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Anewnature-inspired optimization algorithmcalled theHydrological CycleAlgorithm (HCA) is proposed based on the continuous
movement of water in nature. In the HCA, a collection of water drops passes through various hydrological water cycle stages, such
as flow, evaporation, condensation, and precipitation. Each stage plays an important role in generating solutions and avoiding
premature convergence. The HCA shares information by direct and indirect communication among the water drops, which
improves solution quality. Similarities and differences between HCA and other water-based algorithms are identified, and the
implications of these differences on overall performance are discussed. A new topological representation for problems with a
continuous domain is proposed. In proof-of-concept experiments, the HCA is applied on a variety of benchmarked continuous
numerical functions. The results were found to be competitive in comparison to a number of other algorithms and validate the
effectiveness of HCA. Also demonstrated is the ability of HCA to escape from local optima solutions and converge to global
solutions. Thus, HCA provides an alternative approach to tackling various types of multimodal continuous optimization problems
as well as an overall framework for water-based particle algorithms in general.

1. Introduction

Optimization is the process of making something as good
as possible. In computer science and operations research,
an optimization problem can be defined as the problem of
finding the best solution or better than previously known best
solution among a set of feasible solutions by trying different
variations of the input [1]. In mathematics and engineering,
researchers use optimization algorithms to develop and
improve new ideas and models that can be expressed as
a function of certain variables. Optimization problems can
be categorized as either continuous or discrete, based on
the nature of the variables in the optimization function. In
continuous optimization, each variable may have any value
within a defined and specific range, and they are commonly
real numbers. For discrete optimization, each variable has a
value from a finite set of possible values or a permutation of
a set of numbers, commonly as integer numbers [2].

A variety of continuous optimization problems (COPs)
exist in the literature for benchmarking purposes [3]. In these
functions, the values for various continuous variables need

to be obtained such that the function is either minimized
or maximized. These functions have various structures and
can be categorized as either unimodal or multimodal. A uni-
modal function has only one local optimum point, whereas a
multimodal function has several local optimum points with
one or more points as a global optimum. Each function may
consist of a single variable or may be multivariate. Typically,
a unimodal function has one variable, while a multimodal
function hasmultiple variables.Mathematically, a continuous
objective function can be represented as follows:

minimize 𝑓 (𝑋) : 𝑅𝑛 → R, (1)

where𝑋 is a vector that consists of 𝑛 decision variables:𝑋 = {𝑥1, 𝑥2, . . . , 𝑥𝑛} ∈ R. (2)

A solution 𝑥∗ is called a global minimizer of a problem 𝑓(𝑥),
if 𝑓(𝑥∗) ≤ 𝑓(𝑥) for all 𝑥 ∈ 𝑋. Conversely, it is called a global
maximizer if 𝑓(𝑥∗) ≥ 𝑓(𝑥) for all 𝑥 ∈ 𝑋.

These functions are commonly used to evaluate the char-
acteristics of new algorithms and to measure an algorithm’s
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overall performance, convergence rate, robustness, precision,
and its ability to escape from local optima solutions [3].
These empirical results can be used to compare any new
algorithm with existing optimization algorithms and to gain
understanding of the algorithm’s behavior on different kinds
of problem. For instance, multimodal functions can be used
to check the ability of an algorithm to escape local optima
and explore new regions, especially when the global optimal
is surrounded by many local optima. Similarly, flat surface
functions addmore difficulty to reaching global optima as the
flatness does not give any indication of the direction towards
global optima [3].

Practically, the number of variables and the domain
of each variable (the function dimensionality) affect the
complexity of the function. In addition, other factors such as
the number of local/global optima points and the distribution
of local optima compared with global optima are crucial
issues in determining the complexity of a function, especially
when a global minimum point is located very close to local
minima points [3]. Some of these functions represent real-life
optimization problems, while others are artificial problems.
Furthermore, a function can be classified as unconstrained
or constrained. An unconstrained function has no restriction
on the values of its variables.

Due to the presence of a large variety of optimization
problems, it is hard to find a suitable algorithm that can
solve all types of optimization problems effectively. On the
other hand, the No-Free-Lunch (NFL) theorems posit that
no particular algorithm performs better than all other algo-
rithms for all problems and that what an algorithm gains in
performance on someproblems can be lost on other problems
[5]. Consequently, we can infer that some algorithms are
more applicable and compatible with particular classes of
optimization problems than others.Therefore, there is always
a need to design and evaluate new algorithms for their poten-
tial to improve performance on certain types of optimization
problem. For these reasons, the main objective of this paper
is to develop a new optimization algorithm and determine
its performance on various benchmarked problems to gain
understanding of the algorithm and evaluate its applicability
to other unsolved problems.

Many established nature-inspired algorithms, especially
water-based algorithms, have proven successful in solving
COPs. Nevertheless, these water-based algorithms do not
take into account the broader concepts of the hydrological
water cycle, how the water drops and paths are formed, or the
fact that water is a renewable and recyclable resource. That
is, previous water-based algorithms partially utilized some
stages of the natural water cycle and demonstrated only some
of the important aspects of a full hydrological water cycle for
solving COPs.

Themain contribution of this paper is to delve deeper into
hydrological theory and the fundamental concepts surround-
ing water droplets to inform the design of a new optimization
algorithm.This algorithm provides a new hydrological-based
conceptual frameworkwithin which existing and future work
in water-based algorithms can be located. In this paper,
we present a new nature-inspired optimization algorithm
called the Hydrological Cycle Algorithm (HCA) for solving

optimization problems. HCA simulates nature’s hydrological
water cycle. More specifically, it involves a collection of water
drops passing through different phases such as flow (runoff),
evaporation, condensation, and precipitation to generate
a solution. It can be considered as a swarm intelligence
optimization algorithm for some parts of the cycle when a
collection of water drops moves through the search space.
But it can also be considered an evolutionary algorithm
for other parts of the cycle when information is exchanged
and shared. By using the full hydrological water cycle as a
conceptual framework, we show that previous water-based
algorithms have predominantly only used swarm-like aspects
inspired by precipitation and flow. HCA, however, uses all
four stages that will form a complete water-based approach
to solving optimization problems efficiently. In particular, we
show that for certain problems HCA leads to improved per-
formance and solution quality. In particular, we demonstrate
how the condensation stage is utilized to allow information
sharing among the particles. The information sharing helps
in improving the performance and reducing the number of
iterations needed to reach the optimal solution. Our claims
for HCA are to be judged not on improved efficiency but on
improved conceptual bioinspiration as well as contribution
to the area of water-based algorithm. However, we also
show that HCA is competitive in comparison to several
other nature-inspired algorithms, both water-based and non-
water-based.

In summary, the paper presents a new overall conceptual
framework for water-based algorithms which applies the
hydrological cycle in its entirety to continuous optimization
problems as a proof-of-concept (i.e., validates the full hydro-
logical inspired framework).The benchmarkedmathematical
test functions chosen in this paper are useful for evaluating
performance characteristics of any new approach, especially
the effectiveness of exploration and exploitation processes.
Solving these functions (i.e., finding the global-optimal
solution) is challenging for most algorithms, even with a
few variables, because their artificial landscapes may contain
many local optimal solutions. Our minimal criterion for
success is that theHCAalgorithmperformance is comparable
to other well-known algorithms including those that only
partially adopt the full HCA framework. We maintain that
our results are competitive and that therefore water-inspired
researchers and non-water-inspired researchers lose nothing
by adopting the richer bioinspiration that comes with HCA
in its entirety rather than adopting only parts of the full
water cycle. The HCA’s performance is evaluated in terms of
finding optimal solutions and computational effort (number
of iterations). The algorithm’s behavior, its convergence rate,
and its ability to deal with multimodal functions are also
investigated and analyzed.Themain aimof this paper is not to
prove the superiority of HCA over other algorithms. Instead,
the aim is to provide researchers in science, engineering,
operations research, and machine learning with a new water-
based tool for dealing with continuous variables in convex,
unconstrained, and nonlinear problems. Further details and
features of the HCA are described in Section 3.

The remainder of this paper is organized as follows. Sec-
tion 2 discusses various related swarm intelligence techniques
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used to tackle COPs and distinguishes HCA from related
algorithms. Section 3 describes the hydrological cycle in
nature and explains the proposedHCA. Section 4 outlines the
experimental setup, problem representation, results obtained,
and the comparative evaluation conducted with other algo-
rithms. Finally, Section 5 presents concluding remarks and
outlines plans for further research.

2. Previous Swarm Intelligence Approaches for
Solving Continuous Problems

Many metaheuristic optimization algorithms have been
designed and their performance has been evaluated on
benchmark functions. Among these are nature-inspired algo-
rithms, which have received considerable attention. Each
algorithm uses a different approach and representation to
solve the target problem. It isworthmentioning that our focus
is on studies that involve solving unconstrained continuous
functions with few variables. If a new algorithm cannot deal
with these cases, there is little chance of it dealing with more
complex functions.

Ant colony optimization (ACO) is one of the best-known
techniques for solving discrete optimization problems and
has been extended to deal with COPs in many studies. For
example, in [6], the authors divided the function domain into
a certain number of regions representing the trial solution
space for the ants to explore. Then they generated two types
of ants (global and local ants) and distributed them to explore
these regions. The global ants were responsible for updating
the fitness of the regions globally, whereas the local ants did
the same locally. The approach incorporated mutation and
crossover operations to improve the solution quality.

Socha and Dorigo [7] extended the ACO algorithm to
tackle continuous domain problems.The extension facilitated
consideration of continuous probability instead of discrete
probability and incorporated the Gaussian probability den-
sity function to choose the next point. The pheromone
evaporation procedure was modified and old solutions were
removed from the candidate solutions pool and replaced
with new and better solutions. A weight associated with each
ant solution represented the fitness of the solution. Other
ACO inspired approaches with various implementations
that do not follow the original ACO algorithm structure
have also been developed to solve COPs [8–11]. In further
work, the performance of ACO was evaluated on continuous
function optimization [12]. One of the problems with ACO
is that reinforcement of paths is the only method for sharing
information between the ants in an indirect way. A heavily
pheromone-reinforced path is naturally considered a good
path for other ants to follow. No other mechanism exists
to allow ants to share information for exploration purposes
except indirectly through the evaporation of pheromone over
time. Exploration diminishes over time with ACO, which
suits problems where there may be only one global solution.
But if the aim is to find a number of alternative solutions,
the rate of evaporation has to be strictly controlled to ensure
that no single path dominates. Evaporation control can lead
to other side-effects in the classic ACO paradigm, such as
longer convergence time, resulting in the need to add possibly

nonintuitive information sharingmechanisms, such as global
updates, for exploration purposes.

Although strictly speaking they are not a swarm intel-
ligence approach, genetic algorithms (GAs) [13] have been
applied to many COPs. A GA uses simple operations such
as crossover and mutation to manipulate and direct the
population and to help escape from local optima. The values
of the variables are encoded using binary or real numbers
[14]. However, as with other algorithms, GA performance can
depend critically on the initial population’s values, which are
usually random. This was clarified by Maaranen et al. [15],
who investigated the importance and effect of the initial pop-
ulation values on the quality of the final solution. In [16] the
authors also focused on the choice of the initial population
values and modified the algorithm to intensify the search
in the most promising area of the solution space. The main
problem with standard GAs for optimization continues to
be the lack of “long-termism,” where fitness for exploitation
may need to be secondary to allow for adequate exploration
to assess the problem space for alternative solutions. One
possible way to deal with this problem is to hybridize the GA
with other approaches, such as in [17] where a hybrid GA and
particle swarm optimization (PSO) is proposed for solving
multimodal functions.

James and Russell [18] examined the performance of the
PSO algorithm on some continuous optimization functions.
Later, researchers, such as Chen et al. [19], modified the PSO
algorithm to help overcome the problem of premature con-
vergence. Additionally, PSO is used for global optimization
in [20]. The PSO is also hybridized with ACO to improve the
performance when dealing with high dimension multimodal
functions [21]. Further, a comparative study between GA and
PSO on numerical benchmark problems can be found in
[22]. Other versions of the PSO algorithmwith crossover and
mutation operators to improve the performance have also
been proposed, such as in [23]. Once such GA operators are
introduced, the question arises as to what advantages a PSO
approach has over a standard evolutionary approach to the
same problem.

The bees algorithm (BA) has been used to solve a number
of benchmark functions [24]. This algorithm simulates the
behavior of swarms of honey bees during food foraging.
In BA, scout bees are sent to search for food sources by
moving randomly from one place to another. On returning
to the hive, they share the information with the other bees
about location, distance, and quality of the food source.
The algorithm produces good results for several benchmark
functions. However, the information sharing is direct and
confined to subsets of bees, leading to the possibility of
convergence to a local optimum or divergence away from the
global optimum.

The grenade explosion method (GSM) is an evolutionary
algorithmwhich has been used to optimize real-valued prob-
lems [25]. The GSM is based on the mechanism associated
with a grenade explosion, which is intended to overcome
problems associated with “crowding” where candidate solu-
tions have converged to a local minimum. When a grenade
explodes, shrapnel pieces are thrown to destroy objects in the
vicinity of the explosion. In the GSM, losses are calculated
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Figure 1: Representation of a continuous problem in the IWD algorithm.

for each piece of shrapnel, and the effect of each piece
of shrapnel is calculated. The highest loss effect represents
valuable objects existing in that area. Then, another grenade
is thrown to the area to cause greater loss, and so on.
Overall, the GSM was able to find the global minimum faster
than other algorithms in seven out of eight benchmarked
tests. However, the algorithm requires the maintenance of
nonintuitive territory radius preventing shrapnel pieces from
coming too close to each other and forcing shrapnel to
spread uniformly over the search space. Also required is an
explosion range for the shrapnel. These control parameters
work well with problem spaces containingmany local optima
so that global optima can be found after suitable exploration.
However, the relationship between these control parameters
and problem spaces of unknown topology is not clear.

2.1. Water-Based Algorithms. Algorithms inspired by water
flow have become increasingly common for tackling opti-
mization problems. Two of the best-known examples are
intelligent water drops (IWD) and the water cycle algorithm
(WCA). These algorithms have been shown to be successful
in many applications including various COPs. The IWD
algorithm is a swarm-based algorithm inspired by the ground
flow of water in nature and the actions and reactions that
occur during that process [26]. In IWD, a water drop has
two properties: movement velocity and the amount of soil
it carries. These properties are changed and updated for
each water drop throughout its movement from one point
to another. The velocity of a water drop is affected and
determined only by the amount of soil between two points,
while the amount of soil it carries is equal to the amount of
soil being removed from a path [26].

The IWD has also been used to solve COPs. Shah-
Hosseini [27] utilized binary variable values in the IWD
and created a directed graph of (𝑀 × 𝑃) nodes, in which𝑀 identifies the number of variables and 𝑃 identifies the
precision (number of bits for each variable), which was
assumed to be 32. The graph comprised 2 × (𝑀× 𝑃) directed
edges connecting nodes, with each edge having a value of
zero or one, as depicted in Figure 1. One of the advantages
of this representation is that it is intuitively consistent with
the natural idea of water flowing in a specific direction.

Also, the IWD algorithm was augmented with a
mutation-based local search to enhance its solution quality.
In this process, an edge is selected at random from a solution
and replaced by another edge which is kept if it improves
the fitness value, and the process was repeated 100 times for
each solution. This mutation is applied to all the generated
solutions, and then the soil is updated on the edges belonging
to the best solution. However, the variables’ values have to
be converted from binary to real numbers to be evaluated.

Also, once mutation (but not crossover) is introduced into
IWD, the question arises as what advantages IWD has over
standard evolutionary algorithms that use simpler notations
for representing continuous numbers. Detailed differences
between IWD and our HCA are described in Section 3.9.

Various researchers have applied the WCA to COPs [28,
29].TheWCA is also based on the groundwater flow through
rivers and streams to the sea. The algorithm constructs a
solution using a population of streams, where each stream is
a candidate solution. It initially generates random solutions
for the problem by distributing the streams into different
positions according to the problem’s dimensions. The best
stream is considered a sea and a specific number of streams
are considered rivers. Then the streams are made to flow
towards the positions of the rivers and sea. The position of
the sea indicates the global-best solution, whereas those of the
rivers indicate the local best solution points. In each iteration,
the position of each stream may be swapped with any of
the river positions or (counterintuitively) the sea position
according to the fitness of that stream. Therefore, if a stream
solution is better than that of a river, that stream becomes
a river, and the corresponding river becomes a stream. The
same process occurs between rivers and sea. Evaporation
occurs in the rivers/streams when the distance between a
river/stream and the sea is very small (close to zero). Fol-
lowing evaporation, new streams are generated with different
positions in a process that can be described as rain. These
processes help the algorithm to escape from local optima.

WCA treats streams, rivers, and the sea as set of moving
points in a multidimensional space and does not consider
stream/river formation (movements of water and soils).
Therefore, the overall structure of the WCA is quite similar
to that of the PSO algorithm. For instance, the PSO algorithm
has Gbest and Pbest points that indicate the global and local
solutions, with the Gbest point guiding the Pbest points to
converge to that point. In a similar manner, the WCA has a
number of rivers that represent the local optimal solutions,
and a sea position represents the global-optimal solution.The
sea is used as a guide for the streams and rivers. Moreover,
in PSO, a particle at the Pbest point updates its position
towards the Gbest point. Analogously, the WCA exchanges
the positions of rivers with that of the sea when the fitness of
the river is better. The main difference is the consideration of
the evaporation and raining stages that help the algorithm to
escape from local optima.

An improved version ofWCAcalled dual-system (DSWCA)
has been presented for solving constrained engineering
optimization problems [30]. The DSWCA improvements
involved adding two cycles (outer and inner).The outer cycle
is in accordance with the WCA and is designed to perform
exploration. The inner cycle which is based on the ocean
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cycle was designed as an exploitation process.The confluence
between rivers process is also included to improve conver-
gence speed. The improvements aim to help the original
WCA to avoid falling into the local optimal solutions. The
DSWCA was able to provide better results than WCA. In a
further extension of WCA, Heidari et al. proposed a chaotic
WCA (CWCA) that incorporates thirteen chaotic patterns
with WCA movement process to improve WCA’s perfor-
mance and deal with the premature convergence problem
[31]. The experimental results demonstrated improvement in
controlling the premature convergence problem. However,
WCA and its extensions introduce many additional features,
many of which are not compatible with nature-inspiration, to
improve performance andmakeWCA competitive with non-
water-based algorithms. Detailed differences between WCA
and our HCA are described in Section 3.9.

The review of previous approaches shows that nature-
inspired swarm approaches tend to introduce evolutionary
concepts of mutation and crossover for sharing informa-
tion, to adopt nonplausible global data structures to pre-
vent convergence to local optima or add more central-
ized control parameters to preserve the balance between
exploration and exploitation in increasingly difficult problem
domains, thereby compromising self-organization. When
such approaches are modified to deal with COPs, complex
and unnatural representations of numbers may also be
required that add to the overheads of the algorithm as well as
leading towhatmay appear to be “forced” and unnatural ways
of dealing with the complexities of a continuous problem.

In swarm algorithms, a number of cooperative homoge-
nous entities explore and interact with the environment to
achieve a goal, which is usually to find the global-optimal
solution to a problem through exploration and exploita-
tion. Cooperation can be accomplished by some form of
communication that allows the swarm members to share
exploration and exploitation information to produce high-
quality solutions [32, 33]. Exploration aims to acquire as
much information as possible about promising solutions,
while exploitation aims to improve such promising solutions.
Controlling the balance between exploration and exploitation
is usually considered critical when searching formore refined
solutions as well as more diverse solutions. Also important is
the amount of exploration and exploitation information to be
shared, and when.

Information sharing in nature-inspired algorithms usu-
ally includes metrics for evaluating the usefulness of infor-
mation and mechanisms for how it should be shared. In
particular, these metrics and mechanisms should not contain
more knowledge or require more intelligence than can be
plausibly assigned to the swarm entities, where the emphasis
is on emergence of complex behavior from relatively simple
entities interacting in nonintelligent ways with each other.
Information sharing can be done either randomly or non-
randomly among entities. Different approaches are used to
share information such as direct or indirect interaction. Two
sharing models are: one-to-one, in which explicit interaction
occurs between entities, and many-to-many (broadcasting),
in which interaction occurs indirectly between the entities
through the environment [34].

Usually, either direct or indirect interaction between
entities is employed in an algorithm for information sharing,
and the use of both types in the same algorithm is often
neglected. For instance, the ACO algorithm uses indirect
communication for information sharing, where ants lay
amounts of pheromone on paths depending on the usefulness
of what they have explored.Themore promising the path, the
more the pheromone added, leading other ants to exploiting
this path further. Pheromone is not directed at any other ant
in particular. In the artificial bee colony (ABC) algorithm,
bees share information directly (specifically, the direction
and distance to flowers) in a kind of waggle dancing [35].
The information received by other bees depends on which
bee they observe and not the information gathered from all
bees. In a GA, the information exchange occurs directly in
the form of crossover operations between selected members
(chromosomes and genes) of the population. The quality
of information shared depends on the members chosen
and there is no overall store of information available to all
members. In PSO, on the other hand, the particles have
their own information as well as access to global information
to guide their exploitation. This can lead to competitive
and cooperative optimization techniques [36]. However, no
attempt is made in standard PSO to share information
possessed by individual particles. This lack of individual-to-
individual communication can lead to early convergence of
the entire population of particles to a nonoptimal solution.
Selective information sharing between individual particles
will not always avoid this narrow exploitation problem but,
if undertaken properly, could allow the particles to find
alternative andmore diverse solution spaces where the global
optimum lies.

As can be seen from the above discussion, the distinctions
between communication (direct and indirect) and informa-
tion sharing (random or nonrandom) can become blurred.
In HCA, we utilize both direct and indirect communication
to share information among selected members of the whole
population. Direct communication occurs in the condensa-
tion stage of the water cycle, where some water drops collide
with each other when they evaporate into the cloud. On
the other hand, indirect communication occurs between the
water drops and the environment via the soil and path depth.
Utilizing information sharing helps to diversify the search
space and improve the overall performance through better
exploitation. In particular, we show howHCAwith direct and
indirect communication suits continuous problems, where
individual particles share useful information directly when
searching a continuous space.

Furthermore, in some algorithms, indirect communica-
tion is used not just to find a possible solution but also
to reinforce an already found promising solution. Such
reinforcement may lead the algorithm to getting stuck in the
same solution, which is known as stagnation behavior [37].
Such reinforcement can also cause a premature convergence
in some problems. An important feature used in HCA to
avoid this problem is the path depth. The depths of paths are
constantly changing, where deep paths will have less chance
of being chosen compared with shallow paths. More details
will be provided about this feature in Section 3.3.
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In summary, this paper aims to introduce a novel nature-
inspired approach for dealing with COPs which also intro-
duces a continuous number representation that is natural
for the algorithm. The cyclic nature of the algorithm con-
tributes to self-organization as the system converges to the
solution through direct and indirect communication between
particles, feedback from the environment, and internal self-
evaluation. Finally, our HCA addresses some of the weak-
nesses of other similar algorithms. HCA is inspired by the full
water cycle, not parts of it as exemplified by IWD andWCA.

3. The Hydrological Cycle Algorithm

Thewater cycle, also known as the hydrologic cycle, describes
the continuous movement of water in nature [38]. It is
renewable because water particles are constantly circulating
from the land to the sky and vice versa.Therefore, the amount
of water remains constant. Water drops move from one place
to another by natural physical processes, such as evaporation,
precipitation, condensation, and runoff. In these processes,
the water passes through different states.

3.1. Inspiration. The water cycle starts when surface water
gets heated by the sun, causingwater fromdifferent sources to
change into vapor and evaporate into the air. Then the water
vapor cools and condenses as it rises to become drops. These
drops combine and collect with each other and eventually
become so saturated and dense that they fall back because
of the force of gravity in a process called precipitation. The
resulting water flows on the surface of the Earth into ponds,
lakes, or oceans where it again evaporates back into the
atmosphere. Then, the entire cycle is repeated.

In the flow (runoff) stage, the water drops start moving
from one location to another based on Earth’s gravity and the
ground topography. When the water is scattered, it chooses a
pathwith less soil and fewer obstacles. Assuming no obstacles
exist, water drops will take the shortest path towards the
center of the Earth (i.e., oceans) owing to the force of gravity.
Water drops have force because of this gravity and this force
causes changes in motion depending on the topology. As
the water flows in rivers and streams, it picks up sediments
and transports them away from their original location.These
processes are known as erosion and deposition. They help to
create the topography of the ground by making new paths
with more soil removal, or the fading of others as they
become less likely to be chosen owing to too much soil
deposition. These processes are highly dependent on water
velocity. For instance, a river is continually picking up and
dropping off sediments from one point to another. When
the river flow is fast, soil particles are picked up, and the
opposite happens when the river flow is slow.Moreover, there
is a strong relationship between the water velocity and the
suspension load (the amount of dissolved soil in the water)
that it currently carries. The water velocity is higher when
only a small amount of soil is being carried and lower when
larger amounts are carried.

In addition, the term “flow rate” or “discharge” can be
defined as the volume of water in a river passing a defined

point over a specific period. Mathematically, flow rate is
calculated based on the following equation [39]:𝑄 = 𝑉 × 𝐴 ⇒[𝑄 = 𝑉 × (𝑊 × 𝐷)] , (3)

where𝑄 is flow rate,𝐴 is cross-sectional area,𝑉 is velocity,𝑊
is width, and𝐷 is depth.The cross-sectional area is calculated
by multiplying the depth by the width of the stream. The
velocity of the flowing water is defined as the quantity of
discharge divided by the cross-sectional area.Therefore, there
is an inverse relationship between the velocity and the cross-
sectional area [40]. The velocity increases when the cross-
sectional area is small, and vice versa. If we assume that the
river has a constant flow rate (velocity × cross-sectional area
= constant) and that the width of the river is fixed, then we
can conclude that the velocity is inversely proportional to the
depth of the river, in which case the velocity decreases in deep
water and vice versa. Therefore, the amount of soil deposited
increases as the velocity decreases. This explains why less soil
is taken from deep water and more soil is taken from shallow
water. A deep river will have water moving more slowly than
a shallow river.

In addition to river depth and force of gravity, there are
other factors that affect the flow velocity of water drops and
cause them to accelerate or decelerate. These factors include
obstructions, amount of soil existing in the path, topography
of the land, variations in channel cross-sectional area, and the
amount of dissolved soil being carried (the suspension load).

Water evaporation increases with temperature, withmax-
imum evaporation at 100∘C (boiling point). Conversely,
condensation increases when the water vapor cools towards
0∘C.The evaporation and condensation stages play important
roles in the water cycle. Evaporation is necessary to ensure
that the system remains in balance. In addition, the evapo-
ration process helps to decrease the temperature and keeps
the air moist. Condensation is a very important process as
it completes the water cycle. When water vapor condenses,
it releases the same amount of thermal energy into the
environment that was needed to make it a vapor. However,
in nature, it is difficult to measure the precise evaporation
rate owing to the existence of different sources of evaporation;
hence, estimation techniques are required [38].

The condensation process starts when the water vapor
rises into the sky; then, as the temperature decreases in
the higher layer of the atmosphere, the particles with less
temperature have more chance to condense [41]. Figure 2(a)
illustrates the situation where there are no attractions (or
connections) between the particles at high temperature. As
the temperature decreases, the particles collide and agglom-
erate to form small clusters, leading to clouds, as shown in
Figure 2(b).

An interesting phenomenon in which some of the large
water drops may eliminate other smaller water drops occurs
during the condensation process as some of the water
drops—known as collectors—fall from a higher layer to a
lower layer in the atmosphere (in the cloud). Figure 3 depicts
the action of a water drop falling and colliding with smaller
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(a) Hot water (b) Cold water

Figure 2: Illustration of the effect of temperature on water drops.

Figure 3: A collector water drop in action.

water drops. Consequently, the water drop grows as a result
of coalescence with the other water drops [42].

Based on this phenomenon, only water drops that are
sufficiently large will survive the trip to the ground. Of the
numerous water drops in the cloud, only a portion will make
it to the ground.

3.2. The Proposed Algorithm. Given the brief description of
the hydrological cycle above, the IWD algorithm can be
interpreted as covering only one stage of the overall water
cycle—the flow stage. Although the IWDalgorithm takes into
account some of the characteristics and factors that affect
the flowing water drops through rivers, and the actions and
reactions along the way, the IWD algorithm neglects other
factors that could be useful in solving optimization problems
through adoption of other key concepts taken from the full
hydrological process.

Studying the full hydrological water cycle gave us the
inspiration to design a new and potentially more powerful
algorithm within which the original IWD algorithm can be
considered a subpart. We divide our algorithm into four
main stages: Flow (Runoff), Evaporation, Condensation, and
Precipitation.

The HCA can be described formally as consisting of a set
of artificial water drops (WDs), such that

HCA = {WD1,WD2,WD3, . . . ,WD𝑛} ,
where 𝑛 ≥ 1. (4)

The characteristics associated with each water drop are as
follows:

(i) 𝑉WD: the velocity of the water drop.

(ii) SoilWD: the amount of soil the water drop carries.
(iii) 𝜓WD: the solution quality of the water drop.

The input to the HCA is a graph representation of a problems’
solution space.The graph can be a fully connected undirected
graph𝐺 = (𝑁, 𝐸), where𝑁 is the set of nodes and 𝐸 is the set
of edges between the nodes. In order to find a solution, the
water drops are distributed randomly over the nodes of the
graph and then traverse the graph (𝐺), according to various
rules, via the edges (𝐸) searching for the best or optimal
solution.The characteristics associated with each edge are the
initial amount of soil on the edge and the edge depth.

The initial amount of soil is the same for all the edges.
The depth measures the distance from the water surface to
the riverbed, and it can be calculated by dividing the length
of the edge by the amount of soil. Therefore, the depth varies
and depends on the amount of soil that exists on the path
and its length. The depth of the path increases when more
soil is removed over the same length. A deep path can be
interpreted as either the path being lengthy or there being less
soil. Figures 4 and 5 illustrate the relationship between path
depth, soil, and path length.

The HCA goes through a number of cycles and iterations
to find a solution to a problem. One iteration is considered
complete when all water drops have generated solutions
based on the problem constraints. A water drop iteratively
constructs a solution for the problemby continuouslymoving
between the nodes. Each iteration consists of specific steps
(which will be explained below). On the other hand, a cycle
represents a varied number of iterations. A cycle is considered
as being complete when the temperature reaches a specific
value, which makes the water drops evaporate, condense,
and precipitate again. This procedure continues until the
termination condition is met.

3.3. Flow Stage (Runoff). This stage represents the con-
struction stage where the HCA explores the search space.
This is carried out by allowing the water drops to flow
(scattered or regrouped) in different directions and con-
structing various solutions. Each water drop constructs a
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Depth = 10/1000
= 0.01

Soil = 500

Length = 10

Depth = 20/500 
= 0.04

Soil = 500

Length = 20 

Figure 4: Depth increases with length increases for the same amount of soil.

Depth = 10/500
= 0.02

Soil = 500

Length = 10

Soil = 1000

Length = 10

Depth = 10/1000
= 0.01

Figure 5: Depth increases when the amount of soil is reduced over the same length.

solution incrementally by moving from one point to another.
Whenever a water drop wants to move towards a new node,
it has to choose between different numbers of nodes (various
branches). It calculates the probability of all the unvisited
nodes and chooses the highest probability node taking into
consideration the problem constraints. This can be described
as a state transition rule that determines the next node to
visit. In HCA, the node with the highest probability will be
selected. The probability of the node is calculated using𝑃WD

𝑖 (𝑗)= 𝑓 (Soil (𝑖, 𝑗))2 × 𝑔 (Depth (𝑖, 𝑗))∑𝑘∉V𝑐(WD) (𝑓 (Soil (𝑖, 𝑘))2 × 𝑔 (Depth (𝑖, 𝑘))) , (5)

where 𝑃WD
𝑖(𝑗) is the probability of choosing node 𝑗 from

node 𝑖. 𝑓(Soil(𝑖, 𝑗)) is equal to the inverse of the soil between𝑖 and 𝑗 and is calculated using𝑓 (Soil (𝑖, 𝑗)) = 1𝜀 + Soil (𝑖, 𝑗) . (6)

𝜀 = 0.01 is a small value that is used to prevent division by
zero. The second factor of the transition rule is the inverse of
depth, which is calculated based on𝑔 (Depth (𝑖, 𝑗)) = 1

Depth (𝑖, 𝑗) . (7)

Depth(𝑖, 𝑗) is the depth between nodes 𝑖 and 𝑗 and is
calculated by dividing the length of the path by the amount
of soil. This can be expressed as follows:

Depth (𝑖, 𝑗) = Length (𝑖, 𝑗)
Soil (𝑖, 𝑗) . (8)

The depth value can be normalized to be in the range [1–100],
as it might be very small. The depth of the path is constantly
changing because it is influenced by the amount of existing
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Figure 6: The relationship between soil and depth over the same
length.

soil, where the depth is inversely proportional to the amount
of the existing soil in the path of a fixed length. Water
drops will choose paths with less depth over other paths.
This enables exploration of new paths and diversifies the
generated solutions. Assume the following scenario (depicted
by Figure 6), where water drops have to choose between
nodes 𝐴 or 𝐵 after node 𝑆. Initially, both edges have the same
length and same amount of soil (line thickness represents soil
amount). Consequently, the depth values for the two edges
will be the same.After somewater drops chose node𝐴 to visit,
the edge (S-A) as a result has less soil and is deeper. According
to the new state transition rule, the next water drops will be
forced to choose node 𝐵 because edge (S-B) will be shallower
than (S-A).This technique provides a way to avoid stagnation
and explore the search space efficiently.

3.3.1. VelocityUpdate. After selecting the next node, thewater
drop moves to the selected node and marks it as visited. Each
water drop has a variable velocity (V). The velocity of a water
dropmight be increased or decreasedwhile it ismoving based
on the factors mentioned above (the amount of soil existing
on the path, the depth of the path, etc.). Mathematically, the
velocity of a water drop at time (𝑡 + 1) can be calculated using

𝑉WD
𝑡+1 = [𝐾 × 𝑉WD

𝑡 ] + 𝛼( 𝑉WD

Soil (𝑖, 𝑗)) + 2√ 𝑉WD

SoilWD

+ ( 100𝜓WD) + 2√ 𝑉WD

Depth (𝑖, 𝑗) . (9)
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Equation (9) defines how the water drop updates its velocity
after each movement. Each part of the equation has an effect
on the new velocity of the water drop, where 𝑉WD

𝑡 is the
current water drop velocity and 𝐾 is a uniformly distributed
random number between [0, 1] that refers to the roughness
coefficient. The roughness coefficient represents factors that
may cause the water drop velocity to decrease. Owing to
difficulties measuring the exact effect of these factors, some
randomness is considered with the velocity.

The second term of the expression in (9) reflects the
relationship between the amount of soil existing on a path and
the velocity of a water drop. The velocity of the water drops
increases when they traverse paths with less soil. Alpha (𝛼)
is a relative influence coefficient that emphasizes this part in

the velocity update equation.The third term of the expression
represents the relationship between the amount of soil that
a water drop is currently carrying and its velocity. Water
drop velocity increases with decreasing amount of soil being
carried.This gives weakwater drops a chance to increase their
velocity, as they do not holdmuch soil.The fourth term of the
expression refers to the inverse ratio of a water drop’s fitness,
with velocity increasing with higher fitness. The final term of
the expression indicates that a water drop will be slower in a
deep path than in a shallow path.

3.3.2. Soil Update. Next, the amount of soil existing on the
path and the depth of that path are updated. A water drop
can remove (or add) soil from (or to) a path while moving
based on its velocity. This is expressed by

Soil (𝑖, 𝑗) = {{{{{{{{{{{
[𝑃𝑁 ∗ Soil (𝑖, 𝑗)] − ΔSoil (𝑖, 𝑗) − 2√ 1

Depth (𝑖, 𝑗) if 𝑉WD ≥ Avg (all𝑉WDS) (Erosion)
[𝑃𝑁 ∗ Soil (𝑖, 𝑗)] + ΔSoil (𝑖, 𝑗) + 2√ 1

Depth (𝑖, 𝑗) else (Deposition) . (10)

𝑃𝑁 represents a coefficient (i.e., sediment transport rate or
gradation coefficient) that may affect the reduction in the
amount of soil. The soil can be removed only if the current
water drop velocity is greater than the average of all other
water drops. Otherwise, an amount of soil is added (soil
deposition). Consequently, the water drop is able to transfer
an amount of soil from one place to another and usually
transfers it from fast to slow parts of the path. The increasing
soil amount on some paths favors the exploration of other
paths during the search process and avoids entrapment in
local optimal solutions. The amount of soil existing between
node 𝑖 and node 𝑗 is calculated and changed usingΔSoil (𝑖, 𝑗) = 1

timeWD
𝑖,𝑗

, (11)

such that

timeWD
𝑖,𝑗 = Distance (𝑖, 𝑗)𝑉WD

𝑡+1

. (12)

Equation (11) shows that the amount of soil being removed
is inversely proportional to time. Based on the second law
of motion, time is equal to distance divided by velocity.
Therefore, time is proportional to velocity and inversely
proportional to path length. Furthermore, the amount of
soil being removed or added is inversely proportional to the
depth of the path.This is because shallow soils will be easy to
remove compared to deep soils.Therefore, the amount of soil
being removed will decrease as the path depth increases.This
factor facilitates exploration of new paths because less soil is
removed from the deep paths as they have been used many
times before. This may extend the time needed to search for
and reach optimal solutions.Thedepth of the path needs to be
updatedwhen the amount of soil existing on the path changes
using (8).

3.3.3. Soil Transportation Update. In the HCA, we consider
the fact that the amount of soil a water drop carries reflects its
solution quality.This can be done by associating the quality of
the water drop’s solution with its carrying soil value. Figure 7
illustrates the fact that a water drop with more carrying soil
has a better solution.

To simulate this association, the amount of soil that the
water drop is carrying is updated with a portion of the soil
being removed from the path divided by the last solution
quality found by that water drop. Therefore, the water drop
with a better solution will carry more soil. This can be
expressed as follows:

SoilWD = SoilWD + ΔSoil (𝑖, 𝑗)𝜓WD . (13)

The idea behind this step is to let a water drop preserves its
previous fitness value. Later, the amount of carrying soil value
is used in updating the velocity of the water drops.

3.3.4. Temperature Update. The final step that occurs at this
stage is updating of the temperature. The new temperature
value depends on the solution quality generated by the water
drops in the previous iterations. The temperature will be
updated as follows:

Temp (𝑡 + 1) = Temp (𝑡) + +ΔTemp, (14)

where

ΔTemp = {{{{{
𝛽 ∗ (Temp (𝑡)Δ𝐷 ) Δ𝐷 > 0
Temp (𝑡)10 otherwise

(15)
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Figure 7: Relationship between the amount of carrying soil and its
quality.

and where coefficient 𝛽 is determined based on the problem.
The difference (Δ𝐷) is calculated based onΔ𝐷 = MaxValue −MinValue, (16)

such that

MaxValue = max [Solutions Quality (WDs)] ,
MinValue = min [Solutions Quality (WDs)] . (17)

According to (16), increase in temperature will be affected by
the difference between the best solution (MinValue) and the
worst solution (MaxValue). Less difference means that there
was not a lot of improvement in the last few iterations and, as
a result, the temperature will increase more. This means that
there is no need to evaporate the water drops as long as they
can find different solutions in each iteration. The flow stage
will repeat a few times until the temperature reaches a certain
value. When the temperature is sufficient, the evaporation
stage begins.

3.4. Evaporation Stage. In this stage, the number of water
drops that will evaporate (the evaporation rate) when the
temperature reaches a specific value is first determined. The
evaporation rate is chosen randomly between one and the
total number of water drops:

ER = Random (1,𝑁) , (18)

where ER is evaporation rate, and𝑁 is number ofwater drops.
According to the evaporation rate, a specific number of water
drops is selected to evaporate.The selection is done using the
roulette-wheel selection method, taking into consideration
the solution quality of each water drop. Only the selected
water drops evaporate and go to the next stage.

3.5. Condensation Stage. As the temperature decreases, water
drops draw closer to each other and then collide and combine
or bounce off. These operations are useful as they allow
the water drops to be in direct physical contact with each
other. This stage represents the collective and cooperative
behavior between all the water drops. A water drop can
generate a solution without direct communication (by itself);
however, communication between water drops may lead to
the generation of better solutions in the next cycle. In HCA,
physical contact is used for direct communication between
water drops, whereas the amount of soil on the edges can
be considered indirect communication between the water

drops. Direct communication (information exchange) has
been proven to improve solution quality significantly when
applied by other algorithms [37].

The condensation stage is considered to be a problem-
dependent stage that can be redesigned to fit the problem
specification. For example, one way of implementing this
stage to fit the Travelling Salesman Problem (TSP) is to use
local improvement methods. Using these methods enhances
the solution quality and generates better results in the next
cycle (i.e., minimizes the total cost of the solution), with the
hypothesis that it will reduce the number of iterations needed
and help to reach the optimal/near-optimal solution faster.
Equation (19) shows the evaporatedwater (EW) selected from
the overall population, where 𝑛 represents the evaporation
rate (number of evaporated water drops):

EW = {WD1,WD2, . . . ,WD𝑛} . (19)

Initially, all the possible combinations (as pairs) are selected
from the evaporated water drops to share their information
with each other via collision. When two water drops collide,
there is a chance either of the two water drops merging
(coalescence) or of them bouncing off each other. In nature,
determining which operation will take place is based on
factors such as the temperature and the velocity of each water
drop. In this research, we considered the similarity between
the water drops’ solutions to determine which process will
occur. When the similarity is greater than or equal to 50%
between two water drops’ solutions, they merge. Otherwise,
they collide and bounce off each other. Mathematically, this
can be represented as follows:

OP (WD1,WD2)
= {{{Bounce (WD1,WD2) , Similarity < 50%

Merge (WD1,WD2) , Similarity ≥ 50%. (20)

We use the Hamming distance [43] to count the number of
different positions in two series that have the same length to
obtain a measure of the similarity between water drops. For
example, the Hamming distance between 12468 and 13458 is
two.When twowater drops collide andmerge, onewater drop
(i.e., the collector) will becomemore powerful by eliminating
the other one in the process also acquiring the characteristics
of the eliminated water drop (i.e., its velocity):

WD1Vel = WD1Vel +WD2Vel. (21)

On the other hand, when two water drops collide and bounce
off, they will share information with each other about the
goodness of each node and how much a node contributes to
their solutions. The bounce-off operation generates informa-
tion that is used later to refine the quality of the water drops’
solutions in the next cycle. The information is available to all
water drops and helps them to choose a node that has a better
contribution from all the possible nodes at the flow stage.The
information consists of the weight of each node. The weight
measures a node occurrence within a solution over the water
drop solution quality.The idea behind sharing these details is
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to emphasize the best nodes found up to that point. Within
this exchange, the water drops will favor those nodes in the
next cycle. Mathematically, the weight can be calculated as
follows:

Weight (node) = Nodeoccurrence
WDsol

. (22)

Finally, this stage is used to update the global-best solution
found up to that point. In addition, at this stage, the
temperature is reduced by 50∘C. The lowering and raising
of the temperature helps to prevent the water drops from
sticking with the same solution every iteration.

3.6. Precipitation Stage. This stage is considered the termina-
tion stage of the cycle, as the algorithm has to check whether
the termination condition is met. If the condition has been
met, the algorithm stops with the last global-best solution.
Otherwise, this stage is responsible for reinitializing all the
dynamic variables, such as the amount of the soil on each
edge, depth of paths, the velocity of each water drop, and the
amount of soil it holds. The reinitialization of the parameters
helps the algorithm to avoid being trapped in local optima,
which may affect the algorithm’s performance in the next
cycle. Moreover, this stage is considered as a reinforcement
stage, which is used to place emphasis on the best water drop
(the collector). This is achieved by reducing the amount of
soil on the edges that belong to the best water drop solution:

Soil (𝑖, 𝑗) = 0.9 ∗ soil (𝑖, 𝑗) , ∀ (𝑖, 𝑗) ∈ BestWD. (23)

The idea behind that is to favor these edges over the other
edges in the next cycle.

3.7. Summarization of HCA Characteristics. TheHCA can be
distinguished from other swarm algorithms in the following
ways:

(1) HCA involves a number of cycles and number of
iterations (multiple iterations per cycle).This gives the
advantage of performing certain tasks (e.g., solution
improvements methods) every cycle instead of every
iteration to reduce the computational effort. In addi-
tion, the cyclic nature of the algorithm contributes
to self-organization as the system converges to the
solution through feedback from the environment
and internal self-evaluation.The temperature variable
controls the cycle, and its value is updated according
to the quality of the solution obtained in every
iteration.

(2) The flow of the water drops is controlled by paths
depth and soil amount heuristics (indirect commu-
nication). Paths depth factor affects the movement of
water drops and helps to avoid choosing the same
paths by all water drops.

(3) Water drops are able to gain or lose portion of their
velocity. This idea supports the competition between
water drops and prevents the sweep of one drop for
the rest of the drops because a high-velocity water

HCA procedure
(i) Problem input
(ii) Initialization of parameters
(iii)While (termination condition is not met)

Cycle = Cycle + 1
% Flow stage
Repeat

(a) Iteration = iteration + 1
(b) For each water drop

(1) Choose next node (Eqs. (5)–(8))
(2) Update velocity (Eq. (9))
(3) Update soil and depth (Eqs. (10)-(11))
(4) Update carrying soil (Eq. (13))

(c) End for
(d) Calculate the solution fitness
(e) Update local optimal solution
(f) Update Temperature (Eqs. (14)–(17))

Until (Temperature = Evaporation Temperature)
Evaporation (WDs)
Condensation (WDs)
Precipitation (WDs)

(iv) End while

Pseudocode 1: HCA pseudocode.

drop can carve more paths (i.e., remove more soils)
than slower one.

(4) Soil can be deposited and removed, which helps
to avoid a premature convergence and stimulates
the spread of drops in different directions (more
exploration).

(5) Condensation stage is utilized to perform informa-
tion sharing (direct communication) among thewater
drops. Moreover, selecting a collector water drop
represents an elitism technique, and that helps to
perform exploitation for the good solutions. Further,
this stage can be used to improve the quality of the
obtained solutions to reduce the number of iterations.

(6) The evaporation process is a selection technique and
helps the algorithm to escape from local optima
solutions.The evaporation happenswhen there are no
improvements in the quality of the obtained solutions.

(7) Precipitation stage is used to reinitialize variables and
redistribute WDs in the search space to generate new
solutions.

Condensation, evaporation, and precipitation ((5), (6), and(7)) above distinguish HCA from other water-based algo-
rithms, including IWD and WCA. These characteristics are
important and help make a proper balance between explo-
ration exploitation, which helps in convergence towards the
global solution. In addition, the stages of the water cycle are
complementary to each other and help improve the overall
performance of the HCA.

3.8.TheHCA Procedure. Pseudocodes 1 and 2 show the HCA
pseudocode.
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Evaporation procedure (WDs)
Evaluate the solution quality
Identify Evaporation Rate (Eq. (18))
Select WDs to evaporate

End
Condensation procedure (WDs)

Information exchange (WDs) (Eqs. (20)–(22))
Identify the collector (WD)
Update global solution
Update the temperature

End
Precipitation procedure (WDs)

Evaluate the solution quality
Reinitialize dynamic parameters
Global soil update (belong to best WDs) (Eq. (23))
Generate a newWDs population
Distribute the WDs randomly

End

Pseudocode 2: The Evaporation, Condensation, and Precipitation
pseudocode.

3.9. Similarities and Differences in Comparison to Other
Water-Inspired Algorithms. In this section, we clarify the
major similarities and differences between the HCA and
other algorithms such as WCA and IWD. These algorithms
share the same source of inspiration—water movement in
nature. However, they are inspired by different aspects of the
water processes and their corresponding events. In WCA,
entities are represented by a set of streams. These streams
keep moving from one point to another, which simulates the
flow process of the water cycle. When a better point is found,
the position of the stream is swapped with that of a river or
the sea according to their fitness. The swap process simulates
the effects of evaporation and rainfall rather than modelling
these processes. Moreover, these effects only occur when the
positions of the streams/rivers are very close to that of the sea.
In contrast, theHCAhas a population of artificial water drops
that keepmoving fromone point to another, which represents
the flow stage. While moving, water drops can carry/drop
soil that change the topography of the ground by making
some paths deeper or fading others. This represents the
erosion and deposition processes. In WCA, no consideration
is made for soil removal from the paths, which is considered
a critical operation in the formation of streams and rivers.
In HCA, evaporation occurs after certain iterations when
the temperature reaches a specific value. The temperature is
updated according to the performance of the water drops.
In WCA there is no temperature and the evaporation rate
is based on a ratio based on quality of solution. Another
major difference is that there is no consideration for the
condensation stage inWCA, which is one of the crucial stages
in the water cycle. By contrast, in HCA, this stage is utilized
to implement the information sharing concept between the
water drops. Finally, the parameters, operations, exploration
techniques, the formalization of each stage, and solution
construction differ in both algorithms.

Despite the fact that the IWD algorithm is used with
major modifications as a subpart of HCA, there are major

differences between IWD and HCA. In IWD, the probability
of selecting the next node is based on the amount of soil.
In contrast, in HCA, the probability of selecting the next
node is an association between the soil and the path depth,
which enables the construction of a variety of solutions. This
association is useful when the same amount of soil exists
on different paths; therefore, the paths’ depths are used to
differentiate between these edges. Moreover, this association
helps in creating a balance between the exploitation and
exploration of the search process. The edge with less depth
is chosen, and this favors the exploration. Alternatively,
choosing the edge with less soil will favor exploitation.
Further, in HCA, additional factors such as amount of soil
in comparison to depth are considered in velocity updating,
which allows the water drops to gain or lose velocity. This
gives other water drops a chance to compete, as the velocity of
water drops plays an important role in guiding the algorithm
to discover new paths. Moreover, the soil update equation
enables soil removal and deposition. The underlying idea
is to help the algorithm to improve its exploration, avoid
premature convergence, and avoid being trapped in local
optima. In IWD only indirect communication is considered,
while direct and indirect communications are considered in
HCA. Furthermore, inHCA, the carrying soil is encodedwith
the solution quality;more carrying soil indicates a better solu-
tion. Finally, in HCA, three critical stages (i.e., evaporation,
condensation, and precipitation) are considered to improve
the performance of the algorithm. Table 1 summarizes the
major differences between IWD, WCA, and HCA.

4. Experimental Setup

In this section, we explain how the HCA is applied to
continuous problems.

4.1. Problem Representation. Typically, the input of the HCA
is represented as a graph in which water drops can travel
between nodes using the edges. In order to apply the HCA
over the COPs, we developed a directed graph representa-
tion that exploits a topographical approach for continuous
number representation. For a function with 𝑁 variables and
precision 𝑃 for each variable, the graph is composed of (N ×
P) layers. In each layer, there are ten nodes labelled from zero
to nine. Therefore, there are (10 × N × P) nodes in the graph,
as shown in Figure 8.

This graph can be seen as a topographical mountain
with different layers or contour lines. There is no connection
between the nodes in the same layer; this prevents a water
drop from selecting two nodes from the same layer. A
connection exists only from one layer to the next lower layer,
in which a node in a layer is connected to all the nodes
in the next layer. The value of a node in layer 𝑖 is higher
than that of a node in layer 𝑖 + 1. This can be interpreted as
the selected number from the first layer being multiplied by
0.1. The selected number from the second layer is found by
multiplying by 0.01, and so on. This can be done easily using

𝑋value = 𝑚∑
𝐿=1

𝑛 × 10−𝐿, (24)
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Table 1: A summary of the main differences between IWD, WCA, and HCA.

Criteria IWD WCA HCA
Flow stage Moving water drops Changing streams’ positions Moving water drops
Choosing the next node Based on the soil Based on river and sea positions Based on soil and path depth
Velocity Always increases N/A Increases and decreases
Soil update Removal N/A Removal and deposition

Carrying soil Equal to the amount of
soil removed from a path N/A Is encoded with the solution quality

Evaporation N/A When the river position is very
close to the sea position

Based on the temperature value, which is
affected by the percentage of

improvements in the last set of iterations

Evaporation rate N/A
If the distance between a river
and the sea is less than the

threshold
Random number

Condensation N/A N/A

Enable information sharing (direct
communication). Update the global-best
solution, which is used to identify the

collector

Precipitation N/A Randomly distributes a number
of streams

Reinitializes dynamic parameters such as
soil, velocity, and carrying soil

where 𝐿 is the layer number,m is themaximum layer number
for each variable (the precision digit’s number), and 𝑛 is
the node in that layer. The water drops will generate values
between zero and one for each variable. For example, if
a water drop moves between nodes 2, 7, 5, 6, 2, and 4,
respectively, then the variable value is 0.275624. The main
drawback of this representation is that an increase in the
number of high-precision variables leads to an increase in
search space.

4.2. Variables Domain and Precision. As stated above, a
function has at least one variable or up to 𝑛 variables. The
variables’ values should be within the function domain,
which defines a set of possible values for a variable. In some
functions, all the variables may have the same domain range,
whereas, in others, variables may have different ranges. For
simplicity, the obtained values by a water drop for each
variable can be scaled to have values based on the domain
of each variable:𝑉value = (𝑈𝐵 − 𝐿𝐵) × Value + 𝐿𝐵, (25)

where 𝑉value is the real value of the variable, 𝑈𝐵 is upper
bound, and 𝐿𝐵 is lower bound. For example, if the obtained
value is 0.658752 and the variable’s domain is [−10, 10], then
the real value will be equal to 3.17504. The values of con-
tinuous variables are expressed as real numbers. Therefore,
the precision (𝑃) of the variables’ values has to be identified.
This precision identifies the number of digits after the decimal
point. Dealing with real numbers makes the algorithm faster
than is possible by simply considering a graph of binary
numbers as there is no need to encode/decode the variables’
values to and from binary values.

4.3. Solution Generator. To find a solution for a function,
a number of water drops are placed on the peak of this
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Figure 8: Graph representation of continuous variables.

continuous variable mountain (graph). These drops flow
down along the mountain layers. A water drop chooses only
one number (node) from each layer and moves to the next
layer below. This process continues until all the water drops
reach the last layer (ground level). Each water drop may
generate a different solution during its flow. However, as
the algorithm iterates, some water drops start to converge
towards the best water drop solution by selecting the highest
node’s probability. The candidate solutions for a function can
be represented as a matrix, in which each row consists of a
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Table 2: HCA parameters and their values.

Parameter Value
Number of water drops 10
Maximum number of iterations 500/1000
Initial soil on each edge 10000
Initial velocity 100

Initial depth Edge length/soil on that
edge

Initial carrying soil 1
Velocity updating 𝛼 = 2
Soil updating 𝑃𝑁 = 0.99
Initial temperature 50, 𝛽 = 10
Maximum temperature 100

water drop solution. Each water drop will generate a solution
to all the variables of the function. Therefore, the water drop
solution is composed of a set of visited nodes based on the
number of variables and the precision of each variable:

Solutions =
[[[[[[[[[[[

WD1𝑠 1 2 ⋅ ⋅ ⋅ 𝑚𝑁×𝑃
WD2𝑠 1 2 ⋅ ⋅ ⋅ 𝑚𝑁×𝑃
WD𝑖𝑠 1 2 ⋅ ⋅ ⋅ 𝑚𝑁×𝑃... ⋅ ⋅ ⋅
WD𝑘𝑠 1 2 ⋅ ⋅ ⋅ 𝑚𝑁×𝑃

]]]]]]]]]]]
. (26)

An initial solution is generated randomly for each water
drop based on the function dimensionality. Then, these
solutions are evaluated, and the best combination is selected.
The selected solution is favored with less soil on the edges
belonging to this solution. Subsequently, the water drops start
flowing and generating solutions.

4.4. Local Mutation Improvement. The algorithm can be
augmented with mutation operation to change the solution
of the water drops during collision at the condensation stage.
The mutation is applied only on the selected water drops.
Moreover, the mutation is applied randomly on selected
variables from a water drop solution. For real numbers, a
mutation operation can be implemented as follows:𝑉new = 1 − (𝛽 × 𝑉old) , (27)

where 𝛽 is a uniform randomnumber in the range [0, 1],𝑉new
is the new value after the mutation, and 𝑉old is the original
value. This mutation helps to flip the value of the variable; if
the value is large, then it becomes small, and vice versa.

4.5. HCAParameters andAssumption. In theHCA, a number
of parameters are considered to control the flow of the
algorithm and to help to generate a solution. Some of these
parameters need to be adjusted according to the problem
domain. Table 2 lists the parameters and their values used in
this algorithm after initial experiments.

The distance between the nodes in the same layer is not
specified (i.e., no connection) because a water drop cannot
choose two nodes from the same layer. The distance between
the nodes in different layers is the same and equal to one
unit. Therefore, the depth is adjusted to equal the inverse of
the number of times a node is selected. Under this setting,
a path between (x, y) will deepen with increasing number of
selections of node 𝑦 after node 𝑥. This adjustment is required
because the internodal distance is constant as stipulated in
the problem representation. Hence, considering the depth to
equal the distance over the soil (see (8)) will not affect the
outcome as supposed.

4.6. Experimental Results and Analysis. A number of bench-
mark functions were selected from the literature; see [4]
for a full description of these functions. The mathematical
formulations of the used functions are listed in the Appendix.
The functions have a variety of properties with different types.
In this paper, only unconstrained functions are considered.
The experiments were conducted on a PCwith a Core i5 CPU
and 8GBRAMusingMATLABonMicrosoftWindows 7.The
characteristics of these functions are summarized in Table 3.

For all the functions, the precision is assumed to be six
significant figures for each variable. The HCA was executed
twenty times with amaximumnumber of iterations of 500 for
all functions, except for those with more than three variables,
for which the maximum was 1000. The algorithm was tested
without mutation (HCA) and with mutation (MHCA) for all
the functions.

The results are provided in Table 4. The algorithm
numbers in Table 4 (the column named “Number”) maps to
the same column in Table 3. For each function, the worst,
average, and best values are listed. The symbol “#” represents
the average number of iterations needed to reach the global
solution.The results show that the algorithm gave satisfactory
results for all of the functions tested, and it was able to
find the global minimum solution within a small number
of iterations for some functions. In order to evaluate the
algorithm performance, we calculated the success rate for
each function using

Success rate% = (Number of successful runs
Total number of runs

)× 100. (28)

The solution is accepted if the difference between the
obtained solution and the optimum value is less than
0.001. The algorithm achieved 100% for all of the functions,
except for Powell-4v [HCA: (60%), MHCA: (90%)], Sphere-
6v [HCA: (60%), MHCA: (40%)], Rosenbrock-4v [HCA:
(70%),MHCA: (100%)], andWood-4v [HCA: (50%),MHCA:
(80%)]. The numbers highlighted in boldface text in the
“best” column represent the best value achieved in the cases
whereHCAorMHCAperformedbest; in all other casesHCA
andMHCAwere found to give the same “best” performance.

The results of HCA andMHCAwere compared using the
Wilcoxon Signed-Rank test. The 𝑃 values obtained in the test
were 0.2460, 0.1389, 0.8572, and 0.2543 for the worst, average,
best, and average number of iterations, respectively. According
to the 𝑃 values, there is no significant difference between the
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Table 5: Average execution time per number of variables.

Hypersphere function 2 variables
(500 iterations)

3 variables
(500 iterations)

4 variables
(1000 iterations)

6 variables
(1000 iterations)

Average execution time
(second) 2.8186 4.0832 10.716 15.962

results.This indicates that theHCAalgorithm is able to obtain
optimal results without the mutation operation. However,
it should be noted that using the mutation operation had
the advantage of reducing the average number of iterations
required to converge on a solution by 61%.

The success rate was lower for functions with more than
four variables because of the problem representation, where
the number of layers in the representation increases with the
number of variables. Consequently, the HCA performance
was limited to functions with few variables.The experimental
results revealed a notable advantage of the proposed problem
representation, namely, the small effect of the function
domain on the solution quality and algorithm performance.
In contrast, the performances of some algorithms are highly
affected by the function domain, because their working
mechanism depends on the distribution of the entities in a
multidimensional search space. If an entity wanders outside
the function boundaries, its position must be reset by the
algorithm.

The effectiveness of the algorithm is validated by ana-
lyzing the calculated average values for each function (i.e.,
the average value of each function is close to the optimal
value). This demonstrates the stability of the algorithm
since it manages to find the global-optimal solution in each
execution. Since the maximum number of iterations is fixed
to a specific value, the average execution time was recorded
for Hypersphere function with different number of variables.
Consequently, the execution time is approximately the same
for the other functions with the same number of variables.
There is a slight increase in execution time with increasing
number of variables. The results are reported in Table 5.

Based on the literature, the most commonly used criteria
for evaluating algorithms are number of iterations (function
evaluations), success rate, and solution quality (accuracy).
In solving continuous problems, the performance of an
algorithm can be evaluated using the number of iterations
rather than execution time or solution accuracy. The aim of
evaluating the number of iterations is to infer the convergence
speed of the entities of an algorithm towards the global-
optimal solution. Another aim is to remove hardware aspects
from consideration. Generally speaking, premature or slow
convergence is not preferred because it may lead to trapping
in local optima solutions.

The performance of the HCA was also compared with
that of the WCA on specific functions, where the WCA
results were taken from [29]. The obtained results for both
algorithms are displayed inTable 6.The symbol “#” represents
the average number of iterations.

The results presented in Table 6 show thatHCA andWCA
produced optimal results with differing accuracies. Signifi-
cance values of 0.75 (worst), 0.97 (average), and 0.86 (best)

were found using Wilcoxon Signed Ranks Test, indicating
no significant difference in performance between WCA and
HCA.

In addition, the average number of iterations is also
compared, and the 𝑃 value (0.03078) indicates a significant
difference, which confirms that theHCAwas able to reach the
global-optimal solution with fewer iterations than WCA (in
10 of 15 cases). However, the solutions’ accuracy of the HCA
over functions with more than two variables was lower than
WCA.

HCA is also compared with other optimization algo-
rithms in terms of average number of iterations. The com-
pared algorithms were continuous ACO based on Discrete
Encoding CACO-DE [44], Ant Colony System (ANTS), GA,
BA, and GEM—using results from [25]. WCA and ER-
WCA were also compared—with results taken from [29].
The success rate was 100% for all the algorithms, including
HCA, except for Sphere-6v [HCA: (60%)] and Rosenbrock-
4v [HCA: (70%)]. Table 7 shows the comparison results.

As can be seen in Table 7, the HCA results are very com-
petitive.We appliedWilcoxon test to identify the significance
of differences between the results. We also applied T-test to
obtain 𝑃 values along with the W-values. The results of the
P/W-values are reported in Table 8.

Based onTable 8, there are significant differences between
the results of ANTS, GA, BA, and HCA, where HCA reached
the optimal solutions in fewer iterations than the ANTS,
GA, and BA. Although the 𝑃 value for “BA versus HCA”
indicates that there is no significant difference, the W-
value shows there is a significant difference between the two
algorithms. Further, the performance of HCA CACO-DE,
GEM, WCA, and ER-WCA is very competitive. Overall, the
results also indicate that HCA is highly efficient for function
optimization.

HCA, MHCA, Continuous GA (CGA), and Enhanced
Continuous Tabu Search (ECTS) were also compared on
some other functions in terms of average number of iterations
required to reach an optimal solution. The results for CGA
and ECTS were taken from [16]. The paper reported only
the average number of iterations and the success rate of their
algorithms. The success rate was 100% for all the algorithms.
The results are listed in Table 9, where numbers in boldface
indicate the lowest value.

From Table 9, it can be noted that both HCA andMHCA
achieved optimal solutions in fewer iterations than the CGA.
This is confirmed using Wilcoxon test and T-test on the
obtained results; see Table 10.

Despite there being no significant difference between the
results of HCA, MHCA, and ECTS, the means of HCA and
MHCA results are less than ECTS, indicating competitive
performance.



18 Journal of Optimization

Ta
bl
e
6:
C
om

pa
ris

on
be
tw
ee
n
W
CA

an
d
H
CA

in
te
rm

so
fr
es
ul
ts
an
d
ite
ra
tio

ns
.

Fu
nc
tio

n
na
m
e

D
Bo

nd
Be

st
re
su
lt

W
CA

H
CA

W
or
st

Av
g

Be
st

#
W
or
st

Av
g

Be
st

#
D
eJ
on

g
2

±2.048
3905.9

3
3906.1

21
3905.9

40
3905.9

3
684

3905.9
3

3905.9
3

3905.9
3

31
4.8

G
ol
ds
te
in

&
Pr
ic
eI

2
±2

3
3.0009

68
3.0005

61
3.0000

2
980

3.00𝐸+
00

3.00𝐸+
00

3.00E+
00

34
5.8

Br
an
in

2
±2

0.3977
0.3987

17
0.3982

72
0.3977

31
37
7

3.98𝐸−
01

3.98𝐸−
01

3.98𝐸−
01

379.9
M
ar
tin

&
G
ad
dy

2
[0,10]

0
9.29𝐸−

04
4.16𝐸−

04
5.01𝐸−

06
57

0.00𝐸+
00

0.00𝐸+
00

0.00E+
00

262.1
Ro

se
nb

ro
ck

2
±1.2

0
1.46𝐸−

02
1.34𝐸−

03
2.81𝐸−

05
17
4

9.22𝐸−
06

3.67𝐸−
06

6.63E−
08

370.9
Ro

se
nb

ro
ck

2
±10

0
9.86𝐸−

04
4.32𝐸−

04
1.12𝐸−

06
623

2.03𝐸−
09

2.14𝐸−
10

0.00E+
00

35
0.6

Ro
se
nb

ro
ck

4
±1.2

0
7.98𝐸−

04
2.12𝐸−

04
3.23E−

07
26
6

1.94𝐸−
01

7.02𝐸−
02

1.64𝐸−
03

816.5
H
yp
er
sp
he
re

6
±5.12

0
9.22𝐸−

03
6.01𝐸−

03
1.34E−

07
10
1

1.05𝐸+
00

3.88𝐸−
01

1.47𝐸−
05

879
Sh
aff
er

2
±100

0
9.71𝐸−

03
1.16𝐸−

03
2.61𝐸−

05
8942

0.00𝐸+
00

0.00𝐸+
00

0.00E+
00

28
4.1

G
ol
ds
te
in

&
Pr
ic
eI

2
±5

3
3

3.0000
3

3
2400

3.00𝐸+
00

3.00𝐸+
00

3.00𝐸+
00

34
5.8

G
ol
ds
te
in

&
Pr
ic
eI
I

2
±5

1
1.1291

1.0118
1

47,500
1.00𝐸+

00
1.00𝐸+

00
1.00𝐸+

00
25
5.5

Si
x-
H
um

p
Ca

m
eb

ac
k

2
±10

−1.031
6

−1.031
6

−1.031
6

−1.031
6

3105
−1.03𝐸

+00
−1.03𝐸

+00
−1.03𝐸

+00
34
8.2

Ea
sto

n
&
Fe
nt
on

2
[0,10]

1.74
1.7441

1.7441
1.7441

650
1.74𝐸+

00
1.74𝐸+

00
1.74𝐸+

00
38
5.6

W
oo

d
4

±5
0

3.81𝐸−
05

1.58𝐸−
06

1.30E−
10

15,650
1.12𝐸+

00
2.91𝐸−

01
7.62𝐸−

08
75
4

Po
w
el
lq
ua
rt
ic

4
±5

0
2.87𝐸−

09
6.09𝐸−

10
1.12E−

11
23,500

2.42𝐸−
01

9.13𝐸−
02

3.91𝐸−
03

86
4

M
ea
n

70
00
.6

46
3.
8



Journal of Optimization 19

Ta
bl
e
7:
C
om

pa
ris

on
be
tw
ee
n
H
CA

an
d
ot
he
ra

lg
or
ith

m
si
n
te
rm

so
fa
ve
ra
ge

nu
m
be
ro

fi
te
ra
tio

ns
.

Fu
nc
tio

n
na
m
e

D
B

CA
CO

-D
E

A
N
TS

G
A

BA
G
EM

W
CA

ER
-W

CA
H
CA

(1
)

D
eJ
on

g
2

±2.048
18
72

60
00

10
,16

0
86
8

74
6

684
1220

31
4.8

(2
)

G
ol
ds
te
in

&
Pr
ic
eI

2
±2

66
6

53
30

56
62

99
9

70
1

980
480

34
5.8

(3
)

Br
an
in

2
±2

-
19
36

73
25

16
57

68
9

377
16
0

379.9
(4
)

M
ar
tin

&
G
ad
dy

2
[0,10]

34
0

16
88

24
88

52
6

25
8

57
100

262.05
(5
a)

Ro
se
nb

ro
ck

2
±1.2

-
68
42

10
,2
12

63
1

57
2

174
73

370.9
(5
b)

Ro
se
nb

ro
ck

2
±10

13
13

75
05

-
23
06

22
89

623
94

350.55
(6
)

Ro
se
nb

ro
ck

4
±1.2

62
4

84
71

-
28
,52

9
82
,18

8
26
6

300
816.5

(7
)

H
yp
er
sp
he
re

6
±5.12

27
0

22
,0
50

15
,4
68

71
13

42
3

101
91

879
(8
)

Sh
aff
er

2
-

-
-

-
-

8942
1110

28
4.1

M
ea
n

84
7.5

74
77
.8

85
52
.5

53
28
.6

10
98
3.
3

13
56
.0

40
3.
1

44
4.
8



20 Journal of Optimization

Table 8: Comparison between 𝑃/𝑊-values for HCA and other algorithms (based on Table 7).

Algorithm versus HCA Using 𝑇-test Using Wilcoxon test Is the result significant
at𝑃 ≤ 0.05𝑃 value 𝑍-value 𝑊-value

(at critical value of 𝑤)
CACO-DE versus HCA 0.324033 −0.9435 6 (at 0) No
ANTS versus HCA 0.014953 −2.5205 0 (at 3) Yes
GA versus HCA 0.005598 −2.2014 0 (at 0) Yes
BA versus HCA 0.188434 −2.5205 0 (at 3) Yes
GEM versus HCA 0.333414 −1.5403 7 (at 3) No
WCA versus HCA 0.379505 −0.2962 20 (at 5) No
ER-WCA versus HCA 0.832326 −0.5331 18 (at 5) No

Table 9: Comparison of CGA, ECTS, HCA, and MHCA.

Number Function name D CGA ECTS HCA MHCA
(1) Shubert 2 575 - 368 391.45
(2) Bohachevsky 2 370 - 264.9 288.25
(3) Zakharov 2 620 195 328.15 242.05
(4) Rosenbrock 2 960 480 350.55 282.55
(5) Easom 2 1504 1284 354.6 370.35
(6) Branin 2 620 245 379.9 393.75
(7) Goldstein-Price 1 2 410 231 345.8 409.9
(8) Hartmann 3 582 548 392.05 327.5
(9) Sphere 3 750 338 371.3 330.45

Mean 710.1 474.4 350.6 337.4

Table 10: Comparison between P/W-values for CGA, ECTS, HCA, and MHCA.

Algorithm versus HCA Using 𝑇-test Using Wilcoxon test Is the result significant at𝑃 ≤ 0.05𝑃 value 𝑍-value 𝑊-value
(at critical value of 𝑤)

CGA versus HCA 0.012635 −2.6656 0 (at 5) Yes
CGA versus MHCA 0.012361 −2.6656 0 (at 5) Yes
ECTS versus HCA 0.456634 −0.3381 12 (at 2) No
ECTS versus MHCA 0.369119 −0.8452 9 (at 2) No
HCA versus MHCA 0.470531 −0.7701 16 (at 5) No

Figure 9 illustrates the convergence of global and local
solutions for the Ackley function according to the number of
iterations. The red line “Local” represents the quality of the
solution that was obtained at the end of each iteration. This
shows that the algorithm was able to avoid stagnation and
keep generating different solutions in each iteration reflecting
the proper design of the flow stage. We postulate that such
solution diversity was maintained by the depth factor and
fluctuations of thewater drop velocities.TheHCAminimized
the Ackley function after 383 iterations.

Figure 10 shows a 2D graph for Easom function. The
function has two variables, and the global minimum value is
equal to −1 when (𝑋1 = 𝜋, 𝑋2 = 𝜋). Solving this function
is difficult as the flatness of the landscape does not give any
indication of the direction towards global minimum.

Figure 11 shows the convergence of the HCA solving
Easom function.

As can be seen, the HCA kept generating different
solutions on each iteration while converging towards the

global minimum value. Figure 12 shows the convergence of
the HCA solving Rosenbrock function.

Figure 13 illustrates the convergence speed for HCA
on the Hypersphere function with six variables. The HCA
minimized the function after 919 iterations.

As shown in Figure 13, the HCA required more iterations
to minimize functions with more than two variables because
of the increase in the solution search space.

5. Conclusion and Future Work

In this paper, a new nature-inspired algorithm called the
Hydrological Cycle Algorithm (HCA) is presented. In HCA,
a collection of water drops pass through different phases such
as flow (runoff), evaporation, condensation, and precipita-
tion to generate a solution. The HCA has been shown to
solve continuous optimization problems and provide high-
quality solutions. In addition, its ability to escape local
optima and find the global optima has been demonstrated,
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Figure 9: The global and local convergence of the HCA versus
iterations number.
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Figure 10: Easom function graph (from [4]).

which validates the convergence and the effectiveness of the
exploration and exploitation process of the algorithm. One of
the reasons for this improved performance is that both direct
and indirect communication take place to share information
among the water drops. The proposed representation of the
continuous problems can easily be adapted to other problems.
For instance, approaches involving gravity can regard the
representation as a topology, with swarm particles starting
at the highest point. Approaches involving placing weights
on graph vertices can regard the representation as a form of
optimized route finding.

The results of the benchmarking experiments show that
HCA provides results in some cases better and in others
not significantly worse than other optimization algorithms.
But there is room for further improvement. Further work
is required to optimize the algorithm’s performance when
dealing with problems involving two or more variables. In
terms of solution accuracy, the algorithm implementation
and the problem representation could be improved, including
dynamic fine-tuning of the parameters. Possible further
improvements to the HCA could include other techniques to
dynamically control evaporation and condensation. Studying
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Figure 11: The global and local convergence of the HCA on Easom
function.
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Figure 12: The global and local convergence of the HCA on
Rosenbrock function.

the impact of the number of water drops on the quality of the
solution is also worth investigating.

In conclusion, if a natural computing approach is to
be considered a novel addition to the already large field of
overlapping methods and techniques, it needs to embed the
two critical concepts of self-organization and emergentism
at its core, with intuitively based (i.e., nature-based) infor-
mation sharing mechanisms for effective exploration and
exploitation, as well as demonstrate performance which is at
least on par with related algorithms in the field. In particular,
it should be shown to offer something a bit different from
what is available already.We contend that HCA satisfies these
criteria and, while further development is required to test
its full potential, can be used by researchers dealing with
continuous optimization problems with confidence.

Appendix

Table 11 shows the mathematical formulations for the used
test functions, which have been taken from [4, 24].
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Table 11: The mathematical formulations.

Function name Mathematical formulations

Ackley 𝑓 (𝑥) = −𝑎 exp(−𝑏√ 1𝑑 𝑑∑𝑖=1𝑥2𝑖) − exp(1𝑑 𝑑∑𝑖=1cos (𝑐𝑥𝑖)) + 𝑎 + exp (1) 𝑎 = 20, 𝑏 = 0.2 and 𝑐 = 2𝜋
Cross-In-Tray 𝑓 (𝑥) = −0.0001(sin (𝑥1) sin (𝑥2) exp(100 − √𝑥21 + 𝑥22𝜋 )

 + 1)0.1
Drop-Wave 𝑓 (𝑥) = −1 + cos(12√𝑥21 + 𝑥22)0.5 (𝑥21 + 𝑥22) + 2
Gramacy & Lee (2012) 𝑓 (𝑥) = sin (10𝜋𝑥)2𝑥 + (𝑥 − 1)4
Griewank 𝑓 (𝑥) = 𝑑∑

𝑖=1

𝑥2𝑖4000 − 𝑑∏
𝑖=1

cos( 𝑥𝑖√𝑖) + 1
Holder Table 𝑓 (𝑥) = − sin(𝑥1) cos (𝑥2) exp(1 − √𝑥21 + 𝑥22𝜋 )


Levy 𝑓 (𝑥) = sin2 (3𝜋𝑤1) + 𝑑−1∑

𝑖=1

(𝑤𝑖 − 1)2 [1 + 10 sin2 (𝜋𝑤𝑖 + 1)] + (𝑤𝑑 − 1)2 [1 + sin2 (2𝜋𝑤𝑑)]
where, 𝑤𝑖 = 1 + 𝑥𝑖 − 14 , ∀𝑖 = 1, . . . , 𝑑

Levy N. 13 𝑓(𝑥) = sin2(3𝜋𝑥1) + (𝑥1 − 1)2[1 + sin2(3𝜋𝑥2)] + (𝑥2 − 1)2[1 + sin2(3𝜋𝑥2)]
Rastrigin 𝑓 (𝑥) = 10𝑑 + 𝑑∑

𝑖=1

[𝑥2𝑖 − 10 cos (2𝜋𝑥𝑖)]
Schaffer N. 2 𝑓 (𝑥) = 0.5 + sin2 (𝑥21 + 𝑥22) − 0.5[1 + 0.001 (𝑥21 + 𝑥22)]2
Schaffer N. 4 𝑓 (𝑥) = 0.5 + cos (sin (𝑥21 − 𝑥22)) − 0.5[1 + 0.001 (𝑥21 + 𝑥22)]2
Schwefel 𝑓 (𝑥) = 418.9829𝑑 − 𝑑∑

𝑖=1

𝑥𝑖 sin(√𝑥𝑖)
Shubert 𝑓 (𝑥) = ( 5∑

𝑖=1

𝑖 cos ((𝑖 + 1) 𝑥1 + 𝑖))( 5∑
𝑖=1

𝑖 cos ((𝑖 + 1) 𝑥2 + 𝑖))
Bohachevsky 𝑓 (𝑥) = 𝑥21 + 2𝑥22 − 0.3 cos (3𝜋𝑥1) − 0.4 cos (4𝜋𝑥2) + 0.7
Rotated
Hyper-Ellipsoid

𝑓 (𝑥) = 𝑑∑
𝑖=1

𝑖∑
𝑗=1

𝑥2𝑗
Sphere (Hyper) 𝑓 (𝑥) = 𝑑∑

𝑖=1

𝑥2𝑖
Sum Squares 𝑓 (𝑥) = 𝑑∑

𝑖=1

𝑖𝑥2𝑖
Booth 𝑓 (𝑥) = (𝑥1 + 2𝑥2 − 7)2 − (2𝑥1 + 𝑥2 − 5)2
Matyas 𝑓 (𝑥) = 0.26 (𝑥21 + 𝑥22) − 0.48𝑥1𝑥2
McCormick 𝑓 (𝑥) = sin (𝑥1 + 𝑥2) + (𝑥1 + 𝑥2)2 − 1.5𝑥1 + 2.5𝑥2 + 1
Zakharov 𝑓 (𝑥) = 𝑑∑

𝑖=1

𝑥2𝑖 + ( 𝑑∑
𝑖=1

0.5𝑖𝑥𝑖)2 + ( 𝑑∑
𝑖=1

0.5𝑖𝑥𝑖)4
Three-Hump Camel 𝑓 (𝑥) = 2𝑥21 − 1.05𝑥41 + 𝑥616 + 𝑥1𝑥2 + 𝑥22
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Table 11: Continued.

Function name Mathematical formulations

Six-Hump Camel 𝑓 (𝑥) = (4 − 2.1𝑥21 + 𝑥413 )𝑥21 + 𝑥1𝑥2 + (−4 + 4𝑥22) 𝑥22
Dixon-Price 𝑓 (𝑥) = (𝑥1 − 1)2 + 𝑑∑

𝑖=1

𝑖 (2𝑥2𝑖 − 𝑥𝑖−1)2
Rosenbrock 𝑓 (𝑥) = 𝑑−1∑

𝑖=1

[100 (𝑥𝑖+1 − 𝑥2𝑖 )2 + (𝑥𝑖 − 1)2]
Shekel’s Foxholes (De
Jong N. 5)

𝑓 (𝑥) = (0.002 + 25∑
𝑖=1

1𝑖 + (𝑥1 − 𝑎1𝑖)6 + (𝑥2 − 𝑎2𝑖)6)
−1

,

where 𝑎 = (−32 −16 0 16 32 −32 ⋅ ⋅ ⋅ 0 16 32−32 −32 −32 −32 −32 −16 ⋅ ⋅ ⋅ 32 32 32)
Easom 𝑓 (𝑥) = − cos (𝑥1) cos (𝑥2) exp (− (𝑥1 − 𝜋)2 − (𝑥2 − 𝜋)2)
Michalewicz 𝑓 (𝑥) = − 𝑑∑

𝑖=1

sin (𝑥𝑖) sin2𝑚 (𝑖𝑥2𝑖𝜋 ) , where 𝑚 = 10
Beale 𝑓 (𝑥) = (1.5 − 𝑥1 + 𝑥1𝑥2)2 + (2.25 − 𝑥1 + 𝑥1𝑥22)2 + (2.625 − 𝑥1 + 𝑥1𝑥32)2
Branin 𝑓 (𝑥) = 𝑎 (𝑥2 − 𝑏𝑥21 + 𝑐𝑥1 − 𝑟)2 + 𝑠 (1 − 𝑡) cos (𝑥1) + 𝑠𝑎 = 1, 𝑏 = 5.1(4𝜋2) , 𝑐 = 5𝜋 , 𝑟 = 6, 𝑠 = 10, and 𝑡 = 18𝜋
Goldstein-Price I 𝑓 (𝑥) = [1 + (𝑥1 + 𝑥2 + 1)2 (19 − 14𝑥1 + 3𝑥21 − 14𝑥2 + 6𝑥1𝑥2 + 3𝑥22)]× [30 + (2𝑥1 − 3𝑥2)2 (18 − 32𝑥1 + 12𝑥21 + 48𝑥2 − 36𝑥1𝑥2 + 27𝑥22)]
Goldstein-Price II 𝑓 (𝑥) = exp {12 (𝑥21 + 𝑥22 − 25)}2 + sin4 (4𝑥1 − 3𝑥2) + 12 (2𝑥1 + 𝑥2 − 10)2
Styblinski-Tang 𝑓 (𝑥) = 12 𝑑∑𝑖=1 (𝑥4𝑖 − 16𝑥2𝑖 + 5𝑥𝑖)
Gramacy & Lee
(2008) 𝑓 (𝑥) = 𝑥1 exp (−𝑥21 − 𝑥22)
Martin & Gaddy 𝑓 (𝑥) = (𝑥1 − 𝑥2)2 + ((𝑥1 + 𝑥2 − 10)3 )2
Easton and Fenton 𝑓 (𝑥) = (12 + 𝑥21 + 1 + 𝑥22𝑥21 + 𝑥21𝑥22 + 100(𝑥1𝑥2)4 ) . ( 110)
Hartmann 3-D

𝑓 (𝑥) = − 4∑
𝑖=1

𝛼𝑖 exp(− 3∑
𝑗=1

𝐴 𝑖𝑗 (𝑥𝑗 − 𝑝𝑖𝑗)2) ,
where 𝛼 = (1.0, 1.2, 3.0, 3.2)𝑇 , 𝐴 = (

(
3.0 10 300.1 10 353.0 10 300.1 10 35

)
)

, 𝑃 = 10−4(
(

3689 1170 26734699 4387 74701091 8732 5547381 5743 8828
)
)

Powell 𝑓 (𝑥) = 𝑑/4∑
𝑖=1

[(𝑥4𝑖−3 + 10𝑥4𝑖−2)2 + 5 (𝑥4𝑖−1 − 𝑥4𝑖)2 + (𝑥4𝑖−2 − 2𝑥4𝑖−1)4 + 10 (𝑥4𝑖−3 − 𝑥4𝑖)4]
Wood 𝑓 (𝑥1, 𝑥2, 𝑥3, 𝑥4) = 100 (𝑥1 − 𝑥2)2 + (𝑥1 − 1)2 + (𝑥3 − 1)2 + 90 (𝑥23 − 𝑥4)2+ 10.1 ((𝑥2 − 1)2 + (𝑥4 − 1)2) + 19.8 (𝑥2 − 1) (𝑥4 − 1)
DeJong max 𝑓 (𝑥) = (3905.93) − 100 (𝑥21 − 𝑥2)2 − (1 − 𝑥1)2
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Figure 13: Convergence of HCA on the Hypersphere function with
six variables.
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