
 Volume 1 No. 5, September 2011 ISSN-2223-4985

International Journal of Information and Communication Technology Research

©2010-11 IJICT Journal. All rights reserved

http://www.esjournals.org

 177

Predicting Software Build Failure Using Source Code Metrics

Andy M. Connor, Jacqui Finlay
Software Engineering Research Lab,

Auckland University of Technology, Auckland, New Zealand

ABSTRACT

In this paper, we describe the extraction of source code metrics from the Jazz repository and the application of data mining techniques to

identify the most useful of those metrics for predicting the success or failure of an attempt to construct a working instance of the

software product. We present results from a study using the J48 classification method used in conjunction with a number of attribute

selection strategies applied to a set of source code metrics calculated from the code base at the beginning of a build cycle. The results

indicate that only a relatively small number of the available software metrics that we considered have any significance for predicting the

outcome of a build. These significant metrics are discussed and implication of the results discussed, particularly the relative difficulty of

being able to predict failed build attempts. The results also indicate that there is some scope for predicting the outcomes of an attempt to

construct a working instance of the software product by analysing the characteristics of the source code to be changed. This provides the

opportunity for software project managers to estimate the risk exposure of the planned changes in the build prior to commencing the

coding activities.

Keywords: Data Mining, Jazz, Software Metrics, Software Repositories

I. INTRODUCTION

Software development projects involve the use of

a wide range of tools to produce a software artifact.

Software repositories such as source control systems and

bug tracking databases have become a focus for emergent

research as being a source of information regarding the

performance and management of software development

projects. The mining of such repositories is becoming

increasingly common with a view to gaining a deeper

understanding of the development process and building

better prediction and recommendation systems. The Jazz

development environment has been recognized as offering

both opportunities and challenges in this area [1]. Jazz

integrates the software archive and bug database by

linking bug reports and source code changes with each

other through the concept of work items. Whilst this

provides much potential in gaining valuable insights into

the development process of software projects, such

potential is yet to be fully realised.

In this paper we describe an extension of

previous work [2] to continue to attempt the extraction of

rich data from the Jazz dataset by utilizing source code

metrics as a means of directly measuring the impact of

code issues on build success. In particular, in this paper we

attempt to make more useful predictions by changing the

code base on which the prediction classifier is built.

Previous work [2] utilised code that was submitted to the

repository immediately prior to the build taking place

where as in this work we utilise code that is extracted from

the repository at the beginning of the build cycle. The

ability to predict potential outcomes at the beginning of

the build cycle provides the development team with a

greater ability to manage the risk inherent in the build.

In the next section we provide a brief overview of

related work. Section 3 discusses the nature of the Jazz

data repository and metrics that we utilized to mine the

repository. In section 4, we discuss our approach to

mining the software repository in Jazz, while our results

are presented in section 5. Finally, we conclude our paper

with a discussion of the limitations of the current work and

a plan for addressing these issues in future work.

II. BACKGROUND & RELATED WORK

According to Herzig & Zeller [1], Jazz offers not

only huge opportunities for software repository mining but

also a number of challenges. One of the opportunities is

that Jazz provides a more detailed dataset in which all

artifacts are linked to each other. To date, much of the

work that utilizes Jazz as a repository has focused on the

convenience provided by linking artifacts such as bug

reports to specification items along with the team

communication history. Researchers have focused on

areas such as whether there is an association between team

communication and build failure [3] or whether it is

possible to identify relationships among requirements,

people and software defects [4]. Other work [5] has

focused purely on the collaborative nature of software

development. To date, most of the work involving the Jazz

dataset has focused on aspects other than analysis of the

source code contained in the repository.

Research that focuses on the analysis of metrics

derived from source code analysis to predict software

defects has generally shown that there is no single code or

churn metric capable of predicting failures [6, 7, 8],

though evidence suggests that a combination can be used

effectively [9]. In previous work [2] source code analysis

has been conducted on the Jazz project data to perform an

in-depth analysis of the repository to gain insight into the

usefulness of software product metrics in predicting

software build failure. Whilst some successes have been

achieved in determining the relationship between build

outcomes and source code [2] there is still a pressing need

to provide additional clarity to what is a complex problem

domain.

Buse and Zimmerman [10] suggest that whilst

software projects can be rated by a range of metrics that

 Volume 1 No. 5, September 2011 ISSN-2223-4985

International Journal of Information and Communication Technology Research

©2010-11 IJICT Journal. All rights reserved

http://www.esjournals.org

 178

describe the complexity, maintainability, readability,

failure propensity and many other important aspects of

software development process health, it still continues to

be risky and unpredictable. In their paradigm of software

analytics, Buse and Zimmerman suggest that metrics

themselves need to be utilised to gain insights and as such

it is necessary to distinguish questions of information

which some tools already provide (e.g., how many bugs

are in the bug database?) from questions of insight which

provide managers with an understanding of a project's

dynamics (e.g., will the project be delayed?). They

continue by suggesting that the primary goal of software

analytics is to help managers move beyond information

and toward insight, though this requires knowledge of the

domain coupled with the ability to identify patterns

involving multiple indicators.

The Jazz data has the potential to provide

sufficiently rich information to support these goals. In our

work to date [2] we have analysed the software product

metrics available through Jazz and shown that there is

scope to classify a set of software changes by the source

code metrics and predict the likely outcomes of the build

immediately prior to compilation and testing. This

prediction is based on calculation of metrics related to the

source code that has been changed throughout the build

cycle and has been finalised for inclusion. Our previous

work [2] showed that some metrics derived from such

code can be used to classify build outcome, however the

usefulness of such a prediction is limited in terms of the

timeliness of the information presented to the project

team.

This current paper therefore presents an attempt

to transform the timing of a prediction event from the time

the code is committed to the repository immediately prior

to the build to an earlier and more useful time. An early

prediction event provides greater insight into the likely

outcomes of a build and hence can be used in managing

the risk inherent in project’s dynamics and hence this

research supports the goals of the software analytics

paradigm. In this work we utilise the code extracted from

the repository at the beginning of the build cycle which

does not include any changes since the last build. In this

paper we investigate whether a similar set of metrics are

also significant in terms of predicting build outcomes

early.

III. THE JAZZ DATASET

A. Overview of Jazz

IBM Jazz is a fully integrated software

development tool that automatically captures software

development processes and artifacts. The Jazz repository

contains real-time evidence that allows researchers to gain

insights into team collaboration and development activities

within software engineering projects [11]. With Jazz it is

possible to extract the interactions between contributors in

a development project and examine the artifacts produced.

This means that Jazz provides the capability to extract

social network data and relate such data to the software

project outcomes. Figure 1 illustrates that through the use

of Jazz it is possible to visualize members, work items and

project team areas.

Figure 1: Jazz Repository: Contributors, Project

Area, Team Areas and Work Items.

The Jazz repository artifacts include work items,

build items, change sets, source code files, authors and

comments. A work item is a description of a unit of work,

which is categorized as a task, enhancement or defect. A

build item is compiled software to form a working unit. A

change set is a collection of code changes in a number of

files. In Jazz a change set is created by one author only

and relates to one work item. A single work item may

contain many change sets. Source code files are included

in change sets and over time can be related to multiple

change sets. Authors are contributors to the Jazz project.

Comments are recorded communication between

contributors of a work item. Comments on work items are

the primary method of information transfer among

developers.

There are limitations for incorporating the Jazz

repository into research. Firstly, the repository is highly

complex and has huge storage requirements for tracking

software artifacts. Another issue is that the repository

contains holes and misleading elements which cannot be

removed or identified easily. This is because the Jazz

environment has been used within the development of

itself; therefore many features provided by Jazz were not

implemented at early stages of the project. We

acknowledge the challenge in dealing with such

inconsistency and are proposing an approach that delves

further down the artifact chain than most previous work

using Jazz. It is our premise that the early software

releases were functional, so whilst the project “meta-data”

may be missing details (such as developer comments) the

source code should represent a stable system that can be

analyzed to gain insight regarding the development

project.

B. Software Metrics

Software metrics have been generated in order to

 Volume 1 No. 5, September 2011 ISSN-2223-4985

International Journal of Information and Communication Technology Research

©2010-11 IJICT Journal. All rights reserved

http://www.esjournals.org

 179

deal with the sparseness of the data. Metric values can be

derived from extracting development code from software

repositories. Such metrics are commonly used within

model-based project management methods. Software

metrics are used to measure the complexity, quality and

effort of a software development project [12]. The Jazz

database contains over 200 relations, containing numerous

cryptic fields that are not clearly documented. Thus data

extraction via SQL queries runs the high risk of retrieving

unreliable or incomplete data. Instead, we used the Jazz

client/server APIs, an approach recommended in a study

by Nguyen, Schröter, and Damian [11]. The Jazz API is

much better document and provides a more reliable means

of extracting data from the repository.

The Jazz repository consists of various types of

software builds. Included in this study were continuous

builds (regular user builds), nightly builds (incorporating

changes from the local site) and integration builds

(integrating components from remote sites). Source code

files were extracted for each available build within the

repository. Subsequently software metrics were generated

by utilizing the IBM Rational Software Analyzer tool. As

a result the following basic, object orientated and Halstead

software metrics were derived from the source code files

for each build. These are shown in Table 1 along with the

classification of the metric, Basic (B), Object Oriented

(OO) or Halstead (H).

Table 1: Available Metrics

ID Metric Type
1 Number of attributes B

2 Average number of attributes per class B

3 Average number of constructors per class B

4 Average number of comments B

5 Average lines of code per method B

6 Average number of methods B

7 Average number of parameters B

8 Number of types per package B

9 Comment/Code Ratio B

10 Number of constructors B

11 Number of import statements B

12 Number of interfaces B

13 Lines of code B

14 Number of comments B

15 Number of methods B

16 Number of parameters B

17 Number of lines B

18 Abstractness OO

19 Afferent coupling OO

20 Efferent coupling OO

21 Instability OO

22 Normalized Distance OO

23 Average block depth OO

24 Weighted methods per class OO

25 Maintainability index OO

26 Cyclomatic complexity OO

27 Lack of cohesion 1 OO

28 Lack of cohesion 2 OO

29 Lack of cohesion 3 OO

30 Number of operands H

31 Number of operators H

32 Number of unique operands H

ID Metric Type
33 Number of unique operators H

34 Number of delivered bugs H

35 Difficulty level H

36 Effort to implement H

37 Time to implement H

38 Program length H

39 Program level H

40 Program vocabulary size H

41 Program volume H

42 Depth of Inheritance H

In addition to software (source code) metrics a

range of metrics that are unique to the Jazz environment

are available, however at present this research only

includes whether the build attempt is successful or

whether it fails. A failed build is in essence one where the

end product does not pass all of the test cases or does not

behave as expected.

IV. EXPERIMENTAL METHOD

This work revolves around the use of

classification methods for the analysis of software metrics.

For this purpose the Weka [13] machine learning

workbench was used. There are various challenges that

arise when adopting data mining approaches. Firstly, real

life data is not always suitable for the mining process

because there can often be noise within the data, missing

data, or even misleading data that can have negative

impacts on the mining and learning process [14]. This

certainly the case with the data utilised in this research

which relates to the development of the Jazz platform by

IBM.

The primary cause of the noisy and inconsistent

data is that the project data that is extracted from Jazz was

gathered during the development of Jazz itself. As a

consequence features that automatically capture project

processes did not exist until later development stages of

Jazz meaning that gaps would often appear at early stages

of the project data set. This has presented us with a unique

challenge in terms of cleaning and preparing the data from

this software development project. Excluded from the data

set were instances that had no work items associated with

a build, build warning results and builds that had missing

values within the derived software metrics.

Software metrics from continuous builds were

used to construct the data set, however in doing so there

were more instances of successful builds than failed

builds. In order to balance the data set failed builds were

injected from nightly and integration builds. This option

was preferred over removing successful builds from the

data set, thus decreasing the possibility of model over-

fitting. In total, 129 builds were included, out of which

there were 51 successful builds and 78 failed builds. This

presents a situation where the number of features is fairly

close to the number of instances available for analysis,

which is not an ideal scenario from a data mining

perspective. One possible solution was to increase the

number of instances by including more builds but more

 Volume 1 No. 5, September 2011 ISSN-2223-4985

International Journal of Information and Communication Technology Research

©2010-11 IJICT Journal. All rights reserved

http://www.esjournals.org

 180

data was not forthcoming from IBM at the time that the

research was executed. Therefore we have opted to

investigate various strategies for reducing the number of

metrics used to classify the relatively small number of

builds in the dataset.

A. Dataset Representations

In the Jazz dataset a given build consists of a

number of different work items. Each work item contains

a changeset that indicates the actual source code files that

are modified during the implementation of the work item.

Each build has a corresponding before and after state.

Previous work [2] used the after state to extract source

code that included all changes in the build. The after state

was utilised in order to ensure that the source code

snapshot represented the actual software artefact that

either failed or succeeded. In this work, we utilise the

before state in order to determine whether build failure can

be predicted prior to any changes in the source code being

made. In essence, this is an attempt to characterise source

code that is about to be changed in terms of its likelihood

to be modified successfully.

Source code metrics are calculated for each

source code file in the changeset using the IBM Software

Analyser tool. In previous work [2] we conducted a

systematic study into different ways of characterising the

changeset using a single metric value to represent all

source code files in the changeset. This showed that the

most reliable approach was to calculate the value for each

metric for each source code file and then propagate the

maximum determined value up to the build level. This

approach is adopted in the current work.

B. Experiment Descriptions

The goal of our experimentation is to determine

which software metrics give the best indicators of whether

the build will be successful or will fail. Our experiments

systematically filter the available metrics using a variety

of methods to simplify the problem space and determine

the best classification trees. This is necessary as previous

work [2] has determined that the ratio of metrics (42) to

build instances (129) creates a complex classification

scenario.

The methods used to filter the metrics used are

shown in Table 2. These methods include the use of

feature selection approaches in Weka as well as more

heuristic filtering. Each strategy is based on selecting a

relatively small number of the available software metrics

and comparing them to the baseline classification where

no filtering of the metrics is done.

Strategies 2 and 3 utilise two different feature

selection algorithms available in Weka. Previous work has

shown that the use Infogain to produce a ranked list has

produced good results. However, we still investigate the

use of CfsSubset feature selection (combined with Best

First search algorithm) as this approach takes into account

combinations of metrics that are not considered when

using the Infogain algorithm (used with the Ranker search

algorithm).

Table 2: Metric Filtering Strategies

ID Strategy
1 No filtering

2 Weka Feature Selection (CfsSubset)

3 Weka Feature Selection (Infogain)

4 Basic metrics

5 Object orientated metrics

6 Halstead metrics

7 Exclude “Average number of...” metrics

8 Weka Feature Selection (CfsSubset: After)

9 Weka Feature Selection (Infogain: After)

10 Frequency Selection (After)

Strategies 4-6 are based on the classification of

metrics as given in Table 1. Strategy 7 is used to remove

metrics that may have biased values due to the technique

used to propagate a single metric value to the whole build.

Strategies 8-10 utilise results from previous work [2]

where a systematic study was conducted using Weka on

the after state of each build.

Using these filtered metrics experiments are

conducted to attempt to classify builds as either successful

or failed using the metrics calculated from source code

extracted from the before state. These experiments are

conducted to attempt to determine whether the outcome of

a build can be predicted from the characteristics of the

source code prior to any changes being made.

V. RESULTS

For each of the experiments we first apply the

metric filter strategy and then use the J48 classification

algorithm to attempt to discover common patterns

amongst the selected metrics. Given the relatively small

size of the data set we utilized 10-fold cross validation in

order to make the best use of the training data. We

acknowledge the relative optimism of cross validation and

will address this in future work when more data becomes

available from the Jazz project.

A. Classification Results: Before State

For each of the strategies outlined in section 4.2,

the selected metrics are shown in Table 3. The metric IDs

correspond to the metrics in Table 1.

Of particular interest are the results of applying

the feature selection algorithms from Weka, as both the

selection strategies are based around finding significant

impact arising in the data. This differs from the more

heuristic based filtering approaches that are based on the

classification of the metrics rather than arising from the

data. A number of the available metrics are selected when

applying both the Infogain and CfsSubst algorithms,

possibly indicating that these are stronger indicators of

build failure. These metrics include ones classified as size

and complexity metrics.

 Volume 1 No. 5, September 2011 ISSN-2223-4985

International Journal of Information and Communication Technology Research

©2010-11 IJICT Journal. All rights reserved

http://www.esjournals.org

 181

Table 3: Selected Metrics

ID Selected Metrics

1 N/A

2 23, 5, 2, 9, 27, 25, 32, 39

3 17, 9, 27, 23, 25, 2, 40, 32, 22, 39, 33, 29, 16, 14, 5, 26, 8,
1

4 1 - 17

5 18 - 29

6 30 - 42

7 1, 8 - 42

8 2, 8, 9, 11, 14, 23, 27, 28, 33

9 9, 2, 23, 11, 33, 32, 14, 40, 28, 27, 1, 16, 8, 29, 42

10 1, 8, 9, 10, 11, 14, 16, 23, 27, 28, 30, 32, 33, 35, 37

Table 3 shows the accuracy of the classification

for each dataset with the features selected using the each

metric selection strategy. The overall accuracy is given in

each case along with the number of correctly (and

incorrectly) classified builds. The bracketed values refer to

the number falsely predicted to be either failures (in the

case of the “Failed Builds” column) or successes (in the

case of the “Successful Builds”) column.

Table 4: Classification Results

ID Accuracy # Failed Builds

Correct (Incorrect)

Successful Builds

Correct (Incorrect)
1 67.4419 % 22 (29) 65 (13)

2 72.8682 % 25 (26) 69 (9)

3 68.9922 % 22 (29) 67 (11)

4 67.4419 % 16 (35) 71 (7)

5 75.9690 % 34 (17) 64 (14)

6 71.3178 % 25 (26) 67 (11)

7 67.4419 % 23 (28) 64 (14)

8 82.1705 % 36 (15) 70 (8)

9 79.845 % 38 (13) 65 (13)

10 84.4961 % 40 (11) 69 (9)

These classification results support the

conclusions of our previous work [2] particularly that the

prediction of failed builds is generally more challenging

than the classification of successful builds, though some

improvement has been made by using the data relating to

the before state of the build. Of particular interest is that

the highest overall accuracy and the best classification of

failed builds come from using features selected from the

after state.

The classifications of particular interest result

from applying strategies 8, 9 and 10 as these offer

predictions comparable or better than those identified in

previous work [2]. Figure 2 shows the classification tree

for strategy 8.

Figure 2: Classification Tree (Strategy 8)

 Volume 1 No. 5, September 2011 ISSN-2223-4985

International Journal of Information and Communication Technology Research

©2010-11 IJICT Journal. All rights reserved

http://www.esjournals.org

 182

Inspection of the classification tree illustrates that

there is some basis for relating code quality to the

classification tree. For example, a low average block depth

is preferred with some internet sources [15] indicating

that a preferred threshold for Java source code should be

less than 2.8. In the classification tree shown in Figure 2,

an average block depth greater than 3.09 is predominately

associated with failed build except for the number of

attributes per class is small and the number of lines of

code per comment is small. This is reasonable, given that

relatively small classes that are implemented with good

commenting may be more understandable and

maintainable even if it has other less desirable

characteristics.

The other branch of the tree also survives a

simple sanity check, with many nodes displaying

classifications that are intuitive. For example, when the

number of comments is greater than 212 there is a

correlation with successful builds.

However, there is some confusion in the

classification tree arising from the number of comments

metric where ranges of metric values give rise to differing

outcomes, some of which are non-intuitive. This confusion

was also present in previous work [2] using the after state

of the source code. In Section VI of this paper and attempt

is made to manually prune the classification trees to

improve on clarity without reducing the accuracy of the

classification.

Figure 3 shows the classification tree for strategy 9.

Figure 3: Classification Tree (Strategy 9)

As with the previous classification tree, inspection

indicates that there are some common sense classifications

being made, for example a high number of unique

operands tends to be associated with failure which is

intuitive as a large code base tends to be less

understandable and maintainable than a smaller one.

Whilst the hierarchy of the classification is different from

that shown in Figure 2, the indicative values for the

classification are the same. Whilst there is some confusion

in the classification tree arising from the number of

comments metric, the degree of confusion is less than for

the classification show in Figure 2. In Section VI of this

paper and attempt is made to manually prune the

classification trees to improve on clarity without reducing

the accuracy of the classification.

Figure 4 shows the classification tree for strategy 10.

 Volume 1 No. 5, September 2011 ISSN-2223-4985

International Journal of Information and Communication Technology Research

©2010-11 IJICT Journal. All rights reserved

http://www.esjournals.org

 183

Figure 4: Classification Tree (Strategy 10)

This classification tree shows some similarity

with those presented in Figure 2 and 3, both in terms of

the structural elements and the metric values used for

classifying success and failure. This classification has not

the highest overall accuracy, but also the highest accuracy

in terms of identifying failed builds. There is still some

confusion in the classification tree related to the number of

comments metric. In the next section, manual pruning

strategies are investigated to improve the clarity of

classification.

VI. MANUAL PRUNING & RE-

CLASSIFICATION

All of the classification trees shown in Section V

have some similarity, both in terms of the metrics used

and the threshold values apparent in the classification. The

results not only improve on previous work [2] but also

show that it is possible to move the prediction event

forward in time to be more useful.

The confusion apparent in the classification trees

relates to the number of comments metric. All of the

classification trees also include the metric comment/code

ratio. Whilst these two metrics are not directly related, as

the total size of code base is not present in the number of

comments metric, they do measure the same

characteristics of the source code. In this section an

attempt at manually pruning the classification trees is

undertaken by removing each metric in turn and seeing the

impact on the classification. Table 5 presents the outcomes

of this activity, where the ID has been appended with an

“a” (removal of number of comments metric) and a “b”

(removal of comment/code ratio metric).

Table 5: Manual Pruning Results

ID Accuracy # Failed Builds

Correct (Incorrect)

Successful Builds

Correct (Incorrect)
8a 79.0698 % 34 (17) 68 (10)

8b 79.0698 % 29 (22) 73 (5)

9a 78.2946 % 38 (13) 63 (15)

9b 77.5194 % 35 (16) 65 (13)

10a 83.7209 % 40 (11) 68 (10)

10b 77.5194 % 36 (15) 64 (14)

All of the attempts to manually prune the tree by

removing one of the two metrics has resulted either in a

reduction in overall accuracy, a reduction in the ability to

classify failures or both. However, as the goal was to

improve clarity in the classification this should be

expected and the only way to determine the outcomes is to

inspect the classification trees.

Such inspection has shown that only 8a has

resulted in classification tree with no confusion arising

from metrics appearing multiple times in the same

classification branch. This has come at the cost of a

reduced ability to identify failed builds. Figure 5 shows

the classification tree associated with this manual pruning.

Figure 6 also shows the classification tree for 10a, for

which there is no reduction in the ability to identify

failures.

 Volume 1 No. 5, September 2011 ISSN-2223-4985

International Journal of Information and Communication Technology Research

©2010-11 IJICT Journal. All rights reserved

http://www.esjournals.org

 184

Figure 5: Classification Tree (Strategy 8a)

Figure 6: Classification Tree (Strategy 10a)

 Volume 1 No. 5, September 2011 ISSN-2223-4985

International Journal of Information and Communication Technology Research

©2010-11 IJICT Journal. All rights reserved

http://www.esjournals.org

 185

Whilst the classification tree shown in Figure 5 is

simple and clear, it is difficult to determine whether this

clarity offsets the reduction in ability to identify failed

builds. If nothing else, inspection of the tree can provide

an indication of likely risk factors for developers and

software project managers.

The classification tree shown in Figure 6 still has

some confusion arising from the comment/code ratio

metric. Again, it is difficult to determine whether

maintaining the ability to identify failures offsets the

confusion in the tree. Given the sparse nature of the Jazz

dataset the best that may be achievable is an early

indication of risk that may be imprecise, but still useful.

Whilst these research has attempted to be

systematic, there is little basis for justifying the use of

metrics determined from the after state of the software to

predict build failure using the before state source code.

Bearing this in mind, one further re-classification strategy

has been attempted. Rather than manually prune the trees

arising from classification, this approach examines the

best strategies in Table 4 (strategies 8, 9 & 10) and looks

for metrics that are common to all three strategies. The

only possible justification for such an approach is that the

classification trees shown in Figures 2, 3 & 4 bear some

resemblance to each other, however the authors do

acknowledge the weakness of this justification. Such an

approach results in selecting the following metrics: 8, 9,

11, 14, 23, 27 & 28 (refer to Table 1 for metric names).

 This approach results in the best overall

classification accuracy (84.4961%), the best ability to

identify failed builds (41 correct, 10 incorrect) and a

classification tree with no inherent confusion. The output

from Weka is included as an appendix to this paper. Please

note the attribute IDs in the appendix do not correlate to

those given in Table 1 as the experiments in the Weka

environment used alphabetically ordered metrics). The

classification tree is shown in Figure 7, at this stage for

interest. Future work will be required to determine why

such a non-justifiable approach has resulted in the most

significant classification outcome and to verify the

classification tree against an intuitive understanding of the

metrics involved in the classification.

Figure 7: Final Classification Tree

 Volume 1 No. 5, September 2011 ISSN-2223-4985

International Journal of Information and Communication Technology Research

©2010-11 IJICT Journal. All rights reserved

http://www.esjournals.org

 186

VII. LIMITATIONS & FURTHER WORK

Most of the limitations in the current study are

products of the relatively small sample size of build data

from the Jazz project combined with the sparseness of the

data itself. For example, the ratio of metrics (48) to builds

(120) is such that it is difficult to truly identify significant

metrics. Whilst various strategies for reducing the number

of metrics used in the classification have been

investigated, this does not address the fundamental

problem that the dataset is very small.

Whilst a new release of the Jazz repository is

pending, in the meantime the main thrust of our future

work is to expand the build data to improve the degree of

granularity and potentially remove some of the confusion

in the classification trees. By doing so, we aim to also

address the limitation of this work that arises from using a

single metric value to characterise all source code files

within the build. By incorporating all source code files and

their corresponding metrics into the analysis, we intend to

further investigate the use of the before and after states in

the Jazz repository as a means to provide a dynamic risk

dashboard to provide an early indication of potential

failure of a build.

Therefore another key aspect for further study is

to investigate why predicting failures is harder than

predicting successes. In particular, we have again

observed that predicting failure is more challenging than

predicting success and that not predicting failure doesn’t

mean that success has been predicted. This is due to the

fact that the build successes and failures overlap in feature

space and “failure” signatures have a greater degree of

fragmentation than their “success” counterparts. This is

most apparent in the very different classification trees that

have been discussed. Each shows a different set of

software metrics that can be used to gain roughly the same

overall prediction accuracy. As a result, one aspect of

future work is to develop a deeper understanding of what

source code characteristics are most related to build failure

and develop a set of indicative metrics that can provide

development teams with the opportunity to proactively

manage risk exposure throughout a development project

even if they cannot categorically predict build failure or

success.

VIII. CONCLUSIONS

This paper presents the outcomes of an initial

attempt to predict build success and/or failure for a

software product by utilizing source code metrics.

Prediction accuracies of up to 84% have been achieved

through the use of the J48 classification algorithm

combined with 10-fold cross validation. Some

improvement has been made on previous work [2] in

terms of better identifying characteristics of failed builds,

however we acknowledge that the strategy of using

metrics associated with the after state of the build to

classify the before state source code may in some way be

overfitting the data to the classification strategy. Further

work is needed to fully validate this approach.

 Despite this high overall accuracy, there is

difficulty in predicting failure and at present many

classification trees contain some uncertainty and

confusion, but show promise in terms of informing

software development activities in order to minimize the

chance of failure.

Despite these difficulties, our results show that

there is potential for predicting build success or failure on

the basis of an analysis of source code that will be

changed during a build, even when the degree of change is

not known. Due to the relatively small data set, this

potential has not yet been fully realised and further work is

needed to do so. However, more clarity in the prediction is

gained when the degree of change during a build is

analysed. This provides the opportunity for development

teams to incrementally examine their exposure to risk

during the build cycle.

ACKNOWLEDGMENTS

Our thanks go to IBM for providing access to the Jazz

repository and the BuildIT consortium that has funded this

research. We also like to thank Professor Stephen

MacDonell and Dr Russel Pears from Auckland

University of Technology for respectively providing

valuable expertise regarding software metrics and data

mining. Without this valuable input from third parties, this

research would not have been possible.

REFERENCES

[1] Herzig, K. and Zeller, A. 2009. Mining the Jazz

repository: Challenges and opportunities,

Proceedings of the 6th IEEE International

Working Conference on Mining Software

Repositories, (Vancouver, Canada, May 16-17,

2009). IEEE. 159-162. DOI:

0.1109/MSR.2009.5069495.

[2] Finlay, J., Connor, A.M. and Pears, R. 2011.

Mining software metrics from Jazz. Proceedings

of the 9
th
 ACIS Conference on Software

Engineering Management, Research and

Applications, (Baltimore, USA, Aug 10-12, 2011).

[3] Wolf, T., Schroter, A., Damian, D. and Nguyen,

T. 2009. Predicting build failures using social

network analysis on developer communication,

Proceedings of the IEEE 31st International

Conference on Software Engineering,

(Vancouver, Canada, May 16-24, 2009). IEEE. 1-

11. DOI: 10.1109/ICSE.2009.5070503

[4] Park, S., Maurer, F., Eberlein, A. and Fung, T-S.

2010. Requirements attributes to predict

requirements related defects, Proceedings of the

 Volume 1 No. 5, September 2011 ISSN-2223-4985

International Journal of Information and Communication Technology Research

©2010-11 IJICT Journal. All rights reserved

http://www.esjournals.org

 187

20th Annual International Conference on

Computer Science and Software Engineering,

(Markham, Canada, Nov 1-2, 2010), ACM, 42-

56. DOI=10.1145/1923947.1923953

[5] Nguyen, T., Wolf, T. and Damian, D. 2008.

Global Software Development and Delay: Does

Distance Still Matter? Proceedings of the IEEE

International Conference on Global Software

Engineering, (Bangalore, India, August 17-20,

2008). IEEE. 45-54.DOI:

10.1109/ICGSE.2008.39

[6] Nagappan, N., Ball, T. and Zeller, A. 2006.

Mining metrics to predict component failures.

Proceedings of the 28th International Conference

on Software Engineering, (Shanghai, China, May

20-28, 2006). IEEE. 452–461.

[7] Basili, V. R., Briand,L. C. and Melo, W. L. 1996.

A validation of object-oriented design metrics as

quality indicators. IEEE Transactions on

Software Engineering, 22(10), 751–761.

[8] Denaro, G., Morasca, S. and Pezz`e, M. 2002.

Deriving models ofsoftware fault-proneness.

Proceedings of the 14th International Conference

on Software Engineering and Knowledge

Engineering, (Ischia, Italy, July 15-19, 2002).

ACM. 361–368.

[9] Mockus, A. and Weiss, D. M. 2000. Predicting

risk of software changes. Bell Labs Technical

Journal, 5(2), 169–180.

[10] Buse, R. P. L. and Zimmermann, T. 2010.

Analytics for Software Development.

Proceedings of the FSE/SDP Workshop on the

Future of Software Engineering Research, (Santa

Fe, New Mexico, USA, Nov 7-8, 2010).ACM,

77-80. DOI=10.1145/1882362.1882379.

[11] Nguyen, T., Schröter, A., and Damian, D. 2008.

Mining Jazz: An experience report. Proceedings

of the Infrastructure for Research in

Collaborative Software Engineering Conference.

Retrieved 24/1/2011 from

http://home.segal.uvic.ca/~pubs/pdf/112/2008-

iReCoSE.pdf

[12] Manduchi,G. and Taliercio, C. 2002. Measuring

software evolution at a nuclear fusion experiment

site: a test case for the applicability of OO and

reuse metrics in software characterization,

Information and Software Technology, 44(10),

593-600.DOI: 10.1016/S0950-5849(02)00079-4

[13] Hall, M., Frank, E. Holmes, G.,Pfahringer, B.,

Reutemann, P. and Witten, I. H. 2009. The

WEKA Data Mining Software: An Update;

SIGKDD Explorations, 11(1), 10-18.

DOI=10.1145/1656274.1656278

[14] Chau, D., Pandit, S., and Faloutsos, C. (2006).

Detecting Fraudulent Personalities in Networks

of Online Auctioneers. Knowledge Discovery in

Databases 4213, 103-114, DOI:

10.1007/11871637_14.

[15] Wanner, J.F. (2000). Source Monitor: Expose

Your Code. Dr Dobbs Journal, March 2000.

Retrieved 28/7/2011 from

http://drdobbs.com/cpp/184404041

APPENDIX

=== Run information ===

Scheme:weka.classifiers.trees.J48 -C 0.25 -M 2

Relation:Jazz_MAX_Before-weka.filters.unsupervised.attribute.Remove-R2-3,5-10,12-17,20-24,26-27,29-

32,34,36-43

Instances:129

Attributes:9

 BuildResult

 Average block depth

 Comment/Code Ratio

 Lack of cohesion 1

 Lack of cohesion 2

 Number of comments

 Number of import statements

 Number of operators

 Number of types per package

Test mode:10-fold cross-validation

=== Classifier model (full training set) ===

J48 pruned tree

http://home.segal.uvic.ca/~pubs/pdf/112/2008-iReCoSE.pdf
http://home.segal.uvic.ca/~pubs/pdf/112/2008-iReCoSE.pdf
http://drdobbs.com/cpp/184404041

 Volume 1 No. 5, September 2011 ISSN-2223-4985

International Journal of Information and Communication Technology Research

©2010-11 IJICT Journal. All rights reserved

http://www.esjournals.org

 188

Average block depth <= 3.09

| Number of types per package <= 3: Successful Build (19.0/1.0)

| Number of types per package > 3

| | Number of operators <= 9765

| | | Lack of cohesion 1 <= 2074.5: Successful Build (20.0/3.0)

| | | Lack of cohesion 1 > 2074.5

| | | | Comment/Code Ratio <= 28.22: Failed Build (9.0)

| | | | Comment/Code Ratio > 28.22

| | | | | Number of comments <= 131: Failed Build (4.0/1.0)

| | | | | Number of comments > 131

| | | | | | Lack of cohesion 1 <= 2442.2: Failed Build (2.0)

| | | | | | Lack of cohesion 1 > 2442.2: Successful Build (9.0)

| | Number of operators > 9765

| | | Number of import statements <= 540: Successful Build (23.0/1.0)

| | | Number of import statements > 540: Failed Build (2.0)

Average block depth > 3.09

| Comment/Code Ratio <= 50

| | Number of import statements <= 278: Successful Build (9.0/1.0)

| | Number of import statements > 278: Failed Build (3.0)

| Comment/Code Ratio > 50: Failed Build (29.0/3.0)

Number of Leaves : 11

Size of the tree : 21

Time taken to build model: 0seconds

=== Stratified cross-validation ===

=== Summary ===

Correctly Classified Instances 109 84.4961 %

Incorrectly Classified Instances 20 15.5039 %

Kappa statistic 0.6757

Mean absolute error 0.217

Root mean squared error 0.3755

Relative absolute error 45.34 %

Root relative squared error 76.7743 %

Total Number of Instances 129

=== Detailed Accuracy By Class ===

 TP Rate FP Rate Precision Recall F-Measure ROC Area Class

 0.804 0.128 0.804 0.804 0.804 0.837 Failed Build

 0.872 0.196 0.872 0.872 0.872 0.837 Successful Build

Weighted Avg. 0.845 0.169 0.845 0.845 0.845 0.837

=== Confusion Matrix ===

 a b <-- classified as

 41 10 | a = Failed Build

 10 68 | b = Successful Build

