usually realized based on the latent factor model. MF characterizes users and items

using the vectors of factors extracted from item rating patterns. MF methods that are
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Figure 2.4: Summary Classification of Recommender Systems Research

based on latent factor model usually model recommendation ratings as dot product of

item factor matrix and user factor rating matrix. MF model map the factors to a merged

latent factor space of dimensionality f , where user-item relationships are realized as

inner products in the dimensional space. High similarity between each item i and user

u results to a recommendation (Koren et al., 2009). Each user u is map to a vector

pu ∈ Rf and likewise each item i is associated with a vector qi ∈ Rf . For a given item i,

the elements of qi estimate the degree to which the item possesses the factors, positive

or negative. For a given user u, the elements of pu measure the extent of interest the user

has in items that are high on the corresponding factors, again, positive or negative.The

result of the dot product is qiTpu. The captures the interconnection between user u

and item i, the user’s universal interest in the item’s properties. This estimate fairly
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accurately the user u′s rating of item i, which is denoted by rui, resulting to the estimate:

rui = qiTpu (2.4)

The main task here is estimating the mapping of each item and users to factor vectors

qi,pu ∈ Rf . After completion of the mapping, the RS can easily compute the rating

a particular user will allocate to a particular item using equation 2.4. This method

is considered effective performance-wise in reducing problems related to high-level

sparsity in recommender system databases. Some recent research efforts employ

dimensionality reduction techniques to tackle similar problem. MF methods have also

proven very efficient and flexible in handling large recommender system databases and

enhancing scalability. Another major advantage of MF is that it enables incorporation

of additional information, especially when there is no sufficient explicit information to

make recommendation. Recommender systems can use implicit information such as

historical information about user behavioural patterns, browsing history, web activities

etc. to infer user preferences. Implicit information or feedbacks usually represent the

presence or absence of events and are normally represented as a densely filled matrix.

2.5 Matrix Decomposition Models

Generally, recommendation tasks and many other real-world tasks are usually represen-

ted with initial high-dimensional matrices that required decomposition or factorization

into two or more smaller matrices. The resulting matrices from the decomposition

(factors of the initial matrix) have several advantages due smaller dimensions. For

instance, the smaller dimension would result to reduced processing time and minimize

the amount of memory requirement needed for storing the matrices. Hence, improving

the overall computational efficiency of the algorithms that would have performed less
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on the initial matrix.

This section presents different methods that could be used to deal with high-

dimensional original dataset, and matrix decomposition models including the popular

decomposition models such as Eigenvalue decomposition, Singular Value Decompos-

ition (SVD), Principal Component Analysis (PCA), Latent Semantic Indexing (LSI),

Probabilistic Matrix Factorization (PMF), Non-Negative Matrix Factorization (NMF).

Each of this model can be reformulated as an optimization problem with a loss function

and data-dependent constraints.

2.5.1 Eigenvalue Decomposition Method

Eigenvalue matrix decomposition approach focuses on decomposing initial matrix into

a canonical form. This is usually done in linear algebra, where a matrix A is factored

into a canonical form, such that matrix A′s eigenvalues and eigenvectors are used to

represent the matrix. Eigenvalue matrix decomposition method is only applicable for

square and diagonalizable initial matrix (Bensmail & Celeux, 1996; Golub & Van Loan,

2012; Watkins, 2004; Moler & Stewart, 1973).

Given matrix A, which is a square and diagonalizable matrix, and a constant λ and

a column vector e that is non-zero and with same number of rows as the given matrix

A . Then, column vector e is an eigenvector of matrix A, while λ is the corresponding

eigenvalue provided:

Ae = λe (2.5)

If matrix A is with rank r , r nonzero eigenvalues can be grouped into an r × r

diagonal matrix Λ and the corresponding eigenvectors in an n × r matrix E. Then, the

resulting equation is :

AE = EΛ (2.6)
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If rank r of the matrix A is equal to its dimension n, then, matrix A can be decom-

posed as follows:

A = EΛE−1 (2.7)

Equation 2.7 diagonalization is very similar to Singular Value Decomposition

(discussed in next section).

2.5.2 Singular Value Decomposition

In linear algebra, the Singular Value Decomposition (SVD) is an important tool that

is use to solve mathematical problems including factorization of a real or complex

matrix (Berry, Dumais & O’Brien, 1995; Symeonidis & Zioupos, 2016). SVD is one of

the common techniques used for matrix dimension reduction, and can be considered

as the generalization of the eigen-decomposition of a positive semi-definite normal

matrix to any m × n through an extension of polar decomposition. It has many useful

applications in recommender systems, statistics and signal processing. The major issue

in a decomposition based on SVD is to find a lower dimensional feature space (Isinkaye

et al., 2015). Formally, the SVD of an mn real or complex matrix A is a decomposed

form of the :

SV D(A) = UΣV T (2.8)

Where U and V are m ×m and n × n real or complex unitary matrices ( orthogonal

matrices) respectively. Σ is an m × n rectangular diagonal matrix with non-negative

elements (real numbers ) on the diagonal. Matrix U w ith dimension m ×m is called

orthogonal if UTU is equivalent to an m ×m identity matrix. The diagonal elements σi

of Σ are called singular values of initial matrix A. Normally, the singular values of are

ordered in descending order in Σ. The columns of matrix U and that of V are called the
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left-singular vectors and right-singular vectors of A, respectively.

As discussed in section 2.5.1, eigenvalue decomposition shares some similarity with

SVD. If and on if matrix A is positive definite that is A ⇐⇒ A = AT ∧ ∀e ∈ E, e > 0

and symmetric, then the single value decomposition and eigenvalue decomposition are

both coinciding as follows :

A = USUT = EΛE−1 (2.9)

Where U = E and S = Λ. If matrix A is a non-square matrix and its decomposition can

be written in form A = USV T , thereafter, two matrices A1 =MTM and A2 =MMT

exist with their factorization, which can be simplified as follows (Symeonidis & Zioupos,

2016):

A1 =MTM ⇐⇒

A_1 = (USV^T)^T (USV^T)⇐⇒

A_1 = (VS^TU^T) (USV^T)⇐⇒

A_1 = VS^T ISV^T⇐⇒

A_1 = VS^T SV^T⇐⇒

A1 =MTM = V S2V T (2.10)

A2 =MMT is simplified in similar fashion:

A2 =MMT ⇐⇒

A_2 = (USV^T) (USV^T)^T⇐⇒

A_2 = (USV^T) (VS^TU^T)⇐⇒

A_2 = USIS^TU^T⇐⇒

A_2 = USS^TU^T ⇐⇒

A2 =MMT = US2UT (2.11)
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For both A1 and A2 matrices , similar computations to equation 2.10 and equation

2.11 can be performed . That is , the application of SVD on the initial original matrix A

can be followed to calculate matrices A1 and A2 SVD factorization.

To decide when to apply matrices A1 and A2 , minimum dimension of the matrix

Ais selected. If the dimension of matrix A is chosen to be n ×m and m << n, then A1

is chosen. A2 is chosen when n <<m.

2.5.3 Principal Component Analysis

Principal component Analysis (PCA) is also one of the common statistical techniques

for data analysis and processing. It is a well-established technique for dimensional-

ity reduction use to extract dominant patterns from high-dimensionality dataset by

transforming large sets of variables into smaller one .

2.5.4 Probability Matrix Factorization

Probability Matrix Factorization (PMF) is a probabilistic model with Gaussian observa-

tion noise which scale linearly with the number of observations , and performs more

efficiently on large-scale , sparse and imbalance recommendation datasets (Mnih &

Salakhutdinov, 2008). Given set of item (e.g. APIs) M , and N users (like mashups)

with integer rating values ranging from 1 to K1. If Rij denotes users i rating for item

j,and let U ∈ RD×N represents the latent feature matrix for user, and V ∈ RD×M denotes

the latent feature matrix for item. The column vector Ui denoting user-specific latent

feature vector and Vj represents the item-specific latent feature vector. With the rating

Rij , the aim of model is to find the factors of the rating matrix by minimizing the error

on the test set. Therefore, the performance of the model is measured by estimating

the RMSE (Root mean squared error) on the test set. The first attempt is to adopt the

probabilistic linear model with Gaussian noise in the data as shown in left pane of figure
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2.5 (?, ?). Let Iij be equal to 1 if Rij- (that is user i rated item j ), and Iij equals 0 if

otherwise. In addition, let N(x∣µ,σ2) = fX(x) where X ∼ N(µ,σ2). The conditional

distribution of the corresponding observed ratings for user and items can be defined

with as follows:

p(R∣U,V, σ2) =
N

∏
i=1

M

∏
j=1

[N(Rij ∣UiTVj, σ2]
Iij

(2.12)

Where N(x∣µ,σ2) is the PDF (probability density function) of the Gaussian distri-

bution with µ as the mean and variance σ2. By placing zero mean spherical Gaussian

priors on U and V with hyperparameters σ2
U , σ2

V : p(U ∣σ2
U) = ∏N

i=1N(Ui∣0, σ2
UI),

p(V ∣σ2
V ) = ∏

M
i=1N(Vi∣0, σ2

V I)

To maximize the log posterior over U and V , N definition is substituted and log is

taken:

lnp(U,V ∣R,σ2, σ2
U , σ

2
V ) = −
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2σ2

N

∑
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M

∑
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j ) −
1

2σ2
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∑
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TUi −
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⎛
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⎠
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(2.13)

where C is a constant that does not depend on the parameters. Maximizing the

log-posterior over item and user features with the observation noise variance and prior

variances ( hyper-parameters) as constant reduces the optimization to minimization of

the sum-of-squared-errors objective function with quadratic regularization terms:

E = 1

2

N

∑
i=1

M

∑
j=1
Iij(Rij −UT

i Vj)
2

+ λU
2

N

∑
i=1

∣∣ Ui ∣∣2Fro +
λV
2

M

∑
j=1

∣∣ Vj ∣∣2Fro (2.14)

Where λV = σ2

σ2
V

, λU = σ2

σ2
U

, and ∣∣ . ∣∣2F represents the the Frobenious norm of a
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Source: (Mnih & Salakhutdinov, 2008)
Figure 2.5: Left pane: Graphical Model of PMF. Right Pane: Constrained PMF

matrix. Equation 2.14 gives the local minimum of the objective function through the

computation of gradient descent in U and V. The PMF model can also be considered

as an a probabilistic extension of SVD model discussed in previous section (Mnih &

Salakhutdinov, 2008). Constrained PMF is further discussed in (Mnih & Salakhutdinov,

2008).

2.5.5 Non-Negative Matrix Factorization

Non-Negative Matrix Factorization (NMF) is also a widely used tool for processing

and analyzing high-dimensional data because it automatically extracts sparse and easily

interpretable features from a set of non-negative data vectors (Gillis, 2014). NMF

algorithm is one of the multivariate analysis and linear algebra algorithms which

can factorize a matrix A into two matrices P and Q, with property that the three

matrices do not have negative elements (Guan, Tao, Luo & Yuan, 2012). Non-negative

feature enables the resulting matrices more suitable for objects clustering application

(Symeonidis & Zioupos, 2016).
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2.5.6 Matrix Factorization in Web service Recommendation

To achieve higher recommendation accuracy, researcher usually combine different

kind of additional information using Matrix factorisation. Cao et al. (Cao, Tang,

Huang, 2014) utilize content similarity between user history records and web services

to recommend services for compositions using matric factorization method. In other to

improve recommendation accuracy and diversity, Rahman et al. (Rahman, Liu Cao,

2017) proposed a matrix factorisation-based recommendation approach that recommend

suitable web services for composition development. The authors build their work on

existing solution in (Cao, Liu, Li, Liu, Tang, Zhang, Shi, 2016), which is based on

integrated content and network-based service clustering. They applied MF algorithm

to predict the recommendation values of missing services and then integrate the result

with the popular services. Xu et al. (Xu, Cao, Hu, Wang Li, 2013), exploits the multi-

dimensional social relationships among potential users, topics, service compositions

and web services, which are described in a coupled matrix model. The authors designed

a factorization algorithm to predict unobserved relationships in the model to facilitate

effective and more accurate service recommendations. In Yao et al., (Yao, Wang, Zheng,

Benatallah Huang, 2018) use a probabilistic matrix factorization method coupled with

implicit correlation regularization to recommend services for composition development.

The authors use latent variable model to uncover the latent correlations between services

by analyzing the co-invocation pattern. The major challenges of CF-based approaches

are:

• They are strongly dependent on training data and predict ranking value based on

the opinions of past users’ rating feedbacks

• Web services have unique attributes including functional, non-functional and

social influence, which depends on and affect each other. Unlike conventional

recommendation of items like movies or products in Amazon, web service behave
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differently, they, interact, socialize, compete and can be composed together to

create a new value-added service. CF-based approach does not capture this.

• CF-based approach is limited in terms of providing recommendation for novice

consumers or developers who have vague requirements.

• Cold start problem for services and

• Loss of information in dimensionality reduction technique such PCA and SVD

MF-models

The MF model and its extensions achieve good performance in recommender

systems, and have been employed to predict QoS values in recent years (Zheng et

al., 2013; Lo et al., 2012a; Xu et al., 2013). Zheng et al. (2013) proposed a user

neighbourhood extended MF model named NIMF, which identified user neighbours

through similarity computation of each pair of users. The predicted value was learned

from the latent factors of the target user and his (or her) similar neighbours. Lo et

al. (2012a) selected similar neighbours for each user and each service respectively

through similarity calculation. They constructed two regularization terms, which tried

to minimize the difference between latent factors of the target service (or user) and

the neighbours. Finally, they built a model named EMFF . Apparently, due to the

similarity computation, the time complexity of the two models (NIMFandEMFF )

is also quadratic to the data size. Xu et al. (2013) proposed a location-based model.

For each user, their model selected the similar neighbours according to the geographic

distance. The similarity between each user and each his neighbour was computed based

on the distance with a predefined function. The predicted value was learned by both the

latent factors of the target user and his neighbours. Although this model achieves good

6 Y. Xu, J. Yin and Y. Li prediction accuracy, it suffers from bad efficiency when the

data size is large. Also, it is hard to define a suitable similarity function to measure the
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similarity according to the geographic information. Recommender systems mainly base

their suggestions on rating data of two entities (users and items), which are often placed

in a matrix with one representing users and the other representing items of interest.

For example, Netflix collects ratings for movies using the five-star selection schema,

and TiVo users indicate their preferences for TV shows by pressing thumbs-up and

thumbs-down buttons. These ratings are given explicitly by users creating a sparse

user–item rating matrix, because an individual user is likely to rate only a small fraction

of the items that belong to the item set. Another challenging issue with this user–item

rating matrix is scalability of data (i.e., the large number of possible registered users or

inserted items), which may affect the time performance of a recommendation algorithm.

We can deal with all aforementioned challenges by applying matrix decomposition

methods (also known as factorization methods). Matrix factorization denotes a process,

where a matrix is factorized into a product of matrices. A matrix factorization method

is useful for solving plenty of problems, both analytical and numerical an example

of a numerical problem is the solution of linear equations and eigenvalue problems.

Its importance relies on the exploitation of latent associations that exist in the data

among participating entities (e.g., between users and items). In a trivial form, the matrix

factorization method uses two matrices, which hold the information of correlation

between the user-feature and item-feature factors, respectively.

2.6 Tensors Decomposition Techniques

This section provides the preliminary knowledge of Tensors, which is one of the key

techniques used in this research work. First, an overview of tensors factorization is

presented and then various related tensors decomposition methods Tuckers Decomposi-

tion(TD) − as the underlying tensor decomposition technique for Higher Order SVD

(HOSVD), PARAllel FACtor analysis (PARAFAC), Low-Order Tensor Decomposition
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(LOTD) and Pairwise Interaction Tensor Decomposition methods are discussed.

2.6.1 Tensors Overview

Generally, in mathematics, geometric objects, which maps in a multi-linear manner

geometric vectors, scalars, and other tensors to a resulting tensor is called Tensor.

Vectors and scalars are the simplest form of Tensors. More formally, Tensors are

multidimensional matrices. For instance, an N − order tensor A is represented as

A ∈ RI1...IN , with elements ai1, ..., iN . Tensor factorization can be considered as

the generalized form of MF , which enables flexibility in processing and integrating

multi-dimension data by modelling the data as an N-dimensional tensor instead of

the conventional 2D matrix approach, thereby enabling inclusion of any number of

variables into recommendation solution (Karatzoglou, Amatriain, Baltrunas & Oliver,

2010). This approach could be employed to hybridize content and collaborative filtering

approaches.

2.6.2 Tucker Decomposition And Higher Order Singular Value De-

composition

Tucker decomposition (Tucker, 1966) has few variants. Higher order singular value

decomposition (HOSVD) is a specific variant of Tucker decomposition that factorizes

a tensor into a set of matrices with one small core tensor. Often regarded as Tucker I

decomposition (Symeonidis & Zioupos, 2016; De Lathauwer, De Moor & Vandewalle,

2000) . In order to use HOSVD technique on a 3rd-order tensor A, three matrix unfold-

ing functions that are the matrix representations of tensor A having all column (row,...)

vectors stacked over each other successively is constructed. Figure 2.6 illustrates a

typical unfolding of a 3-order tensorA, whereA1,A2,A3 are known as mode-1, mode-2,

mode-3 matrix unfolding of A respectively.
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Source: (Symeonidis & Zioupos, 2016)
Figure 2.6: The unfolding of 3rd-order tensor A, in the three modes

A1 ∈ RI1×(I2I3),A2 ∈ RI2×(I1I3),A3 ∈ RI1I2×(I3) (2.15)

HOSVD has been employed by various systems (Symeonidis, Papadimitriou, Manolo-

poulos, Senkul & Toroslu, 2011; S. Chen, Wang & Zhang, 2007; Symeonidis, 2009)

especially recommender systems for tensor factorization (for generating low-rank tensor

approximations) to enable exploitation of multi-dimensional relationships that exists

between recommendation objects and the underlying latent semantic structure of the

objects. For instance, an application of HOSVD in tensor decomposition can found in

Social Tagging Systems (STSs) (Symeonidis, 2009), where the ternary interaction of

users, items, and tags in the system can be captured as a third- order tensor A. These

elements are represented by a 3-order tensor, on which latent semantic analysis and
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dimensionality reduction is performed using the HOSVD approach. Generally, STSs

can recommend users with similar social interest based on common tags on similar

items. Users could have diverse interests for an item and similarly, items could have

multiple facets. The key motivation here is to use the data triplet (users U, items I, tags

T) in the system and present the recommendation problem as a third-order tensor, which

requires unfolding the initial third-order tensor A and completing its non-observed

entries.

Relational structure F ∶= (U, I, T, Y ) is used to formally represent the STSs, where

U,T and I are non-empty, finite sets. Y is the set of observed ternary relation between

the triplets (U,I,T). That is, Y ⊆ U × I × T . Normally, a post has a tag assignments of a

particular user for a given item , that is , for the triplet (u, i, Tu,i) where u ∈ U, i ∈ I , and

a nonempty set Tu,i ∶= {t ∈ T ∣ (u, i, t) ∈ Y }. Y can be represented by the binary tensor

A = (au, i, t) ∈ R∣U ∣×∣I ∣×∣T ∣. Here digit 1 denotes observed tag assignments and digit 0

denotes missing values. The relationship is presented below:

au, i, t ∶=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1, (u, i, t) ∈ Y

0, else

Hence, the tensor Â is built as product of the core tensor Ĉ and the mode products

of the three matrices Û , Î , and T̂ as expressed below :

Â ∶= Ĉ ×u Û ×i Î ×t T̂ (2.16)

Û , Î , and T̂ are all low-rank feature matrices denoting a mode that is user, items,

and tags, respectively in terms of its small number of latent dimensions kU , kI , kT

, and Ĉ ∈ RkU×kI×kT is the core tensor which governs the relation between the latent

semantic factors. Model parameters to be optimized are represented by the quadruple
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Figure 2.7: Tensor decomposition in STS of A in the three modes −

θ̂ ∶= (Ĉ, Û , Î, T̂ ) as shown in Figure 2.7.

HOSVD algorithm fundamental idea is to reduce an element-wise loss on the

components of Â by optimizing the square loss. That is,

arg min
θ̂

∑
(u,i,t)∈Y

(âu,i,t − au,i,t)2 (2.17)

Following the optimization of the parameters, prediction can be realized as follows:

â(u, i, t) ∶=
kU

∑
ũ=1

kI

∑
ĩ=1

kT

∑
t̃=1
ĉũ,̃i,t̃ ⋅ ûu,ũ ⋅ îi,̃i ⋅ t̂t,t̃ (2.18)

where user Û = [ûu,ũ]u=1,...,Uũ=1,...,kU , Î = [̂ii,̃i]
i=1,...,I
ĩ=1,...,kI , T̂ = [t̂t,t̃]

t=1,...,T
t̃=1,...,kT and indices over

the feature dimension of a feature matrix are marked with a tilde, and elements of a

feature matrix are marked with hat like (t̂t,t̃) (Symeonidis & Zioupos, 2016).

2.6.3 Parallel Factor Analysis (PARAFAC)

The Parallel Factor Analysis (PARAFAC) (Bro, 1997) is a special case Tucker de-

composition method (also known as canonical decomposition ), which minimizes the

complexity of tensor decomposition by assuming only a diagonal and core tensor. The
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Figure 2.8: The graphical representation of PARAFAC with diagonal core tensor and
the factorization dimensionality (equal for the three modes)

method can be considered as a generalized bi-linear Principal Component Analysis

(PCA). In PARAFAC, a decomposition of data is made into a tri-linear components with

each component consisting one score vector and two loading vectors. The score and

loadings for all the components are treated equally numerically . An typical example of

PARAFAC is shown in figure 2.8 for 3-modes.

PARAFAC employs similar decomposition and parametrization approach as Tuckers

(as in equation 2.15. However, dimensionalities of the factor matrices in PARAFAC are

thesame for all the components and the core tensor is diagonal:

cû,̂i,t̂
!=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1, if = û = î = t̂

0, else

For instance, given a 3-way array with 3-loading matrices A, B, C for a PARAFAC

model . The 3-loading matrices have elements aif , bjf , ckf respectively. The tri-linear

method results to minimizing the sum of squares of the residuals, eijk in the model.

xijk =
F

∑
f=1

aijbjfckf + eijk (2.19)

The graphical representation of equation 2.19 for 2-compoents is shown in figure
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Figure 2.9: The graphical representation of 2-components PARAFAC of data array X
Source: (Bro, 1997)

2.9. The resulting model can be written as:

xijk =
F

∑
f=1

af⊗ bf⊗ ckf (2.20)

where af is the fth column of loading matrix A, while bf and cf hold thesame values

for loading matrices B and C respectively (Bro, 1997).

2.7 Pairwise Interaction Tensor Factorization

Pairwise Interaction Tensor Factorization (PITF) is a special case of Tucker decom-

position model with linear runtime both for learning, recommendation and prediction.

PITF is discussed in (Rendle & Schmidt-Thieme, 2010). Unlike PARAFAC that models

a m − ary relation directly with one m − ary product, PITF explicitly models many

pairwise relations (Rendle, n.d.). While Tucker decomposition and PARAFAC directly

model a ternary relation, the main idea of PITF is express or model pairwise interactions.
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Research Method

This chapter provides the details of the construction of the proposed Tensor factorization

models used for Web-API recommendation in this research, This research work adopts

both exploratory and quantitative approaches to understudy the application of 3-order

Matrix factorization technique in exploiting the latent feature that exists among multi-

dimensional relations in Web service domain. Generally, the research method can be

divided into four key components: (i) First, the construction and description of the data-

set used in the research(ii) the representation and construction of regularization-based

Tensors factorization optimization model for the Web-API recommendation application.

(iii) the prediction algorithm based on HOSVD decomposition for the proposed Web-

API recommendation framework. (iv) Comparative procedure for Traditional 2-orders

Probabilistic Matrix Factorization and 3-order Tensors Factorization using Web-APIs

dataset.

3.1 Overview

This research intends to explore both Tensor factorization (TF) technique and Prob-

abilistic Matrix factorization (PMF) to tackle various issues related to the both large

67
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multi-dimensional datasets and sparse Web-APIs dataset.

Generally, typical recommender system is based on CF, which relies on historical

users’ information such as ratings given by past users. CF automatically predicts the

interest of user based on the rating information from other similar user or items (Ma,

Yang, Lyu & King, 2008). Ratings are usually explicitly given by the users resulting

to a sparse user-item rating matrix. Hence, data sparsity is one of the key challenges

of CF. Matrix Factorization performs well on sparse data (Symeonidis, Nanopoulos &

Manolopoulos, 2008). MF method uses two matrices that hold information of the cor-

relation between the item-features (such as Web-API features) and user-features (such

as the mashup feature) factors respectively (Symeonidis & Zioupos, 2016). Another

very key advantage of MF is that it enables incorporation of-of side information. For

instance, in the absence of explicit feedback, RS can utilize implicit feedback to infer

user preference. However, MF can only operate on two-dimensional data, which may

not be applicable to real-world application that involves more than 3-entities interaction.

For instant in Web-APIs recommendation, apart from Mashup-API interaction matrix,

other contextual information or entities such as the Location, QoS of services, Time

and Age could influence the quality of Web-API rating prediction. Recently, Tensor

Factorization (TF) approach became popular for handling multi-faceted data (Huang

et al., 2018; Yao, Sheng, Wang, Zhang & Qin, 2018). TF can be employed to add any

number of variables to an RS solution. This work presents a generic Collaborative

Filtering model that is based on extended concept of matrix factorization to that of tensor

factorization to address recommendation problems. The research used raw data set,

which includes the data related to mashups and Web APIs from ProgrammableWeb:com

(ProgrammableWeb, 2017), since it is the largest Web API directory on the Web. Then

the data is processed according to the requirement of network modelling from a network

science perspective to facilitate us to investigate the relationship between mashups and

Web APIs.
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3.2 Data Acquisition and Processing

This research work explores publicly available dataset from ProgrammableWeb reposit-

ory, the current largest Web-API, mashup repository. The time-stamped, raw dataset

craw from the repository consists of textual descriptions of 17829 APIs and 5691

mashups, and their historical invocation from June 2005 to January 2019. Considering

that the ProgrammableWeb backend database is not publicly accessible, only its web

pages can be employed for collecting the data. Hence, data scraping technique is

employed to crawl data from the repository web pages. After that, the web pages are

apportioned into two categories: Web-APIs and mashups, Each Web-API has features

including tags, name, description, users (as mashup), publication date, URL, end-

point, portal and category. Likewise, every mashup also has the above metadata plus

the set of Web-APIs invoked. Table 3.1 describes some basic statistics of the acquired

ProgrmmableWeb dataset.

Due to the fact that the ProgrammableWeb dataset does not include ratings between

mashups and APIs, Mashup-Web-API invocation data is adopted has the ratings here.

Then several cleaning and preprocessing follow. First, redundant APIs and mashups

are removed and then obtain 5691 mashups, with only 1,170 Web-APIs included. A

very sparse mashup-API mapping was achieved with density 1.6 × 10−3 . All the APIs

and mashups descriptions were put into two lists respectively, and assign a tag for each

description.

3.3 Mashup-Oriented MF-Based Recommendation

Two-dimensional Matrix Factorization approaches have been greatly successful in latent

factor models, and it has been employed in several MF-based collaborative filtering

Web-API recommendation solutions.
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Data Type Statistics
Number of Web APIs acquired 17,829
Number of Mashups acquired 5691
Average number of Web APIs invoked by Mashups 2.1
Number of Web APIs invoked in at least one Mashup 1,170
Number of Mashups with less than 2 services 241
Number of Mashup-API interaction 10,737
Mashup-APIs Affiliation Matrix Density 1.6 ×10−3

Table 3.1: Statistics of the ProgrammableWeb Dataset

Web-API: Twillo API Mashup: Nostalgia
Attribute Value Attribute Value
Web-API Name Twillo Mashup Name Nostalgia
Category/Tags Telephony Text-to-Speech, Voice... Category/Tags Music, Charts
API Portal http://www.twilio.com API Portals http://www.nostal.se
Profile Twilio provides a simple hosted API...
Endpoints Affiliation Matrix Density

Table 3.2: Sample Specification of Web-API (a) and Mashup Profile (b) in PW dataset

Generally, MF models map both users and items to a joint latent factor space of

dimensionality, such that user-item interactions are modelled as inner products in that

space (Koren et al., 2009). This success and adoption can be mainly attributed to its

exceptional scalability and accuracy.

For instant, suppose two entities u&v, where u = {u1, u2, . . . um} is a set of users,

and v = {v1, v2, . . . vn} be the set of items; the primary idea here is to decompose a

2-dimensional user-item matrix R ∈ Rm×n into two low-order matrices representing user

latent subspace matrix U ∈ Rm×d and item latent subspace matrix V ∈ Rn×d respectively.

Dimensional shared latent space d≪ min(m,n). The likelihood of a particular user

ui interacting with item vj will be approximated through computation of the following

optimization problem (Yao, Sheng et al., 2018):

L(U ,V) = min
U,V

m

∑
i=1

n

∑
j=1

(Rij −UiV T
j )2 (3.1)
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Figure 3.1: Matrix Factorization for recommendation

Equation 3.1 is a typical Probabilistic Matrix Factorization solution , which is

described and simplified by authors in (Mnih & Salakhutdinov, 2008) as follows:

Since Root Mean Squared Error (RMSE) is the metric usually adopted to measure

such model performance or a likelihood of such occurrence, RMSE is computed on

the test set based on probabilistic linear model with Gaussian observation noise. To

simplify the rating prediction problem, a conditional distribution over the observed

ratings is defined as :

p(R∣U,V, σ) =
m

∏
i=1

n

∏
j=1

[N(Rij ∣UiTVj, σ2]
Iij

(3.2)

Where N(x∣µ,σ2) is the probability density function (PDF ) of the Gaussian

Distribution with variance σ2 and µ as the mean. Iij denotes the indicator function that

is equivalent to 1 provided the user i rated or interact with item j and would be 0 if

otherwise.

With zero-mean spherical Gaussian priors placed in range [1,11] on both the user

and item feature vector, the result equation is as follow:

p (U ∣σ2
U) =

m

∏
i=1
N(Ui∣0, σ2

UI), p (V ∣σ2
V ) =

n

∏
j=1
N(Vj ∣0, σ2

V I) (3.3)
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For both user U and item V latent features, the log of the posterior distribution over

both entities is computed as follows based on elements of equation 3.3:

lnp(U,V ∣R,σ2, σ2
U , σ

2
V ) = −

1

2σ2

m

∑
i=1

n

∑
j=1
Iij(Rij −UiTV 2

j ) −
1

2σ2
U

m

∑
i=1
Ui

TUi −
1

2σ2
V

n

∑
j=1
Vj

TVj

−1

2

⎛
⎝
⎛
⎝

m

∑
i=1

n

∑
j=1
Iij

⎞
⎠

lnσ2 +md lnσ2
U + nd lnσ2

V

⎞
⎠
+C

(3.4)

C in equation 3.3 is a constant that is not parametric dependent. In order to maximize

the log posterior over the feature of both entities’ features (user,item features), while

keeping the hyper-parameters, (that is, the observation noise variance and prior vari-

ances) fixed, the sum-of-squared-errors Objective function is minimized with quadratic

regularization terms as follows:

E = 1

2

m

∑
i=1

n

∑
j=1
Iij(Rij −UiTV 2

j )
2

+ λU
2

m

∑
i=1

∣∣ Ui ∣∣2F +
λV

2

n

∑
j=1

∣∣ Vj ∣∣2F (3.5)

Where λU = σ2

σ2
U

, λV = σ2

σ2
V

, and ∣∣ . ∣∣2F represents the the Frobenious norm1. By

performing gradient descent on both U and V in Equation 3.7, a Local Minimum of

equation 3.7’s objective function can be realized as in equation 3.1.

Applying the approach described above to mashup-oriented Web-API recommenda-

tion problem:

Given entity M as target mashup ( same as user is above scenario), how do we discover

most suitable entity A − candidate Web-APIs components to compose M?

Given the invocation information of n APIs in k mashups, Let the invocation

interaction between APIs and Mashups be represented as 2-dimensional matrix R ∈
1https://en.wikipedia.org/wiki/Matrix_normFrobenius_norm
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Rn×k, where each element rij implies if or if not an API represented by ai is consumed

by a mashup (or a users) denoted by mj ( that is true if rij = 1 and false if rij = 0 ). The

main objective of PMF in this case is to map the mashups with respect to component

APIs into a shared a dimensional shared latent space d ≪ min{n, k}. The resulting

latent subspace matrices for mashup and Web-APIs are arranged in k × d for matrix M

and n × d for matrix A respectively,where API ai ∈ Rd and mashup mj ∈ Rd. Therefore,

the probability-based prediction that ai will be consumed by mj is calculated by:

r̂ij = aTi mj (3.6)

If the latent factors of both mashups and Web-APIs are both represented as matrices M

and A, such that A ∈ Rn×d and M ∈ Rk×d respectively, these factors can be learned from

minimizing the sum-of-squared-errors Objective function with quadratic regularization

terms as follow:

L = 1

2

n

∑
i=1

k

∑
j=1
Iij(rij − aTi mj)

2

+ λA
2

n

∑
i=1

∣∣ Ai ∣∣2F +
λM

2

k

∑
j=1

∣∣Mj ∣∣2F (3.7)

Similar to equation in 3.7, λA = σ2

σ2
A

, λM = σ2

σ2
M

, and ∣∣ . ∣∣2F represents the the

Frobenious norm of a matrix. (λA2 ∑
n
i=1 ∣∣Ai ∣∣2F +

λM
2 ∑

k
j=1 ∣∣Mj ∣∣2F ) are the regularization

terms introduced to reduce over-fitting the training data. The value of λ in this case is

data-dependent.where Iij equals 1 if API ai is invoked by mashup mj , and 0 otherwise.

The aim of the optimization is to minimize the sum-of-squared-errors loss function with

quadratic regularization terms, and gradient-decent approaches can be applied to find a

local minimum (Yao, Sheng et al., 2018)
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3.4 Tensors Factorization

For ternary relations, where standard matrix factorization cannot be applied tensors are

used. Tensor is regarded as a multi-dimensional matrix- a generalization of a matrix,

for a order N tensor means N-dimensional tensor.

3.4.1 Need for Tensors in Recommender Systems

Why do we need tensors in recommendation applications? Even-though conventional

two-dimensional recommendation models can be used successfully in many cases, it

is common to find real-world settings where auxiliary contextual information such as

location, proximity, time, taste, company of others, mood can influence user’s decision

making. Therefore, such contextual information can be captured and incorporated into

the recommendation algorithm to enhance the rating accuracy.

Let the set of contextual dimension of each contextual information in the recom-

mendation space be represented as {C1,C2, . . . ,Ck}, where k is the total number of

contextual information in the recommendation space and each dimension Ci is the set

of features that captured a specific kind of context.

Suppose dimensions U,V,C1,C2, . . . ,Ck are given, a recommendation space can be

defined for these dimensions as a Cartesian product Q = U × V × C1 × C2 × ⋅ ⋅ ⋅ ×

Ck. The contextual dimensions are modelled similar to the users-items model in MF.

Similarly, observing ratings on this space can be modeled as a sparse tensor. Hence, the

recommendation problem is now interpreted as a Tensor Completion problem, which

infers missing ratings from a partially specified tensor of observations by fitting a tensor

factorization model to the data (Zou, Li, Tan & Chen, 2015).
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3.4.2 Notations and Operations

An N-way Tensors is generalization of matrices or vectors represented asA ∈ RI1×I2×⋅⋅⋅×IN ,

where the elements of the N-way array are indexed by in ∈ {i1, i2, . . . , iN} for 1 ≤ n ≤ N .

Various terms, concepts and procedures in linear algebra are important to understanding

tensor factorization. Some key concepts adopted in this work are defined below:

Square Matrix and orthogonality

A square matrix A ∈ RN ×N is a matrix with the same number of rows N and columns

N . A is called non-singular if there is another matrix B ∈ RN ×N such that AB = I

and BA = I , where I is an identity matrix I ∈ RN ×N . If A is not invertible , then it is

singular.

A square matrix A is called orthogonal, if the column vectors of A form an or-

thonormal sets in ∈ RN . That is, A is matrix with real numbers entries, whose columns

and rows are orthogonal unit vectors. AAT = ATA = I , where AT is the transpose of

matrix A.

Frobenius Norm || . ||

The Frobenius norm 2, also known as the Euclidean norm ( also used for the vector

L2 − norm)is matrix norm of an M ×N matrix A defined as the square root of the sum

of the absolute squares of its elements, define in equation 3.8 below:

∣∣ A ∣∣F =

¿
ÁÁÀ

N

∑
i=1

M

∑
j=1

∣aij ∣2 (3.8)

2http://mathworld.wolfram.com/FrobeniusNorm.html



Chapter 3. Research Method 76

Figure 3.2: Illustration of four-order tensor Unfolding
Source: (Zou et al., 2015)

Matrix Unfolding

Matrix unfolding is simply a mapping operation from a tensor to a matrix. A tensor

A can be matricized (i.e. construct matrix representations ) in which all the column

( or row) vectors are stacked one after the other. A tensor A ∈ RI1×...In...IN which

can be unfold along the nth mode represented as uf(A,n). The resulting matrix

A(n) ∈ RI1I2×...In−1In+1...IN has its column vectors in the n −mode of vectors of tensor

A. Figure 3.2 illustrates an example of 4-order tensor of dimensions 2 × 2 × 2 × 2 × 3

and its respective 4 unfolding matrices in different modes as presented in (Zou et al.,

2015). Different color are used in the figure to describe the later incremental updates

and can now be ignored.
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3.5 High-Order Singular Value Decomposition on Tensors

This section describes tensor factorization method employ in this work called HOSVD,

which is an extension of Singular Value Decomposition (SVD) method described in the

literature review. The section will show algorithm and step-by-step implementation of

HOSVD, and how the method can be employ to exploit the underlying latent semantic

structure in three-dimension data model. Then an illustration of Web-API or service

oriented tensor model implementation is presented with algorithms.

3.5.1 HOSVD Algorithm Description

The algorithm description presented here shows the operation of HOSVD and how it is

performed based on inferred latent associations in 3-dimensional plane. Tensor decom-

position technique initially build a tensor, depending on the usage data triplet u, i, t of

user (mashup), item (API), and proximity. The idea is to employ the three entities that

relate in a location-based context-aware recommender system. Consequently, a tensor

A will be unfolded into three new matrices. Thereafter, SVD approach will be apply

to each of the new matrix. The following 6-steps summarizes the SVD procedures

(Symeonidis et al., 2008):

• Step-1 : The construction of the initial tensor A based on the integration data

triplet

• Step-2 :The matrix unfolding of tensorA, where three mode matrix representation

of tensor A is constructed , resulting to the creation of three new matrices (one

for each mode) as shown in equation 2.15

• Step-3 :After unfolding the matrix , SVD is then applied on all the three new

matrices.
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• Step-4 : Core tensor S , which reduces the dimensionality is then constructed.

F = S ×1 U
1 ×2 U

2 (3.9)

whereU1 = u(1)1 u
(1)
2 . . . u

(1)
I1

) is a unitary (I1×I1) matrix andU2 = u(2)1 u
(2)
2 . . . u

(2)
I1

)

is a unitary (I2×I2) matrix. S is an (I1×I1)-matrix with the following properties:

i.) Pseudodiagonality: S = diag(σ1, σ2, . . . , σmin{I1, I2}) and

ii.) Ordering: σ1 ≥ σ2,≥ ⋅ ⋅ ⋅ ≥ σmin{I1, I2} ≥ 0.

• Step-5 : The construction of the Â tensor, which is an approximation of tensor A.

A = S ×1 U
1 ×2 U

2 ×3 U
3 (3.10)

Note that the tensor-matrix multiplication operator ×u indicates the direction on the

tensor on which to multiply the matrix using the superscript.

Mashup ×API × Proximity Ð→ Ratings (3.11)

3.5.2 HOSVD Decomposition with Single Contextual Variable

Since this research employs proximity as the only contextual information used in

HOSVD tensor data model, an illustration of a typical HOSVD decomposition with

single contextual variable P is described in this section, hence, Y, which is the tensor

holding the ratings, will be three-dimensional. While multiple contextual variables

could be used, the generalization number of dimensions coupled with number of context

variables is trivial (Karatzoglou et al., 2010). Assuming five star rating scale Y is given

with 3-dimensions {0, . . . ,5}m×a×p for a sparse tensor Y ∈ Ym×a×p , where m are the

number of users (mashups in our case), a number of items (APIs in out case) and p
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is the contextual variable (s) (i.e pi ∈ {1, . . . , p} - in our case only proximity is used

as a single contextual variable). For the rating Y , the value 0 represents that a user

(mashup) did not rate or consume an item (an API). It is worth to note that 0 in this

case specially indicates missing data and not synonymous to dislike. Figure 3.3 shows

the 3-dimensional tensor decomposed into 3-matrices M ∈ Rm×dM , A ∈ Ra×dA and

P ∈ Rp×dP and a core tensor S ∈ RdM×dA×dP . With respect to this representation, the

decision function for a single user i (mashup) , item j (like API) and Context k (e.g.

proximity) fusion becomes :

Fijk = S ×mMi∗ ×a Aj∗ ×p Pk∗ (3.12)

Mi∗ represents the entries of the ith row of matrix M . This factorization model enables

full control over the dimensionality of the factors retrieved for the users, items and

proximity (or any other context) by tuning the dM , dA , dP parameters . This feature is

very valuable especially when dealing with large-scale real-world datasets where both

user’s matrix and item matrix can grow size and cause storage problem (Karatzoglou et

al., 2010).

Figure 3.3: An illustration of 3-order HOSVD tensor factorization model of Web
service data
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3.5.3 Loss Function

In comparison with 2-D Matrix factorization approach described in section 2.4, the loss

function for 3-order tensor is described as follows:

L(F,Y ) ∶= 1

∣∣S∣∣1
∑
i,j,k

Dijkl(Fijk, Yijk) (3.13)

Where D ∈ {0; 1}m×a×p is a binary tensor which has non-zero entries Dijk wherever Yijk

is observed. l ∶ R × Y Ð→ R represents a point-wise loss function penalizing distance

between the observation and the estimate . Fijk already described in equation 3.12. It

worth nothing that the overall loss L is meant to captured only the observed values in

the sparse tensor Y and not the missing ones.

Generally, there different possible choices of approaches for estimating the loss

function l. Some the common approaches are described below:

Squared Error

The squared error provides an estimate of the squared difference between the estimated

values and what is estimated. It gives a computation of the conditional mean as follows:

l(f, y) = 1

2
(f − y)2 (3.14)

By taking the partial derivation of equation 3.14, it becomes ∂f l (f, y) = f − y.

Absolute Loss

The absolute loss gives an estimate of the conditional median

l(f, y) = ∣f − y∣ (3.15)
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∂f l(f, y) = sgn[f − y] (3.16)

While, the are other loss function possible (Karatzoglou et al., 2010) , this work

focuses on the two described above.

3.5.4 Regularization

Usually, minimizing the loss function tends to lead to overfitting ( i.e. model is adapting

itself too much to the training data and thus, not generalizing well to the test data)

the training data. Therefore, in order to reduce the overfitting effect on the test data,

a regularization term is usually introduced. From equation 3.12, where S,M,A,P

constitute the data model, we can optimize the complexity of the model and ensure it

does not grow without bound. Hence, a L2 regularization term or l2 norm of the factors

is added. For matrix , the norm can also be referred to as the Frobenius norm.

Ω[M,A,P ] ∶= 1

2
[λM ∣∣M ∣∣2F + λA ∣∣A∣∣2F + λP ∣∣P ∣∣2F ] (3.17)

Similarly, the core tensor S complexity can also be restricted by imposing the

l2 norm penalty:

Ω[S] ∶= 1

2
[λS ∣∣S∣∣2F ] (3.18)

λ here is the regularization parameter that is data-dependent and determined by cross-

validation - usually non-negative values that basically trade-off between the "training

error " and the "length".
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3.5.5 Basic Optimization

To this extent, this framework will aim to optimize a regularized risk functional which

is an aggregate of equation 3.13 and 3.17, that is L(F,Y ) and Ω[M,A,P ]. Hence, the

objective function for the optimization problem becomes:

R[M,A,P,S] ∶= L(F,Y ) +Ω[M,A,P ] +Ω[S] (3.19)

To minimize the objective function, various approaches can be employed. For

instance, in MF, subspace descent is a common approach for this type of problem

and could also be applied to tensor model. In this approach, individual components

of the above model are optimized iteratively, while other components are kept fixed.

This approach will eventually rich convergence. Even-though the approach is quick

to converge, it usually requires the optimization procedure to be run in a batch setting.

Increase in data size usually makes the computation in-feasible by batch optimization

Alternative algorithm can be applied to find the optimal solutions with computing

gradient with respect to each factor with M,A and P . The algorithm will keep

updating the variables until convergence or reaching the maximum iterations. For this

work, an algorithm for performing Stochastic Gradient Descent (SDG) (Symeonidis

et al., 2008) on the factors Mi∗,Aj∗, Pk∗ and S for a particular rating Yijk at thesame

time employed. To calculate the updates for the SDG algorithm, the gradients of the

loss function are calculated and then the objective function with reference to individual

components in the model:

∂Mi∗
l(Fijk, Yijk) = ∂F ijkl(Fijk, Yijk)S ×a Aj∗ ×p Pk∗

∂Aj∗
l(Fijk, Yijk) = ∂F ijkl(Fijk, Yijk)S ×mMi∗ ×p Pk∗

∂Pk∗
l(Fijk, Yijk) = ∂F ijkl(Fijk, Yijk)S ×a Aj∗ ×mMi∗

∂Sl(Fijk, Yijk) = ∂F ijkl(Fijk, Yijk)Mi∗ ⊗Aj∗ ⊗ Pk∗
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3.6 Geographical Distance Between Services

There are various factors influencing the network performance between the target

user and the target web service. The most critical factors are network distance and

network bandwidth (J. Liu, Tang, Zheng, Liu & Lyu, 2015), which are highly relevant to

locations of the target user and the target service. Incorporation of location information

between users and candidate services have been found to be an important influence in the

consumption and selection of services. The location of service consumer and the service

can influence the observed quality of rating in service invocation. Chen et al. (X. Chen,

Liu, Huang & Sun, 2010) and (J. Liu et al., 2015) emphasis how critical the location of

service with respect to users are in influencing the Quality of Service of the web-service.

Location here implies the network environments that could affect the QoS attributes (

like response time, throughput etc.) of a service. For instance, if the quality of network

performance between a target user and the target Web service is high, the likelihood

that the user will experience high QoS on the target service will increase. Moreover,

users who reside in the same network region usually observe thesame response time

with respect to service. Therefore, we consider geographical proximity between users

and services as the single contextual variable in our recommendation framework, which

is capable of influencing the invocation preferences of services with respect to mashups.

Intuitively, we assume higher preferences for the API-mashups interaction with closer

proximity.

3.6.1 Estimating Geographical Proximity Score

In order to capture the proximity score between a particular Web-API ai and mashup mj ,

this work employ Haversine3 which is used for determining the great-circle distance

between two points on a sphere given their longitudes and latitudes. The formula is

3https://en.wikipedia.org/wiki/Haversine_formula
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defined below:

du, i = 2r.arcsin(
√
sin2(ϕu − ϕi

2
) + cos(ϕi)cos(ϕu)sin2(γu − γi

2
)) (3.20)

where r = 6371 denotes the Earth radius, ϕu, ϕi ∈ (−180,180] denote the latitudes

in corresponding geolocations of u and i, and γu, γi ∈ (−180,180] also represent the

respective longitudes. Relevant geographical information for the service proximity

computations were acquired from the GeoIP database 4 via a lookup of each Web service

and Mashup URLs. The resulting proximity score is normalized to be within the range

[0.1, 1]. A min-max normalization is performed on d as follows:

zu,i = 0.8.
du,i −min(d)

max(d) −min(d)
+ 0.1 (3.21)

zu,i represents the normalized values du,i. Therefore, the geographical proximity

values between entities mu and ai can be simplified as follows:

gs(mu, ai) = 1 − zu,i (3.22)

4https://www.maxmind.com/en/geoip2-databases
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Analysis

In this chapter, we described the implementation process of higher-order singular value

decomposition (HOSVD) and predicted the potential correlation between mashup and

APIs based on the three-dimensional tensor of Mashup ×APIs × Proximity. Firstly,

we presented raw data processing and three-dimensional tensor construction. Secondly,

we show the algorithm of HOSVD and presented the code implemented HOSVD step

by step. The key parts of the code were highlighted and discussed. Thirdly, we would

show the results and discussed the performance of HOSVD.

4.1 Introduction

At present, all large websites such as Last.fm, Movielens and YouTube use social label

recommendation system to classify items and share information among users, and gradu-

ally realize label classification and build corresponding user groups. However, there

is a problem on the Internet, that is, some users feel that typing tags are very tedious,

which results in the sparse data problem of tag system caused by users’ unwillingness

to provide tags. In addition, there are still some problems in the tag recommendation

system, such as lexical differences and semantic ambiguity. Therefore, we need to find

85
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a kind of label that users think is the most appropriate and comprehensive interpretation

of the item information, so that users can query, share and integrate the item information

more effectively. For these reasons, recent studies have been devoted to mining user

tags (tag metadata) on specific items to improve tag recommendation algorithms. Tradi-

tional recommendation systems generally use collaborative filtering recommendation

algorithm based on two-dimensional data ((?, ?); Herlocker et al. 2002; Sun et al. 2006;

Karypis 2001), while other algorithms combine labels into standard CD algorithm

to form three-dimensional association data (Tso-Sutter et al. 2008), which is helpful

to mine the potential semantic association among the three types of entities. For the

latter, we need to solve two questions firstly: (i) the construction of three-dimensional

relationship among users, items and tags; (ii) the sparsity of meta-data. In order to

mine the potential semantic association between mashup and APIs, we first constructed

three-dimensional tensor (proximity × Mashup × Apis) based raw data and decomposed

it with HOSVD. Finally, we compared its performance with PMF algorithm based

two-dimensional data. The results indicated that HOSVD is better than PMF in aspect

of strong association prediction.

4.2 Tools

The following function modules were carried out in Python 3.6.3 environment (Oliphant

2007).

4.2.1 Pandas module

Pandas module (Bernard 2016) was used to get the number of column and row of data in

dataframe format, conduct dataframe format conversion and basic operation associated

with dataframe .
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4.2.2 Sktensor and Tensorly modules

Sktensor and Tensorly modules (Kossaifi et al. 2019) were used to conduct three-

dimensional tensor construction and decomposition.

4.2.3 Numpy module

Numpy module (Van Der Walt et al. 2011) were used to sample the training dataset

and test dataset from raw data and conduct singular value decomposition for two-

dimensional matrix.

4.2.4 Matplotlib module

Matplotlib module (Hunter 2007) was used to conduct analysis visualization, including

heat map and line chart plotting.

4.3 Implementation

The implementation of the Web-service recommender system with HOSVD tensor

decomposition approach is discussed as under three subsections. First, the construction

of the three-dimensional tensor data model for the framework is described. Secondly,

the sampling procedure for both the training dataset and testing set is described. Third,

the Web API prediction procedure with tensor decomposition.

4.3.1 Three-dimensional tensor construction

We select the first and fifth columns in mashup − data.csv and the seventh column in

mashup − city.csv to combine a new data frame and then construct three-dimensional

matrix (Country × Mashup names × Apis).
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d e f d f 2 t b ( df , name , tag , i t em ) :

Ncol = df . shape [ 1 ]

Nrow = df . shape [ 0 ]

df_name = df . columns . v a l u e s . t o l i s t ( ) [ name ]

d f _ t a g = df . columns . v a l u e s . t o l i s t ( ) [ t a g ]

d f _ i t e m = df . columns . v a l u e s . t o l i s t ( ) [ i t em ]

Use r s = [ ]

Tags = [ ]

I t e m s = [ ]

f o r i i n r a n g e ( Nrow ) :

t a g s _ t e m p = l i t e r a l _ e v a l ( d f [ d f _ t a g ] [ i ] )

Length = l e n ( t a g s _ t e m p )

f o r j i n r a n g e ( Length )

Use r s . append ( d f [ df_name ] [ i ] )

Tags . append ( t a g s _ t e m p [ j ] )

I t e m s . append ( l i t e r a l _ e v a l ( d f [ d f _ i t e m ] [ i ] ) [ 0 ] )

Tb = pd . DataFrame ( { d f . columns [ 0 ] : Users , d f . columns [ 1 ] : Tags , d f .

columns [ 2 ] : I t e m s } )

r e t u r n t b

d e f t b 2 t c ( t c , t b ) :

N1 = t c . shape [ 0 ]

N2 = t c . shape [ 1 ]

N3 = t c . shape [ 2 ]

t b _ u s e r s = t b . i x [ : , 0 ]

t b _ t a g s = t b . i x [ : , 1 ]

t b _ i t e m s = t b . i x [ : , 2 ]

rn = t b . _ s t a t _ a x i s . v a l u e s . t o l i s t ( )

r e s = np . z e r o s ( [ N1 , N2 , N3 ] )

f o r i i n rn :

r e s [ t b _ i t e m s [ i ] ] [ t b _ u s e r s [ i ] ] [ t b _ t a g s [ i ] ] = 1
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r e t u r n ( r e s )

To show the sparsity of the dataset, a Mashup −Apis heat-map was plotted. Mean-

while, its sparsity was calculated by following formula:

Density = count(eij)
ncol × nrow

, eij ∈ A and eij ≠ 0 (4.1)

Sparsity = 1 −Density (4.2)

The codes were as follow, we (i) set the non-zero elements as one and calculated

the sum of this matrix; (ii) the sum of matrix divided by the product of the number of

rows and columns of matrix; (iii) the sparsity was 1 – density.

d e f tb2mat ( tb , r , c ) :

rows = t b . i x [ : , r ]

c o l s = t b . i x [ : , c ]

n r = l e n ( np . u n iq ue ( rows ) )

nc = l e n ( np . u n i que ( c o l s ) )

r e s = np . z e r o s ( [ nr , nc ] )

rn = t b . _ s t a t _ a x i s . v a l u e s . t o l i s t ( )

f o r i i n rn :

r e s [ rows [ i ] ] [ c o l s [ i ] ] = 1

r e t u r n ( r e s )

# S p a r i s i t y

mat1 = tb2mat ( d0 , 0 , 1 )

d e n s i t y =sum ( sum ( mat1 ) ) / ( mat1 . shape [ 0 ] * mat1 . shape [ 1 ] )

# d e n s i t y = 0 .0015

s p a r s i t y = 1− d e n s i t y

# s p a r s i t y = 0 .9985
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Then , t h i s m a t r i x was c o n v e r t e d i n t o t e n s o r ’A’ wi th ’ d t e n s o r ’

f u n c t i o n i n ’ s k t e n s o r ’ module .

d e f TC( t b ) :

Nrow = t b . shape [ 0 ]

Ncol = t b . shape [ 1 ]

t b _ u s e r s = t b . i x [ : , 0 ]

t b _ t a g s = t b . i x [ : , 1 ]

t b _ i t e m s = t b . i x [ : , 2 ]

t b _ t a g s _ u n i q u e = np . un iq ue ( t b _ t a g s )

t b _ i t e m s _ u n i q u e = np . un iq ue ( t b _ i t e m s )

t b _ u s e r s _ u n i q u e = np . un iqu e ( t b _ u s e r s )

Tc = np . z e r o s ( ( l e n ( t b _ i t e m s _ u n i q u e ) , l e n ( t b _ u s e r s _ u n i q u e ) , l e n (

t b _ t a g s _ u n i q u e ) ) , f l o a t )

f o r index , v a l u e s i n enumera t e ( t b _ i t e m s _ u n i q u e ) :

i t ems_ temp = e n u m e r a t e _ f n ( t b _ i t e m s , v a l u e s )

f o r i i n i t ems_ temp :

r1 = e n u m e r a t e _ f n ( t b _ u s e r s _ u n i q u e , t b _ u s e r s [ i ] ) [ 0 ]

r2 = e n u m e r a t e _ f n ( t b _ t a g s _ u n i q u e , t b _ t a g s [ i ] ) [ 0 ]

p r i n t ( index , " / " , ( l e n ( t b _ i t e m s _ u n i q u e ) ) , " : [ " , r1 , " , " , r2 , " ] " )

Tc [ i n d e x ] [ r1 ] [ r2 ] = 1

r e t u r n Tc

4.3.2 Sampling the training set and testing set

After relabeling the element of tensor A, we randomly sampled a certain proportion of

tensor elements as training set, while the rest of elements in tensor as testing set. The

codes were as following:

r a t i o = 0 . 6



Chapter 4. Analysis 91

t r a i n _ t b = d0 . l o c [ d0_cn [ 0 : i n t ( r a t i o * l e n ( d0_cn ) ) ] ]

t e s t _ t b = d0 . l o c [ d0_cn [ i n t ( r a t i o * l e n ( d0_cn ) ) : l e n ( d0_cn ) ] ]

t r a i n _ t c = t b 2 t c ( o tc , t r a i n _ t b )

t e s t _ t c = t b 2 t c ( o tc , t e s t _ t b )

4.3.3 Web API Prediction With Tensor Decomposition

The Web API prediction approach applies tensor factorization algorithm based on

HOSVD (as discussed in the method chapter) on the API data. In accordance to the

HOSVD approach introduced in Section 3.5, the algorithm uses as input the web service

data of tensor A and output the reconstructed tensor Â. Tensor Â compute the latent

association among the API, Mashup (users) and the proximity (or location ) For each

elements in tensor Â can be represented by by {m,a, p, r}. r measures the likeliness

that mashupsmwill consume API awithin proximity p. Hence,API a can be predicted

/recommended to based o on the weight attributed {m,a} pair. The three-dimensional

tensor was unfolded into three two-dimensional matrices along with three dimensions of

A1, A2 and A3. It was conducted with unfold function in tensorly module. Secondly,

these three two-dimensional matrices were perform the singular value decomposition

(SVD) (Sun et al. 2005) via svd function in numpy module. After SVD, we can get

core tensor (S1, S2andS3), left singular matrices (U1, U2 and U3) and transposition

matrices of right singular matrix (V (1)T , V (2)T and V (3)T ).

Denoising the left singular matrix U

We sorted the diagonal matrix element of in descending order. The elements that their

accumulative proportions were not less than 90% the sum of all diagonal matrix element

was kept, while the rest were set to zero. Meanwhile, the corresponding column of
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U1, U2 and U3 also were set to zero and then got similar matrix U1, U2 and U3 form

original matrices.

Calculating the similar core tensor

The core tensor S administers the relationships among the 3-entities (mashup, Api and

proximity) From the inital A, we constructed the similar core tensor S by following

codes:

S = A ×1 U
1 ×2 U

2 ×3 U
3 (4.3)

Reconstruction of similar tensor

According to formular 4.3, we calculated the similar tensor Â by the product of the

core tensor S coupled with the product of the 3-matrices:

Â = S ×1 U
1 ×2 U

2 ×3 U
3 (4.4)

The processes described above were performed with following codes: The codes

were as following:

d e f myHOSVD( t r a i n _ t c , d e n o i s i n g ) :

t c = d t e n s o r ( t r a i n _ t c )

a0 = t l . u n f o l d ( t c , 0 )

a1 = t l . u n f o l d ( t c , 1 )

a2 = t l . u n f o l d ( t c , 2 )

U0 , S0 , V0 = l a . svd ( a0 , f u l l _ m a t r i c e s = F a l s e )

U1 , S1 , V1 = l a . svd ( a1 , f u l l _ m a t r i c e s = F a l s e )

U2 , S2 , V2 = l a . svd ( a2 , f u l l _ m a t r i c e s = F a l s e )

b e s t _ r a n k = [ minRank ( S0 , d e n o i s i n g ) , minRank ( S1 , d e n o i s i n g ) , minRank (

S2 , d e n o i s i n g ) ]

U0 = np . a r r a y ( U0 )
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U1 = np . a r r a y ( U1 )

U2 = np . a r r a y ( U2 )

U0s = np . a r r a y ( U0 [ : , r a n g e ( b e s t _ r a n k [ 0 ] + 1 ) ] )

U1s = np . a r r a y ( U1 [ : , r a n g e ( b e s t _ r a n k [ 1 ] + 1 ) ] )

U2s=np . a r r a y ( U2 [ : , r a n g e ( b e s t _ r a n k [ 2 ] + 1 ) ] )

uu = [ U0s . T , U1s . T , U2s . T ]

s = t tm ( tc , uu )

u = [ U0s , U1s , U2s ]

d2_1 = t tm ( s , u )

r e t u r n ( d2_1 )

d e f minRank ( S , t h e r ) :

Sr = s o r t e d ( S , r e v e r s e =True )

T = sum ( Sr ) * t h e r

r e s = 0

f o r index , v a l u e i n enumera t e ( S ) :

r e s = r e s + v a l u e

i f ( r e s >= t ) :

r e s 1 = i n d e x

b r e a k

r e t u r n ( r e s 1 )

4.3.4 The performance of HOSVD

We calculated RMSE and MAE to access the performance of HOSVD prediction based

on top predictions(Karypis 2001) according to following two formulas.

RMSE =
√
∑(prediction − true)2 (4.5)

MAE =mean(∑abs(prediction − true)) (4.6)
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The codes were as following.

d e f myRMSE( preds , top_N ) :

T = s o r t e d ( p reds , r e v e r s e =True ) [ : top_N ]

e u i = [ np . s q u a r e ( i −1) f o r i i n T ]

r e t u r n ( np . s q r t ( np . mean ( e u i ) ) )

d e f myMAE( preds , top_N ) :

T = s o r t e d ( p reds , r e v e r s e =True ) [ : top_N ]

e u i = [ np . abs ( i −1) f o r i i n T ]

r e t u r n ( np . mean ( e u i ) )

4.3.5 Comparison with PMF

We used the following codes provided by teacher get the PMF (Bao et al. 2013; Yang et

al. 2013) results.

c l a s s PMF ( ) :

’ ’ ’

a c l a s s f o r t h i s Double Co−o c c u r e n c e F a c t o r i z a t i o n model

’ ’ ’

d e f _ _ i n i t _ _ ( s e l f , R , l ambda_a lpha =1e −2 , l ambda_be t a =1e −2 ,

l a t e n t _ s i z e =50 , momuntum = 0 . 8 ,

l r = 0 . 0 0 1 , i t e r s =1000 , s eed =None ) :

s e l f . l ambda_a lpha = lambda_a lpha

s e l f . l ambda_be t a = l ambda_be t a

s e l f . momuntum = momuntum

s e l f . R = R
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s e l f . r a n d o m _ s t a t e = RandomState ( s eed )

s e l f . i t e r a t i o n s = i t e r s

s e l f . l r = l r

s e l f . I = copy . deepcopy ( s e l f . R)

s e l f . I [ s e l f . I != 0 ] = 1

s e l f .U = 0 . 1 * s e l f . r a n d o m _ s t a t e . r and ( np . s i z e (R , 0 ) ,

l a t e n t _ s i z e )

s e l f .V = 0 . 1 * s e l f . r a n d o m _ s t a t e . r and ( np . s i z e (R , 1 ) ,

l a t e n t _ s i z e )

d e f l o s s ( s e l f ) :

l o s s = np . sum ( s e l f . I * ( s e l f . R−np . d o t ( s e l f . U, s e l f .V . T ) ) **2) +

s e l f . l ambda_a lpha *np . sum ( np . s q u a r e ( s e l f .U) ) + s e l f . l ambda_be t a *

np . sum ( np . s q u a r e ( s e l f .V) )

r e t u r n l o s s

d e f p r e d i c t ( s e l f , d a t a ) :

i n d e x _ d a t a = np . a r r a y ( [ [ i n t ( e l e [ 0 ] ) , i n t ( e l e [ 1 ] ) ] f o r e l e i n

d a t a ] , d t y p e = i n t )

u _ f e a t u r e s = s e l f .U . t a k e ( i n d e x _ d a t a . t a k e ( 0 , a x i s =1) , a x i s =0)

v _ f e a t u r e s = s e l f .V . t a k e ( i n d e x _ d a t a . t a k e ( 1 , a x i s =1) , a x i s =0)

p r e d s _ v a l u e _ a r r a y = np . sum ( u _ f e a t u r e s * v _ f e a t u r e s , 1 )

r e t u r n p r e d s _ v a l u e _ a r r a y

d e f t r a i n ( s e l f , t r a i n _ d a t a =None , v a l i _ d a t a =None ) :

t r a i n _ l o s s _ l i s t = [ ]

v a l i _ r m s e _ l i s t = [ ]

l a s t _ v a l i _ r m s e = 1000

temp_U = np . z e r o s ( s e l f .U . shape )

temp_V = np . z e r o s ( s e l f .V . shape )

f o r i t i n r a n g e ( s e l f . i t e r a t i o n s ) :

g r a d s _ u = np . d o t ( s e l f . I * ( s e l f . R−np . d o t ( s e l f . U, s e l f .V . T )

) , − s e l f .V) + s e l f . l ambda_a lpha * s e l f .U
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g r a d s _ v = np . d o t ( ( s e l f . I * ( s e l f . R−np . d o t ( s e l f . U, s e l f .V . T

) ) ) . T , − s e l f .U) + s e l f . l ambda_be t a * s e l f .V

temp_U = ( s e l f . momuntum * temp_U ) + s e l f . l r * g r a d s _ u

temp_V = ( s e l f . momuntum * temp_V ) + s e l f . l r * g r a d s _ v

s e l f .U = s e l f .U − temp_U

s e l f .V = s e l f .V − temp_V

t r a i n _ l o s s = s e l f . l o s s ( )

t r a i n _ l o s s _ l i s t . append ( t r a i n _ l o s s )

v a l i _ p r e d s = s e l f . p r e d i c t ( t r a i n _ d a t a )

v a l i _ r m s e = RMSE( t r a i n _ d a t a [ : , 2 ] , v a l i _ p r e d s )

v a l i _ r m s e _ l i s t . append ( [ i t +1 , v a l i _ r m s e ] )

p r i n t ( ’ t r a i n i n g i t e r a t i o n : { : d} , l o s s : { : f } , v a l i _ r m s e

: { : f } ’ . f o r m a t ( i t +1 , t r a i n _ l o s s , v a l i _ r m s e ) )

r e t u r n s e l f . U, s e l f . V, t r a i n _ l o s s _ l i s t , v a l i _ r m s e _ l i s t

We also calculated RMSE and MAE and compared it with HOSVD as follows:

R = np . z e r o s ( [ t r a i n _ t c . shape [ 1 ] , t r a i n _ t c . shape [ 2 ] ] )

f o r e l e i n r a n g e ( t r a i n _ T b . shape [ 0 ] ) :

R[ i n t ( t r a i n _ T b . i x [ e l e , 0 ] ) , i n t ( t r a i n _ T b . i x [ e l e , 1 ] ) ]= f l o a t ( t r a i n _ T b .

i x [ e l e , 2 ] )

l ambda_a lpha = 0 . 0 1

l ambda_be t a = 0 . 0 1

l a t e n t _ s i z e = 15

l r = 0 .0005

i t e r s = 0

model = PMF(R=R , l ambda_a lpha = lambda_a lpha , l ambda_be t a = lambda_be ta ,

l a t e n t _ s i z e = l a t e n t _ s i z e , momuntum = 0 . 9 , l r = l r , i t e r s = i t e r s , s eed

=1)
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Figure 4.1: The heat-map of Mashup-API matrix

p r e d s = model . p r e d i c t ( d a t a =np . a r r a y ( t e s t _ T b ) )

4.4 Findings

4.4.1 Data sparsity

The three-dimensional tensor of proximity ×mashup × apis captured 49 countries,

5071 mashups and 1418 Apis. Then, the sparsity of datasets was calculated with custom

function. The result showed that the sparsity of two-dimensional matrix of Mashup-Apis

was 0.9985, which showed in heat-map Figure 4.1. These results indicated that the data

was sparse. Thus, it was appropriated for predicting the potential correlations between

mashup and APIs.
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4.4.2 The performance of HOSVD and PMF with different size

training set

For evaluating the performance of HOSVD algorithm after remove 10% noise of left

singular matrices, we selected a certain proportion of top prediction to calculate the

RMSE and MAE based training dataset with different size sampled from the original

dataset. We randomly resample 10%, 20%, 30%, 40%, 50%, 60% training dataset to fit

the PMF model and HOSV D model. The results were listed in Table 1 and showed in

Figure 2. Table 1 showed that the RMSE and MAE of PMF-based top 50 predictions

slightly increased with the increasing size of the training set and independent on the

size of training sets.

Table 4.1: The RMSE and MAE of HOSVD and PMF model with different size
training set.

Percentage RMSE(HOSVD) RMSE(PMF) MAE(HOSVD) MAE(PMF)
10% 0.9703 0.9384 0.9660 0.9383
20% 0.9381 0.9386 0.9328 0.9386
30% 0.8926 0.9393 0.8820 0.9393
40% 0.9015 0.9397 0.8935 0.9397
50% 0.8744 0.9403 0.8671 0.9403
60% 0.8532 0.9408 0.8426 0.9408

As shown in Figures 4.2 the performance of HOSVD was dependent on the size of

training dataset that is the performance would increase with increasing size of training

data set. When the size of training data set was less than 20%, the performance of

HOSVD model (blue line) was more bad than PMF model (red line) indicated by RMSE

and MAE based top 50 predictions. When the size of training data set was more than

20%, the performance of HOSVD model (blue line) was better than PMF model. These

results revealed that HOSVD model has better robust than PMF model when data sets

are highly sparse. Notably, when the size of training set were more than 30% and less

than 40%, the performances of HOSVD model was decreased.
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Figure 4.2: The RMSE of HOSVD and PMF based training set with different size

4.4.3 The denoising influence on performance of HOSVD

In HOSVD, new three-dimensional tensor was reconstructed after denoising the left sin-

gular matrices. We evaluated the influence of denoising ratio on HOSVD performance

based top 50 predictions. Figure 4.3 and 4.4 showed that the RMSE and MAE were

linearly decreased with increasing denoising ratio. Increasing denoising ratio would

make the loss of original information from raw data set, but the accuracy top prediction

representing strong inner association between mashup and APIs still increase. It indic-

ated HOSVD has better performance to predict true relationships between variables.

4.4.4 Prediction accuracy comparison between HOSVD and PMF

Based on the same training set, we trained the HOSV D and PMF model and cal-

culate the RMSE based 60% trained dataset. The results showed that the RMSE
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Figure 4.3: The influences of denoising ratio on the performance of HOSVD

of HOSV D was increased with increased top predicted results sorted weight value

between mashup and APIs reversely (from 0.6 to 0.99), while PMF was stable and

around 0.94. Notably, the RMSE of HOSVD was less than PMF results when prediction

results occupied less top 100 predicted results, which indicated that HOSVD has better

performance than PMF when they predict stronger relevance between mashup and APIs.
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Figure 4.4: The comparison between HOSVD and MAE performance



Chapter 5

Discussion

In this Chapter, we discuss the results from the implementation with respect to the

two research questions discussed in section 1.2. First, we discuss how we are able

to represent the Web-API recommendation problem as a 3-order data representation

task by completing the unobserved entries in the rating matrix. Then we compare

the impact of context information integration into the rating using HOSVD with the

conventional 2-D Probabilistic Matrix Factorization (PMF). We discuss the impact of

the dimensionality .

5.1 Results Assessment

For recommend the APIs to mashup, we constructed the recommend system based

HOSVD algorithm with the three-dimensional tensor of proximity × Mashup × Apis

and compared its performance with PMF algorithm. The algorithm had the task of

predicting the API with respect to proximity of the mashup (user) location in the testing

dataset.

102
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5.1.1 Impact of Dimensionality

The results shown confirm the effectiveness of HOSVD-based rating data model, that

is incorporating multiple dimension of contextual (in this case proximity) information

into the three-dimensional tensor was better than two-dimensional PMF matrix because

of the former include more information. Even-though, both HOSVD and PMF solve

the sparsity issue associated with the rating matrix; the RMSE results of both methods

indicate that the HOSVD approach was able to achieve less error compare with PMF.

According to RMSE of both algorithms, we realized that HOSVD has the advantage

and robust of predicting closed relationships between variables than PMF. However, its

performance was similar to PMF algorithm when they predicted weaken correlations

even weaken. Thus, we think that it was better to select HOSVD for mining potential

correlations based sparse data rather than PMF. However, notably, the robust of HOSVD

was significantly affected by the size of train dataset, while it was not affected by the

denoising coefficient. Particularly, the HOSVD performance would worse than PMF

when the size of train dataset less than 20 percentage of the whole dataset. Therefore,

HOSVD model was more applicable to predict small samples according to large and

sparse samples.

5.1.2 Impact of HOSVD Tensor Density

In order to have a clear insight into the impact of different tensors densities on the rating

prediction, we consider the accuracy of our approach under different densities and

compare the prediction results. The density of the training set used in the experiment

was varied between the range of 10% to 90% with 10% steps at a time. Then we record

the prediction values under each different matrix density. As shown in figures 4.2, 4.3,

we can observe that the accuracy of our method is improved gradually with the increase

in the density of the training dataset. This is an indication that with an even more dense
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data, improved accuracy can be achieved.

5.1.3 Impact of Regularization Parameter

As discussed in 3.5.4, a standard procedure for reducing the problem of overfitting

usually faced by the test data is introduction of regularization term λ. We consider the

impact of tuning the regularization parameter by varying its value within the following

values{10−4,10−3,10−2, . . .102}. By doing this, we observed that the accuracy of the

prediction increases until λ reaches 10−2 and then decreases with larger values.

5.2 Contributions

This research work proposes, proximity-aware, collaborative filtering method using

tensor factorization, a generalization of the Matrix factorization for web service re-

commendation. The web service prediction model described in this work attempted to

predict the potential associations between mashups and APIs with respect proximity

(location) information. Unlike previous approaches which are based on 2-dimensional

data models, specifically the standard Matrix Factorization model that utilized the

sparse mashup-API interaction matrix to compute a low-rank approximation rating

matrix, this research shows how Matrix factorization can be extended by increasing the

dimensionality of concern, which enables the exploitation of relationship that exists

among Web-API, mashups and proximity (as contextual variable) information when

recommending Web-APIs but also.

In relation to the two research questions defined for this research work, we summar-

ize the contributions as follows:

1. This work shows how to construct potential interactions between mashups and

APIs with respect to their proximity using three-dimensional tensor representation
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to solve Web-API recommendation problem.

2. The work provides a template on how to exploits a high-order tensor to integrate

contextual information relating to Web-API consumption instead of the traditional

two-dimensional mashup-API matrix. The decomposition of this tensor results

to a more compact data model that is naturally suitable for fusing contextual

information to support Web-API recommendations.

3. Using a real-world dataset, specifically ProgrammableWeb Web-API dataset, this

work shows the effectiveness of the tensor-based data model approach for API

recommendation. Using two popular prediction metrics ( RMSE and MAE), we

demonstrated the superiority of our proposed tensor-model with Probabilistic

Matrix Factorization model.
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Conclusion

6.1 Challenges

One of the challenges of this study was to get valid training datasets and decide the

top of effective predictions. Since the HOSVD model would generate many invalid

predictions and its robust and accuracy of prediction affected the size and sparsity of

training dataset. In reality, the training sets would more sparsity and more fragmented

than the datasets used in this study when we sample this data from the internet. Another

was memory management when the HOSVD model run. Before the decomposition of

high-order tensor, it needs to construct multiple matrices first. This process has slow

efficiency and needs huge storage space so that HOSVD model did not apply to huge

dataset. When dealing with large-scale data, especially when the data is non-linear, it

can greatly simplify the calculation by mapping the input space to the high-dimensional

space through the non-linear change of the kernel function. Xiao (Xiao et al. 2016)

found that the kernel-based method was applied to the representation of low-rank

matrices. RKLRR, RKLRS and RKNLRS algorithms were proposed. The performance

of clustering was improved several times, but the error of clustering was much smaller

than that of traditional methods. The representation of a low-rank matrix based on

106
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kernel function has only made some progress in low-rank matrices at present, and its

application to high-order tensor data remains to be studied. This will inevitably become

one of the research directions in the fields of community discovery, recommendation

system, signal processing and so on. It has great research value and significance for

Li (Tao et al. 2009). In this paper, a non-negative tensor decomposition algorithm

(GNTF) based on graph and low-rank representation is proposed. Compared with the

existing classification algorithm, the classification effect of the image is improved.

However, in this method, the constraints are not selected to compare the results, and the

optimization of the performance of the algorithm by kernel function is not considered.

In this classifier, Choosing appropriate constraints and applying the kernel function to

them will further improve the performance of the classifier and have a good effect on

the improvement of the algorithm.

6.2 Future Work

In tensor decomposition, it is very important to make full and reasonable use of the

structure of high-dimensional data for problem modelling. In CP decomposition, it

is helpful to find the problem of matrix rank minimization and analyze the internal

structure information of the matrix for matrix filling and recovery performance. For

large-scale data, based on the existing hardware conditions, explore the effective and

parallelization of tensor decomposition algorithm for the solution of the problem has

important practical value and practical application, such as in nuclear matrix norm

minimization problem, singular value decomposition. The most time consuming is in

the solving process, such as the dimension of m * n matrices with time complexity

O (m*n2). Putting forward two kinds of block SVD signal processing algorithm and

two kinds of segmentation algorithm can greatly reduce the processing time. From

the examples described in the previous section, we have some understanding of the
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functions of the aforementioned methods in large-scale data and high-dimensional signal

analysis and processing, and these theories provide theoretical support for practical

application. Based on the principle or method of matrix rank minimization, low-rank

matrix recovery and kernel function, tensor decomposition is used to fully mine the

information in large-scale data, so as to design reasonable mathematical model and

algorithm, which has a broad application prospect.
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Appendix B

Project Source Code

The database scripts and source codes used in this research are available on this link

https://drive.google.com/drive/folders/1SsEAid5-Zm4X6oXLivJzudlhQPHI1wWa?usp=sharing
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