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Abstract 

This thesis aims to design a real-time EEG-based communication aid using brain-computer 

interface (BCI) technologies. The study evaluates the feasibility of using the Emotive 

headset as an affordable EEG input system that is suitable for daily usage under realistic 

conditions. A further objective of this research is to increase the spelling speed of the P300 

Speller. Multiple-screen verbal and graphical versions of the spelling paradigm are 

introduced to increase the number of letters that can be spelled in a particular time period. 

The experiments were conducted using the OpenViBE platform on six participants. The 

xDAWN spatial filter was used to detect the activated area of the brain while the LDA and 

the SVM were employed to classify the data into target and non-target samples.  

In terms of Emotiv feasibility, this system has evidenced its capability to detect the P300 

brain waves used as the control signals for the P300 BCI. The obtained accuracies are 

comparable to those presented in other studies in which expensive medical EEG recording 

systems were utilized. The users‟ performance with the verbal and graphical versions of 

the speller is similar to the performance obtained when using the typical alphanumerical 

speller, although with higher spelling speed. Accordingly, the use of these new versions is 

highly recommended 

The results show significant differences between individual users‟ performance. The shape 

of their brain activity pattern recorded within 500 ms of the visual stimulation, which is 

used as a control signal, as well as other factors were considered. For most participants 

involved in this study, the target signals are remarkably distinguishable from the non-target 

ones; however, a case of BCI illiteracy is identified. To summarise, the interface 

performance is affected positively by higher amplitude of P300 brain waves and users‟ 

motivation; however, it is affected negatively by loss of attention, motor movements and 

mental fatigue. 
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Chapter 1: Introduction 

 

 

Human-computer interaction (HCI) is a rich research field. Researchers have been 

developing methods of communication with computers since the birth of the first 

computer, and throughout years, focusing on control and data entry schemes, and 

moving from punched cards to mouse and keyboard. Enormous research effort has been 

employed in the last few decades to design ergonomic and user-friendly interfaces; see 

for example Chen et al., (2007), and Burget et al. (2010). As a consequence, some 

successful products, such as gestures and voice recognition software, have been 

launched on the market. 

The recent years have witnessed the emergence of a completely different scientific 

interest that concerns alternative interaction methods for people suffering from the loss 

of all voluntary muscle control (Kaur, Ahmed, & Noida, 2012). As modern computers 

develop along with neuroscience and an increased awareness of the human brain, it is 

possible nowadays to control computers and devices directly by using the brain‟s 

activity patterns. A Brain-Computer Interface (BCI) is defined by Tan and Nijholt 

(2010) as a real time interaction system that opens a direct communication channel 

between the human brain and computers. Accordingly, BCIs could restore some of the 

lost communication channels for severely disabled people (Pfurtscheller, Muller-Putz, 

Scherer, & Neuper, 2008). Besides, in the future BCIs may provide an entertaining way 

to supplement or even replace other interfaces for the general population (Jiang, & Yin, 

2009). 

The main idea behind BCIs is to record the brain‟s activity patterns (BAPs) when 

performing specific tasks that are associated with particular computer commands and 

then employ some powerful machine learning schemes to classify these patterns. When 

the user performs one of the tasks in real time, the classifier attempts to detect the 

associated command, which is then sent to the interface for execution, as indicated by 

Davlea and Teodorescu (2011). This thesis will focus on the P300 BCI, a 

communication tool used for spelling purposes. This interface is controlled by the 

signals that are generated in the human brain as a result of visual stimulation. 
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The rest of this chapter presents the motivation for this investigation, as well as the 

scope and the focus. It also discusses the research objectives and questions. Finally, the 

contribution of this study to the area of BCI and the structure of this thesis are outlined. 

 

1.1. Motivations 

 

One of the most significant characteristics of human beings is their capability to 

communicate. The richness and complexity of communication between people play an 

important role in relationships (Campbel, 2011). However, direct conveyance of 

emotions, concepts and thoughts from one brain to another brain is still impossible. 

They have to be converted into verbal/written messages, drawings, gestures or other 

distinguishable expressions. Typically, written and verbal communications are sent 

using the throat, mouth and hands, although the expressions are generated earlier in the 

human brain. However, severely disabled people are unable to use the typical output 

channels for communication. 

In December 1995, the well-known French writer Jean Dominique Bauby had a severe 

stroke which left him locked-in. Fortunately, his brain was not completely impaired and 

he was able to blink his left eyelid. Despite his situation, he decided to write a biography 

and did so using eye blinking through an exhausting spelling technique. In his book, 

Jean reflects how he was suffering from losing communication with his family and close 

friends, how stressed he was with the inability to control his environment, and with the 

need for 24-hour care.  He described how upset he was of “being ignored while madly 

blinking at the nurse to turn the TV off” (Bayliss, 2001, p.7). Bauby‟s book was 

published on the 6
th

 of March, 1997, and he died three days after that.  For detailed 

information about Jean‟s story, the methodology he used to write his book and triumph 

of the human spirit, see  Bauby (1997). 

It is not only Bauby who needed effective tools to give him the ability to convey his 

wishes to care givers, or to have some control of the external environment. The number 

of potential users for BCIs is high, since there are around 103 million people worldwide 

suffering from long-term or life-long disability as stated by Erdogan (2009). For 

example, there are over 2 million patients (5000 cases annually) suffering from 

Amyotrophic Lateral Sclerosis (ALS) in the USA alone (Felbecker, 2010). This disease 

attacks motor neurons in the brain resulting in complete and permanent paralysis. Still, 

http://www.google.co.nz/search?tbo=p&tbm=bks&q=inauthor:%22Jean-Dominique+Bauby%22&source=gbs_metadata_r&cad=5
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these patients are fully conscious, and have needs, feelings and a deep desire to 

communicate with others. These factors motivated this researcher to focus on brain-

computer interfaces in this study, and particularly on the P300 spelling paradigm, which 

has been investigated in several recent studies due to its importance. See for example, 

McFarland, Sarnacki, Townsend, Vaughan and Wolpaw (2011), and Li, Raju, Sankar, 

Arbel and Donchin (2011).  

 

1.2. Research Scope and Focus 

 

In order to be recognized, a research study has to be useful and meaningful to the 

community. Similarly, it needs to be educational and informative in its field. To this 

end, this research focuses on BCIs which represent a contemporary technology that is 

rapidly growing. This new technology is believed to have a great effect on the society as 

declared by Mak and Wolpaw (2009), and Thakor (2009). This research investigates the 

P300 spelling paradigm, a well known BCI used to enable severely disabled people to 

spell words and convey their thoughts without any physical effort (Li, et al., 2011). 

More details about this interface are provided in Chapter 4 of this thesis.   

Most of the previous studies on this interface were conducted offline under silent 

laboratory experimental conditions where the participants were required to remain 

completely focused   on the interface, in order to avoid the negative effects of artifacts, 

as discussed by Rebsamen et al. (2010), and Gouy-Pailler, Congedo, Brunner, Jutten, 

and Pfurtscheller (2010). Additionally, EEG data was recorded offline by EEG experts, 

using expensive medical recording devices, which requires long preparation time 

(Panicker, Puthusserypady, & Sun, 2010). The proposed study aims to design a real-

time interface that is affordable for disabled people, and useful for daily usage in 

realistic conditions. As the recent technological advances have made commercially 

available EEG headsets inexpensive and accurate, this thesis evaluates the suitability of 

such devices. The Emotiv EPOC headset, which was originally created for computer 

games, is tested through an experimental study on six participants, using two BCI 

scenarios developed by a powerful platform called OpenViBE.  

According to Brunner, Ritaccio, Emrich, Bischof, and Schalk (2011), a major problem 

of modern BCIs is the unsatisfying information transfer rate (ITR) measured in number 

of bits per minute. The P300 Speller allows beginner users to spell 2-3 letters per 
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minute, while advanced users are able to spell 6 letters per minute. Although this is 

considered a great start, it is far removed from the need of daily use. Boosting the ITR 

of the speller is unachievable for recently developed technologies. The modifications to 

improve the functions of keyboards and mice include better design of the software 

interfaces as discussed by Lidwell, Holden and Butler (2010), and Ward and Grinstein 

(2010). This study takes a similar approach to increase the number of letters spelled per 

minute using the P300 Speller, in order to further the usability of this BCI.  

 

1.3. Research Questions 
 

As mentioned previously, the main objective of this research is to design a new BCI and 

more specifically, to further the efficiency of the P300 BCI through increasing the 

number of letters that can be spelled per minute and through employing an affordable 

EEG system that can be used by the general public. Consequently, the following 

questions are addressed in this study:  

1. How do brain-computer interfaces work? What difficulties do they present when 

used? 

2. How variable is the BCI performance from person to person; more specifically, 

can everybody learn how to operate the P300 BCI within a reasonable number of 

testing sessions? 

3. Recent technological advances have made commercially available EEG headsets 

inexpensive. How well do devices such as the Emotiv EPOC perform with the 

P300 Speller, under realistic conditions rather than in pre-designed artificial 

conditions? 

4. Based on the available BCIs technologies, how can we increase the number of 

letters spelled per minute using the P300 Speller? 

 

1.4. Contributions of the Study 
 

The contributions of this study are outlined in the following points: 

 A critical literature review of BCI applications and some practical technologies 

used for their implementation. 
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 The employed EEG datasets in BCI studies are often provided by a third party 

but not collected during the study. However, the data for this study is collected 

by the researcher. 

 

 This study is conducted on real-time closed-loop BCI in contrast to most of the 

previous studies on BCIs that are carried out in offline mode. 

 

 The data is collected under realistic conditions rather than pre-designed artificial 

laboratory conditions where the participants are required to remain completely 

focused on the interface and motionless. 

 

 A new BCI framework is proposed in this study that employs an affordable EEG 

recording system which is easy to use and hence suitable for the general public. 

This is in contrast to the available EEG datasets provided by medical institutions 

that are recorded using highly expensive medical recording devices which 

require expertise, long preparation time and are not suitable for daily usage.  

 

 Additionally, a simple approach is presented to significantly increase the number 

of letters that can be spelled per minute using the P300 BCI. 

 

 A paper is in preparation to be submitted to the NCEI workshop (8
th

 June 2012) 

and later to be published by Springer. 

 

1.5. Study structure 
 

To answer the research questions, this thesis is structured as the follows:  

Chapter 2 is a comprehensive literature review of brain-computer interfaces, taking into 

consideration the fundamental concepts of BCIs, the history of this technology and the 

latest developments. In addition, several examples of the currently available BCIs are 

highlighted. To further the critical analysis, some challenges of the topic are also 

discussed. 

In Chapter 3, the researcher pays attention to the recently available technologies that can 

be used to design and implement a usable online BCI for out-of-laboratory usage. This 

covers: brain imaging methods, powerful software to generate online framework for 
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personalised BCIs and artifact removals, feature extraction methods and efficient pattern 

recognition algorithms.    

Chapter 4 describes the methodology used in this study in details, provides participants‟ 

specifications, and discusses data acquisition and processing techniques. 

In Chapter 5, a comparison between the outcomes of this study and other previous 

works in the field is conducted in terms of feature selection and classification methods. 

The results of the experiment regarding the verbal and graphical versions of the P300 

Speller, as a communication aid for locked-in patients are also presented. Furthermore, 

the performance of Emotiv EPOC system is tested and evaluated by comparing it to 

other medical devices employed in former studies. Additionally, users‟ performances 

are investigated in relation to their P300 brain waves, motor movements and other 

factors. 

Chapter 6 concludes this research. Strengths and limitations of the study are outlined. 

Additionally, some recommendations for future work are provided. 
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Chapter 2: Literature Review of BCIs   

 

A brief introduction to the technology of BCIs was given in Chapter 1. In this chapter, a 

critical literature review is presented, starting with a brief introduction explaining the 

purposes and concepts of BCIs. Section 2.2 briefly introduces the structure and 

functionality of the human brain.  

Having explained the basics of a BCI framework in section 2.3, including data 

recording, pre-processing, classification and biofeedback, the chapter proceeds to 

explore the recent developments in BCIs in section 2.4. Some of the current applications 

are outlined and different types of BCIs are highlighted. Furthermore, attention is paid 

to the main control signals and some major problems in BCI systems.  

 

2.1. Introduction 
 

A direct correlation between the mental tasks, cognitive functionality, and the brain 

activities was identified many years ago by the scientific community. That sparked the 

curiosity about the multidisciplinary field of neuroscience, culminating with a new non-

muscular channel to communicate with the external world (Cecotti et al., 2011). BCI 

research groups have increased over the last couple of decades, stimulated and inspired 

by the new advances of neurophysiology, by the advance of computer mechanism, and 

by the increasing awareness of the needs of disabled people.  

A real-time detection of brain signals was firstly achieved by Vidal (1977). With the 

continuing scientific interest, there are presently over 100 active research groups 

worldwide focusing on BCIs developments and their potential applications, compared 

with only six groups ten years ago (Fernando, Alonso, & Gomez 2012). The first 40 

groups are listed in Smith (2004). In the same way, the number of articles published on 

BCI has increased exponentially over the last few years as reported by Konrad and 

Shanks (2010). A formal definition of a BCI was specified in the first international BCI 

workshop which was held in the USA, 1999: 

“A brain-computer interface is a communication system that does not depend on 

the brain‟s normal output path way of peripheral nerves and muscles” (as cited in 

Wolpaw et al, 2000, p.165). 
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In basic terms, a BCI depends on monitoring the brain signals, which can be done via 

different imaging techniques discussed in the next chapter. This is done in order to 

detect specific distinguishable brain wave alterations which can be controlled by the 

user. Different waves are associated with different commands representing a new 

communication mechanism. The framework of a BCI is described in detail after the 

brief introduction to the human brain neurophysiology provided in the next sections. 

 

2.2. Introduction to the Human Brain  
 

In order to understand the background of BCI technology and to find out about the 

source of the P300 control signals, the fundamental principles of the human brain 

structure and functions are briefly introduced in this section. For detailed review, refer 

to Marín-Padilla (2010). Humanity‟s insatiable curiosity has explored every part of the 

human body. Particularly great attention has been paid to discovering the anatomical 

structure of the brain and its functionality. The first experiments were performed on 

animals and humans with serious illnesses as indicated by Canolty et al. (2012). Over 

time, a substantial knowledge of brain physiology has been acquired, leading to an even 

greater desire for understanding the psychological and physiological operations of the 

human brain.  

The human brain is “a dynamic, evolving information-processing system and the most 

complex one” (Kasabov, 2007, p.275). One of the most interesting and lasting fields of 

research is the study of the human brain. The brain evolves initially from stem cells, and 

then grows and develops by evolving its structure and functionality to reach the adult 

brain state. This contrasts with the cognitive process which evolves and develops 

throughout life time in a continuous way to enable the brain to learn and progress as 

revealed by Yingxu (2010). 

The human brain made up of two hemispheres: right and left. The right hemisphere is in 

charge of the left side of the body and the left hemisphere has the responsibility for the 

right side of the body. Each hemisphere consists of four lobes: the frontal, temporal, 

parietal, and occipital as illustrated in Figure 2.1.  
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 Figure 2.1. The structure of the cerebral cortex: frontal, 

 temporal, parietal and occipital lobes (Frackowiak, 2004).         
 

It is constructed of 100 billion neurons (Azevedo et al., 2009). As shown in Figure 2.2, 

the structure of single neurons involves the cell body, the axon, and the dendrites.  

 
Figure 2.2. the structure of single neurons involves the  

cell body, the axon, and the dendrites (Frackowiak, 2004). 
 

 

 

 

 

 

 

 

There are different types of neurons resulting in the emergence of functional 

compartments. As reported by Benuskova and Kasabov (2007), each functional system 

of the human brain has a different spatial region and is in charge of processing special 

sorts of information. The cognitive functions occur mainly in the cerebral cortex which 

is a thin outer layer of the human brain with thickness of 2-4 mm. With the assistance of 

brain imaging technologies, specifically the functional magnetic resonance imaging 

(fMRI), the brain functions has been precisely localized as shown in Figure 2.3. For 

example, the primary motor cortex is in charge of the initiation of voluntary movements. 

Since the P300 Speller depends on visual stimuli, this study focuses on the visual cortex 

which is responsible for processing visual information. 
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Figure 2.3. Brain functions localisation on the cortical cortex (Frackowiak, 2004). 

 
 

The brain activity patterns can be acquired by recording the electrical, metabolic or 

magnetic measurements of the neurons, forming what is called brain data. A review of 

brain imaging techniques is conducted in Chapter 3 in order to select a proper 

methodology for the proposed study.  

 

2.3.  Framework of a BCI System 

 

 

Figure 2.4. The general framework of a BCI system. 

 

The fundamentals of BCIs need to be clearly understood in order to achieve the study 

objectives. The general framework of a BCI is presented in Figure 2.4. According to 

Sugiarto and Putro (2009) and Mason and Birch (2003), it comprises data acquisition, 

pre-processing, classification and biofeedback. These four steps are described in detail 

in the next section. 
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2.3.1. Data Acquisition 

 

There are different types of data collection methods resulting in different kinds of data. 

More details are discussed in Chapter 3. The brain signals are acquired and relayed to 

the computer while the user is performing the appropriate mental task for the used BCI, 

or while paying attention to a specific stimulus. For example, suitable mental tasks used 

for moving a wheelchair might be imagining moving the right/left hand and the right/left 

foot. Other scenarios are possible as well. The user may focus his/her attention on a 

visual stimulus to spell a letter, which is then translated by the interface into a 

command. 

The data is modified before being transferred to the computer as shown in Figure 2.5. 

The signals are amplified and then passed through an analog-to-digital converter before 

they are transferred to the data acquisition unit and then to the acquisition software in 

the computer for processing. There are different methods to collect these signals from 

the brain (Lehtonen, Jylanki, Kauhanen, & Sams, 2008; Thomsen, et al., 1997). Detailed 

description of the meaning of brain signals and the characteristics of acquisition systems 

is provided in Chapter 3.  

 
Figure 2.5. General framework for acquiring brain signals presents the steps to input the data into a BCI 

in the appropriate format. 
 

 

2.3.2. Signal Pre-processing 

As indicated by Cerutti (2010), Mammone, Foresta, and Morabito (2012) and 

Mahadevan, Acharya, Sheffer, and Mugler (2008), pre-processing is required for the 

brain data due to the fact that the acquired data could be affected by artifacts which are 

generated by non-cerebral origins. There are two types of artifacts: biological and 
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environmental. Examples of the biological artifacts include: eye-induced artifacts such 

as eye movements, muscle-activation-induced artifacts (also referred to as 

electromyography (EMG) which are electrical signals recorded to detect the skeletal 

muscles activities), and cardiac artifacts identified as electrocardiography (ECG) which 

are heart‟s electrical signals. In contrast, environmental artifacts are generated outside 

the human body, and can be produced by electrode movement, or electronic devices 

causing rhythmic bursts. The mentioned artifacts may produce lower and higher 

frequencies out of the normal signals of the human brain, resulting in poor signal-to-

noise-ratio and lower classification accuracy. Thus, the brain data should be filtered to 

remove the undesired noise. Effective artifact removals result in significant 

improvements on the interface performance. Evidences are shown in (Anderson, Knight, 

O'Connor, Kirby, & Sokolov, 2006; Murguialday, Soares & Birbaumer, 2010). 

Additionally, the data is generally normalized. 

Noting that the brain signals are demonstrated in a high-density spatio-temporal format 

that contains a considerable amount of redundant data, temporal and spatial filters are 

required. According to (Xiang, Dezhong, Wu & Chaoyi, 2007), attention should be 

focused on the channels that are located in the top of the responsible cortex loop for the 

performed mental task. Moreover, temporal filters are required to locate the time frame 

of the intended samples of the data, noting that the brain data is measured in 

milliseconds. Reducing the density of the brain data in both the temporal and the spatial 

axes is reported to produce some remarkable effects on BCIs performance as reflected in 

the experimental studies. For example, the classification accuracy of a motor imaginary 

BCI was increased using optimum spatio-spectral filtering network (OSSFN) by 10-

36% in (Haihong et al., 2011). In the same way, the temporal windowing technique is 

the key for event-related BCI (Chaunchu, Cuntai & Haihong, 2006) and is discussed in 

the next section of this chapter. A review of the pre-processing methods is presented in 

Chapter 3 in order to select suitable schemes for this investigation. 
 

2.3.3. Data Classification 
 

As clarified in (Townsend, Graimann, & Pfurtscheller, 2004), BCIs success depends 

very much on classification. A classification algorithm is trained firstly using a 

categorized dataset or a number of datasets. These categories (class labels) are 

associated with mental tasks and commands for communication. For example, if the 
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class label is „right‟, the mental task performed by the user is imagine moving the right 

hand, and the associated command is to move a wheelchair to the right side by the 

interface. Principally, classification algorithms are based on analogical reasoning and 

similarity measurements between the characteristic/patterns of the training samples and 

the new samples in order to predict the intended command; Figure 2.6 represents a 

conceptual demonstration of a BCI classification task. Generally, the datasets involve 

the acquisition time of each sample and its class in addition to the brain activity 

measurements. Mason et al. (2003) stress the importance of data reliability. The data 

needs to be adequate and accurate, with a good number of samples, but not excessive as 

this will lead to confusion rather than clarification, resulting in a low speed of 

processing and synthesis. After training, the classifier might be tested in order to obtain 

a predicted accuracy of the real-time BCI. Finally, users may start using the interface in 

a real-time mode.  

 

The main classifiers used in the BCI related research involve: K-nearest neighbor 

(Dong, Moses, & Li, 2011), Support Vector Machine, Linear Discriminate Analysis and 

Neural Networks (Lotte et al., 2007). A review of the BCIs‟ classifiers is conducted in 

Chapter 3 to identify an appropriate classification algorithm to be used in this 

investigation.  

 
Figure 2.6. A conceptual demonstration of 

     a BCI classification task. 

 
 

2.3.4. Biofeedback 

Biofeedback is the procedure in which a human obtains knowledge about his/her 

physiological state. This could happen repeatedly in a loop allowing the subject to 

monitor one physiological state or more in order to assist in a task performance. 
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Neurofeedback was firstly used by Hair in the early 1970s to aid in meditation and 

relaxation (Smith, 2004). Although some researchers are skeptical about it, others such 

as Trejo, Rosipal, and Matthews (2006) and Congedo, Lubar, and Joffe (2004) consider 

it a powerful therapeutic tool that can be used to learn self-regulation of the body 

systems, to stabilize mood, to normalize behaviour and to improve the mental 

performance. The effect of biofeedback on BCIs was tested on children (Ali-Nazari & 

Berquin, 2010). In agreement with their hypothesis, the children‟s performance was 

improved when feedback was provided.  

 

2.4. BCI Developments and Key Principles 
 

This section explores the key principles and the state-of-the-art of BCIs. First, different 

control signals in BCI are explained, and then different types of BCIs are highlighted. 

The advances of principal worldwide BCI research-groups and their ongoing work are 

reviewed, and some of the current applications are outlined. Furthermore, attention is 

paid to some major problems in BCI systems.  

 

 

2.4.1. Control Signals  in BCIs 

A control signal is defined as a particular brain wave that has unique characteristics and 

is generated consciously by performing a cognitive task or unconsciously by 

stimulations. Accordingly, the classifier predicts the class of a new sample by 

evaluating the similarity and difference of measurements between the control signal 

and the new sample. As stated in (Fernando et al., 2012; Wolpaw, 2007; Jerbi et al, 

2011), there are four different types of control signals in current BCI applications. The 

types and properties of these signals are presented in Table 2.1 which provides the 

names of the control signals, a brief description of each of them, the required amount of 

training, the number of choices (e.g. the numbers of samples in the P300 matrix used 

for spelling), the information transfer rate using these control signals that has direct 

correlation with the application speed, and also some examples of BCI applications that 

employs these control signals. 
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Table 2.1 

Control signals used in BCI applications, and their main characteristics 

Signal Phenomena Number of 

Choices 

User 

training 

ITR Example 

Sensor-motor 

Rhythms 

(Bai et al., 2011) 

 

Modulations in sensorimotor 

rhythms synchronized to 

motor activities.  

2-5 Extensive 

training is 

required 

3-35 

bits/ 

min 

BCI wheelchair 

(Tanaka et al, 

2005) 

Visual Evoked 

Potentials 

(VEPs) 

(Dan et al., 2010) 

Modulations in the visual 

cortex rhythms synchronized 

to a visual stimulus. 

 

High No 60-100 

bits/ 

min 

VEP BCI to 

control a hand 

orthotic for 

paralyzed people 

(Ortner et al., 

2011) 

P300  

(Mugler, Ruf, 

Halder, Bensch, 

and Kubler, 2010) 

 

Positive peaks in the brain 

waves due to infrequent 

visual, auditory or 

somatosensory stimuli. These 

peaks elicited about 300 ms 

after attending to an oddball 

stimulus among several 

frequent stimuli. 

High No 20-25 

bits/ 

min 

P300 Speller 

(Furdea et al., 

2009) 

Slow Cortical 

Potentials 

(SCPs) (Hinterbe-

rger et al. , 2004) 

Slow voltage shifts in the 

brain waves correlated with 

increased/decreased neuronal 

activity. 

2-4 Extensive 

training is 

required 

5-12 

bits/ 

min 

On-screen cursor 

control 

(Hinterberger et 

al., 2004) 

 

 

 

 

 

2.4.2. Types of BCIs 

Mainly, there are two types of BCIs as reported by Jackson and Mappus (2010): 

synchronous and asynchronous. A synchronous BCI is based on system initiation. 

Interaction is only allowed in a fixed time window. Most synchronous interfaces count 

on event-related potentials that are generated by a stimulus, e.g. visual or auditory 

stimulus, produced in a known time frame. A good example is the P300 Speller. This 

system depends on the synchronisation between visual evocation and the brain activity 

patterns. This type is easier to design. Additionally, the classification is less affected by 

artifacts as a result of the windowing techniques. In contrast, asynchronous interfaces 

depend on user initiation. They do not impose specific time frames for interaction and 

offer a more natural way for communication. However, designing and evaluating 

asynchronous systems is more complicated. To prevent accidental detection, the mental 

task must be unique. Appropriate control signals could be the sensor-motor rhythms as 

explained in (Fernando et al., 2012). 

BCI applications can be also divided into exogenous and endogenous interfaces 

(Fernando et al., 2012). Exogenous interfaces depend on external cues. Users training is 
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not required since the control signal can be easily and quickly set up. Reasonable ITR 

can be achieved after a sufficient training, and good results can be achieved using a 

minimum number of channels, down to one. Nevertheless, this type may cause tiredness 

for some users while focusing their attention on the stimuli for long periods leading to 

significant decrease of the user performance. Contrary, endogenous interfaces are 

independent of any stimulation, thus, they are useful for users who are suffering from 

sensory organs damage. Despite that, user training is required and it is time consuming. 

Several months could be spent to reach a good performance, and still the speed is very 

low with an ITR of 3-35 bits/minute. The study by Hochberg et al. (2006) presents a 

good example of an endogenous interface.  

 

2.4.3. BCI Applications 

It is worth clarifying the distinction between a BCI and its applications while the term 

„BCI‟ defines the system that collects, processes and interprets the input brain data into 

commands that an interface executes as a particular control function, BCI applications 

define the way that a BCI is used. Consequently, BCI applications are divided onto five 

major areas: locomotion, nerve restoration (neuroprosthesis), environmental control, 

entertainment and communication. Figure 2.7 illustrates the relationships between these 

types of applications relating to the ITR and the users capacities for control. As 

demonstrated in the figure, most BCI applications are created for entertaining purposes. 

The capabilities offered to healthy users and non-severely disabled people are higher 

than these offered to locked-in syndrome patients. However, there are no applications 

reported for completely locked-in patients. Among the five types, communication BCIs 

have the lowest ITR capabilities of control offered to the users. Interestingly, nerve-

restoration (neuroprosthesis) BCIs have the highest ITR capabilities offered to the users. 

 

Figure 2.7. The relationship between the fields of BCI applications, ITR and  the  given control 

capabilities to the users (Fernando et al., 2009, p. 1248). 
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2.4.3.1. BCI Applications for Locomotion 
 

Locomotion interfaces represent an important type of BCI application. They are 

employed to control the spatial location of an object, such as a robot or a robotic arm as 

shown in Figure 2.8. It appears that the first system of this kind was a wheelchair 

developed by Tanaka et al (2005). Their study was undertaken on six healthy users 

where the floor was divided into a number of squares. The users were able to drive the 

chair by imagining left or right limbs movements, which produced distinguishable beta 

rhythm used as a control signal. The wheelchair is shown in Figure 2.8. Another study 

by Grychtol, Lakany, Valsan, and Conway (2010) investigates a similar approach to 

drive a virtual reality wheelchair by visually evoked potentials. The results of these 

experiments are promising, with correctly classified commands ranging between 46%-

100% depending on the training period and the users‟ ability to learn. However, the long 

training and the low speed of the interface are drawbacks. 

 

 
Figure 2.8. Some examples of locomotion BCI applications. From top right: (Kasabov, 2012, 

 p.11), (Kawate, 2012), (TU Darmstadt, 2011), and (Bogue, 2010). 

 
 

 

2.4.3.2.  BCI Applications for Environmental Control 

Some studies such as the one by Cincotti et al. (2008) focused on developing BCI 

applications that allow users to control the surrounding environment, for example, to 

control a television, light or a mobile phone. Hochberg et al. (2006) successfully 

implemented a novel interface called Brain Gate using attached sensors to the primary 

motor cortex of a paralyzed patient allowing him to take control over an on-screen 
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cursor by imaging limb motions. The results are remarkable as the user was able to draw 

a circle, operate a television and handle e-mail applications, see Figure 2.9.  

 
                     Figure 2.9.  Brain Gate BCI for environmental control (Hochberg et al., 2006). 

 
 

2.4.3.3. BCI Applications for Communication 
 

 

 

 

 

 

 

 

 

Lots of attention has been given to communication BCI applications generally and to the 

P300 Speller specifically (shown in figure 2.10). This paradigm was firstly proposed by 

Farwell and Douching (1988). It is based on the P300 control signals. These are 

presented as positive peaks in the brain waves generated by the infrequent visual stimuli 

(row/column flashing). The peaks elicited about 300 ms after attending to the oddball 

stimulus (the target letter) among several frequent stimuli, non-target letters (Chaunchu, 

2006). 

Unfortunately, it is difficult to detect the target letter within one trial, which is the time 

needed to intensify all the rows and columns for one time. This is due to the fact that 

brain data is influenced by the artifact and noise which makes it impossible to 

distinguish the target reactions from the not-target responses within a single trial. 

OpenViBE‟s (2011) recommends using 12-trial interface for beginners with an average 

of 28 sec of time to spell one character, leading to a very low speed. This fact is the 

main reason behind a major problem of the P300 Speller for untrained users, namely the 

low ITR. Once the classifier has been well trained, the number of trials can be reduced 

to 5 or even less. Despite this drawback, the P300 Speller is one of the most effective 

and accurate BCIs used for communication purposes up to date (Brunner et al., 2011). 
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          Figure 2.10. Communication BCI (Westly, 2011). 

 

 

2.4.3.4.  BCI Application for Entertaining 

As BCI research focuses on disabled people, entertainment-oriented BCIs have had a 

lower priority. Nevertheless, a significant interest in BCI for games has arisen in recent 

years owing to the latest developments in this technology. Some interfaces have been 

developed to control virtual characters while others attempt to move realistic objects 

such as a ball. Figure 2.11 shows some examples of BCI applications for entertainment 

that can be played through motor imaginary for one or multiple users. 

 
Figure 2.11. Some examples of entertainments BCI Application (g.tec, 2012; Marentette, 2008; Squidoo, 

2012). 
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2.4.3.5. BCI Applications for Nerve Restoration: Functional Electrical 

Stimulation (FES) BCIs 
 

This is a new type that does not fit into the general framework. Researchers are turning 

their heads to FES BCI applications which aim to restore some of the lost nerve 

functions for spinal cord injury (SCI) patients, and other disabled people in order to 

achieve independence from homecare services. This can be achieved by generating 

artificial control signals by depolarizing intact peripheral nerves for the operation of 

functional electrical stimulation that innervate the targeted muscles and cause a muscle 

contraction. A review of FES BCI applications can be found in Braz, Russold, and 

Davis (2009). Pfurtscheller G., Müller, Pfurtscheller J., Gerner, and Rupp (2003) have 

developed an interface that allowed a tetraplegic patient suffering from SCI, to grab a 

cylinder by his paralyzed hand through imagining moving his foot. A long training 

period was needed; however, the user succeeded to open and close his hand. Another 

approach is presented in Muller-Putz, and Pfurtscheller (2008). The Bionic Eye, shown 

in Figure 2.12, demonstrates an ongoing research at the NICTA research institution, 

Australia National University (Barnes, 2012). It is based on the FES to stimulate the 

retina, in order to assist individuals with vision impairment.  

 

 
      Figure 2.12. The Bionic Eye (Barnes, 2012). 

 
 

2.4.4. BCIs Problems 

 

Although the BCI research field has been developing rapidly over the last two decades, 

numerous problems and obstacles still need to be considered. The major drawbacks are 

highlighted in this section with regard to users‟ training, the curse of dimensionality, the 

cost of data acquisition devices, offline and online processing, the limited laboratory 

applications and BCI performance metrics.  
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BCI systems are not yet used autonomously by paralyzed people due to the help needed 

to wear the acquisition tool. In the same way, the user could be enabled to turn the BCI 

off but how can they turn it on again? This forms the „Midas Touch‟ problem. 

Additionally, a high cognitive load is required to run a BCI system which seems to be 

tiring for the users. Despite these problems, the first step in developing a home-based, 

long-term and independent BCI has been taken; see Sellers, Vaughan, and Wolpaw 

(2010) for more details. 

The required time to train the users reflects a major problem in endogenous applications 

as training might take several months, depending on the user‟s learning ability and 

motivation (Artusi, Niazi,  Lucas & Farina, 2011). While users‟ training is not required 

for stimulation-based interfaces, classifiers performance might dramatically decrease 

due to the „small sample size problem‟; this problem is due to the small number of 

training examples in relation to the large number of features/channels as stated by 

Hoffmann, Vesin, Ebrahimi and Diserens (2008). The curse of dimensionality can be 

solved by enlarging the training data, nevertheless, this is difficult as it is time-

consuming and tiring for the users. Hence, it is highly recommended to decrease the 

number of channels by feature extraction methods. 

Another problem of BCIs is the low ITR which results in the low speed of BCI systems, 

particularly the ones designed for communication purposes. Accordingly, beginner users 

can spell 2-3 letters per minute (about one word in 2-3 minutes) while advanced users 

may spell 6-7 letters per minute, which is time consuming and not efficient for regular 

users. 

An additional problem that the researchers face is the comparison method. Well-defined 

performance metrics are required for evaluation purposes. Although some research 

groups have identified this problem, (Mason et al., 2003), further investigations are still 

needed, as the accuracy alone cannot form a proper performance metric for complicated 

BCI applications. 

On the other hand, most brain-imaging systems are extremely expensive, thus, they are 

not reachable by the general public, or by the researchers in some cases. Added to that, 

the data can only be collected by experts and under certain conditions. These reasons 

lead the researchers to omitting the data-acquisition step and using some of the available 

datasets for training and testing. Accordingly, the testing is conducted offline by means 

of cross-validation. This is used to estimate the validation accuracy after training the 



22 
 

classifier. The testing data is split resulting in an average accuracy from different 

partitions of the sample data. This approach could be suitable for various applications, 

but when it comes to BCI as a temporal system, some inherent issues appear by 

spreading independent elements that may not be identically distributed (Lemm, 

Blankertz, Dickhaus & Müller, 2011). Similarly, Townsend et al. (2010), and 

McFarland, Krusienski, and Wolpaw (2006), claim that offline analysis cannot address 

realistic issues when the data is processed in a casual manner with non-stationary 

datasets, due to the changes related to users‟ motivations, fatigue and other factors. This 

is not aligned with the offline processing setups conducted by the analyst who observes 

the statistics of the data across an entire session, with the aim of fine-tuning the 

algorithms and long-term computations. Fernando et al. (2012, p.1240) agree with this 

and confirm that: 

“Classification algorithms have traditionally been calibrated by users through 

supervised learning using a labeled data set. It is assumed that the classifier is able to 

detect the patterns of the brain signal recorded in online sessions with feedback. 

However, this assumption results in a reduction in the performance of BCI systems, 

because the brain signals are inherently non-stationary. Although some researchers test 

new algorithms with only offline data, both offline simulation and online experiments 

are necessary for effective algorithm design in closed-loop systems. In other words, 

offline simulation and cross-validation can be valuable methods to develop and test new 

algorithms, but only online analysis can yield solid evidence of BCI system 

performance”. 

 

Despite current advances in BCI systems, proper applicability requires greater ease of 

use which means minimizing the time for training, calibration, and preparation. This 

cannot be achieved using the expensive medical neuro-imaging systems that are limited 

to the laboratory environment. The new developments are demonstrated by the latest 

affordable data-acquisition devices oriented towards the general public. Although these 

new systems, e.g. Emotiv EPOC and NeuroSky, were designed for BCI games and 

entertainment, some researchers (Ekanayake, 2010; Stytsenko et al., 2011) prompt that 

these devices can be evaluated for use in general BCI applications, and under realistic 

conditions.  

 

2.5. Conclusion and Open Problems 
 

In this chapter, a critical literature review was presented, with attention to the purposes 

and concepts of BCIs, the human brain nervous system and its construction, structure 
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and functionality. Moreover, the basics of the BCI framework was clarified in terms of 

data recording, pre-processing, classification and biofeedback. The recent developments 

of BCIs were also reported and some of the current applications were outlined. 

Furthermore, attention was paid to the main control signals in BCIs and some of the 

major problems in this field.  

The literature review has highlighted a number of open problems including: 

Problem 1: The cost of the medical brain-signal acquisition systems and the difficulty 

of their use leading to the following obstacles: 

 The BCI applications are designed using medical acquisition systems and 

are not reachable for the potential users in the general public.  

 The BCI applications designed using the medical acquisition systems are 

tested only offline using brain datasets available on the web and which 

are collected by experts. Cross-validation approach may result in 

spreading independent elements that are not identically distributed. 

Moreover, offline analysis cannot address realistic issues when the data is 

processed in a casual manner with non-stationary datasets, due to the 

changes in users‟ motivations and other environmental factors. This is 

not aligned with the offline processing setups conducted by the analyst 

who observes the statistics of the data across entire sessions, with the aim 

of fine-tuning the algorithms and long-term computations, resulting in a 

reduction in the interfaces‟ performances in real-time mode.  

 

Problem 2: The low ITR and speed of the applications designed for communication 

purposes. 

This research will focus on these two problems. The recent technological advances have 

made the commercially available acquisition systems that are oriented towards the 

general public inexpensive. Consequently, this thesis aims to identify and evaluate an 

appropriate tool for the P300 communication application, under realistic conditions 

following Stytsenko‟s et al. (2011) recommendations. To avoid the weaknesses of the 

offline experiments, this study will be conducted online in a closed-loop system as 

suggested by Fernando et al. (2012). To address the low speed of spelling using the 

P300 CBI (an average of 2-3 letters per minute for beginners) this study investigates an 
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enhanced design of the interface using verbal and graphical versions of the speller 

instead of the typical alphanumerical interface. More details about this are discussed in 

Chapter 4 of this thesis. 
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Chapter 3: Methods Used for BCI: A Review 

 

In this chapter, attention will be paid to the recently available technologies that can be 

used to design and implement an online BCI for out-of-laboratory usage in order to 

indentify appropriate methods for this investigation. This will cover:  

1. Brain imaging methods for BCI application. 

2. Brain data acquisition hardware. 

3. Platforms used to design a BCI application. 

4. Feature extraction schemes. 

5. Efficient pattern recognition algorithms.  

These issues are addressed in the following five sections. The investigation will be 

limited to the technologies that are: affordable and open for the general public, portable, 

suitable for every day usage (i.e. easy to use with minimum preparation time), and also 

appropriate for the domestic environment. It is worth noting that the only imaging 

technique that covers all these requirments is Electroencephalography (EEG). However, 

there are some other techniques used in BCIs applications such as electrocorticography 

(ECoG), microarray electrodes, magnetoencephalography (MEG), near infrared 

spectroscopy (NIRS), and functional magnetic resonance imaging (fMRI). Although 

these methods were not available options for this study, they are briefly outlined in the 

next section to provide background information for the BCI technology and to justify 

the exclusion of these techniques from this research. 

 

3.1. Brain Imaging Techniques 

Older studies of the human brain and cognition were qualitative in nature and with a 

limited applicability (Posner, 1990). Despite that, cognitive science has made 

remarkable progress driven by by the studies that investigated both qualitative and 

quantitative measurements of the brain (Smith et al., 2002). It is well-known that BCIs 

are controlled by the quantitative measurements of the brain activity patterns (BAPs), 

but what do these measurements mean? Depending on the methodology used to measure 

these patterns, BAPs have different interpretations. There are several imaging 

techniques employed to detect a particular brain activity pattern. Relevant imaging 

technique for BCI applications and their characteristics are explained in this section. 



26 
 

 

3.1.1. Electrocorticography (ECoG) and Microarray Electrodes 

ECoG is an invasive procedure to measure the brain electrical activities. Billions of 

neurons are embodied in the human brain. When the nerve cells are activated, small 

electrical signals called action potentials are generated. ECoG practice involves a 

surgical operation to implement a grid of biocompatible electrodes on the cortex surface 

as described by Wolpaw J. and Wolpaw E. (2012). Figure 3.1 shows the electrodes grid 

implemented on a human brain. 

 
       Figure 3.1. ECoG grid implementation on a  

       human brain (Erdodan, 2009, p.12). 

A similar approach uses microarray electrodes to improve the data quality by integrating 

analogue circuits, allowing the recording of the activity of a single neuron and reflecting 

a higher spatial resolution and leading to outstanding signal-to-noise ratio (Figure 3.2). 

 
Figure 3.2. Microarray electrodes implementation in the human brain (Neurogadget, 2011). 

 
 

 
 

 

 
 

 
 

Waves are less influenced by the conductivity of the skull and the muscular artifacts 

comparing to other external brain imaging techniques, which makes ECoG an 

appropriate strategy to be used in BCI application (Wolpaw et al., 2012).  
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In spite of the quality of the data acquired by microarray electrodes and ECoG, there are 

critical handicaps as reported in Smith (2004). This includes the invasive nature of these 

systems, and the potential inconsistency between the neurons and the electrodes, as well 

as the possible infections which may result in blocking the data transmission. 

  

3.1.2. Magnetoencephalography (MEG)  

 

According to Smith (2004), MEG is a noninvasive scheme for measuring the brain 

activity. This method works by measuring the magnetic field generated by the electrical 

flow in the cortex. The superconducting quantum interface device (SQUID) is used in 

this model, as shown in Figure 3.3. 

 
    Figure 3.3. SQUI device used to collect MEG data  

    (Erdodan, 2009, p.14). 

  

Although MEG systems collect data with a remarkably high spatial resolution data (up 

to 3 mm), and can significantly improve the speed of BCIs, its usage in BCIs is limited 

to few studies, e.g. Lal et al. (2005), and Kauhanen et al. (2006). The reason behind that 

is the size of the SQUID instrumentation, the extremely high costs, and the non-portable 

style of the device. Thus, MEG is not applicable for real-world BCIs‟ applications as it 

is not practical for real-time analysis.  
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3.1.3. Hemodynamic Activity of the Brain: Near Infrared Spectroscopy 

(NIRS) and Functional Magnetic Resonance Imaging (fMRI) 
 

 

Both NIRS and fMRI are used to monitor the oxygen levels of the blood passing 

through the brain, since the consumption of oxygen increases in active neurons. Devices 

used to collect the data are shown in Figure 3.4. The advantage of these technologies is 

the impressive spatial resolution. Actually, neurons‟ functionality can be distinguished 

from other parts of the brain and not only from the cortex as other imaging techniques. 

However, the acquisition equipments are large and extremely expensive. Added to that, 

the temporal resolution is poor (responds within a few seconds), therefore, studies such 

as (Weiskopf et al., 2004; Hong, Coyle, Ward, Markham & McDarby, 2004), reject the 

usability of NIRS and FMRI after they tested them in BCIs‟ applications.  

 

 
Figure 3.4. Devices used to collect fMRI data on the left, and NIRS data on the right (Waisman Lab,             

2007). 

 

 

3.1.4. Electroencephalograph (EEG) 

This technique is very similar to ECoG technique, as it depends on measuring the 

electrical activity of the cortex using a number of electrodes. However, EEG is generally 

a noninvasive procedure. Instead of implementing the electrodes on the cortex surface 

by a surgical operation, EEG electrodes are simply placed on the patient‟s scalp. Despite 

the poor spatial resolution, EEG is the main technique used in current studies, and it has 
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been investigated by numerous researchers (Darvas et al., 2010; Shiliang, 2010). Smith 

(2004, p.9) claims that: 

  “It has excellent temporal resolution of less than a millisecond. It is also 

relatively inexpensive and simple to acquire making it the only practical non-invasive 

brain imaging modality for repeated real-time brain behavioural analysis” 

 

There are various systems available for recording EEG data. Comparing to the discussed 

imaging techniques, EEG acquisition systems are cheaper. They are also smaller and 

more portable. Some examples are shown in Figure 3.5. 

 

 
Figure 3.5. Examples of EEG medical acquisition systems (Waisman Lab, 2007). 

 

 

It is clear that EEG imaging technique for the human brain is the best candidate to be 

employed in this investigation as it covers all the requirements specified earlier. A short 

review of the main concepts of EEG is presented below. 

 

As stated by Erdodan (2009), the existence of electrical signals in the human brain was 

discovered by Richard Caton, a British surgeon, in 1875. However, it was 1924 when 

the first EEG data was recorded by Hans Berger, a German neuropsychiatrist. He 

evidenced that weak electrical brain signals can be recorded and presented on a piece of 

paper without involving invasive surgical procedure, using his standard radio to amplify 

the electrical signals. When humans perform any activity such as move, smile or even 

think, some nerve cells are activated and generate short electrical signal called action 

potentials (Wolpaw et al., 2012). These potentials are transferable between cells through 

synapses (Figure 3.6).  
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          Figure 3.6. Electrical  brain signals  called  action potentials are transferred 

          between cells through synapse (Tortora & Derrickson, 2010). 

 

 Abhang, Rao, Gawali and Rokade (2011) define the EEG as a methodology to illustrate 

the electrical activity patterns of the brain‟s surface, the cortex, or more precisely as a 

way to signify the reflection of the summed synaptic potentials of the nerve cells. The 

frequency of these potentials measure between 1 Hz to over 30 Hz, and they are divided 

into six bands depending on the frequency. BCI applications utilize the band frequencies 

of 1-30 Hz, while potentials measures of less than 1 Hz or higher than 30 Hz are only 

used for limited clinical purposes (Abhang et al., 2011). Table 3.1 presents the 

characteristics of these six bands including their names, frequency range, shapes and 

properties. 

EEG data is typically recorded by small electrodes. There are different types of 

electrodes available: disposable electrodes, metal cup electrodes, needle electrodes 

(invasive), and gelled electrodes cups. The metal and gelled electrodes are currently 

used for BCI applications (Stieglitz et al., 2009). Despite that, some researchers are 

attempting to develop user-friendly dry electrodes to minimize the preparation time 

required (Liao et al., 2012). 

Although studies use different numbers of electrodes according to the mental tasks 

analysed, EEG electrodes are generally placed at particular locations on the scalp. The 

International Federation of Societies for EEG and clinical physiology made the first step 

to standardise the placement methodology allowing researchers to compare their 

outcomes in a better and practical way as reported by Koessler et al. (2009). The 10-20 

international standard EEG placement system consists of 21 electrodes. However, it was 

extended over the time reaching the number of 512 electrodes for some medical 

application. Normally, BCI applications use a small numbers of electrodes to reduce the 
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Table 3.1  

EEG bands and their properties (Abhang et al., 2011) 

Signal Frequency Shape Properties 

Delta 1-3 Hz 

 

 

This wave has high amplitude but low 

frequency. It is seen in young children 

normally, and also in adults when they 

are sleeping. 

Theta 4-7 Hz 

 

This signal is normally seen in young 

children, it could be as well generated 

in older children and adults in arousal 

or drowsiness. It is also associated with 

medications, relaxation and creative 

status. 

Alpha 8-13 Hz 

 

This is the first type of wave 

discovered in the human brain. It has 

high amplitude. It emerges with eyes 

closing and relaxation, and attenuates 

with opening the eyes and mental 

exertion.  

Beta 14-30 Hz 

 

Beta wave can be also called 

sensorimotor rhythm, as it accrues 

when arms or hands idle. It could be 

associated with drugs and anxious 

thinking. It is generated from the 

frontal lobe, and is widely used for 

motor BCI applications. In the case of 

cortical damage this wave could be 

absent. 

Gamm

a 

>30 Hz 

 

This pattern is associated with 

alertness, working and motor 

movements. 

   

long preparation time and because the real-time processing of large amount of EEG data 

by current technologies is inadequate. Figure 3.7 shows the electrodes‟ positions and the 

channels‟ names in the 10-20 placement system. 

 

http://upload.wikimedia.org/wikipedia/commons/5/54/Eeg_delta.svg
http://upload.wikimedia.org/wikipedia/commons/3/33/Eeg_theta.svg
http://upload.wikimedia.org/wikipedia/commons/e/ee/Eeg_alpha.svg
http://upload.wikimedia.org/wikipedia/commons/2/28/Eeg_beta.svg
http://upload.wikimedia.org/wikipedia/commons/2/21/Eeg_gamma.svg
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Figure 3.7.  The electrodes‟ positions and the channels‟ names in the 10-20 international  

EEG replacement system (Fernando et al., 2009, p. 1217). 

 

 

Noting that hand-operated placement of EEG electrode is a challenging and time-

consuming task, Electro Caps and EEG headsets were introduced to save time and 

efforts. A brief review of EEG headsets is presented in the next section. 

 

3.2.  EEG Data Acquisition Hardware 

A good example of Electro Caps that is used in most BCI studies is the g.tec system 

which can be used with 8 to 256 electrodes over the skull (Figure 3.8.). It is capable of 

collecting a high quality data with low interface and fast montage as reported in 

numerous studies such as (Pires, Nunes, and Castelo-Branco, 2011; Guger et al., 2009; 

Cecotti, 2011). On the other hand, it is costly. Furthermore, the preparation time to use 

the system is very long especially because of the large number of channels. These 

disadvantages make g.tec as well as other EEG medical systems more useful for 

laboratory experiments where the data is collected by experts, but not for daily use or 

for the general public. 

 

 
Figure 3.8. g.tec recording systems (g.tec, 2012). 
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The recent technological advances have made some commercially available EEG 

headsets inexpensive. Examples of EEG headset that are suitable for daily usage are 

NeuroSky headset, a recent release by NeuroSky Inc. (2011) in the USA, and Enobio 

that is created by Starlab (2011) in Spain (Figure 3.9). Public users could obtain such 

headsets at a minimum cost starting at US $99. These headsets are evidenced to produce 

good quality data when evaluated by Mostow, Chang and Nelso (2011) and Mihai and 

Gheorghe (2010). Despite that, they have the limitation of collecting data from only one 

channel (NeuroSky) or four channels (Enobio). These channels might be useful for some 

applications such as testing the cognitive load, but not for general BCI applications. A 

review of commercial EEG headsets is provided by Zhang, Wang and Fuhlbrigge 

(2010). 

 

 
    Figure 3.9. NeuroSky system on the right (NeuroSky Inc., 2011), and Enobio system 

    on the left (Starlab, 2011). 

 

„Emotiv EPOC neuroheadset‟ which is developed by Emotiv systems (2012), Australia, 

is one of the first EEG headset developed specifically for BCIs applications (Figure 

3.10). It was released on the market in the USA in 2010 to open a direct communication 

channels between a user brain and a computer and cost US $299. It has 14 channels to 

cover most of the cortex area. The tool is wireless and the preparation time is short. 

 

           Figure 3.10. Emotiv EPOC neuroheadset (Emotiv systems, 2012). 

 

Emotiv headset is designed mainly for playing computer games in contrast to the 

expensive medical devices. This study tests the feasibility of the use of the Emotiv 

system for communication BCI. This might not only lead to a great reduction of the cost 

http://www.google.co.nz/imgres?q=neurosky&hl=en&sa=X&biw=1366&bih=592&tbm=isch&prmd=imvns&tbnid=xKjo9ltNBDtyKM:&imgrefurl=http://www.robotshop.com/neurosky-mindwave-eeg-sensor-4.html&docid=PrM8eGXsBylhDM&imgurl=http://www.robotshop.com/content/images/neurosky-mindwave-eeg-sensor-a.jpg&w=416&h=411&ei=rH1uT5qHM4qeiAfa0ZTqBQ&zoom=1
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and the preparation time to use the P300 Speller but also might help to diminish the 

stigma and stereotypical notion of disability. EPOC headset was chosen to be used in 

this study for a number of reasons:  

1. Emotiv is affordable in contrast to other medical EEG headsets which are expensive 

and consequently not accessible by numerous potential users.  

2. It is wireless in comparison to medical sets that require a wire connection between 

each electrode, the amplifier and the computer. That is inconvenient for daily use, 

and also it presents the problem of artifacts created by the head movements. 

3. Unlike the medical applications, experts are not required for the collection of the 

data using Emotiv. In fact, a person can collect his/her EEG data by following some 

simple instructions.  

4. The required preparation time to make Emotiv headset ready to use is about 2 

minutes. In contrast, most of the medical equipments require over 20 minutes for 

preparation.  

5. The quality of the data collected using Emotiv headset was tested in a few recent 

studies. In comparison with the well-known medical system g.tec, Ekanayake (2010, 

p.16) claims that “Emotiv EPOC does capture actual EEG”. Similarly, a recent study 

by Stytsenko et al. conducted in June, 2011 evidences that the “comparison between 

the two EEG devices suggests that data is alike in general, but the signal is cleaner 

and stronger in the g.tec device”. Despite that, it describes recording EEG data using 

g.tec as a „challenge‟, but praised the „free moving capability‟ of Emotiv. 

Accordingly, it recommends employing Emotive system in BCI research and 

suggests future work to focus on investigating the P300 Speller and other 

applications such as mismatch negativity event-related potentials. 

 

3.3.  Platforms Used to Design a BCI Application 

There are few platforms for the design and implement BCIs. A critical review of the 

available platforms was conducted, in order to choose an appropriate one. Since the 

focus of this research is on affordable BCIs, the review was restricted to the free and 

open source software. Several systems are available for offline and online processing of 

EEG signals. Schlogl et al. (2007) briefly reviewed them. Some of the essential 

functionalities for designing a BCI were overlooked in some of them, and only four 

platforms met the criteria of this study:   
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 Bio Sig which was developed by Schlogl and Brunner (2008). It is a fully open-

source package offering a variety of data management modules, importing and 

exporting data, and preprocessing including feature extraction, artifact removals and 

quality control. It is powerful for real-time processing of biomedical signals 

generally and EEG data specifically. Despite that this package depends on Matlab 

which is costly proprietary software. In addition, the Emotive headset cannot be 

integrated with this system as it requires expensive medical EEG electrodes. 

 BCI2000: This software was created by Mellinger and Schalk (2007) for general 

BCIs‟ research and is freely available. It is based on C++ and is used to develop 

real-time BCIs through assembling a number of modules. This software was rejected 

to use in this study due to its complexity, its coarser modularity, and the extensive 

programming required throughout the implementation of a BCI.  

 BCI++ is another recent platform. It is presented in  Perego, Maggi and Parini 

(2009). It is based on C/C++. However, the package used for online validation is not 

freely available. 

 OpenViBE is a powerful free software platform that gives the opportunity to design, 

test and use BCIs in real-world and in virtual environment. It is well-known that 

designing a BCI-based communication instruments require expertise and skill in 

diverse domains including: neurophysiology, signal processing, interface design, 

programming, and human-computer interaction. Consequently, designing a BCI 

presents a challenging multiscplinary task. OpenViBE was created to simplify this 

task. OpenViBE is a well-funded French project. It was developed recently by Yann 

and Lotte (2010).  It contains a set of modules which could be integrated smoothly 

and effectively to create offline and online BCIs. OpenViBE was selected to be 

employed in this study due to the following utilities that lack in other available 

platforms: 

 

1. High modularity and reusability: OpenViBE consists of two modules; 1. The 

Acquisition client that is used to import EEG data for online or offline processing, 

and 2. The Designer which enables data pre-processing, processing and 

visualization. 

2. Portability: OpenViBE is independent from other software and hardware, and has an 

abstract level of representations allowing integrating different acquisition 

methodologies including the Emotive EPOC that was chosen to be evaluated in this 

http://www.mendeley.com/profiles/paolo-perego1/
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study. Furthermore, it accommodates different data types such as EEG and MEG, 

and it can be operated on Linux and Windows operating systems. 

3. Open-source software: It is also based on other open-source software such as VRPN, 

IT++, GCC, GTK+, and GSL that can be used for related tasks such as designing the 

user-interface of a BCI. 

4. Connection with real-world interfaces and virtual reality. 

5. Supportive for all the necessary functionalities for BCI experimental studies and 

usage including data acquisition, pre-processing, filtering, offline data processing, 

classifier training and real-time usage. 

6. Provides real-time biofeedback. 

7. Availability of different tools for data visualization including 2D/3D real-time 

visualization of brain activities.  

8. Appropriateness for different types of users. In contrast to other platforms, uers may 

choose to write codes to run their experiment or could design the study with the 

available graphical language. 

A number of scenarios created by OpenViBE will be investigated in this thesis. They are 

described in details in Chapters 4. 

 

3.4.  Feature Extraction Algorithms 
 

A number of different channel selection methods were evaluated on BCIs in which they 

reflect valuable outcomes in terms of decreasing the computation time, the headset 

preparation time and the noise, and consequently increasing the classification accuracy 

in some cases. For example, the accuracy was increased using optimum spatio-spectral 

filtering network (OSSFN) by 10-36% in (Haihong et al., 2011) despite the minimized 

costs. Feature extraction algorithms used in BCIs is extensively reviewed in Cecotti et 

al. (2011). 

 

xDAWN is a filter available in OpenViBE. It is a recently developed spatial filter 

designed by Rivet, Cecotti, Souloumiac, Maby and Mattout (2011) specifically for the 

P300 spelling paradigm. This model is used to identify the relevant channels for a 

particular classification problem. It was tested by Rivet et al. (2011) and it succeeded in 

reducing the number of channels from 32 to 10 with nearly the same classification 

success rate of 94% and to 5 only channels with a similar performance of 92%. 



37 
 

However, the experiment was conducted using a medical EEG recording system that has 

extra and different locations of channels, hence, it is not comparable to this study. For 

the reasons mentioned xDAWN will be utilized in this thesis. 

 

3.5. Pattern Recognition Algorithms 

There is a wide range of classification algorithms and many of them have been tested for 

BCIs. A comprehensive literature review of BCI classification algorithms is presented in 

Lotte et al. (2007) in which the authors suggest to use different schemes for different 

interfaces. Focusing on the P300 Speller, they suggest using linear and stable classifiers 

such as Linear Discriminate Analysis (LDA), Artificial Neural Networks (ANN), and k-

nearest neighbour (KNN). This is supported by a number of studies on the P300 Speller, 

for example, Kaper, Meinicke, Grossekathoefer, Lingner and Ritter, (2004) and 

Bostanov, (2004). Since ANNs and KNN are not part of OpenViBE, this study will 

focus on SVM and LDA classifiers only. 

Based on the literature, these algorithms reported a significant performance. SVM has 

been successfully employed in numerous BCI applications. For example, it was used by 

Kaper et al. (2004) in which it achieved a remarkable accuracy of 100% after 5 

recording sessions and outperformed other classifiers. Furthermore, SVM was the 

winner in the BCI competition III when it was tested on the P300 spelling paradigm by 

Rakotomamonjy and Guigue (2008). In the same way, LDA achieved a success rate of 

95% and 90% in (Scherer, Muller, Neuper, Graimann & Pfurtscheller, 2004) and 

(Muller, Krauledat, Dornhege,  Curio, and Blankertz, 2004) respectively. It was also 

elected as one of the winning methods in the BCI competition II in the P300 Speller 

(Bostanov, 2004). Therefore, these schemes will be employed in this study. They are 

described in detail in Chapter 4.  
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Chapter 4: Methodology 
 

After identifying the appropriate technologies to be used in this investigation in Chapter 

3, this chapter presents the methodology undertaken to conduct the experimental study. 

First, the implementation of the P300 Speller is described, taking into consideration the 

improvements made to increase the number of letters spelt per minute, and the 

employed scenarios to design the interfaces using OpenViBE. After that, xDAWN, 

LDA and SVM algorithms are explained in sections 4.2, 4.3, and 4.4 respectively. 

Moreover, the framework proposed in this study is described. The participants‟ 

specifications, and the experimental tasks and procedure are outlined.  

 

4.1. Implementation of the P300 Speller 

 4.1.1. The P300 Speller and communication aids 

As stated in Chapter 2, synchronous BCIs are based on event-related potentials, which 

occur during or after the presentation of a stimulus. One example of these applications is 

the P300 spelling paradigm that depends on the visual evoked potentials (VEP). This 

paradigm was first proposed by Farwell and Douching (1988). It is represented by 66 

matrices of alphanumeric characters as demonstrated in Figure 4.1. The visual 

stimulations are represented by sequential flashes of the matrix rows and columns in a 

random order, with a defined duration time between the consecutive flashes (the inter-

stimulus interval). To use this communication system, a user is instructed to focus 

his/her attention on a particular target and count the intensifications when the columns 

or the row that contains the target character (called the target intensification) is flashed.  
 

 

 
Figure 4.1. The matrix of the P300 Speller visualized in OpenViBE. 
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The P300 Speller, also referred to as the oddball paradigm, is based on detecting the 

samples containing a P300 potential, evoked by a target intensifications, which are 

distinguishable from the samples synchronized with frequent ignored non-target stimuli. 

The P300 potentials reflect peaking signal patterns observed to occur around 300ms 

after the visual stimulus. Detecting the target letter T with a coordinate (х, y) is done 

through detecting the target row х and the target column y which intersect at the target 

letter. The data collected of the P300 BCI is normally imbalanced since there is only one 

target column and one target row comparing to five non-target columns and five non-

target rows. Hence, only 2/12 = 16.67% of the data is categorised as the target label 

comparing to 10/12=83.33% of the samples categorised as a non-target class. 

 

Unfortunately, it is difficult to detect the target letter within one trial which is the 

duration taking to intensify all the rows and columns for only one time. This is due to 

the fact that EEG data is much influenced by the artifact and noise which makes it not 

possible to distinguish the target reactions from the not-target responses within a single 

trial. Yann and Lotte (2010) recommend using a 12-trial interface. Therefore, beginner 

users need an average of 28 sec to spell one character. Kleih, Nijboer, Halder, and 

Kübler (2010) also suggest spending 26 sec per selection while Guger et al. (2009) 

recommend allocating 28.8 to 54 sec for one target. This fact is the main reason behind 

a major problem with the P300 Speller for untrained users, namely the low ITR that can 

be defined as the number of bits transferred per minute according to Brunner et al. 

(2011). Once the user and the classifier have been well trained, the number of trials can 

be minimized to five or even fewer for some users.  Despite this drawback, the P300 

Speller is one of the most effective and accurate BCIs used for communication purposes 

up to date.  

In this study, the spelling speed of the speller is investigated. Rather than attempting to 

increase the ITR like other studies (Schreuder, Tangermann, and Blankertz, 2009), this 

study introduce verbal and graphical versions of the P300 Speller with the aim to 

increase the number of letters spelt per minute. Similar types of communication aids are 

already available in assistive technologies stores (Figure 4.2). However, they were 

developed to be used by hands. Thus, their usage is limited to patients who are able to 

move their hands. 
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Figure 4.2. Examples of verbal and graphical communication boards (Lausd, 2007). 

 

Generally, graphical communication boards are designed for children or beginner users. 

Each sample on the board represents a word or a sentence. On the other hand, verbal 

communication boards are normally used by adults. This thesis will consider the use of 

these communication aids as BCIs by the means of the P300 Speller. In this case, the 

user will be allowed to spell a word or a sentence instead of a letter, e.g. the user could 

spell „food‟ (four letters) or „I need to see the doctor, please‟ (32 letters) in a minute. 

Seeing that these versions of the speller limit the number of words/phrases that can be 

spelled by users, we suggest using multiple screens as illustrated in Figure 4.3. This 

technique does not affect the information transfer rate; however, it increases the number 

of letters users can spell within a fixed time frame. 

Due to the paracticial limitations faced for the implementation of a graphical version of 

the speller, a similar scienario was employed with some changes. The number of rows is 

three and the coloumns is four intead of six in the original version. The intensification is 

done to each sample individually by flipping the hidden card rather than flashing the 

whole row/column (Figure 4.4). However, these changes do not affect the human 

responses to the visual stimulation 
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Figure 4.3. Multiple screens interface devised to avoid the limitations of the verbal and graphical versions 

of the P300 Speller. Users could be shown different screens by selecting specific targets. For example, 

users may like to be shown the alphanumerical speller or to another screen realted to the words normally 

used by the user at home or with his/her doctor. 

 

 
Figure 4.4. Screen shots of the flipping graphical speller. The target is highlighted in green. 

 

 

4.4.2. OpenViBE Implementation 

As noted in Chapter 2, OpenViBE is based on distributed computing techniques. 

Correspondingly, four separate scenarios are employed in this case study: 1. Acquiring 

the training data; 2. Training xDAWN filter if used; 3. Training the classifiers and then 

4.Useing the interface in real time. Each scenario is created using a number of modules 

with particular functionalities for each module. The scenario shown in Figure 4.5 is used 
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to import the data collected by the acquisition client that is connected to Emotiv EPOC, 

and to create a new EEG data set using the generic stream writer. The intensification 

configurations, e.g. the number of trials and targets, the flash duration, and the inter-trial 

delay time, can be set up using the „Flashing Sequence‟ module. The user is allowed to 

choose the target letters in advance using the „Target Letter Generation‟ module. The 

data is collected during visualizing and running the P300 Speller matrix via the „P300 

Speller Visualization‟ module for the alphanumerical and verbal interfaces or the „P300 

Magic Card Visualization‟ module for the graphical version. The three interfaces were 

designed using Glade 3 and then uploaded to OpenViBE. Data collection starts after 

pressing „a‟ on the computer keyboard. The „Identity‟ module is used only for 

connection purposes. 

 

 
   Figure 4.5. Data acquisition scenario used to collect the training data. 

 

 

Once the training data has been collected, the spatial filter xDAWN is trained, utilizing 

the scenario displayed in Figure 4.6. The collected data is passed to the „Generic Stream 

Reader‟ module. After that, signals are passed through a simple filter to remove the 

signals bellow 1 Hz or higher than 30 Hz because the normal EEG data recorded from 

adults should be in the range of 1-30 Hz (Yann et al., 2010). The „Signal Decimation‟ 

module determines the sampling rate used by the spatial filter and the classifier while 

the „Target Selection‟ module is operated to select a time frame window. Generally, the 

time frame window utilized for the P300 Speller starts just after the stimulation and ends 
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600 msec later, noting that the typical P300 response of the human brain is generated 

300 msec after the visual stimulation. The „Time Based Epoching‟ module sets the time 

intervals between epochs. On the final stage of this scenario „xDAWN Spatial Filter 

Trainer‟ is called to train the filter. The number of channels to be selected can be 

optimized. When the filter has been trained, the „Player Controller‟ module hands the 

control over to the analyst to end the running scenario and move to the next step.  

 

 
    Figure 4.6. The scenario employed to train the xDAWn filter.  

 

A further training step is required for the classifier to reach the final stage. Figure 4.7 

presents the classifier training scenario. The first steps are similar to the steps described 

earlier in the xDAWN scenario. Again, after loading the training data to the reader, it is 

pre-processed using the temporal filter. The sampling rate and epoching duration are 

confirmed and then the channels are selected using the „xDAWN Spatial Filter‟ which is 

connected to the „xDAWN Spatial Filter Trainer‟ from the previous scenario through a 

configuration file. The collected data is then processed via the „Feature Aggregator‟ 

module which is in charge of aggregating the data collected from the selected 

channels/features into one feature vector that can be used by the classifier. After that, 

the feature vector collected from the target rows/columns and the feature vector 

collected from the other non-target rows/columns are sent to the classifier using 

different input directions to train the classifier to distinguish between the target and non-

target responses produced by the user‟s brain. At the final stage an offline testing is 
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conducted. This is done by the means of k-fold cross-validation in which the data set is 

divided into k identical sized subsets. The testing is then repeated k times through 

employing a different subset for testing at a time (Liang, 2009). Next, the overall 

classification accuracy is calculated. The resulting accuracy presents a predicted 

outcome of the online performance. This technique is beneficial noting that all samples 

are utilized for both training and testing. Furthermore, each sample is tested only one 

time. Nevertheless, disadvantages do exist. That is demonstrated by the repetitive 

training process that requires k times of computation costs to make an evaluation. 

Once the classifier has been trained the interface is now ready to be used in real time in 

order to obtain validated results. The scenario designed for the online usage is more 

complicated than other scenarios as it collects the data, pre-processes it, classifies it, and 

provides online bio-feedback. As shown in Figure 4.8, this scenario imports the data 

collected by the Acquisition Client. The intensification configurations can be set up 

using the „Flashing Sequence‟ module and the user is allowed to choose the targets in 

advance using the „Target Letter Generation‟ module. The first steps are similar to the 

steps descriped earlier. The acquired data is pre-processed using the temporal filter. The 

sampling rate and epoching duration are confirmed and then the channels are selected 

using the „xDAWN Spatial Filter‟ which is connected to the „xDAWN Spatial Filter 

Trainer‟ from the xDAWN training scenario through a configuration file.  

As explained earlier in this chapter, detecting the target letter T at matrix position (х, y) 

is done through detecting the target row х and the target column y. Therefore, the path 

of this scenario is  divided  into two  directions:  one for  rows and one for  columns. 

Then each direction is also divided into six sub-paths; each sub-path receives the data 

collected according to the times when a specific individual row/column flash. The 

„Simulation Based Epoching‟ module sets the epoching duration after the stimulations. 

The collected data by theses time frames is then processed via the „Feature Aggregator‟ 

module that aggregates the data collected from the selected channels into one feature 

vector to be used in the „Classifier Processor‟ module. This module classifies the 

samples into two classes; target and non-target, and it is connected to the „Classifier 

Trainer‟ module on the training scenario through a configuration file. The predicted 

class labels form all the classifiers (for each column/row) are then passed to the „Voting 

Classifier‟ module. This simple classifier is in charge of choosing between the 

classifiers. For example, if the samples collected from two different rows were labeled 

with the  target class,  the „Voting Classifier‟ module  decides which  one of these two 
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   Figure 4.7. The scenario employed to train the classifier. 

 

samples was more active. The final results are then sent to the „P300 Speller 

Visualisation‟ module to show the feedback to the user. 

 

4.1. xDAWN Algorithm 
 

Despite other spatial filters, xDAWN focuses on the signal-to-noise ratio (SNR) rather 

than on the overall classification accuracy which is believed to be a useful procedure for 

EEG sensor selection. SNR is a measurement used to compare the meaningful 

information (desired signals) to the background noise (unwanted signals). The xDAWN 

algorithm is based on the following assumption: 

The data consists of two characteristic reactions, one is generated by the flashing targets 

and one is generated by all stimuli (target and non-target). Suppose:

NADADX  2211
, where s

N
NRX t   is the recorded data, Nt is the number of 

samples, Ns is the number of channels/sensors. SNN
RA


 1

1  are the signals synchronized 

with the target stimuli and SNN
RA


 2

2  are the responses associated with the non-target 

stimuli. 1

1

NN tRD


  and 2

2

NN tRD


  are Toeplitz matrices in which the first column 

entries are zero with the exception of the ones corresponding to the target stimuli time  
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 indexes, respectively. N1 and N2 represent the samples quantity for A1 and A2, and Nf is 

the residual noise. xDAWN assumes that the reactions generated by the target stimuli 

can be enhanced by spatial filtering, and accordingly aims to estimate Nf spatial filters 

fs NN
RU


1  to maximize the SNR that can be defined by:  
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X ̂ .  1Â  is the lowest 

mean square estimated of the not known target evoked reactions A1. As D1 A1 and D2 A2 

may overlap,  1Â  is calculated from: 
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 after 

computing the QR decompositions 
XX RQX   and 

111 RQD  . 
fN:1  is the sequence of 

the Nf individual vectors 
ẑ  that are correlated with the Nf highest individual values 

ẑ  

given by the individual value factors of 
T

X

TQBR 11  , where   is a diagonal 

matrix,   and   represent the unitary matrices and XBA T

11
ˆ  . In this case, the 

enhanced signals are specified by the following formula in the final stage: 

112211111
ˆˆˆˆˆ UNUADUADUXS 



 

 

4.2. Linear Discriminant Analysis (LDA) Algorithm 

 

LDA is a well-known data mining algorithm. It has been widely applied in numerous 

different classification problems. It is simple to use and requires a very low 

computational time. It has achieved high classification performance in different BCI 

applications: the P300 Speller (Bostanov, 2004), asynchronous (Scherer, Muller, 

Neuper, Graimann & Pfurtscheller, 2004), and multiclass (Garrett, Peterson, Anderson 

& Thaut, 2003). 
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According to Yoon, Roberts, Dyson and Gan (2011), the LDA classifier aims to 

separate the dataset into two classes using hyperplanes. The class of a sample is 

determined by the side of the hyperplane in which a sample, or as it is also called, a 

feature vector is placed on, as shown in Figure 4.9. 

 
Figure 4.9. A hyperplane created by the LDA algorithm  

to split the data into 2 classes (Yoon et al., 2011). 

 

This algorithm assumes normal distribution of the conditional probability density 

functions )0( yXP


, and mean of )1( yXP


. Based on that, samples are associated 

with the second class if the long-likelihoods ratio is smaller than scalar T:  
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4.3. Support Vector Machine (SVM) Algorithm 

 

Linear SVM is a powerful classification scheme. It was originally introduced by Vapnik 

(1998). This algorithm has been successfully applied in different BCI applications and 

general classification problems. Focusing on the P300 Speller, SVM has outperformed 

other algorithms and was the winner in the third BCI competition (Rakotomamonjy & 

Guigue, 2008).    

To classify a set of binary labeled data, this algorithm also uses a hyperplane to separate 

the data into two classes. After training the algorithm on a given dataset, the 

discriminate hyperplane is optimized and selected based on the maximum margins 

between the hyperplane and the data. This is done through transforming the data from 

the input space into feature space in which linear classification is achievable. This can 
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be achieved through accommodating outliers and allowing errors during the training 

stage (Bashashati, Fatourechi, Ward & Birch, 2007) and is shown in Figure 4.10. 

  
Figure 4.10. Graphic representation of the linear 

 SVM algorithm (Liang, 2009). 

 

SVM is mathematically formulated by the following formula to classify the data set D: 

 

m

i

n

ii yRxyxyxD 111 }}1,1{,)),),.......(,{((   

where x is the n-dimensional vector. The class name that x belongs to is represented by 

y, and the hyperplane is defined by the following equation:  

0),.......,(w 1

T  bxww n  

in which w is the weight vector: ),,(min)(  bwCw  and b is the scalar. For detailed 

description, refer to Vapnik (1998).  

 

4.5. The Research Framework for this Study 

 

4.5.1. Subjects 

Due to the fact that BCI applications are personalized systems (user-dependent), studies 

are conducted with a small number of people. For example Blankertz et al. (2010) 

conducted their study of the P300 Speller on eight users, while five people took part in 

the study conducted by Meinicke, Kaper, Hoppe, Heumann and Ritter (2002) and four 

people in the study by Sirvent-Blasco, Iáñez, Úbeda, and Azorín (2012). Similar to other 

studies, six healthy subjects, aged between 22-38 years, participated in the experiment 

for this study including two males and four females. Participants were not suffering 
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from any neurological disorders or mental health problems, and were not using any type 

of medications as these may result in abnormal patterns of the brain activity. 

Furthermore, their vision was normal and no corrections were required since the P300 

interface depends on eye gazing. 

 

4.5.2. Experimental tasks and procedure 

 

Former to the experiment, a number of people were invited to take part in this 

investigation after obtaining the ethical approval number 11/227 (Appendix A). 

Participants were given generous meals for their participation. To prepare the headset, 

few drops of saline solution were applied to properly wet a number of felt pads before 

placing the sensors in their positions of the Emotiv system that has 14 channels. After 

confirming the good contact of all the sensors, the data collection was started at a 

sampling rate of 64 Hz.  

Guger et al. (2009) explained that five minutes of recording is sufficient to train a 

classifier to detect the P300 potentials. Accordingly, one session was recorded in this 

study for each participant (approximately five minutes) for training the filter and the 

classifiers and then three sessions, similar to the ones described by Iáñez, Azorín, Úbeda 

and Ferrández (2010) were performed online for each of the three versions of the 

speller. However, two participants out of the six were invited to complete 10 online 

sessions for each version of the speller to investigate the effects of additional training on 

their performance as suggested by (Finke, 2009; Nijboer et al., 2008; Klobassa et al., 

2009). The experiment was conducted in a home in a quiet but not completely silent 

environment. During the recording sessions, each participant sat in a comfortable chair 

in front of a 14-inch monitor screen at a distance of 60 cm approximately following 

Brunner et al. (2010) suggestion. During this time, the users were instructed to attempt 

to spell ten randomly selected targets in each session through focusing their attention on 

the computer screen and count the intensifications when the columns or the row that 

contains the target character is flashed. As we used a 12-trial interface, each letter was 

intensified 24 times (12 times for the row and 12 times for the column that contain the 

letter). Hence, 28 sec was spent for each target. The employed flash duration was 0.10 

sec with an inter-trial delay of four sec, and the sampling rate was 64 Hz. Participants 

were told that loss of attention as well as any kind of movement may result in a 

significant degrading of the spelling performance. However, they were allowed to move.  
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The recorded data was passed to two machine learning algorithms, LDA and SVM. Both 

algorithms were used to classify the normalized data into either target or non-target 

samples. 20-fold cross validation technique was employed during the training phase. A 

linear kernel was used for the SVM classifier. We were also interested in the suitability 

of the xDAWN filtering method. In a second learning run, we applied this pre-

processing technique before passing the filtered data to the two learning algorithms. For 

this setup, the parameters of LDA and SVM remained unchanged.  

 

4.5.3. The Study Framework 

 

 

Figure 4.11. The proposed framework for this study. 

 

The proposed framework for this study is presented in Figure 4.11. The experiment 

starts with using OpenViBE implementation of the P300 Speller where the visual 

stimuli (1) are generated and presented in turns to the six participants (2) who are 

located in a domestic environment and attempting to spell ten random samples in each 

session. Then, the electrical responses to the visual stimuli produced by their brains are 

measured using EEG headset, namely Emotiv EPOC (3). The collected data (4) contains 
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both target samples that are represented by peak curves (generated when the target letter 

is intensified) and non-target samples (generated when non-target letters are intensified). 

The data is pre-possessed and filtered using the spatial filter xDAWN (5) which is used 

to identify the useful sensors and clean the redundant data. When the data is ready it is 

then sent to the classifiers, LDA and SVM (6). The data recorded in the first session is 

used only for training the filter and classifiers. The online validation starts from the 

second session and the data is then fed to the classifier for training. The offline accuracy 

and the required level of training are the output of the offline testing. Accordingly, the 

online testing shows the obtained validation accuracy and sends a biofeedback to the 

users (7) to let them know whether the target sample was correctly detected or not. This 

procedure is repeated a number of times for each participant using the alphanumerical, 

verbal and graphical versions of the speller. 
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Chapter 5: Design of Experiments, Analysis of Results and 

Discussion 

 

In this chapter, the results obtained from the experiment are presented, analysed and 

discussed. First, the outcomes of the spatial filtering are shown in section 5.1. That is 

followed by evaluation of Emotiv‟s performance when detecting the P300 brain signals. 

Furthermore, the effects of training are discussed in section 5.3. The results of the 

Alphanumerical, verbal and graphical spellers are presented in section 5.4. Detailed 

Experimental results are presented in Appendix B. Comparisons between the classifiers, 

the offline and online accuracies, and between the overall results and the result of the 

target class are performed in sections 5.5 and 5.6. Section 5.7 investigates the 

differences in users‟ performance related to their P300 brain waves, motor movements 

and attention/fatigue. 

 

5.1. xDAWN Spatial Filtering Outcomes 

As reported in Chapter 3, the xDAWN filter was tested only by its developers, Rivet et 

al. (2011). Their experiment was undertaken on the P300 Speller in which xDAWN 

succeeded to reduce the number of channels from 32 to 10, with nearly the same 

classification success rate of 94% and to five channels only with a similar performance 

of 92% success rate. However, the experiment was conducted using a medical EEG 

recording system that had 64 electrodes with additional locations, hence, their results are 

not comparable to this study. 

In order to choose the number of channels to be employed in this experiment, the 

classifiers were tested offline using different numbers of channels selected by xDAWN 

filter. The results are presented in Table 5.1 which shows the LDA and SVM 

performance using ten, six, three, two and one sensor.  

Table 5.1  

The performance of the classifiers, LDA and SVM, with different numbers of channels selected using 

xDAWN filter on participant# 1 data (first session). Results are collected using the alphanumerical speller 

Channel # LDA SVM 

10 channels 91.11% 91.93% 

6 channels 93.43% 93.12% 

3 channels 95.54% 92.89% 

2 channels 95.43% 93.28% 

1 channel 59.93% 62.16% 
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The best performance of the classifiers is obtained when two or three channels are 

selected. The accuracy drops sharply when using only one channel. Therefore, the 

xDAWN filter was trained in order to detect two channels for each participant. The 

selected two channels for all participants are identical, channels O1 and O2 as shown in 

Figure 5.1. These results are not surprising, since the location of O1 and O2 is close to 

the visual cortex, the brain area where the P300 signals are generated, as indicated 

previously in Chapter 2. 

 

 

Figure 5.1. The two selected channels for all participants are highlighted in red. 

 
 

The selected channels were compared to the channels employed in other studies. Zhang, 

Zhao, Jin, Wang
 
and Cichocki (2012) confirm the validity of the affected area of the 

brain by the scalp topographies recorded from the participants 300 ms after a P300 

visual stimulation and non-target stimulation. Figure 5.2 shows the activated area in 

colour red. Similarly, the interface presented in (Middendorf, McMillan, Calhoun, & 

Jones, 2000) employs the 
1O  and the 

2O  channels.  The system performance was tested 

on eight users and it reached an average of 92% correct selections. 

 

 

Figure 5.2. Scalp topographies recorded 300 ms after a target visual stimulation (top row) 

compared to the ones recorded 300 ms after a non-target stimulus (Zhang et al., 2012). 

 

However, additional channels are employed over the central area of the cortex (e.g. C3, 

C4, Cz and Fz) by Sirven-Blasco, Iáñez, Úbeda, and Azorín (2012) as a result of the 

topographic map recorded in their study which shows the evolution of the contribution 

2O  
1O  
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of VEPs in the human brain in the 400 ms after a visual stimulation. Figure 5.3 

represents the activated area of the brain in colour red. 

 

 
 

 
Figure 5.3. Evolution of the contribution of VEP in the human brain as presented by Sirven-Blasco et al. 

(2012). 

 

 
 

The impact of the additional xDAWN filtering appears less significant in this study. 

Generally, the filter reports only slightly increased training accuracies compared to the 

unfiltered data as presented later in this chapter (up to +7%). However, the application 

of xDAWN shows noticeable effects on the performance of participants #3 and #4 as 

presented in Figures 5.4 and 5.5. The performance of participant#3 is even lower when 

the filter is used. This might be resulted of losing some meaningful information by 

minimizing the number of channels. However, participant #3 is reported as a potential 

outlier as discussed in section 5.2. In contrast, the performance of participant #4 

increases remarkably with using the filter, up to +18%. 

 
Figure 5.4. The average of participant #3 performance when using xDAWN  filter and without filtering. 

 

 
Figure 5.5. The average performance of participant #4 when using xDAWN filter and without filtering. 
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Regardless, the filtering has a clear effect on the computational costs of the training 

process. Since the filter selects a subset of the channels for classification, the 

computational time is significantly decreased from 43 minutes to 4 minutes and 56 sec 

when the filter is used with the SVM classifier. In the same way, the computational time 

taken by the LDA classifier for training is about 25 sec when using 14 channels while it 

takes less than 4 sec when using the xDAWN filter. Additionally, the preparation time 

taken to install 14 channels is 2-3 minutes comparing to approximately 30 sec to prepare 

the headset with only two channels which is helpful for everyday usage.  

5.2. Exploring the Emotiv Capability to Detect P300 Brain Waves: 

Brain Activity Data are Recorded from the Participants within 600 ms 

of the Visual Stimulation 

 

In this section, the recorded responses of the participants to the visual stimulation are 

presented and compared to the typical shape of the P300 control signal, shown in Figure 

5.6. The higher the amplitude of the peak generated by the target letter stimuli, the 

higher the chance to detect the target letter and achieve the desirable success rate. In 

contrast, the accuracy falls when the gap between the target signal and non-target signal 

is smaller due to the lower amplitude of the target signal as explained by Escolano, 

Antelis and Minguez (2009). 

The participants‟ responses to the target visual stimulus are presented and compared to 

the one generated by a non-target stimulus in Figure 5.7. The P300 signal is recorded 

from each of the six participants. Each diagram shows a target and a non-target EEG 

signal recorded immediately after the onset of the visual stimulus, e.g. a flashing target 

letter, word or image. Since the P300 signal is assumed to be most prominently 

observable at around 300ms, we show here the signals over a time window of 600ms.  

 

 

Time (msec) 

     Figure 5.6. Typical course of the P300 control signal generated by a target letter (in red)  

     and a non-target letter (in green) (Escolano et al., 2009). 
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Figure 5.7. The course of P300 signals recorded from each participant. The target signals (red solid lines) 

are visibly distinguishable from the non-target ones (blue dashed lines). Sampling rate in this case is 

32Hz, therefore 0.6sec×32Hz=19 discrete time points are obtained within the 600ms of recording. 

 

Regarding Emotiv EPOC, these figures evidence the capability of this system to detect 

the P300 signals, suggesting its suitability for a P300-based BCI. As it can be seen from 

the figure, the responses of the participants to the visual stimuli varies from one to 

another. Each human brain is unique and hence the different responses to stimulations. 

Accordingly, some researchers such as Yang et al. (2011) have employed the P300 brain 

waves for person identification applications.  
 

For most participants involved in this study, the target signals are remarkably 

distinguishable from the non-target ones. Clearly participants #1 and #4 respond 

strongly to the visual stimulus. Accordingly, they achieved the highest classification 

accuracies among the tested scenarios, reaching a peak accuracy of over 90% in some 

cases as reported later in this chapter. In contrast, the amplitude of the signals generated 

by participants #3 and #6 is low and not as distinguishable from the non-target signals as 

other users, resulting in a very low performance of one of them as shown previously in 

this chapter. The participant was able to spell one letter out of ten in some sessions and 

achieved a better performance when using the complete set of 14 electrodes.  
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This reflects a potential problem in BCI applications introduced by Brendan and Neuper 

(2010) in their study “could anyone use a BCI?” in which they investigate a new 

phenomena called „BCI illiteracy‟. According to their review, 10-20% of people will not 

be able to use a P300-based BCI as they are not capable to produce a distinguishable 

response to target stimuli no matter how long the training is. This estimation might be as 

high as 15%-30%, as suggested by Vidaurre and Blankertz (2010). Various responses of 

different users reported in a previous work are displayed in Figure 5.8. More examples 

of different shapes of the P300 brain wave are given by Sellers et al. (2006). 

 

 
Figure 5.8. The responses from two subjects within 500 ms of target stimuli: the right panel displays a 

weak response from a person who was illiterate with the P300 BCI whereas the left panel illustrates a 

strong response to the stimulation (Brendan et al., 2010, p.41). 

 

This problem needs to be investigated. One way to solve it is by improving the 

classification algorithms. This has been heavily pursued over major data analysis 

competitions; see for example Wang et al. (2004). However, this probably reduces but 

does not eliminate BCI illiteracy as it cannot help the user who is not able to generate 

any detectable brain activity to distinguish different states.  

Further steps can be made towards customising the classification algorithm for each user 

due to the fact that humans‟ brains produce slightly different activity patterns. 

Regarding the collected data in this study, these differences are reflected by the different 

times when the participants produced responses to the stimuli. A simple way to improve 

the accuracy in this case could be user-specific evaluation to specify when the P300 

responses are typically apparent, e.g. 300-500 ms after the stimulus, in order to exhibit a 

strong differences between the samples that belong to different classes. 

Exploring different neuroimaging methods is another way to address the problem. Over 

80% of BCI applications are EEG-based as stated by Mason, Bashashati, Fatourechi, 
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Navarro and Birch (2007). Despite that, no articles were found that investigate whether 

a specific person who is illiterate with an EEG-based BCI is able to perform better using 

different approaches.  

Employing spelling-error correction methods might represent a valuable addition to the 

P300 BCI and help reduce the error rate and prevent spelling meaningless commands 

(Tan & Nijholt, 2010). Nevertheless, these systems are not useful for a user who is 

unable to convey anything in the first place.  

The best approach to solve this problem could be to employ brain signals that are 

detected more easily. A considerable success is presented by Nikulin, Hohlefeld, Jacobs 

and Curio (2008). This can be achieved through three ways:  

1. By improving the interface, e.g. by changing the colour of the intensified letters to red 

instead of white.  

2. By switching to another approach. Further research on BCI demographics would help 

to identify the appropriate approaches. For illustration, a person who is illiterate in 

German or Arabic might be fluent in English. In the same way, a person who has strong 

abilities in dance, sports or other movement-oriented hobbies is expected to perform 

better using motor-imagination BCI applications. On the other hand, people who 

perform well on computer games or visual attention tests might achieve higher accuracy 

when using the P300 BCI (Brendan et al., 2010). For instance, Allison et al. (2010) 

found that older participants performed worse using visual evoked potential BCI.  

3. By developing novel BCI approaches or through investigating new control signals. 

This could be achieved by joint projects between neuroscientists and computer 

researchers. 

 

5.3. Exploring the Importance of the Number of Training Sessions 

 

Guger et al. (2009) claim that one training session for around five minutes is sufficient 

to achieve a satisfying spelling accuracy. However, other researchers, e.g. Iáñez, Azorín, 

Úbeda and Fernández (2010), do not agree. The goal of our first experiment is to 

identify how many training sessions are needed for a satisfying classification 

performance. Each training session requires approximately five minutes. During this 
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time, the user has to focus on the computer screen and follow the BCI scenario. Losing 

attention may result in a significant degrading of the spelling performance. Therefore, it 

is desirable to keep the training time as short as possible, such that the user remains 

motivated and focused on the given task.  

Participants #5 and #6 were invited to undertake ten consecutive training sessions in 

which we monitored the users training and validation accuracies. Studies investigating 

similar BCI scenarios reported that ten training sessions are generally sufficient to 

observe the effects of training using the P300 spelling paradigm (Klobassa et al., 2009). 

The data recorded from the two participants during the ten training sessions was passed 

to two machine learning algorithms, the LDA and the SVM. Both algorithms were used 

to classify the normalized data into either target or non-target samples. 

 The results of the three versions of the speller, alphanumerical, verbal and graphical, 

are shown in Figures 5.9, 5.10, and 5.11. It is worth noting that the online accuracy 

presented here is the accuracy of the target class only unlike the training accuracy that 

reflects the overall accuracy, hence it is more stable. Further discussion on this subject is 

provided in section 5.4. 

 

 

Figure 5.9. Training and online accuracies over 10 sessions using either the LDA (top diagrams) or the 

SVM (bottom diagrams) classification methods. Results were recorded from participant #5 (left diagrams) 

and participant #6 (right diagrams) on the alphanumerical speller. 
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Figure 5.10. Training and online accuracies over 10 sessions using either the LDA (top diagrams) or the 

SVM (bottom diagrams) classification methods. Results were recorded from participant #5 (left diagrams) 

and participant #6 (right diagrams) on the verbal speller. 

 
Figure 5.11. Training and online accuracies over 10 sessions using either the LDA (top diagrams) or the 

SVM (bottom diagrams) classification methods. Results were recorded from participant #5 (left diagrams) 

and participant #6 (right diagrams) on the graphical speller. 

 

 

The diagrams show the evolution of the training and validation accuracies in over the 

ten consecutive training sessions. The left and right plots show the results for participant 
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#5 and #6, respectively. For each participant, the results using the LDA and the SVM 

classifiers are presented (top and bottom plots). Independent of the employed learning 

method, it can be clearly observed that the training accuracies do not increase any 

further after approximately three training sessions when using the alphanumerical 

version of the speller (Figure 5.9). In the case of the LDA training, a similar observation 

can be made for the validation accuracies. From session #0 to session #2, we notice a 

sharp improvement of the user‟s performance, however, in the remaining sessions the 

results vary significantly. Longer training does not reflect a well defined modality. The 

training process with the SVM appears slightly slower and the validation performance 

of the users seems to benefit from more training sessions. Similar observations can be 

made for the verbal and graphical spelling paradigms investigated here. A potential loss 

of attention or motivation and fatigue could explain the high variability of the validation 

accuracies in later sessions as well as other reasons mentioned in sections. From the 

obtained results, we conclude that a larger number of training sessions is not always 

beneficial. In fact, after only three sessions, the two users reported a satisfying ability to 

operate the P300 Speller. For the other participants in this study, we will use only three 

training session for each of the three BCI scenarios, similarly to Iáñez et al. (2010).  

Iáñez et al. (2010) evaluate a BCI application on six people. The interface developed in 

their study demonstrates an attempt to control a robotic arm for writing/drawing 

purposes, and it is based on motor imagination. Similarly to this study, their findings 

reflect a remarkable improvement between the first and the second sessions in two 

classes (the rest state class and the right class); however, the performance shows a 

considerable drop in the third session. Nevertheless, this does not apply to the third 

class, left class, which presents an opposite trend as shown in Figures 5.12 and 5.13. 

 
Figure 5.12. The performance of six participants using motor imagination BCI over three sessions. The 

figure represents the left class (Iáñez et al., 2010, p.1242-1243). 
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Figure 5.13. The performance of six participants using motor imagination BCI over three sessions. The 

figures represent the rest state class on the top and the right class on the bottom (Iáñez et al., 2010, 

p.1242-1243). 

 

Nijboer et al. (2008) observed the performance of 10 users using auditory and visual 

P300 BCIs; the findings of their study are shown in Figure 5.15. The diagram illustrates 

the fluctuation in users‟ performance over 12 sessions of training. The outcomes from 

the study by Klobassa et al. (2009) are similar as displayed in Figure 5.14. Again, the 

figure does not reflect a well defined modality regarding the density of training after two 

sessions. The results are obtained from eight users over ten sessions using the typical 

P300 interface. Regardless, both figures indicate a variation in the users‟ performances.   
 

 
Figure 5.14. The means of  accuracies obtained from eight participants over 10 sessions, using the typical 

P300 BCI (Klobassa et al. 2009 p.1256). 
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 Figure 5.15. The means of the accuracies obtained from 10 contributors over 12 sessions, using auditory 

and visual P300 BCI (Nijboer et al., 2008, p.1913). 

 

5.4. The Design of Alphanumerical, Verbal and Graphical Spellers 

 

 

In this section, the results obtained from the P300 Alphanumerical Speller are presented. 

The goal of our first experiment is to further evaluate the feasibility of the Emotiv 

system as an input scheme for a communication BCI application through comparing the 

study results with the outcomes of other research conducted on the P300 interface using 

advanced EEG devices. Additional objective is to compare the results of the 

alphanumerical, verbal and graphical versions of the speller.  

The results of this experiment report significant differences between different 

participants. Excluding participant #3 who appears as potential BCI illiterate as 

discussed in section 5.2, the performance of all the users is reasonable, with a mean of 

84% success rate for the offline training and an average of 60.5% overall accuracy for 

the online validation using the LDA classifier with the xDAWN filter (Figure 5.16). It is 

worth mentioning that the performance of the participants is correlated, in most cases, 

with the strength of their responses to the visual stimuli as shown previously in Figure 

5.7. As it can be seen, participants #1 and #4 have the best performance among the 

participants while participant #3 reflects a clear outlier. 

Concerning the Emotiv headset, the accuracies obtained using this system are 

comparable to those presented in other studies where expensive medical EEG recording 

systems were used by experts. For example, the performance of six users was evaluated 
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on the P300 Speller designed by the BCI2000 platform in Nijboer et al. (2008), using 16 

Ag/AgCl electrodes and the Weighted Complete Linear Discriminat Analysis 

(WCLDA) algorithm. The stated offline results are in the range of 69% to 91%, with a 

mean of 78%, while the online results shown are in the range of 50% to 87%, with a 

mean of 65%. Another study done by Sirvent-Blasco et al. (2012) was undertaken with 

four participants using the well known g.tec system with 16 sensors. Their results are 

similar to the results from this study. The users were able to use the P300 Speller to 

conduct online search operating the Google search engine, with a success rate of 60% to 

93% and mean of 76% using five channels. In that experiment the Stepwise Linear 

Discrimnant Analysis (SWLDA) was used to classify the data. Nevertheless, studies that 

allowed longer time for a selection (with more trials of flashing stimulation leading to 

lower spelling speed, e.g. 1.5 letter per minute) or used modification techniques, such as 

combining P300 potentials with motion onset visual evoked, achieved higher rates; see 

for example Kleih, et al. (2010), and Jin, Allison, Wang, and Neuper (2012), noting that 

the relation between the ITR (spelling speed) and the interface accuracy is inverse as 

shown in Figure 5.17. 

 

 
(a) Training mode                                                    (b) Online validation mode 

Figure 5.16. Individual accuracies obtained from six participants after three successive training and online 

validation sessions. The colours of the bars indicate whether the xDAWN filter was used to pre-process the 

recorded EEG signals. The figures present the results collected from the alphanumerical speller, and the online 

accuracy is a reflection of the target class accuracy unlike the training accuracy that represent the overall 

performance. 
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Trial # 

         Figure 5.17. The inverse relationship between the ITR (spelling speed)  

         and the interface accuracy (Jin et al., 2012) 

 

 

As presented in Figures 5.18 and 5.19, the users‟ performance when using the verbal 

and graphical versions of the speller is very similar to the obtained results when using 

the typical alphanumerical speller, with a mean of 82% and 74.5% success rate for the 

online and offline accuracies respectively, using the verbal version with the LSA and 

xDAWN processing methods (excluding the results of participant #3). Similarly, the 

spelling accuracy reached by the participants has a mean 82% success rate for the 

offline training and a mean of 68% overall accuracy for the online validation using the 

LDA classifier and xDAWN spatial filter (excluding the results of participant #3). 

Accordingly, the use of these new versions of the speller is highly recommended for 

increasing the number of letters spelt per minute. 

As stated previously, different from the training accuracies that demonstrate the overall 

performance, the online accuracies shown in the figures represent the accuracy of the 

target class only, which is more important than the overall accuracy. However, a 

considerable drop is noticed between the overall accuracy and the accuracy of the target 

class, and also between the training and validation results. These observations are 

compared to previous work in section 5.5. 
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(a) Training mode                                             (b) Online validation mode 

Figure 5.18. Individual accuracies obtained from six participants after three successive training and online 

validation sessions. The colours of the bars indicate whether the xDAWN filter was used to pre-process the 

recorded EEG signals. The figures present the results collected from the verbal speller, and the online accuracy 

is a reflection of the target class accuracy unlike the training accuracy that represents the overall performance. 
 

 
(a) Training mode                             (b) Online validation mode 

Figure 5.19. Individual accuracies obtained from six participants after three successive training and online 

validation sessions. The figures present the results collected from the graphical speller, and the online accuracy 

is a reflection of the target class accuracy unlike the training accuracy that represents the overall performance. 
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5.5. A comparison between the Online and Offline Performance, and 

between the Accuracy of the Target Class and the Overall Accuracy 

 

The obtained results in this study indicate a noticeable decline and fluctuation in the 

online performance when compared to the offline outcomes which appear finer and 

stable (Figure 5.17). Previous experimental studies such as (Klobassa et al., 2009) and 

(Finke, Lenhardt, and Ritter, 2009) have similar conclusions as illustrated in figures 

5.15 and 5.18. Further investigation is required in the future work to provide a clear 

explanation behind these outcomes. 
 

 
Figure 5.17. A comparison between the mean accuracy of the online and offline results obtained from six 

users in this study using the alphanumerical P300 Speller, xDAWN filter and LDA classifier, over three 

sessions. 
  

 

 
Figure 5.18. A comparison between the mean of the online (in red) and the offline results (in blue) 

obtained from 11 users using the P300 Speller over four sessions (Finke, 2009, p.1332). 

 

 

It is also noticeable that the recorded accuracy of the target class is lower comparing to 

the overall accuracy in this study (Figure 5.19). The explanation of this fact is related to 

the significant imbalance between the two classes‟ sizes. The target samples represent a 

small part, 16.67%, of the dataset while the non-target samples are 83.33%. 

Furthermore, the chance percentage to correctly classify the target samples and detect a 

target letter is [1/(6 rows6 columns)]100= [1/36]100= 2.78%  while the chance 

percentage to correctly classify a non-target letter is (35/36)100= 97.22%, using the 

alphanumerical and verbal spellers. Generally, BCI studies reveal only the overall 

accuracy. However, BCIs‟ users would not be satisfied if the interface overall accuracy 
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is over 90% when the real spelling accuracy they can achieve is as low as 35%, for 

example. Therefore, we recommend future BCI studies to focus on the accuracy of the 

target class to demonstrate the realistic accuracy offered to the potential users, and to 

form a better performance metric for comparing the different applications presented in 

different studies. 
 

 

 
Figure 5.19. A comparison between the accuracy of the target class and the overall accuracy obtained 

from six users using the three versions of the P300 Speller achieved in this study.  

 

 

5.6. Performance of the Classifiers 

 

The LDA and SVM classifiers were employed in this investigation. According to the 

results, the performances of the two classifiers were similar. However, the learning 

process of the SVM appears slightly slower and the validation performance of the users 

seems to benefit from more training sessions. In the same way, the SVM algorithm takes 

longer to train, namely 5 minutes comparing to less than 4 sec for the LDA algorithm. 

Due to the faster learning ability of the LDA classier and the reduced computation costs, 

the LDA classifier is preferred.  

It is worth indicating that the LDA classifier has achieved high performance in different 

BCI applications (Scherer, Muller, Neuper, Graimann & Pfurtscheller, 2004; Garrett, 

Peterson, Anderson & Thaut, 2003). It was also elected as one of the winner algorithms 

in the BCI competition II in the P300 Speller (Bostanov, 2004). 

 

5.7. The Impact of Motivation and other Factors on Users’ 

Performance and their Ability to Control the Interface 

 

In this section, the participants‟ ability to operate the P300 BCI is discussed. It was 

expected that the users would achieve similar accuracies in the same experimental 
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setups. However, the differences between the users‟ performances turned out to be 

significant. Therefore, the reasons for these differences are considered in this section. As 

concluded previously, the performance of the participants is correlated, in most cases, 

with the strength of their responses to the visual stimuli (their P300 brain signals) as 

shown previously in Figure 5.7. However, some other factors are observed to affect the 

performance of the users as well. These factors include motivation, movements and 

fatigue.   

It was noticed that users‟ performance is associated with their motivation, attention and 

motor movements. As described in the methodology, participants were allowed to move 

but were informed that movements impact the spelling accuracy negatively. 

Remarkably, motivated contributors such as users #1 and #4 tend to be still/motionless 

and more attentive to the interface. Accordingly, they achieved better performance as 

shown previously in this chapter, in contrast to participants #2 and #6. In addition, it 

was obvious that participant #5 was also motivated; however, the high expectation of 

the interface performance that did not match the spelling accuracy the participant could 

reach over long recording sessions result in losing the interest. In the same way, Kleih, 

et al. (2010) signify the effects of users‟ motivation on their spelling success rate by 

showing stronger responses of the highly motivated users were reflected by their 

recorded P300 brain waves (Figure 5.20). 

 
Figure 5.20. A comparison between the amplitudes of the P300 brain waves recorded from highly 

motivated users and low motivated users, noting that the amplitude is inversed here (Kleih, et al., 2010). 

 

Regarding participant #3, although the participant was completely still during the 

recording sessions, this volunteer is considered to be BCI illiterate. It was observed that 

this participant‟s performance was associated with tiredness and fatigue. As stated by 

the participant, the P300 BCI “can be useful for hypnotism”. Murata, Uetake and 

Takasawa (2005) suggest that the P300 interface might cause mental fatigue, loss of 
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productivity/capability and of willingness to effort. They recommend future studies to 

investigate this problem through a well defined methodology seeing that it is difficult to 

assess the level of the mental fatigue. 

Other factors were also investigated in related works. For example, Kaufmann, Vögele, 

Sütterlin, Lukito and Kübler (2012) identified a significant predictor for a user 

performance in the P300 BCI, namely the heart rate variability (HRV). Yueqing (2009) 

found that the interface performance is associated with the screen size, reporting lower 

performance using a smaller screen size. Another study by Guger et al. (2009) observed 

a direct correlation between the sleep hours and the users‟ performance. Poor sleepers 

who sleep for less than eight hours a day reflect lower performance as indicated in their 

results. 

Despite that, the noticed impacts of motivation, attention and fatigue in this study are 

based on subjective observations. Hence, further investigation is required to test the 

validity and extent of these factors through a well defined quantitative methodology. 

 

5.8. Conclusion and Analysis of Results 
 

In this chapter, a case study was conducted on six participants to evaluate the feasibility 

of Emotiv EEG recoding system as an affordable input method for the design of 

communication BCIs. Additionally, we aimed to evaluate the usability of verbal and 

graphical versions of the P300 spelling paradigm to increase the number of letters spelt 

per minute.  

The LDA and SVM classifier were employed in this experiment. The best performance 

of the classifiers was obtained when two/three channels were selected using xDAWN 

filter. Despite that, the impact of the additional filtering appears less significant. 

Generally, the filter reports only slightly increased training accuracies compared to the 

unfiltered data. Regardless, the filter has a clear effect on the computational costs. Due 

to the faster learning ability of the LDA classifier and the reduced training time, it is 

preferred in this study.  

In terms of Emotiv feasibility, this system has evidenced its capability to detect the P300 

brain waves used to control the P300 Speller. Furthermore, the accuracies obtained 

using the headset are comparable to those presented in other studies in which expensive 
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medical EEG recording systems were used by experts. The results suggest that Emotiv 

is suitable for a P300-based BCI.  

The users‟ performance using the verbal and graphical versions of the speller is similar 

to the obtained performance using the typical alphanumerical speller. Accordingly, the 

use of these new versions is highly recommended to increase the number of letters spelt 

per minute in basic communication aids.  

The results show significant differences between users performance. Thus, the shape of 

their brain activity pattern recorded within 500 ms of the visual stimulation, as well as 

other factors were considered. For most participants involved in this study, the target 

signals are remarkably distinguishable from the non-target ones. However, a sample of 

BCI illiterates is reported. To summarise, the interface performance is affected 

positively by a higher amplitude of the P300 brain waves and users‟ motivation; 

however, it is affected negatively by the loss of attention, motor movements and mental 

fatigue. 
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Chapter 6: Conclusion and Future Directions 
 

In this chapter, the whole study is outlined and its major outcomes are summarised. 

Furthermore, the strengths and limitations of the presented thesis are highlighted. 

Finally, potential future directions are indicated. 

 

6.1. Conclusion 

BCI represents a remarkable research field that is rapidly growing. However, most 

recent BCI applications are a long way from reaching the main goals of this field, e.g. 

controlling devices at the speed of thoughts. Still, some available applications perform 

well enough to be used by the public. Despite that, their usage is restricted to 

laboratory‟s conditions, mainly as a result of the expensive equipments used to acquire 

brain data that require expertise to be used. In this thesis, a case study has been 

undertaken to evaluate the feasibility of Emotiv EEG recording system as an affordable 

input method for a real-time communication BCI that is simple to be used by people 

who have no knowledge of neuroimaging technologies. An additional aim is to evaluate 

the usability of verbal and graphical versions of the P300 spelling paradigm, in order to 

increase the number of letters spelt per minute.  

A literature review on brain-computer interfaces has been accomplished, taking into 

consideration the fundamental concepts of BCIs, the history of this technology and the 

latest developments. Attention has been paid to the recently available technologies that 

can be used to design and implement a usable online interface. Finally, a comparison 

between the outcomes of this study and previous work in the field was performed. 

The experimental study was conducted on six participants who attempted to operate 

three different versions of the speller using Emotiv system. Ten sessions were 

performed by two users for each version of the speller to investigate the amount of 

training required to reach good performance, while three sessions were recorded with 

the rest of the participants. 

The LDA and SVM classifier were employed in this experiment. The best performance 

was obtained when two to three channels were selected using xDAWN filter. The LDA 

classifier was superior in view of the learning ability and the computational costs.  

However, the longer training does not reflect a well defined modality.  
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In terms of Emotiv feasibility, the results evidence the capability of this system to detect 

the P300 brain signals and its suitability for a P300-based BCI. The accuracy obtained 

using the headset is comparable to those presented in other studies in which expensive 

medical EEG recording systems were used by experts. Regarding the verbal and 

graphical spelling paradigms, the use of these new versions is recommended to increase 

the number of letters spelt per minute in basic communication aids.  

The results show significant differences between the brain activity patterns recorded 

from individual users within 500 ms of the visual stimulation, and accordingly on their 

performance. For most participants involved in this study, the target signals are 

considerably distinguishable from the non-target ones; however, a potential sample of 

BCI illiterates was identified. To summaries, the interface performance is affected 

positively by the higher amplitude of the P300 brain wave and users‟ motivation; 

however, it is affected negatively by the loss of attention, motor movements and mental 

fatigue although that the effects of the motivation, attention, movements and fatigue are 

based on subjective observation, hence, further investigation is suggested. 

This thesis aimed to answer four research questions formulated in section 1.3. The first 

question was about how BCIs work and what difficulties they present in practice use. 

The first question was answered in the review presented in chapter 2 and 3, and also 

through the implementation of the P300 spelling paradigm using OpenViBE. The 

second question was whether everybody could learn to control a P300-based BCI. The 

results obtained from the experiment showed that not everybody can learn that as 16% 

of the participant were considered BCI illiterate in this study. The third question 

concerned the feasibility of using the Emotiv EPOC system under realistic conditions. 

Findings demonstrate its capability to detect the P300 control signals, suggesting its 

suitability for a P300-based BCI. The last objective was to find a way to increase the 

number of letters that can be spelled per minute using the P300 BCI. Accordingly, this 

thesis introduced the multiple-screen verbal and graphical spilling paradigms and 

evidenced normal performance (i.e. similar to the performance achieved using the 

typical alphanumerical speller) among the participants.   

 

6.2. Contributions of the Study 
 

The contributions and the strengths of this study are summarised in the following points: 
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Most of the previous studies on BCIs are carried out on offline mode that contrasts the 

definition of a BCI system: a real time interaction system that opens a direct 

communication channel between the human brain and computers (Tan et al., 2010). 

Additionally, the offline processing setups are conducted by analysts who observe the 

statistics of the data across entire sessions, with the aim of fine-tuning the algorithms. 

However, this does not align with the inherently non-stationary nature of the brain data, 

leading to a reduction in the interface performance in real-time. In contrast, this study is 

conducted on a real-time closed-loop BCI, since only online analysis can yield solid 

evidence of the performance. 

The EEG datasets employed in BCI studies are often provided by a third party, usually 

medical institution or EEG experts, and are not collected during the study. In contrast, 

the data used in this study was collected by the researcher. 

Generally, the brain data is collected under silent laboratory experimental conditions 

where the participants are required to remain completely focused on the interface in 

order to avoid the negative effects of artifacts. However, the interface designed in this 

study was tested under realistic conditions (domestic environment) where the 

contributors‟ behaviour was not controlled. 

Additionally, the available EEG datasets provided by medical institutions are recorded 

using highly expensive medical recording devices that require long preparation time. In 

contrast, this study has introduced a real-time interface that is affordable for disabled 

people, and useful for daily usage. According to the findings of this study regarding the 

P300 Speller, Emotiv EPOC (originally created for computer games) can replace the 

expensive EEG systems that are unsuitable for public usage for several reasons. 

In order to boost the number of letters that can be spelt per minute using the P300 

Speller, previous studies attempted to increase the number of bits transferred per minute 

which is complicated. In this study, a simpler approach was presented. The number of 

letters spelt per minute can be remarkably improved through a verbal or a graphical 

version of the interface and by using multiple matrixes. In this case, the user is enabled 

to spell three words or sentences in a minute instead of three letters with the typical 

alphanumerical P300 Speller. In addition, a paper is in preparation to be submitted to the 

NCEI workshop (8
th

 June 2012) and to be published by Springer. 
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6.3. Limitations of this Study 

 

The limitations of this study are summarised in the following points: 

Although the comparison between the Emotiv system and medical EEG electrodes is 

comprehensive, it could be stronger if it had been conducted with the same scenario 

using OpenViBE and the same experimental setups, as part of this thesis. The results of 

other studies, which were compared to our results, were performed under different 

platforms and different setups. However, this study had limited recourses that led to this 

limitation.  

In addition, the focus was limited on the P300 Speller in this thesis. However, Emotiv 

capability to detect P300 brain waves does not necessarily mean it could capture more 

complex patterns of the brain activities for general BCI applications. 

 

6.4. Future Directions 

 

Based on the limitations of this study and some other studies on BCIs, we conclude with 

a number of issues that need to be considered in future work: 

It is recommended to evaluate the feasibility of Emotiv EPOC to detect different 

patterns of brain activities, e.g. motor imagination. We would suggest that results from 

future work be compared in a comparative style with results obtained from medical EEG 

systems under the same experimental setups. 

As it was clarified in this thesis and other studies on the P300 Speller, the P300 brain 

waves that are generated by the target stimuli may not be produced 300 ms after the 

stimulation. Some users show faster response while others present lower speed 

responses. Therefore, it is advised to employ a temporal filter in order to apply a 

personalized time frame that can be modified according to related factors such as 

training and the user‟s alertness. 

Although the simple classification algorithms, SVM and LDA used in this study, had a 

reasonable performance in this experiment, results could be improved using recent more 

advanced approaches to suit the high level of complexity in EEG data. As suggested by 

Kasabov (2012), spectral spatio-temporal data (SSTD) analyzing methods is well 
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aligned with EEG‟s features, as they enable the analyst to describe each sample of the 

data by a triple matrix. SST processing algorithms have shown their capabilities to 

integrate different dimensions including frequency, time and special space, e.g. for 

processing fMRI brain data (Sona, Veeramachaneni, Olivetti & Avesani, 2011).  

Traditional Artificial Neural Networks (ANNs) are a widely used method for processing 

SST data, although these techniques often over simplify the temporal dimension. 

However, the new generations of ANNs, e.g. evolving Spiking Neural Networks 

(eSNN), have the potential to encode both spatial and temporal events through trains of 

spikes transmitted at particular times to express the temporal dimension among spatially 

located synapses and neurons to demonstrate the spatial dimension of the input data 

(Figure 6.1). Spiking neurons are connected through weights that have a complex 

dynamic behaviour to form an SSTD memory. Despite the complexity of the liquid state 

machine, reservoir computing techniques have also demonstrated better performance 

than simple classifiers; see for example (Schliebs, Hamed & Kasabov, 2011; Maass, 

Natschlaeger & Markram, 2002; Schliebs, Nuntalid & Kasabov, 2010; Kasabov, 

Dhoble, Nuntalid & Mohemmed, 2011).   

In relation to the large amount of noise present in EEG data, probabilistic neural models 

based on SNN have shown better learning ability than traditional SNN, especially in 

noisy environment (Rokem, Watzl, Gollisch, Stemmler & Herz, 2006; Nuzly, Kasabov 

& Shamsuddin, 2010).  Hence, these algorithms are highly recommended to be used in 

future work for a better performance of P300 BCIs, and to analyse EEG data in a 

continuous manner rather than single-time-point frames due to the importance for the 

learning algorithm to learn the whole spatio spectral-temporal patterns in the data. 

 

  
Figure 6.1. Classification task using eSNN and reservoir computing (Kasabov, 2012, p.8) 
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Studies on the P300 Speller attempt to analyse static objects (intensified letters/ non-

intensified letter). In (Wysoski, Benuskova & Kasabov, 2010) the captured features 

were aggregated into visual and audio perceptions and used for person authentication. 

eSNN was employed in their study that is based on four layers of connected SNN, 

similar to the way the cortex works in order to recognise an image or different types of 

complex stimuli. Nevertheless, this model is also limited to static objects, e.g. image, 

but not applicable to moving objects. Although eSNN can process moving objects using 

sequence frames of static objects, they do not learn the complex association between the 

spatial/spectral and temporal patterns in the data (Kasabov, 2012). Thus, these models 

are deterministic and not suitable for complex stochastic SSTD. Analysing the human 

brain perception of moving objects, e.g. video, could be a valuable step toward new BCI 

applications. 

 

„BCI illiteracy‟ is a new concept. Although 15-30% of users are affected as reported in 

related work (Blankertz, 2010) this concept is mentioned in very few studies. We would 

recommend future work to investigate this problem. Solutions could be related to 

customising the classification algorithms through automatic personalized optimizing of 

the classifier parameters, employing different neuroimaging technologies, improving the 

feedback procedure, and most importantly, generating control signals that are easier to 

categorise. 

As a result of this study, a strong awareness of BCI fundamentals and drawbacks was 

built. Moreover, the researcher has developed a clear understanding of how BCIs work 

and about the principle components involved in designing a BCI system, leading to 

further curiosity to investigate some of the existing problems and to develop new 

concepts in the remarkable field of BCI. 
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Appendix B: Experimental Results 

 

Table 1  

Classification accuracies obtained from six participants after three successive training 

and online validation sessions. The results were collected from the alphanumerical 

speller scenario using the LDA classification method. 

 

 

   LDA    

Person Train 1 Train 2  Train 3 Online 1 Online 2 Online 3 
1 0.907 0.8799  0.8987 0.5 0.35 0.6 
2 0.6711 0.69  0.6883 0.2 0.6 0.55 
3 0.5708 0.569  0.5322 0.15 0.1 0.25 
4 0.8373 0.809  0.8722 0.45 0.6 0.75 
5 0.6933 0.6204  0.7146 0.4 0.35 0.65 

6 0.7014 0.776  0.8251 0.35 0.55 0.8 

   LDA (xDAWN)   

1 0.9528 0.894  0.9235 0.55 0.7 0.75 
2 0.7348 0.756  0.7927 0.4 0.55 0.75 
3 0.5283 0.516  0.5527 0 0.05 0.2 
4 0.8113 0.935  0.9277 0.65 0.85 0.85 
5 0.6933 0.6204  0.7146 0.15 0.55 0.6 

6 0.8221 0.8055  0.8738 0.4 0.45 0.8 

 

 

Table 2 

Classification accuracies obtained from six participants after three successive training 

and online validation sessions. The results were collected from the alphanumerical 

speller scenario using the SVM classification method. 

 

 

   SVM    

Person Train 1 Train 2  Train 3 Online 1 Online 2 Online 3 
1 0.919 0.8866  0.907 0.25 0.55 0.55 
2 0.6577 0.6577  0.6861 0.1 0.25 0.4 
3 0.5046 0.5804  0.5766 0.1 0.2 0.25 
4 0.8016 0.841  0.8945 0.4 0.7 0.65 
5 0.5922 0.6094  0.6577 0.3 0.45 0.5 

6 0.7115 0.6855  0.7031 0.15 0.55 0.4 

   SVM (xDAWN)   

1 0.9312 0.9623  0.8701 0.5 0.3 0.45 
2 0.6861 0.6604  0.6693 0.1 0.65 0.6 
3 0.5022 0.54  0.5178 0.05 0.05 0.15 
4 0.8261 0.87  0.9054 0.55 0.75 0.8 

5 0.6574 0.5933  0.6788 0.25 0.3 0.55 

6 0.8383 0.81335  0.8133 0.4 0.55 0.7 
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Table 3 

Classification accuracies obtained from six participants after three successive training 

and online validation sessions. The results were collected from the verbal speller 

scenario using the LDA classification method. 
 

 

   LDA    

Person Train 1 Train 2  Train 3 Online 1 Online 2 Online 3 
1 0.8951 0.8951  0.8768 0.25 0.65 0.7 
2 0.7063 0.69  0.7244 0.35 0.55 0.6 
3 0.5784 0.5806  0.63 0.2 0.15 0.3 
4 0.86 0.8333  0.8184 0.65 0.7 0.75 
5 0.6855 0.6718  0.706 0.35 0.6 0.75 

6 0.682 0.7233  0.8336 0.45 0.7 0.75 

   LDA (xDAWN)   

1 0.9207 0.9073  0.9478 0.45 0.65 0.75 
2 0.735 0.7578  0.7264 0.5 0.6 0.75 
3 0.6011 0.5959  0.6077 0.05 0.1 0.2 
4 0.9178 0.9544  0.9289 0.85 0.9 0.9 
5 0.719 0.7033  0.7267 0.6 0.75 0.7 

6 0.7522 0.7962  0.8835 0.55 0.65 0.8 
 
 

 

Table 4 

Classification accuracies obtained from six participants after three successive training 

and online validation sessions. The results were collected from the verbal speller 

scenario using the SVM classification method. 

 

 

   SVM    

Person Train 1 Train 2  Train 3  Online 1 Online 2 Online 3 
1 0.8791 0.8333  0.8177  0.25 0.2 0.6 
2 0.7766 0.7  0.7896  0.15 0.2 0.55 
3 0.5538 0.5333  0.589  0.05 0.15 0.15 
4 0.8205 0.8023  0.8166  0.65 0.45 0.6 
5 0.6685 0.6335  0.6509  0.4 0.55 0.65 

6 0.7019 0.7052  0.8433  0.3 0.55 0.7 

   SVM (xDAWN)   

1 0.8808 0.8177  0.8686  0.4 0.4 0.8 
2 0.6933 0.675  0.6527  0.3 0.2 0.7 
3 0.5918 0.5551  0.5223  0 0.2 0.1 
4 0.8835 0.8807  0.8211  0.75 0.85 0.95 

5 0.6708 0.6627  0.6896  0.4 0.75 0.6 

6 0.7204 0.778  0.889  0.3 0.6 0.75 
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Table 5  

Classification accuracies obtained from six participants after three successive training 

and online validation sessions. The results were collected from the graphical speller 

scenario using the LDA classification method. 

 

 

   LDA    

Person Train 1 Train 2  Train 3 Online 1 Online 2 Online 3 
1 0.8639 0.8899  0.8368 0.4 0.65 0.7 
2 0.5961 0.7835  0.7388 0.2 0.35 0.5 
3 0.6211 0.6131  0.627 0.25 0.2 0.3 
4 0.9273 0.8822  0.8822 0.7 0.8 0.6 
5 0.5499 0.7717  0.8187 0.3 0.6 0.8 

6 0.6128 0.7771  0.7996 0.6 0.3 0.7 

   LDA (xDAWN)   

1 0.912 0.8718  0.938 0.5 0.8 0.8 
2 0.81 0.874  0.8333 0.5 0.6 0.6 
3 0.6077 0.6077  0.5963 0.2 0.1 0.25 
4 0.9701 0.923  0.9166 0.7 0.9 0.8 
5 0.6622 0.8381  0.889 0.5 0.7 0.9 

6 0.7411 0.8601  0.9198 0.7 0.4 0.9 
 
 

 

Table 6 

Classification accuracies obtained from six participants after three successive training 

and online validation sessions. The results were collected from the graphical speller 

scenario using the SVM classification method. 

 

 

   SVM    

Person Train 1 Train 2  Train 3 Online 1 Online 2 Online 3 
1 0.7951 0.8133  0.8705 0.4 0.55 0.5 
2 0.7045 0.7028  0.7279 0.3 0.5 0.45 
3 0.5929 0.6  0.583 0.15 0.3 0.3 
4 0.9123 0.9166  0.9008 0.55 0.6 0.6 
5 0.5874 0.7845  0.8523 0.4 0.4 0.6 

6 0.6239 0.7062  0.8291 0.4 0.8 0.7 

   SVM (xDAWN)   

1 0.8962 0.9218  0.8921 0.7 0.6 0.7 
2 0.6811 0.6933  0.6519 0.35 0.6 0.45 
3 0.57175 0.6336  0.6201 0.1 0.2 0.3 
4 0.955 0.9395  0.8933 0.8 0.7 0.8 

5 0.7288 0.8565  0.825 0.6 0.6 0.8 

6 0.7683 0.8971  0.854 0.5 0.9 0.8 
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Table 7  

Training and online accuracies of participant #5 obtained over ten training and online 

sessions using either the LDA or the SVM classification methods. Results were recorded 

on the alphabetical speller scenario. 
 

 

 LDA (no filter) LDA (xDAWN) SVM (no filter) SVM (xDAWN) 

Session Train Online Train Online Train Online Train Online 
1 0.6933 0.4 0.6933 0.15 0.5922 0.3 0.6574 0.25 
2 0.6204 0.35 0.6204 0.55 0.6094 0.45 0.5933 0.3 
3 0.7146 0.65 0.7146 0.6 0.6577 0.5 0.6788 0.55 
4 0.7055 0.7 0.7055 0.75 0.6155 0.5 0.6705 0.4 
5 0.753 0.55 0.753 0.75 0.6155 0.55 0.6912 0.45 
6 0.7546 0.5 0.7546 0.6 0.6653 0.55 0.7076 0.6 
7 0.7001 0.75 0.76 0.75 0.6644 0.65 0.7011 0.65 
8 0.7222 0.6 0.753 0.7 0.7311 0.6 0.719 0.65 
9 0.7162 0.6 0.7492 0.6 0.6825 0.7 0.72 0.7 

10 0.7162 0.55 0.7607 0.6 0.6544 0.45 0.694 0.55 
 
 
 
Table 8  

Training and online accuracies of participant #5 obtained over ten training and online 

sessions using either the LDA or the SVM classification methods. Results were recorded 

on the verbal speller scenario. 
 
 
 

 LDA (no filter) LDA (xDAWN) SVM (no filter) SVM (xDAWN) 

Session Train Online Train Online Train Online Train Online 
1 0.6855 0.35 0.719 0.6 0.6685 0.4 0.6708 0.4 
2 0.6718 0.6 0.7033 0.75 0.6335 0.55 0.6627 0.75 
3 0.706 0.75 0.7267 0.7 0.6509 0.65 0.6896 0.6 
4 0.7335 0.55 0.7267 0.7 0.612 0.6 0.7091 0.6 
5 0.7188 0.55 0.7085 0.7 0.6161 0.5 0.7045 0.8 
6 0.7163 0.7 0.7529 0.8 0.6734 0.5 0.7523 0.75 
7 0.7005 0.65 0.7809 0.75 0.6361 0.45 0.7355 0.7 
8 0.71 0.6 0.7715 0.6 0.709 0.55 0.7091 0.55 
9 0.7133 0.6 0.7883 0.65 0.7036 0.55 0.7767 0.55 

10 0.704 0.7 0.7541 0.65 0.6888 0.6 0.7644 0.6 
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Table 9  

Training and online accuracies of participant #5 obtained over ten training and online 

sessions using either the LDA or the SVM classification methods. Results were recorded 

on the graphical speller scenario. 
 

 

 LDA (no filter) LDA (xDAWN) SVM (no filter) SVM (xDAWN) 

Session Train Online Train Online Train Online Train Online 
1 0.5499 0.3 0.6622 0.5 0.5874 0.4 0.7288 0.6 
2 0.7717 0.6 0.8381 0.7 0.7845 0.4 0.8565 0.6 
3 0.8187 0.8 0.889 0.9 0.8523 0.6 0.825 0.8 
4 0.8427 0.5 0.9259 0.7 0.9081 0.4 0.9028 0.4 
5 0.9471 0.8 0.9734 0.8 0.8886 0.7 0.8962 0.8 
6 0.9062 0.7 0.9144 0.6 0.8933 0.7 0.8971 0.7 
7 0.7938 0.6 0.8665 0.6 0.7567 0.3 0.8327 0.3 
8 0.9455 0.6 0.9533 0.7 0.9 0.4 0.9 0.5 
9 0.9001 0.9 0.936 0.9 0.8603 0.8 0.8955 0.8 

10 0.7875 0.4 0.8311 0.6 0.8118 0.5 0.829 0.6 
 
 
 
Table 10  

Training and online accuracies of participant #6 obtained over ten training and online 

sessions using either the LDA or the SVM classification methods. Results were recorded 

on the alphabetical speller scenario. 
 
 

 LDA (no filter) LDA (xDAWN) SVM (no filter) SVM (xDAWN) 

Session Train Online Train Online Train Online Train Online 
1 0.7014 0.35 0.8221 0.4 0.7115 0.15 0.8383 0.4 
2 0.776 0.55 0.8055 0.45 0.6855 0.55 0.81335 0.55 
3 0.8251 0.8 0.8738 0.8 0.7031 0.4 0.8133 0.7 
4 0.8523 0.75 0.8911 0.7 0.8416 0.6 0.845 0.75 
5 0.8577 0.8 0.8776 0.6 0.8467 0.7 0.8577 0.75 
6 0.8601 0.8 0.8738 0.65 0.8922 0.85 0.84 0.85 
7 0.848 0.95 0.8644 0.75 0.7645  0.8511 0.8 
8 0.8833 0.7 0.887 0.75 0.835 0.65 0.8343 0.8 
9 0.8521 0.85 0.863 0.8 0.835 0.7 0.8333 0.7 

10 0.851 0.7 0.9007 0.7 0.8333 0.8 0.8552 0.75 
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Table 11  

Training and online accuracies of participant #6 obtained over ten training and online 

sessions using either the LDA or the SVM classification methods. Results were recorded on 

the verbal speller scenario. 
 

 

 LDA (no filter) LDA (xDAWN) SVM (no filter) SVM (xDAWN) 

Session Train Online Train Online Train Online Train Online 
1 0.682 0.45 0.7522 0.55 0.7019 0.3 0.7204 0.3 
2 0.7233 0.7 0.7962 0.65 0.7052 0.55 0.778 0.6 
3 0.8336 0.75 0.8835 0.8 0.8433 0.7 0.889 0.75 
4 0.8318 0.75 0.8581 0.8 0.8145 0.7 0.8955 0.8 
5 0.8559 0.8 0.8367 0.9 0.8128 0.7 0.8876 0.8 
6 0.8441 0.85 0.8818 0.85 0.8016 0.75 0.9043 0.85 
7 0.8377 0.7 0.8833 0.8 0.8255 0.7 0.8406 0.85 
8 0.8311 0.8 0.875 0.8 0.8025 0.7 0.8333 0.8 
9 0.8065 0.75 0.84 0.8 0.8032 0.8 0.8361 0.8 

10 0.8422 0.75 0.8825 0.75 0.8071 0.7 0.8128 0.7 
 
 
 
Table 12  

Training and online accuracies of participant #6 obtained over ten training and online 

sessions using either the LDA or the SVM classification methods. Results were recorded on 

the graphical speller scenario. 
 
 

 LDA (no filter) LDA (xDAWN) SVM (no filter) SVM (xDAWN) 

Session Train Online Train Online Train Online Train Online 
1 0.6128 0.6 0.7411 0.7 0.6239 0.4 0.7683 0.5 
2 0.7771 0.3 0.8601 0.4 0.7062 0.8 0.8971 0.9 
3 0.7996 0.7 0.9198 0.9 0.8291 0.7 0.854 0.8 
4 0.82 0.8 0.9044 0.8 0.8028 0.7 0.9044 0.7 
5 0.8166 0.7 0.9005 0.9 0.831 0.75 0.9179 0.8 
6 0.8166 0.55 0.9322 0.3 0.839 0.4 0.9355 0.5 
7 0.8395 0.7 0.9538 0.9 0.7766 0.8 0.9284 0.9 
8 0.7947 0.7 0.894 0.8 0.7676 0.8 0.8992 0.8 
9 0.835 0.7 0.9777 0.6 0.8033 0.75 0.8818 0.7 

10 0.8201 0.6 0.9517 0.9 0.8089 0.75 0.9139 0.8 

 


