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ABSTRACT 
 

In this paper, we describe the extraction of source code metrics from the Jazz repository and the application of data mining techniques to 

identify the most useful of those metrics for predicting the success or failure of an attempt to construct a working instance of the 

software product. We present results from a study using the J48 classification method used in conjunction with a number of attribute 

selection strategies applied to a set of source code metrics calculated from the code base at the beginning of a build cycle. The results 

indicate that only a relatively small number of the available software metrics that we considered have any significance for predicting the 

outcome of a build. These significant metrics are discussed and implication of the results discussed, particularly the relative difficulty of 

being able to predict failed build attempts. The results also indicate that there is some scope for predicting the outcomes of an attempt to 

construct a working instance of the software product by analysing the characteristics of the source code to be changed. This provides the 

opportunity for software project managers to estimate the risk exposure of the planned changes in the build prior to commencing the 

coding activities. 
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I. INTRODUCTION  
 

Software development projects involve the use of 

a wide range of tools to produce a software artifact. 

Software repositories such as source control systems and 

bug tracking databases have become a focus for emergent 

research as being a source of information regarding the 

performance and management of software development 

projects. The mining of such repositories is becoming 

increasingly common with a view to gaining a deeper 

understanding of the development process and building 

better prediction and recommendation systems. The Jazz 

development environment has been recognized as offering 

both opportunities and challenges in this area [1]. Jazz 

integrates the software archive and bug database by 

linking bug reports and source code changes with each 

other through the concept of work items. Whilst this 

provides much potential in gaining valuable insights into 

the development process of software projects, such 

potential is yet to be fully realised. 

In this paper we describe an extension of 

previous work [2] to continue to attempt the extraction of 

rich data from the Jazz dataset by utilizing source code 

metrics as a means of directly measuring the impact of 

code issues on build success. In particular, in this paper we 

attempt to make more useful predictions by changing the 

code base on which the prediction classifier is built. 

Previous work [2] utilised code that was submitted to the 

repository immediately prior to the build taking place 

where as in this work we utilise code that is extracted from 

the repository at the beginning of the build cycle. The 

ability to predict potential outcomes at the beginning of 

the build cycle provides the development team with a 

greater ability to manage the risk inherent in the build. 

In the next section we provide a brief overview of 

related work. Section 3 discusses the nature of the Jazz 

data repository and metrics that we utilized to mine the 

repository. In section 4, we discuss our approach to 

mining the software repository in Jazz, while our results 

are presented in section 5. Finally, we conclude our paper 

with a discussion of the limitations of the current work and 

a plan for addressing these issues in future work. 

 

II. BACKGROUND & RELATED WORK 
 

According to Herzig & Zeller [1], Jazz offers not 

only huge opportunities for software repository mining but 

also a number of challenges. One of the opportunities is 

that Jazz provides a more detailed dataset in which all 

artifacts are linked to each other. To date, much of the 

work that utilizes Jazz as a repository has focused on the 

convenience provided by linking artifacts such as bug 

reports to specification items along with the team 

communication history. Researchers have focused on 

areas such as whether there is an association between team 

communication and build failure [3] or whether it is 

possible to identify relationships among requirements, 

people and software defects [4]. Other work [5] has 

focused purely on the collaborative nature of software 

development. To date, most of the work involving the Jazz 

dataset has focused on aspects other than analysis of the 

source code contained in the repository. 

Research that focuses on the analysis of metrics 

derived from source code analysis to predict software 

defects has generally shown that there is no single code or 

churn metric capable of predicting failures [6, 7, 8], 

though evidence suggests that a combination can be used 

effectively [9]. In previous work [2] source code analysis 

has been conducted on the Jazz project data to perform an 

in-depth analysis of the repository to gain insight into the 

usefulness of software product metrics in predicting 

software build failure. Whilst some successes have been 

achieved in determining the relationship between build 

outcomes and source code [2] there is still a pressing need 

to provide additional clarity to what is a complex problem 

domain. 

Buse and Zimmerman [10] suggest that whilst 

software projects can be rated by a range of metrics that 
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describe the complexity, maintainability, readability, 

failure propensity and many other important aspects of 

software development process health, it still continues to 

be risky and unpredictable. In their paradigm of software 

analytics, Buse and Zimmerman suggest that metrics 

themselves need to be utilised to gain insights and as such 

it is necessary to distinguish questions of information 

which some tools already provide (e.g., how many bugs 

are in the bug database?) from questions of insight which 

provide managers with an understanding of a project's 

dynamics (e.g., will the project be delayed?). They 

continue by suggesting that the primary goal of software 

analytics is to help managers move beyond information 

and toward insight, though this requires knowledge of the 

domain coupled with the ability to identify patterns 

involving multiple indicators. 

The Jazz data has the potential to provide 

sufficiently rich information to support these goals. In our 

work to date [2] we have analysed the software product 

metrics available through Jazz and shown that there is 

scope to classify a set of software changes by the source 

code metrics and predict the likely outcomes of the build 

immediately prior to compilation and testing. This 

prediction is based on calculation of metrics related to the 

source code that has been changed throughout the build 

cycle and has been finalised for inclusion. Our previous 

work [2] showed that some metrics derived from such 

code can be used to classify build outcome, however the 

usefulness of such a prediction is limited in terms of the 

timeliness of the information presented to the project 

team. 

This current paper therefore presents an attempt 

to transform the timing of a prediction event from the time 

the code is committed to the repository immediately prior 

to the build to an earlier and more useful time. An early 

prediction event provides greater insight into the likely 

outcomes of a build and hence can be used in managing 

the risk inherent in project’s dynamics and hence this 

research supports the goals of the software analytics 

paradigm. In this work we utilise the code extracted from 

the repository at the beginning of the build cycle which 

does not include any changes since the last build. In this 

paper we investigate whether a similar set of metrics are 

also significant in terms of predicting build outcomes 

early. 
 

III. THE JAZZ DATASET 
 

A. Overview of Jazz 
 

IBM Jazz is a fully integrated software 

development tool that automatically captures software 

development processes and artifacts. The Jazz repository 

contains real-time evidence that allows researchers to gain 

insights into team collaboration and development activities 

within software engineering projects [11]. With Jazz it is 

possible to extract the interactions between contributors in 

a development project and examine the artifacts produced. 

This means that Jazz provides the capability to extract 

social network data and relate such data to the software 

project outcomes. Figure 1 illustrates that through the use 

of Jazz it is possible to visualize members, work items and 

project team areas. 

 

 
 

Figure 1: Jazz Repository: Contributors, Project 

Area, Team Areas and Work Items. 

 

The Jazz repository artifacts include work items, 

build items, change sets, source code files, authors and 

comments. A work item is a description of a unit of work, 

which is categorized as a task, enhancement or defect. A 

build item is compiled software to form a working unit. A 

change set is a collection of code changes in a number of 

files. In Jazz a change set is created by one author only 

and relates to one work item. A single work item may 

contain many change sets. Source code files are included 

in change sets and over time can be related to multiple 

change sets. Authors are contributors to the Jazz project. 

Comments are recorded communication between 

contributors of a work item. Comments on work items are 

the primary method of information transfer among 

developers. 

There are limitations for incorporating the Jazz 

repository into research. Firstly, the repository is highly 

complex and has huge storage requirements for tracking 

software artifacts. Another issue is that the repository 

contains holes and misleading elements which cannot be 

removed or identified easily. This is because the Jazz 

environment has been used within the development of 

itself; therefore many features provided by Jazz were not 

implemented at early stages of the project. We 

acknowledge the challenge in dealing with such 

inconsistency and are proposing an approach that delves 

further down the artifact chain than most previous work 

using Jazz. It is our premise that the early software 

releases were functional, so whilst the project “meta-data” 

may be missing details (such as developer comments) the 

source code should represent a stable system that can be 

analyzed to gain insight regarding the development 

project.  
 

B. Software Metrics 
 

Software metrics have been generated in order to 
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deal with the sparseness of the data. Metric values can be 

derived from extracting development code from software 

repositories. Such metrics are commonly used within 

model-based project management methods. Software 

metrics are used to measure the complexity, quality and 

effort of a software development project [12]. The Jazz 

database contains over 200 relations, containing numerous 

cryptic fields that are not clearly documented. Thus data 

extraction via SQL queries runs the high risk of retrieving 

unreliable or incomplete data. Instead, we used the Jazz 

client/server APIs, an approach recommended in a study 

by Nguyen, Schröter, and Damian [11]. The Jazz API is 

much better document and provides a more reliable means 

of extracting data from the repository. 

The Jazz repository consists of various types of 

software builds. Included in this study were continuous 

builds (regular user builds), nightly builds (incorporating 

changes from the local site) and integration builds 

(integrating components from remote sites). Source code 

files were extracted for each available build within the 

repository. Subsequently software metrics were generated 

by utilizing the IBM Rational Software Analyzer tool. As 

a result the following basic, object orientated and Halstead 

software metrics were derived from the source code files 

for each build. These are shown in Table 1 along with the 

classification of the metric, Basic (B), Object Oriented 

(OO) or Halstead (H). 

 

Table 1: Available Metrics 

 

ID Metric  Type 
1 Number of attributes  B 

2 Average number of attributes per class B 

3 Average number of constructors per class B 

4 Average number of comments B 

5 Average lines of code per method B 

6 Average number of methods B 

7 Average number of parameters B 

8 Number of types per package B 

9 Comment/Code Ratio B 

10 Number of constructors B 

11 Number of import statements B 

12 Number of interfaces B 

13 Lines of code B 

14 Number of comments  B 

15 Number of methods B 

16 Number of parameters B 

17 Number of lines B 

18 Abstractness OO 

19 Afferent coupling OO 

20 Efferent coupling OO 

21 Instability OO 

22 Normalized Distance OO 

23 Average block depth OO 

24 Weighted methods per class OO 

25 Maintainability index OO 

26 Cyclomatic complexity OO 

27 Lack of cohesion 1 OO 

28 Lack of cohesion 2 OO 

29 Lack of cohesion 3 OO 

30 Number of operands  H 

31 Number of operators H 

32 Number of unique operands H 

ID Metric  Type 
33 Number of unique operators H 

34 Number of delivered bugs H 

35 Difficulty level H 

36 Effort to implement H 

37 Time to implement H 

38 Program length H 

39 Program level H 

40 Program vocabulary size H 

41 Program volume H 

42 Depth of Inheritance H 

 

In addition to software (source code) metrics a 

range of metrics that are unique to the Jazz environment 

are available, however at present this research only 

includes whether the build attempt is successful or 

whether it fails. A failed build is in essence one where the 

end product does not pass all of the test cases or does not 

behave as expected. 

  

IV. EXPERIMENTAL METHOD 
 

This work revolves around the use of 

classification methods for the analysis of software metrics. 

For this purpose the Weka [13] machine learning 

workbench was used. There are various challenges that 

arise when adopting data mining approaches. Firstly, real 

life data is not always suitable for the mining process 

because there can often be noise within the data, missing 

data, or even misleading data that can have negative 

impacts on the mining and learning process [14]. This 

certainly the case with the data utilised in this research 

which relates to the development of the Jazz platform by 

IBM. 

The primary cause of the noisy and inconsistent 

data is that the project data that is extracted from Jazz was 

gathered during the development of Jazz itself. As a 

consequence features that automatically capture project 

processes did not exist until later development stages of 

Jazz meaning that gaps would often appear at early stages 

of the project data set. This has presented us with a unique 

challenge in terms of cleaning and preparing the data from 

this software development project. Excluded from the data 

set were instances that had no work items associated with 

a build, build warning results and builds that had missing 

values within the derived software metrics. 

Software metrics from continuous builds were 

used to construct the data set, however in doing so there 

were more instances of successful builds than failed 

builds. In order to balance the data set failed builds were 

injected from nightly and integration builds. This option 

was preferred over removing successful builds from the 

data set, thus decreasing the possibility of model over-

fitting. In total, 129 builds were included, out of which 

there were 51 successful builds and 78 failed builds. This 

presents a situation where the number of features is fairly 

close to the number of instances available for analysis, 

which is not an ideal scenario from a data mining 

perspective. One possible solution was to increase the 

number of instances by including more builds but more 
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data was not forthcoming from IBM at the time that the 

research was executed. Therefore we have opted to 

investigate various strategies for reducing the number of 

metrics used to classify the relatively small number of 

builds in the dataset. 

 

A. Dataset Representations 
 

In the Jazz dataset a given build consists of a 

number of different work items. Each work item contains 

a changeset that indicates the actual source code files that 

are modified during the implementation of the work item. 

Each build has a corresponding before and after state. 

Previous work [2] used the after state to extract source 

code that included all changes in the build. The after state 

was utilised in order to ensure that the source code 

snapshot represented the actual software artefact that 

either failed or succeeded. In this work, we utilise the 

before state in order to determine whether build failure can 

be predicted prior to any changes in the source code being 

made. In essence, this is an attempt to characterise source 

code that is about to be changed in terms of its likelihood 

to be modified successfully. 

Source code metrics are calculated for each 

source code file in the changeset using the IBM Software 

Analyser tool. In previous work [2] we conducted a 

systematic study into different ways of characterising the 

changeset using a single metric value to represent all 

source code files in the changeset. This showed that the 

most reliable approach was to calculate the value for each 

metric for each source code file and then propagate the 

maximum determined value up to the build level. This 

approach is adopted in the current work. 

 

B. Experiment Descriptions 
 

The goal of our experimentation is to determine 

which software metrics give the best indicators of whether 

the build will be successful or will fail. Our experiments 

systematically filter the available metrics using a variety 

of methods to simplify the problem space and determine 

the best classification trees. This is necessary as previous 

work [2] has determined that the ratio of metrics (42) to 

build instances (129) creates a complex classification 

scenario. 

The methods used to filter the metrics used are 

shown in Table 2. These methods include the use of 

feature selection approaches in Weka as well as more 

heuristic filtering. Each strategy is based on selecting a 

relatively small number of the available software metrics 

and comparing them to the baseline classification where 

no filtering of the metrics is done. 

Strategies 2 and 3 utilise two different feature 

selection algorithms available in Weka. Previous work has 

shown that the use Infogain to produce a ranked list has 

produced good results. However, we still investigate the 

use of CfsSubset feature selection (combined with Best 

First search algorithm) as this approach takes into account 

combinations of metrics that are not considered when 

using the Infogain algorithm (used with the Ranker search 

algorithm). 

 

Table 2: Metric Filtering Strategies 
 

ID Strategy 
1 No filtering 

2 Weka Feature Selection (CfsSubset) 

3 Weka Feature Selection (Infogain) 

4 Basic metrics 

5 Object orientated metrics 

6 Halstead metrics 

7 Exclude “Average number of...” metrics 

8 Weka Feature Selection (CfsSubset: After) 

9 Weka Feature Selection (Infogain: After) 

10 Frequency Selection (After) 

 

Strategies 4-6 are based on the classification of 

metrics as given in Table 1. Strategy 7 is used to remove 

metrics that may have biased values due to the technique 

used to propagate a single metric value to the whole build. 

Strategies 8-10 utilise results from previous work [2] 

where a systematic study was conducted using Weka on 

the after state of each build. 

Using these filtered metrics experiments are 

conducted to attempt to classify builds as either successful 

or failed using the metrics calculated from source code 

extracted from the before state. These experiments are 

conducted to attempt to determine whether the outcome of 

a build can be predicted from the characteristics of the 

source code prior to any changes being made. 

 

V. RESULTS 
 

For each of the experiments we first apply the 

metric filter strategy and then use the J48 classification 

algorithm to attempt to discover common patterns 

amongst the selected metrics. Given the relatively small 

size of the data set we utilized 10-fold cross validation in 

order to make the best use of the training data. We 

acknowledge the relative optimism of cross validation and 

will address this in future work when more data becomes 

available from the Jazz project. 

 

A. Classification Results: Before State  
 

For each of the strategies outlined in section 4.2, 

the selected metrics are shown in Table 3. The metric IDs 

correspond to the metrics in Table 1. 

Of particular interest are the results of applying 

the feature selection algorithms from Weka, as both the 

selection strategies are based around finding significant 

impact arising in the data. This differs from the more 

heuristic based filtering approaches that are based on the 

classification of the metrics rather than arising from the 

data. A number of the available metrics are selected when 

applying both the Infogain and CfsSubst algorithms, 

possibly indicating that these are stronger indicators of 

build failure. These metrics include ones classified as size 

and complexity metrics. 
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Table 3: Selected Metrics 
 

ID Selected Metrics 

1 N/A 

2 23, 5, 2, 9, 27, 25, 32, 39 

3 17, 9, 27, 23, 25, 2, 40, 32, 22, 39, 33, 29, 16, 14, 5, 26, 8, 
1 

4 1 - 17 

5 18 - 29 

6 30 - 42 

7 1, 8 - 42 

8 2, 8, 9, 11, 14, 23, 27, 28, 33 

9 9, 2, 23, 11, 33, 32, 14, 40, 28, 27, 1, 16, 8, 29, 42 

10 1, 8, 9, 10, 11, 14, 16, 23, 27, 28, 30, 32, 33, 35, 37 

  

 

Table 3 shows the accuracy of the classification 

for each dataset with the features selected using the each 

metric selection strategy. The overall accuracy is given in 

each case along with the number of correctly (and 

incorrectly) classified builds. The bracketed values refer to 

the number falsely predicted to be either failures (in the 

case of the “Failed Builds” column) or successes (in the 

case of the “Successful Builds”) column.  

 

 

 

Table 4: Classification Results 
 

ID Accuracy # Failed Builds 

Correct (Incorrect) 

# Successful Builds 

Correct (Incorrect) 
1 67.4419 % 22 (29) 65 (13) 

2 72.8682 % 25 (26) 69 (9) 

3 68.9922 % 22 (29) 67 (11) 

4 67.4419 % 16 (35) 71 (7) 

5 75.9690 % 34 (17) 64 (14) 

6 71.3178 % 25 (26) 67 (11) 

7 67.4419 % 23 (28) 64 (14) 

8 82.1705 % 36 (15) 70 (8) 

9 79.845  % 38 (13) 65 (13) 

10 84.4961 % 40 (11) 69 (9) 

 

These classification results support the 

conclusions of our previous work [2] particularly that the 

prediction of failed builds is generally more challenging 

than the classification of successful builds, though some 

improvement has been made by using the data relating to 

the before state of the build. Of particular interest is that 

the highest overall accuracy and the best classification of 

failed builds come from using features selected from the 

after state. 

The classifications of particular interest result 

from applying strategies 8, 9 and 10 as these offer 

predictions comparable or better than those identified in 

previous work [2]. Figure 2 shows the classification tree 

for strategy 8.  

 

 
 

 

Figure 2: Classification Tree (Strategy 8) 
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Inspection of the classification tree illustrates that 

there is some basis for relating code quality to the 

classification tree. For example, a low average block depth 

is preferred with some internet sources [15]  indicating 

that a preferred threshold for Java source code should be 

less than 2.8. In the classification tree shown in Figure 2, 

an average block depth greater than 3.09 is predominately 

associated with failed build except for the number of 

attributes per class is small and the number of lines of 

code per comment is small. This is reasonable, given that 

relatively small classes that are implemented with good 

commenting may be more understandable and 

maintainable even if it has other less desirable 

characteristics. 

The other branch of the tree also survives a 

simple sanity check, with many nodes displaying 

classifications that are intuitive. For example, when the 

number of comments is greater than 212 there is a 

correlation with successful builds. 

However, there is some confusion in the 

classification tree arising from the number of comments 

metric where ranges of metric values give rise to differing 

outcomes, some of which are non-intuitive. This confusion 

was also present in previous work [2] using the after state 

of the source code. In Section VI of this paper and attempt 

is made to manually prune the classification trees to 

improve on clarity without reducing the accuracy of the 

classification. 

Figure 3 shows the classification tree for strategy 9. 

 

 

 

 
 

 

Figure 3: Classification Tree (Strategy 9) 

 

 

As with the previous classification tree, inspection 

indicates that there are some common sense classifications 

being made, for example a high number of unique 

operands tends to be associated with failure which is 

intuitive as a large code base tends to be less 

understandable and maintainable than a smaller one. 

Whilst the hierarchy of the classification is different from 

that shown in Figure 2, the indicative values for the 

classification are the same. Whilst there is some confusion 

in the classification tree arising from the number of 

comments metric, the degree of confusion is less than for 

the classification show in Figure 2. In Section VI of this 

paper and attempt is made to manually prune the 

classification trees to improve on clarity without reducing 

the accuracy of the classification. 

Figure 4 shows the classification tree for strategy 10. 
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Figure 4: Classification Tree (Strategy 10) 

 

 

This classification tree shows some similarity 

with those presented in Figure 2 and 3, both in terms of 

the structural elements and the metric values used for 

classifying success and failure. This classification has not 

the highest overall accuracy, but also the highest accuracy 

in terms of identifying failed builds. There is still some 

confusion in the classification tree related to the number of 

comments metric. In the next section, manual pruning 

strategies are investigated to improve the clarity of 

classification. 

   

VI. MANUAL PRUNING & RE-

CLASSIFICATION 
 

All of the classification trees shown in Section V 

have some similarity, both in terms of the metrics used 

and the threshold values apparent in the classification. The 

results not only improve on previous work [2] but also 

show that it is possible to move the prediction event 

forward in time to be more useful. 

The confusion apparent in the classification trees 

relates to the number of comments metric. All of the 

classification trees also include the metric comment/code 

ratio. Whilst these two metrics are not directly related, as 

the total size of code base is not present in the number of 

comments metric, they do measure the same 

characteristics of the source code. In this section an 

attempt at manually pruning the classification trees is         

undertaken by removing each metric in turn and seeing the 

impact on the classification. Table 5 presents the outcomes 

of this activity, where the ID has been appended with an 

“a” (removal of number of comments metric) and a “b” 

(removal of comment/code ratio metric).    

 

Table 5: Manual Pruning Results 
 

ID Accuracy # Failed Builds 

Correct (Incorrect) 

# Successful Builds 

Correct (Incorrect) 
8a 79.0698 % 34 (17) 68 (10) 

8b 79.0698 % 29 (22) 73 (5) 

9a 78.2946 % 38 (13) 63 (15) 

9b 77.5194 % 35 (16) 65 (13) 

10a 83.7209 % 40 (11) 68 (10) 

10b 77.5194 % 36 (15) 64 (14) 

 

All of the attempts to manually prune the tree by 

removing one of the two metrics has resulted either in a 

reduction in overall accuracy, a reduction in the ability to 

classify failures or both. However, as the goal was to 

improve clarity in the classification this should be 

expected and the only way to determine the outcomes is to 

inspect the classification trees. 

Such inspection has shown that only 8a has 

resulted in classification tree with no confusion arising 

from metrics appearing multiple times in the same 

classification branch. This has come at the cost of a 

reduced ability to identify failed builds. Figure 5 shows 

the classification tree associated with this manual pruning. 

Figure 6 also shows the classification tree for 10a, for 

which there is no reduction in the ability to identify 

failures.  
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Figure 5: Classification Tree (Strategy 8a) 

 

 

 

 
 

 

Figure 6: Classification Tree (Strategy 10a) 
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Whilst the classification tree shown in Figure 5 is 

simple and clear, it is difficult to determine whether this 

clarity offsets the reduction in ability to identify failed 

builds. If nothing else, inspection of the tree can provide 

an indication of likely risk factors for developers and 

software project managers. 

The classification tree shown in Figure 6 still has 

some confusion arising from the comment/code ratio 

metric. Again, it is difficult to determine whether 

maintaining the ability to identify failures offsets the 

confusion in the tree. Given the sparse nature of the Jazz 

dataset the best that may be achievable is an early 

indication of risk that may be imprecise, but still useful. 

Whilst these research has attempted to be 

systematic, there is little basis for justifying the use of 

metrics determined from the after state of the software to 

predict build failure using the before state source code. 

Bearing this in mind, one further re-classification strategy 

has been attempted. Rather than manually prune the trees 

arising from classification, this approach examines the 

best strategies in Table 4 (strategies 8, 9 & 10) and looks 

for metrics that are common to all three strategies. The 

only possible justification for such an approach is that the 

classification trees shown in Figures 2, 3 & 4 bear some 

resemblance to each other, however the authors do 

acknowledge the weakness of this justification. Such an 

approach results in selecting the following metrics: 8, 9, 

11, 14, 23, 27 & 28 (refer to Table 1 for metric names). 

 This approach results in the best overall 

classification accuracy (84.4961%), the best ability to 

identify failed builds (41 correct, 10 incorrect) and a 

classification tree with no inherent confusion. The output 

from Weka is included as an appendix to this paper. Please 

note the attribute IDs in the appendix do not correlate to 

those given in Table 1 as the experiments in the Weka 

environment used alphabetically ordered metrics). The 

classification tree is shown in Figure 7, at this stage for 

interest. Future work will be required to determine why 

such a non-justifiable approach has resulted in the most 

significant classification outcome and to verify the 

classification tree against an intuitive understanding of the 

metrics involved in the classification. 

 

 

 

 

 

 

 
 
 

Figure 7: Final Classification Tree 
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VII. LIMITATIONS & FURTHER WORK 
 

Most of the limitations in the current study are 

products of the relatively small sample size of build data 

from the Jazz project combined with the sparseness of the 

data itself. For example, the ratio of metrics (48) to builds 

(120) is such that it is difficult to truly identify significant 

metrics. Whilst various strategies for reducing the number 

of metrics used in the classification have been 

investigated, this does not address the fundamental 

problem that the dataset is very small. 

Whilst a new release of the Jazz repository is 

pending, in the meantime the main thrust of our future 

work is to expand the build data to improve the degree of 

granularity and potentially remove some of the confusion 

in the classification trees. By doing so, we aim to also 

address the limitation of this work that arises from using a 

single metric value to characterise all source code files 

within the build. By incorporating all source code files and 

their corresponding metrics into the analysis, we intend to 

further investigate the use of the before and after states in 

the Jazz repository as a means to provide a dynamic risk 

dashboard to provide an early indication of potential 

failure of a build. 

Therefore another key aspect for further study is 

to investigate why predicting failures is harder than 

predicting successes. In particular, we have again 

observed that predicting failure is more challenging than 

predicting success and that not predicting failure doesn’t 

mean that success has been predicted. This is due to the 

fact that the build successes and failures overlap in feature 

space and “failure” signatures have a greater degree of 

fragmentation than their “success” counterparts. This is 

most apparent in the very different classification trees that 

have been discussed. Each shows a different set of 

software metrics that can be used to gain roughly the same 

overall prediction accuracy. As a result, one aspect of 

future work is to develop a deeper understanding of what 

source code characteristics are most related to build failure 

and develop a set of indicative metrics that can provide 

development teams with the opportunity to proactively 

manage risk exposure throughout a development project 

even if they cannot categorically predict build failure or 

success.  
 
 

VIII. CONCLUSIONS 
 

This paper presents the outcomes of an initial 

attempt to predict build success and/or failure for a 

software product by utilizing source code metrics. 

Prediction accuracies of up to 84% have been achieved 

through the use of the J48 classification algorithm 

combined with 10-fold cross validation. Some 

improvement has been made on previous work [2] in 

terms of better identifying characteristics of failed builds, 

however we acknowledge that the strategy of using 

metrics associated with the after state of the build to 

classify the before state source code may in some way be 

overfitting the data to the classification strategy. Further 

work is needed to fully validate this approach. 

 Despite this high overall accuracy, there is 

difficulty in predicting failure and at present many 

classification trees contain some uncertainty and 

confusion, but show promise in terms of informing 

software development activities in order to minimize the 

chance of failure. 

Despite these difficulties, our results show that 

there is potential for predicting build success or failure on 

the basis of an analysis of source code that will be 

changed during a build, even when the degree of change is 

not known. Due to the relatively small data set, this 

potential has not yet been fully realised and further work is 

needed to do so. However, more clarity in the prediction is 

gained when the degree of change during a build is 

analysed. This provides the opportunity for development 

teams to incrementally examine their exposure to risk 

during the build cycle.  
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APPENDIX 
 

=== Run information === 

 

Scheme:weka.classifiers.trees.J48 -C 0.25 -M 2 

Relation:Jazz_MAX_Before-weka.filters.unsupervised.attribute.Remove-R2-3,5-10,12-17,20-24,26-27,29-

32,34,36-43 

Instances:129 

Attributes:9 

              BuildResult 

              Average block depth 

              Comment/Code Ratio 

              Lack of cohesion 1 

              Lack of cohesion 2 

              Number of comments 

              Number of import statements 

              Number of operators 

              Number of types per package 

Test mode:10-fold cross-validation 

 

=== Classifier model (full training set) === 

 

J48 pruned tree 

------------------ 

http://home.segal.uvic.ca/~pubs/pdf/112/2008-iReCoSE.pdf
http://home.segal.uvic.ca/~pubs/pdf/112/2008-iReCoSE.pdf
http://drdobbs.com/cpp/184404041
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Average block depth <= 3.09 

|   Number of types per package <= 3: Successful Build (19.0/1.0) 

|   Number of types per package > 3 

|   |   Number of operators <= 9765 

|   |   |   Lack of cohesion 1 <= 2074.5: Successful Build (20.0/3.0) 

|   |   |   Lack of cohesion 1 > 2074.5 

|   |   |   |   Comment/Code Ratio <= 28.22: Failed Build (9.0) 

|   |   |   |   Comment/Code Ratio > 28.22 

|   |   |   |   |   Number of comments <= 131: Failed Build (4.0/1.0) 

|   |   |   |   |   Number of comments > 131 

|   |   |   |   |   |   Lack of cohesion 1 <= 2442.2: Failed Build (2.0) 

|   |   |   |   |   |   Lack of cohesion 1 > 2442.2: Successful Build (9.0) 

|   |   Number of operators > 9765 

|   |   |   Number of import statements <= 540: Successful Build (23.0/1.0) 

|   |   |   Number of import statements > 540: Failed Build (2.0) 

Average block depth > 3.09 

|   Comment/Code Ratio <= 50 

|   |   Number of import statements <= 278: Successful Build (9.0/1.0) 

|   |   Number of import statements > 278: Failed Build (3.0) 

|   Comment/Code Ratio > 50: Failed Build (29.0/3.0) 

 

Number of Leaves  :  11 

 

Size of the tree :  21 

 

 

Time taken to build model: 0seconds 

 

=== Stratified cross-validation === 

=== Summary === 

 

Correctly Classified Instances         109               84.4961 % 

Incorrectly Classified Instances        20               15.5039 % 

Kappa statistic                          0.6757 

Mean absolute error                      0.217  

Root mean squared error                  0.3755 

Relative absolute error                 45.34   % 

Root relative squared error             76.7743 % 

Total Number of Instances              129      

 

=== Detailed Accuracy By Class === 

 

               TP Rate   FP Rate   Precision   Recall  F-Measure   ROC Area  Class 

                 0.804     0.128      0.804     0.804     0.804      0.837    Failed Build 

                 0.872     0.196      0.872     0.872     0.872      0.837    Successful Build 

Weighted Avg.    0.845     0.169      0.845     0.845     0.845      0.837 

 

=== Confusion Matrix === 

 

  a  b   <-- classified as 

 41 10 |  a = Failed Build 

 10 68 |  b = Successful Build 

 

 

 

 

 

 

 

 

 

 


